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Abstract 

General relativistic effects on 
geometric phase evolution of a photon 

state 
 

With recent advancements of free-space quantum optical systems consisting 

of satellites, the investigation of the evolution of photon states in 

gravitational field has been widely studied but mostly confined to the study 

of proper time. While there are also a few works about the effects from local 

frames on quantum photon states, called Wigner rotation, it has been 

interpreted as the Berry phase of classical polarization vectors along a 

photon trajectory. Here, the Wigner rotation is investigated to study 

geometric phases induced by Earth's gravitational field for observers in 

various orbits. It is found that a potentially measurable phase of the Wigner 

rotation angle in addition to the rotation of standard fame, the latter of 

which is computed and agrees well with the geodetic rotation. When an 

observer is in either a circular orbit containing non-zero angular momentum, 

the additional phase contributes 10-6 degree to 10-4 degree respectively, 

depending on the altitude of the Earth orbit.  In the former case, the 

additional phase is dominant over the near-zero classical geodetic rotation. 

This shows that the Wigner rotation represents a non-trivial semi-classical 

effect of quantum field theory on a background classical gravitational field. 

It is also shown that coincidence rates in two-photon astronomical quantum 
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interferometry consisting of satellites on polar orbits near Earth can be 

variated in combination with pure quantum optical effect, Hong-Ou-Mandel 

dip, owing to the relatively large non-trivial geometric phase differences 

between the photon trajectories with the positive and negative velocity 

component in the direction of the quantization axis.  

Keyword : Wigner rotation,  astronomical interferometer, Quantum 

key distribution, Hong-Ou-Mandel effect 

Student Number : 2017-31651 
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Chapter 1. Introduction 

1.1. Study Background 

Quantum optical technologies have shown their supremacy in many 

applications of secure communications and sophisticated measurements. 

Taking advantage of the intrinsic immunity of quantum communications to 

tampering and eavesdropping, various quantum communication protocols 

have been widely studied using not only optical fiber but also satellites and 

ground stations with the recent deployment of the Quantum Experiments at 

Space Scale network and Micius satellite1-20. Using tailored photons as input 

states, quantum interferometry have also been reported to overcome the 

classical limit of interferometry sensitivity, O( ), up to the intrinsic 

Heisenberg limit, O( ), which corresponds to an eight-order-of-

magnitude improvement of SNR in milliwatts-optical-laser interferometers21. 

The quantum optical interferometry has its potential applications in 

elaborate satellite-based metrology systems21 such as the European Laser 

Interferometer Space Antenna (LISA) for the detection of gravitational wave. 

One of the big challenges in these quantum optical systems with satellites is 

the determination of phase variations induced by gravitational rotations on 

both satellites and photon states along the geodesics. Accordingly, 

synchronization of polarization reference-frame and evolutions of the 

photon states should be considered for free-space QKD systems22 and 
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quantum optical interferometry based on satellites23 in the gravitational 

field23 which induces the de Sitter (geodetic precession) effects24.  

Therefore, it is important in these environments to understand the interplay 

of quantum theory and gravitation as the photon state, propagating between 

the ground station and the satellite, carries the quantum information. While 

the gravitational field is known to add a measurable contribution to the 

quantum bit error rate (QBER) along the worldline of the quantum state as 

the altitude changes20 in addition to the red shift25,26, the experiment regimes 

of several proposals suggested for quantum communication between a LEO 

satellite and an optical ground station, such as SPACEQEST and QEYSSAt 

projects, have not fully assessed evolution of quantum states induced in 

curved space-time; most of them have mainly considered quantum optics 

rather than general relativistic phenomena of quantum states at large 

scales17-20.  

In addition to the geodetic precession, the spin angular momentum of an 

astronomical body has been reported to have other extraordinary phenomena 

such as the Penrose process in the ergosphere27, chaotic geodesics28, and the 

additional gravitational precession, the Lense-Thirring (frame-dragging) 

effect24,29-31. Especially, the frame-dragging effects dictate different phase-

variations of photons near a Kerr black hole along their worldlines in a 

combination with the geodetic precession and redshift, leading to 

geometrically-induced unique Orbital Angular Momentum (OAM) profiles 
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in the sky of an asymptotic observer32. Moreover, it has been reported that 

Sagnac effects from the rotational frame-dragging can variate the coincident 

rates of two photon states in a Hong–Ou–Mandel (HOM) interferometer 

surrounding a spinning astronomical object33; the two single photons travel 

on clockwise and anticlockwise half of circular paths respectively and then 

enter into a 50:50 beam splitter in the opposite. The Sagnac effects result in 

measurable variation of the coincident rates around a Kerr blackhole, but not 

near Earth due to its relatively low spinning angular momentum and weak 

gravitational field. 

Describing photon states observed by a moving observer (e.g., a satellite) in 

curved spacetime requires the understanding of both quantum mechanics 

and general relativity, two essential branches of modern physics. One of the 

conceptual barriers for the relativistic treatment of quantum information is 

the difference in the role played by the wave fields and the state vectors in 

relativistic quantum theory. In non-relativistic quantum mechanics, the 

wave function of the Schrödinger's equation gives the probability amplitude 

that can be used to define conserved particle densities or density matrices. 

However, it was discovered that relativistic equations are only indirect 

representations for probability waves of a single particle34. In 1939, Wigner 

proposed the idea that the quantum states of relativistic particles can be 

formulated without the use of wave equations35. He showed that the states of 

a free particle are given by a unitary irreducible representation of the 
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Poincaré group. In Wigner's formulation, relativistic-particle states in 

different inertial frames are related by a little group element in the 

irreducible representation of the Poincaré group, called Wigner rotation34-42.  

While Wigner's original proposal was for special relativity, there have been 

several attempts to extend it to the domain of general relativity39-42. It has 

been shown that moving-particle states in curved spacetime are transformed 

into each other by Wigner rotation39-42 by introducing tetrads (frame fields) 

to define local coordinates43 since extending Wigner's group to curved 

spacetime requires the standard local laboratory at every event44.  

1.2. Purpose of Research 

In this work, we investigate the effects on WRAs from the spinning angular 

momentum of gravitating object (J) axial angular momentums of photon 

(lphoton) by calculating WRAs along representative photon trajectories on the 

equatorial plane with different positive and negative angular momentums 

lphoton for two types of circular orbits, equatorial and polar orbits. It is 

demonstrated that WRAs depend on the two angular momentums, J and 

lphoton by calculating WRAs for observers’ frames on a thin accretion disk of 

a supermassive blackhole, for example, M87 with and without the spinning 

angular momentum J for various photon angular momentums lphoton. For 

Earth, while its small spinning angular momentum J does not add any 

additional phase to the WRAs up to order of 10-8 as assumed in many 

previous works45,46 and angular momentum of photon geodesics lphoton 
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changes only a minute amount of geodetic precession contribution (10-8~10-

14) for observers’ frames whose quantization axis are orthogonal to the 

equatorial plane, different sign of lphoton leads to measurable differences of 

residual phases in WRA for observers in the frame where the quantization 

axis and photons lie on the same plane. Utilizing the dependence of WRA 

on sign of lphoton, we introduce an ‘astronomical’ Mach-Zehnder 

interferometer near Earth with an indistinguishable two-photon input state 

travelling along one of arms in combination with HOM effect; the two 

photon states simultaneously entering into the first beam splitter, one in each 

port, becomes a superposition of two-photon states emitting into each arm, 

as known as HOM effect. Along one of the arms, the photon state is sent to 

the second beam splitter in the satellites on a polar orbit after which the 

coincidence rates are measured. The relative WRA difference between two 

photon states in one of two arms variates the coincidence rates. This finding 

is distinguished from the features of classical interferometry since it stems 

from the pure quantum interferometry characteristics, HOM effect. We 

believe these results could provide a potential testbed of the interplay of 

general relativity and quantum theory.  
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Chapter 2. Lorentz transformation and Wigner 

rotation in curved spacetime   

In 1939, Wigner classified that quantum states of a free particle with the 

Poincaré group by introducing a subgroup of the Lorentz group, called the 

little group, which has finite unitary irreducible representations; in this 

formalism, arbitrary Lorentz transformation results in additional phases of 

photon states, called the Wigner rotation angles (WRAs)34-42. This Wigner’s 

representation can be extended to a general relativistic framework by 

applying Einstein’s equivalence principle and local orthonormal bases 

known as tetrads43. The transformations of local frames (tetrads) between 

two events of observers can be seen as local Lorentz transformations and 

naturally represented by the Wigner rotation39-42. In this chapter, the details 

of derivation of WRAs are shown in terms of infinitesimal Lorentz 

transformations. Then, physical meanings of WRAs for linear- and circular-

polarized photon states are given. 
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2.1. Irreducible representation of the Wigner rotation 

in curved spacetime   

The Hilbert space vector of a photon is defined in a local inertial frame 

spanned by a tetrad, ˆ ( )ae m x , â  and μ = 0, 1, 2, 3, which satisfies 

ˆˆ
ˆˆ( ) ( ) ( )a b

ab
g e e=x x xmn m nh  and transforms in a way that ˆ ˆ( ) ( )a a

xe e
x

¶
=

¶
x x

m
m n

n  

and  ˆ
ˆˆ ˆ( ) ( )b

a a b
e e= Lx xm m  under general coordinate and local Lorentz 

transformations, respectively. Throughout the paper, we use hatted Latin 

letters for local inertial coordinates and Greek letters for general coordinates. 

The tetrad ˆ ( )ae m x  carries two indices: (i) a "world index" μ that transforms 

under general coordinate transformations of general relativity, and (ii) a 

local tangent plane index â  which transforms under local, x-dependent 

Lorentz transformation Λ(x). Quantities such as ˆ ˆ( ) ( ) ( )a ap e pm
m=x x x  are 

the projection of the general relativistic world momentum vector ( )pm x  

onto the axes (three spatial, one temporal) of the observer's local laboratory 

frame47 where the metric is locally flat such that special relativity holds over 

distances over which the curvature can be considered as essentially constant. 

The tetrad, therefore, explicitly embodies Einstein's Equivalence Principle 

through the index â . The local Lorentz transformation ˆ
ˆ ( )a
b

L x  transforms 

between different instantaneous states of motion of the observer (e.g. 
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stationary, freely-falling, circular motion, or arbitrary motion) within the 

same Lorentz tangent plane at the position x , i.e. the tetrad is constructed to 

define (and describes) the observer's instantaneous state of motion at each 

point x.  

A variation of a tetrad under an infinitesimal translation from x to x +δx is 

described by parallel transport to compare two vectors in the same tangent 

plane without a change of the vectors such that38,48 

( )ˆ ˆ ˆ( ) ( ) ( )a a a ae e e x x e= + - ® Ñx x xsm m m l m
ld d d .              (1) 

For the case that wave vector of a photon is measured in the observer's 

laboratory, local covariant components of the wave vector, 

ˆ ˆ( ) ( ) ( )a ak e k=x x xm
m , are changed along the photon's geodesic from xm  to 

( )x k+ xm m dx  such that 

( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )a a ak e k e k= +x x x x xm m
m md d d ; ( ) ( )k d k= Ñkx xm md x .  (2) 

Since a photon state in curved spacetime follows a null geodesic in the 

geometric optics limit49 and under a local infinitesimal change of a tetrad 

(which is antisymmetric38,39), Eq. (2) can be rewritten as 

( )ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )b b b

a a a a a a ab b
k x k x k k d k k¢® º + = + = Lx x x x x xd d l x  (3) 

where ( )ˆ ˆ
ˆ ˆ( ) ( ) ( )b b
a ae e= Ñkx x xn

nl . In other words, the effect of an 

infinitesimal translation can be considered as an infinitesimal local Lorentz 
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transformation given by ˆ ˆ ˆ
ˆ ˆ ˆa ( ) ( )b b b

a aL = +x xd l 38,39,41,42.  

A Lorentz transformation, Λ, has the one-dimensional representations for a 

photon state with the helicity, σ, given by36 

( )'
'

( ) , ( , ) , 'U D WL = L Låk k ks s
s

s s .                    (4) 

W(Λ, k) is the Wigner's little group element, defined as W(Λ,k) = L-1(Λk) 

ΛL(k) and D(W) is the irreducible representation of W. L(k) is the Lorentz 

transformation such that L(p)k = p. Accordingly, a displacement of a 

photon state leads to a residual phase called the Wigner rotation angle 

(WRA). To get an explicit expression of the irreducible unitary 

representation of a Lorentz transformation, we use the canonical group 

homomorphism between the proper Lorentz group and its double cover, 

SL(2, ℂ); a wave vector k of a photon is mapped to a Hermitian matrix K via 

K = ˆ
ˆ

a
aks , where âs , â  = 1, 2, and 3, are the Pauli matrices, and 0̂

s  is the 

2x2 identity matrix. A Lorentz transformation is represented by the 

similarity transformation such that 

†AKA km n
n ms= L                            (5)  

with an element A
a b
g d

æ ö
= ç ÷

è ø
 of SL(2, ℂ). For an infinitesimal 

homogeneous Lorentz, the matrix A can be expanded in terms of dx  such 

that 
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A I Ad I d
a b a b

x x
g d g a

æ öæ ö
= = + = + ç ÷ç ÷ -è ø è ø

%%%
% %

.                    (6) 

Substituting Eq. (6) into Eq. (5), multiplying âs  both sides, and then taking 

a trace on both sides, we can get the following equations  

ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ

1 ( )
2

a ac
c cb b b

tr A Al d s s s s= +% % † ,                        (7) 

where tr(A) is the trace of A. That is, we obtain a% , b% , and g% in terms of 

ˆ
ˆ

a
b

l  such that 

ˆ ˆ0 1
ˆ ˆ3 2

ˆ ˆ ˆ ˆ0 3 0 2
ˆ ˆ ˆ ˆ1 1 2 3

ˆ ˆ ˆ ˆ0 3 0 2
ˆ ˆ ˆ ˆ1 1 2 3

1 ( i )
2
1 [( ) i( )]
2
1 [( ) i( )].
2

a l l

b l l l l

g l l l l

= +

= + + - +

= - + +

%

%

%

                         (8) 

The corresponding irreducible unitary representation of the little group 

element for a massless particle is42,50 

ˆ ˆ3 3 *
i( ( ,k)/2)

3̂

[ (1 n ) n ]b [ (1 n ) n ]ce
(1 n )a b

L + ++ + + + +
=

+

y a b g d ,              (9) 

where Ψ(Λ, k) is the WRA. Detailed expressions for a, b, c, and d are given 

in the Appendix. Thus, a local infinitesimal Lorentz transformation ( )L x  

leads to an infinitesimal Wigner rotation angle (IWRA) y% , and the total 

Wigner rotation angle y  can be formally obtained by a time-ordered 

integration of IWRs over the geodesic trajectory x(ξ) of the photon such that 
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ˆi ( , )e exp i ( ( ( )), ( ))n iT n dL é ù= Lë ûò xy y x x x
r

% ,                 (10) 

where ˆˆ ˆ 0( ) / ( ) i in k k= x x , and T is the time-ordering operator.  

2.2. Wigner rotation on linear- and circular-polarized 

photon states   

Under a Lorentz transformation Λ, a polarization vector, ˆ( , )em
s sk  of a 

photon field,  is transformed as36  

   
( ) ( )

( )

0̂
ˆ ˆ ˆˆ

ˆ ˆ ˆ0
ˆ

ˆˆ 0

ˆ ˆ( , ) ( , ) exp ( , ) ;

ˆ, .

a b a i
b c

c

a

kM e e i n
k

k k

s ss s syL = L
L

=

k k

k

        (11)            

Here, M(L) and s represent representation of the Lorentz transformation 

and helicity of a photon. Accordingly, the Wigner Rotation induces phase 

delay or advance of circular polarized photon states, depending on the sign 

of the helicity, and rotates the linear-polarization vector, â
fe , by WRA in the 

standard frame such that42
 

( ) ( )
( )

( )

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ 1 1

ˆ ˆ( ( , )) ( ( , ))
1 1

ˆ ˆˆ ˆ
ˆ ( , )ˆ

( , )

f f
f s s

f y f y
s s

f f f yy

-
= =-

+ L - + L
= =-

¢= + L

L e = +

= +

= L e = e

i i

a b i a i a
b

i n a i n a

ai b a
z kb

M e e e e

e e e e

R n

                        (12) 

where ( )ẑR y  is the rotation about ẑ -axis by the total WRA ψ. 
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Chapter 3. Wigner Rotation of a photon state 

under the gravitational field of Earth   

In this chapter, we demonstrate the existence of a non-trivial Wigner 

rotation experienced by photons sent non-radially from Earth ground station 

to a free-falling observer with non-zero angular momentum and various 

altitudes. To focus on the existence of a measurable WRA, we simplify the 

spacetime of Earth, considering only the monopole of Earth. Examining 

circular orbits with non-zero quantum-phase Wigner rotation components, it 

is found that there is a potentially measurable the Wigner rotation angle in 

addition to the rotation of standard fame, which agrees well with the 

geodetic rotation, measured by Gravity Probe B in 201124,29,51, and in the 

former case, the additional phase is dominant to the near-zero geodetic 

rotation. Our results show that the Wigner rotation involves a non-trivial 

semi-classical effect of quantum field theory on a background classical 

gravitational field in addition to classical geodetic precession. This finding 

could open up the testbed to probe gravitational effects on various quantum 

phenomena in a satellite by the interplay of two pillars of physics. 
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3.1. Earth-satellite system  

Considering only the monopole of Earth, we model the spacetime around 

Earth with Schwarzschild spacetime where tetrad fields can be globally 

defined as orientation-preserved coordinate bases38,48,52, and the (- + + +) 

metric signature is used. Furthermore, it is also assumed52 that quantum 

field theories on spacetime admit a spinor structure36,43,53 which will be 

employed for the quantum state of the photon with a given polarization.  

We consider an Earth-satellite system depicted in Fig. 1. Figure 1a shows 

the Earth-Satellite system and corresponding coordinates. A photon is sent 

along its geodesic, represented by the red line, and its polarization, 

represented by the light-green arrows, is measured in the local frame of a 

satellite. The Schwarzschild metric is used to model spacetime around Earth 

and choose spacelike components of the tetrads so that the first, second, and 

third axis of the local frames become unit vectors of Schwarzschild 

coordinates r, θ, and φ at infinity, i.e., ˆˆ ˆ( )a be e¥ ºxm m  where â  = 1, 2, and 3 

correspond to b = r, θ, and φ, respectively. To compare the polarization 

measured at the surface of Earth and the satellite, the standard frame is 

introduced in which a wave vector of the photon is aligned to the third axis 

of observer's local frames (Fig.1b and 1c).  
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Figure 1 | Schematics of the Earth-satellite system. The Earth-Satellite 
system and corresponding coordinates. a a photon's geodesic and its 
polarizations are represented by a red line and light-green arrows, respectively. 
b-c The wave vector and polarization of the photon are measured in each local 
frame (b) and compared in the standard frame (c). 

We consider the following four observer trajectories: a stationary observer, a 

radially free-falling observer, a free-falling observer with non-zero angular 

momentum in a circular orbit47 (Fig.2a). While there is another orbits with 

angular momentum, called spiraling orbits, we focus on the circular ones 

which corresponds to those of satellites. To define non-spinning local 

frames, we apply Fermi-walker transport and parallel transport conditions 

for the stationary and free-falling observers respectively. Detailed works are 

given in the Appendix. We note that the definition of polar coordinates 

induces a non-physical rotation in local frames, which must be canceled out. 

In other words, if the photon's geodesic is in the equatorial plane / 2q = p  

(Fig. 2b and 2c), the unit vector of the coordinate r is rotated as the 

coordinate φ changes. Thus, the observer is assumed to move in the plane 

r θˆ ˆe e- , i.e., the constant-φ plane (Fig. 2b and 2c), and φ-axis is chosen as 

the third axis of the local frames to cancel out the polar-coordinate-induced 
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rotation when a wave vector is aligned to φ-axis for polarization comparison. 

It is worth mentioning that the Wigner rotation has a zero angle in special 

relativity if the direction of boost (observer) and the wave vector (photon) 

both lie in the ˆ ˆx z-  plane or the ˆ ˆy z-  plane. However, if a photon moves 

in the ˆ ˆx y-  plane and an observer in the orthogonal ˆ ˆx z-  plane, the WRA 

is not necessarily zero42,50. Correspondingly, by the equivalence principle, 

since our observers are assumed not to move in the plane ˆ ˆ1 3
ˆ ˆ( ) ( )e em m-x x , 

and the photon's geodesic remains in the equatorial plane / 2q = p  (Fig. 2b 

and 2c), the WRA will again be non-zero. 

Timelike components of the corresponding tetrads, têm , are set to the 4-

velocity vector of a massive particle (e.g. satellite), moving along a geodesic 

corresponding to each trajectory, describing the local frame of the observer. 

The 4-velocity vectors of the observers and the wave vector of the photon 

are obtained in terms of conserved quantities defined from Killing vectors of 

Schwarzschild spacetime (see Appendix Eq. (5)).  

For circular orbits, by applying the conditions of orthogonality and non-

spinning frame, tetrads have the form 
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where s
0

3( ) 1 ( )
2
rr
r

q qQ = - -% .  

We set conserved energy, photone , of a photon to its frequency to satisfy 

equivalence principle, and set the energy per unit mass, obse , of an observer 

to one, in the units where ℏ = G = c = 1 since obs s(1 / ) / 1r r dt de t= - » . We 

set the (non-radial) launching angle of the photon as 45°  (Fig. 2b) by setting 

an angular momentum of a photon phl  as Earth

2
rw so that the radial and polar 

components of the wave vector have the same value on the surface of Earth, 

r φ
Earth Earth( ) ( )k r rk r= . Here, w  is an angular frequency of a photon. Details 

of derivation are provided in the Appendix. 
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Figure 2 | Schematics of the trajectory of the observer (satellite) and 
photon. The geodesics of a photon traveling lies in the equatorial plane, 

/ 2=q p  and the observer's geodesics is lying in the constant φ-plane (the 
point NP on the sphere represents the North Pole). a A, B, and C represent the 
geodesics of massive free-falling observers radially, in a circular orbit, and 
spiraling orbit, respectively. b-c The non-radial launching angle of a photon 
from the surface of the Earth to the satellite in a Fig.2c circular (gray) and 
spiraling (purple) orbit in the constant-φ plane. 
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3.2. The Wigner rotation under the gravitational fields   

Upon observation of Eqs. (9) and (10), it is noted that if every parameter is 

real, then the result of this equation is always real. In other words, WRA 

ˆ( , )iny L  must be 2mp  where m is an integer. Accordingly, the first and 

second observer trajectories considered (stationary, radially free-falling) 

have zero WRAs42 since all the parameters are real. In the opposite case 

where every parameter is not real, the non-zero infinitesimal Wigner 

rotation angle for a photon helicity state can be obtained such that 

( ) ( )

ˆ ˆ1 2

inf ˆ ˆ3 3

ˆ ˆ1 2
ˆ ˆ ˆ ˆ ˆ1 0 2 0 3
ˆ ˆ ˆ ˆ ˆˆ ˆ2 2 3 1 13 3

geodetic residual
inf inf

2 22 Im( ) Im( ) Re( )
1 1

1 1

n n
n n

n n
n n

y a b b

l l l l l

y y

é ù
= + +ê ú

+ +ê úë û
é ù

= + - + + +ê ú
+ +ê úë û

º +

% %% %

% %

              (14) 

which corresponds to the last case considered, namely free-falling observers 

with angular momentum in a circular trajectory. Here, a%  and b%  are defined 

as Appendix Eq. (34). We note that IWRA consists of a classical geodetic 

precession around the third axis, geodetic
inf 2 Im( )y a=% % , and a residual phase (or 

"residual gauge transformation") induced with the gauge-fixing for a finite 

irreducible unitary representation, 
ˆ ˆ1 2

residual
inf ˆ ˆ3 3

2 2Im( ) Re( )
1 1

y b b= +
+ +

% %% n n
n n

. The 

total Wigner rotation angle y can be obtained via a time-ordered integration 

of IWRAs over the geodesic trajectory x(ξ) of the photon such that 



 

 ２４

geodetic residual( , ) ( , )( , )

ˆgeodetic
inf

ˆresidual
inf

exp ( ( ( )), ( ))

exp ( ( ( )), ( )) .

i n i ni n

i

i

e e

T i x n d

T i x n d

y yy

y x x x

y x x x

L + LL =

é ù= Lë û
é ù+ Lë û

ò
ò

r rr

%

%

                      (15) 

where T represents the time-ordering operator.  The total geodetic-

precession contribution WRA y geodetic, and the residual phase y residual are 

defined as integration of the infinitesimal WRA geodetic
infy% , and residual

infy% , 

respectively, along the photon’s geodesics. The WRA for massless particles 

arises from a consideration of the unitary representation of the 

transformation of quantum single-particle states under classical Lorentz 

transformations, and hence manifests itself as a phase factor35,36,42,50 

depending only on direction of the photon's momentum but not its frequency. 

Others in the literature have ascribed the WRA to a residual gauge 

transformation, and the classical and quantum nature of this non-trivial 

phase factor remains an open question54.    

The classical geodetic contribution corresponds to the rotation around the 

wave vector in the standard frame, where polarization vectors are measured 

and compared. For the circular-orbit case, parallel transport compensates the 

rotation induced by spherical coordinates such that spacelike components of 

the tetrads are rotated by q  when an observer moves by rq- , leading to a 

small (almost zero, see Table 1), total classical geodetic WRA. The classical 

geodetic effects calculated with tetrads are compared with experimental data 

reported by C.W.F.Everitt et al.30  
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In Table 1, we compare the finite (i) total WRA totaly , (ii) classical geodetic 

contribution of the WRA geodetic
totaly , and (iii) the residual phase of the WRA 

residual
totaly , for circular orbits, obtained by integrating the IWRA infy% , 

geodetic
inf 2 Im( )y a=% % , and

ˆ ˆ1 2
residual
inf ˆ ˆ3 3

2 2Im( ) Re( )
1 1

y b b= +
+ +

% %% n n
n n

, respectively, 

along the photon orbit, from the surface of Earth to the altitudes of various 

Earth orbits. Details of the approximation and interpolation methods 

employed to compute the total WRA from the IWRA, and to verify their 

validity are described in detail in the Appendix. 

 
Figure 3 | WRA along distances from Earth. It is shown that the classical 
geodetic part in the solid orange line, the residual phase part in the solid blue 
line, and total WRA in green line for the circular orbit (a, b). 

Table 1 shows the total totaly  WRA as well as its classical geodetic geodetic
totaly  

and residual residual
totaly  phases for a circular observer orbit (here envisioned as 

a satellite). Further details of the photon's and the observer's orbits can be 

found in the Supplemental Material). For the circular orbit (with the photon 

launched non-radially from the Earth, Fig.2C), Table 1 reveals that the 
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classical (general relativistic) geodetic contribution to the total WRA is 

effectively zero while the residual phase yields the dominant contribution in 

the range of -5 -42.42 10 , 6.25 10é ù´ - ´ë û degrees for radial distances ranging 

from near-Earth orbit (NEO, 300km) to infinity. Fig. 3a shows the classical 

geodetic and residual phase of the total WRA for the circular case. The 

classical geodetic precession (general relativistic rotation), and the residual 

phase are represented by the solid orange and solid blue line, respectively. 

The total WRA is shown in Fig. 3b.  

It is also found that the residual phases have path dependence unlike the 

classical geodetic cases: for radially emitted photon, while the classical 

geodetic part of WRA does not change compared to photons with angular 

momentum, the residual phase WRA has different values along radial 

distances ranging again from NEO to infinity in the range of degrees for 

circular orbits (See Appendix Table 2). 
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Table 1. Comparison of total integrated Wigner rotation angle (WRA)  , 

classical geodetic contribution to the WRA  , and residual quantum-phase 

contribution to the WRA  (in deg), for a satellite at various altitudes for 

circular orbits. 

Observer in a Circular Orbit 

Altitude 

Wigner rotation  
angle (WRA) 

(Geodetic 
+ Residual  
phase) totaly  

Geodetic part 
of the WRA 

geodetic
totaly  

Residual  phase 
part of the 

WRA 
residual
totaly  

300km (NEO)  2.42 ´10-5  -6.46 ´10-14  2.42 ´10-5  

2000km (LEO) 9.64 ´10-5  -3.03´10-13  9.64 ´10-5  

20000km (MEO) -8.78 ´10-7  -7.02 ´10-13  -8.78 ´10-7  

36000km (GEO) -9.93´10-5  -7.61´10-13  -9.93´10-5  

( )r´ = ¥111.6 10 km  -6.25´10-4  -8.02 ´10-13  -6.25´10-4  
NEO, LEO, MEO and GEO = Near-, Low-, Medium- and Geosynchronous Earth Orbit. 
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Chapter 4. Dependence of angular momentums 

of a gravitating object and photon trajectories 

on Wigner rotation angles  

Here, we investigate the effects on WRAs from the spinning angular 

momentum of gravitating object (J) axial angular momentums of photon 

(lphoton) by introducing Kerr spacetime and calculating WRAs along 

representative photon trajectories on the equatorial plane with different 

positive and negative angular momentums lphoton for two types of circular 

orbits, equatorial and polar orbits. It is demonstrated that WRAs depend on 

the two angular momentums, J and lphoton, in general by calculating WRAs 

for observers’ frames on a thin accretion disk of a supermassive blackhole, 

for example, M87 with and without the spinning angular momentum J for 

various photon angular momentums lphoton. For Earth, while its small 

spinning angular momentum J does not add any additional phase to the 

WRAs up to order of 10-8 as assumed in many previous works45,46 and 

angular momentum of photon geodesics lphoton changes only a minute 

amount of geodetic precession contribution (10-8~10-14) for observers’ 

frames whose quantization axis are orthogonal to the equatorial plane, 

different sign of lphoton leads to measurable differences of residual phases in 

WRA for observers in the frame where the quantization axis and photons lie 

on the same plane. Utilizing the dependence of WRA on sign of lphoton, we 
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introduce an ‘astronomical’ Mach-Zehnder interferometer near Earth with 

an indistinguishable two-photon input state travelling along one of arms in 

combination with HOM effect; the two photon states simultaneously 

entering into the first beam splitter, one in each port, becomes a 

superposition of two-photon states emitting into each arm, as known as 

HOM effect. Along one of the arms, the photon state is sent to the second 

beam splitter in the satellites on a polar orbit after which the coincidence 

rates are measured. The relative WRA difference between two photon states 

in one of two arms variates the coincidence rates. This finding is 

distinguished from the features of classical interferometry since it stems 

from the pure quantum interferometry characteristics, HOM effect. We 

believe these results could provide a potential testbed of the interplay of 

general relativity and quantum theory. 
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4.1. Dependence of WRAs on angular momentums of 

open photon trajectories 

First, we investigate the effects on WRA by angular momentums of photon 

lphoton, whose sign is intrinsically related to time reversal symmetry, along 

open trajectories from ground station to satellites with various ratios of 

azimuthal components rkf of the photon 4-velocity to radial one kr; for a 

certain ratio (rkf/kr) at a ground station, the angular momentum of photon  

has a unique solution whose sign follows that of ratio — lphoton
+ and lphoton

- 

for positive and negative ratios, respectively. The Kerr metric is applied to 

model spacetime of Earth with spin angular momentum ( ), 

which is given by55  

2 2 2 2 2

2 2
2 2 2 2 2

1

2 sinsin sin

s

s s

r rds c dt dr d

r ra r rar a d cdtd

q

qq q f f

Sæ ö= - - + + Sç ÷S Dè ø
æ ö

+ + + -ç ÷S Sè ø

 ,   (16) 

where  Σ ≡ r2 + a2cos2θ, D ≡ r2 – rsr+a2, and rs ≡ 2GM/c2 is the 

Schwarzschild radius. J ≡ aMc and M are angular momentum and the mass 

of the gravitating object, respectively. Throughout this paper, the (- + + +) 

metric signature is used and a photon field on a curved spacetime is 

assumed to have a spinor structure36,43,53. Considering that the residual term 

y residual in the WRA has greater values than the geodetic-precession 

contribution y geodetic for observers on circular orbits which corresponds to 
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satellites45 and only the residual phase contributes to the time reversal 

symmetry breakdown, in this paper we focus on the case of two kinds of 

circular orbits, equatorial and polar orbits, represented by yellow and light 

blue lines respectively in Fig.4a. To describe local inertial frames of 

satellites, we obtain co-moving and non-spinning tetrads from Marck’s 

ones56. Then, the quantization axis, the local third axis in the standard frame 

depicted in Fig 4b and 4c, is aligned to axis of the geodetic precession (two-

order larger than the frame-dragging effect) so that its contribution to WRAs 

can easily be separated from momentum-dependent residual phases. It is 

worth mentioning that, for equatorial orbits, unphysical rotation (about q-

axis) induced by definition of radial and azimuthal coordinates is not 

involved in WRAs owing to the parallel-transport conditions of tetrads 

along the azimuthal direction. In contrast, for polar orbits, axis of the 

unphysical rotation is not aligned with those of satellite orbits and thus the 

parallel-transport conditions do not exclude the unphysical rotation. For this, 

by setting the axis of geodetic precession (f-axis for the polar orbits) to be 

the local third axis, the unphysical rotation can be canceled out while 

aligning wave vector to the local third axis to build standard frame52. 
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Figure 4 | Schematics of the Earth-satellite system. a a photon is sent along 
its geodesic to satellites on equatorial and polar orbits (yellow and light blue 
lines, respectively). b-c The wave vector (red arrows) and polarization (blue 
arrows) of the photon are measured in the standard frame where wave vector is 
aligned along the local third axis. Since there is no rest-frame for massless 
particles, standard frame is introduced for quantization of photon eigen-helicity 
states. Gravitation and satellite’s 4-velocity lead to variation of polarization 
angle between frames on the surface of Earth (b) and in the satellites (c). 

In the frame of both observer’s equatorial and polar orbits near Earth, with 

negligible geodetic precession contributions (10-8~10-14), the residual phases 

have orders of 10-5 for the photon trajectory with rkf/kr=1 at the ground 

station, showing good agreement with the previous report (see Table2 and 

Table3). For equatorial plane, time reversal symmetry breakdown is 

relatively small as the quantization axis is orthogonal to the equatorial plane 

on which a photon moves, i.e., 3̂n  is zero. In general, it is confirmed that 

signs of the photon angular momentum lphoton and spinning angular 

momentum J variate WRAs by numerical calculation for observers on 

equatorial orbits of a supermassive black hole, M87, while not resulting in 

differences up to the 3~4 significant digits near Earth along radial distances 
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ranging from surface of Earth to geosynchronous orbit (GEO, 30000km) as 

shown in Fig. 5. Figs. 5a-c show the WRAs, geodetic-contribution, and 

residual phases and in their insets the corresponding DWRAs (WRA in Kerr 

spacetime - WRA in Schwarzschild spacetime) for the photon emitting from 

r = 4.5rs with different photon angular momentum lphoton. Fig.5d and 5e 

show the local Lorentz transformation ˆ ˆ3 0
ˆ ˆ1 1

l l+  and momentum-dependent 

term ( )
2̂

2̂
3̂1

n n
n

=
+

 as representatives for the equatorial orbits near the black 

hole and Earth, respectively. Unlike the case of the supermassive black hole, 

only the signs of two terms for equatorial orbits of Earth are flipped 

depending on that of lphotonlphoton which accordingly does not contribute to 

the residual phase yresidual( @ y) as shown in Fig. 5f. 

For polar orbits, it is found that WRAs depend on the angular momentum of 

photon trajectory lphoton near Earth as well. In this case, the sign of 3̂n  

depends on that of photon angular momentum lphoton and thus leads to 

different order of the representative of momentum-dependent terms, 

( )
2̂

ˆ ˆ0 3
ˆ ˆˆ 1 131

n
n

l l+
+

, and naturally total WRAs y. In Fig. 6, WRAs, the 

corresponding ( )
2̂

ˆ ˆ0 3
ˆ ˆˆ 1 131

n
n

l l+
+

, and 3̂n  for the polar orbits near Earth are 

shown for various lphoton
+ and lphoton

- represented with blue and green lines, 

respectively. It is noted that setting the local third axis to be the f-axis in the 
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case of polar orbits leads to quite a small (~10-5) but non-zero 2̂n  as shown 

in the inset of Fig.6b. This non-trivial 2̂n  values come from a special 

relativistic term, the product of time-component of tetrads 2̂
0e  and photon 

frequency kt. Thus, the residual phases y residual are naturally coupled with 

the azimuthal component of photon momentum kf in the standard frame. 

Table 2. Comparison of Wigner rotation angle (WRA) y, geodetic 

contribution y geodetic, and residual phase y residual (in deg), in the local 

frames of observers are on equatorial orbits of Earth at various altitudes 

with positive or negative angular momentum of photon trajectory whose 

rkf/kr=1 at the ground station: (top) lphoton
+ and (bottom) lphoton

-. 

Positive angular momentum of photon trajectory lphoton
+ 

Altitude 

Wigner rotation angle  
(geodetic  

+ residual contribution) 

totaly  

geodetic 
contribution to the 

WRA 
geodetic
totaly  

Residual 
contribution of the 

WRA 
residual
totaly  

300km  52.06 10-´  91.67 10-´  52.06 10-´  

2000km  54.26 10-´  97.47 10-´  54.26 10-´  

20000km  43.36 10-- ´  81.53 10-´  43.36 10-- ´  

36000km  44.85 10-- ´  81.59 10-´  44.85 10-- ´  

Negative angular momentum of photon trajectory lphoton
- 

300km  52.06 10-´  91.67 10-´  52.06 10-´  

2000km  54.26 10-´  97.47 10-´  54.26 10-´  

20000km  43.36 10-- ´  81.53 10-´  43.36 10-- ´  

36000km  44.85 10-- ´  81.59 10-´  44.85 10-- ´  
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Table 3. Comparison of Wigner rotation angle (WRA) totaly , geodetic 

contribution geodetic
totaly , and residual phase residual

totaly  (in deg), in the local frames 

of observers are on polar orbits of Earth at various altitudes with positive or 

negative angular momentum of photon trajectory whose rkf/kr=1 at the 

ground station: (top) lphoton
+ and (bottom) lphoton

-. 

Positive angular momentum of photon trajectory lphoton
+ 

Altitude 
Wigner rotation angle  

(geodetic  
+ residual contribution) 

totaly  

geodetic 
contribution to 

the WRA 
geodetic
totaly  

Residual 
contribution of 

the WRA residual
totaly  

300km  52.42 10-´  146.45 10-´  52.42 10-´  
2000km  59.63 10-´  133.02 10-´  59.63 10-´  
20000km  77.04 10-- ´  137.17 10-´  77.04 10-- ´  
36000km  41.00 10-- ´  137.59 10-´  41.00 10-- ´  

Negative angular momentum of photon trajectory lphoton
- 

300km  42.93 10-- ´  146.45 10-- ´  42.93 10-- ´  
2000km  31.24 10-- ´  133.02 10-- ´  31.24 10-- ´  
20000km  32.76 10-- ´  137.17 10-- ´  32.76 10-- ´  
36000km  32.99 10-- ´  137.59 10-- ´  32.99 10-- ´  
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Figure 5 | WRAs for equatorial orbits. a-c WRA y (a), the geodetic contribution 
y geodetic (b), and residual phase y residual (c) measured by observer on equatorial 
orbits of a supermassive blackhole M87, whose differences induced by spinning 
angular momentum J of the gravitating object are shown in the inset of each figure. 
d-e a representative term of the infinitesimal boost and rotation near the blackhole 

(d) and Earth (e). The corresponding momentum dependence term  ( )( )ˆ ˆ2 3/ 1+n n  

are in insets WRA of equatorial orbits of Earth(f). 
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Figure 6 | WRAs, a representative of momentum dependent terms 

( )( )( )ˆ ˆ ˆ ˆ2 3 0 3
ˆ ˆ1 1

/ 1n n l l+ + , and 3̂n for polar orbits of Earth. a WRAs measured by 

observer on polar orbits near Earth. b-c the corresponding  

( )( )( )ˆ ˆ ˆ ˆ2 3 0 3
ˆ ˆ1 1

/ 1n n l l+ +  (b), and 3̂n  (c). 
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4.2. Astronomical Interferometer 

To study the interplay between WRAs and quantum interference by taking 

advantage of the dependence of WRA on photon angular momentum lphoton 

in local frames on polar orbits,  we consider an astronomical Mach-Zehnder 

interferometry consisting of satellites on polar orbits as depicted in Fig. 7; 

two-indistinguishable circular-polarized photon state ( )
I I I I, ,

1 2,0 0,2
2 a b a b

-  

are prepared via HOM effects with the first 50:50 beam splitter in Alice’s 

satellite on the LEO orbits (altitude, 300km). Then, photons from port aI and 

bI with a p/2 phase shifter (PS) as depicted in Fig.4b are sent to David along 

g1 and g2 with two different photon angular momentums lphoton
+ and lphoton

-, 

respectively. The final output state passing through the second beam splitter 

in David’s frame (Fig. 7c) becomes  

( )
II II II II II II, , ,

1 12,0 0,2 1,1
22 2

i i

a b a b a b

ie iei
s y s yD Dæ ö+ - +

- + +ç ÷
è ø

       (17)                          

with the relative phase differences ( )
1 2

inf infd d
g g

y y x y xD = -ò ò% %  and the 

coincidence rate (1-sin(Dy))/2. Fig.7d shows the differences of the 

coincidence rates ( » Dy/2) induced by path-dependence of WRAs for 

different altitudes of David. With the negligible geodetic-precession 

contribution y geodetic, the residual phase y residual leads to measurable 

differences in coincidence rates, which corresponds to 108 counts/ms photon 
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count rates when a photon pulse of 1mW power arrives at David’s frame. 

Moreover, it is worth mentioning this interplay between the coincidence 

rates and relative WRAs in the quantum interferometer are distinguished 

from that of classical interferometers as discussed by Simanraj Sadana et 

al57. Since HOM effect doesn’t occur at the first beam splitter for classical 

light, interference of photon states from each arm doesn’t occur at the 

second beam splitter and thus changes of coincidence rates either.  
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Figure 7 | a Astronomical Mach-Zehnder Interferometer. b Hong-Ou-Mandel 
effects occur in Alice’s frame. c Photons sent out from Alice to Bob and 
Charlie are reflected to David and then passed through the BS (Beam-Splitter). 
d the variation of coincidence rates induced by WRAs and the 
corresponding photon count rates for 1mW-power photon pulse with s=1. 
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Chapter 5. Conclusion 

Here, the Wigner rotation of a photon state is investigated in Schwarzschild 

and Kerr spacetimes to study a rotation of its polarization, considering only 

the monopole of Earth. While the quadrupole of Earth could induce non-

negligible effect on WRA58 and ionosphere and vanAllen belts could rotate 

the polarization vector of a photon, we focus on showing that there is an 

additional and measurable WRA in addition to the geodetic precession. We 

calculate the wave vector of the photon to obtain infinitesimal local Lorentz 

transformations for the four cases of a stationary observer, a free-falling 

observer with zero angular momentum, and free-falling observers with 

angular momentum in a circular orbit. For the first two cases, the calculated 

Wigner rotation angles (WRA) are zero. We calculate the non-zero WRA for 

the last two cases in two different ways: (i) by using physically meaningful 

approximations and (ii) by an interpolation method (see Appendix) for 

verification of our results since the differential equation for the photon's 

trajectory is challenging to solve analytically, and the tetrads for circular 

orbits have a complex a form that inhibits easy physical interpretations. It is 

found that two different approaches give the same results up to 7 significant 

figures. The circular orbit results in a WRA whose classical geodetic 

contribution is effectively zero for all practical measurements, yet whose 

contribution is 52.42 10-´ degrees at NEO, and 46.25 10-- ´ degrees at 

infinity. Their effect (sine squared value) on the quantum bit error rate 
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(QBER) is effectively zero.  

It is also interesting to compare these results with the works by Connors et 

al.59, who estimated the polarization rotation angle of 82° at infinity from 

the X-rays near a black hole in Cygnus X-1 by using the general relativistic 

calculations. Our approach can also be applied to the astronomical 

measurement of the rotation of the photon polarization from the black holes 

such as recently observed M87. In addition, if one is able to measure the 

polarization rotation of a photon passing both far from (predominantly 

classical geodetic contribution to the WRA) and close by (classical geodetic 

+ residual phase) a massive gravitating object, and then take the difference 

between the two rotation angles, one would have a measure of the residual 

quantum-phase contribution to the WRA. 

Also, we study the effects of WRAs on the coincidence rates of an 

astronomical Mach-Zehnder interferometer. After passing through the first 

beam splitter, two indistinguishable photon states evolve with different 

WRAs along one of two arms of the interferometer, which leads to 

interference in the second beam splitter and thus variations of coincidence 

rates. It is found that, for the polar orbits where the quantization axes are not 

orthogonal to the wave vectors of photons, the residual phases y residual 

depends on the sign of azimuthal- component wave vector kf as opposed to 

the case of equatorial orbits. Thus, the relative phase differences of them Dy

 residual vary the coincindence rates from the second beam splitter. It is contro
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versial if the momentum-dependent residual phase y residual is classical or qu

antum effect. It is stressed that measurable order of the residual phase in W

RA y residual can be mingled with the pure quantum optical feature, HOM eff

ect and the coincidence rates in an astronomical Mach-Zehnder interferomet

ry owing to the time reversal symmetry breakdown and special relativistic c

oupling between azimuthal component of photon velocity kf and WRA. 

While there has been much renewed interest in the effects of the 

gravitational field on quantum systems, especially in relation to the effect of 

accelerated motion and horizons on quantum entanglement60-62 inspired by 

the seminal work of Hawking63 and Unruh64, less work has been performed 

on an experimental assessment of the regime in which quantum systems 

evolve on classical curved spacetime. The proposed model in this 

dissertation could provide a testbed for probing the gravitational effects on 

quantum systems. 
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Appendix 

A1. Massive and Massless particles’ trajectory in Schwarzschild metric 

In general relativity, it is well known that the Lagrangian, L, can be chosen 

in the form  

 
2

1
2

ds
dx

æ ö
ç ÷
è ø

       (A1) 

with the line element for the Schwarzschild metric, which is defined as 

follows  

2 1
2 2 2 2 2 2 2 21 1 sin .s sr rds dt dr r d r d

r r
q q f

-
æ ö æ ö= - - + - + +ç ÷ ç ÷
è ø è ø

     (A2) 

Here, ξ represents proper time and an affine parameter for massive and 

massless particles, respectively. If the Lagrangian has no dependence on 

specific coordinates, xm , the equations of motion imply the conservation of 

corresponding quantities. In other words, from the equations of motion,   

0
(dx / d )

d L dL
d dxm mx x

æ ö¶
= =ç ÷¶è ø

,        (A3) 

the following identities hold:  

(dx / d ) a
L dx dx x dx dxg g g const

d d x d x d

b b a b
a

mb b m abm m md
x x x x x

¶ ¶ ¶
= = = = × =

¶ ¶ ¶
.      (A4) 

Since time t and azimuthal anglef are cyclic coordinates in Schwarzschild 

spacetime, two quantities e  and l  are conserved, defined by  
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1 srd dte
t d r dx x

¶ æ öº - × = -ç ÷¶ è ø

x , 2 2sind dl r
d d

fq
f x x
¶

º - × =
¶

x .    (A5) 

For an observer, massive particle, obse  and obsl  are called energy per unit 

rest mass at very large r  and angular momentum per unit rest mass at very 

low velocities, respectively1. The normalization condition of 4-velocity 

vectors can be rewritten as  

22

2

1 1
1 1

obs obs

s s

e ldr
r r d r
r r

x
æ ö

- + + = -ç ÷æ ö æ ö è ø- -ç ÷ ç ÷
è ø è ø

.        (A6) 

Correspondingly, the radial component of (outgoing) 4-velocity vectors 

have the form: 

2
21 1ph s

ph

l rdr e
d r rx

æ öæ ö= - + -ç ÷ç ÷
è øè ø

.                    (A7) 

For a photon, a massless particle, phe  and phl  represent energy and angular 

momentum at infinity, respectively47. With these quantities, photon’s null 

world line can be described as 

22

2

1 0
1 1

ph ph

s s

e ldr
r r d r
r r

x
æ ö

- + + =ç ÷æ ö æ ö è ø- -ç ÷ ç ÷
è ø è ø

.  (A8) 

Likewise, the radial component of the wave vector has the form: 

2
2

2 21 1 1ph phs s
ph ph

l br rdr e e
d r r r rx

æ ö æ ö= - - = - -ç ÷ ç ÷
è ø è ø

         (A9) 

Thus, the explicit forms of a wave vector and its dual vector become  
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2

2 2( ) , 1 1 , ,0
1

ph ph ph phs
ph

s

e b e brk x er r r r
r

m

æ ö
ç ÷æ ö= - -ç ÷ç ÷

è øç ÷-
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and 

2

2( ) , 1 1 , ,0
1

ph ph s
ph ph ph

s

e b rk x e e br r r
r

m

æ ö
ç ÷æ ö= - - -ç ÷ç ÷

è øç ÷-
è ø

         (A11) 

By Equivalence principle, wave (co)vectors in the local inertial frame, 

defined with radially free-falling tetrads, should have the same form with 

the wave (co)vectors in flat spacetime, as follows: 

( )ˆ ˆ ˆˆ 1 2 3
( ) , , ,ak x k k kw= - ,   where ( ) ( ) ( )22 2

ˆ ˆ ˆ1 2 3
k k kw = + + .  (A12) 

In other words, the inner product of wave covector km  and the timelike 

tetrad 0̂
e m  of Eq. S57 should be the same as the angular frequency of a 

photon observed in flat spacetime, i.e., 

2

ˆ 20

2

2

( ) 1 1 1
1

1 1 1 .

ph phs s

s

phs s s
ph

e br rk x r r r r
r

br r re
r r r r

w

æ öæ öç ÷@ - + - -ç ÷ç ÷è ø- è ø

æ öæ öç ÷@ - + + - - @ -ç ÷ç ÷è øè ø

       (A13) 

Therefore, we can conclude that the photon’s energy is the same as the 

frequency of the photon, measured at the r = ¥ . To get the explicit 

expression of photon’s trajectory, the following differential equation needs 

solving: 



 

 ４７

2 2
2

2 2( ) ( ) ( )
photon photonr sl l rdrk

d r r r
w

x x x x
= = - + .           (A14) 

Since Eq. A14 is challenging to be solved analytically, we ignore the last 

term 
2

2( ) ( )
photon sl r
r rx x

  by taking advantage of the fact that the order of sr
r

 is 10-9 

near the surface of Earth.  

A2. Massive and Massless particles’ trajectory in Kerr metric 

Geodesics of a particle in Kerr spacetime is described by  

( )( )
( )( ) ( )

( )

( )( )

22 2 2 2

222 2 2
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22 2
1
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f q
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.    (A15) 

Here, K ≡ Q+(F-aE)2. The paremeters (x , d1) are (affine parameter, 0) or 

(proper time , 1) for null or time-like geodesics, respectively. E, F, and Q 

are the energy, axial angular momentum, and Carter constant of a particle. 

F of observers and photons are rewritten as lobs and lphoton in this paper.  

We obtained tetrads for this work by transforming Carter’s sysmmetric 

tetrads used in Marck’s tetrads ( ){ }ˆ ˆ ˆ ˆ ˆ, , , 0,1, 2,3t r
i i i i i iq fl l l l= =λ  back to BL-

coordinate bases. Marck’s tetrads and the transformation are as follows: 
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with ( )2 2C E r a aF= + -  and sin / sinD aE q F q= -  
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The parameter Y is achieved via integrating the following equation in terms 

of (r, q, f) from (the radius of Earth, p/2, - p ) to (the altitudes of orbits, p, 

p ) with the intervals (100km, p /10, p /20). 

( ) ( )2 2 21/2

2 2 2

sin
cos

E r a a aEd K a
d r K K a

qy
x q

æ ö+ - F F -
ç ÷= +
ç ÷S + -è ø

.        (A18) 

These tetrads ( )ˆ ˆ ˆˆ , ,, rte e e em m m m
m m m mq f

¶ ¶ ¶ ¶  are asymptotically parallel to the 

unit vectors of global coordinates ( ), , ,t r q f¶ ¶ ¶ ¶  as r goes to infinity. For 

equatorial orbits, r and q should be constant, and thus Eq. 15 can be 

rewritten as  

( ) ( )2 2 21/2

2 2 2

sin
cos

E r a a aEd K da
d r K K a d

qy x
f q f

æ ö+ - F F -
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For polar orbits, since q  is not constant and Eq. 15 is independent of f, 

Y should be independent of f. Otherwise, dY/dx becomes dependent on 

f which is contradiction to the Eq. 15. Thus, we use the following equation 

for polar orbits: 

( ) ( )2 2 21/2

2 2 2

sin
cos

E r a a aEd K da
d r K K a d

qy x
q q q

æ ö+ - F F -
ç ÷= +
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       (A20) 

A2. Wigner Rotation Angle 

A Hermitian matrix K can be mapped to a wave vector k of the photon such 

that2,3 

a
aK ks= ,                                         (A21) 

where σ0 is the 2x2 Identity matrix, and σi (i=1, 2, 3) are the Pauli matrices. 

Thus, K has the form2,3 

ˆ ˆ ˆ3 1 2
0̂

ˆ ˆ ˆ1 2 3

1

1

n n in
K k

n in n

æ ö+ -
= ç ÷ç ÷+ -è ø

,                           (A22) 

where 0 ( 1, 2, 3)
i

i kn i
k

= = . Also, a Lorentz transformation is described in 

the space of two-dimensional Hermitian matrices by a matrix A in SL(2, C) 

such that 

.  a b
b aK k AKAs¢ = L = †                       (A23) 

The Wigner’s little group element2-4, W (L,k) = LLk
-1 LLk , is then given by  

1( , ) k kS k A AA-
¢L = ,                           (A24) 
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where kA  corresponds to L(k) that transforms (1,0,0,1)k =%  into k. It is 

straightforward to show the S(Λ,k) has the form 3: 

/2

/2 , [0, 4 ]
0

i
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e z
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e
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y
y p

-

æ ö
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,              (A25) 

and the Ak has the form   
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ˆ ˆˆ ˆ 0 30 3
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A Lorentz transformed wave vector, k k¢ = L , is mapped to a Hermitian 

matrix K ¢  given by  

3̂ *
0̂ 0

3̂

1
AKA

1

n n b c
K k k

c a bn n
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+

æ ö¢ ¢+ æ ö
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where (2, )A SL C
a b
g d

æ ö
= Îç ÷

è ø
. Then we can get the following relations   
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         (A28) 

   2 23 3 * *(1 n ) (1 n ) n nb a b ab a b- += + + - + +        (A29) 

  * 3 * 3 * *(1 n ) (1 n ) n nc a g b d b g a d- += + + - + +        (A30) 

ˆ ˆ ˆ0 0 3 2 2, 1,
2
a b ck k n n

a a+¢ ¢ ¢= = - =             (A31) 

Here, z is an arbitrary complex number. Substituting from Eq. A25 to Eq. 

A31 into Eq. A24, we can get the relation2 
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       (A32) 

Moreover, by redefining the z, the matrix S can be given in the form3  

/2 /2

/2 ,   [0, 4 ]
0

i i

i

e e z
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e z
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and the product of any two elements in this group 

1 2 1 2 1

1 2

( )/2 ( )/2
1 2
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( z )
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In other words, we have the following composition law such that 

 .   1 1 2 2 1 1 2 1 2(z , )(z , ) (z exp( ) z , )iy y y y y= + +           (A35) 

Thus, for massless particles, Wigner’s little group is the E(2) group. There 

are two classes of the irreducible unitary representations of the E(2). One is 

the infinitesimal dimension representations, and the other is the one-

dimension representation. However, the former has intrinsic continuous 

degrees of freedom. Therefore, the Lorentz transformation for the photon 

has the one-dimension representations, since the photon is not observed to 

have any continuous degrees of freedom. The representations have the form4 

( , )( ) , e , .i kU k ksys sLL = L                    (A36) 

Here, ( , k)y L  is the Wigner angle. When equation (S26) is expanded to the 

first order of dx in the form 

( , )/2 ~ 1 ( , )
2

i k de i ky xyL + L% ,                       (A37) 

the total Wigner rotations can be built up as a time-ordered integration of 
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infinitesimal Wigner rotations over the geodesic trajectory x(ξ) of the 

photon via 

( , )/2 exp ( ( ), ( ))
2

i n de T i ny xy x xL é ù= Lê úë ûò
r r% ,                    (A38) 

where ( ) (x( )), ( ) (x( ))n n m m
n nx x x x= L = L

r r  and T is the time order operator. 

For the infinitesimal homogeneous Lorentz transformation expanded as 

ˆ ˆ ˆ
ˆ ˆ ˆd lL = +a a a
b b b

 with the Kronecker delta ˆ
ˆd a
b
 and infinitesimal boosts and 

rotations ˆ
ˆl a
b
., we expand A in terms of dx as  

d dA I A I
a b a b

x x
g d g d
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          (A39) 

From the condition that the A has unit determinant, it is obtained that 

d a= -% % . Thus, the A can be rewritten as: 

A I Ad I d
a b a b

x x
g d g a

æ öæ ö
= = + = + ç ÷ç ÷ -è ø è ø

%%%
% %

.         (A40) 

Substituting Eq. S40 into Eq. S23, multiplying âs , and taking a trace on 

both sides, we can get the following equations  

ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ

1 ( )
2

a ac
c cb b b

tr A Al d s s s s= +% % † ,                        (A41) 

where tr(A) is the trace of A, and a% , b% , and g%  are as follows: 
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A4. Real parameters  

The , , , ,a b g d and their moduli have the following forms: 
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For photon moving in the ˆ ˆ1 2-  plane, substituting Eq. S43 and 1̂n n± =  into 

Eqs. A28, A29 and A30, we obtain 

ˆ ˆ3 12 2(2 ( ) n ) ,a n da b g x= + + +%% %              (A44) 

( )ˆ ˆ ˆ3 3 1(1 n ) 2 2 (1 n ) ,b n da b x= + + + + %%            (S45) 

and  

( )ˆ ˆ ˆ1 3 3(1 n ) (1 n ) .c n dg b x= + + + -%%              (A46) 

The numerator of Eq. A32 is given in terms of the parameters defined 

above:  
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and the denominator is 

3̂

ˆ ˆ ˆ ˆ ˆ3 1 1 1 3 1
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By direct calculations, one can show that Eq. A32 becomes     

   ( ( ,k)/2) 1ie y L = .              (A49) 

A6. Complex parameters  

In the case that every parameter is not real, 2 2 2 2, , ,a b g d have the form 
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where Re( )g  is the real part of the complex number g . Eqs. S44, S45, and 

S46 are then rewritten 

2 2 2 23 3
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and 
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, where Im( )g  is the imaginary part of complex numbers. Thus, with Eqs. 

S51, S52, and S53, we obtain 
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and 



 

 ５６

3̂

3̂

ˆ ˆ ˆ3 2 3 2 3

3

3̂ 3̂

3̂

1

(1 n

1
2 [4n Re( ) 2Re( n n )]

1

(1 n ) [2Re( )(1 n ) 2Re( n )(1 n )]d

[4 Re( ) 2 Re( n n )]1 1
2 2

1 1
(1 n ) 1 [2Re( )(1 n ) 2Re( n )]d

(1 n )

a b

d

n d

a b g x

a b x

a b g x

a b x

+ -

+

+ -

+

+

æ ö
= ç ÷ç ÷+ + +è ø

æ ö
ç ÷
ç ÷+ + + + +è ø

æ ö+ +
= -ç ÷

è ø
æ ö
ç ÷
ç
ç + + + +ç
ç +è ø

%% %

%%

%% %

%%

ˆ ˆ3 3 3

ˆ ˆ3 3

3̂

3̂

[4 Re( )(1 n ) 2Re( n n )(1 n )]1 1
2(1 n ) 2(1 n )

[2 Re( )(1 n ) 2Re( n )]1 .
2(1 n )

n d

d

a b g x

a b x

+ -

+

÷
÷
÷
÷

æ ö+ + + +
= -ç ÷ç ÷+ +è ø
æ ö+ +

-ç ÷ç ÷+è ø

%% %

%%

 (A55) 

 

 

 

 

 

 

 

 

 

 



 

 ５７

Substituting these results into Eq. A32, we have the form  
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  (A56)                                    

Since the real component of the parameters in Eq. A32 leads to unity, as 

seen in the previous section, Eq. A56 can be written as    

ˆ ˆ3 3 *

3̂

ˆ ˆ2 1

ˆ ˆ3 3

1 [ (1 n ) n ]b [ (1 n ) n ]c
(1 n )

n n1 [Re( ) Im( ) Im( )] .
1 n 1 n

d
a b

i d

a b g

b b a x

+ ++ + + + +
+

= + + +
+ +

% % %

    (A57) 

 

 



 

 ５８

By definition, the infinitesimal Wigner angle is  
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A7. Tetrads for a stationary observer  

The tetrads, ˆ ( )ae xm , are defined as5,6 

ˆ ˆˆ ˆ( ) ( ) ( )a b ab
g x e x e xm n

mn h× =                (A59) 

For a stationary observer, his local frame is defined in Schwarzschild 

spacetime such that,   
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The corresponding ILLT(Infinitesimal Local Lorentz Transformation) 

matrix is given by 
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All the parameters, defined in Eq. A43, are real with the ILLT matrix of 

static observers. Thus, observers at rest cannot see Wigner rotation.  

 



 

 ５９

A8. Tetrads for a free-falling observer with zero angular momentum  

For observers falling radially inward, away from infinity, the observers’ 

energy and angular momentum per rest mass, defined in Eq. A5, are 1 and 0, 

respectively. Thus, the timelike component of the 4-velocity vector is 

1(1 / )sr r -- , and the f - and q -direction components of the 4-velocity 

vector are zero. Thus, 4-velocity vectors of the observers have the form: 

2 2
1(1 ) (1 ) 1s sr rdt dr

r d r dx x
-æ ö æ ö

- - + - = -ç ÷ ç ÷
è ø è ø

.          (A62) 

Correspondingly, the observer’s local frame can be described with the 

tetrads:  
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With this tetrads, the ILLT matrix is given by 
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As the static case, since all the parameters are real, Wigner rotation is not 

observed in radially free-falling frames.  

A9. Tetrads for a free-falling observer with non-zero angular 

momentum on circular orbits 

By using a 4-velocity vector of an observer on stable circular orbit1, we can 

get a corresponding tetrad such that  
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and by applying non-spinning condition, we can get 

0
3( ) 1 ( )
2

srr
r

q qQ = - -% .            (A66) 

Similar to the spiraling case, the tetrad of circular orbits is approximated up 

to the first order of sr
r

 to figure out the physical meaning.  
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( ) ( ) ( )

( ) ( ) ( )

0̂

ˆ 0 0 01

ˆ 0 0 02

3̂

1( ) ( ) ( ) ( ) (1,0, ,0)
2

1( ) ( ) ( ) ( )( sin ,cos , sin ,0)
2

1( ) ( ) ( ) ( )( cos ,sin , cos ,0)
2

csc( ) ( ) ( ) ( ) (0,0,0, ).

m m

m m

m m
q

m m
f

q q q q q q

q q q q q q

q

= =

= - - - - -

= - - -

= =

s
t

s
r

s

re x e x
r r

re x e x
r r

re x e x
r r

e x e x
r

 (A67) 

By projecting tetrads into 3-dimensional space, one can see that the tetrad is 

rotated by q  when the observer moves by - rq . This is a non-relativistic 

effect since the rotation induced by parallel transportation condition is just 

compensation of the rotation from the definition of spherical coordinates. In 

Fig. A1, it is shown that classical geodetic and residual components of 

IWRA for a free-falling observer with non-zero angular momentum in the 

circular orbit. 

 

Fig. A1. Infinitesimal classical rotation and quantum rotation versus affine 
parameter for a free-falling observer with non-zero angular momentum in 
the circular orbit. 
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A10. Hong-Ou-Mandel effect with geometric phase 

With creation operators of two input ports aI
† and bI

† and two output cI
† and 

dI
† of the first 50:50 beam splitter, the two indistinguishable photon states at 

each port can be written as   

( )( )† † † † † † †2 †21 10,0 0,0 0,0 0,0
2 2

a b c d c d c d= + - = - .  (A68)  

Considering relative Wigner rotation angle at port cI and p/2 phase shift at 

output port dI, the photon states passing through output ports cII and dII of 

the second beam splitter    
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Table A1. Comparision of the geodetic precession calculated with tetrads 
on circular orbits and experimental results reported by  

Geodetic precession 

calculated w/ tetrads on circular orbits 

Experimental results  

reported by C.W.F.Everitt et al.7  

6.6arcsec/ yr  6.6018 3 arcsec/yr±  

Table A2. Comparison of total integrated Wigner rotation angle (WRA) 
totaly , classical contribution to the WRA geodetic

totaly , and quantum contribution 
to the WRA residual

totaly  (in deg), for radially emitted photons and a satellite at 
various altitudes for circular orbits. 

Observer in a Circular Orbit 

Altitude 
Wigner rotation angle 
(WRA) (classical part 
+ residual part) totaly  

Classical 
Part of the 

WRA 
geodetic
totaly  

Residual 
Part of the 

WRA residual
totaly  

300km (NEO) -5-3.44 10´   -14-4.67 10´  -5-3.44 10´  

2000km (LEO) -4-1.93 10´  -13-2.53 10´  -4-1.93 10´  

20000km (MEO) -4-7.77 10´  -13-6.17 10´  -4-7.77 10´  

36000km (GEO) -4-9.25 10´  -13-6.59 10´  -4-9.25 10´  

( )r´ = ¥111.6 10 km  -3-1.51 10´  -13-7.00 10´  -3-1.51 10´  

NEO, LEO, MEO and GEO = Near-, Low-, Medium- and Geosynchronous Earth        
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요약(국문초록) 

일반 상대론적 효과에 의한 광자의 기하학적 위상 

변화 

 
최근 위성으로 구성된 자유 공간 양자 광학 시스템의 발전으로 중력장에서 광

자 상태의 evolution에 대한 조사가 널리 연구되었지만 대부분 proper time 연

구에 국한되어왔다.  광자에 대해 로컬 프레임의 효과인 Wigner 회전을 다룬 

몇 가지 선행 연구가 보고된 바 있으나, 이는 광자 궤적을 따라 고전적인 편광 

벡터의 베리 위상으로 해석되어 왔다. 이 논문에서는 먼저 지구 중력장에 의

해 유도된 기하학적 위상을 연구하기 위해 다양한 궤도의 관찰자 (인공위성)

에 대해 Wigner 회전을 계산하였고 편광을 비교하기 위해 도입된 표준 프레임

의 회전 외에도 측정 가능한 order의 Wigner 회전에 의한 위상이 있을 수 있음

을 보였다. 이 Wigner 회전은 관찰자가 0이 아닌 각운동량을 갖는 경우인 원형

궤도를 따라 움직일 때, 지구 궤도의 고도에 따라 각각 10-6도에서 10-4도의 추

가 위상을 가졌고  거의 0에 가까운 (10-12도)측지 회전에대해 상대적으로 큰 

값을 갖는 다는 것을 확인하였다. 또한 지구 근처의 극 궤도에있는 위성으로 

구성된 2 광자 천문 양자 간섭계의 일치율은 양자화 축의 방향으로 양의 및 음

의 속도 성분을 가진 광자 궤적 사이의 상대적으로 큰 사소한 기하학적 위상 

차이로 인해 순수한 양자 광학 효과 인 Hong-Ou-Mandel dip과 함께 변할 수 있

음을 보였다. 

주요어: Wigner 회전,  천문 간섭계, QKD, Hong-Ou-Mandel 효과 

학번: 2017-31651 
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