creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

(General relativistic effects on
geometric phase evolution of a

photon state

ek U EH Eho] A& FAL 755 94
)

b

2023 2 ¥

o
L o
~N 8
o.|>i_|oll
£ g
o &
DA

r&

i
2
i



General relativistic effects on

geometric phase evolution of a

photon state

a7

1=]
=

A

A =

|

2023 02¢

20234 02€

(gD

© A A

94 %

(gD

&)

€1))

)




Abstract

General relativistic effects on
geometric phase evolution of a photon
state
With recent advancements of free-space quantum optical systems consisting
of satellites, the investigation of the evolution of photon states in
gravitational field has been widely studied but mostly confined to the study
of proper time. While there are also a few works about the effects from local
frames on quantum photon states, called Wigner rotation, it has been
interpreted as the Berry phase of classical polarization vectors along a
photon trajectory. Here, the Wigner rotation is investigated to study
geometric phases induced by Earth's gravitational field for observers in
various orbits. It is found that a potentially measurable phase of the Wigner
rotation angle in addition to the rotation of standard fame, the latter of
which is computed and agrees well with the geodetic rotation. When an
observer is in either a circular orbit containing non-zero angular momentum,
the additional phase contributes 10 degree to 10* degree respectively,
depending on the altitude of the Earth orbit. In the former case, the
additional phase is dominant over the near-zero classical geodetic rotation.
This shows that the Wigner rotation represents a non-trivial semi-classical
effect of quantum field theory on a background classical gravitational field.

It is also shown that coincidence rates in two-photon astronomical quantum
1



interferometry consisting of satellites on polar orbits near Earth can be
variated in combination with pure quantum optical effect, Hong-Ou-Mandel
dip, owing to the relatively large non-trivial geometric phase differences
between the photon trajectories with the positive and negative velocity
component in the direction of the quantization axis.

Keyword : Wigner rotation, astronomical interferometer, Quantum
key distribution, Hong—Ou—-Mandel effect

Student Number : 2017-31651
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Chapter 1. Introduction

1.1. Study Background

Quantum optical technologies have shown their supremacy in many
applications of secure communications and sophisticated measurements.
Taking advantage of the intrinsic immunity of quantum communications to
tampering and eavesdropping, various quantum communication protocols
have been widely studied using not only optical fiber but also satellites and
ground stations with the recent deployment of the Quantum Experiments at
Space Scale network and Micius satellite!°. Using tailored photons as input
states, quantum interferometry have also been reported to overcome the
classical limit of interferometry sensitivity, O(1/v/N), up to the intrinsic
Heisenberg limit, O( 1/N ), which corresponds to an eight-order-of-
magnitude improvement of SNR in milliwatts-optical-laser interferometers?!.
The quantum optical interferometry has its potential applications in
elaborate satellite-based metrology systems?! such as the European Laser

Interferometer Space Antenna (LISA) for the detection of gravitational wave.

One of the big challenges in these quantum optical systems with satellites is
the determination of phase variations induced by gravitational rotations on
both satellites and photon states along the geodesics. Accordingly,
synchronization of polarization reference-frame and evolutions of the

photon states should be considered for free-space QKD systems®? and

6



quantum optical interferometry based on satellites®> in the gravitational

field?* which induces the de Sitter (geodetic precession) effects?*.

Therefore, it is important in these environments to understand the interplay
of quantum theory and gravitation as the photon state, propagating between
the ground station and the satellite, carries the quantum information. While
the gravitational field is known to add a measurable contribution to the
quantum bit error rate (QBER) along the worldline of the quantum state as
the altitude changes® in addition to the red shift*>%°, the experiment regimes
of several proposals suggested for quantum communication between a LEO
satellite and an optical ground station, such as SPACEQEST and QEYSSAt
projects, have not fully assessed evolution of quantum states induced in
curved space-time; most of them have mainly considered quantum optics
rather than general relativistic phenomena of quantum states at large

scales'”-2,

In addition to the geodetic precession, the spin angular momentum of an
astronomical body has been reported to have other extraordinary phenomena
such as the Penrose process in the ergosphere?’, chaotic geodesics®®, and the
additional gravitational precession, the Lense-Thirring (frame-dragging)
effect?*?%3!, Especially, the frame-dragging effects dictate different phase-
variations of photons near a Kerr black hole along their worldlines in a
combination with the geodetic precession and redshift, leading to

geometrically-induced unique Orbital Angular Momentum (OAM) profiles



in the sky of an asymptotic observer®?. Moreover, it has been reported that
Sagnac effects from the rotational frame-dragging can variate the coincident
rates of two photon states in a Hong—Ou—Mandel (HOM) interferometer
surrounding a spinning astronomical object®®; the two single photons travel
on clockwise and anticlockwise half of circular paths respectively and then
enter into a 50:50 beam splitter in the opposite. The Sagnac effects result in
measurable variation of the coincident rates around a Kerr blackhole, but not
near Earth due to its relatively low spinning angular momentum and weak

gravitational field.

Describing photon states observed by a moving observer (e.g., a satellite) in
curved spacetime requires the understanding of both quantum mechanics
and general relativity, two essential branches of modern physics. One of the
conceptual barriers for the relativistic treatment of quantum information is
the difference in the role played by the wave fields and the state vectors in
relativistic quantum theory. In non-relativistic quantum mechanics, the
wave function of the Schrodinger's equation gives the probability amplitude
that can be used to define conserved particle densities or density matrices.
However, it was discovered that relativistic equations are only indirect
representations for probability waves of a single particle**. In 1939, Wigner
proposed the idea that the quantum states of relativistic particles can be
formulated without the use of wave equations®>. He showed that the states of

a free particle are given by a unitary irreducible representation of the



Poincaré group. In Wigner's formulation, relativistic-particle states in
different inertial frames are related by a little group element in the

irreducible representation of the Poincaré group, called Wigner rotation®**.

While Wigner's original proposal was for special relativity, there have been
several attempts to extend it to the domain of general relativity®>*%. It has
been shown that moving-particle states in curved spacetime are transformed
into each other by Wigner rotation*>** by introducing tetrads (frame fields)
to define local coordinates® since extending Wigner's group to curved

spacetime requires the standard local laboratory at every event*.

1.2. Purpose of Research

In this work, we investigate the effects on WRAs from the spinning angular
momentum of gravitating object (J) axial angular momentums of photon
(Iphoton) by calculating WRAs along representative photon trajectories on the
equatorial plane with different positive and negative angular momentums
Iphoton for two types of circular orbits, equatorial and polar orbits. It is
demonstrated that WRAs depend on the two angular momentums, J and
Iphoton by calculating WRAs for observers’ frames on a thin accretion disk of
a supermassive blackhole, for example, M87 with and without the spinning
angular momentum J for various photon angular momentums /photon. For
Earth, while its small spinning angular momentum J does not add any
additional phase to the WRAs up to order of 10® as assumed in many

45,46

previous works and angular momentum of photon geodesics /photon
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changes only a minute amount of geodetic precession contribution (10%~10
%) for observers’ frames whose quantization axis are orthogonal to the
equatorial plane, different sign of /photon leads to measurable differences of
residual phases in WRA for observers in the frame where the quantization
axis and photons lie on the same plane. Utilizing the dependence of WRA
on sign of /photon, we introduce an ‘astronomical’ Mach-Zehnder
interferometer near Earth with an indistinguishable two-photon input state
travelling along one of arms in combination with HOM effect; the two
photon states simultaneously entering into the first beam splitter, one in each
port, becomes a superposition of two-photon states emitting into each arm,
as known as HOM effect. Along one of the arms, the photon state is sent to
the second beam splitter in the satellites on a polar orbit after which the
coincidence rates are measured. The relative WRA difference between two
photon states in one of two arms variates the coincidence rates. This finding
is distinguished from the features of classical interferometry since it stems
from the pure quantum interferometry characteristics, HOM effect. We
believe these results could provide a potential testbed of the interplay of

general relativity and quantum theory.
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Chapter 2. Lorentz transformation and Wigner
rotation in curved spacetime

In 1939, Wigner classified that quantum states of a free particle with the
Poincaré group by introducing a subgroup of the Lorentz group, called the
little group, which has finite unitary irreducible representations; in this
formalism, arbitrary Lorentz transformation results in additional phases of
photon states, called the Wigner rotation angles (WRAs)***2. This Wigner’s
representation can be extended to a general relativistic framework by
applying FEinstein’s equivalence principle and local orthonormal bases
known as tetrads*’. The transformations of local frames (tetrads) between
two events of observers can be seen as local Lorentz transformations and
naturally represented by the Wigner rotation****. In this chapter, the details
of derivation of WRAs are shown in terms of infinitesimal Lorentz
transformations. Then, physical meanings of WRAs for linear- and circular-

polarized photon states are given.
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2.1. Irreducible representation of the Wigner rotation

in curved spacetime

The Hilbert space vector of a photon is defined in a local inertial frame

spanned by a tetrad, e,“(x), @ and x4 = 0, 1, 2, 3, which satisfies

R N H
g, (X)=1n_¢€" #(x)ebv (x) and transforms in a way that e,”(X) = ng e, (x)
X

and e” (x):A&l; e/ (x) under general coordinate and local Lorentz
transformations, respectively. Throughout the paper, we use hatted Latin
letters for local inertial coordinates and Greek letters for general coordinates.
The tetrad e,”(x) carries two indices: (i) a "world index" u that transforms
under general coordinate transformations of general relativity, and (ii) a
local tangent plane index a which transforms under local, x-dependent

Lorentz transformation A(x). Quantities such as p,(x)=e¢,(x)p,(x) are
the projection of the general relativistic world momentum vector p,(x)

onto the axes (three spatial, one temporal) of the observer's local laboratory
frame*’ where the metric is locally flat such that special relativity holds over
distances over which the curvature can be considered as essentially constant.

The tetrad, therefore, explicitly embodies Einstein's Equivalence Principle

through the index a. The local Lorentz transformation A];‘3 (x) transforms

between different instantaneous states of motion of the observer (e.g.
12



stationary, freely-falling, circular motion, or arbitrary motion) within the
same Lorentz tangent plane at the position x , i.e. the tetrad is constructed to
define (and describes) the observer's instantaneous state of motion at each

point X.

A variation of a tetrad under an infinitesimal translation from x to x +6x is
described by parallel transport to compare two vectors in the same tangent

plane without a change of the vectors such that*®48

a

(e )= (x+06x)~g" (x) > 5x'V ¢, (x) . (1)

For the case that wave vector of a photon is measured in the observer's

laboratory, local covariant components of the wave vector,

k;(x)=e;"(x)k,(x), are changed along the photon's geodesic from x* to

x* +k*(x)0& such that
Sk, (x) =5 (e, (%)), (x) + ;" (X)5k,(x) ; Sk, (x) =dEV, K, (X). (2)

Since a photon state in curved spacetime follows a null geodesic in the

t49

geometric optics limit™ and under a local infinitesimal change of a tetrad

(which is antisymmetric®®3?), Eq. (2) can be rewritten as
00 > B () =k, (9+ 88, (%) = (67 + 2 (00 (0 = A, (9K, (0) )
where /1&’; (x)= (Vkeav (x))evl; (x) . In other words, the effect of an

infinitesimal translation can be considered as an infinitesimal local Lorentz

13



transformation given by Aég (x)=0 f + Zf (x) 38394142,

A Lorentz transformation, A, has the one-dimensional representations for a

photon state with the helicity, o, given by>®

U(A)

k,o)=>D,. (W(AK))|Ak,c"). 4)

W(A, k) is the Wigner's little group element, defined as W(A k) = L(AKk)
AL(k) and D(W) is the irreducible representation of W. L(K) is the Lorentz
transformation such that L(p)k = p. Accordingly, a displacement of a
photon state leads to a residual phase called the Wigner rotation angle
(WRA). To get an explicit expression of the irreducible unitary
representation of a Lorentz transformation, we use the canonical group
homomorphism between the proper Lorentz group and its double cover,

SL(2, C); a wave vector k of a photon is mapped to a Hermitian matrix K via

K =o0,k", where o,

a?

a =1, 2, and 3, are the Pauli matrices, and o, is the

2x2 identity matrix. A Lorentz transformation is represented by the

similarity transformation such that

AI(AJr = Aﬂvkvgy (5)
: a fp o
with an element A= s of SL(2, C). For an infinitesimal
4

homogeneous Lorentz, the matrix A can be expanded in terms of d& such

that
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A:(a '8]=1+Zld§:1+£07 ﬁjdg. 6)
y 6 7 o—a

Substituting Eq. (6) into Eq. (5), multiplying o, both sides, and then taking

a trace on both sides, we can get the following equations

s _ 1 cw Y y
A "255 lr(o—go'aA"‘O'éO-éAT)’ ™

b

where tr(A) is the trace of A. That is, we obtain & , ,5’ , and 7 in terms of

A i such that

a =%(16§ +ial)
B= %[(iﬁi +24) (=20 + 4%)] (8)
1

7 =E[(ﬂﬁi — 23 i + A7)

The corresponding irreducible unitary representation of the little group

element for a massless particle is*>*°

Jonin _[a@n)+fn Jb+[y(1+n’) +5n,]c

A ; )
ar/b(1+n%)

where Y(A, K) is the WRA. Detailed expressions for a, b, ¢, and d are given

in the Appendix. Thus, a local infinitesimal Lorentz transformation A(X)
leads to an infinitesimal Wigner rotation angle (IWRA) v, and the total
Wigner rotation angle ¥ can be formally obtained by a time-ordered

integration of IWRs over the geodesic trajectory x(§) of the photon such that

15



VO =T exp| i AK(EN A (€)dé |, (10

where n' = k' (x)/ k° (x) , and T is the time-ordering operator.
2.2. Wigner rotation on linear— and circular—polarized
photon states

Under a Lorentz transformation A, a polarization vector, e (ﬁ,a) of a

photon field, is transformed as*®

M (A)d[; ¢ (k,0) = /Alg:lcé et (k,o) exp(ial//(A,nf)); o

K =(k6,12).

Here, M(A) and o represent representation of the Lorentz transformation

and helicity of a photon. Accordingly, the Wigner Rotation induces phase

delay or advance of circular polarized photon states, depending on the sign

of the helicity, and rotates the linear-polarization vector, sj , by WRA in the
standard frame such that*?

:(1¢a +et¢ea 1)

( iy (A )) iy i) i ) (12)

o=-1

= (W(An)) Z Ey_pru(ad)

where R.(y) is the rotation about Z -axis by the total WRA y.

16



Chapter 3. Wigner Rotation of a photon state
under the gravitational field of Earth

In this chapter, we demonstrate the existence of a non-trivial Wigner
rotation experienced by photons sent non-radially from Earth ground station
to a free-falling observer with non-zero angular momentum and various
altitudes. To focus on the existence of a measurable WRA, we simplify the
spacetime of Earth, considering only the monopole of Earth. Examining
circular orbits with non-zero quantum-phase Wigner rotation components, it
is found that there is a potentially measurable the Wigner rotation angle in
addition to the rotation of standard fame, which agrees well with the

1242931 and in the

geodetic rotation, measured by Gravity Probe B in 201
former case, the additional phase is dominant to the near-zero geodetic
rotation. Our results show that the Wigner rotation involves a non-trivial
semi-classical effect of quantum field theory on a background classical
gravitational field in addition to classical geodetic precession. This finding

could open up the testbed to probe gravitational effects on various quantum

phenomena in a satellite by the interplay of two pillars of physics.
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3.1. Earth—satellite system

Considering only the monopole of Earth, we model the spacetime around
Earth with Schwarzschild spacetime where tetrad fields can be globally
defined as orientation-preserved coordinate bases****%2 and the (- + + +)
metric signature is used. Furthermore, it is also assumed® that quantum
field theories on spacetime admit a spinor structure’®*-? which will be

employed for the quantum state of the photon with a given polarization.

We consider an Earth-satellite system depicted in Fig. 1. Figure la shows
the Earth-Satellite system and corresponding coordinates. A photon is sent
along its geodesic, represented by the red line, and its polarization,
represented by the light-green arrows, is measured in the local frame of a
satellite. The Schwarzschild metric is used to model spacetime around Earth
and choose spacelike components of the tetrads so that the first, second, and

third axis of the local frames become unit vectors of Schwarzschild
coordinates r, 6, and ¢ at infinity, i.e., &,"(x,) =¢," where a = 1, 2, and 3

correspond to b = r, 6, and ¢, respectively. To compare the polarization
measured at the surface of Earth and the satellite, the standard frame is
introduced in which a wave vector of the photon is aligned to the third axis

of observer's local frames (Fig.1b and 1¢).

18



a b &,(x,) c é,(x,)

&,(x) | [
G P (_J' ( ‘y ) T
4 J=25 8(x,) €,(x,)
A ¥ /
‘ \Pe(x) ) : x)
2, € ("], ) € (%
6('/14,,} \ éﬁ( X) (X, e €, (Xouiee)
=\
¢(x)
€,(%) & (X)) & (X))

Figure 1 | Schematics of the Earth-satellite system. The Earth-Satellite
system and corresponding coordinates. a a photon's geodesic and its
polarizations are represented by a red line and light-green arrows, respectively.
b-¢ The wave vector and polarization of the photon are measured in each local
frame (b) and compared in the standard frame (c).

We consider the following four observer trajectories: a stationary observer, a
radially free-falling observer, a free-falling observer with non-zero angular
momentum in a circular orbit*’ (Fig.2a). While there is another orbits with
angular momentum, called spiraling orbits, we focus on the circular ones
which corresponds to those of satellites. To define non-spinning local
frames, we apply Fermi-walker transport and parallel transport conditions
for the stationary and free-falling observers respectively. Detailed works are
given in the Appendix. We note that the definition of polar coordinates
induces a non-physical rotation in local frames, which must be canceled out.
In other words, if the photon's geodesic is in the equatorial plane 6 =1 /2
(Fig. 2b and 2c), the unit vector of the coordinate » is rotated as the

coordinate @ changes. Thus, the observer is assumed to move in the plane

é.—¢,, i.e., the constant-¢ plane (Fig. 2b and 2c¢), and ¢-axis is chosen as

the third axis of the local frames to cancel out the polar-coordinate-induced

19



rotation when a wave vector is aligned to g-axis for polarization comparison.
It is worth mentioning that the Wigner rotation has a zero angle in special
relativity if the direction of boost (observer) and the wave vector (photon)

both lie in the X —Z plane or the y —Z plane. However, if a photon moves
in the X— J plane and an observer in the orthogonal X —Z plane, the WRA
is not necessarily zero*>*°. Correspondingly, by the equivalence principle,
since our observers are assumed not to move in the plane &" (x)—éé” (x),

and the photon's geodesic remains in the equatorial plane 8 =m/2 (Fig. 2b

and 2c¢), the WRA will again be non-zero.

Timelike components of the corresponding tetrads, e/, are set to the 4-

velocity vector of a massive particle (e.g. satellite), moving along a geodesic
corresponding to each trajectory, describing the local frame of the observer.
The 4-velocity vectors of the observers and the wave vector of the photon
are obtained in terms of conserved quantities defined from Killing vectors of
Schwarzschild spacetime (see Appendix Eq. (5)).

For circular orbits, by applying the conditions of orthogonality and non-

spinning frame, tetrads have the form

20



(e)"(x)=(e)"(x) = (\/— \/7\/—

[ 13)

1——s1n®(r) (

(€)' (%) = ()" (x )(—\P S‘;‘G(” I-Eeosé) -1 0
- F

\ /1 - cos ®(r)
(e;)"(x)= (%)"(X)(,/ = ®(r) \/1 - Sln o(r), 1—25 ———
”

(e)"(x)=(e,)"(x) = (0,0,0,CSCG / r),

where O(r) =, [1—- -Z”s (0-6,).
r

We set conserved energy, & photon »

of a photon to its frequency to satisfy

equivalence principle, and set the energy per unit mass, ¢, , of an observer

obs ?

to one, in the units where 7= G =c = 1since ¢,, = (1-r,/r)dt/dr ~1. We

set the (non-radial) launching angle of the photon as 45  (Fig. 2b) by setting

o :
an angular momentum of a photon /; as —=™ so that the radial and polar

V2

components of the wave vector have the same value on the surface of Earth,

k' (B ) = 7k° (1, ) - Here, @ 1s an angular frequency of a photon. Details

of derivation are provided in the Appendix.
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in the observer plane: constant ¢

0

photon in the plane @ =7/2 ‘

1

&L atnch Angle

Vv

Equatorial plane 0 = =
= X

Constant ¢plane

Figure 2 | Schematics of the trajectory of the observer (satellite) and
photon. The geodesics of a photon traveling lies in the equatorial plane,
0 =m/2 and the observer's geodesics is lying in the constant ¢-plane (the
point NP on the sphere represents the North Pole). a A, B, and C represent the
geodesics of massive free-falling observers radially, in a circular orbit, and
spiraling orbit, respectively. b-¢ The non-radial launching angle of a photon
from the surface of the Earth to the satellite in a Fig.2c circular (gray) and
spiraling (purple) orbit in the constant-¢ plane.
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3.2. The Wigner rotation under the gravitational fields

Upon observation of Egs. (9) and (10), it is noted that if every parameter is
real, then the result of this equation is always real. In other words, WRA
!//(A,n;) must be 2mz where m is an integer. Accordingly, the first and
second observer trajectories considered (stationary, radially free-falling)
have zero WRAs* since all the parameters are real. In the opposite case

where every parameter is not real, the non-zero infinitesimal Wigner

rotation angle for a photon helicity state can be obtained such that

Vo =2Im(o?)+{ 21y + 2L Re(if)}
1+n’ 1+n’

— 2l +Lf;§ (<% + 2% )+ 12; (2, mﬁi)} (14)

~ geodetic ~ residual

Vit TV
which corresponds to the last case considered, namely free-falling observers
with angular momentum in a circular trajectory. Here, & and £ are defined
as Appendix Eq. (34). We note that IWRA consists of a classical geodetic

precession around the third axis, ¥=°* =2Im(&), and a residual phase (or

"residual gauge transformation") induced with the gauge-fixing for a finite

. . . g 20 a2t
irreducible unitary representation, /""" =L§Im( ﬂ)+1 " +Re(f). The
+n +n

total Wigner rotation angle i can be obtained via a time-ordered integration

of IWRAs over the geodesic trajectory x(&) of the photon such that
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i A,ﬁ il//geodelic (A,ﬁ)+i|//mid““l (A,ﬁ)
eV — o,

= Texp| i 75" (A&, (§)d | (15)
+Texp| i i (A, (EDd |

where T represents the time-ordering operator. The total geodetic-

residual

precession contribution WRA 2% and the residual phase are

~ residual

, and g

geodetic
inf

defined as integration of the infinitesimal WRA
respectively, along the photon’s geodesics. The WRA for massless particles
arises from a consideration of the wunitary representation of the
transformation of quantum single-particle states under classical Lorentz
transformations, and hence manifests itself as a phase factor’>36:4250
depending only on direction of the photon's momentum but not its frequency.
Others in the literature have ascribed the WRA to a residual gauge

transformation, and the classical and quantum nature of this non-trivial

phase factor remains an open question™.

The classical geodetic contribution corresponds to the rotation around the
wave vector in the standard frame, where polarization vectors are measured
and compared. For the circular-orbit case, parallel transport compensates the
rotation induced by spherical coordinates such that spacelike components of
the tetrads are rotated by € when an observer moves by -7, leading to a
small (almost zero, see Table 1), total classical geodetic WRA. The classical
geodetic effects calculated with tetrads are compared with experimental data

reported by C.W.F.Everitt et al.>°
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In Table 1, we compare the finite (i) total WRA v/, (ii) classical geodetic

contribution of the WRA y2°* and (iii) the residual phase of the WRA

total

residual
total

, for circular orbits, obtained by integrating the TWRA v, ,

. w2
~ geodetic ~ residual __ n

3
l+n

i
wi =2Im(a) , and " = lziélm( B+ Re(p) , respectively,
+n

along the photon orbit, from the surface of Earth to the altitudes of various
Earth orbits. Details of the approximation and interpolation methods
employed to compute the total WRA from the IWRA, and to verify their

validity are described in detail in the Appendix.

b

Residual phase (degree)
Total Wigner Rotation Angle (degree)

Geodetic Contribution (degree)

0.0
1 2 3 4

4 4
x X
Distance (km) 10 Distance (km) 10

Figure 3 | WRA along distances from Earth. It is shown that the classical
geodetic part in the solid orange line, the residual phase part in the solid blue
line, and total WRA in green line for the circular orbit (a, b).

geodetic

Table 1 shows the total v, WRA as well as its classical geodetic ¥,

residual

and residual ¥, phases for a circular observer orbit (here envisioned as

a satellite). Further details of the photon's and the observer's orbits can be
found in the Supplemental Material). For the circular orbit (with the photon

launched non-radially from the Earth, Fig.2C), Table 1 reveals that the
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classical (general relativistic) geodetic contribution to the total WRA is

effectively zero while the residual phase yields the dominant contribution in
the range of [2.42 x107,-6.25x% 104] degrees for radial distances ranging

from near-Earth orbit (NEO, 300km) to infinity. Fig. 3a shows the classical
geodetic and residual phase of the total WRA for the circular case. The
classical geodetic precession (general relativistic rotation), and the residual
phase are represented by the solid orange and solid blue line, respectively.

The total WRA is shown in Fig. 3b.

It is also found that the residual phases have path dependence unlike the
classical geodetic cases: for radially emitted photon, while the classical
geodetic part of WRA does not change compared to photons with angular
momentum, the residual phase WRA has different values along radial
distances ranging again from NEO to infinity in the range of degrees for

circular orbits (See Appendix Table 2).
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Table 1. Comparison of total integrated Wigner rotation angle (WRA)

classical geodetic contribution to the WRA , and residual quantum-phase

contribution to the WRA (in deg), for a satellite at various altitudes for

circular orbits.

Observer in a Circular Orbit

Wigner rotation
angle (WRA)

Geodetic part

Residual phase

Altitude (Geodetic of the WRA pa;tvf&he
+ Residual geodetic .
total residual

phase) v/total total
300km (NEO) 2.42x10° 6.46x10™ 2.42x107°
2000km (LEO) 9.64x107° 3.03x10™" 9.64x107
20000km (MEO) -8.78x107 7.02x10™" 8.78x107
36000km (GEO) 9.93x10° 7.61x10™" 9.93%10°
1.6x10" km (» = ) -6.25x10™* -8.02x10™" 6.25x10"

NEO, LEO, MEO and GEO = Near-, Low—, Medium- and Geosynchronous Earth Orbit.
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Chapter 4. Dependence of angular momentums
of a gravitating object and photon trajectories
on Wigner rotation angles

Here, we investigate the effects on WRAs from the spinning angular
momentum of gravitating object (J) axial angular momentums of photon
(Iphoton) by introducing Kerr spacetime and calculating WRAs along
representative photon trajectories on the equatorial plane with different
positive and negative angular momentums /photon for two types of circular
orbits, equatorial and polar orbits. It is demonstrated that WRAs depend on
the two angular momentums, J and /photon, 1n general by calculating WRAs
for observers’ frames on a thin accretion disk of a supermassive blackhole,
for example, M87 with and without the spinning angular momentum J for
various photon angular momentums /photon. For Earth, while its small
spinning angular momentum J does not add any additional phase to the

45,46 and

WRASs up to order of 10® as assumed in many previous works
angular momentum of photon geodesics /photon changes only a minute
amount of geodetic precession contribution (10%~10'%) for observers’
frames whose quantization axis are orthogonal to the equatorial plane,
different sign of /pnoton leads to measurable differences of residual phases in

WRA for observers in the frame where the quantization axis and photons lie

on the same plane. Utilizing the dependence of WRA on sign of /ynoton, We
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introduce an ‘astronomical’ Mach-Zehnder interferometer near Earth with
an indistinguishable two-photon input state travelling along one of arms in
combination with HOM effect; the two photon states simultaneously
entering into the first beam splitter, one in each port, becomes a
superposition of two-photon states emitting into each arm, as known as
HOM effect. Along one of the arms, the photon state is sent to the second
beam splitter in the satellites on a polar orbit after which the coincidence
rates are measured. The relative WRA difference between two photon states
in one of two arms variates the coincidence rates. This finding is
distinguished from the features of classical interferometry since it stems
from the pure quantum interferometry characteristics, HOM effect. We
believe these results could provide a potential testbed of the interplay of

general relativity and quantum theory.
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4.1. Dependence of WRAs on angular momentums of

open photon trajectories

First, we investigate the effects on WRA by angular momentums of photon
Iphoton, Whose sign is intrinsically related to time reversal symmetry, along
open trajectories from ground station to satellites with various ratios of
azimuthal components 7k? of the photon 4-velocity to radial one k”; for a
certain ratio (rk%/k") at a ground station, the angular momentum of photon
has a unique solution whose sign follows that of ratio — photon” and Zphoton
for positive and negative ratios, respectively. The Kerr metric is applied to

model spacetime of Earth with spin angular momentum (wL =a=39m),

which is given by>>

ds® = —(1—%)czdt2 +§dr2 +3d6?
, (16)

2r.rasin’ 0

2
+[r2 +a +%sin2 0]sin2 0dg® - cdtd

where X =17 + d’cos’0, A = ¥ — ra+d’, and ry = 2GM/c? is the
Schwarzschild radius. J = aMc and M are angular momentum and the mass

of the gravitating object, respectively. Throughout this paper, the (— + + +)
metric signature is used and a photon field on a curved spacetime is
assumed to have a spinor structure®®*-3, Considering that the residual term
wrsidual in the WRA has greater values than the geodetic-precession

contribution €% for observers on circular orbits which corresponds to
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satellites* and only the residual phase contributes to the time reversal
symmetry breakdown, in this paper we focus on the case of two kinds of
circular orbits, equatorial and polar orbits, represented by yellow and light
blue lines respectively in Fig.4a. To describe local inertial frames of
satellites, we obtain co-moving and non-spinning tetrads from Marck’s
ones>. Then, the quantization axis, the local third axis in the standard frame
depicted in Fig 4b and 4c, is aligned to axis of the geodetic precession (two-
order larger than the frame-dragging effect) so that its contribution to WRAs
can easily be separated from momentum-dependent residual phases. It is
worth mentioning that, for equatorial orbits, unphysical rotation (about &
axis) induced by definition of radial and azimuthal coordinates is not
involved in WRAs owing to the parallel-transport conditions of tetrads
along the azimuthal direction. In contrast, for polar orbits, axis of the
unphysical rotation is not aligned with those of satellite orbits and thus the
parallel-transport conditions do not exclude the unphysical rotation. For this,
by setting the axis of geodetic precession (¢-axis for the polar orbits) to be
the local third axis, the unphysical rotation can be canceled out while

aligning wave vector to the local third axis to build standard frame™.
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€ (Xseiie)

Ysasellite
] &, (Xexeane)
Figure 4 | Schematics of the Earth-satellite system. a a photon is sent along
its geodesic to satellites on equatorial and polar orbits (yellow and light blue
lines, respectively). b-¢ The wave vector (red arrows) and polarization (blue
arrows) of the photon are measured in the standard frame where wave vector is
aligned along the local third axis. Since there is no rest-frame for massless
particles, standard frame is introduced for quantization of photon eigen-helicity
states. Gravitation and satellite’s 4-velocity lead to variation of polarization
angle between frames on the surface of Earth (b) and in the satellites (c).

In the frame of both observer’s equatorial and polar orbits near Earth, with
negligible geodetic precession contributions (108~107"!%), the residual phases
have orders of 107 for the photon trajectory with rk%k’=1 at the ground
station, showing good agreement with the previous report (see Table2 and
Table3). For equatorial plane, time reversal symmetry breakdown is

relatively small as the quantization axis is orthogonal to the equatorial plane

on which a photon moves, i.e., n’ is zero. In general, it is confirmed that
signs of the photon angular momentum /photon and spinning angular
momentum J variate WRAs by numerical calculation for observers on
equatorial orbits of a supermassive black hole, M87, while not resulting in

differences up to the 3~4 significant digits near Earth along radial distances
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ranging from surface of Earth to geosynchronous orbit (GEO, 30000km) as
shown in Fig. 5. Figs. 5a-c show the WRAs, geodetic-contribution, and
residual phases and in their insets the corresponding AWRAs (WRA in Kerr
spacetime — WRA in Schwarzschild spacetime) for the photon emitting from

r = 4.51s with different photon angular momentum /ynoton. Fig.5d and 5Se
show the local Lorentz transformation A° ; +/16i and momentum-dependent
2

term o (= nz) as representatives for the equatorial orbits near the black
+n

hole and Earth, respectively. Unlike the case of the supermassive black hole,
only the signs of two terms for equatorial orbits of Earth are flipped
depending on that of /yhoton/photon Which accordingly does not contribute to

the residual phase y***'%%( = ) as shown in Fig. 5f.

For polar orbits, it is found that WRAs depend on the angular momentum of

photon trajectory Iphoton near Earth as well. In this case, the sign of n’
depends on that of photon angular momentum /photon and thus leads to
different order of the representative of momentum-dependent terms,

)
n

. 3(/16i+/13i) , and naturally total WRAs . In Fig. 6, WRAs, the
+n

2 . . .
corresponding 1 " 3 (}toi +/”t3i), and n’ for the polar orbits near Earth are
+n

shown for various /photon' and lphoton” represented with blue and green lines,

respectively. It is noted that setting the local third axis to be the ¢-axis in the
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case of polar orbits leads to quite a small (~10~) but non-zero n’ as shown

in the inset of Fig.6b. This non-trivial n° values come from a special

relativistic term, the product of time-component of tetrads eoj and photon

residual

frequency k’. Thus, the residual phases are naturally coupled with

the azimuthal component of photon momentum k¢ in the standard frame.

Table 2. Comparison of Wigner rotation angle (WRA) w, geodetic
contribution &°%c and residual phase ™% (in deg), in the local
frames of observers are on equatorial orbits of Earth at various altitudes
with positive or negative angular momentum of photon trajectory whose

tk?/k"=1 at the ground station: (top) Iphoton” and (bottom) Zphoton™.

Positive angular momentum of photon trajectory photon

Wigner rotation angle geodetic Residual
Alfitude (geodetic contribution to the | contribution of the
1t + residual contribution) WRA WRA
geodetic residual
lr//total total total
300km 2.06x107° 1.67x10° 2.06x107°
2000km 426x107° 7.47%107° 426x107°
20000km ~3.36x10 1.53x10°® ~3.36x107*
36000km ~4.85x10™ 1.59x10°* —4.85%x107*
Negative angular momentum of photon trajectory Lhoton
300km 2.06x107° 1.67x107° 2.06%107°
2000km 426%x107° 7.47%107° 426x107°
20000km ~-3.36x107* 1.53x10° ~3.36x107"
36000km —4.85x107 1.59x10°* —4.85%107*

34




Table 3. Comparison of Wigner rotation angle (WRA) v, ., geodetic

contribution

geodetic
total

, and residual phase

residual
total

(in deg), in the local frames

of observers are on polar orbits of Earth at various altitudes with positive or

negative angular momentum of photon trajectory whose rk?#k’=1 at the

ground station: (top) lphoton and (bottom) Zphoton”.

Positive angular momentum of photon trajectory Lhoton"

Wigner rotathn angle ge'odejuc Residual
Altitude (geodetic contribution to contribution of
+ residual contribution) the WRA sidual
geodetic the WRA l//total
Y otal Y total
300km 2.42x107° 6.45x107™" 2.42x107°
2000km 9.63x107° 3.02x107" 9.63x107°
20000km ~7.04x1077 7.17x107" ~7.04x107’
36000km ~1.00x10™* 7.59%x107" -1.00x10™*
Negative angular momentum of photon trajectory Lnoton
300km ~2.93x10™ —-6.45x107" -2.93%x10™*
2000km ~1.24x107 -3.02x107" -1.24x107
20000km —2.76x107 ~7.17x107" ~2.76x107°
36000km 2.99%107° ~7.59x107" -2.99x10°°
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Figure 5 | WRAs for equatorial orbits. a-c WRA /(a), the geodetic contribution

yeeodetic (h) and residual phase w ™% (¢) measured by observer on equatorial
orbits of a supermassive blackhole M87, whose differences induced by spinning
angular momentum J of the gravitating object are shown in the inset of each figure.
d-e a representative term of the infinitesimal boost and rotation near the blackhole

(d) and Earth (e). The corresponding momentum dependence term (né / (1+n3))

are in insets WRA of equatorial orbits of Earth(f).
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4.2. Astronomical Interferometer

To study the interplay between WRAs and quantum interference by taking
advantage of the dependence of WRA on photon angular momentum /photon
in local frames on polar orbits, we consider an astronomical Mach-Zehnder

interferometry consisting of satellites on polar orbits as depicted in Fig. 7;

two-indistinguishable circular-polarized photon state %(po) -
2 ap,by

0.2),,)

are prepared via HOM effects with the first 50:50 beam splitter in Alice’s
satellite on the LEO orbits (altitude, 300km). Then, photons from port ar and
b1 with a 1/2 phase shifter (PS) as depicted in Fig.4b are sent to David along
v1 and y2 with two different photon angular momentums photon” and Zphoton”,
respectively. The final output state passing through the second beam splitter

in David’s frame (Fig. 7c) becomes
[ 1+ie”™ (
—l
22

with the relative phase differences Al//:(J. W, dé— _[ y?infdf) and the
N 72

. GiA
—1+ie”™

2’ O>“II Wby * O’ 2>6411J711 )+

Ly, J (17)

coincidence rate (l-sin(Ay))/2. Fig.7d shows the differences of the
coincidence rates ( ® Ay/2) induced by path-dependence of WRAs for
different altitudes of David. With the negligible geodetic-precession
contribution y 8°%tc the residual phase y ™% Jeads to measurable

differences in coincidence rates, which corresponds to 10® counts/ms photon
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count rates when a photon pulse of ImW power arrives at David’s frame.
Moreover, it is worth mentioning this interplay between the coincidence
rates and relative WRAs in the quantum interferometer are distinguished
from that of classical interferometers as discussed by Simanraj Sadana et
al®’. Since HOM effect doesn’t occur at the first beam splitter for classical
light, interference of photon states from each arm doesn’t occur at the

second beam splitter and thus changes of coincidence rates either.
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Figure 7 | a Astronomical Mach-Zehnder Interferometer. b Hong-Ou-Mandel
effects occur in Alice’s frame. ¢ Photons sent out from Alice to Bob and
Charlie are reflected to David and then passed through the BS (Beam-Splitter).
d the variation of coincidence rates induced by WRAs and the

corresponding photon count rates for ImW-power photon pulse with c=1.
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Chapter 5. Conclusion

Here, the Wigner rotation of a photon state is investigated in Schwarzschild
and Kerr spacetimes to study a rotation of its polarization, considering only
the monopole of Earth. While the quadrupole of Earth could induce non-
negligible effect on WRA>® and ionosphere and vanAllen belts could rotate
the polarization vector of a photon, we focus on showing that there is an
additional and measurable WRA in addition to the geodetic precession. We
calculate the wave vector of the photon to obtain infinitesimal local Lorentz
transformations for the four cases of a stationary observer, a free-falling
observer with zero angular momentum, and free-falling observers with
angular momentum in a circular orbit. For the first two cases, the calculated
Wigner rotation angles (WRA) are zero. We calculate the non-zero WRA for
the last two cases in two different ways: (i) by using physically meaningful
approximations and (ii) by an interpolation method (see Appendix) for
verification of our results since the differential equation for the photon's
trajectory is challenging to solve analytically, and the tetrads for circular
orbits have a complex a form that inhibits easy physical interpretations. It is
found that two different approaches give the same results up to 7 significant
figures. The circular orbit results in a WRA whose classical geodetic

contribution is effectively zero for all practical measurements, yet whose

contribution is 2.42x107° degrees at NEO, and —6.25x107* degrees at

infinity. Their effect (sine squared value) on the quantum bit error rate
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(QBER) is effectively zero.

It is also interesting to compare these results with the works by Connors et
al.>®, who estimated the polarization rotation angle of 82’at infinity from
the X-rays near a black hole in Cygnus X-1 by using the general relativistic
calculations. Our approach can also be applied to the astronomical
measurement of the rotation of the photon polarization from the black holes
such as recently observed M87. In addition, if one is able to measure the
polarization rotation of a photon passing both far from (predominantly
classical geodetic contribution to the WRA) and close by (classical geodetic
+ residual phase) a massive gravitating object, and then take the difference
between the two rotation angles, one would have a measure of the residual

quantum-phase contribution to the WRA.

Also, we study the effects of WRAs on the coincidence rates of an
astronomical Mach-Zehnder interferometer. After passing through the first
beam splitter, two indistinguishable photon states evolve with different
WRAs along one of two arms of the interferometer, which leads to
interference in the second beam splitter and thus variations of coincidence
rates. It is found that, for the polar orbits where the quantization axes are not

orthogonal to the wave vectors of photons, the residual phases y residual

depends on the sign of azimuthal- component wave vector k% as opposed to
the case of equatorial orbits. Thus, the relative phase differences of them Ay

residual yary the coincindence rates from the second beam splitter. It is contro
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versial if the momentum-dependent residual phase y ™% is classical or qu

antum effect. It is stressed that measurable order of the residual phase in W
RA ™4l can be mingled with the pure quantum optical feature, HOM eff
ect and the coincidence rates in an astronomical Mach-Zehnder interferomet
ry owing to the time reversal symmetry breakdown and special relativistic ¢
oupling between azimuthal component of photon velocity k¢ and WRA.
While there has been much renewed interest in the effects of the
gravitational field on quantum systems, especially in relation to the effect of
accelerated motion and horizons on quantum entanglement®®®? inspired by
the seminal work of Hawking® and Unruh®, less work has been performed
on an experimental assessment of the regime in which quantum systems
evolve on classical curved spacetime. The proposed model in this
dissertation could provide a testbed for probing the gravitational effects on

quantum systems.
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Appendix

Al. Massive and Massless particles’ trajectory in Schwarzschild metric

In general relativity, it is well known that the Lagrangian, L, can be chosen
in the form

l(ﬁjz (A1)

2\ a¢
with the line element for the Schwarzschild metric, which is defined as
follows

2 -1
ds’ =—(1—%] dr’ +(1—%) & +1°d0> +17 sin> 0dg.  (A2)

Here, ¢ represents proper time and an affine parameter for massive and
massless particles, respectively. If the Lagrangian has no dependence on
specific coordinates, x*, the equations of motion imply the conservation of

corresponding quantities. In other words, from the equations of motion,

Ao )d o
dé|\ oax"1de) )" dax”
the following identities hold:
oL B ﬁ_ Y dx” G dx” 0 -ﬁ—const
odxr7dE) S qg S0 g TS o ge T o de
(A4)

Since time ¢ and azimuthal angle ¢ are cyclic coordinates in Schwarzschild

spacetime, two quantities € and / are conserved, defined by
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ez——-—=(1—r—s)£,lz—i-ﬁ=rzsin29%. (A5)
ot dé& r)dé op dé& dé

For an observer, massive particle, e, and /, are called energy per unit
rest mass at very large 7 and angular momentum per unit rest mass at very
low velocities, respectively!. The normalization condition of 4-velocity

vectors can be rewritten as

_ obs2 1 ﬂ 2 Zobs _
(1_4j+(1_%j(d§j et (A0

r

Correspondingly, the radial component of (outgoing) 4-velocity vectors

dr 2 lph _i
d_g_\/eph _(1_{_7-_2}(1 rj. (A7)

For a photon, a massless particle, e, and /,, represent energy and angular

have the form:

momentum at infinity, respectively*’. With these quantities, photon’s null

world line can be described as

2
e

L/ ﬂ:lﬂ—o A8
R

r r

Likewise, the radial component of the wave vector has the form:

dr ) r, b, I
%: Jep,f _r%h(l_fj =e, 1—:—§L1—75j (A9)

Thus, the explicit forms of a wave vector and its dual vector become
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u Epi bphz T ephbph
k (X): —r,eph - -+ , r2 ,O , (AIO)

1= r r

and

e b 2 7
k() =| =€ —" 1—P—§(1——SJ,ephbph,o (A1)
-5 r r
r
By Equivalence principle, wave (co)vectors in the local inertial frame,

defined with radially free-falling tetrads, should have the same form with

the wave (co)vectors in flat spacetime, as follows:

k(0 = (ok k), where o= (k) +(k) +(k) . a12)
In other words, the inner product of wave covector k, and the timelike
tetrad ¢ of Eq. S57 should be the same as the angular frequency of a
photon observed in flat spacetime, i.e.,

b 2
k(-2 f1y |5 1—'7—2(1—3)
0 = r r r

r (A13)
R L L
=-e,| l+=+, = [1-—1-=| |=-0.
r r r r

Therefore, we can conclude that the photon’s energy is the same as the

frequency of the photon, measured at the r=o0 . To get the explicit
expression of photon’s trajectory, the following differential equation needs

solving:
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x :ﬂ: \/602 _ lphot0n2 n lph""‘”z s . (A14)

Since Eq. Al4 is challenging to be solved analytically, we ignore the last

l 2
photon I"s

rm 5 by taking advantage of the fact that the order of L is 10
r(&)” (&) r

near the surface of Earth.

A2. Massive and Massless particles’ trajectory in Kerr metric

Geodesics of a particle in Kerr spacetime is described by

ﬂ 1 2 )

dE E(E[(erraz) — Aa’ sin® 49}—2MraCD)

dr 1\/ 5 2

T +— (E r+a’ —aCI)) ~A(K +6,7°

Zg | = ( ) (ko) . (A15)
1 . .

az J_rg\/K—ﬁlazcosz19—(aEsmt9—CI)/sm¢9)2

a4 L(szE +(Z-2Mr)® /sin’ 0)

dé AX

Here, K = Q+(@-aE)’. The paremeters (£, 81) are (affine parameter, 0) or

(proper time , 1) for null or time-like geodesics, respectively. E, @, and Q
are the energy, axial angular momentum, and Carter constant of a particle.
@ of observers and photons are rewritten as obs and Jphoton in this paper.

We obtained tetrads for this work by transforming Carter’s sysmmetric

tetrads used in Marck’s tetrads {x; = (4", 472", 4% )i=0,1.2, 3} back to BL-

coordinate bases. Marck’s tetrads and the transformation are as follows:
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A (10 o0 o0
A |0 cos¥ 0 -—sin¥ (A16)
A17lo 0 1 0
ZA 0 sin¥ 0 cosy
NAI X (e()' —asin® Geﬁ¢) N/ Aeyf x/fef)“ (aeb' —(rz +az)eﬁ¢)sin Geh’ INZ
aN X/ KAre aN1/KZArC  B1/ KZacos0D —pNE/ KacosOe,’
\/Z/KAacosﬁe{)" 1/ KXAacos8C —J1/KXrD x/Z/Kre{)H
a1/ 2AC J1/ K ZAacos 6C pzef BN/ D
with C =E(r2 +a2)—a@ and D=aFEsinf—@® /sinf
a’+r’ asin®
0 0 —
JAT Jz
t t
e [A A
o 0 = 0 0 1
. z i (A17)
0 6
e a 0 0 _cscd || 4
e;¢ VAZ \/E ﬂu;qj
1
0 0o - /= 0
by

The parameter ¥is achieved via integrating the following equation in terms
of (r, 0, ¢) from (the radius of Earth, /2, - 7 ) to (the altitudes of orbits, T,
7 ) with the intervals (100km, =t /10, 7t /20).

(CI) —aE sin’ 0)

K —a*cos’ @

(A18)

+a

dy K" E(r2+a2)—ad)
dé 3 P+ K

These tetrads (e/'a 4 €"0,,e,"0 #,e&*‘é #) are asymptotically parallel to the

unit vectors of global coordinates (8t,8r,8 0

. ¢) as r goes to infinity. For

equatorial orbits, » and & should be constant, and thus Eq. 15 can be

rewritten as

dy K" E(r2 +a2)—a(l)

_ ((I) —aEsin® 6’) dé
d¢ r+K

S (A19)
K—-a“cos" 0 |d¢

+a
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For polar orbits, since € is not constant and Eq. 15 is independent of ¢,
Y should be independent of @. Otherwise, d #¥/d§ becomes dependent on
@ which is contradiction to the Eq. 15. Thus, we use the following equation

for polar orbits:

r’+K K —a’cos’ 0

dy K" E(r2+a2)—aCD (CD—aEsinzﬁ) dé (A20)
do e do

A2. Wigner Rotation Angle
A Hermitian matrix K can be mapped to a wave vector k of the photon such
that*?

K =0k, (A21)
where o9 is the 2x2 Identity matrix, and o; (i=1, 2, 3) are the Pauli matrices.

Thus, K has the form?>?

i, .2 3
n +in 1-n

3 i .3
K:kﬁ{Hn i ] (A22)

i

where 7' :F (i=1,2,3). Also, a Lorentz transformation is described in

the space of two-dimensional Hermitian matrices by a matrix 4 in SL(2, C)
such that
. K'=A"k"c, = AKA" (A23)
The Wigner’s little group element®*, W (A, k)= L,,AL,, is then given by
-1
S(AK)=A" A4, (A24)
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where A4, corresponds to L(k) that transforms k=(1,0,0,1) into k. It is

straightforward to show the S(A, k) has the form *:

iv/2
sz(e z ] v [0,47], (A25)

O e—zy//z

and the A has the form

A =;[" (1+77) _"3} (A26)

V2 A+ K, 14m

.,
A Lorentz transformed wave vector, k'=Ak, is mapped to a Hermitian

matrix K’ given by

R 1 Ié ’ *
K':k"’{ e J:AKAT:kO[b ¢ bj, (A27)

where 4 = [a 'gj € SL(2,C) . Then we can get the following relations
4

a=(af +|y[HA+n*)+ (B +[6])1-n?)

(A28)
+ (aﬂ* + 75*)n7+ (a*,B + ;/*5) n,

b=lal 1+n*)+|A[ A-n)+af n_+a'fn,  (A29)

c=a'y(l+n’)+ B 51-n’)+ B yn_+a dn, (A30)

krf):%kﬁ’ n'gz%—l, ni:k (A31)
a a

Here, z is an arbitrary complex number. Substituting from Eq. A25 to Eq.

A31 into Eq. A24, we can get the relation?
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SV AR2) _ [a(l ‘Hlé) + 40, 1b+[y(1+ né) + 5n+]0*

ayJb(1+1n?)

Moreover, by redefining the z, the matrix S can be given in the form?

(A32)

—iy/2
0 e’z

iy /2 —iy /2
S=[e ¢ Z], wel0,47],  (A33)

and the product of any two elements in this group

ei(w1+u/z)/2 e—i(wl+u/z)/2 (Zl _l_eiwl Zz)
S8, = iy +,)/2
0 e 17¥2

J, we[0,47]  (A34)

In other words, we have the following composition law such that

(2,9 )(2,,,) = (2 +exp(iy) 2,, ¥, +15) (A35)
Thus, for massless particles, Wigner’s little group is the E(2) group. There
are two classes of the irreducible unitary representations of the E(2). One is
the infinitesimal dimension representations, and the other is the one-
dimension representation. However, the former has intrinsic continuous
degrees of freedom. Therefore, the Lorentz transformation for the photon
has the one-dimension representations, since the photon is not observed to

have any continuous degrees of freedom. The representations have the form*

U(A)

k,o)=e"""V|Ak,0). (A36)
Here, w (A, k) is the Wigner angle. When equation (S26) is expanded to the

first order of & & in the form
eV M2 +il/7(A,k)%, (A37)

the total Wigner rotations can be built up as a time-ordered integration of
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infinitesimal Wigner rotations over the geodesic trajectory x(§) of the

photon via

D Texp[i [ (A@).7i(£) %} : (A38)
where 7(&) =n(x()), A", (&) = A, (x(£)) and T is the time order operator.

For the infinitesimal homogeneous Lorentz transformation expanded as

Aﬁl; = 5‘35 +/1&B with the Kronecker delta 565 and infinitesimal boosts and

rotations A° ;- we expand A in terms of d& as

A:(“ ﬂj:uzd(g:l{o:‘ @Jdﬁ (A39)
y o y o0

From the condition that the A has unit determinant, it is obtained that

S5 =—¢a . Thus, the A can be rewritten as:

A:(“ ﬂj:nzdg:u(f‘ ’B]df. (A40)
y o6 4

—a
Substituting Eq. S40 into Eq. S23, multiplying o, and taking a trace on

both sides, we can get the following equations

b

i _ 1 ca y y
A .:55 tr(O'};GEA-l-a@G};AT), (A41)

where tr(A) is the trace of A, and &, /8, and 7 are as follows:
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Lo i
E(loé‘i‘lﬂ,lé)

G =
b= %[(/16i + 25 +i(=20 + 4%)] (A42)
7 :%[(lf’i ~ 2+ + 2]

A4. Real parameters

The «, f,y, o, and their moduli have the following forms:

a=1+ddé o =1+2ade
~ 2
= :0
b '~Bd§ and |'B|2 (A43)
y=yds 7] =0
5:1-(10’5 |5|2:1—2&d(§

For photon moving in the 1-2 plane, substituting Eq. S43 and n, = n' into

Eqgs. A28, A29 and A30, we obtain

a=2+2Q2an’ +(f+7)n)dé, (A44)
b=(l+n3)+2(20?(1+n3)+[§ni)a’f, (S45)

and
c:ni+(;7(1+n§)+,3(1—n3))d§. (A46)

The numerator of Eq. A32 is given in terms of the parameters defined

above:
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[a(1+n*)+ Bn, ]b+[y(1+n’)+dn,]c
=2(1+n%) (A47)
26 +6an’ +da(n’) + 46"
N a Aaﬂn Of(n) A Aﬂn dé,
2pn'n’ + 270" +27n'n’

and the denominator is

1

ayb(1 +n§) (A4R)

1 2an'+fn' +7n' +26+2fn' (1+n°)"

= . - d&
2(1+n’) 2(1+n’)
By direct calculations, one can show that Eq. A32 becomes
A (A49)

A6. Complex parameters

2

2 2
a ., 5

fo) |2 have the form

B

In the case that every parameter is not real, ¥

o =1+2Re(@)d¢&

(A50)
6] =1-2Re(@)de,

where Re(s) is the real part of the complex number .. Eqs. S44, S45, and

S46 are then rewritten

a=(af +[yHA+n")+ (8] +|o] )1-n*)
+(05,6’*Jrj/é'*)ngt(oc*,8+;/*5)n+ (A51)
=2+[4n’ Re(@) +2Re(fn, +7n_)|dé&,

54



b=la| (+n*)+|a[ A-n*)+af n_+a fn,
= (1+2Re(@)d&)(1+n*)+2Re(fn,)d & (A52)
=(1+n’)+[2Re(@)(1+n’)+2Re(Bn,)]d &,

and

c= a*)/(l+n§)+ﬂ*5(l—n§)+ﬂ*7n7+ a’on,
=7(1+n)dé+F (1-n')dE+(1+6 dE)(1-adé)n, (AS3)
=n, +[fd+n*)+ A (-n")=2in, Im(@)]d &

, where Im(+) is the imaginary part of complex numbers. Thus, with Egs.
S51, S52, and S53, we obtain

[a(1+n*)+ Bn, Jb+[y(1+n’)+5n,]c

=((1+n’)+[@(1+n’)+ Bn, 1dE)

(1+n*)+[2Re(@)(1+n*)+ 2Re(fn,)]d &)

+(n +[F(1+0°)=@n JdE)n +[7 (1+n’)

+ B(1-n)+2in_Im(&)]d &)

=(1+n*) +n, n_
a(1+n’)* + Bn, (1+n’)+2Re(@)(1+n’)

+| +2Re(Bn,)(1+n’)—a@n,n_+2Re(7'n,)1+1n’) |d&
+Bn,(1-n*)+2in, n_Im(a)

2an’(1+n°)+28n,+2Re(@)(1+n°)?
=2(1+n’)+| +2Re(Bn,)(1+n’)+Re(7'n,)(1+n’) |d&

+2in, n_Im(a)

(A54)

2an’(1+n')+28n, +2Re(@)(1+n°)?
+2Re(fn, )(1+n’)+Re(7'n,)1+n’) |d&

+2in, n_Im(a)

(40| 14—
21

3

and
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1

a\/b(1+n3

1
| 24140} Re(d)+2Re(,Bn++;7n)]d§]

1
\/(1+n§)2 +[2Re(@)(1+1n°) +2Re(ﬁ~’n+)(1+n§)]d§J

:%(1_[4,73 Re(o?)+212{e(,3n++;7n_)]d§J

1 1

(1+1°) [14[2Re(@)(1+n°)+2Re(fn,)]d&
(1+n?)

_ 1 1_[4n3Re(d)(l+n§)+2Re(ﬁn++77n_)(l+n§)]dg
2(1+n) 2(1+n) (A53)

[1_[2Re(07)(1+n3)+A2Re(ﬁn+)]dé:}
2(1+1n’)
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Substituting these results into Eq. A32, we have the form

SV AR2) _ [a(l+n3)+ﬂn+]b+[7(1+n3)+5n+]c*

ayb(1+1n°)

_[,_[4n’Re(@ (1 +n") +2Re(fn, +7n )(1+n’)] i
2(1+n’)

[1_[2Re(0?)(1+n3)+A2Re(/§n+)]dé:]
2(1+n’)

260’ (1+n*)+28n, + 2Re(@)(1+1n’)’ i |
. 2(1+1n%)
. 2Re(Bn,)(1+n*)+Re(7'n,)(1+1n’)+2in, n_Im(a) iz
] 2(1+n’) |
[ _4nRe(@)(1+n’) |
—2Re(Bn, +7n_)(1+n’)—2Re(@)(1+n’)
e —2Re(Bn,)+2an’(1+n’)+2/4n, dé
2(1+n’) . - ;
+2Re(@)(1+n’)* +2Re(Bn, )(1+n’)
+Re(7'n,)(1+1n’)+2in, n_Im(Q)
- . . . (A56)
—2Re(fn,+yn )1+n’)-2Re(fn,)
W +2/n,+2Re(Bn,)(1+1n) dé&.
2(1+n’) . . .
+Re(7'n,)(1+n*)+2i(1+n’) Im(&)

Since the real component of the parameters in Eq. A32 leads to unity, as

seen in the previous section, Eq. A56 can be written as

! _[a(1+n*)+ Bn, ]b+[y(1+n’)+dn,]c’

ayb(1+n?) (A57)

—1+i[Re(f) o 1

+Im( ) -2+ Im(@)]dE.

l1+n’ l+n’
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By definition, the infinitesimal Wigner angle is

_ I LV
7 = 2Im(@) + — Tm(f) + - Re(B). (A58)
1+n’ 1+n°
A7. Tetrads for a stationary observer
The tetrads, e,” (x), are defined as™®
g (x)e;" (x)- egv(x) =1 (A59)

For a stationary observer, his local frame is defined in Schwarzschild

spacetime such that,

(e)" (x)=(e)"(x)=(1/(1~1,/1)"*,0,0,0)
(e (x) =(e,)"(x)=(0,(1~-7, /1)"?,0,0)
(e;)"(x) =(e,)"(x) =(0,0,1/r,0)

(e))"(x) =(e,)"(x)=(0,0,0,1/7).

(A60)

The corresponding ILLT(Infinitesimal Local Lorentz Transformation)

matrix is given by

250 =1 (Ve (0)e, (0

t
0 B 0
2r
~ _ktl’; 0 0 k¢(1_7'_s)1/2 . (A61)
= 2r r
0 —ka-7 o 0
r
0 0 0 0

All the parameters, defined in Eq. A43, are real with the ILLT matrix of

static observers. Thus, observers at rest cannot see Wigner rotation.
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A8. Tetrads for a free-falling observer with zero angular momentum

b

For observers falling radially inward, away from infinity, the observers
energy and angular momentum per rest mass, defined in Eq. A5, are 1 and 0,
respectively. Thus, the timelike component of the 4-velocity vector is

(I-r/r )_1, and the ¢ - and @ -direction components of the 4-velocity

vector are zero. Thus, 4-velocity vectors of the observers have the form:

Correspondingly, the observer’s local frame can be described with the

tetrads:

(¢)"(x)=(e)"(x) =1/ (A=r, /1), =1, / r,0,0)

Jr,/
(€)' ()=(e)" ()= (——.1.0.0) )

(e,)" (%) = (e,)"(x) = (0,0,1/7,0)
(e,)"(x)=(e,)" (x)=(0,0,0,1/r).

With this tetrads, the ILLT matrix is given by

0 _M_\/LT k 0 -k s
2r "o Q) r
r
|k \ﬁ K 0 W0 | (A64)
a — 2
(/1 b) 2r r 2r(1 y) :
—k¢\/r:9 K’ 0 0
r
0 0 0 0
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As the static case, since all the parameters are real, Wigner rotation is not
observed in radially free-falling frames.
A9. Tetrads for a free-falling observer with non-zero angular

momentum on circular orbits

By using a 4-velocity vector of an observer on stable circular orbit!, we can

get a corresponding tetrad such that

()" (x)=(e)" (%) = (—= \/— \/7
1-2s h-

4}l——sm@)(r) A65
(e ()= (e, )" (x)( \/7 \/L“(a\(/L /1—_cos®(r) F 0) (A65)

1fl——cos@(r)

(6" (5) = e, (5)( __0s0) /1——sm®(r) AN )
r r

]_; V 2r

(&) (x)=(e,)"(x)=(0,0,0,csc O/ r),

and by applying non-spinning condition, we can get

O(r) =

3

~Z6-9,). (A66)
2r

Similar to the spiraling case, the tetrad of circular orbits is approximated up

to the first order of \/7 to figure out the physical meaning.
r
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(e,)"(x) = (6" (x) = (1,0,1\/? 0)
r\2r

(ei)ﬂ(x)Z(e,)”(x)(—‘/;‘ sin(@—@o),cos(e—490),—lsin(6?—00),0)

r r

()" (x) = (e,)" (x)( ;Lcos(é’—é’o),sin(ﬁ—eo),
r

()" (x) =(e,)" (x) = (0,0,0,

B
cscld

).

lcos(é’—@o),O)

(A67)

By projecting tetrads into 3-dimensional space, one can see that the tetrad is

rotated by & when the observer moves by -76 . This is a non-relativistic

effect since the rotation induced by parallel transportation condition is just

compensation of the rotation from the definition of spherical coordinates. In

Fig. Al, it is shown that classical geodetic and residual components of

IWRA for a free-falling observer with non-zero angular momentum in the

circular orbit.

x10"°

x10"

Infinitesimal Geodetic Contribution

Infinitesimal Geodetic Contribution

/ = Infinitesimal Residual phase

15 20 25 30

O
i x10
Affine Parameter

Infinitesimal Residual phase

Fig. Al. Infinitesimal classical rotation and quantum rotation versus affine
parameter for a free-falling observer with non-zero angular momentum in

the circular orbit.
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A10. Hong-Ou-Mandel effect with geometric phase

With creation operators of two input ports ai’ and bi" and two output ¢i’ and
di' of the first 50:50 beam splitter, the two indistinguishable photon states at

each port can be written as

=3 )

a'b’

,0)—

,0). (A68)

1 T2
5 =—FC
=7
Considering relative Wigner rotation angle at port ¢ and 772 phase shift at

output port di, the photon states passing through output ports cip and di of

the second beam splitter

oily T2

1
—e

JE
e’ =2¢,'d, +d,? )0,
2\/* 2\/5( n “n I ) > (A69)

all/[ +1 12 _1 + ieoil/[
(e

eV +1 1+ie”
[2J-(OM% Lm)—jj—ﬂ%m}

,0)—id,"]0,0)

™ (¢ +2¢,'d," +d,*)]0,0) -
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Table Al. Comparision of the geodetic precession calculated with tetrads
on circular orbits and experimental results reported by

Geodetic precession Experimental results

calculated w/ tetrads on circular orbits reported by C.W.F.Everitt et al.”

6.6arcsec/ yr 6.6018 £ 3 arcsec/yr

Table A2. Comparison of total integrated Wigner rotation angle (WRA)
¥ . » Classical contribution to the WRA y

geodetic
total

to the WRA /™ (in deg), for radially emitted photons and a satellite at

total

, and quantum contribution

various altitudes for circular orbits.

Observer in a Circular Orbit

Wignerrodionange | | e
Altitude (WRA) (classical part WRA
+ residual part) ¥/, geodetic WRA !
total

300km (NEO) -3.44%10° -4.67x10™ -3.44%107
2000km (LEO) -1.93x10™ -2.53x10™" -1.93x10™
20000km (MEO) 777%10% -6.17x10™" -7.77x10™
36000km (GEO) 9.25%10™ -6.59x10™" 9.25%10™
1.6x10" km (r = ) -1.51x10° -7.00x10™" -1.51x10°

NEO, LEO, MEO and GEO = Near-, Low—-, Medium- and Geosynchronous Earth
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