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ABSTRACT 

 

Neuromorphic computing systems using nonvolatile memory cells advance 

computational capability by performing large-scale vector-matrix multiplication 

operations in an analog manner. In addition, neuromorphic computing systems can 

reduce the inference time and energy consumption of neural network operations, 

thereby attracting much attention in various fields. Despite the advantages of 

neuromorphic systems, the conventional training methods show lower accuracy 

because of the nonideal characteristics of analog synaptic devices. In this work, we 

propose a new hybrid training method that trains the neuromorphic hardware very 

efficiently and accurately. The proposed training method does not use conductance 

tuning processes to accurately update the weight changes to the conductance of 

synaptic devices, significantly reducing the costs of online training in the hardware. 

We then experimentally show the high accuracy of the proposed method on the 

fabricated neuromorphic hardware: AND-type charge-trapping flash array. The 

AND-type flash array boosts a large-scale vector-matrix multiplication operation 
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using Kirchhoff’s current law. Furthermore, the fabricated array has a nonvolatile 

memory function with a charge trapping layer (SiO2/Si3N4/SiO2), maintaining the 

multi-bit weight in a single synaptic device semi-permanently. We show that the 

accuracy of neuromorphic systems increases to that of the software-based neural 

network after 1-epoch hybrid training in the fabricated synaptic array. Moreover, 

the high performance of the proposed method was experimentally verified under 

various device nonideality conditions, indicating the proposed method can be 

generally applied to other types of synaptic devices. Our results show that 

neuromorphic systems using analog nonvolatile memory cells become a more 

promising platform for future artificial intelligence hardware.  

 

Keywords: Hardware-based neural network, flash memory array, AND type 

crossbar array, online training, offline training, hybrid training  

 

Student number: 2017-22213 
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Chapter 1 

Introduction 

 

1.1 Neuromorphic computing 

Recently, artificial neural networks (ANNs) have advanced human lives in 

various applications, including image processing [1-5], natural language processing 

[6-10], and autonomous driving [11-12]. Convolutional neural networks (CNNs), 

of which structure is greatly influenced by biological vision systems [13, 14], have 

achieved human-level or superior accuracy in vision applications. However, state-

of-the-art training algorithm techniques for ANNs have been developed to enlarge 

the network size, significantly increasing the computational complexity in network 

operations [15]. From this perspective, ‘von Neumann bottleneck’ between the off-

chip memory and processing units decreases the computational efficiency of 

conventional von Neumann computing systems. In order to address the severe 

issues of conventional computing systems, neuromorphic systems have been 

proposed to exhibit low energy consumption, parallel computing, and low system 
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latency [16-22].  

 

1.2 Synaptic Devices 

Neuromorphic computing systems mainly consist of synaptic devices that 

represent weights in neural networks. In particular, nonvolatile synaptic devices can 

store multi-bit weights with long-term memory functionality, increasing the density 

of devices compared to digital memory. Moreover, according to Kirchhoff’s current 

law, vector-matrix multiplication (VMM) operations are performed with high 

parallelism by the sum of the synaptic currents of the devices, reducing the data 

movement between the memory and processing units. In this regard, there are many 

studies on synaptic devices such as resistive random-access memory (RRAM) [23-

30], phase-change RAM (PCRAM) [31-34], 3-terminal ferroelectric field-effect-

transistors (FeFETs) [35-36], charge-trap flash [37-40]. Among them, the charge-

trap flash memory device has drawn much attention because of the compatibility of 

the CMOS fabrication process, good reliability, and massive production capability. 

The feasibility of 3-dimensional stacking is also an important advantage of the 
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charge-trap flash memory cells.  

The array architectures of the flash memory cells can be configured depending 

on the purpose of the applications. The array architectures of flash memory cells 

are mainly categorized as NAND- [41, 42], NOR- [40, 43], and AND-type array 

architectures [44, 45]. In NAND-type array architecture, it is difficult to perform 

large-scale VMM operations in parallel because of the cell string structure, thus the 

array architecture is appropriate in high-density memory applications. On the other 

hand, NOR- and AND-type array architectures have the advantage of parallel 

computing with the form of the crossbar of word lines and bit lines. The difference 

between the NOR- and AND-type array architectures is the configuration of source 

lines and bit lines (Fig. 1.1), resulting in the difference in the selective write 

operations. In particular, the selective write operations can be performed in AND-

type array architecture using Fowler Nordheim (FN) tunneling operations, in which 

a small tunneling current flows compared to the on-current of the flash cell. 

Therefore, for online training that requires a large number of write operations, 

AND-type array architecture can save energy consumption during the training 
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operations compared to the NOR-type array architecture.  

Fig. 1.1. Schematic diagrams of AND- and NOR-type flash array architectures. 

 

1.3 Training Algorithms for Neuromorphic Systems 

From the perspective of the training algorithm, the majority of neuromorphic 

hardware research uses offline (ex-situ) training with conductance tuning processes, 

in which the conductance of synaptic devices is iteratively adjusted to the target 

value [46-47]. Because the conductance of synaptic devices can represent the 

offline-trained weights by the tuning process, time-static nonidealities of analog 

synaptic devices (ex: nonlinearity, device-to-device variation, limited on/off ratio) 

AND-type NOR-type
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can be greatly addressed. However, the offline training methods need to verify that 

the conductance of the devices reaches the target value, which requires substantial 

energy and time consumption. Additionally, time-varying device nonidealities (ex: 

read fluctuation, conductance drift, retention) cannot be addressed in the offline 

training methods. In contrast, online (in-situ) training methods can address time-

varying nonidealities because the neuromorphic systems can be trained in real time 

using in-situ training data. However, the online training methods show poor 

accuracy because the time-static nonidealities cannot be effectively addressed 

without the conductance tuning process [17, 48-51]. More importantly, although 

there are many studies on online training methods for neuromorphic computing 

systems, they lack experimental demonstration in implemented hardware owing to 

high training costs to account for weight changes in the synaptic devices. Therefore, 

a novel training method is necessary to efficiently train the neuromorphic 

computing systems with high accuracy. 
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1.4 Purpose of research 

This dissertation proposes a new hybrid training method for neuromorphic 

systems that efficiently perform large-scale VMM operations with analog 

nonvolatile memory cells. First, we fabricated the AND-type array architecture of 

the flash memory cells, which exhibits the capability of parallel computing and 

energy-efficient write operations. We then characterized the synaptic characteristics 

of the AND-type flash array, including nonlinearity, device-to-device variation, 

endurance, retention, and dynamic range. Additionally, the synaptic characteristics 

of the array were optimized for high accuracy of online training.  

Next, we experimentally demonstrated the proposed hybrid training method in 

the fabricated AND-type flash array. Since the hybrid training method adopts both 

hardware (in-situ) and software (ex-situ) training, the neuromorphic system adjusts 

the conductance of synaptic devices automatically on the chip while showing the 

performance of software-based neural networks. More importantly, the proposed 

method does not use the conductance tuning process that requires substantial 

communication cost and time to update all weights in the neuromorphic systems. 
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This property of the proposed method reduces the training cost and enhances the 

training efficiency of the neuromorphic systems. Finally, we evaluated the accuracy 

of the proposed method under various nonideal conditions of synaptic devices, 

verifying that the proposed method can be applied to other neuromorphic systems 

with various types of synaptic devices. Our successful results will significantly 

advance the neuromorphic computing systems into a promising hardware platform 

for artificial intelligence.  

 

1.5 Dissertation outline 

The dissertation outline is as follows. Chapter 1 provides an overview of 

neuromorphic systems, synaptic devices, and training methods. It also covers the 

contents of the synaptic devices composing the synaptic array based on recent 

research trends. Chapter 2 describes the AND flash memory array architecture and 

the measurement results. This chapter includes the device structure, fabrication 

process steps, analysis, and optimization process of the array operations. Chapter 3 

deals with the proposed hybrid training method. This chapter also includes the 
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measurement results of the training method in the fabricated synaptic array and the 

comparison of other reported training methods. Finally, chapter 4 concludes this 

dissertation with a summary.  

 

Chapter 2 

AND-type Flash Array Architecture 

 

2.1 Array Fabrication and Operation 

In the AND-type array architecture, the source-lines (SLs) and bit-lines (BLs) 

are configured in parallel. Owing to the parallel configuration of SLs and BLs, the 

channel potential of flash memory cells can be easily modulated without on-current 

flowing. Therefore, the energy consumption in the selective program/erase 

(PGM/ERS) operations is significantly decreased. The fabrication process of the 

AND-type flash array with 3-terminal flash memory cells is shown in Fig. 2.1. The 

entire fabrication process was conducted on a 6-inch silicon-on-insulator (SOI) 

wafer with CMOS fabrication process technology. First, Si active layer was 
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patterned at a thickness of 100 nm, and the implantation process was conducted to 

form the p-body with the boron ions. The doping concentration of the p-body was 

1×1018 cm-3. Subsequently, a gate stack of a tunneling SiO2 (3 nm), a charge storage 

layer Si3N4 (6 nm), and a blocking SiO2 (9 nm) was deposited on the Si active layer. 

Then, a gate of n+ poly-Si was deposited and patterned. After that, the implantation 

process was conducted to form a source and drain with the arsenic ions, followed 

by rapid thermal processing at 1000 oC for 10 s to activate the source and drain. 

After depositing a passivation oxide with tetraethyl orthosilicate (TEOS) of 300-

nm-thickness, contact holes for the gate, source, and drain were defined and etched. 

Then, a Ti/TiN/Al/TiN (30 nm/30 nm/300 nm/30 nm) stack was deposited for the 

metal layer. 

Fig. 2.2 (a) and (b) show a schematic diagram of the fabricated AND-type flash 

array and a scanning electron microscopy (SEM) image of the array with the size 

of 25-word lines (WLs) × 4 BLs (4 SLs). The width/length of the fabricated flash 

devices in the array is 1 μm/1 μm, respectively. Fig. 2.2 (c) describes the process of 

the VMM operations in the AND-type array according to Kirchhoff’s current law. 
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Note that the flash device can modulate its conductance by adjusting the threshold 

voltage of the device with PGM or ERS pulses. When PGM (ERS) pulse is applied 

to the gate at VD = VS = 0 V, the electrons (holes) from the channel (body) are 

injected into the nitride layer and trapped. Depending on the stored charge in the 

nitride layer, the vertical electric field is modulated, leading to changes in the 

threshold voltages of the flash devices. In neuromorphic computing systems, the 

conductance of the flash device represents a weight. Assuming each flash device in 

the array has its own conductance depending on the trained weights, the voltage 

inputs are applied to the WLs of the array. Then, the current flows through each 

flash device depending on its conductance, and the currents are summed along the 

SLs and BLs according to Kirchhoff’s current law. The sum of the currents 

represents a weighted sum in neuromorphic systems. As such, the VMM operations 

are efficiently performed in the memory domain in an analog manner.  
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Fig. 2.1. Key fabrication process step of the 3-terminal flash device on a 6-inch SOI 

wafer.  
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Fig. 2.2. (a) Schematic diagram of the fabricated AND-type flash array architecture. 

(b) Scanning electron microscopy (SEM) images of the fabricated AND-type flash 

array (25×4). (c) Schematic diagram of VMM operation in the AND-type array 

architecture.  

WL1
WL2

WL3
WL4

WL5
WL6

WL7 WL8
WL9

WL10
WL11

WL12
WL13

WL14
WL15

WL16

10 μm

WL18
WL19

WL20

WL21
WL22

WL23
WL24

WL25

SL1

SL2

SL4

BL1

BL2

BL3

BL4

WL17

25x4 AND-Type Flash Array

SL3

(a)

(b)

(c)

… … … …

Input 1:Vread

Input 0: 0 V

…

Input 1: Vread

BL1 BL2 BL3 BL4

SL1 SL2 SL3 SL4

ISL1 ISL2 ISL3 ISL4

Input 0: 0 V

Input 0: 0 V

Input 1: Vread



13 

 

2.2 Device and Array Characterization 

In this section, we characterized the fabricated AND-type flash array for 

synaptic devices. We investigated the on-current of the devices in the array, as 

shown in Fig. 2.3 (a). We confirmed that there are no devices at the stuck-off 

condition, and device-to-device variation of the on-current exists in the array. 

Besides, there is no remarkable line dependency in the on-current of devices. The 

drain current (ID)-gate voltage (VG) characteristics of the devices in the array were 

investigated, as shown in Fig. 2.3. (b). The device-to-device variation in the 

threshold voltages of the flash devices is exhibited in the fabricated flash array.  

The measurement results of the long-term potentiation (LTP) and depression 

(LTD) curves of the devices are shown in Fig. 2.4 (a) and (b), respectively. When 

the PGM pulses are applied to the gate, the electrons are trapped in the Si3N4 layer 

from the channel, reducing the conductance of the device. In contrast, when the 

ERS pulses are applied to the gate, the holes are trapped in the Si3N4 layer from the 

body, increasing the conductance of the device. The PGM and ERS pulse conditions 

are VGS of 8 V, 10 μs and -8 V, 10 ms, respectively, at a VDS of 0 V. As shown in Fig. 
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2.4, the device-to-device variation is also shown in LTP and LTD curves. In addition, 

the LTP and LTD curves are nonlinear with respect to the same ERS and PGM 

pulses. This is because the stored charge in the Si3N4 layer can reduce the electric 

field at the PGM or ERS operations and reduce the tunneling current in the PGM 

and ERS pulses. Note that the nonlinearity of the LTP and LTD curves causes errors 

in the VMM operations and weight updates, degrading the overall accuracy of the 

online training. In order to mitigate the nonlinearity in the LTP and LTD curves, 

conductance tuning processes were reported, where the conductance is iteratively 

tuned by PGM and ERS pulses to reach the target value [46, 47]. However, the 

processes require substantial energy and time consumption to accurately adjust the 

conductance, thereby degrading the training efficiency and speed. From this 

perspective, it is necessary to develop a new training algorithm with high accuracy 

even if the nonlinear LTP and LTD curves are used. 

Fig. 2.4 (c) and (d) show the device-to-device variation in the LTP and LTD 

curves, respectively, particularly the max/min ratio of IDs and nonlinearity. The 

measured σ/μ is about 40%. Compared to the device-to-device variation, the 



15 

 

variation in the single curve is relatively small. Fig. 2.4 (e) shows the sequentially 

measured five times with the same PGM and ERS pulses to investigate the cycle-

to-cycle variation in a single flash device. We confirmed that almost the same LTP 

and LTD curves are exhibited in the repetition, meaning that the fabricated flash 

device shows low cycle-to-cycle variation. 

We investigated the LTP and LTD curves as parameters of PGM and ERS pulse 

amplitude, as shown in Fig. 2.5 (a) and (b). The LTP and LTD curves were 

normalized to compare the nonlinearity of the responses. Both LTP and LTD curves 

become more nonlinear as the pulse amplitude increases. The fitting results of the 

LTP and LTD curves of flash devices are shown in Fig. 2.6 using the logarithmic 

conductance response model [52, 53]. Fig. 2.7 verifies selective PGM/ERS 

operations in the fabricated AND-type flash array. Fig. 2.7 (a) shows the schematic 

diagram of the selective PGM/ERS operations in the AND-type array architecture. 

In this scheme, the conductance of cell 1 should be updated, and others should be 

inhibited. Vsel and 0 V are applied to the WL of the selected (cell 1) and inhibited 

cells (cell 2-4), respectively. 0 V is applied to the BLs and SLs of the selected cells, 



16 

 

and Vinh is applied to the BLs and SLs of the inhibited cells. In this scheme, the 

drain voltage and the source voltage are the same to cut off the on-current in the 

cells. As shown in Fig. 2.7 (b) and (c), only the conductance of cell 1 is updated by 

the PGM and ERS pulses, and the conductance of others is inhibited successfully. 

Note that in online training where the weights are updated in neuromorphic systems, 

the selective write operations without on-current flowing are essential for low-

power operations.  

  



17 

 

Fig. 2.3. (a) Drain currents (IDs) of all devices in the array at a gate voltage (VG) of 

3 V and drain voltage (VD) of 0.1 V. (b) ID-VG curves of all devices in the array and 

the averaged curve at a VD of 0.1 V. The device-to-device variation exists in the 

fabricated synaptic array. 
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Fig. 2.4. Measured conductance responses of 100 devices in the array for (a) 

LTP and (b) LTD. ERS pulses (-8 V, 10 ms) and PGM pulses (8 V, 10 μs) are applied 

to the gate of devices for the LTP and LTD curves, respectively, at a VS = VD = 0 V. 

A read bias (VGS= 2 V and VDS= 0.1 V) is applied to the device immediately after 
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every ERS (or PGM) pulse. The gray lines represent LTP and LTD curves for each 

device, and the red line represents the averaged values of 100 devices. The error bar 

indicates the standard deviation value of each point. Standard deviation over mean 

(σ/μ) values of the (c) 100 LTP and (d) 100 LTD curves. The maximum value of σ/μ 

is ~40 %. (e) Repeated conductance responses at the ERS/PGM conditions.  

 

Fig. 2.5. Conductance responses as a parameter of (a) ERS (for LTP) and (b) PGM 

(for LTD) pulse amplitude. The pulse widths for the ERS and PGM are 10 ms and 

10 μs, respectively.  
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Fig. 2.6. Fitting results of the measured (a) LTP and (b) LTD curves using the 

logarithmic conductance response model. 
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Fig. 2.7. (a) Selective conductance update scheme in the AND-type flash array 

architecture. Cell 1 is the target device to selectively update its conductance, and 

the other cells should be inhibited. Measured ID changes in the array at the given (b) 

ERS and (c) PGM conditions. The ID of Cell 1 is updated, and the IDs of other cells 

are not updated. 
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2.3 Optimization of Device Nonidealities 

 We analyze and optimize the PGM and ERS conditions in the fabricated flash 

array for better synaptic characteristics. Fig. 2.8 (a) and (b) show the variation in 

the threshold voltages (Vths) and IDs of 100 devices in the flash array, respectively. 

The variation in the Vths of flash devices increases as the ERS pulse amplitude 

increases. On the other hand, the variation in the IDs decreases as the ERS pulse 

amplitude increases. The variation in the Vths is 0.0366 V at a -8 V pulse, which is 

relatively small compared to other ERS pulse amplitude. However, the operation 

regions of the devices at a -8 V ERS pulse are mainly around the subthreshold 

region, in which the IDs are changed exponentially by the Vth variations. Thus, the 

relative variation in the IDs becomes larger than other ERS pulse amplitudes. In 

terms of linearity, the ERS pulse amplitude of -8 V is more advantageous than other 

pulse amplitudes. As shown in Fig. 2.9, the LTP curves at a -8 V ERS pulse are 

more linear than those at -9 V and -10 V ERS pulses. The amount of charge stored 

in the nitride layer logarithmically increases with the number of pulses [54, 55]. 

Thus, the exponential relationship between IDs in the subthreshold region and the 
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Vth changes can be canceled out at an ERS of -8 V, resulting in more linear LTP 

curves. Note that the device-to-device variation can be mitigated in online training, 

but the nonlinearity significantly degrades the accuracy of online training [48-51]. 

Furthermore, the low currents in the LTP curves at a -8 V pulse are advantageous 

for low-power neuromorphic systems.   

The retention characteristics of the fabricated flash device are shown in Fig. 

2.9 as a parameter of pulse amplitude. The measurements were conducted at room 

temperature. The Vth changes (|ΔVth|) after a retention time of 104s are less than 0.2 

V, even at the PGM and ERS pulse amplitudes of 10 V. These characteristics 

indicate that the nonvolatile memory functionality is successfully implemented in 

the fabricated flash devices with the charge trap layer (Si3N4). In particular, when -

8 V and 8 V of ERS and PGM pulses are used, the |ΔVth| is less than 0.02 V after a 

retention time of 104 s. The endurance characteristics of the flash device are shown 

in Fig. 2.10 as a parameter of PGM and ERS pulse amplitude. Since only a small 

part of the full memory window is used in the given PGM and ERS pulse conditions, 

the device degradation is not significantly exhibited in the PGM and ERS cycling 
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test. This result means that the fabricated flash devices are advantageous for online 

training of neuromorphic systems, in which many conductance changes are required 

to update weights. 

The comprehensive synaptic characteristics of the fabricated flash device 

are shown in Table 2.1 as a parameter of PGM and ERS pulse amplitude. The 

comparison was performed in terms of variation, nonlinearity, retention, endurance, 

and dynamic range. Compared to other types of synaptic devices, our flash device 

shows superior synaptic characteristics. In particular, our flash device shows the 

optimized synaptic characteristics under PGM and ERS pulse amplitudes 8 V and -

8 V of condition. 
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Fig. 2.8. Variation in (a) Vths and (b) IDs of 100 devices in the fabricated AND-type 

flash array after ten ERS pulses of 10 ms pulse width. The IDs are measured at VGS 

of 2.0 V and VDS of 0.1 V. The inner numbers indicate the standard deviation of each 

distribution.  
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Fig. 2.9. Conductance responses to the ERS pulses with amplitudes of (a) -8 V, (b) 

-9 V, and (c) -10 V. The LTP curves are measured at VGS of 2.0 V and VDS of 0.1 V.  

 

 

Fig. 2.10. Retention characteristics of the fabricated flash device in (a) ERS and (b) 

PGM state. Each retention characteristic was measured after ten pulses were applied 

to the device. 
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Fig. 2.11. Endurance characteristics of the fabricated flash device as a parameter of 

PGM and ERS pulse amplitude. 
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 Chapter 3 

Hybrid Training Method  

 

3.1 Offline Training 

Many neuromorphic systems using analog nonvolatile synaptic devices have 

adopted quantized neural networks (QNNs) because the bit precision of weights 

and activations can be significantly reduced [63-67]. In the training process of the 

QNNs, high-precision weights (wcs) are updated first by the activation value (a) and 

delta value (δ), which are obtained with the quantized weights (wqs). The 

relationship between wcs and wqs is non-differential; thus, a straight-through 

estimator (STE) is used for QNN training, which approximates the non-differential 

quantizing function as a differential function. Then, the updated wqs are obtained 

with the updated wcs. Through this weight update rule, QNNs achieve very high 

accuracy compared to software-based neural networks with full-precision weights 

and activations, although the inference of QNNs is performed with low-precision 

weights and activations. The training process of QNNs with a linear quantization 
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function is represented in Algorithm 1. The weight updates are performed with 

ADAM optimizer in the Pytorch framework. Adding a batch normalization layer 

can improve the training efficiency of QNNs, but we do not use the techniques to 

concentrate on the effects of the proposed training method.  

Algorithm 1. Offline training process. L-layer network, quantization function 

Q, initialized high-precision weight Wc, quantized weight Wq, quantized 

activation function fq, gradient g.  

Requirements: a minibatch of inputs and targets (a0, y), learning rate γ, 

initialized Wc. 

for l = 1 to L do      // Forward propagation 

 𝑊q
𝑙 ← 𝑄(𝑊c

𝑙) 

 𝑠𝑙 ← 𝑊q
𝑙𝑎𝑙−1     

 if l < L then 

 𝑎𝑙 ← 𝑓q(𝑠𝑙) 

 end if 

end for 

Compute the gradient in layer L, g(aL), knowing aL and y. 

for l = L to 1 do     //Backward propagation 

 𝑔(𝑎𝑙−1) ← 𝑔(𝑠𝑙)𝑊q
𝑙 

 𝑔(𝑊q
𝑙) ← 𝑔(𝑠𝑙)𝑇𝑎𝑙−1 

end for 

for l = 1 to L do 

 𝑔(𝑊c
𝑙) ← 𝑔(𝑊q

𝑙)
𝜕𝑊q

𝑙

𝜕𝑊c
𝑙      // STE, 

𝜕𝑊q
𝑙

𝜕𝑊c
𝑙 = 1 

 𝑊c
𝑙  ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊c

𝑙, 𝑔(𝑊c
𝑙), 𝛾) 

end for 
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3.2 Online Training 

Motivated by the QNN training method, we propose an online training method 

using the wcs and STE, in which the weight updates are performed in neuromorphic 

systems. Thanks to the use of wcs and STE, the QNN training method shows high 

accuracy even with limited network conditions, such as 1-bit weights and 1-bit 

activations in binary neural networks. From this point of view, we expect that the 

use of the wcs and STE in online training also significantly mitigates the accuracy 

degradation by nonidealities of the analog devices. The detailed process of the 

proposed online training is explained in Algorithm 2.  

The weights in the synaptic array (warrays) are represented with the conductance 

of synaptic devices as warray = αG - 0.5, where α is the normalization value to 

normalize the dynamic range of the synaptic devices within a range of [0, 1], and G 

is the conductance of the synaptic device. The value of 0.5 is subtracted to represent 

a negative weight [34]. At the beginning of the online training, we assume that wcs 

are initialized and transferred to warrays by modulating the number of ERS pulses. 

In forward propagation, VMM operations are performed in the synaptic array by 
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the current sum, and the activation function (a linearly quantized ReLU function) 

is applied to the results of the current sum. Then, the activation values are applied 

to the following synaptic array until the last layer that classifies the images. In 

backward propagation, VMM operations are performed with the readout warrays in 

the software, and the gradient of wc is calculated with the gradient of warray and STE. 

Subsequently, the wcs are updated with the gradient of wc by the ADAM optimizer. 

Then, the pulse number (PN) matrix, in which wcs are rounded to have n levels (n: 

the number of conductance of synaptic devices), is calculated with the updated wcs. 

The number of levels can be modulated with the number of conductance levels in 

the LTP and LTD curves. After that, a single PGM or ERS pulse is applied to the 

synaptic device, whose corresponding PN is updated, resulting in the conductance 

changes in the synaptic array (i.e., the changes in the warray). Note that the proposed 

online training does not adopt the conductance tuning process to mitigate the 

nonlinear weight updates in synaptic devices. The tuning process requires increased 

training costs and peripheral circuits, increasing the hardware burden for online 

training.  
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Algorithm 2. Online training process using synapse array. L-layer network, 

high-precision weight Wc, weight in array Warray, quantized activation function 

fq, gradient g, applying write pulses to the synaptic array ApplyingPulse, 

rounding function R. 

Requirements: a minibatch of inputs and targets (a0, y), learning rate γ 

for l = 1 to L do            // Forward propagation 

 𝑠𝑙 ← 𝑊array
𝑙 𝑎𝑙−1       // VMM using weights in array 

 if l < L then 

       𝑎𝑙 ← 𝑓q(𝑠𝑙) 

 end if 

end for 

Compute the gradient in layer L, g(aL), knowing aL and y. 

for l = L to 1 do     //Backward propagation 

 𝑔(𝑎𝑙−1) ← 𝑔(𝑠𝑙)𝑊𝑎𝑟𝑟𝑎𝑦
𝑙     //VMM using weights in array 

 𝑔(𝑊𝑎𝑟𝑟𝑎𝑦
𝑙 ) ← 𝑔(𝑠𝑙)𝑇𝑎𝑙−1 

end for 

for l = 1 to L do 

 𝑔(𝑊c
𝑙) ← 𝑔(𝑊array

𝑙 )
𝜕𝑊array

𝑙

𝜕𝑊c
𝑙           // STE, 

𝜕𝑊array
𝑙

𝜕𝑊c
𝑙 = 1 

     𝑃𝑁0
𝑙 ← 𝑅(𝑊𝑐

𝑙)    

 𝑊c
𝑙  ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊c

𝑙, 𝑔(𝑊c
𝑙), 𝛾) 

     𝑃𝑁1
𝑙 ← 𝑅(𝑊𝑐

𝑙)    

 𝑊𝑎𝑟𝑟𝑎𝑦
𝑙 ← 𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔𝑃𝑢𝑙𝑠𝑒(𝑃𝑁1

𝑙 , 𝑃𝑁0
𝑙)    //Applying PGM or ERS 

pulse to array 

end for 
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3.3 Hybrid Training 

We propose a hybrid training method that combines the offline and online 

training methods. The above offline and online training methods use the wcs and 

STE during the training processes, and we connect the wcs between the training 

processes. In other words, the wcs in the online training at the beginning are replaced 

by the offline trained wcs that show high accuracy. Then, the trained wcs are 

transferred to the conductance of synaptic devices in neuromorphic systems. The 

online training is additionally performed to train the systems using in-situ VMM 

data, as represented in Algorithm 2. As a result, the neuromorphic systems can 

achieve high accuracy faster than when only the online training is conducted from 

the beginning. Moreover, the number of weight updates can be significantly 

decreased because the trained weights are transferred, reducing the cost of the 

online training in the neuromorphic systems.  

The process of the proposed hybrid training method is as follows: pre-training 

(offline training), weight transfer, and online training. First, a neural network is 

designed (for example, a 5-layer CNN with two convolutional layers and three 
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fully-connected layers for the MNIST image classification task (Fig. 3.1 (a)). In the 

pre-training step, the neural network is offline trained by the QNN training method 

(Algorithm 1) in the PyTorch framework using the cross-entropy loss function. The 

number of conductance levels in synaptic devices determines the weight precision 

in the training process. In the weight transfer step, the conductance of all synaptic 

devices is initialized to the minimum conductance by applying a long PGM pulse 

to the synaptic array. Then, a PN matrix is calculated with the pre-trained wcs with 

the n levels, which is the same as the number of conductance in LTP and LTD curves 

of flash synaptic devices (Fig. 3.1 (b)). Subsequently, ERS pulses are applied 

column by column to the synaptic devices, as many as the corresponding PN, as 

represented in Fig. 3.1 (c) and (d). Note that no conductance tuning process is used. 

As a result of applying ERS pulses to the devices, the pre-trained wcs are transferred 

to the conductance of synaptic devices, and warrays are obtained with the 

conductance. In the online training step, the weight updates are conducted in the 

neuromorphic systems with the in-situ training data, as represented in Algorithm 2. 

After the weight transfer step, the warrays are distributed around the wcs because 
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analog synaptic devices have device nonidealities such as nonlinearity and device 

variation, which degrades the accuracy of neuromorphic systems. In this case, the 

additional online training can improve the accuracy of the systems with the in-situ 

training data, which reflects the device nonidealities (Fig. 3.1 (e)). Using the 

proposed hybrid training method, neuromorphic systems can achieve high accuracy 

compared to the accuracy of software-based neural networks while reflecting the 

device nonidealities as well as the hardware imperfections (ex: wire resistance, 

parasitic capacitance, external noise, etc.). 
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Fig. 3.1. (a) Structure of a CNN with two convolutional layers and three fully 

connected layers. (b) Example of the distribution of wcs pre-trained by QNN 

training method. The wc distribution is divided into the number of conductance 

levels, and the wc is transferred to the conductance of the device in the array by 
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applying the ERS pulses. (c, d) Schematic diagrams of the weight transfer step. The 

weight transfer process is performed column-by-column. The voltage of 0 V is 

applied to SL and BL of the selected column, and -Vinh (voltage for inhibited line) 

is applied to the SLs and BLs of the unselected column. The bias of Vinh is half of 

the Vsel (voltage for selected line). (e) Schematic diagram of applying update pulses 

in online training. ERS pulses are applied to the devices in which the pulse number 

increases during the training. PGM pulses are applied to the devices in which the 

pulse number decreases.  

 

3.4 Demonstration of Hybrid Training in Hardware 

We apply the proposed hybrid training method to the fabricated AND-type flash 

array. The 5-layer CNN is designed for MNIST image classification, as shown in 

Fig. 3.1 (a). The input image is binarized, and the activation function of the hidden 

layers is the ReLU function linearly quantized to 8-bit. Fig. 3.2 shows the 

classification accuracy of the CNN as a parameter of weight level. The CNN is 

trained in the software using the QNN training method (Algorithm 1). The accuracy 
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of the CNN increases as the weight level increases because more precise weights 

can extract the features of the input images better. The offline trained CNN achieves 

an accuracy of 99.0 % with 11-level weights.  

In the weight transfer step, the weights in convolution layer 1 (Conv1 in Fig. 

2.3 (a), 5×5 kernels, 4 channels) are transferred to the conductance of the fabricated 

synaptic array (25 WLs × 4 BLs). The warrays in the other layers are modeled in 

the software as wqs with a Gaussian distribution function for variation in the array 

(σ/μ = 40 %). In the online training step, the flattened input images are applied to 

the WLs of the array, and the VMM operations in the Conv1 layer are performed 

using the current sum in the fabricated synaptic array. The VMM operations in other 

layers are performed in software using the modeled warrays to which the device 

variation is applied. Then, the backward propagation is performed in the software 

using the warrays of the fabricated synaptic array and the modeled warrays to calculate 

Δwc and update the PN. According to the updates in the PN, the PGM and ERS 

pulses are applied to the corresponding synaptic device. In this work, only the 

Conv1 layer is trained to focus on the effects of the hybrid training method on the 
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implemented synaptic array, and the warrays in other layers have fixed values with 

the variation during the online training process. If larger synaptic arrays are 

implemented to cover all layers of the network, the accuracy of the network can be 

further improved. 

Table 3.1 compares the accuracy of MNIST image classification before the 

online training step is performed. If the offline trained weights in the Conv1 layer 

are used as they are, an accuracy of 97.8% is obtained even with the variation (σ/μ 

= 40 %) applied to other layers. On the other hand, after the weight transfer step of 

the Conv1 layer is performed to the fabricated AND-type synaptic array, the 

accuracy is significantly decreased. This accuracy degradation is caused by the 

nonlinearity and the device variation in the synaptic array, which affect the VMM 

operations of the Conv1 layer. Note that the features of the input images are directly 

extracted in the Conv1 layer with a small size of weights. Thus, the accuracy is 

affected by the weight changes in the Conv1 layer [68]. In contrast, the effective 

training of the Conv1 layer can raise the accuracy of neuromorphic systems to that 

of CNNs in which the pre-trained weights in the Conv1 layer are used as they are. 
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This approach is significantly efficient for demonstrating the high performance of 

the training method in the implemented synaptic array.  

The experimental results of the hybrid training in the fabricated AND-type flash 

array are shown in Fig. 3.3. The experiment results are compared with the 

simulation results, in which the updates in warrays of the Conv1 layer are calculated 

by the LTP and LTD model of the synaptic devices [52, 53]. In the simulation, the 

weights are also fixed during the online training process, except for the Conv1 layer. 

Fig. 3.3 (a) represents the loss value during the online training, where the black line 

indicates the experiment loss value, and the red line indicates the simulation loss 

value. The PGM and ERS conditions for updating the conductance are 8 V, 10 μs, 

and -8 V, 10 ms, respectively. At the start point of the training iteration, the loss 

value is relatively high, indicating that the nonidealities of the AND-type flash array 

cause errors in the weight transfer step. However, the loss value in the experiment 

is rapidly reduced as the training iteration increases. The average values of the loss 

in the experiment and simulation results are ~0.051 and ~0.035, respectively, for 

the last 100 training iterations. The small difference between the loss values can be 
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caused by the read fluctuation, parasitic resistance, or conductance drift over time, 

which are not calculated in the simulation.  

The classification accuracy of the neuromorphic system is evaluated in the 

simulation and the experiment, as shown in Fig. 3.3 (b). An accuracy gap is 

exhibited between the pre-trained network (99.0 %) and the neuromorphic system 

just after the weight transfer step (82.5%). However, the accuracy in the experiment 

also rapidly increases as the training iteration increases. In particular, the accuracy 

is recovered to 98.2 % after 1-epoch online training of the Conv1 layer in the 

fabricated synaptic array. In this experiment, the LTP and LTD curves of the 

fabricated synaptic devices are very nonlinear, which can cause significant accuracy 

degradation in the reported online training methods. However, in the proposed 

training method, the wcs are trained first in the software using the STE in online 

training step; thus, the linear and symmetric weight updates can be performed 

computationally. The updates in warrays are performed if the PN of the device is 

changed, thereby minimizing the nonlinear weight updates and increasing the 

accuracy in the proposed training method.  
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In order to analyze the weight changes over the training iterations, we trace the 

IDs of randomly selected devices, as shown in Fig. 3.3 (c). At the abrupt ID changes 

during the training iterations, the PGM or ERS pulse is applied to the device. We 

confirmed that the increase and decrease in IDs are asymmetric to each other 

because of the LTP and LTD curves of the flash devices. Furthermore, the device 

nonidealities, including noise, ID drift, and read fluctuation, are exhibited in the 

training process. However, by applying the proposed hybrid training, the 

neuromorphic systems achieve high accuracy compared to the baseline accuracy. 

These results indicate that the proposed method is significantly effective in 

improving the accuracy of neuromorphic systems in which various device 

nonidealities exist. Additionally, the experimental demonstration of the training 

performance in the fabricated synaptic array is one of the major contributions of 

this work compared to other papers on online training methods demonstrated only 

in software.  

Measurement results of the IDs of all devices in the Conv1 layer are shown in 

Fig. 3.4 (a) during the 1-epoch training. This figure indicates the whole training 
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process and the conductance changes in the fabricated synaptic array. Fig. 3.4 (b) 

compares the measured warrays in the flash array with wcs in the software after 1-

epoch training. The measured warray distribution does not match the wc distribution, 

which mainly results from the device nonidealities, as shown in Fig. 3.3 (c). It is 

worth noting that the measured warrays in the Conv1 layer are trained while reflecting 

the device nonidealities in the synaptic array. The CNN with the warrays achieves 

very high classification accuracy (98.2%), which is close to that of pre-trained 

CNNs in the software (99.0%). Fig. 3.5 shows the warray distributions in the other 

layers except for the Conv1 layer before and after the training process. The 

distributions in each layer are exactly the same before and after the training process, 

validating that the weights in the layers except for the Conv1 layer are fixed during 

the training process. It also indicates that the accuracy improvement of the CNN is 

achieved by the online training of the Conv1 layer after the weight transfer step. 

Fig. 3.6 shows the experimental results of the hybrid training in ten different 

synaptic arrays. After 1-epoch online training of the Conv1 layer, the CNNs with 
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the ten different arrays achieve high accuracy (average accuracy: 97.49%). 

Fig. 3.2. (a) Training curves of the 5-layer CNN trained by the QNN training 

method as a parameter of weight levels. (b) Accuracy of the CNN at 10-epoch.  
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Fig. 3.3. (a) Cross entropy loss value with respect to the training iteration during 

the online training step. (b) Accuracy curves of the neuromorphic systems for 

MNIST test set images. The baseline accuracy from the QNN pre-training is 99.0 %. 

(c) ID changes over the online training iteration in six flash devices. Various device 

nonidealities are shown in the ID changes. 
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Fig. 3.4. (a) ID changes of 100 devices in the fabricated synaptic array representing 

weights in the Conv1 layer over online training iteration. This result represents the 

overall training process. (b) Measured warrays in the fabricated synaptic array versus 

wc in software after 1-epoch online training.  
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Fig. 3.5. Distribution of weights before and after online training in the layers except 

for the Conv1 layer. 
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Fig. 3.6. Accuracy evaluation in ten fabricated synaptic arrays using the proposed 

hybrid training (A1~A10). Only the Conv1 layer in the CNN was trained.. 
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3.3 Evaluation of Hybrid Training for Device Nonidealities 

Fig. 3.7 (a) and (b) show the measurement results of the hybrid training as a 

parameter of PGM and ERS pulse amplitude. The nonlinearity of LTP and LTD 

curves in the flash devices is modulated by the PGM and ERS pulse amplitude, as 

shown in Fig. 2.5. In particular, the LTP and LTD curves are significantly nonlinear 

at a pulse amplitude of 10 V. The abrupt ID changes in the nonlinear curves cause 

the abrupt changes in weights. Thus, the decreasing speed in the training loss at a 

pulse amplitude of 10 V is slower than that at other pulse amplitudes. In addition, 

the more fluctuated loss curve is exhibited at a larger pulse amplitude. These 

features in the loss curves are also shown in the accuracy curves in Fig. 3.7 (b). The 

increasing speed in the accuracy is slow at a pulse amplitude of 10 V with more 

significant fluctuations. Although the maximum classification accuracy of ~97% is 

achieved at a pulse amplitude of 10 V, the highly nonlinear conductance responses 

lower the training performance of the proposed method. However, the nonlinearity 

effects can be mitigated by decreasing the learning rate in the online training step. 

The decreased learning rate reduces the number of weight updates in the synaptic 
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devices and the number of abrupt weight updates. Thus, a more stable accuracy 

curve can be obtained by reducing the learning rate, resulting in high classification 

accuracy (97.76%), as shown in Fig. 3.8. 

Fig. 3.9 (a) shows the ID changes of 100 flash devices in the fabricated array 

over the retention time after the 1-epoch training was conducted. The training was 

conducted with a pulse amplitude of 8 V and -8 V for PGM and ERS, respectively. 

The fabricated flash devices show superior retention characteristics with the charge 

trap layer, as shown in Fig. 2.9. The small Vth changes over time result in the trained 

IDs being maintained over three days. Fig. 3.9 (b) shows the accuracy degradation 

after 8 hours in 3 different flash arrays. Due to the nonvolatile memory 

characteristics of flash devices, the CNNs with the arrays maintain high accuracy 

after 8 hours. The endurance characteristics of flash devices under the PGM and 

ERS conditions are shown in Fig. 3.10. (a). The Vth difference in the PGM and ERS 

states of the flash device is maintained until the cycles of 105. Because only a small 

part of the entire memory window in the flash device is used in the cycling tests, 

the device degradation is not extensively exhibited until 105 cycles. It is worth 
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noting that the total number of PGM and ERS pulses to the flash synaptic array is 

~500 during the training process, as shown in Fig. 3.10 (b). The average number of 

PGM and ERS pulses to one device is ~5, which is significantly lower than 105. 

The number of PGM and ERS pulses can be additionally decreased by reducing the 

learning rate. Therefore, the device degradation by the PGM and ERS pulses during 

the training process is insignificant. 
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Fig. 3.7. (a) Cross entropy loss value with respect to the online training iteration as 

a parameter of PGM and ERS pulse amplitude. Pulse widths for the PGM and ERS 

operations are 10 μs and 10 ms, respectively. (b) Accuracy curves of the 

neuromorphic systems as a parameter of the PGM and ERS pulse amplitude.  
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Fig. 3.8. Accuracy curves of the neuromorphic systems during the online training 

step as a parameter of learning rate (lr). The pulse amplitudes of the PGM and ERS 

operations are 10 V and -10 V, respectively. 
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Fig. 3.9. (a) IDs of 100 devices over the retention time. (b) Accuracy comparison in 

three different arrays after 8 hours.  
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Fig. 3.10. (a) Threshold voltage (Vth) of the flash device with respect to the number 

of PGM and ERS cycles. The pulse amplitude and width are 9 V and 1 ms for the 

PGM operation, and -10 V and 10 ms for the ERS operation. (b) Measured number 

of PGM and ERS pulses applied to 100 flash devices in the online training step.  
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3.4 Comparison with Online Training and Other Works 

The main advantage of the proposed hybrid training method is that the training 

efficiency is significantly improved compared to the online training conducted from 

the beginning. Fig. 3.11 shows the accuracy comparison of the hybrid training and 

online training for MNIST image classification. The accuracy curve of the hybrid 

training was obtained in the fabricated synaptic array, and that of the online training 

was obtained in the software, where the nonlinearity in LTP and LTD curves with a 

pulse amplitude of 8 V and device-to-device variation were reflected. The hybrid 

training was conducted on the Conv1 layer, and the online training was conducted 

on all layers. As shown in Fig. 3.11, the accuracy of the online training is ~98.3% 

after 10-epoch training, even with the nonlinear conductance response, which is 

very close to the accuracy of offline trained CNN. This training result means the 

online training itself significantly enhances the accuracy of neuromorphic systems 

with hardware nonidealities. However, the proposed hybrid training improves the 

accuracy of neuromorphic systems much faster than the online training conducted 

from the beginning. In the hybrid training, the neuromorphic system achieves an 
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accuracy of ~98.3 % in less than one epoch training using only the Conv1 layer. 

This advantage dramatically enhances the training efficiency in neuromorphic 

systems. The total number of PGM and ERS pulses between the hybrid training and 

the online training are compared in Table 3.2. In the hybrid training, the total 

number of PGM and ERS pulses is ~500 times for an accuracy of 98.3%, whereas 

it is ~2.4×106 times in the online training. The difference in the number of PGM 

and ERS pulses is because the online training conducted from the beginning 

requires all-layer training with longer training iterations to achieve high accuracy. 

Given that the training cost in neuromorphic systems increases as the number of 

weight updates increases, the low number of weight updates in hybrid training is 

one of the main advantages. 

The comparison of this work and other reported online training algorithms for 

neuromorphic systems is shown in Table 3.3. There are many studies on 

neuromorphic systems using offline training methods, which adopt the conductance 

tuning process to transfer the offline trained weights to the conductance of synaptic 

devices. In offline training methods, high accuracy of software-based neural 
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networks can be achieved if the weights are accurately transferred. However, errors 

in the weight transfer step exist in neuromorphic systems, degrading the accuracy. 

In addition, the time-varying device nonidealities can degrade the performance of 

neuromorphic systems with offline training. Many studies on neuromorphic 

systems use online training methods in which weight training is performed in the 

systems. However, most online training methods are verified in the software 

simulation, although the training method is proposed for neuromorphic hardware. 

Therefore, the online training methods cannot fully calculate the device 

nonidealities in the software simulation, meaning that the reported online training 

methods cannot fully reflect the hardware imperfections. Some works on online 

training methods verified in the hardware; however, they adopt the closed-loop 

conductance tuning process to update the weights, significantly increasing the 

training cost. On the other hand, the hybrid training method proposed in this work 

exhibits superior accuracy improvements in neuromorphic systems without the 

conductance tuning process. This result shows that the proposed method has 

immunity to the time-static nonidealities of synaptic devices without the tuning 



60 

 

process. Furthermore, the hybrid training method can reduce the training cost and 

increase training efficiency with 1-epoch training for the Conv1 layer. Notably, the 

high performance of the proposed hybrid training method is experimentally verified 

with various device nonideality conditions in the fabricated flash synapse array. 

Therefore, the proposed hybrid training method can be generally applied to 

neuromorphic hardware with various analog synaptic devices.  

 

 

 

 

 

 

TABLE 3.2 

NUMBER OF PGM/ERS PULSES FOR HIGH ACCURACY THROUGHOUT 

TRAINING 

 Hybrid Training: a* Online Training: b* 

# of PGM Pulses 1.91×102 1.18×106 

# of ERS Pulses 3.12×102 1.17×106 

a*: Conducted on Conv1 layer, 1-epoch training for accuracy of 98.3%  

b*: Conducted on all layers, 10-epoch training for accuracy of 98.3%  
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Fig. 3.11. Accuracy curves of the CNN with different training methods. The training 

curve of hybrid training was evaluated in the experiment, and that of online training 

was evaluated in the simulation.  
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TABLE 3.3 

COMPARISON WITH OTHER WORKS 
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Chapter 4 

Conclusion 

In this work, we have fabricated a flash-type synaptic device with high 

reliability, scalability, and CMOS process compatibility. The fabricated flash device 

has a charge trap layer of Si3N4, exhibiting nonvolatile memory functionality and 

the capability of multi-bit weight storage. We have also fabricated an AND-type 

array architecture with flash devices. Due to the parallel SLs and BLs, the fabricated 

AND-type array has the advantage of high efficiency in VMM operations and 

selective PGM and ERS operations. Furthermore, to utilize the flash device as an 

artificial synaptic device, the synaptic characteristics of the array have been 

systematically analyzed and optimized in terms of device variation, nonlinearity, 

and reliability. These optimizing results indicate that the fabricated flash array is 

outstanding as a synaptic array for low-power and highly reliable neuromorphic 

systems.  

Besides, we have proposed a novel hybrid training method, which combines 

the offline training and online training for neuromorphic systems. The performance 



64 

 

of the proposed training method was experimentally demonstrated in the fabricated 

AND-type flash array. After the weight transfer step, the neuromorphic system 

exhibits a degraded accuracy (82.5%) for MNIST image classification, which is 

lower than the accuracy of offline trained CNN. However, the accuracy of the 

neuromorphic system rapidly increases to 98.2% by using the hybrid training on 

only the Conv1 layer for one epoch. Furthermore, the proposed method was 

experimentally verified to achieve high accuracy under various device nonideality 

conditions. These results indicate that the hybrid training method can be generally 

applied to neuromorphic systems using other types of synaptic devices. 

Consequently, the proposed hybrid training method provides a highly efficient 

training solution for neuromorphic systems using analog synaptic devices. 

  



65 

 

Bibliography 

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification 

with deep convolu tional neural networks,” In Proc. Adv. Neural Inf. Process. Syst., 

pp. 1097-1105, 2012. 

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 

recognition,” In Proc. IEEE conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770-

778, 2016. 

[3] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 

p, 1440, 2015. 

[4] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using 

deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 

2, pp. 295-307, 2016. 

[5] Q. V. Le, “Building high-level features using large scale unsupervised 

learning,” In Proc. Int. Conf. Mach. Learn. (ICML), pp. 8595-8598, 2012. 

[6] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent 

neural network for sentiment classification,” In Proc. Conf. Empirical Methods 

Natural Lang. Process., pp. 1422-1432, 2015. 

[7] Yin, W. et al., “Comparative Study of CNN and RNN for Natural Language 

Processing,” Preprint at https://arxiv.org/pdf/1702.01923, 2017. 

[8] Conneau, A. et al., “Very Deep Convolutional Networks for Natural 



66 

 

Language Processing,” Preprint at https://arxiv.org/abs/1606.01781, 2016. 

[9] Y. Goldberg, “A Primer on Neural Network Models for Natural Language 

Processing,” Journal of Artificial Intelligence Research, vol. 57, pp. 345-420, 2016. 

[10] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language 

processing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, 

no. 10, pp. 4291-4308, 2021. 

[11] Wu, B. et al., “SqueezeDet: Unified, Small, Low Power Fully 

Convolutional Neural Networks for Real-Time Object Detection for Autonomous 

Driving,” In Proc. IEEE conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 129-137, 

2017. 

[12] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement 

learning framework for autonomous driving,” Electronic Imaging, vol. 19, pp. 70-

76, 2017. 

[13] K. Fukushima et al., “Neocognitron: a hierarchical neural network capable 

of visual pattern recognition,” Neural Netw., vol. 1, pp. 119-130, 1998. 

[14] M. Riesenhuber, and T. Poggio, “Hierarchical models of object recognition 

in cortex,” Nat. Neurosci., vol. 2, 1999. 

[15] S. Yu, “Neuro-Inspired Computing With Emerging Nonvolatile Memory,” 

Proceedings of IEEE, vol. 106, pp. 260-285, 2018. 

[16] D. Kwon, S. Y. Woo, J.-H. Bae, S. Lim, B.-G. Park, and J.-H. Lee, 

“Hardware-based Spiking Neural Networks Using Capacitor-Less Positive 



67 

 

Feedback Neuron Devices,” IEEE Transactions on Electron Devices, vol. 68, no. 9, 

pp. 4766-4772, 2021. 

[17] D. Kwon et al, “On-chip Training Spiking Neural Networks Using 

Approximated Backpropagation With Analog Synaptic Device,” Front. Neurosci., 

14.423, 2021. 

[18] P. U. Diehl et al., “Fast-Classifying, High-Accuracy Spiking Deep 

Networks Through Weight and Threshold Balancing,” In 2015 IEEE International 

Joint Conference on Neural Networks (IJCNN), 2015. 

[19] H. Kim, M. R. Mahmoodi, H. Nili, and D. B. Strukov, “4K-memristor 

analog-grade passive crossbar circuit,” Nat. Commun., vol. 12, p. 5198, 2021. 

[20] Fuller, E. J. et al., “Parallel programming of an ionic floating-gate memory 

array for scalable neuromorphic computing,” Science, vol. 364, pp. 570–574, 2019. 

[21] D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong, S. Oh, J.-H. Bae, B.-G. 

Park, J.-H. Lee, “Low-power and reliable gas sensing system based on recurrent 

neural networks,” Sensors and Actuators B: Chemical, vol. 340, p. 129258, 2021. 

[22] D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong, S. Oh, J. Kim, J.-H. Bae, 

B.-G. Park, and J.-H. Lee, “Efficient fusion of spiking neural networks and FET-

type gas sensors for a fast and reliable artificial olfactory system,” Sensors and 

Actuators B: Chemical, vol. 345, p. 130419, 2021. 

[23] Li, C. et al., “Efficient and self-adaptive in-situ learning in multilayer 

memristor neural networks,” Nat. Commun., vol. 9, p. 2385, 2018. 



68 

 

[24] K. Moon, M. Kwak, J. Park, D. Lee, and H. Hwang, “Improved 

conductance linearity and conductance ratio of 1T2R synapse device for 

neuromorphic systems,” IEEE Electron Device Lett., vol. 38, no. 8, pp. 1023-1026, 

2017. 

[25] Prezioso, M. et al., “Training and operation of an integrated neuromorphic 

network based on metal-oxide memristors,” Nature, vol. 521, pp. 61–64, 2015. 

[26] G. C. Adam,B. D. Hoskins, M. Prezioso, F. M.-Bayat, B. Chakrabarti, and 

D. B. Strukov, “3-D memristor crossbars for analog and neuromorphic computing 

applications,” IEEE Trans. Electron Devices, vol. 64, no. 1, pp. 312–318, 2017. 

[27] Merrikh Bayat, F. et al., “Implementation of multilayer perceptron network 

with highly uniform passive memristive crossbar circuits,” Nat. Commun., vol. 9, 

p. 2331, 2018. 

[28] Wang, Z. et al., “Fully memristive neural networks for pattern classification 

with unsupervised learning,” Nat. Electron., vol. 1, pp. 137-145, 2018. 

[29] Y. H. Jang, W. Kim, J. Kim, K. S. Woo, H. J. Lee, J. W. Jeon, S. K. Shim, 

J Han, and C. S. Hwang, “Time-varying data processing with nonvolatile 

memristor-based temporal kernel,” Nat. Commun., vol. 12, p. 5727, 2021. 

[30] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and E. 

Vianello, “In situ learning using intrinsic memristor variability via Markov chain 

Monte Carlo sampling,” Nat. Electron., vol. 4, pp. 151-161, 2021. 

[31] I. Boybat, M. L. Gallo, S. R. Nandakumar, T. moraitis, T. Parnell, T. Tuma, 



69 

 

B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou, “Neuromorphic 

computing with multi-memristive synapses,” Nat. Commun., vol. 9, p. 2514, 2018. 

[32] I. Boybat, et al., “Stochastic weight updates in phase-change memory-

based synapses and their influence on artificial neural networks,” In Proc. IEEE 

13th Conf. Ph.D. Res. Microelectron. Electron (PRIME), pp. 13-16, 2017. 

[33] S. Kariyappa, et al., “Noise-Resilient DNN: Tolerating Noise in PCM-

Based AI Accelerators via Noise-Aware Training,” IEEE Transactions on Electron 

Devices, vol. 68, no. 9, pp. 4356-4361, 2021. 

[34] Burr, G. W. et al., “Experimental Demonstration and Tolerancing of a 

Large-Scale Neural Network (165000 Synapses) Using Phase-Change Memory as 

the Synaptic Weight Element,” IEEE Transactions on Electron Devices, vol. 62, pp. 

3498-3507, 2015. 

[35] Y. Kaneko, Y. Nishitani, and M. Ueda, “Ferroelectric artificial synapses for 

recognition of a multishaded image,” IEEE Trans. Electron Devices, vol. 61, pp. 

2827–2833, 2014. 

[36] S. Boyn et al., “Learning through ferroelectric domain dynamics in solid-

state synapses,” Nat. Commun., 8, 14736, 2017. 

[37] C.-H. Kim, S. Lee, S. Y. Woo, W.-M. Kang, S. Lim, J.-H. Bae, J. Kim, and 

J.-H. Lee, “Demonstration of unsupervised learning with spike-timing-dependent 

plasticity using a TFT-type NOR flash memory array,” IEEE Transactions on 

Electron Devices, vol. 65, no. 5, pp. 1774-1780, 2018. 



70 

 

[38] P. Wang, F. Xu, B. Wang, B. Gao, H. Qian, and S. Yu, “Three-Dimensional 

NAND Flash for Vector-Matrix Multiplication,” IEEE Trans. Very Large Scale 

Integration Systems, vol. 27, no. 4, pp. 988-991, 2019. 

[39] D. Kwon, W. Shin, J.-H. Bae, S. Lim, B.-G. Park, and J.-H. Lee, 

“Investigation of low-frequency noise characteristics in gated Schottky diodes,” 

IEEE Electron Device Letters, vol. 42, no. 3, pp. 442-445, 2021. 

[40] M.-B. Farnood, X. Guo, M. Klachoko, M. Prezioso, K. K. Likharev, and D. 

B. Strukov, “High-performance mixed-signal neurocomputing with nanoscale 

floating-gate memory cell arrays,” IEEE Transactions on Neural Networks and 

Learning Systems, vol. 29, no. 10, pp. 4782-4790, 2017. 

[41] M. Kim, M. Liu, L. Everson, G. Park, Y. Jeon, S. Kim, S. Lee, S. Song, and C. 

H. Kim, “A 3D NAND Flash Ready 8-Bit Convolutional Neural Network Core 

Demonstrated in a Standard Logic Process,” 2019 IEEE International Electron 

Devices Meeting. 

[42] S.-T. Lee, H. Kim, J.-H. Bae, H. Yoo, N. Y. Choi, D. Kwon, S. Lim, B.-G. Park, 

J.-H. Lee, “High-density and highly-reliable binary neural networks using NAND 

flash memory cells as synaptic devices,” 2019 IEEE International Electron Devices 

Meeting (IEDM), 2019. 

[43] Y. Xiang, P. Huang, R. Han, C. Li, K. Wang, X. Liu, and J. Kang, “Efficient 

and robust spike-driven deep convolutional neural networks based on NOR flash 

computing array,” IEEE Transactions on Electron Devices, vol. 67, no. 6, 2020. 



71 

 

[44] Y.-T. Seo, D. Kwon, Y. Noh, S. Lee, N.-K. Park, S. Y. Woo, B.-G. Park, and 

J.-H. Lee, “3-D AND-Type Flash Memory Architecture With High-k Gate 

Dielectric for High-Density Synapse Devices,” IEEE Transactions on Electron 

Devices, vol. 68, no. 8, pp. 3801-3806, 2021. 

[45] W.-M. Kang, et al., “Hardware-Based Spiking Neural Network Using a 

TFT-Type AND Flash Memory Array Architecture Based on Direct Feedback 

Alignment,” IEEE Access, vol. 9, pp. 73121-73132, 2021. 

[46] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision 

tuning of state for memristive devices by adaptable variation-tolerant algorithm,” 

Nanotechnology, vol. 23, no. 7, 075201, 2012. 

[47] L. Gao, P.-Y. Chen, and S. Yu, “Programming protocol optimization for 

analog weight tuning in resistive memories,” IEEE Electron Device Lett., vol. 36, 

no. 11, pp. 1157-1159, 2015. 

[48] S. Lim, J.-H. Bae, J.-H. Eum, S. Lee, C.-H. Kim, D. Kwon, B.-G. Park, and 

J.-H. Lee, “Adaptive learning rule for hardware-based deep neural networks using 

electronic synapse devices,” Neural Computing and Applications, vol. 31, pp. 8101-

8116, 2019. 

[49] Zhang, H. Wu, P. Yao, W. Zhang, B. Gao, N. Deng, and H. Qian, “Sign 

backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic 

computing systems,” Neural Networks, vol. 108, pp. 217-223, 2018. 

[50] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim V2.0: AN 



72 

 

End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for 

On-Chip Training,” IEEE Transactions on Computer-Aided Design of Integrated 

Circuits AND Systems, vol. 40, no.11, pp. 2306-2319, 2021. 

[51] C.-C. Chang et al., “Mitigating asymmetric nonlinear weight update effects 

in hardware neural network based on analog resistive synapse, IEEE J. Emerg. 

Select. Top. Circ. Syst., vol. 8, pp. 116-124, 2017. 

[52] D. Querlioz et al., “Learning with memristive devices: How should we model 

their behavior?,” In Proc. IEEE/ACM Int. Symp. NANOARCH., pp. 150-156, 2011. 

[53] C.-H. Kim et al., “Emerging memory technologies for neuromorphic 

computing,” Nanotechnology, vol. 30, no. 3, 2018. 

[54] F. R. Libsch and M. H. White, “Charge transport and storage of low 

programming voltage SONOS/MONOS memory devices,” Solid-State Electron., 

vol. 33, no. 1, pp. 105–126, 1990. 

[55] J.-H. Bae, S. Lim, B.-G. Park, and J.-H. Lee, “High-Density and Near-Linear 

Synaptic Device Based on a Reconfigurable Gated Schottky Diode,” IEEE Electron 

Device Letters, vol. 38, no. 8, 2017. 

[56] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, 

“Nanoscale memristor device as synapse in neuromorphic systems,” Nano 

letters, vol. 10, no. 4, 1297-1301. 2010. 

[57] L. Gao et al., “Fully parallel write/read in resistive synaptic array for 

accelerating on-chip learning,” Nanotechnology, vol. 26, no. 45, 2015. 



73 

 

[58] S. Park et al., “Neuromorphic speech systems using advanced ReRAM-based 

synapse,” IEEE International Electron Device Meeting (IEDM), 2013. 

[59] J. Woo et al., “Improved synaptic behavior under identical pulses using 

AlOx/HfO2 bilayer RRAM array for neuromorphic systems,” IEEE Electron 

Device Letters, vol. 37, no. 8, 2016. 

[60] W. Chung, M. Si, and P. D. Ye, “First Demonstration of Ge Ferroelectric 

Nanowire FET as Synaptic Device for Online Learning in Neural Network with 

High Number of Conductance State and Gmax/Gmin,” 2018 IEEE International 

Electron Device Meeting (IEDM), 2018. 

[61] S. Seo, B. Kim, D. Kim, S. Park, T. R. Kim, J. Park, H. Jeong, S. O. Park, T. 

Park, H. Shin, M. S. Kim, Y. K. Choi, and S. Choi, “The gate injection-based field-

effect synapse transistor with linear conductance update for online training,” Nature 

Communications, vol. 13, no. 1, 2022. 

[62] M.-K. Kim, and J.-S. Lee, “Ferroelectric Analog Synaptic Transistors,” Nano 

Letters, vol 19, 2019. 

[63] S. Zhou et al., “Dorefa-net: Taining low bitwidth convolutional neural 

networks with low bitwidth gradients,” Preprint at https://arxiv.org/pdf/1606.06160, 

2018. 

[64] I. Hubara, M. Courbariux, D. Soudry, R. E.-Yaniv, and Y. Bengio, 

“Quantized neural networks: Training neural networks with low precision weights 

and activations,” The Journal of Machine Learning Research, vol. 18, pp. 6869-



74 

 

6898, 2017. 

[65] M.  Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: 

Imagenet classification using binary convolutional neural networks,” European 

conference on computer vision, pp. 525-542, 2016. 

[66] M. Courbariaux, et al., “Binarized neural networks: Training deep neural 

networks with weights and activations constrained to +1 or -1,” Preprint at 

https://arxiv.org/pdf/1602.02830, 2016. 

[67] S.-T. Lee, D. Kwon, H. Kim, H. Yoo, and J.-H. Lee, “NAND flash based 

novel synaptic architecture for highly robust and high-density quantized neural 

networks with binary neuron activation of (1, 0),” IEEE Access, vol. 8, pp. 114330-

114339, 2020. 

[68] H. Kim, J.-H. Bae, S. Lim, S.-T. Lee, Y.-T. Seo, D. Kwon, B.-G. Park, and 

J.-H. Lee, “Efficient precise weight tuning protocol considering variation of the 

synaptic devices and target accuracy,” Neurocomputing, vol. 378, pp. 189-196, 

2020. 

[69] J. Fu et al., “Mitigating Nonlinear Effect of Memristive Synaptic Device 

for Neuromorphic Computing,” IEEE Journal of Emerging and Selected Topics in 

Circuits and Systems, vol. 9, no. 2, 2019. 

[70] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network 

training using analogue memory,” Nature, vol. 558, pp. 60-67, 2018. 

[71] Li, C. et al., “Efficient and self-adaptive in-situ learning in multilayer 



75 

 

memristor neural networks,” Nat. Commun., vol. 9, p. 2385, 2018. 

[72] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. 

Qian, “Fully hardware-implemented memristor convolutional neural network,” 

Nature, vol. 577, pp. 641-646, 2020. 

  



76 

 

초    록 

 

아날로그 비휘발성 메모리 셀을 시냅스 장치로 사용하는 뉴로모픽 기

술은 대규모 벡터 행렬 곱셈 연산을 수행하기 위해 시간과 에너지 소비

를 줄일 수 있어, 폰 노이만 구조의 컴퓨팅 아키텍처를 대체할 수 있는 

기술로서 매우 유망하다. 그러나 뉴로모픽 하드웨어에 관한 보고된 학

습 방법은 아날로그 장치의 비이상적인 특성으로 인해 정확도가 현저히 

낮고, 비용이 상당히 높은 전도도 조정 프로세스가 필요하다. 따라서 이 

논문은 비휘발성 아날로그 메모리 셀을 활용하여 뉴로모픽 하드웨어를 

효율적으로 훈련시키는 새로운 하이브리드 훈련 방법을 제안하고, 구현

된 하드웨어에 실험적으로 시연하여 제안하는 방법의 고성능을 보여준

다. 제안하는 훈련 방법은 아날로그 시냅스 장치 전도도에 가중치의 변

화를 반영하기 위한 전도도 조정 프로토콜에 의존하지 않아 온라인 훈

련의 비용이 상당히 줄어든다. 또한 이 논문에서는 대규모 벡터 행렬 

곱셈 연산을 가속화하는 뉴로모픽 하드웨어로 AND형 플래시 메모리 

어레이를 구현한다. 제작된 뉴로모픽 하드웨어는 전하 포획층

(SiO2/Si3N4/SiO2)과 함께 비휘발성 메모리 기능을 가지고 있어 반영구

적으로 가중치를 유지한다. 그런 다음 제안된 훈련 방법을 제작한 시냅

스 어레이에 적용하여, 첫 번째 시냅스 층에 1-epoch 학습으로도 소프트

웨어 기반 신경망의 정확도에 근접함을 보여준다. 또한 제안하는 하이

브리드 훈련 방법은 가중치 업데이트 특성이 극도로 비선형적인 다양한 

유형의 시냅스 장치를 포함한 저전력 뉴로모픽 하드웨어에 효율적으로 
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적용될 수 있는 것을 검증한다. 제작된 하드웨어에서 제안된 방법의 성

공적인 시연은 비휘발성 아날로그 메모리 셀을 사용하는 뉴로모픽 하드

웨어가 미래 인공 지능을 위한 보다 유망한 플랫폼이 될 수 있음을 보

여준다. 

 

 

주요어 : 하드웨어 기반 신경망, 플래시 메모리 시냅스 어레이, AND형 

어레이, 온라인 학습, 오프라인 학습, 하이브리드 학습 

학번 : 2017-22213 
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