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ABSTRACT

Neuromorphic computing systems using nonvolatile memory cells advance
computational capability by performing large-scale vector-matrix multiplication
operations in an analog manner. In addition, neuromorphic computing systems can
reduce the inference time and energy consumption of neural network operations,
thereby attracting much attention in various fields. Despite the advantages of
neuromorphic systems, the conventional training methods show lower accuracy
because of the nonideal characteristics of analog synaptic devices. In this work, we
propose a new hybrid training method that trains the neuromorphic hardware very
efficiently and accurately. The proposed training method does not use conductance
tuning processes to accurately update the weight changes to the conductance of
synaptic devices, significantly reducing the costs of online training in the hardware.
We then experimentally show the high accuracy of the proposed method on the
fabricated neuromorphic hardware: AND-type charge-trapping flash array. The

AND-type flash array boosts a large-scale vector-matrix multiplication operation



using Kirchhoff’s current law. Furthermore, the fabricated array has a nonvolatile

memory function with a charge trapping layer (SiO2/SizN4/SiO2), maintaining the

multi-bit weight in a single synaptic device semi-permanently. We show that the

accuracy of neuromorphic systems increases to that of the software-based neural

network after 1-epoch hybrid training in the fabricated synaptic array. Moreover,

the high performance of the proposed method was experimentally verified under

various device nonideality conditions, indicating the proposed method can be

generally applied to other types of synaptic devices. Our results show that

neuromorphic systems using analog nonvolatile memory cells become a more

promising platform for future artificial intelligence hardware.

Keywords: Hardware-based neural network, flash memory array, AND type

crossbar array, online training, offline training, hybrid training
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Chapter 1

Introduction

1.1 Neuromorphic computing

Recently, artificial neural networks (ANNs) have advanced human lives in
various applications, including image processing [ 1-5], natural language processing
[6-10], and autonomous driving [11-12]. Convolutional neural networks (CNNs),
of which structure is greatly influenced by biological vision systems [13, 14], have
achieved human-level or superior accuracy in vision applications. However, state-
of-the-art training algorithm techniques for ANNs have been developed to enlarge
the network size, significantly increasing the computational complexity in network
operations [15]. From this perspective, ‘von Neumann bottleneck’ between the oft-
chip memory and processing units decreases the computational efficiency of
conventional von Neumann computing systems. In order to address the severe
issues of conventional computing systems, neuromorphic systems have been

proposed to exhibit low energy consumption, parallel computing, and low system



latency [16-22].

1.2 Synaptic Devices

Neuromorphic computing systems mainly consist of synaptic devices that
represent weights in neural networks. In particular, nonvolatile synaptic devices can
store multi-bit weights with long-term memory functionality, increasing the density
of devices compared to digital memory. Moreover, according to Kirchhoff’s current
law, vector-matrix multiplication (VMM) operations are performed with high
parallelism by the sum of the synaptic currents of the devices, reducing the data
movement between the memory and processing units. In this regard, there are many
studies on synaptic devices such as resistive random-access memory (RRAM) [23-
30], phase-change RAM (PCRAM) [31-34], 3-terminal ferroelectric field-effect-
transistors (FeFETs) [35-36], charge-trap flash [37-40]. Among them, the charge-
trap flash memory device has drawn much attention because of the compatibility of
the CMOS fabrication process, good reliability, and massive production capability.

The feasibility of 3-dimensional stacking is also an important advantage of the



charge-trap flash memory cells.

The array architectures of the flash memory cells can be configured depending

on the purpose of the applications. The array architectures of flash memory cells

are mainly categorized as NAND- [41, 42], NOR- [40, 43], and AND-type array

architectures [44, 45]. In NAND-type array architecture, it is difficult to perform

large-scale VMM operations in parallel because of the cell string structure, thus the

array architecture is appropriate in high-density memory applications. On the other

hand, NOR- and AND-type array architectures have the advantage of parallel

computing with the form of the crossbar of word lines and bit lines. The difference

between the NOR- and AND-type array architectures is the configuration of source

lines and bit lines (Fig. 1.1), resulting in the difference in the selective write

operations. In particular, the selective write operations can be performed in AND-

type array architecture using Fowler Nordheim (FN) tunneling operations, in which

a small tunneling current flows compared to the on-current of the flash cell.

Therefore, for online training that requires a large number of write operations,

AND-type array architecture can save energy consumption during the training



operations compared to the NOR-type array architecture.
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Fig. 1.1. Schematic diagrams of AND- and NOR-type flash array architectures.

1.3 Training Algorithms for Neuromorphic Systems

From the perspective of the training algorithm, the majority of neuromorphic
hardware research uses offline (ex-sifu) training with conductance tuning processes,
in which the conductance of synaptic devices is iteratively adjusted to the target
value [46-47]. Because the conductance of synaptic devices can represent the
offline-trained weights by the tuning process, time-static nonidealities of analog

synaptic devices (ex: nonlinearity, device-to-device variation, limited on/off ratio)



can be greatly addressed. However, the offline training methods need to verify that

the conductance of the devices reaches the target value, which requires substantial

energy and time consumption. Additionally, time-varying device nonidealities (ex:

read fluctuation, conductance drift, retention) cannot be addressed in the offline

training methods. In contrast, online (in-situ) training methods can address time-

varying nonidealities because the neuromorphic systems can be trained in real time

using in-situ training data. However, the online training methods show poor

accuracy because the time-static nonidealities cannot be effectively addressed

without the conductance tuning process [17, 48-51]. More importantly, although

there are many studies on online training methods for neuromorphic computing

systems, they lack experimental demonstration in implemented hardware owing to

high training costs to account for weight changes in the synaptic devices. Therefore,

a novel training method is necessary to efficiently train the neuromorphic

computing systems with high accuracy.



1.4 Purpose of research

This dissertation proposes a new hybrid training method for neuromorphic
systems that efficiently perform large-scale VMM operations with analog
nonvolatile memory cells. First, we fabricated the AND-type array architecture of
the flash memory cells, which exhibits the capability of parallel computing and
energy-efficient write operations. We then characterized the synaptic characteristics
of the AND-type flash array, including nonlinearity, device-to-device variation,
endurance, retention, and dynamic range. Additionally, the synaptic characteristics
of the array were optimized for high accuracy of online training.

Next, we experimentally demonstrated the proposed hybrid training method in
the fabricated AND-type flash array. Since the hybrid training method adopts both
hardware (in-situ) and software (ex-situ) training, the neuromorphic system adjusts
the conductance of synaptic devices automatically on the chip while showing the
performance of software-based neural networks. More importantly, the proposed
method does not use the conductance tuning process that requires substantial

communication cost and time to update all weights in the neuromorphic systems.



This property of the proposed method reduces the training cost and enhances the

training efficiency of the neuromorphic systems. Finally, we evaluated the accuracy

of the proposed method under various nonideal conditions of synaptic devices,

verifying that the proposed method can be applied to other neuromorphic systems

with various types of synaptic devices. Our successful results will significantly

advance the neuromorphic computing systems into a promising hardware platform

for artificial intelligence.

1.5 Dissertation outline

The dissertation outline is as follows. Chapter 1 provides an overview of

neuromorphic systems, synaptic devices, and training methods. It also covers the

contents of the synaptic devices composing the synaptic array based on recent

research trends. Chapter 2 describes the AND flash memory array architecture and

the measurement results. This chapter includes the device structure, fabrication

process steps, analysis, and optimization process of the array operations. Chapter 3

deals with the proposed hybrid training method. This chapter also includes the



measurement results of the training method in the fabricated synaptic array and the
comparison of other reported training methods. Finally, chapter 4 concludes this

dissertation with a summary.

Chapter 2
AND-type Flash Array Architecture

2.1 Array Fabrication and Operation

In the AND-type array architecture, the source-lines (SLs) and bit-lines (BLs)
are configured in parallel. Owing to the parallel configuration of SLs and BLs, the
channel potential of flash memory cells can be easily modulated without on-current
flowing. Therefore, the energy consumption in the selective program/erase
(PGM/ERS) operations is significantly decreased. The fabrication process of the
AND-type flash array with 3-terminal flash memory cells is shown in Fig. 2.1. The
entire fabrication process was conducted on a 6-inch silicon-on-insulator (SOI)

wafer with CMOS fabrication process technology. First, Si active layer was



patterned at a thickness of 100 nm, and the implantation process was conducted to
form the p-body with the boron ions. The doping concentration of the p-body was
1x10'"® cm™. Subsequently, a gate stack of a tunneling SiO2 (3 nm), a charge storage
layer Si3N4 (6 nm), and a blocking SiO (9 nm) was deposited on the Si active layer.
Then, a gate of n" poly-Si was deposited and patterned. After that, the implantation
process was conducted to form a source and drain with the arsenic ions, followed
by rapid thermal processing at 1000 °C for 10 s to activate the source and drain.
After depositing a passivation oxide with tetraethyl orthosilicate (TEOS) of 300-
nm-thickness, contact holes for the gate, source, and drain were defined and etched.
Then, a Ti/TiN/Al/TiN (30 nm/30 nm/300 nm/30 nm) stack was deposited for the
metal layer.

Fig. 2.2 (a) and (b) show a schematic diagram of the fabricated AND-type flash
array and a scanning electron microscopy (SEM) image of the array with the size
of 25-word lines (WLs) x 4 BLs (4 SLs). The width/length of the fabricated flash
devices in the array is 1 um/1 pm, respectively. Fig. 2.2 (c) describes the process of

the VMM operations in the AND-type array according to Kirchhoft’s current law.



Note that the flash device can modulate its conductance by adjusting the threshold

voltage of the device with PGM or ERS pulses. When PGM (ERS) pulse is applied

to the gate at Vp = Vs = 0V, the electrons (holes) from the channel (body) are

injected into the nitride layer and trapped. Depending on the stored charge in the

nitride layer, the vertical electric field is modulated, leading to changes in the

threshold voltages of the flash devices. In neuromorphic computing systems, the

conductance of the flash device represents a weight. Assuming each flash device in

the array has its own conductance depending on the trained weights, the voltage

inputs are applied to the WLs of the array. Then, the current flows through each

flash device depending on its conductance, and the currents are summed along the

SLs and BLs according to Kirchhoff’s current law. The sum of the currents

represents a weighted sum in neuromorphic systems. As such, the VMM operations

are efficiently performed in the memory domain in an analog manner.

10
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2.2 Device and Array Characterization

In this section, we characterized the fabricated AND-type flash array for
synaptic devices. We investigated the on-current of the devices in the array, as
shown in Fig. 2.3 (a). We confirmed that there are no devices at the stuck-off
condition, and device-to-device variation of the on-current exists in the array.
Besides, there is no remarkable line dependency in the on-current of devices. The
drain current (Ip)-gate voltage (V) characteristics of the devices in the array were
investigated, as shown in Fig. 2.3. (b). The device-to-device variation in the
threshold voltages of the flash devices is exhibited in the fabricated flash array.

The measurement results of the long-term potentiation (LTP) and depression
(LTD) curves of the devices are shown in Fig. 2.4 (a) and (b), respectively. When
the PGM pulses are applied to the gate, the electrons are trapped in the SisNa4 layer
from the channel, reducing the conductance of the device. In contrast, when the
ERS pulses are applied to the gate, the holes are trapped in the SisN4 layer from the
body, increasing the conductance of the device. The PGM and ERS pulse conditions

are Ves of 8V, 10 ps and -8 V, 10 ms, respectively, at a Vps of 0 V. As shown in Fig.

13



2.4, the device-to-device variation is also shown in LTP and LTD curves. In addition,

the LTP and LTD curves are nonlinear with respect to the same ERS and PGM

pulses. This is because the stored charge in the SisN4 layer can reduce the electric

field at the PGM or ERS operations and reduce the tunneling current in the PGM

and ERS pulses. Note that the nonlinearity of the LTP and LTD curves causes errors

in the VMM operations and weight updates, degrading the overall accuracy of the

online training. In order to mitigate the nonlinearity in the LTP and LTD curves,

conductance tuning processes were reported, where the conductance is iteratively

tuned by PGM and ERS pulses to reach the target value [46, 47]. However, the

processes require substantial energy and time consumption to accurately adjust the

conductance, thereby degrading the training efficiency and speed. From this

perspective, it is necessary to develop a new training algorithm with high accuracy

even if the nonlinear LTP and LTD curves are used.

Fig. 2.4 (c) and (d) show the device-to-device variation in the LTP and LTD

curves, respectively, particularly the max/min ratio of Ips and nonlinearity. The

measured o/u is about 40%. Compared to the device-to-device variation, the

14



variation in the single curve is relatively small. Fig. 2.4 (e) shows the sequentially

measured five times with the same PGM and ERS pulses to investigate the cycle-

to-cycle variation in a single flash device. We confirmed that almost the same LTP

and LTD curves are exhibited in the repetition, meaning that the fabricated flash

device shows low cycle-to-cycle variation.

We investigated the LTP and LTD curves as parameters of PGM and ERS pulse

amplitude, as shown in Fig. 2.5 (a) and (b). The LTP and LTD curves were

normalized to compare the nonlinearity of the responses. Both LTP and LTD curves

become more nonlinear as the pulse amplitude increases. The fitting results of the

LTP and LTD curves of flash devices are shown in Fig. 2.6 using the logarithmic

conductance response model [52, 53]. Fig. 2.7 verifies selective PGM/ERS

operations in the fabricated AND-type flash array. Fig. 2.7 (a) shows the schematic

diagram of the selective PGM/ERS operations in the AND-type array architecture.

In this scheme, the conductance of cell 1 should be updated, and others should be

inhibited. Vserand 0 V are applied to the WL of the selected (cell 1) and inhibited

cells (cell 2-4), respectively. 0 V is applied to the BLs and SLs of the selected cells,

15



and Vinn is applied to the BLs and SLs of the inhibited cells. In this scheme, the

drain voltage and the source voltage are the same to cut off the on-current in the

cells. As shown in Fig. 2.7 (b) and (c), only the conductance of cell 1 is updated by

the PGM and ERS pulses, and the conductance of others is inhibited successfully.

Note that in online training where the weights are updated in neuromorphic systems,

the selective write operations without on-current flowing are essential for low-

power operations.

16
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Fig. 2.3. (a) Drain currents (/ps) of all devices in the array at a gate voltage (V) of
3 V and drain voltage (Vp) of 0.1 V. (b) Ip-VG curves of all devices in the array and
the averaged curve at a J'p of 0.1 V. The device-to-device variation exists in the

fabricated synaptic array.
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Fig. 2.4. Measured conductance responses of 100 devices in the array for (a)
LTP and (b) LTD. ERS pulses (-8 V, 10 ms) and PGM pulses (8 V, 10 pus) are applied
to the gate of devices for the LTP and LTD curves, respectively, ata Vs=FVp=0 V.

A read bias (Vgs=2 V and Vps= 0.1 V) is applied to the device immediately after
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every ERS (or PGM) pulse. The gray lines represent LTP and LTD curves for each

device, and the red line represents the averaged values of 100 devices. The error bar

indicates the standard deviation value of each point. Standard deviation over mean

(o/u) values of the (c) 100 LTP and (d) 100 LTD curves. The maximum value of o/u

is ~40 %. (e) Repeated conductance responses at the ERS/PGM conditions.
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Fig. 2.5. Conductance responses as a parameter of (a) ERS (for LTP) and (b) PGM

(for LTD) pulse amplitude. The pulse widths for the ERS and PGM are 10 ms and

10 ps, respectively.
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Fig. 2.6. Fitting results of the measured (a) LTP and (b) LTD curves using the

logarithmic conductance response model.
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are not updated.
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2.3 Optimization of Device Nonidealities

We analyze and optimize the PGM and ERS conditions in the fabricated flash
array for better synaptic characteristics. Fig. 2.8 (a) and (b) show the variation in
the threshold voltages (Vis) and Ips of 100 devices in the flash array, respectively.
The variation in the Vs of flash devices increases as the ERS pulse amplitude
increases. On the other hand, the variation in the Ips decreases as the ERS pulse
amplitude increases. The variation in the Vs is 0.0366 V at a -8 V pulse, which is
relatively small compared to other ERS pulse amplitude. However, the operation
regions of the devices at a -8 V ERS pulse are mainly around the subthreshold
region, in which the /ps are changed exponentially by the Vi variations. Thus, the
relative variation in the /ps becomes larger than other ERS pulse amplitudes. In
terms of linearity, the ERS pulse amplitude of -8 V is more advantageous than other
pulse amplitudes. As shown in Fig. 2.9, the LTP curves at a -8 V ERS pulse are
more linear than those at -9 V and -10 V ERS pulses. The amount of charge stored
in the nitride layer logarithmically increases with the number of pulses [54, 55].

Thus, the exponential relationship between Ips in the subthreshold region and the
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Vin changes can be canceled out at an ERS of -8 V, resulting in more linear LTP
curves. Note that the device-to-device variation can be mitigated in online training,
but the nonlinearity significantly degrades the accuracy of online training [48-51].
Furthermore, the low currents in the LTP curves at a -8 V pulse are advantageous
for low-power neuromorphic systems.

The retention characteristics of the fabricated flash device are shown in Fig.
2.9 as a parameter of pulse amplitude. The measurements were conducted at room
temperature. The Vi changes (|AVi|) after a retention time of 10%s are less than 0.2
V, even at the PGM and ERS pulse amplitudes of 10 V. These characteristics
indicate that the nonvolatile memory functionality is successfully implemented in
the fabricated flash devices with the charge trap layer (Si3N4). In particular, when -
8 V and 8 V of ERS and PGM pulses are used, the |AVu| is less than 0.02 V after a
retention time of 10*s. The endurance characteristics of the flash device are shown
in Fig. 2.10 as a parameter of PGM and ERS pulse amplitude. Since only a small
part of the full memory window is used in the given PGM and ERS pulse conditions,

the device degradation is not significantly exhibited in the PGM and ERS cycling
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test. This result means that the fabricated flash devices are advantageous for online

training of neuromorphic systems, in which many conductance changes are required

to update weights.

The comprehensive synaptic characteristics of the fabricated flash device

are shown in Table 2.1 as a parameter of PGM and ERS pulse amplitude. The

comparison was performed in terms of variation, nonlinearity, retention, endurance,

and dynamic range. Compared to other types of synaptic devices, our flash device

shows superior synaptic characteristics. In particular, our flash device shows the

optimized synaptic characteristics under PGM and ERS pulse amplitudes 8 V and -

8 V of condition.
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TABLE 2.1
COMPARISON OF SYNAPTIC CHARACTERISTICS WITH OTHER TYPES OF
SYNAPTIC DEVICES
Other works Nonlinearity Variation Retention (s) E?g;:lf:;e Dynamic Range
S. H. Jo et al. [56] 2.4 X X X 12:5
L. Gao et al. [57] 1.85 X X X 2
S. Park et al. [58] 3.68 X X X 6.84
J. Woo et al. [59] 1.94 X X X 4.43
W. Chung et al. [60] 1.22 X X >108 >100
S. Suh etal. [61] 0.96 9.76 % >103 >106 >10
M.-K. Kim et al. [62] 0.80 3.93% >X >104 >10
This work (10 V) 4.54 13.5% >104 >108 190
This work (9 V) 252 13.0% >108 >10% 280
This work (8 V) 1.33 22.5% >108 >10% 82
27
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Chapter 3
Hybrid Training Method

3.1 Offline Training

Many neuromorphic systems using analog nonvolatile synaptic devices have
adopted quantized neural networks (QNNs) because the bit precision of weights
and activations can be significantly reduced [63-67]. In the training process of the
QNN s, high-precision weights (wcs) are updated first by the activation value (a) and
delta value (J), which are obtained with the quantized weights (wgqs). The
relationship between wces and wgs is non-differential; thus, a straight-through
estimator (STE) is used for QNN training, which approximates the non-differential
quantizing function as a differential function. Then, the updated wqs are obtained
with the updated wcs. Through this weight update rule, QNNs achieve very high
accuracy compared to software-based neural networks with full-precision weights
and activations, although the inference of QNNs is performed with low-precision

weights and activations. The training process of QNNs with a linear quantization

28



function is represented in Algorithm 1. The weight updates are performed with

ADAM optimizer in the Pytorch framework. Adding a batch normalization layer

can improve the training efficiency of QNNs, but we do not use the techniques to

concentrate on the effects of the proposed training method.

Algorithm 1. Offline training process. L-layer network, quantization function
Q, initialized high-precision weight W, quantized weight Wg, quantized
activation function fq, gradient g.

Requirements: a minibatch of inputs and targets (a° y), learning rate v,
initialized W,

forl=1toLdo // Forward propagation

Wy < QW)

Sl - qual—l

if | <L then
al — fy(s")

end if

end for

Compute the gradient in layer L, g(a-), knowing a‘ and y.

forl=Lto1ldo //Backward propagation

g@™) < g(sHwy
g < g(sHTa™?

end for
forl=1toLdo
oawl ow}
gWh) « g(qu)a—Wg /I STE, a—W‘C} =1

W} « Update(Wd, g(W?h),y)
end for
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3.2 Online Training

Motivated by the QNN training method, we propose an online training method
using the wcs and STE, in which the weight updates are performed in neuromorphic
systems. Thanks to the use of wcs and STE, the QNN training method shows high
accuracy even with limited network conditions, such as 1-bit weights and 1-bit
activations in binary neural networks. From this point of view, we expect that the
use of the wes and STE in online training also significantly mitigates the accuracy
degradation by nonidealities of the analog devices. The detailed process of the
proposed online training is explained in Algorithm 2.

The weights in the synaptic array (warays) are represented with the conductance
of synaptic devices as Wamay = aG - 0.5, where a is the normalization value to
normalize the dynamic range of the synaptic devices within a range of [0, 1], and G
is the conductance of the synaptic device. The value of 0.5 is subtracted to represent
a negative weight [34]. At the beginning of the online training, we assume that wcs
are initialized and transferred to warmays by modulating the number of ERS pulses.

In forward propagation, VMM operations are performed in the synaptic array by
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the current sum, and the activation function (a linearly quantized ReLU function)

is applied to the results of the current sum. Then, the activation values are applied

to the following synaptic array until the last layer that classifies the images. In

backward propagation, VMM operations are performed with the readout warrays in

the software, and the gradient of wc is calculated with the gradient of Waray and STE.

Subsequently, the wcs are updated with the gradient of we by the ADAM optimizer.

Then, the pulse number (PN) matrix, in which wcs are rounded to have n levels (n:

the number of conductance of synaptic devices), is calculated with the updated wes.

The number of levels can be modulated with the number of conductance levels in

the LTP and LTD curves. After that, a single PGM or ERS pulse is applied to the

synaptic device, whose corresponding PN is updated, resulting in the conductance

changes in the synaptic array (i.e., the changes in the waray). Note that the proposed

online training does not adopt the conductance tuning process to mitigate the

nonlinear weight updates in synaptic devices. The tuning process requires increased

training costs and peripheral circuits, increasing the hardware burden for online

training.
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Algorithm 2. Online training process using synapse array. L-layer network,
high-precision weight Wc, weight in array Warray, quantized activation function
fq, gradient g, applying write pulses to the synaptic array ApplyingPulse,
rounding function R.

Requirements: a minibatch of inputs and targets (a° y), learning rate y
forl=1toL do I/l Forward propagation
st « Wrraya -1 /[ VMM using weights in array
if | <L then
a' < fy(sh
end if
end for
Compute the gradient in layer L, g(a-), knowing a* and y.
forl=Ltoldo //Backward propagation
g(@™) « g(sHYWtray VMM using weights in array
g(Walrray) < g(sHTat?
end for
forl=1toLdo

aszfrraly
ow}

aVVarray _

Il STE,

g(VVcl) < Q(M/alrray)

PNé «— R(Wcl)
W¢ « Update(W¢, g(Wh,y)
PN{ « R(W})
Wirray < ApplyingPulse(PN{,PN{)  //Applying PGM or ERS
pulse to array
end for

C
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3.3 Hybrid Training

We propose a hybrid training method that combines the offline and online
training methods. The above offline and online training methods use the wcs and
STE during the training processes, and we connect the wcs between the training
processes. In other words, the wes in the online training at the beginning are replaced
by the offline trained wcs that show high accuracy. Then, the trained wcs are
transferred to the conductance of synaptic devices in neuromorphic systems. The
online training is additionally performed to train the systems using in-situ VMM
data, as represented in Algorithm 2. As a result, the neuromorphic systems can
achieve high accuracy faster than when only the online training is conducted from
the beginning. Moreover, the number of weight updates can be significantly
decreased because the trained weights are transferred, reducing the cost of the
online training in the neuromorphic systems.

The process of the proposed hybrid training method is as follows: pre-training
(offline training), weight transfer, and online training. First, a neural network is

designed (for example, a 5-layer CNN with two convolutional layers and three
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fully-connected layers for the MNIST image classification task (Fig. 3.1 (a)). In the

pre-training step, the neural network is offline trained by the QNN training method

(Algorithm 1) in the PyTorch framework using the cross-entropy loss function. The

number of conductance levels in synaptic devices determines the weight precision

in the training process. In the weight transfer step, the conductance of all synaptic

devices is initialized to the minimum conductance by applying a long PGM pulse

to the synaptic array. Then, a PN matrix is calculated with the pre-trained wcs with

the n levels, which is the same as the number of conductance in LTP and LTD curves

of flash synaptic devices (Fig. 3.1 (b)). Subsequently, ERS pulses are applied

column by column to the synaptic devices, as many as the corresponding PN, as

represented in Fig. 3.1 (¢) and (d). Note that no conductance tuning process is used.

As aresult of applying ERS pulses to the devices, the pre-trained wes are transferred

to the conductance of synaptic devices, and wamays are obtained with the

conductance. In the online training step, the weight updates are conducted in the

neuromorphic systems with the in-situ training data, as represented in Algorithm 2.

After the weight transfer step, the warays are distributed around the wes because
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analog synaptic devices have device nonidealities such as nonlinearity and device

variation, which degrades the accuracy of neuromorphic systems. In this case, the

additional online training can improve the accuracy of the systems with the in-situ

training data, which reflects the device nonidealities (Fig. 3.1 (e)). Using the

proposed hybrid training method, neuromorphic systems can achieve high accuracy

compared to the accuracy of software-based neural networks while reflecting the

device nonidealities as well as the hardware imperfections (ex: wire resistance,

parasitic capacitance, external noise, etc.).
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applying the ERS pulses. (c, d) Schematic diagrams of the weight transfer step. The
weight transfer process is performed column-by-column. The voltage of 0 V is
applied to SL and BL of the selected column, and -Vin (voltage for inhibited line)
is applied to the SLs and BLs of the unselected column. The bias of Vin is half of
the Vsel (voltage for selected line). (€) Schematic diagram of applying update pulses
in online training. ERS pulses are applied to the devices in which the pulse number
increases during the training. PGM pulses are applied to the devices in which the

pulse number decreases.

3.4 Demonstration of Hybrid Training in Hardware

We apply the proposed hybrid training method to the fabricated AND-type flash
array. The 5-layer CNN is designed for MNIST image classification, as shown in
Fig. 3.1 (a). The input image is binarized, and the activation function of the hidden
layers is the ReLU function linearly quantized to 8-bit. Fig. 3.2 shows the
classification accuracy of the CNN as a parameter of weight level. The CNN is

trained in the software using the QNN training method (Algorithm 1). The accuracy
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of the CNN increases as the weight level increases because more precise weights

can extract the features of the input images better. The offline trained CNN achieves

an accuracy of 99.0 % with 11-level weights.

In the weight transfer step, the weights in convolution layer 1 (Convl in Fig.

2.3 (a), 5X5 kernels, 4 channels) are transferred to the conductance of the fabricated

synaptic array (25 WLs X 4 BLs). The wamays in the other layers are modeled in

the software as wqs with a Gaussian distribution function for variation in the array

(o/it = 40 %). In the online training step, the flattened input images are applied to

the WLs of the array, and the VMM operations in the Convl layer are performed

using the current sum in the fabricated synaptic array. The VMM operations in other

layers are performed in software using the modeled warmays to which the device

variation is applied. Then, the backward propagation is performed in the software

using the warays of the fabricated synaptic array and the modeled warmays to calculate

Aw. and update the PN. According to the updates in the PN, the PGM and ERS

pulses are applied to the corresponding synaptic device. In this work, only the

Convl layer is trained to focus on the effects of the hybrid training method on the
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implemented synaptic array, and the wamays in other layers have fixed values with

the variation during the online training process. If larger synaptic arrays are

implemented to cover all layers of the network, the accuracy of the network can be

further improved.

Table 3.1 compares the accuracy of MNIST image classification before the

online training step is performed. If the offline trained weights in the Convl1 layer

are used as they are, an accuracy of 97.8% is obtained even with the variation (o/u

=40 %) applied to other layers. On the other hand, after the weight transfer step of

the Convl layer is performed to the fabricated AND-type synaptic array, the

accuracy is significantly decreased. This accuracy degradation is caused by the

nonlinearity and the device variation in the synaptic array, which affect the VMM

operations of the Conv1 layer. Note that the features of the input images are directly

extracted in the Convl layer with a small size of weights. Thus, the accuracy is

affected by the weight changes in the Convl layer [68]. In contrast, the effective

training of the Conv1 layer can raise the accuracy of neuromorphic systems to that

of CNNs in which the pre-trained weights in the Convl1 layer are used as they are.
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This approach is significantly efficient for demonstrating the high performance of

the training method in the implemented synaptic array.

The experimental results of the hybrid training in the fabricated AND-type flash

array are shown in Fig. 3.3. The experiment results are compared with the

simulation results, in which the updates in warrays of the Conv1 layer are calculated

by the LTP and LTD model of the synaptic devices [52, 53]. In the simulation, the

weights are also fixed during the online training process, except for the Conv1 layer.

Fig. 3.3 (a) represents the loss value during the online training, where the black line

indicates the experiment loss value, and the red line indicates the simulation loss

value. The PGM and ERS conditions for updating the conductance are 8 V, 10 ps,

and -8 V, 10 ms, respectively. At the start point of the training iteration, the loss

value is relatively high, indicating that the nonidealities of the AND-type flash array

cause errors in the weight transfer step. However, the loss value in the experiment

is rapidly reduced as the training iteration increases. The average values of the loss

in the experiment and simulation results are ~0.051 and ~0.035, respectively, for

the last 100 training iterations. The small difference between the loss values can be
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caused by the read fluctuation, parasitic resistance, or conductance drift over time,

which are not calculated in the simulation.

The classification accuracy of the neuromorphic system is evaluated in the

simulation and the experiment, as shown in Fig. 3.3 (b). An accuracy gap is

exhibited between the pre-trained network (99.0 %) and the neuromorphic system

just after the weight transfer step (82.5%). However, the accuracy in the experiment

also rapidly increases as the training iteration increases. In particular, the accuracy

is recovered to 98.2 % after 1-epoch online training of the Convl layer in the

fabricated synaptic array. In this experiment, the LTP and LTD curves of the

fabricated synaptic devices are very nonlinear, which can cause significant accuracy

degradation in the reported online training methods. However, in the proposed

training method, the wcs are trained first in the software using the STE in online

training step; thus, the linear and symmetric weight updates can be performed

computationally. The updates in wamys are performed if the PN of the device is

changed, thereby minimizing the nonlinear weight updates and increasing the

accuracy in the proposed training method.
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In order to analyze the weight changes over the training iterations, we trace the

Ips of randomly selected devices, as shown in Fig. 3.3 (c). At the abrupt /p changes

during the training iterations, the PGM or ERS pulse is applied to the device. We

confirmed that the increase and decrease in /ps are asymmetric to each other

because of the LTP and LTD curves of the flash devices. Furthermore, the device

nonidealities, including noise, Ip drift, and read fluctuation, are exhibited in the

training process. However, by applying the proposed hybrid training, the

neuromorphic systems achieve high accuracy compared to the baseline accuracy.

These results indicate that the proposed method is significantly effective in

improving the accuracy of neuromorphic systems in which various device

nonidealities exist. Additionally, the experimental demonstration of the training

performance in the fabricated synaptic array is one of the major contributions of

this work compared to other papers on online training methods demonstrated only

in software.

Measurement results of the Ips of all devices in the Convl1 layer are shown in

Fig. 3.4 (a) during the 1-epoch training. This figure indicates the whole training
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process and the conductance changes in the fabricated synaptic array. Fig. 3.4 (b)

compares the measured warays in the flash array with wes in the software after 1-

epoch training. The measured waray distribution does not match the w. distribution,

which mainly results from the device nonidealities, as shown in Fig. 3.3 (¢). It is

worth noting that the measured warays in the Conv1 layer are trained while reflecting

the device nonidealities in the synaptic array. The CNN with the warays achieves

very high classification accuracy (98.2%), which is close to that of pre-trained

CNNs in the software (99.0%). Fig. 3.5 shows the wamy distributions in the other

layers except for the Convl layer before and after the training process. The

distributions in each layer are exactly the same before and after the training process,

validating that the weights in the layers except for the Convl layer are fixed during

the training process. It also indicates that the accuracy improvement of the CNN is

achieved by the online training of the Convl layer after the weight transfer step.

Fig. 3.6 shows the experimental results of the hybrid training in ten different

synaptic arrays. After 1-epoch online training of the Convl1 layer, the CNNs with
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the ten different arrays achieve high accuracy (average accuracy: 97.49%).

TABLE 3.1
ACCURACY BEFORE ONLINE TRAINING
Convl: a* Convl: a* Convl: c*
Others: a* Others: b* Others: b*
Accuracy (%) 99.0 97.8 82.5

a*: offline trained wq, b*: offline trained wq w/ 40% variation
C*: Warray in the fabricated array after weight transfer step
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Fig. 3.2. (a) Training curves of the 5-layer CNN trained by the QNN training

method as a parameter of weight levels. (b) Accuracy of the CNN at 10-epoch.
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Fig. 3.3. (a) Cross entropy loss value with respect to the training iteration during

the online training step. (b) Accuracy curves of the neuromorphic systems for

MNIST test set images. The baseline accuracy from the QNN pre-training is 99.0 %.

(c) Ip changes over the online training iteration in six flash devices. Various device

nonidealities are shown in the /p changes.
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3.3 Evaluation of Hybrid Training for Device Nonidealities

Fig. 3.7 (a) and (b) show the measurement results of the hybrid training as a
parameter of PGM and ERS pulse amplitude. The nonlinearity of LTP and LTD
curves in the flash devices is modulated by the PGM and ERS pulse amplitude, as
shown in Fig. 2.5. In particular, the LTP and LTD curves are significantly nonlinear
at a pulse amplitude of 10 V. The abrupt Ip changes in the nonlinear curves cause
the abrupt changes in weights. Thus, the decreasing speed in the training loss at a
pulse amplitude of 10 V is slower than that at other pulse amplitudes. In addition,
the more fluctuated loss curve is exhibited at a larger pulse amplitude. These
features in the loss curves are also shown in the accuracy curves in Fig. 3.7 (b). The
increasing speed in the accuracy is slow at a pulse amplitude of 10 V with more
significant fluctuations. Although the maximum classification accuracy of ~97% is
achieved at a pulse amplitude of 10 V, the highly nonlinear conductance responses
lower the training performance of the proposed method. However, the nonlinearity
effects can be mitigated by decreasing the learning rate in the online training step.

The decreased learning rate reduces the number of weight updates in the synaptic
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devices and the number of abrupt weight updates. Thus, a more stable accuracy
curve can be obtained by reducing the learning rate, resulting in high classification
accuracy (97.76%), as shown in Fig. 3.8.

Fig. 3.9 (a) shows the Ip changes of 100 flash devices in the fabricated array
over the retention time after the 1-epoch training was conducted. The training was
conducted with a pulse amplitude of 8 V and -8 V for PGM and ERS, respectively.
The fabricated flash devices show superior retention characteristics with the charge
trap layer, as shown in Fig. 2.9. The small Vi, changes over time result in the trained
Ips being maintained over three days. Fig. 3.9 (b) shows the accuracy degradation
after 8 hours in 3 different flash arrays. Due to the nonvolatile memory
characteristics of flash devices, the CNNs with the arrays maintain high accuracy
after 8 hours. The endurance characteristics of flash devices under the PGM and
ERS conditions are shown in Fig. 3.10. (a). The Vi difference in the PGM and ERS
states of the flash device is maintained until the cycles of 10°. Because only a small
part of the entire memory window in the flash device is used in the cycling tests,

the device degradation is not extensively exhibited until 10° cycles. It is worth
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noting that the total number of PGM and ERS pulses to the flash synaptic array is
~500 during the training process, as shown in Fig. 3.10 (b). The average number of
PGM and ERS pulses to one device is ~5, which is significantly lower than 10°.
The number of PGM and ERS pulses can be additionally decreased by reducing the
learning rate. Therefore, the device degradation by the PGM and ERS pulses during

the training process is insignificant.
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3.4 Comparison with Online Training and Other Works

The main advantage of the proposed hybrid training method is that the training
efficiency is significantly improved compared to the online training conducted from
the beginning. Fig. 3.11 shows the accuracy comparison of the hybrid training and
online training for MNIST image classification. The accuracy curve of the hybrid
training was obtained in the fabricated synaptic array, and that of the online training
was obtained in the software, where the nonlinearity in LTP and LTD curves with a
pulse amplitude of 8 V and device-to-device variation were reflected. The hybrid
training was conducted on the Convl1 layer, and the online training was conducted
on all layers. As shown in Fig. 3.11, the accuracy of the online training is ~98.3%
after 10-epoch training, even with the nonlinear conductance response, which is
very close to the accuracy of offline trained CNN. This training result means the
online training itself significantly enhances the accuracy of neuromorphic systems
with hardware nonidealities. However, the proposed hybrid training improves the
accuracy of neuromorphic systems much faster than the online training conducted

from the beginning. In the hybrid training, the neuromorphic system achieves an
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accuracy of ~98.3 % in less than one epoch training using only the Convl layer.
This advantage dramatically enhances the training efficiency in neuromorphic
systems. The total number of PGM and ERS pulses between the hybrid training and
the online training are compared in Table 3.2. In the hybrid training, the total
number of PGM and ERS pulses is ~500 times for an accuracy of 98.3%, whereas
it is ~2.4x10° times in the online training. The difference in the number of PGM
and ERS pulses is because the online training conducted from the beginning
requires all-layer training with longer training iterations to achieve high accuracy.
Given that the training cost in neuromorphic systems increases as the number of
weight updates increases, the low number of weight updates in hybrid training is
one of the main advantages.

The comparison of this work and other reported online training algorithms for
neuromorphic systems is shown in Table 3.3. There are many studies on
neuromorphic systems using offline training methods, which adopt the conductance
tuning process to transfer the offline trained weights to the conductance of synaptic

devices. In offline training methods, high accuracy of software-based neural
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networks can be achieved if the weights are accurately transferred. However, errors

in the weight transfer step exist in neuromorphic systems, degrading the accuracy.

In addition, the time-varying device nonidealities can degrade the performance of

neuromorphic systems with offline training. Many studies on neuromorphic

systems use online training methods in which weight training is performed in the

systems. However, most online training methods are verified in the software

simulation, although the training method is proposed for neuromorphic hardware.

Therefore, the online training methods cannot fully calculate the device

nonidealities in the software simulation, meaning that the reported online training

methods cannot fully reflect the hardware imperfections. Some works on online

training methods verified in the hardware; however, they adopt the closed-loop

conductance tuning process to update the weights, significantly increasing the

training cost. On the other hand, the hybrid training method proposed in this work

exhibits superior accuracy improvements in neuromorphic systems without the

conductance tuning process. This result shows that the proposed method has

immunity to the time-static nonidealities of synaptic devices without the tuning
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process. Furthermore, the hybrid training method can reduce the training cost and

increase training efficiency with 1-epoch training for the Convl layer. Notably, the

high performance of the proposed hybrid training method is experimentally verified

with various device nonideality conditions in the fabricated flash synapse array.

Therefore, the proposed hybrid training method can be generally applied to

neuromorphic hardware with various analog synaptic devices.

TABLE 3.2
NUMBER OF PGM/ERS PULSES FOR HIGH ACCURACY THROUGHOUT
TRAINING
Hybrid Training: a* Online Training: b*
# of PGM Pulses 1.91x10? 1.18x10°
# of ERS Pulses 3.12x10? 1.17x10°

a*: Conducted on Conv1 layer, 1-epoch training for accuracy of 98.3%
b*: Conducted on all layers, 10-epoch training for accuracy of 98.3%
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TABLE 3.3
COMPARISON WITH OTHER WORKS

Training

AG

Other works Training method Evaluation Site 2 Accuracy
Epoch Tuning
Zhang et al. [49] Online Sign BP Software Simulation 20 X 94.50%
Chang etal. [51] Online BP Software Simulation >10 X 97.93%
Fu et al. [69] Online BP Software Simulation 125 X 95.55%
Lim et al. [48] Online Menhalisll oo areSkniitation 1 X 95.36%
Learning Rule
D. Kwon et al. [17] Online BP Software Simulation 20 X 97.83%
Ambrogio et al. [70] Online BP Hardware PCM 20 Cl_'zzid 97.94%
. ) ISPP-
C. Lietal [71] Online BP Hardware RRAM >1 91.71%
Based
96.19%
P. Yaoetal. [72] Hybrid BP Hardware RRAM 1 Closed
Loop (Only Last Layer)
98.2%
This work Hybrid BP Hardware AND Flash =1 X
(Only Conv1)
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Chapter 4

Conclusion

In this work, we have fabricated a flash-type synaptic device with high
reliability, scalability, and CMOS process compatibility. The fabricated flash device
has a charge trap layer of SizNs, exhibiting nonvolatile memory functionality and
the capability of multi-bit weight storage. We have also fabricated an AND-type
array architecture with flash devices. Due to the parallel SLs and BLs, the fabricated
AND-type array has the advantage of high efficiency in VMM operations and
selective PGM and ERS operations. Furthermore, to utilize the flash device as an
artificial synaptic device, the synaptic characteristics of the array have been
systematically analyzed and optimized in terms of device variation, nonlinearity,
and reliability. These optimizing results indicate that the fabricated flash array is
outstanding as a synaptic array for low-power and highly reliable neuromorphic
systems.

Besides, we have proposed a novel hybrid training method, which combines

the offline training and online training for neuromorphic systems. The performance
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of the proposed training method was experimentally demonstrated in the fabricated

AND-type flash array. After the weight transfer step, the neuromorphic system

exhibits a degraded accuracy (82.5%) for MNIST image classification, which is

lower than the accuracy of offline trained CNN. However, the accuracy of the

neuromorphic system rapidly increases to 98.2% by using the hybrid training on

only the Convl layer for one epoch. Furthermore, the proposed method was

experimentally verified to achieve high accuracy under various device nonideality

conditions. These results indicate that the hybrid training method can be generally

applied to neuromorphic systems using other types of synaptic devices.

Consequently, the proposed hybrid training method provides a highly efficient

training solution for neuromorphic systems using analog synaptic devices.
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