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Abstract

In recent years, research on autonomous sensors and signal processing techniques

are being actively conducted with the increased public’s interest on autonomous driv-

ing. Autonomous driving platforms such as autonomous robots, drones, and vehicles

are being developed, and autonomous sensors such as lidar, camera, radar, and ultra-

sonic are being utilized. Among these sensors, the radar sensor is considered essential

because it has a stable performance even under a lightless or adverse weather condi-

tions and has a wide detectable range compared to other sensors. The radar sensor can

be installed at robots, vehicles, and drones to perceive the surrounding environment

or obtain information about detected targets such as the relative velocity, distance, and

angle.

In this dissertation, I propose advanced signal processing techniques for radar sen-

sor based indoor and outdoor autonomous driving. Simultaneous localization and map-

ping (SLAM) is becoming significant in autonomous driving. To accurately estimate

the position of autonomous driving platform for SLAM, the ego-motion such as its

rotation angle and velocity should be considered. A research on estimating the ego-

motion of radar-equipped robot using a radar sensor without any additional device is

proposed in this dissertation. In addition, when driving in a complex environment such

as highway or urban road, various targets exist and unpredictable situations can occur.

By predicting the path of surrounding vehicles, potential hazards can be prevented in

advance, or it can be used to adjust the speed of the ego-vehicle or change lanes. There-

fore, this dissertation proposes a method to estimate the heading direction of surround-

ing vehicles using a radar sensor. Lastly, there has been frequent accidents by leaving

an infant or animal inside the vehicle, and it is becoming mandatory to install indoor

passenger detection system in an autonomous vehicle. By monitoring the position of

passengers, the safety can be improved and energy inside vehicle can be managed ef-
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fectively. Also, by using a radar sensor, multiple people can be detected contactless

and their position can be estimated even when they are stationary. Therefore, this dis-

sertation proposes a method for detecting the number and location of passengers inside

a vehicle using a radar sensor.

keywords: Autonomous driving, ego-motion estimation, frequency-modulated

continuous-wave (FMCW) radar, impulse radio ultra-wideband (IR-UWB) radar,

in-vehicle passenger detection, vehicle orientation estimation

student number: 2017-25081
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Chapter 1

INTRODUCTION

In recent years, people’s interest in autonomous driving has been rapidly increas-

ing. To realize autonomous driving, autonomous platforms such as robot, drone, and

vehicle need to perceive the surrounding environment and detect multiple targets with

high precision. To achieve this task, sensors such as camera, lidar, and radar, each play

a unique role and assist autonomous driving. Camera sensor can obtain RGB image

data of target, but it is sensitive to adverse weather and light conditions and privacy

issue can occur. Lidar sensor which uses laser beam can obtain 3D point cloud data

at a high spatial resolution, but its detection performance is degraded in rain or foggy

weather. Meanwhile, the radar sensor which uses radio wave has a robust detection

performance under adverse environmental conditions and has outstanding velocity es-

timation performance. The radar sensor is considered essential in autonomous driving,

and various types of radar sensor with different modulation techniques are used to

estimate target information. In particular, the frequency-modulated continuous-wave

(FMCW) radar and impulse radio ultra-wideband (IR-UWB) radar are widely used.

An FMCW radar uses a signal whose frequency increases linearly with time. This

modulation technique is efficient for target detection because it enables the joint es-

timation of distance and velocity at a high resolution while consuming low power.

The distance and velocity information of the target can be estimated by analyzing
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the frequency domain received signal [1]. In addition, an FMCW radar with multiple-

input–multiple-output (MIMO) antenna system is gaining significant attention because

modern autonomous driving functions require obtaining an image of the front scene,

which can be realized through a high-resolution radar data. The MIMO radar can pro-

vide more sophisticated target detection results because it enables the precise estima-

tion of target’s angle information [2]. Meanwhile, an IR-UWB radar uses a very short

pulse with duration in nanoseconds [3], which has a low power consumption and high

range resolution [4]. Studies related to IR-UWB radar are mainly focused on indoor

detection because it has a relatively short detectable distance.

In this dissertation, I propose a signal processing technique for indoor and outdoor

autonomous driving based on radar sensor. The main topics can be broadly divided as

ego-motion estimation, orientation estimation of surrounding vehicles, and occupancy

detection of passengers inside a vehicle. A 60 / 77 GHz FMCW radar and an IR-UWB

radar are used in the dissertation. The remainder of this dissertation is organized as

follows.

In Chapter 2, the basic principles of FMCW and IR-UWB radars are explained.

Then, a technique for estimating the ego-motion using radar sensor is proposed in

Chapter 3, where the focus is autonomous robot and autonomous vehicle. To perform

radar-based simultaneous localization and mapping (SLAM), the ego-motion such as

rotation angle and ego-velocity should be considered. To estimate the rotation angle, I

use the distribution of detected points on a two-dimensional (2D) plane. The distribu-

tions of the detected points at successive time instants are correlated with each other.

The detected points in the angle-velocity domain are transformed into matrix data,

and the rotation angle is estimated by calculating the correlation between the matrices.

In addition, the relative velocity of stationary targets is equal to minus sign of ego-

velocity. In the angle-velocity domain, the moving targets are randomly distributed,

whereas the stationary targets are distributed along a specific trend line. Therefore, the

ego-velocity of the robot and vehicle is estimated by finding the trend line formed in

2



the angle-velocity 2D plane.

Next, a technique to estimate the heading direction of vehicle using radar sensor

is proposed in Chapter 4. The estimated orientation information can help to predict

the path of a surrounding vehicle, which can be used in vehicle re-identification task.

Also, it can be used to perform appropriate actions such as changing lane or adjusting

the speed of the ego-vehicle. In Chapter 4.1, the instantaneous movement of vehicle is

estimated using the range-angle map obtained from MIMO FMCW radar. The automo-

tive radar sensor data are accumulated for five different movements of the front vehicle

(e.g., stop, going ahead, reversing, turning left, and turning right). Then, the radar data

are converted into range-angle map by applying high-resolution angle estimation al-

gorithm. The different movements of the front vehicle are classified by applying the

convolutional neural network (CNN) algorithm. In Chapter 4.2, the vehicle orientation

is estimated using the point cloud data obtained from imaging radar. The radar signal

is collected by varying the orientation angle of the vehicle and the point cloud data

corresponding to the vehicle are extracted through signal preprocessing. Because the

processed point cloud data are distributed along the axis of vehicle orientation, the

orientation angle is estimated by applying regression algorithms.

Finally, a technique to detect the occupancy of passengers inside vehicle using

radar sensor is proposed in Chapter 5. The radar data are collected by installing the

radar sensor at the rear-view mirror position inside the vehicle. In Chapters 5.1 and 5.2,

the signals collected from an IR-UWB radar sensor are processed to extract signals

from meaningful targets and reduce undesired signals from clutter and noise. Then,

by applying either feature extraction method (Chapter 5.1) or non-feature extraction

methods (Chapter 5.2), the number and position of passengers inside vehicle are es-

timated. In Chapter 5.3, the method using FMCW radar is presented to overcome the

limitations of the IR-UWB radar-based method. The method is robust to indoor envi-

ronmental changes regardless of whether the passenger is moving or not. By applying

the phase-based clutter suppression method to the received signal, the signals from

3



undesired reflections are eliminated and signals from passengers are clearly identified.

Then, by applying various machine learning algorithms, the number and position of

passengers inside vehicle are accurately estimated.
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Chapter 2

PRINCIPLES OF RADAR SYSTEMS

2.1 FMCW MIMO RADAR

The FMCW radar transmits a sinusoidal signal whose frequency increases linearly

within the chirping duration. As shown in Fig. 2.1, the instantaneous frequency of a

chirp signal can be expressed as

fI(t) = fc +
B

∆T︸︷︷︸
γ

t (0 ≤ t ≤ ∆T ), (2.1)

where fc is the carrier frequency, B is the bandwidth, ∆T is the chirping duration,

and γ is the frequency slope, respectively. The instantaneous phase can be obtained by

Figure 2.1: Basic principles of beat signal generation in FMCW radar
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integrating the instantaneous frequency with respect to time,

ΘI(t) = 2π

∫ t

0
fI(t)dt = 2π

(
fct+

γ

2
t2
)
, (2.2)

and the transmitted chirp signal can be expressed as

ST (t) = AT cos
(
ΘI(t)

)
= AT cos

(
2π
(
fct+

γ

2
t2
))

, (2.3)

whereAT is the amplitude of the transmitted signal. The time-delayed signals reflected

from nearby scatterers are received at the receiving antenna (Rx), and can be expressed

as

SR(t) =

Nt∑
n=1

An cos
(
ΘI(t− τn)

)
=

Nt∑
n=1

An cos

{
2π

(
fc(t− τn) +

γ

2
(t− τn)2

)}
, (2.4)

where Nt is the number of scatterers, and An and τn are the amplitude and time delay

of the n-th target, respectively. The received signals are mixed with the transmitted

signal and low-pass filtering is applied, which can be expressed as

X(t) = LPF (ST (t)SR(t)), (2.5)

where LPF (·) denotes the low-pass filtering operation.

The time delay τn is the two-way propagation delay of the radio wave, generally

expressed as τn = 2rn
c . In an FMCW radar system as shown in Fig. 2.1, multiple chirp

signals are transmitted periodically; the range variation between different chirp signals

must be considered. In addition, when an array antenna system with multiple transmit-

ting and receiving antennas is used, the path difference between each antenna element

must be considered. By incorporating these additional constraints, the modified time

delay τn can be expressed as a function of chirp index m and antenna index l as

τn(m, l) =
2(rn +mvnTc) + ld sin θn

c
, (2.6)
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where rn, vn, and θn are the distance, relative velocity, and incident angle of the n-th

target. In addition, Tc is the chirp interval, d is the antenna spacing, and c is the speed

of light, respectively.

By substituting (2.6) into (2.4) and (2.5) and neglecting the high-frequency term,

the resulting beat signal can be expressed as

X(t, m, l) '
Nt∑
n=1

A′n cos

{
2π

(
2γrn
c

fbn

t+
2vn
λ

fdn

mTc

+
d sin θn
λ
fan

l +
2rn
λ
ψn

)}

(m = 0, 1, · · · , M − 1)

(l = 0, 1, · · · , L− 1), (2.7)

where λ is the wavelength of the transmitted signal, M is the number of chirps, and L

is the number of virtual antennas, respectively. When quadrature demodulation is used

and analog-to-digital sampling is applied, the resulting beat signal can be expressed as

X[k, m, l] '
Nt∑
n=1

A′n exp
{
j2π
(
f bnkTs + fdnmTc + fan l + ψn

)}
(k = 0, 1, · · · , K − 1)

(m = 0, 1, · · · , M − 1)

(l = 0, 1, · · · , L− 1), (2.8)

where Ts is the sampling period, k is the sample index, and K is the number of sam-

ples, respectively. The beat signal in (2.8) is a 3D exponential signal whose frequency

along each axis contains information about the target distance, velocity, and angle.

By applying 3D fast Fourier transform (FFT) to (2.8), the target information can be
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obtained from the frequency estimates as follows:

r̂n =
c

2γ
f̂ bn

v̂n =
λ

2
f̂dn

θ̂n = arcsin

(
λ

d
f̂an

)
. (2.9)

The processing of M chirp signals to estimate these three target parameters is defined

as a frame in the remainder of dissertation.

2.2 IR-UWB RADAR

In an IR-UWB radar system, the radar transmits a sequence of narrow pulse signals

that occupy a wide frequency spectrum. The main advantages of this system is the

improved range resolution by using short pulses, and immunity to external narrowband

noise by using a wide frequency spectrum [5]. The transmitted signal can be written

as

s(t) = x(t) cos(2πfct), (2.10)

where x(t) is the complex envelope of the pulse signal and fc is the carrier frequency.

Among the various types of pulse waveforms, the Gaussian pulse is most widely used

due to its relative ease of implementation and excellent time-frequency product [6].

A modulated Gaussian pulse signal is shown in Fig. 2.2, for both time domain and

frequency domain.

When the transmitted signal is incident on the target, the signal is backscattered

and then received at the receiver. The received signals can be expressed as

r(t) =
M∑
m=1

am s(t− τm) + n(t)

=
M∑
m=1

am x(t− τm) cos{2πfc(t− τm)}+ n(t), (2.11)
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Figure 2.2: Gaussian pulse signal: (a) in time domain (b) in frequency domain

where am and τm are the attenuation coefficient and time delay of the mth path, M is

the number of paths, and n(t) is the noise added on the receiving antenna, respectively.

Then, the received signals are digitalized through a sampling process, which can be

expressed as

r[n] = r(nTs) (n = 1, 2, · · · , N), (2.12)

where Ts is the sampling period andN is the number of samples. In the IR-UWB radar

system used in the dissertation, the time interval between adjacent samples is 26 ps,

which corresponds to a range resolution of 4 mm. Thus, 256 samples are needed to

display a range of 1 m. I define a set of 256 samples as a frame, and the number of
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frames determines the range of observation. In addition, a set of frames is defined as a

scan. If the number of frames is denoted as nf , 256 × nf samples are obtained from

each scan (i.e., N = 256× nf ), and a range of nf m is observed.

Since the duration of a pulse is very short, sampling needs to be performed very

quickly in an IR-UWB radar system, which is extremely difficult to implement in real

time. To solve this issue, a parallel sampling is performed, which means that multi-

ple samplers are used to sample the signal in parallel. The block diagram of parallel

sampling is shown in Fig. 2.3. Each sampler samples the signal every NsTs seconds,

while the sampling offset between adjacent samplers is Ts seconds. By combining the

results from each sampler, it has an equivalent effect of sampling per Ts seconds and

fast sampling can be achieved.

Figure 2.3: Block diagram of parallel sampling
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Chapter 3

EGO-MOTION ESTIMATION USING FMCW RADAR

3.1 APPLICATION TO AUTONOMOUS ROBOT

3.1.1 Motivation

Recently, the importance of SLAM has been increasing due to the growing popu-

larity of autonomous robots, vehicles and unmanned drones. SLAM is a technique in

which a robot or vehicle moves in a new environment and simultaneously forms map

and locates its position. To sense the surrounding environment, sensors such as laser

or camera are widely used for SLAM [7]. These sensors have the advantage of detect-

ing the distance to an object at high resolution. However, the detection performance

of these sensors can be deteriorated in foggy or smoky environments [8, 9], which can

significantly degrade the performance of SLAM.

Meanwhile, the radar sensor shows robust performance under low-light conditions.

Also, the information about the target such as its relative velocity and radar cross sec-

tion (RCS) can be obtained, which can be used to improve the performance of SLAM.

As a result, studies on radar-based SLAM have been actively conducted by a num-

ber of researchers [10, 11, 12, 13]. For example, the authors in [10] used an UWB

pulse-echo radar and performed SLAM by using the spectrogram of the received echo

signal. Furthermore, research on SLAM using 24 GHz FMCW radar was conducted in
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[11], giving the potential of radar-based SLAM to be used in an indoor environment.

In [12], a millimeter-wave radar was used and the RCS information of the target was

used to enhance the performance of SLAM. Recently, the authors in [13] developed a

dual-mode FMCW radar sensor to perform SLAM in an indoor environment. To in-

crease the performance of SLAM, the radar sensor used waveforms with two different

bandwidths to detect short-range and long-range regions simultaneously.

In general, radar-based SLAM mainly comprises two steps. The first step is de-

tecting objects through a radar sensor, and the second step is accumulating detection

results of successive time instants. When accumulating the detection results, the ego-

motion of the radar-equipped device (e.g., a robot or a vehicle) must be considered. In

most of the previous studies, additional motors [14] or gyro sensors [15] were installed

to estimate the ego-motion of the robot such as its rotation angle and velocity. How-

ever, installing devices for motion estimation incurs additional costs and increases the

complexity of the overall system.

Therefore, in this study, I propose a method to estimate the ego-motion (e.g., ro-

tation angle and ego-velocity) of a radar-equipped robot by using only radar sensor

data without any additional devices. First, I mount a radar sensor on a small robot

that performs linear and circular movements, and collect signals from the surrounding

environment. Then, I use the detected points in the angle-velocity domain to estimate

the rotation angle and velocity of the robot. In this domain, the signals from stationary

and moving targets can be distinguished [16], [17]. To estimate the rotation angle, I

transform the detected points in the angle-velocity domain into matrix data consisting

of binary values. The matrix data acquired in successive time instants have similarities

with each other, and the rotation angle of the robot can be estimated by calculating

the correlation between the matrices. In addition, to estimate the ego-velocity, I note

that the relative velocity of stationary targets is equal to the ego-velocity of the robot.

As a result, the detected points of stationary targets form a specific trend line in the

angle-velocity domain. I apply the line detection algorithm to the detected points in the
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angle-velocity domain and the ego-velocity of the robot can be estimated by finding

the y-intercept value of the trend line.

The estimated ego-motion results can help control the robot’s movement when the

motor or gyro sensor is not functioning properly. In addition, because the proposed

method only requires data from the radar sensor, it can reduce the burden of installing

additional equipment on small robots.

The remainder of this study is organized as follows. In Chapter 3.1.2, I introduce

the radar sensor and robot used in the measurements. Then, a method for estimating the

robot’s ego-motion from the processed radar sensor data is discussed in Chapter 3.1.3.

Next, in Chapter 3.1.4, I verify the estimation performance of the proposed method

with the measurement data. Finally, conclusions are given in Chapter 3.1.5.

3.1.2 Radar Sensor for SLAM

Radar-Robot System Used in Measurements

In the experiment, I used an FMCW radar sensor with a center frequency of 62

GHz, which was developed in [13]. Unlike the pulse-Doppler radar, the FMCW radar

can estimate the range of target at high range resolution through dechirp processing.

The radar sensor used in this study transmits the waveform shown in Fig. 3.1, enabling

both long-range and short-range detections. The bandwidths of 1.5 GHz and 3 GHz

are used for long-range and short-range detection, respectively. Because the range res-

olution of the FMCW radar is inversely proportional to the bandwidth [18], objects

placed nearby are detected with a higher resolution. The detailed specifications of the

FMCW radar are listed in Table 3.1.

In the radar-robot system, the radar is mounted on a robot and the robot performs

various linear and circular motions. The robot delivers the ego-motion information ac-

quired from the motor to the radar, and the radar delivers the detection results to the

robot. Then, the radar-based SLAM is generally performed by combining the detec-

tion results of the radar and the ego-motion information of the motor. To enhance the
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Figure 3.1: Transmitted waveform of the FMCW radar

estimation performance, estimating the yaw rate has been mainly considered in SLAM

for autonomous robots and vehicles [19]. In this study, I will estimate the ego-motion

of the robot by only using the radar sensor data, and the information from the motor

and gyro sensor will be used as ground truth for comparison.

Analysis of Detection Results

The FMCW radar detects the distance, velocity, and angle of targets located in

the field of view (FOV) of the radar. When the robot rotates, the antenna boresight

changes with respect to the rotation angle, and the angles of the detected points also

Table 3.1: Specifications of the FMCW radar

Radar parameters Long-rage detection Short-range detection

Center frequency (GHz) 62 62

Bandwidth (GHz) 1.5 3

Number of chirps 256 256

Chirp duration (µs) 150 150

Maximum detectable distance (m) 20 10

Maximum detectable velocity (m/s) 8 8

Range resolution (cm) 10 5

Velocity resolution (m/s) 0.315 0.315

Field of view (deg.) -20 to 20 -60 to 60
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change accordingly. Fig. 3.2a shows the detection results when the robot is rotating. In

the figure, the boresight direction is changed from y to y′, and the angle of the targets

is shifted by φ. Therefore, the rotation angle can be estimated by measuring the angle

difference before and after the rotation.

However, when the FOV of the radar is limited, the number of detected targets

can change as the radar rotates. Fig. 3.2b shows the modified version of Fig. 3.2a by

considering the FOV of the radar. In the figure, the red targets are inside the FOV of

the radar before and after the rotation. On the other hand, the green targets are only

detected before the rotation, and the blue target is only detected after the rotation. In

this case, the rotation angle can still be estimated because the red targets are shifted by

the rotation angle and there is a high correlation between the data. The detailed method

for estimating the rotation angle will be explained in Chapter 3.1.3.

Meanwhile, when the robot moves forward with a velocity of ve, the relative ve-

locity of stationary targets is approximately detected as −ve. As a result, the detected

points of stationary targets form a straight line in the angle-velocity domain, as shown

in Fig. 3.3. Therefore, the ego-velocity of the robot can be estimated by applying a line

detection algorithm to the detected points in the angle-velocity domain.

(a) Detected points: FOV is not considered (b) Detected points: FOV is considered

Figure 3.2: Analysis of detection results when the robot rotates
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Figure 3.3: Analysis of detection results in angle-velocity domain

3.1.3 Proposed Method for Ego-Motion Estimation

In this study, I introduce a method for estimating the ego-motion of the radar-

equipped robot. First, I present a method for converting the detection results into their

matrix form. Then, I propose a method for estimating the rotation angle, followed by

a method for estimating the ego-velocity.

Matrix Transformation of Radar Sensor Data

To estimate the ego-motion of the robot, I plot the detected points in the angle-

velocity domain. When θ[k] and v[k] are angle and velocity information of kth detected

points, the detected points can be expressed as (θ[k], v[k]) (k = 1, 2, · · · , Nt), where

Nt is the number of detected points. To find the correlation between the data before

and after the rotation, I convert the points in the angle-velocity domain into their matrix

form. The overall process of the matrix transformation is summarized in Fig. 3.4. First,

I quantize the detected velocity and angle values according to their resolutions. For the

angle and velocity resolutions of θres and vres, the quantized values can be expressed

as

θ̃[k] = bθ[k]

θres
+ 0.5c · θres,

ṽ[k] = bv[k]

vres
+ 0.5c · vres,

(k = 1, 2, · · · , Nt), (3.1)
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where b·c represents the floor function. Next, I create lists of quantized angle and

velocity values, which can be expressed as

θlist = [−θmax,−θmax + θres, · · · , θmax − θres, θmax],

vlist = [−vmax,−vmax + vres, · · · , vmax − vres, vmax]. (3.2)

Here, θmax and vmax denote the maximum values of angle and velocity, respectively.

In addition, the number of points in θlist and vlist areNθ andNv, respectively. Through

this process, the angle-velocity domain is divided into Nθ × Nv regions, each with a

size of θres× vres. Then, a transformed matrixM0 is formed by comparing the quan-

tized values of (3.1) and (3.2). The size of the matrix is Nv × Nθ, and the element is

one if the quantized point exists inside the region and zero otherwise. I will use this

transformed matrixM0 to estimate the rotation angle of the robot.

Yaw Rate Estimation

To estimate the yaw rate, the correlation between the matrices at two time in-

stants is calculated. The calculation is performed in two directions using forward and

backward cross-correlations, as illustrated in Fig. 3.5. In the figure, I use a right side

Figure 3.4: Matrix transformation of detected points in the angle-velocity plane
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zero-padded matrix M f for calculating the forward cross-correlation, and a left side

zero-padded matrix M b for calculating the backward cross-correlation. These matri-

ces can be expressed as

M f = [M0, O],

M b = [O,M0], (3.3)

where O is a zero matrix whose elements are all zero. The width of the zero matrix O

was set as Ñθ = bNθ4 c by considering the FOV of the radar.

When the transformed matrix at the ith frame is defined asM0
i , the cross-correlation

between the transformed matrix at the ith frame and the zero-padded matrix at the jth

frame can be calculated as

xf(i, j)[l] =

Nθ∑
q̂=1

Nv∑
p̂=1

M f
j (p̂, q̂ + l − 1)M0

i (p̂, q̂),

xb(i, j)[Ñθ + 2− l] =

Nθ∑
q̂=1

Nv∑
p̂=1

{M b
j(p̂, q̂ + Ñθ + 1− l)×

M0
i (p̂, q̂)}

(l = 1, 2, · · · , Ñθ + 1). (3.4)

The first vector xf(i, j) which is the result of the forward cross-correlation represents

the rotated angle in the clockwise direction. Similarly, the second vector xb(i, j) which

Figure 3.5: Block diagram of the method for estimating the yaw rate
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is the result of the backward cross-correlation represents the rotated angle in the coun-

terclockwise direction. These two vectors can be cascaded to form a single vector

x(i, j) = [xb(i, j)[1], xb(i, j)[2], · · · , xb(i, j)[Ñθ + 1],

xf(i, j)[2], · · · , xf(i, j)[Ñθ + 1]], (3.5)

which represents the rotated angle in both clockwise and counterclockwise directions.

Because the components xb(i, j)[Ñθ + 1] and xf(i, j)[1] both represent the value at the

zero angle, I remove the latter to avoid repetition. Then, to estimate the rotated angle,

the maximum value and its index are extracted as

Nc = max x(i, j)[l],

l̂ = arg max
l

x(i, j)[l]. (3.6)

Finally, the rotated angle is estimated from the index of the maximum value, which

can be expressed as

φ =

 (l̂ − Ñθ − 1) θres if Nc > αmin (Nt,i, Nt,j)

0 otherwise
, (3.7)

where Nt,i and Nt,j represent the number of detected points in the ith frame and jth

frame, respectively. When determining the rotation angle, I assume that the rotation an-

gle is zero if the maximum value does not exceed a certain threshold. For this purpose,

I use a threshold coefficient α having value between zero and one to set an appropriate

threshold. By using the estimated rotation angle, the yaw rate can be determined as

φ̇ =
φ

T
, (3.8)

where T is the duration between two time instants used to calculate the cross-correlation.

Ego-Velocity Estimation

Several studies have been conducted to estimate the ego-motion of vehicles in

the automotive radar context [20, 21, 22]. Especially, in [20], the velocity of the ego-

vehicle was estimated using the detected points in the angle-velocity domain. This
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method can also be applied to the detection results of radar-based SLAM. In the angle-

velocity domain, the velocity of stationary targets is equal to the ego-velocity with

a reversed sign, as shown in Fig. 3.3. The detected points of stationary targets are

concentrated on the velocity axis near the minus sign of ego-velocity, but randomly

distributed on the angular axis. In other words, the detected points form a straight line

parallel to the angular axis. In contrast, the detected points of non-stationary targets

are randomly distributed without a particular trend line.

Because the number of stationary targets is generally higher than the number of

non-stationary targets, I can estimate the ego-velocity by extracting the trend line of

the detected points. The linear regression algorithm is applied to the detected points in

the angle-velocity domain and a linear model is obtained as

Y = AX + B, (3.9)

whereA andB are slope and y-intercept value. Then, the ego-velocity can be estimated

by finding the y-intercept value (i.e, B = −ve).

Various line estimation algorithms can be used to extract a trend line from the

data. Linear least square (LLS) [23] is one of the representative algorithms for finding

linear relationships between data. However, its performance is degraded when outlier

or noise is present in the data [24]. The Hough transform [25] and random sampling

consensus (RANSAC) [26] are well known as line detection algorithms that are ro-

bust to outlier. Hough transform algorithm converts the points in the image space into

those in the parameter space and uses a voting procedure to detect straight lines. The

RANSAC algorithm is an iterative method that randomly extracts a sample and detects

an appropriate line through the voting process. In this study, I will use the LLS, Hough

transform, and RANSAC algorithms to estimate the ego-velocity of the robot.
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3.1.4 Performance Evaluation

Estimation Results of Yaw Rate

The measurement was conducted in a corridor, as shown in Fig. 3.6. There are

obstacles in the hallway such as a chair and a cart. The robot moves along the corridor,

turns left when it reaches the end of the corridor, and arrives at the entrance. Through-

out the entire path, the robot encounters two stationary obstacles and a moving person.

To draw a map of the surrounding environment, the robot continuously stops moving

and rotates left and right. Therefore, I divided the movement of the robot into four

scenarios. As shown in Fig. 3.7, the robot is stationary in case 1, going forward in

case 2, and rotating left and right in cases 3 and 4. For example, when the robot is

moving forward, the measured data is classified as case 2, and if it is rotating left and

right without moving forward, it is classified as cases 3 and 4. The measured data was

divided into intervals of 1 s, and this resulted in 217 non-overlapping data. In addition,

θres and vres were set as 0.1◦ and 0.1 m/s, and θmax and vmax were set as 7 m/s and

70◦, respectively. This resulted in 141 possible quantized values for both angle and

velocity, indicating that Nv and Nθ were equally set as 141.

The detection results in the angle-velocity domain are shown in Fig. 3.8. Fig. 3.8a

corresponds to the first frame of the data acquired for 1 s, and Fig. 3.8b corresponds to

Figure 3.6: Experimental environment
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Figure 3.7: Scenario of robot movement

the last frame of the data acquired for 1 s. As the frame advances, most of the detected

points are shifted to the right on the angular axis. However, the result in Fig. 3.8b

cannot be simply expressed as the shifted version of the result in Fig. 3.8a because the

number of detected points can change when the robot rotates. To determine the correla-

tion between these two data, I applied the matrix transformation to the detected points.

The resulting matrix is illustrated in Fig. 3.9, where the white area represents value 1

and the black area represents value 0. Then, I calculated the correlation between the

transformed and zero-padded matrices. The estimated rotation angle obtained through
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Figure 3.8: Detection results in the angle-velocity domain (Case 4)
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(a) First frame (b) Last frame

Figure 3.9: Results of matrix transformation (Case 4)

forward and backward cross-correlations is shown in Fig. 3.10. In the figure, the blue

dashed line shows the threshold when the threshold coefficient α was set as 0.14.

Since the maximum value is higher than the threshold, the rotation angle is estimated

by reading the index of the maximum value, resulting in the yaw rate of 7◦/s. The

motor and gyro sensor also showed that the robot rotated by 7◦ in 1 s, so the proposed

method was able to estimate the yaw rate by only using the radar data.

Furthermore, I investigated the appropriate value of the threshold coefficient α by
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Figure 3.10: Yaw rate estimation result (Case 4)
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varying the value from 0.1 to 0.4 in intervals of 0.01. I defined the probability of detect-

ing rotation by deciding that a rotation is detected if the maximum value Nc exceeds

the threshold line and vice versa. Fig. 3.11 shows the probability of detecting rotation

for various values of α. For all four cases, the probability of detection decreased as

the value of α increased. Specifically, for case 1, the probability of detection was 1

for most values of α because this case corresponds to the stationary case having high

similarities between adjacent data. In contrast, the probability of detection was the

lowest for case 2 because the robot is moving forward and the similarity between data

is reduced. Cases 3 and 4 showed similar results, in which the probability of detection

rapidly decreased with increasing value of α. Although a small value of α leads to a

high probability of detection, the value of α cannot be simply set to a low value be-

cause it might lead to false alarms when the robot is actually not rotating. Therefore, I

examined the root mean square error (RMSE) of the estimated angle for various values

of α.

Fig. 3.12 shows the RMSE of the estimated angle for each of the four cases. In cal-

culating the RMSE, I set the estimated angle as zero when rotation is not detected. As

a result, in cases 1 and 2, the RMSE decreased with the increasing value of α because

the true rotation angle is zero. Meanwhile, in cases 3 and 4, the RMSE increased with

the increasing value of α. This is because the robot’s rotation is not detected when the
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threshold is higher than the maximum value, leading to large errors. The RMSE of the

estimated angle for all cases is shown in Fig. 3.12. As the value of α increased, the

RMSE decreased slightly and then increased rapidly. The minimum value of RMSE

was 2.6482◦ when the value of α is 0.19. Therefore, I set the value of α as 0.19 to

minimize the RMSE.

The RMSE of the estimated angle for all four cases is listed in Table 3.2, when α

was set as 0.19. The rotation angle of the robot could be estimated within 3◦ of esti-

mation error by using only the radar sensor data. The estimation error was particularly

low for case 1 because the location and number of detected targets are relatively un-

changing. In a dense clutter environment where there are multiple stationary targets,

the rotation angle can be estimated more accurately because the correlation between

the detection results increases. In addition, by using a high-resolution radar, it is possi-

ble to detect multiple points per target which can improve the estimation performance.

On the other hand, when the signal-to-noise ratio is low, the number of detected points

will decrease and the estimation performance is expected to degrade.

Estimation Results of Ego-velocity

To estimate the ego-velocity of the robot, the detected points in the angle-velocity

domain were used to detect a line. I used the line detection algorithms mentioned
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Table 3.2: RMSE of the estimated angle when α is 0.19

Case RMSE (◦)

Case 1 0.5774

Case 2 2.6499

Case 3 2.9841

Case 4 2.4528

All case 2.6482

in Chapter 3.1.3. After detecting the line, the robot’s ego-velocity was estimated by

finding the y-intercept value. Fig. 3.13 shows the detected points when the robot moves

forward at a velocity of 0.12 m/s. The estimated ego-velocity was 0.09 m/s when the

LLS and RANSAC methods were used. Moreover, when the Hough transform method

was used, the ego velocity was estimated as 0.10 m/s, which was similar to the true

ego velocity of the robot.

To compare the performance of these three algorithms, I used the data for cases 1

and 2 and calculated the RMSE of the estimated ego-velocity. The minimum velocity

of the robot was 0 and the maximum value was 0.54 m/s. The RMSE values for each

algorithm are listed in Table 3.3. The robot’s ego-velocity was estimated within an
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Figure 3.13: Estimation of ego-velocity using the detected points
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Table 3.3: Performance of various algorithms

Type Algorithm RMSE (m/s) Runtime (s)

LLS 0.0728 0.0020

Hough transform 0.0702 0.0539

RANSAC 0.0706 0.0003

RMSE error of 0.073 m/s for all three algorithms. In particular, the error was the

lowest when the Hough transform was used.

In addition, I calculated the runtime of each algorithm because the execution time

is a significant factor in SLAM. As shown in Table 3.3, the runtime was relatively short,

and the RANSAC algorithm was the fastest with a runtime of 0.0003 s. Therefore, I

believe that the proposed algorithm can be implemented in radar-based SLAM.

3.1.5 Summary

In this study, I proposed a method to estimate the ego-motion of a robot by using

only the radar sensor data. I first represented the detected points in the angle-velocity

domain, and then transformed them into their corresponding matrix data with values

of zero and one. Considering that the points detected in successive time instants have

similarities to each other, the correlation between the matrix data was calculated. In ad-

dition, the velocity of the robot was estimated by applying a line detection algorithm

to the detection results. The accuracy of the proposed estimation method was verified

through the data acquired by mounting a radar sensor on a robot. Compared with the

angle value obtained from the robot’s motor, the proposed correlation-based yaw rate

estimation method showed an estimation error of approximately 3◦/s. Additionally,

the proposed ego-velocity estimation method showed an estimation error of approxi-

mately 0.073 m/s. I expect that the proposed method can be used to complement or

replace motor or gyro sensor in radar-based SLAM.
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3.2 APPLICATION TO AUTONOMOUS VEHICLE

3.2.1 Motivation

To realize autonomous driving, data obtained from automotive sensors such as

cameras, lidars, and radars must be used together. The main purpose of using these

sensors is to effectively detect targets located around the vehicle. For accurate object

detection, it is important to identify the absolute movement of the autonomous vehicle

relative to the surrounding environments. For example, the authors in [27] estimated

the ego-motion using a single monocular camera. In addition, laser range data is used

to estimate the ego-motion of the vehicle in real time [28]. To obtain complete infor-

mation on ego-motion, the position and speed of the ego-vehicle must be identified.

In general, using radar sensor data, it is possible to estimate the relative distance to

the target and the relative speed of the target. When considering the position of the

ego-vehicle as the origin, the relative distance can be directly converted into the ab-

solute distance. However, to convert the relative speed into the absolute speed, I need

to know the speed of the ego-vehicle. Therefore, I propose a method for estimating

the velocity of the ego-vehicle using only radar sensor data without the help of other

vehicle sensors.

The most important thing in estimating the speed of the ego-vehicle is to identify

the targets that are stationary among the detected targets because they can be used as

reference points. In other words, the speed relative to the stationary target can be di-

rectly converted to the speed of the ego-vehicle. Thus, I use the detection result in the

angle-velocity domain to classify the stationary targets. In this domain, the moving tar-

gets and the stationary targets exhibit different patterns. In other words, the detection

points corresponding to stationary targets exist on a specific curve, but the points corre-

sponding to moving targets randomly scattered on a two-dimensional plane. Therefore,

if the curve formulated by points corresponding to the stationary targets is estimated,

the absolute velocity of the ego-vehicle can be calculated.
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When several points are distributed in a plane, methods such as LLS [23] and

RANSAC [29], [30] are widely used to find the tendency of these points. In this work,

I use the Hough transform [31] to extract only points corresponding to the station-

ary targets in the angle-velocity domain. This transformation can be effectively used

to find inliers when points are scattered on the two-dimensional plane. Some studies

have been conducted using Hough transforms on radar sensor data [32], [33]. For ex-

ample, a vehicle moving at a constant speed in the time-distance domain was extracted

through the Hough transformation in [32]. In addition, patterns of moving and sta-

tionary targets were classified by applying the Hough transform to the time-frequency

spectrum [33]. When this transformation is applied to detection points located in the

angle-velocity domain, the trend line corresponding to the stationary targets can be

estimated. Then, from the estimated line, the velocity of the ego-vehicle is calculated

directly. To evaluate the estimation performance of the proposed method, radar sensor

data obtained from actual road environments are used. In the experiment, FMCW radar

is mounted on the vehicle.

The remainder of this study is organized as follows. First, I introduce the automo-

tive radar system used in the experiment. Then, the target detection result in a actual

road environment is described. Next, I explain the Hough transform and how to apply

it to estimate the absolute speed of the ego-vehicle. Finally, I conclude this study.

3.2.2 Automotive Radar System Used in Experiments

The automotive radar used in this study consists of Tx, Rx, waveform generator

(WG), voltage-controlled oscillator (VCO), frequency mixer, LPF, analog-to-digital

converter (ADC), and digital signal processor (DSP), as shown in Fig. 3.14. The WG

generates a FMCW with a center frequency of fc, a bandwidth of δf , and a sweep

time of δt. As shown in Fig. 3.14, the waveform is composed of an up-chirp and a

down-chirp whose frequency linearly increase and decreases with time, respectively.

By extracting beat frequencies from each chirp, the relative distance to the target and
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Figure 3.14: Configuration of the 77 GHz automotive radar system

the relative speed of the target can be estimated [34]. In addition, the antenna array

is used to estimate the angle of the target, which consists of 4 antenna elements. The

distance between the antenna elements is 1.8 c
fc

, where c denotes the speed of light. In

the radar system, the Bartlett algorithm [35] is applied to the signals received at Rx to

estimate the angle of the target.

3.2.3 Target Detection Result Through Radar Signal Processing

I mounted the automotive radar sensor described on the bumper of the vehicle and

conducted experiments on the road. In the measurements, I set the values of fc, δf , and

δt to 76.5 GHz, 500 MHz, and 5 ms, respectively. Fig. 3.15 (a) shows one of the road

environments where I acquired radar sensor data. In this case, the vehicle speed was

maintained at 65 km/h. By processing the radar signal acquired in this environment, I

can estimate the relative distance dj , the relative speed vj in the radial direction, and

the angle θj information of the target, where j is the index of each detected target.

Then, using the target information represented by the polar coordinate system (i.e.,

(dj , θj)), the positions of the targets can be converted into a two-dimensional Cartesian

coordinate system (i.e., (xj , yj) = (dj sin θj , dj cos θj), as shown in Fig. 3.15 (b).

The target detection result corresponding to Fig. 3.15 (a) is shown in Fig. 3.16. In

this figure, the targets including a vehicle located in front and road structures such as

guardrails around the ego-vehicle are also detected by the radar sensor.
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3.2.4 Stationary and Moving Targets in Angle-Velocity Domain

To estimate the ego-velocity, it is important to select only fixed targets among the

detected targets. This is because the relative speed to a stationary target means the

absolute speed of the ego-vehicle. Referring to Fig. 3.15 (b), the speed of the target

vehicle in the y-axis vj, y can be expressed as vj cos θj . I redraw the detection result

in Fig. 3.16 in the angle-velocity (i.e., θj and vj, y) domain, as shown in Fig. 3.17. In

this domain, moving and stationary targets exhibit different characteristics. In other

words, the moving targets are randomly placed, but the stationary targets exist around

a specific line. Therefore, if the line formed by the stationary targets is estimated, I can

discriminate the stationary targets, and it is possible to estimate the absolute velocity

of the ego-vehicle.

(a)

(b)

Figure 3.15: Target detection using the automotive radar: (a) radar signal measurement

on the bridge (b) coordinate system conversion of the radar detection result
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Figure 3.17: Target detection result in the angle-velocity domain

3.2.5 Hough Transform Based Ego-velocity Estimation

In this work, I use the Hough transform to find the tendency from the scattered

points in the angle-velocity domain. The Hough transform is widely used to extract

linear components from the image. For example, as shown in Fig. 3.18 (a), if there

are two points in the image space, a straight line with the two points can be expressed

in the slope-intercept form as y = α0x + β0, where α0 is the slope and β0 is the y-

intercept of the straight line. This line can also be expressed as a single point (α0, β0)

in the parameter space, as shown in Fig. 3.18 (b). In the parameter space, however, a

vertical line parallel to the y-axis cannot be represented. Thus, in the Hough transform,
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Figure 3.18: Basic concept of the Hough Transform: (a) in the x-y domain; (b) in the

α-β domain; (c) in the x-y domain; (d) in the φ-ρ domain

this straight line is represented using the distance from the origin (ρ0) and the angle

between the x-axis (φ0), as shown in Fig. 3.18 (c), which means each straight line in the

x-y domain can be expressed as a point in the φ-ρ domain. The straight lines passing

through each point in Fig. 3.18 (a) is expressed as points on each curve in Fig. 3.18

(d). Finally, the red points (φ0, ρ0) in Fig. 3.18 (d) indicates the point corresponding

to a straight line passing through two points. Thus, from the point of intersection, I can

estimate the straight line formed by the points through the Hough transform.

Fig. 3.19 shows the result of applying the Hough transform to the detection re-

sult in the angle-velocity domain of Fig. 3.17. In the Hough transform domain, sev-

eral curves meet at one point p0 = (φ0, ρ0) = (1.56,−17.7). Thus, the straight

line corresponding to p0 is the most obvious straight line, which can be expressed

as x cos θ0 + y sin θ0 = ρ0 (i.e., y = −0.01x − 17.7) in the original image space. I

plot the estimated line back on the detection result in the angle-velocity domain, as

shown in Fig. 3.20. Because the slope of this line is close to zero, the ego-velocity can
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angle-velocity domain
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Figure 3.20: Ego-velocity estimation results in the angle-velocity domain

be estimated using the y-intercept. Thus, the absolute speed of the ego-vehicle is esti-

mated as 63.7 km/h and it was estimated very accurately when compared to the actual

speed of 65 km/h. Considering the concept of relative velocity, the absolute value of

the y-intercept becomes the ego-velocity.

I also estimated the absolute speed of the ego-vehicle by applying the LLS method

and the RANSAC algorithm proposed in [36] to the detection result in angle-velocity

domain, as shown in Fig. 3.20. In the case of the LLS, the estimation result is not

accurate compared to other methods because this method calculates a trend line using

both detection results corresponding to stationary and moving targets. The RANSAC
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algorithm finds the trend line quite accurately. However, in RANSAC-based methods,

parameter values used in the algorithm, such as the minimum sample size and maxi-

mum distance, must be set empirically, which is not required in the Hough transform.

Finally, I verified the performance of the proposed method by changing the speed of

the ego-vehicle, as shown in Table 3.4. The estimation accuracy decreased slightly

as the speed increased, but the maximum error was about 2.4% of the actual speed.

Through the proposed method, it is possible to accurately estimate the ego-velocity

by automatically selecting points corresponding to stationary targets among several

detection points.

Table 3.4: Ego-velocity estimation results according to the velocity of the ego-vehicle

Actual velocity (km/h) 35.0 45.0 55.0 65.0 75.0 85.0

Estimated velocity (km/h) 34.7 44.3 54.0 63.7 73.5 83.0

3.2.6 Summary

In this study, I proposed a method for estimating the absolute speed of the ego-

vehicle using the radar detection result. To estimate the speed of the ego-vehicle, it is

important to identify stationary targets from the radar detection results. Thus, I used the

distribution of targets in the angle-velocity domain. In this domain, stationary targets

existed on a specific line, and the Hough transformation was used to estimate the trend

line. I verified the performance of the proposed method with the radar data measured

on the actual road. Through the Hough transform, inliers were effectively extracted

among all the detection points. The proposed method has a maximum error of 2.4% in

the speed range of 30-90 km/h.
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Chapter 4

VEHICLE ORIENTATION ESTIMATION

4.1 RANGE-ANGLE MAP BASED APPROACH USING MIMO

FMCW RADAR

4.1.1 Motivation

Among the various autonomous driving functions, it is important to predict the

movement of the front vehicle. The information about the front vehicle’s movement

can be used to automatically adjust the speed of the ego-vehicle or to select appropriate

actions. In this regard, the authors in [37] used a mono camera to estimate the heading

direction of the front vehicle. Also, in [38], the heading information obtained from a

lidar sensor was used for tracking multi-targets. However, to the best of my knowledge,

no research has been performed to identify the motion of a front vehicle using a radar

sensor alone.

Therefore, in this study, I propose a method for estimating the instantaneous head-

ing direction of the front vehicle by applying a machine learning algorithm to the

automotive radar sensor data. I use an FMCW MIMO radar system and collect data

by measuring radar signals for various movements of the front vehicle. Specifically, I

accumulate radar sensor data when the vehicle in front is stationary, going straight, go-
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ing backward, turning left, and turning right. Then, I use a CNN [39] to classify these

five different movements. The CNN is a widely used deep learning algorithm that has

recently been applied to radar sensor data. For example, the authors in [40] attempted

to monitor parking spaces by applying CNN to the radar-image data. In addition, in

[41], various hand gestures were classified by applying 3D CNN to the processed radar

data. Because the CNN uses the image format as an input data, it is essential to con-

vert the radar signal received by the MIMO antenna into an image format. Therefore,

I transform a 3D radar data cube composed of distance, velocity, and angle into an

intuitive 2D range-angle map and use it as input to the network. The CNN structure

was determined by testing the performance of the network for various combinations

of the number of blocks and filters. Using the trained model, the proposed algorithm

was able to estimate the heading direction of the vehicle with an accuracy higher than

94%.

The remainder of this study is organized as follows. In Chapter 4.1.2, the exper-

iment environment is described. Then, in Chapter 4.1.3, I introduce how to convert

radar data into an image format suitable for CNN input. In addition, the framework

of the CNN is discussed. Next, the classification performance when the proposed net-

work is trained with the acquired radar data is presented in Chapter 4.1.4. Finally,

conclusions are given in Chapter 4.1.5.

4.1.2 Radar Signal Measurement Scenarios

In the experiment, I used the AWR1642BOOST [42] automotive radar sensor

evaluation kit, manufactured by Texas Instruments. The radar kit is connected to the

DCA1000EVM module to capture the data, as shown in Fig. 4.1. The radar system

parameters are shown in Table 4.1. I installed the radar 1 m above the ground in an

outdoor parking lot. As shown in Fig. 4.2b, the areas in front of the radar kit are di-

vided into nine zones. The size of the zone is set as 4 m×4 m by considering the width

of vehicle lanes and size of the vehicle, and safety corns are placed at the vertex of each
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Figure 4.1: AWR1642BOOST kit with DCA1000EVM module

zone. The size of the zone did not affect the outcome provided that the full image of a

front vehicle was obtained. To distinguish the different movements of the vehicle, the

experiments are divided into five different scenarios, as shown in Fig. 4.3. In scenario

A the vehicle is stationary, in scenarios B and C the vehicle is driving forwards and

backwards, and in scenarios D and E the vehicle is turning left and right, respectively.

In all measurements, the vehicle speed was in the range of 0-15 km/h. The total num-

ber of measurements for the five different scenarios was 60. A single measurement

consists of 200 data cubes, so I collected a total of 12000 data cubes.

(a) Actual camera image (b) Bird’s-eye view

Figure 4.2: Experimental environments in a parking lot
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Figure 4.3: Experiment scenarios

Table 4.1: Radar system parameters

Parameter Value Parameter Value

Number of Tx antennas (NT ) 2 Operating bandwidth (B) 1.8 GHz

Number of Rx antennas (NR) 4 Sweep time (Tsw) 60 µs

Tx antenna spacing (dT ) 2λ Sampling period (Ts) 0.1 ns

Rx Antenna spacing (dR) 0.5λ Number of chirps (Nc) 128

Carrier frequency (fc) 78 GHz Number of samples per chirp (N ) 256

4.1.3 Proposed CNN-Based Heading Direction Estimation Method

Generation of Input Data for CNN

Because the CNN uses an image data as input, it is important to convert the radar

signal into an image suitable for learning. In this study, I use a 2D range-angle map as

the network input. Therefore, it is important to obtain a range-angle information at a

high resolution. I can express the radar signal as a 3D data cube for the n, p, and l axes,

as shown in Fig. 4.4. The range and velocity information of the target can be estimated

by applying FFT to the n and p axes. Similarly, by applying FFT to the l-axis, the

angle of the target can be estimated.

However, when the angle of the target is estimated through FFT, the angular reso-

lution is limited by the number of antenna elements. Each antenna element is regarded

as a sampled value, and because the number of antenna elements is generally smaller
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Figure 4.4: 3D data cube generated from the received radar signal

than the number of samples per chirp or the number of chirps, the angular resolution is

considerably worse than the range or velocity resolution. For example, the number of

virtual antenna elements is 8 in the MIMO system, whereas the number of chirps is 128

and the number of samples per chirp is 256. Therefore, instead of applying the FFT to

the l-axis, I use the multiple signal classification (MUSIC) [43] algorithm, which is a

high-resolution frequency estimation algorithm that uses an eigenspace method. The

MUSIC algorithm first computes a covariance matrix using the received signal sam-

ples. Then, by performing eigen-decomposition to the covariance matrix, the eigen-

vectors corresponding to signals and noise are obtained. The MUSIC algorithm uses

the idea that any signal vector belonging to the signal subspace should be orthogonal to

the noise subspace. By using this orthogonality condition, a MUSIC pseudo-spectrum

is formed such that the peak occurs at the target’s angle.

The overall procedure of the proposed method is summarized in Fig. 4.5. First,

I apply the FFT to the n-axis to extract the range information of the target. If the

number of FFT points is Nn, the size of the data after FFT becomes (NTNR) × Nn.

Then, I apply the MUSIC algorithm to the l-axis for every range index. Through this

process, the frequency along the n-axis and l-axis are extracted and I can create a high-

resolution range-angle map. Figure 4.6 shows the range-angle map and converted x-y

range map when the front vehicle turns left. The value of each pixel represents the
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Figure 4.5: Range-angle map generation using the radar data cube

amplitude of the signal. As shown in the figure, the signals are strongly reflected by the

wheels [44, 45], and I can identify the instantaneous heading direction of the vehicle

through this image. Therefore, I use this single high-resolution range-angle map as the

input to the CNN and train the network.

Framework of CNN

The structure of the CNN used in this study is shown in Fig. 4.7. The range-angle

map data shown in Fig. 4.6a is used as an input to the network. First, a normaliza-

tion is applied to the input data to center each data at the origin. Then, the input data

is passed through multiple blocks of convolutional layers and pooling layers. In the

convolutional layer, the input data is convoluted with filters to extract features of the

image. In addition, a zero padding is applied to maintain the dimension of the output

equal to that of the input. The size of the filter is 3 × 3, and the number of filters is 2n.

The appropriate number of blocks and filters will be discussed in Chapter 4.1.4. Next,

41



(a) Range-angle map (b) x-y range map

Figure 4.6: Data when the front vehicle turns left: Scenario D

Figure 4.7: CNN architecture of the proposed method

the output of the convolutional layer passes through the rectified linear unit (ReLU)

layer to provide nonlinearity to the network. Then, max pooling is performed, which

is a down sampling technique to prevent over-fitting. Through this process, the size of

the input data is reduced and features are extracted from the image data.

Next, a classification process is performed through fully connected layers and a

softmax layer. I set the number of nodes as 1024 in the first fully connected layer

and five in the second fully connected layer, representing the five different scenarios.

Then, the real numbers of the output from the fully connected layer are converted
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into probability values through the softmax layer. These probability values are used to

predict the instantaneous heading direction of the vehicle at the output layer.

When the gradient of the loss function is calculated by backward propagation, the

weight parameters are updated in the direction to minimize the loss function. Through

an iterative update process, the optimal weight parameters are found where the loss

function is minimum. In this study, the loss function is calculated by using the cross

entropy, and gradient descent algorithm is used to minimize the loss function.

4.1.4 Performance Evaluation

In this study, I collected 12,000 data from experiments during two days. Among

the 12,000 data, I extracted 11,748 data by removing the ones that do not belong to

one of the 5 cases. A high-resolution range-angle map was obtained by applying the

FFT to the n-axis of the data cube and then by applying the MUSIC algorithm to the

l-axis, as explained in Chapter 4.1.3. I used the cell-averaging constant false alarm rate

(CA-CFAR) [46] algorithm to detect the location of the target, and extracted the range-

angle map around the target by applying a rectangular window function, as shown in

Fig. 4.6a. The size of the windowed image was 127×51, which was used as input to the

CNN. Then, I randomly extracted 70% of the total 11,748 data and used it as training

set, 15% as validation set, and 15% as test set. The training set was equally extracted

from each of the 5 cases so that the training data is not biased to a specific case. The

training set was divided into multiple batches, each consisting of 300 data samples.

A single batch represents a set of samples used to update the weight parameters. The

learning rate was set as 0.001 and the number of epochs was set as 40. To reduce the

variance of the estimated classification accuracy, this training process was repeated 10

times using the Monte Carlo method [47]. I trained the network with 10 independent

data sets and derived the final classification accuracy by averaging the results. In this

study, I used the MATLAB software for training the network.

43



First, to find the appropriate network parameters, I varied the number of blocks and

filters and compared the performance of the network. The computational complexity

of the CNN algorithm is affected by the number of blocks and filters. Therefore, these

parameters should be appropriately set to lower the computational complexity while

maintaining the classification accuracy high. The number of filters was increased from

2 to 128 in units of 2n, and the number of blocks was increased from 1 to 4. The

classification results are shown in Fig. 4.8. When the number of filters was 2, the clas-

sification accuracy was the lowest, and it tended to decrease as the number of blocks in-

creased. In contrast, when the number of filters was higher than 2, the network showed

the best performance when the number of blocks was 2. Therefore, I set the number of

blocks as 2. In addition, the classification accuracy increased when more filters were

used, but the increase was not significant when more than 32 filters were used. As a

result, I set the number of filters as 32 considering the computational complexity.

Next, I examined the classification accuracy of the training and validation sets

when the number of blocks and filters are 2 and 32, respectively. The classification

accuracy and loss function according to the number of iterations are shown in Fig. 4.9.

I set the maximum number of iterations as 1,080, and validation was performed every

20 iterations. As can be seen from the figure, the network was fully trained at the 780th
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Figure 4.8: Classification accuracy according to the number of filters and blocks
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Figure 4.9: Loss and classification accuracy according to the number of iterations

iteration and training has stopped at this point. Both graphs show that the training and

validation sets have similar training curves. This indicates that the proposed network

was well trained and over-fitting was prevented.

In addition, I analyzed the performance of the proposed network by using t-distributed

stochastic neighbor embedding (t-SNE) [48] algorithm, which is a non-linear data re-

duction method. This method visualizes the high-dimensional data in low-dimensional

subspace. The t-SNE representation of the raw data is shown in Fig. 4.10a, and that

(a) Projected data before applying CNN (b) Projected data at fully connected layer 2

Figure 4.10: Visualization of the data using the t-SNE algorithm

45



of the output at the second fully connected layer is shown in Fig. 4.10b. It is evident

that the boundary between clusters becomes clear when using the output data from the

trained network.

Moreover, Table 4.2 shows the confusion matrix indicating the classification re-

sults of the proposed network. Scenarios A, D, and E showed classification accuracy

higher than 94%, whereas scenarios B and C showed low classification accuracy. Sce-

nario A showed high classification accuracy since the vehicle is stationary and there is

little fluctuations in the received signal. In addition, scenarios D and E resulted in high

classification accuracy because the vehicle is rotating and more parts of the vehicle

is illuminated by the radar. A high-intensity signal is reflected by the wheel, and the

vehicle’s motion can be easily detected. In contrast, when the vehicle is moving for-

wards or backwards, the area of illumination is narrow compared to when the vehicle

is rotating, and there is little signal reflected by the wheel. As a result, the vehicle’s

movement was not easily recognizable and these cases showed low classification accu-

racy. The overall classification accuracy of the five scenarios was 94.44%. Therefore, I

believe that this proposed algorithm can effectively estimate the instantaneous heading

direction of the front vehicle.

Table 4.2: Confusion matrix derived from CNN

Estimated class / Actual class A B C D E

A 99.39% 7.39% 0.87% 0.73% 0.63%

B 0% 82.95% 2.60% 0.73% 1.88%

C 0% 0.57% 90.91% 0.73% 0.63%

D 0.61% 6.82% 4.76% 96.35% 2.09%

E 0% 2.27% 0.87% 1.46% 94.78%
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4.1.5 Summary

In this study, I proposed a CNN-based method for estimating the instantaneous

heading direction of the front vehicle using an automotive radar sensor. The 77 GHz

FMCW radar was installed in an outdoor parking lot, and experiments were conducted

for five different scenarios by changing the heading direction of the front vehicle. I

converted the received data into a 2D range-angle map by applying the FFT and MU-

SIC algorithm along the range and angle axes. Then, I used the CA-CFAR algorithm

to estimate the location of the target, and extracted the range-angle map around the

target by applying a rectangular window function. This windowed image was used as

an input to the CNN. The structure of the CNN was determined by finding the number

of blocks and filters that results in high classification accuracy while maintaining low

computational complexity. The classification results showed that this proposed method

can effectively estimate the instantaneous heading direction of the front vehicle with a

high accuracy. For future work, a series of imgaes can be used as an input to improve

the estimation accuracy, or a tracking algorithm can be used to obtain more informa-

tion about how the front vehicle is moving. Furthermore, the estimation accuracy can

be improved by using the velocity information as well as the range-angle information.
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4.2 POINT CLOUD DATA BASED APPROACH USING 4D

IMAGING RADAR

4.2.1 Motivation

In a complex environment such as a highway or urban road, various targets exist

and unpredictable situations can occur. In such dynamic environments, predicting the

path of a surrounding vehicle is important for identifying potential hazards in advance.

When the surrounding vehicle is moving, its path can be predicted by applying a track-

ing algorithm to estimate the trajectory. However, when the vehicle is stationary, it is

difficult to predict the path of the vehicle in advance.

Another method of predicting the path of the vehicle is by utilizing the vehicle

orientation information, which can be applied to both stationary and moving vehicles.

The vehicle orientation information can also be used to estimate the velocity vector of

the target [49], or in vehicle re-identification task which is the problem of identifying

the same vehicle from multiple images [50]. To this end, studies have been conducted

to estimate the vehicle orientation using sensors such as camera [51] or lidar [52].

However, the main drawback of these light-based sensors is that their performance is

significantly affected by ambient light or weather conditions. Conversely, radar sensors

are robust against environmental changes while being cost-effective and are capable of

measuring long distances. In addition, the target detection performance of radar can be

significantly enhanced using a MIMO system [53, 54].

There has been ongoing research to estimate vehicle orientation using radar sen-

sors. For example, the contour of a vehicle was estimated using synthetic aperture radar

(SAR) algorithm in [55], where the possibility of estimating the vehicle orientation has

been demonstrated. In addition, in [56], the velocity and orientation of the vehicle were

estimated applying RANSAC to the detection results in the angle-Doppler domain.

Further, the authors in [57] proposed a method to estimate the instantaneous heading

direction of a vehicle using a range-angle image as input to the CNN. However, the
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movement of the vehicle was restricted to going forward, backward, and turning left

and right, and the orientation angle of the vehicle was not considered. In [58], the

vehicle orientation angle was estimated with a RMSE of 9.77◦ by using two radar sen-

sors. However, the stationary vehicles were not considered, and the method involves

high computational complexity because the iterative method is used to determine the

rotation angle.

Therefore, in this study, I propose a method of estimating the vehicle orientation

using a 77 GHz cascaded MIMO FMCW radar system. The radar data is acquired

by varying the orientation angle of the vehicle, and signal processing is applied to

transform the raw data into point cloud data which reveals the shape and size of ob-

jects. Then, the generated point cloud data are further processed to remove redundant

data which are irrelevant for vehicle orientation estimation. The processed point cloud

data were distributed along the axis of vehicle orientation; therefore, I applied regres-

sion algorithms such as the principal component analysis (PCA), decision tree, and

CNN to find the trend line of point cloud data. Moreover, the performance of the pro-

posed method was compared with the iterative methods used in [58]. The comparison

of various estimation methods revealed that the proposed method of using the CNN

framework is most suitable for vehicle orientation estimation.

The contribution of this work can be summarized as follows. First, the proposed

method can be applied regardless of whether the vehicle is moving or not. Unlike

the tracking-based method which requires the movement of the vehicle, the proposed

method is based on instantaneous reflections from the vehicle and can be applied to

stationary vehicles as well. Next, the proposed method is robust to outliers resulting

from noise or undesired reflections. This is because the vehicle orientation is deter-

mined using the overall distribution of the data rather than examining individual points.

Moreover, the proposed method is a single radar solution for estimating the vehicle ori-

entation and does not require additional sensors such as camera or lidar. The estimation

accuracy can be further enhanced through sensor fusion; however, combining multiple
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sensor data requires increased complexity. Thus, the use of single high-resolution radar

sensor can reduce the overall complexity of the system. Also, the regression model can

be trained in advance and estimation can be performed in real-time by using the pre-

trained regression model with tuned hyperparameters. To the best of my knowledge,

estimation of vehicle orientation using point cloud data with machine learning algo-

rithms has not been sufficiently addressed in the related literatue. The proposed method

was effectively applied to the existing commercial radar system and the vehicle orien-

tation was reliably estimated.

The remainder of this study is organized as follows. In Chapter 4.2.2, the basic

principles of the MIMO FMCW radar system are explained. Then, the experimental

environment is described, and the method for processing the measured data is dis-

cussed in Chapter 4.2.3. In Chapter 4.2.4, three different regression methods for esti-

mating vehicle orientation are introduced. Next, the estimation results obtained from

each method are presented along with a comparison of the performances in Chap-

ter 4.2.5. Finally, conclusions are given in Chapter 4.2.6.

4.2.2 Basic Principles of Cascaded MIMO FMCW Radar System

Using FMCW radar system, the range, velocity, and angle information of the target

can be obtained, as mentioned in Chapter 2.1. The angle of the target can be estimated

utilizing the phase information of the MIMO antenna system. The antenna elements

placed in the horizontal direction are used to estimate the azimuth angle of the target,

whereas those placed in the vertical direction are used to estimate the elevation angle

of the target. The estimated azimuth and elevation angles are used to determine the

location of the target as follows:

xn = Rn sinϕn cos θn,

yn = Rn sinϕn sin θn,

zn = Rn cosϕn, (4.1)
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Figure 4.11: Point cloud data according to vehicle orientation

where ϕn and θn are the azimuth and elevation angles of the nth target. The detec-

tion results in spherical coordinates are converted into Cartesian coordinates and the

relative position between the radar and target is estimated.

Furthermore, multiple radar chips can be cascaded to increase the number of Tx

and Rx antennas. The number of virtual antennas and aperture size is increased ac-

cordingly and the angular resolution is enhanced in both the azimuth and elevation

angle domains. Using a cascaded MIMO FMCW radar system, a single object can

be detected as multiple points and the point cloud data are formed which reveals the

shape and size of the target. Even if commercial radar with fewer antenna elements are

used, the point cloud data can be obtained by applying high-resolution angle estima-

tion algorithms or by fusing the detection results of multiple radars [58]. Therefore, the

orientation angle of the vehicle can be estimated using the distribution of point cloud

data. For example, the point cloud data of a stationary vehicle is shown in Fig. 4.11

when it is oriented to the left and right. The point cloud data are distributed along a

specific trend line depending on the vehicle orientation. Therefore, the orientation an-

gle can be estimated by applying regression algorithms to the point cloud data, which

will be discussed in Chapter 4.2.4.
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4.2.3 Measurement Using MIMO FMCW Radar

Experimental Environment

In the measurement, I used the RETINA 4F radar module manufactured by the

Smart Radar System, as shown in Fig. 4.12. The detailed specifications of the radar

system are listed in Table 4.3. The radar uses four cascaded AWR1243 chips manu-

factured by Texas Instruments. Each chip has three Tx antennas and four Rx antennas;

therefore, the total number of Tx and Rx antennas is 12 and 16, respectively. These

MIMO antennas form 192 virtual antennas, resulting in angular resolutions of 2◦ and

4.7◦ in the azimuth and elevation directions, respectively. The data capture rate is eight

scans per second, and the maximum number of points per scan is 6,114 points.

When conducting the measurements, the orientation angle of the vehicle needs to

be varied while the boresight direction of the radar is fixed. However, it is difficult to

precisely adjust the orientation angle of a vehicle in a real environment. Therefore,

I fixed the orientation angle of the vehicle and varied the boresight direction of the

radar, as shown in Fig. 4.13. Specifically, the angle was varied from −60◦ to 60◦ in

units of 10◦. For each measurement, the vehicle repeated two round-trip movements

(stop - going forward - stop - going backward). The velocity of the vehicle was in the

range of 0-10 km/h during the measurements. I conducted five measurements for each

orientation angle; therefore, the total number of measurements was 5×13 = 65.

Figure 4.12: RETINA 4F radar module (Smart Radar System)
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(a) Measurement principle (b) Photo of experimental

environment

Figure 4.13: Experimental environment

Signal Pre-processing of Measured Data

Fig. 4.14 shows the overall block diagram of signal pre-processing which trans-

forms the data into a format suitable for vehicle orientation estimation. The first step

of the proposed framework consists of generating point cloud data from the raw data.

A two-dimensional FFT, which consists of range-FFT and Doppler-FFT, is applied and

a range-Doppler spectrum is obtained. Thereafter, CFAR algorithm [59] is used to ex-

tract the peak values corresponding to the target. This process is repeated for all virtual

Table 4.3: Specifications of RETINA 4F radar module

Parameter Value Parameter Value

Mode Short range radar Number of Tx antennas 12

Center frequency 77 GHz Number of Rx antennas 16

Bandwidth 400 MHz Azimuth FOV ±50◦

Chirp duration 42 µs Azimuth angle resolution 2.0◦

Maximum range 118 m Elevation FOV ±12◦

Range resolution 0.46 m Elevation angle resolution 4.7◦

Maximum velocity 82.9 km/h Update-rate (per second) 8 scans

Velocity resolution 0.22 km/h Point cloud output (per scan) max 6,144 points
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Figure 4.14: Block diagram of signal pre-processing

antennas and the azimuth and elevation angles are estimated for each target. Then, the

point cloud data are generated using the coordinate transformation described in (4.1).

The next step involves processing the generated point cloud data to remove redun-

dant data which are irrelevant for vehicle orientation estimation. First, I accumulate the

data for multiple scans prior to applying the clustering algorithm. In other words, the

point cloud data obtained for consecutive scans are gathered together to form a single

data, which significantly improves the clustering performance compared to the case of

using single scan. Next, a clustering algorithm is applied to remove ghost targets which

result from noise and multipath reflections. I used the density-based spatial clustering

of applications with noise (DBSCAN) algorithm [60], which is an unsupervised algo-

rithm that is robust to outliers. The algorithm does not require prior information about

the number of clusters and all points do not need to be allocated within the cluster. The

hyperparameters of the DBSCAN algorithm, which are the search radius and minimum

number of points, were set as 2 m and 5 by considering the size of the vehicle. Lastly,

the mean value is subtracted to remove the range bias between the vehicle and radar.

The resulting processed data are shown in Fig. 4.15 when the orientation angle of the

vehicle is 60◦. The figure clearly reveals that the point cloud data are distributed along

the axis of vehicle orientation regardless of whether the target vehicle is stationary or
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Figure 4.15: Processed point cloud data (Orientation angle: 60◦)

not. Therefore, this processed point cloud data will be used to estimate the orientation

angle of vehicle in Chapter 4.2.4.

4.2.4 Vehicle Orientation Estimation Techniques

In this study, a method of estimating the orientation angle of vehicle using the

processed point cloud data is presented. Among the x, y, and z coordinates of the point

cloud data, the x and y coordinates are used for estimation because those coordinates

are crucial for determining the orientation angle. The x and y values are extracted

from the point cloud data and regression algorithms such as PCA, decision tree, and

CNN are applied, as illustrated in Fig 4.16. The PCA-based method will be explained,

followed by the decision tree-based method and the CNN-based method.

PCA-based Orientation Estimation

PCA [61] is a statistical algorithm used to analyze multi-dimensional data, which

has found applications in areas such as dimension reduction [62], denoising [63], and

regression [64]. In this study, the PCA algorithm is employed to find the regression line

of point cloud data. The algorithm finds a set of principal axes that are perpendicular
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Figure 4.16: Block diagram of vehicle orientation estimation

to each other. The first principal axis is determined by finding the axis that accounts

for the largest variance of the data. The second principal axis accounts for the largest

variance of the data under the condition of being perpendicular to the first principal

axis. This process is repeated until the Nd principal axes are found, where Nd is the

dimension of the data.

The principal axes can be determined by applying eigen decomposition to the co-

variance matrix of the data. When the x and y values of the point cloud data with Nd

points are arranged in matrix form as

D =


x1 y1

x2 y2
...

...

xNd yNd

 , (4.2)

the covariance matrix of (4.2) can be written as

Cov(D) = E[(D− E[D])T (D− E[D])], (4.3)

where E[·] and (·)T denote the expectation and transpose operators, respectively. By
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applying eigen decomposition to (4.3), the covariance matrix is diagonalized as

Cov(D) =
[
vT1 vT2

]λ1 0

0 λ2

v1

v2


(λ1 ≥ λ2). (4.4)

Here, λ1 and λ2 are the eigenvalues of the covariance matrix in descending order,

and v1 and v2 are the corresponding eigenvectors. The eigenvectors correspond to the

principal axes and the eigenvalues indicate the extent to which the variance is explained

by the corresponding eigenvector. Consequently, v1 is the axis that contains the largest

variance of the data and can be regarded as a linear regression result. Therefore, the

vehicle orientation can be estimated using the first principal axis as follows:

Θp = arctan

(
v1(1)

v1(2)

)
, (4.5)

where arctan(·) is the arctangent operator, and v1(1) and v1(2) are the first and second

components of vector v1, respectively. Because the orientation angle is measured from

the y-axis, the arctangent function is applied to v1(1)/v1(2) instead of v1(2)/v1(1).

Decision Tree-based Orientation Estimation

Among the various machine learning algorithms used for data prediction, the de-

cision tree [65] has the advantage of being fast and simple. In addition, by combining

multiple decision trees, the error caused by the variance of data can be reduced, which

is known as the ensemble algorithm. The bagging algorithm is a widely used ensem-

ble algorithm that improves stability and prediction accuracy. The block diagram of

the bagging algorithm using the decision tree as the basic block is shown in Fig. 4.17.

The dataset is divided into multiple sample data through random sampling with re-

placement. These sample data are used to train multiple decision trees in parallel, and

the final prediction result is derived by averaging or voting the prediction results from

each decision tree.
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Figure 4.17: Block diagram of bagging algorithm

When applying machine learning algorithms such as the decision tree, the feature

parameters need to be extracted to represent the characteristics of the data. As a can-

didate parameter, I considered seven parameters obtained through the PCA algorithm

in Chapter 4.2.4, which can be expressed as

f = [λ̄1, λ̄2, v1(1), v1(2), v2(1), v2(2), Θp], (4.6)

where λ̄1 and λ̄2 denote the normalized eigenvalues. Among these candidate param-

eters, I performed the feature selection to eliminate redundant parameters that are ir-

relevant to data prediction. Then, the extracted parameters are used as inputs to the

decision tree.

CNN-Based Orientation Estimation

CNN is a representative deep learning algorithm that does not require feature ex-

traction. Because the CNN uses image data as input, I converted the point cloud data

into an image format suitable for the CNN input. In image transformation, I used a

2D histogram to convert each point cloud data into a matrix of equal size. For both x

and y values, the range was set from −5 m to 5 m and the bin size was set as 0.1 m.
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Consequently, a matrix with a size of 101× 101 was generated, where the elements of

the matrix represent the number of points in each bin. Then, I normalized the matrix

such that the elements are in the range of zero to one,

Mnormalized =
M−min(M)

max(M)−min(M)
. (4.7)

I used this normalized matrix as the input to CNN.

The structure of the CNN is shown in Fig. 4.18. The input data are passed through

multiple blocks that consist of a convolution layer, batch normalization layer, ReLU

layer, and an average pooling layer. In the convolution layer, a 2D convolution is ap-

plied to the input to extract meaningful features. The size and number of filters were

set as 3 × 3 and 2n, respectively. In addition, zero padding is used in the convolution

process to prevent the size of the data from decreasing. Then, a batch normalization

layer is applied to the output of the convolution layer for fast and stable training. Fur-

ther, a nonlinearity is applied to the network through the ReLU layer, and the average

pooling layer is applied to downsample the data and prevent overfitting. After passing

through multiple blocks, the output is passed through a fully connected layer with 64

nodes, ReLU layer, and fully connected layer with one node. Finally, a regression is

performed and the loss function is calculated using the mean squared error.

Figure 4.18: Structure of CNN
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4.2.5 Performance Evaluation

In this study, the performance of the proposed method is evaluated using mea-

surement data obtained through experiments with stationary and moving vehicles. As

mentioned in Chapter 4.2.3, measurements were conducted for 13 different orientation

angles ranging from −60◦ to 60◦, and a total of more than 16,000 data were obtained.

When training the decision tree and CNN model, I divided the data into training, val-

idation, and test sets using the five-fold cross-validation method. For example, in the

first iteration, the first measurement data were used to test the model trained and vali-

dated using the remaining measurement data. Then, in the second iteration, the second

measurement data were used as a test set and the rest of the data were used as training

and validation sets. This process was repeated five times until all the measurements

were used as the test set. The final result was derived by averaging the prediction re-

sults of the five iterations.

First, I used a PCA-based regression method to estimate the orientation angle of

the vehicle. The estimated orientation angles for the 13 different cases are shown in

Fig. 4.19. For each orientation angle, I calculated the mean value of the estimated

orientation angle, which is plotted as a red line. In addition, the one-sigma and two-

sigma deviation values are plotted in the figure. Although the mean value was close to

the ground truth value, the sigma deviation values were far from the mean, indicating

that the estimation variance was high and the performance was relatively unstable.

This is because the PCA algorithm assumes the distribution of the data to be Gaussian,

which can degrade the regression performance in certain situations.

Next, I applied the decision tree-based regression method. When using the decision

tree-based method, the number of features and decision trees must be determined. To

this end, I used the neighborhood component analysis algorithm [66] to determine the

importance of the seven features in (4.6). The seven features in the order of importance

were λ̄2, Θp, v1(2), λ̄1, v2(1), v1(1), and v2(2). Based on this observation, I analyzed

the performance of the network using all seven features or by selecting only a few of
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Figure 4.19: Estimation results using PCA-based method

the important features. In addition, to investigate the performance according to the

number of decision trees, I varied the number of decision trees from 10 to 200 in

intervals of 10.

The estimation results are shown in Fig. 4.20. As shown in the figure, the RMSE

generally decreased as the number of decision trees increased. However, the rate of

decrease was not noticeable when the number of decision trees was higher than 100.

Therefore, I set the number of decision trees as 100 by considering the complexity of

the network. In addition, the RMSE of the estimated orientation angle was the lowest

when all seven features were used; therefore, I used all the seven features for regres-
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Figure 4.20: Estimation results using decision tree-based method
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sion. Under these conditions, the RMSE of the estimated orientation angle was 8.8◦.

Further, the CNN-based regression method described was used to estimate the ori-

entation angle. When using the CNN-based method, the number of blocks and filters

are the main parameters that should be determined appropriately. To determine these

parameters, I investigated the performance of the network by varying the number of

blocks from two to six and the number of filters from two to 256 in units of 2n. The

estimation results are shown in Fig. 4.21. When the number of blocks was two or three,

the RMSE diverged as the number of filters increased. By contrast, when the number

of blocks was four, five, or six, the RMSE decreased with an increase in the number of

filters. Because the decreasing rate was not prominent when the number of filters was

higher than 32, I set the number of filters and blocks as 32 and 5, respectively. Using

these parameters, the RMSE of the estimated orientation angle was found to be 3.34◦.

A comparison of various regression methods is presented in Table 4.4. The perfor-

mance of the PCA-based method was the lowest with an RMSE of 10.96◦, whereas

that of the CNN-based method was the highest with an RMSE of 3.34◦. The PCA

algorithm showed unstable performance because it is a non-parametric algorithm in

which there are no parameters to adjust [61]. Using the results of the PCA algorithm

as an input to the decision tree, the estimation performance was slightly improved.

However, the RMSE of the decision tree-based method was still higher than that of
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Figure 4.21: Estimation results using CNN-based method
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the CNN-based method. This is because the decision tree requires a feature selection

process in which information can be lost, whereas the CNN does not require feature

selection. Consequently, the CNN-based method showed better performance than the

PCA and decision tree-based methods.

Moreover, the comparison of various methods which can be used for vehicle ori-

entation estimation is summarized in Table 4.5. Because the method in [58] uses the

point cloud data similar to the method used in the proposed algorithm, I compared

the performance with the orientation estimation methods used in [58], which were L-

fit, enhanced orientated bounding box (EOBB), and brute-force methods. The L-fit is

a method of randomly extracting three points and finding two orthogonal lines. How-

ever, this method is hard to apply to cascaded MIMO FMCW radar system because the

Table 4.4: Comparison of various estimation methods

Type RMSE

PCA-based method 10.96◦

EOBB method 9.92◦

Brute-force method 8.56◦

Decision tree-based method 8.80◦

CNN-based method 3.34◦

Table 4.5: Comparison of other methods

Paper Radar type Frequency Bandwidth No. of antenna Data type / method Main result

[55] FMCW 24 / 77 GHz 0.5 - 7 GHz 1×1
SAR processing

SAR image /
Detection of scattering centers

[56] CW 76 GHz Not specified Not specified
RANSAC

Velocity profile /
Lateral velocity estimation

[57] FMCW 78 GHz 1.8 GHz 2×4
CNN

Range-angle map /
Heading direction classification

[58] FMCW 77 GHz 500 MHz 2×10

iterative method

Bounding box-based

Point cloud data /

Orientation estimation

Proposed method FMCW 77 GHz 400 MHz 12×16
Regression method

Point cloud data /
Orientation estimation
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point cloud data comprises thousands of points and the computational complexity is

extremely high. The EOBB method is based on rotating calipers algorithm [67], which

creates a bounding box from the extreme values of the convex hull. The RMSE of the

estimated orientation angle was 9.92◦ when the EOBB method was applied to the mea-

sured point cloud data. The brute-force method finds the main direction of points using

the random sample consensus algorithm [29]. When I applied this method to the mea-

sured point cloud data, the RMSE of the estimated orientation angle was 8.56◦. The

methods used in [58] were susceptible to outlier data and required iterative approach

which resulted in lower performance compared to the CNN-based method.

Lastly, I compared the performance of various estimation methods by varying the

number of accumulated scans. The default number of accumulated scans was set as

eight in the previous discussions, which corresponds to accumulating the data for one

second. To analyze the effect of accumulating more scans, I investigated the RMSE

of various regression methods by varying the number of accumulated scans from 4,

8, 12, and 16. As shown in Fig. 4.22, the RMSE decreased by accumulating more

scans because the correlation of the data is higher and the clustering performance is

enhanced. However, the number of accumulated scans cannot be set to a large value

when an instant decision is required in a dynamic road environment. This is a design
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parameter that should set appropriately depending on desired automotive applications.

By using the CNN-based method, the vehicle orientation angle was reliably estimated

with an RMSE of 3.34◦. Therefore, I believe that the proposed method of estimating

the orientation angle of a vehicle using machine learning-based algorithms will assist

in autonomous driving.

4.2.6 Summary

In this study, I proposed a method to estimate the orientation angle of a surrounding

vehicle using a cascaded MIMO FMCW radar system. Measurements were conducted

for 13 different orientation angles and the point cloud data corresponding to the ve-

hicle were extracted through data pre-processing. To estimate the orientation angle

of the vehicle, I applied three regression algorithms such as PCA, decision tree, and

CNN. The appropriate structure of machine learning algorithms was determined by

varying the hyperparameters of the network and analyzing its performance. Further, I

compared the RMSE of each regression method, which revealed that the CNN-based

method was the most accurate within an RMSE of 4◦. The future focus concerning

this research will be to improve the estimation performance by combining the de-

tection results of multiple sensors. Moreover, when the processing speed of radar is

further improved, it is expected that the proposed algorithm can be used to estimate

the vehicle orientation in a dynamic environment as well.
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Chapter 5

IN-VEHICLE PASSENGER DETECTION

5.1 FEATURE EXTRACTION BASED APPROACH USING

IR-UWB RADAR

5.1.1 Motivation

Every year, several children and pets die of heat stroke and hyperthermia after be-

ing left alone in a locked car [68]. The temperature inside a closed vehicle increases

rapidly, even in moderate weather [69]. If the temperature becomes too high, lives in

the vehicle are put in a dangerous situation. Therefore, when a child or a pet is left

unattended in a car, the driver should be aware of the situation and should be alerted

quickly to prevent tragedy. Some studies have been carried out on combining mul-

tiple sensors (e.g., temperature, motion, GPS, or ultrasonic sensor) along with smart

phone applications to avoid death from heat stroke [70], [71]. However, the sensors

had to be attached to the body in these methods, and the complexity was high because

information from multiple sensors should be integrated.

Monitoring of people can also be conducted by using a single, non-contact pas-

sive sensor, such as camera, ultrasonic, and radar sensors. However, the performance

of a camera sensor degrades in a poorly-lit environment and it can invade the privacy
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of individuals. The radar sensor has advantages over other sensors because it is ro-

bust to environmental conditions [72] and has high detection performance (e.g., range

resolution) [73], [74], but does not invade the privacy of an individual [75]. Studies

that address human detection based on radar system were conducted in [76], [77]. For

example, the authors in [76] introduced a 2.4 GHz Doppler radar system for cardiopul-

monary function. In [77], research was conducted to detect the breathing of a human

using a 24 GHz continuous wave radar.

However, few studies have focused on the position or number of people inside

the vehicle. The existing outdoor algorithms cannot be applied inside the car because

the propagation characteristics for indoor and outdoor are different. Also, ultrasonic

sensors are being used in commercial vehicles to determine the presence of people

inside the vehicle [78], but this method only works when a motion is detected and the

number and position of people cannot be determined. Meanwhile, because IR-UWB

radar is remarkable for detecting subtle movements of objects, it can be applied on

estimating the location and the number of people inside the vehicle. Therefore, in this

study, I propose an effective method for estimating the position and number of people

inside a vehicle using IR-UWB radar. The received IR-UWB radar signals consists

of reflected and scattered signals from various parts of people or fixed objects, whose

distribution varies significantly depending on the arrangement of people. Hence, the

position and number of people inside the vehicle can be estimated by identifying the

distribution of the received radar waveforms. I use a method of extracting parame-

ters that represent the statistical characteristics of the signal distribution, which can

then be used as criteria for recognizing the pattern of each distribution. Furthermore,

I use ensemble learning with a decision tree [79], [80] as a base classifier to classify

the various arrangements of people. However, when a single decision tree is used,

the performance of the algorithm becomes unstable because it is vulnerable to small

changes of input. Therefore, I use multiple decision trees and then combine the results

of each decision tree through ensemble learning. In addition, five-fold cross-validation
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is used, and the classification accuracy calculated for each validation is averaged. The

proposed method is demonstrated to successfully recognize the arrangement of people

inside the vehicle with a classification accuracy higher than 90%. To make the pro-

posed method suitable for real-time applications, I also derive the proper number of

features and classifiers to be used in classification.

The proposed method is simple yet efficient method for monitoring people inside

a vehicle, as it requires only a single IR-UWB radar sensor and is a passive type of

recognition method that does not require attaching sensors to the human body. The

classification accuracy is expected to increase when multiple radar sensors are used,

but the complexity of the algorithm will also increase. Therefore, I used a single radar

in the experiment, and confirmed that the classification accuracy is higher than 90%.

In addition, the proposed algorithm reduces the real-time computational load because

the training stage is done in advance. The pre-trained classification function can be

embedded in commercial radars’ microcontrollers inside the vehicle. Then, when the

radar receives a signal, the proposed algorithm can be applied to the signal and I can

immediately determine the number and position of people inside the vehicle. Also, I

used the feature selection algorithm to reduce the number of features, so the training

time is further reduced.

The remainder of this study is organized as follows. In Chapter 5.1.2, basic signal

processing in the IR-UWB radar system is explained. Then, along with the experi-

ment environment, the analysis of IR-UWB radar signals measured in that environ-

ment is introduced in Chapter 5.1.3. In Chapter 5.1.4, the feature extraction and selec-

tion methods are presented. Next, a classification method using ensemble learning and

classification results using it are presented in Chatper 5.1.5. Finally, conclusions are

given in Chapter 5.1.6.
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5.1.2 Basic Signal Processing in IR-UWB Radar System

The sampled signal reflected in (2.12) is the raw signal of IR-UWB radar that has

not been processed. To extract signals from meaningful targets and suppress the clut-

ter signal, additional signal processing has to be performed. Fig. 5.1 shows a block

diagram of the overall signal processing procedure. First, the direct current (DC) com-

ponent of the raw signal is removed by subtracting its average value [81]. First, the DC

bias of the signal is removed by subtracting its mean value, which results in

r̂[n] = r[n]− 1

N

N∑
k=1

r[k]. (5.1)

Then, the signal is passed through a bandpass filter to remove the undesired frequency

components. The bandpass filter is designed by calculating the half-power bandwidth

of the transmitted signal from Fig. 5.2, and then passing only those frequency compo-

nents. The bandpass filtering operation can be expressed as

r̂BPF [n] = F−1
{
F{r̂[n]} ·H[z]

}
, (5.2)

where F and F−1 denote the Fourier transform and inverse Fourier transform oper-

ation, and H[z] denotes the bandpass filter in the frequency domain. To suppress the

Figure 5.1: Block diagram of basic signal processing in the IR-UWB radar system
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Figure 5.2: Signal transmitted by the IR-UWB radar

noise component remaining in the passband of the filter, the signal is cross-correlated

with the transmitted signal shown in Fig. 5.2. By cross-correlating with the transmit-

ted signal, the signals from targets become more prominent, and the effect of noise is

mitigated. The cross-correlated signal is expressed as

p[n] =
∑
j

r̂BPF [j] s[Nt − n+ j], (n = 1, 2, · · · , N +Nt − 1), (5.3)

where the summation is performed over all possible values of j, and Nt is the number

of samples in the transmitted signal. After cross-correlation, the length of the signal

becomes longer than the original signal (i.e., from N to N +Nt − 1), so the signal is

truncated to match the length of the original signal. The truncated signal is given as

p̂ = [p̂[1], p̂[2], · · · , p̂[N ]] = [p[Ñ ], p[Ñ + 1], · · · , p[Ñ +N − 1]],

(Ñ = dNt/2e), (5.4)

where d·e is an operator that rounds down to the nearest integer. The effect of applying

cross-correlation is shown in Fig. 5.3. The amplitude of the signal from the target

becomes larger, so the boundary between the target region and the non-target region

becomes more clear. Therefore, in this study, I mainly use this processed signal p̂ for

the feature extraction and the classification.
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Figure 5.3: Comparison of signal before and after cross-correlation

5.1.3 Measurement of IR-UWB Radar Signal Inside Vehicle

Experiment Environment

In the experiment, I used the NVA-R661 IR-UWB radar module manufactured by

Novelda (Xethru), as shown in Fig. 5.4. The radar is connected to laptop via SPI to

USB cable (C232H) to store the data. The radar kit has one Tx and one Rx, which

are 15 cm apart. A dielectric lens is mounted on each antenna to narrow the radiation

pattern and increase the antenna gain. The specifications of the radar system are sum-

marized in Table 5.1. The center frequency of the radar signal, bandwidth, and antenna

gain are 6.8 GHz, 2.3 GHz, and 6.0 dBi. The pulse repetition frequency is set as 100

MHz, which means that the radar transmits a pulse every 10 ns. However, the actual

data capture rate, denoted as the frame rate, is only 120 Hz which is much slower

than the pulse repetition frequency. This is due to coherent processing, where multi-

ple pulses are combined and averaged to increase the processing gain. In addition, the

time it takes to transfer the data over SPI to USB link further limits the frame rate.

Figure 5.4: IR-UWB radar module (NVA-R661)
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Table 5.1: Specifications of radar system

Radar type IR-UWB radar

Carrier frequency, fc 6.8 GHz

Bandwidth 2.3 GHz

Pulse repetition frequency 100 MHz

Frame rate 120 Hz

Number of samplers, Ns 256

Number of samples, N 512

Sampling period, Ts 26 ps

Antenna gain without dielectric lens 6 dBi

Antenna gain with dielectric lens 6.7 dBi

Moreover, the sampling period is set as 26 ps, so the time difference between adjacent

samples is 26 ps. Since the time delay τ can be expressed as 2R/c where R is the dis-

tance and c is the velocity of light, the distance difference between adjacent samples

is cτ/2 ≈ 4 mm.

As shown in Fig. 5.5, I installed the radar in the rear view mirror. This position is

regarded as an appropriate position to simultaneously monitor the front and rear seats.

The vertical distance from the radar to the floor of the vehicle is approximately 1 m,

and the diagonal distance from the radar to the side rear seat is about 1.6 m. Therefore,

Figure 5.5: Experiment environment
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in the experiment, the number of frames is set as 2 to observe a distance of 0 ∼ 2 m.

In addition, the front and rear seats are numbered from 1 to 5, as shown in Fig. 5.5.

The experiment is conducted for 32 different scenarios depending on the presence of

people in each seat. These 32 experiment scenarios will be labeled from class E1 to

E32. The position of people for each class is shown in Table 5.2, where ‘O’ and ‘X’

indicate whether a person is in the corresponding seat or not. For example, Fig. 5.6

shows the experiment environment for the class E9 where only one person is sitting in

the front left seat. The heights and weights of the experiment participants are given in

Table 5.3.

Table 5.2: Experiment scenario

Class Seat 1 Seat 2 Seat 3 Seat 4 Seat 5 Class Seat 1 Seat 2 Seat 3 Seat 4 Seat 5

E1 X X X X X E17 X O X X X

E2 X X O X X E18 X O O X X

E3 X X X O X E19 X O X O X

E4 X X X X O E20 X O X X O

E5 X X O O X E21 X O O O X

E6 X X O X O E22 X O O X O

E7 X X X O O E23 X O X O O

E8 X X O O O E24 X O O O O

E9 O X X X X E25 O O X X X

E10 O X O X X E26 O O O X X

E11 O X X O X E27 O O X O X

E12 O X X X O E28 O O X X O

E13 O X O O X E29 O O O O X

E14 O X O X O E30 O O O X O

E15 O X X O O E31 O O X O O

E16 O X O O O E32 O O O O O
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Figure 5.6: Actual photograph of experiment environment (Class E9)

Table 5.3: Personnel information of experiment participants

Participant Height (cm) Weight (kg)

A 173 82

B 156 52

C 156 58

D 163 52

E 176 97

Analysis of Measured IR-UWB Radar Signal

The radar signal obtained in one experiment scenario can also vary depending

on the participant since each person has different physical characteristics. Therefore,

measurements were conducted several times while changing the participant and the

order of people sitting. The total number of measurements for all classes was 240. Be-

cause one measurement consists of more than 500 scans, a total of more than 120,000

raw radar signals are collected. The processed signal p̂ for each class is shown in

Fig. 5.7. Since the participants’ movement is almost stationary, there is no periodic

component of the signal. As a result, the processed signals are analyzed in the time

domain. The signal waveforms show different trends depending on the arrangement of
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Figure 5.7: Processed radar signal p̂ for 32 experiment scenarios

people. Thus, it is confirmed that the given 32 classes can be classified by analyzing

the characteristics of the received radar signals. The signal waveforms from E2 and E4

or E5 and E7 should be theoretically identical because people are sitting at the same
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distance from the radar. However, these symmetrical classes exhibit slightly different

signal waveforms. This is because the distance between the transmitter and receiver is

approximately 15 cm, so the measurement is not conducted symmetrically. Thus, even

though one radar development kit is used, I can distinguish people sitting on the left

from people sitting on the right.

5.1.4 Feature Extraction and Feature Selection

Feature Extraction

To analyze the signals received from various classes, I choose parameters that rep-

resent the statistical properties of the signal. Generally, mean, variance, coefficient of

variance, kurtosis, and skewness are frequently used parameters [82]. The variance is

a measure of how the data is spread around its mean. The coefficient of variance is

a standardized measure of the dispersion of data around its mean, which is known as

relative standard deviation. The kurtosis is a measure of how the data is concentrated

around the mean, and the skewness is a measure of the asymmetry of the data. In ad-

dition to these parameters, I use the maximum value of the signal and the argument of

the maximum value in the signal (i.e., argmax). These parameters are used as features

representing the characteristics of the signal.

Because the distance between the radar and console box in the vehicle is 1 m,

signal changes owing to human position in the front seat are reflected by 0 ∼ 1 m

portion of the signal, whereas the changes due to human position in the rear seat are

reflected by the 1 ∼ 2 m portion. Therefore, I divide the entire signal into intervals

of 0 ∼ 1 m and 1 ∼ 2 m, and extract the suggested parameters at each interval. The

76



parameters from the ith interval can be expressed as

f iµ =
1

N ′

Ne, i∑
n=Ns, i

p̂[n] (i = 1, 2),

f iv =
1

N ′ − 1

Ne, i∑
n=Ns, i

(
p̂[n]− f iµ

)2
(i = 1, 2),

f ic =

√
f iv
f iµ

(i = 1, 2),

f ik =

1
N ′
∑Ne, i

n=Ns, i

(
p̂[n]− f iµ

)4(
1
N ′
∑Ne, i

n=Ns, i

(
p̂[n]− f iµ

)2)2 (i = 1, 2),

f is =

1
N ′
∑Ne, i

n=Ns, i

(
p̂[n]− f iµ

)3(
1
N ′
∑Ne, i

n=Ns, i

(
p̂[n]− f iµ

)2)3/2 (i = 1, 2),

f im = max
n∈[Ns, i, ··· ,Ne, i]

p̂[n] (i = 1, 2),

f iñ = arg max
n∈[Ns, i, ··· ,Ne, i]

p̂[n] (i = 1, 2),

N ′ =
N

2
,Ns, 1 Ne, 1

Ns, 2 Ne, 2

 =

 1 N ′

N ′ + 1 N

 , (5.5)

where f iµ, f iv, f ic , f
i
k, f is, f

i
m, and f iñ represent the mean, variance, coefficient of vari-

ance, kurtosis, skewness, maximum value, and argument of the maximum value, re-

spectively. Because the entire signal is divided into two intervals, a total of 7× 2 = 14

parameters are extracted from each scan. Consequently, the feature vector can be ex-

pressed as

f = [f1µ, f
1
v , f

1
c , · · · , f2ñ],

= [f [1], f [2], · · · , f [Nf ]], (5.6)

where Nf denotes the number of features, which is 14 in this study. Since 32 classes

have to be classified using 14 features, the dimension is relatively large. Therefore, the

number of features should be reduced to use only meaningful features.

77



Feature Selection Using NCA Algorithm

Before applying the classification algorithm, the importance of each feature should

be investigated because duplicate or irrelevant features only increase complexity, with-

out affecting the classification accuracy. A training set with L samples can be ex-

pressed as

T = {(f1, y1), (f2, y2), · · · , (fL, yL)}, (5.7)

where fl is aNf -dimensional feature vector of the lth sample, and yl ∈ {1, 2, · · · , 32}

is a class label of the lth sample. Among the feature selection methods, neighborhood

component analysis (NCA) is used to reduce the dimensions of features and to increase

the execution speed [66]. The NCA algorithm finds feature weights by solving a clas-

sification problem. A feature vector can be thought of as a point in theNf -dimensional

space, and the algorithm assumes that feature vectors which are close to each other are

likely to belong to the same class. Therefore, the algorithm calculates the distance be-

tween all feature vectors. The measure of closeness is determined by the Mahalanobis

distance, which is mainly used in the K-nearest neighborhood algorithm [83]. The

Mahalanobis distance between two feature vectors fl and fr can be expressed as

Dw(fl, fr) =

Nf∑
q=1

w2
q |fl[q]− fr[q]|, (5.8)

where wq is the weight of qth feature. To predict the case label of fl, the algorithm

selects a reference point fr and labels fl as the label of fr. The probability of fl choosing

fr as its reference point becomes higher if two points are close to each other. Therefore,

a kernel function k(z) = exp(− z
σ ) is adopted to have high probability for a small

distance. Then, the probability of fl selecting fr as its reference point can be expressed

as

Pl, r =


k(Dw(fl, fr))∑L

r=1,r 6=l k(Dw(fl, fr))
if r 6= l

0 if r = l
. (5.9)
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Here, the denominator acts as a normalizing factor so that the sum of Pl, r for all r be-

comes one, and Pl, r can be considered as the probability. In addition, the probability

of fl choosing fl as its reference point is zero since NCA is a leave-one-out algorithm

which excludes itself in the prediction process. The class label of fl is accurately esti-

mated if the reference point fr has the same class label as fl. Thus, the probability that

fl is accurately classified can be expressed as

Pl =

L∑
r=1, r 6=l

Pl, rYl, r,

Yl, r =

 1 if yl = yr

0 if yl 6= yr
. (5.10)

The average leave-one-out probability of correct classification is the average of Pl (l =

1, 2, · · · , L) over all samples. As a result, an objective function, with the regulariza-

tion term to prevent over-fitting, can be expressed as

F (w) =
1

L

L∑
l=1

Pl − λ
Nf∑
q=1

w2
q , (5.11)

where w = [w1, w2, · · · , wNf ], and λ is a regularization parameter which has a posi-

tive value. The argument w that maximizes the objective function maximizes the av-

erage leave-one-out probability of correct classification and indicates the importance

of each feature. Therefore, I perform the feature selection based on this weight vector.

5.1.5 Performance Evaluation

Ensemble Learning

Machine learning algorithms such as a decision tree or a support vector machine

(SVM) [84] are commonly used for the classification of data. In addition, instead of

using a single classifier, multiple classifiers such as multiple decision trees can be

used to yield better generalization performance. Moreover, ensemble learning [85]

combines multiple weak classifiers into a strong classifier, where the weak classifier is
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slightly correlated to the true classifier and the strong classifier is strongly correlated

to the true classifier. Ensemble learning can achieve better classification results than

using a single model, by improving reliability and accuracy.

The most commonly used algorithms in the ensemble learning are boosting [86] or

bagging [87]. A boosting algorithm sequentially converts weak classifier into strong

classifier. In contrast, a bagging algorithm, also referred to as bootstrap aggregating,

trains multiple classifiers independently. Multiple training sets are generated by sam-

pling with replacement of the total data, and each classifier is trained in parallel. Then,

the final output is determined by aggregating the prediction results from each classifier,

and by averaging or voting the results. Through the bagging algorithm, the variance

of data is reduced, so it is more robust to an over-fitting problem than the boosting

algorithm.

Classification Results

The overall signal processing chain of the proposed method is summarized in Fig.

5.8. First, basic signal processing is applied to the raw radar signal obtained by the

IR-UWB radar. A total of more than 120,000 processed signals are obtained for 32 ex-

Figure 5.8: Overall signal processing chain of the proposed method
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periment scenarios. Then, approximately 30% of the processed signals are randomly

selected to prevent unintended biases. As a result, 34,749 processed signals are se-

lected, and 14 features are extracted from each processed signal. These features are

used as inputs for classification, so a data set consists of 34,749 14-dimensional fea-

ture vectors. For classification, I use the decision tree as a base classifier since it is a

fast and simple algorithm, and I use the bagging algorithm for the ensemble of decision

trees. The block diagram of the classification algorithm is shown in Fig. 5.9. The data

set is divided into multiple training sets, and each training set trains its own decision

tree. The prediction result from each decision tree is combined by averaging the indi-

vidual prediction results, and I obtain an output label from 1 to 32. In addition, when

training an individual decision tree, five-fold cross-validation is used to prevent a data

over-fitting problem. The training set is divided randomly into five subsets of equal

size. Then, four of the five partitions are used to train the classifier, and the remain-

ing partition is used to validate the performance of the trained model. This process is

repeated five times until each partition is used for the validation.

As mentioned in Chapter 5.1.4, among the 14 parameters of the feature vector, pa-

rameters that are crucial for classification are identified through the NCA algorithm.

The weight values of each parameter are shown in Table 5.4. The parameters written

Figure 5.9: Block diagram of bagging with decision tree
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Table 5.4: Weight values of each parameter using NCA algorithm

Feature weight Weight value Feature weight Weight value

w1 (f1µ) 0.75 w8 (f2µ) 0.75

w2 (f1v ) 0.76 w9 (f2v ) 0.82

w3 (f1c ) 16.33 w10 (f2c ) 14.68

w4 (f1k ) 1.13 w11 (f2k ) 1.63

w5 (f1s ) 0.75 w12 (f2s ) 0.75

w6 (f1m) 0.80 w13 (f2m) 1.17

w7 (f1ñ) 19.61 w14 (f2ñ) 17.44

in the order of importance are f1ñ, f
2
ñ, f

1
v , f

2
v , f

2
c , f

2
m, and f2c , where only the pa-

rameters having weight value higher than 1 are considered. In other words, the most

crucial parameter for classification is the argument of maximum value, followed by

the coefficient of variance, kurtosis and maximum value.

Meanwhile, two important factors have a great impact on classification perfor-

mance: the number of classifiers (i.e., the number of decision trees) and the number

of features. Computational cost is mainly dependent on the number of classifiers and

the complexity of the base classifier [88]. To utilize the proposed method in real-time

applications, the computational cost should be reduced by choosing a proper number

of classifiers and features. First, the number of classifiers is increased from 10 to 100,

and its effect on classification accuracy is investigated. As can be seen from Fig. 5.10,

the classification result becomes more accurate when more classifiers are used. How-

ever, when there were more than 50 classifiers, there was no prominent performance

enhancement regardless of the number of features used as input. Thus, the number of

classifiers is set to 50.

Next, to determine the appropriate number of features used for classification, I

examine the classification accuracy by changing the number of features, while main-

taining the number of classifiers at 50. First, the four most crucial features are used as
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Figure 5.10: Comparison of classification accuracy according to the number of features

and the number of classifiers

inputs for the classification. Then, the performance is also evaluated when the num-

ber of features is 5, 6, 7, and 14. Fig. 5.10 shows that the classification accuracies are

81.22%, 87.40%, 91.31%, 91.9%, and 93.16% when the number of features is 4, 5,

6, 7 and 14, respectively. As expected, the classification accuracy tends to increase

when more features are used in training the model. However, although the classifica-

tion accuracy is increased with the number of features, the increment in each case is

decreased. When the number of features was increased from 4 to 5, 5 to 6, and 6 to

7, the classification accuracy increased by 6.16%p, 3.97%p, and 0.52%p, respectively.

Therefore, I set the number of features as 7 since using 14 features only increases

the classification accuracy by 1.26%p. When the number of classifiers was 50 and the

number of features was 7, the classification accuracy was 91.9%. In terms of computa-

tion cost, ensemble learning consists of multiple decision trees, so the computational

cost of each decision tree determines the total computational cost. The computational

complexity of a decision tree is O(DN logN ) [89], where N is the number of train-

ing data and D is the number of features. Since the number of training data is fixed,

computational complexity is only dependent on the number of features. Therefore, by

reducing the number of features from 14 to 7, the computational cost is expected to
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reduce by half.

The confusion matrix showing the classification result for each class is given in

Fig. 5.11. The matrix shows that the lowest classification accuracy is 86.35% corre-

sponding to the class E25 and the highest classification accuracy is 97.02% corre-

sponding to the class E20. In addition, I examined how the presence of people in the

front seat affects the classification accuracy. I divided the total experiment classes into

groups of E1 to E8 (no one is sitting in the front seat), E9 to E16 (one person is sit-

ting in the right front seat), E17 to E24 (one person is sitting in the left front seat),

and E25 to E32 (two people are sitting in each front seat). The average classification

accuracy for each group was 91.74%, 92.87%, 92.21%, and 89.77%, respectively. In

other words, the classification accuracy was the lowest when two people were sitting

in the front seat. This is because people in the front seat can block the path of the radar

and narrow the detectable space in the rear seat. In this case, multiple radars can be

employed to further improve the detection performance.

Furthermore, I compared the proposed method with other classification algorithms,

such as a decision tree, boosting with a decision tree, and an SVM. The SVM is one

of the most popular machine learning algorithms used for classifying data. It was orig-

Figure 5.11: Confusion matrix derived from bagging with decision tree (Unit: %)
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inally used as a linear classifier, but it can be used as a non-linear classifier by intro-

ducing slack variables or kernel functions [23]. In this study, I used a Gaussian kernel

since the number of classes and the number of features are relatively high. For every

classification algorithm, the number of features was set as 7 and five-fold validation

was performed. A comparison of classification accuracy for various machine learning

algorithms are shown in Table 5.5. A single decision tree resulted in low classification

accuracy because the structure of a single decision tree is too simple to classify the

complex experiment classes. In addition, boosting with a decision tree showed poor

performance since it is prone to over-fitting problems. Although SVM showed a rela-

tively high classification accuracy of 80.4%, bagging with decision tree was the most

effective method because it has the highest classification accuracy and a relatively fast

computation time.

To show the robustness of the proposed algorithm under diverse environment, I

performed an additional experiment in a different car. Similarly, the radar is installed

in the rear view mirror position, as shown in Fig. 5.12. The distance between the radar

and the middle rear seat is 1.63 m, and the distance between the radar and the side rear

seat is 1.8 m. The personnel information of participants is given in Table 5.6.

I applied the same classification procedure as in the first experiment. The total

number of measurements was 194, and a total of more than 100,000 processed signals

were obtained for 32 experiment scenarios. Then, I randomly selected 20,858 pro-

cessed signal and used for classification. The classification result was 92.02% when

Table 5.5: Classification accuracy for various machine learning algorithms

Machine learning algorithm Classification accuracy

Decision tree 64.8%

Boosting 42.8%

SVM 80.4%

Bagging 91.9%
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all features were used, and 90.16% when 7 features were used. Therefore, I can con-

clude that the proposed method can be applied to vehicles of different size.

Figure 5.12: Actual photograph of experiment environment: Class E1 (Second experi-

ment)

Table 5.6: Personnel information of experiment participants (Second experiment)

Participant Height (cm) Weight (kg)

A 173 82

D 163 52

F 170 62

G 176 72

H 181 70
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5.1.6 Summary

In this study, I proposed a method for monitoring people inside a vehicle by us-

ing the statistical characteristics of IR-UWB radar signals. The radar was mounted in

front of the rear view mirror, and experiments were conducted for 32 different sce-

narios depending on the presence of people in each seat. From the received signals,

I extracted features representing the statistical characteristics of the signals and used

the features as criteria to classify the various arrangements of people. In addition, I

investigated the importance of each feature through the NCA algorithm to remove in-

significant features and reduce the computational cost. For classification, a bagging

algorithm with a decision tree was used to achieve a better generalization performance

than using a single classifier. I examined how the classification accuracy changes as

the number of features and classifiers increased, and determined the proper number of

features and classifiers that resulted in high classification accuracy while keeping the

complexity relatively low. The classification results demonstrated that the proposed

method can effectively estimate the position and number of people inside a vehicle.

To achieve more reliable and accurate performance, measurements in various experi-

ment environments including various objects (e.g., paper boxes, car seats) need to be

conducted.
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5.2 DEEP NEURAL NETWORK BASED APPROACH US-

ING IR-UWB RADAR

5.2.1 Motivation

In Chapter 5.1, the location of people sitting inside the vehicle by IR-UWB radar

sensor was estimated, but the method required extracting feature from the received

data. In this study, I propose a deep learning-based method for estimating the location

of people inside vehicle using a single IR-UWB radar sensor. The application of deep

learning for the classification of radar sensor data have been reported in [90, 91, 92].

The pre-processed time-sampled radar signals are used as the input to the DNN. At

this time, the pre-processed signal itself becomes the input to the classifier without

extracting any features from it. Then, to find an appropriate network structure for clas-

sification, I evaluate the performance by changing the number of hidden layers, the

number of nodes in each hidden layer, and the type of activation function. I use 70%,

15%, and 15% of the total data as training, validation, and test sets to verify the perfor-

mance of the proposed method. The proposed method shows remarkable performance

in recognizing the arrangement of people sitting inside the vehicle with an accuracy of

99%. In addition, I also compare the performance of the proposed method with con-

ventional machine learning algorithms such as SVM and decision tree-based methods.

The classification results show that the proposed method outperforms the conventional

methods. Unlike the method of [93], because the proposed method is not based on

feature extraction, a deep understanding of radar signals is not needed. Also, it has the

advantage of being able to monitor people inside the vehicle without compromising

people’s privacy.

The remainder of this study is organized as follows. In Chapter 5.2.2, the pro-

posed DNN-based people localization method is presented. Then, localization results

are presented and the classification performance with other machine learning algo-

rithms are compared in Chapter 5.2.3. Additionally, I compare the classification per-
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formance with other machine learning algorithms. Finally, conclusions are given in

Chapter 5.2.4.

5.2.2 Proposed DNN-Based People Localization

Multi-layer perceptron (MLP) is one of the simplest class of DNN, in which each

layer is fully connected to its neighboring layers [94]. The general structure of the

MLP network is shown in Fig. 5.13. It consists of an input layer, multiple hidden

layers, and an output layer. In addition, each layer is comprised of multiple nodes and

nodes are connected to each other through edges. The network is trained through a

repeated process of forward propagation and backward propagation. In the forward

propagation stage, each layer passes its value to the following layer by using weights

and an activation function. Let x(k) and y(k) denote the input and output vector at

layer k, and W(k) denote the weight matrix between layer k and k+1. Then, the input

vector at layer k + 1 can be expressed as

x(k+1) = f(W(k)y(k)), (5.12)

where f denotes the activation function that gives nonlinearity to the network. In the

backward propagation stage, the weight values are updated by computing the gradient

Figure 5.13: General structure of MLP network
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of the loss function with respect to each weight. If the weight value before backward

propagation is Wbefore, the updated value after backward propagation is

Wafter = Wbefore − α
∂J

∂Wbefore
, (5.13)

where α is the learning rate that determines the speed of the learning process and

J is the loss function that indicates the error between the estimated and true values.

In this study, I used the cross entropy as the loss function, which is commonly used

in classification problems [95]. This process of forward and backward propagation,

denoted as an epoch, is repeated multiple times to train the weight parameters properly.

In this system, I used the processed radar signal p̂ in (5.4) as the input to the

network. Thus, each time-sampled points of p̂ becomes the input to the network, and

the number of nodes in the input layer is 512. Also, the number of nodes in the output

layer was set as 32 to classify the 32 different scenarios. I used the one hot encoding

method, which means that class E1 corresponds to [1000 · · · 0], class E2 corresponds

to [0100 · · · 0], and so on. The important parameters that determine the performance of

the network are the number of hidden layers, the number of nodes in each hidden layer,

and the type of activation function. Therefore, I compared the classification accuracy

by changing the above-mentioned parameters to find an appropriate network structure

for the system.

5.2.3 Performance Evaluation

The measurements were conducted on two different vehicles in Chapter 5.1, and

the total number of measurements was 434. Since one measurement contains more

than 500 raw radar signals, I obtained more than 220,000 radar signals. In this study, I

randomly selected 15% of the total data to avoid the data being biased. This resulted in

35,981 processed signals among a total of more than 220,000 signals. Then, I used 70%

of the data as training set, 15% of the data as validation set, and 15% of the data as test

set. The input is a 512×1 vector and the output is 32×1 vector. The number of epochs
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was set as 1000, and the learning rate was set as 0.01. In addition, I considered two

types of activation functions: the sigmoid function and the hyperbolic tangent function.

The sigmoid function can be expressed as 1/(1+exp(−x)) and the hyperbolic tangent

function can be expressed as (exp(x)− exp(−x))/(exp(x) + exp(−x)).

Fig. 5.14 shows the classification accuracy as a function of the number of nodes

in a hidden layer. The number of nodes in a hidden layer was increased from 10 to

100 in intervals of 10, while the number of hidden layers was fixed as 1. As can be

seen from the figure, the classification accuracy generally increases with an increase

in the number of nodes. However, when the number of nodes is higher than 50, there

is no prominent increase of classification accuracy regardless of the type of activation

function. Therefore, I set the number of nodes in a hidden layer as 50. Moreover,

since the classification accuracy is generally higher when hyperbolic tangent function

is used, I used this type of activation function for the network. Next, I examined how

the classification accuracy changes according to the number of hidden layers, while

maintaining the number of nodes in a hidden layer as 50 and using hyperbolic tangent

activation function. As shown in Fig. 5.15, the classification accuracy was highest

when the number of hidden layers was 3. Therefore, I set the number of hidden layers

as 3, and this resulted in a high classification accuracy of 99.5%.
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Figure 5.14: Classification accuracy by changing the number of nodes in a hidden layer

(Number of hidden layers: 1)
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Figure 5.15: Classification accuracy by changing the number of hidden layers (Number

of nodes: 50)

Furthermore, I investigated the performance of the network by changing both pa-

rameters, the number of hidden layers and the number of nodes, since fixing one pa-

rameter might lead to inaccurate results. The number of hidden layers was changed

from 1 to 10 and the number of nodes in each hidden layer was changed from 10 to

100 in intervals of 10, resulting in a 10 × 10 combination of the network structure.

The results are shown in Fig. 5.16. In deriving the classification accuracy, a Monte

Carlo technique was used to average the results for multiple iterations. In other words,

a pseudorandom generator was used to extract 35,981 processed signals randomly and

10 20 30 40 50 60 70 80 90 100

The number of nodes in a hidden layer

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Number of hidden layers: 1

Number of hidden layers: 2

Number of hidden layers: 3

Number of hidden layers: 4

Number of hidden layers: 5

Number of hidden layers: 6

Number of hidden layers: 7

Number of hidden layers: 8

Number of hidden layers: 9

Number of hidden layers: 10
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92



this process was repeated 10 times, which results in 10 data sets. Then, each data set

was used to train the network in parallel, and the classification accuracy was derived

by averaging the results. From the figure, I confirmed that the classification accuracy

showed a similar trend regardless of the number of hidden layers. Since the compu-

tational complexity increases when more nodes and layers are used, I concluded that

setting the number of hidden layers as 3 and the number of nodes as 50 is appropriate

for the network.

Moreover, I compared the proposed method with other machine learning algo-

rithms such as decision tree, SVM, and bagging with decision tree. The decision tree

is a simple classification algorithm that uses a set of hierarchical rules [79]. The model

is trained by dividing the data into smaller subsets based on the features of the data.

The SVM is a method that divides the input data by finding the maximum margin hy-

perplane [96]. It can be applied to nonlinear classification problems by using kernel

trick, in which the input data is mapped into high-dimensional feature space. Bagging

with decision tree combines multiple decision trees and makes a decision by aggre-

gating the prediction results from each decision tree [97]. The variance of the data

is reduced through the bagging algorithm, making it robust to over-fitting problem.

These algorithms have a similar property in that they all require extracting meaningful

features from the data.

The comparison results are summarized in Table 5.7. A single decision tree was

not effective in classifying the data due to its simple structure. The SVM with a Gaus-

sian kernel function also showed poor performance because the dimension of the data

is high. When bagging with decision tree is used, it resulted in a relatively high classi-

fication accuracy of 91.3%, but the proposed DNN method showed the most superior

performance of all algorithms. The proposed DNN method also has advantages from

other machine learning algorithms because it does not require extracting features from

the data.

Furthermore, I investigated how the classification accuracy changes by reducing
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Table 5.7: Performance of various machine learning algorithms and DNN

Algorithm Classification accuracy

Decision tree 44.3%

Gaussian SVM 74.6%

Bagging with decision tree 91.3%

DNN 99.5%

the size of the input. To reduce the input size by half, I collected only the odd in-

dex data from the processed radar signal p̂ in (5.4). In other words, I used the signal

p̂′ = [p̂[1], p̂[3], · · · , p̂[511]] as input to the network, which has the same effect as

doubling the sampling period of the radar system. The other parameters and settings

were the same as before; only the input size was changed from 512× 1 to 256× 1. As

a consequence of reducing the input size, the classification accuracy decreased from

99.5% to 99.2%. Since sampling is performed very quickly in an UWB radar system

(26 ps), doubling the sampling period did not seriously affect the performance of the

proposed network model.
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5.2.4 Summary

In this study, I proposed a deep learning-based method to estimate the location and

number of people inside the vehicle. First, I accumulated the received IR-UWB radar

signals in 32 different measurement scenarios by changing the subjects, the number of

subjects, the location of subjects, and the type of vehicle. Then, I trained the classi-

fier using the DNN with the received radar signals. Here, pre-processed radar signals

were used as an input to the classifier. Unlike feature extraction machine learning tech-

niques, the proposed method does not require a feature extraction stage. To design a

suitable DNN structure for classification, I evaluated the performance of the network

by changing the number of hidden layers, the number of nodes in each layer, and

the activation function. The classification results showed that the proposed method

can be used as an effective in-vehicle localization technique. In addition, the classi-

fication performance was improved compared to the conventional machine learning

techniques.
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5.3 DEEP NEURAL NETWORK BASED APPROACH US-

ING FMCW RADAR

5.3.1 Motivation

Numerous studies have been carried out to detect the occupancy of passengers in-

side a vehicle using a radar sensor [93, 98, 99, 100]. The location and number of pas-

sengers were estimated by extracting features from the impulse radio ultra-wideband

(IR-UWB) radar data and using a decision tree as the classifier in [93]. In addition, the

authors in [98] proposed a deep learning-based approach that did not require extract-

ing features. A 60 GHz FMCW radar was used to identify the location of passengers

in the rear seat using spectral power and Winner entropy [99]. Furthermore, the pres-

ence of the driver and breathing rate were estimated using a 60 GHz pulse radar [100].

However, these methods were based on single-channel radar with signal strength infor-

mation according to distance. When multiple targets are located at the same distance,

the signals from these targets can interfere with each other and result in performance

degradation.

To solve this problem, a multi-channel radar system that effectively captures spatial

information inside a vehicle has been proposed [101, 102]. The features extracted from

77 GHz FMCW radar were used as input to the machine learning algorithm to classify

passengers in five different seats [101]. A 77 GHz FMCW radar signal was converted

into point cloud data which were then used to identify each zone [102]. However, these

methods using the 77 GHz band is difficult to use in practice because it is designated

for automotive applications such as adaptive cruise control. The radar inside a vehi-

cle can cause interference with other radar-equipped vehicles, leading to an increased

noise floor and false alarms [103]. Therefore, interference problems with the existing

radar system must be resolved to successfully identify the passengers inside a vehicle.

In this study, we propose a method for detecting the occupancy of passengers inside

a vehicle using multi-channel 60 GHz FMCW radar. The radar is installed at the rear-
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view mirror position to provide a line-of-sight (LOS) path between the radar and all

seats. The raw radar signal is converted into a range-angle map that produces an image

of the in-vehicle environment. Then, to suppress clutter signals caused by stationary

objects such as the seat, wall, and roof, two clutter suppression methods are proposed

by capturing the phase variation of micro-movements. The resulting range-angle map

is used to classify various arrangement of passengers inside the vehicle by applying

three classification algorithms: SVM, MLP, and CNN. Because each algorithm uses a

different type of input, additional signal processing is required to transform the data

structure. The appropriate structure of each network is determined by analyzing the

classification accuracy for different hyperparameters; the results of the proposed algo-

rithm are compared with the results reported in a preceding study [101]. The classi-

fication results demonstrated that the proposed method can successfully estimate the

location and number of passengers inside a vehicle, which is robust to environmental

changes.

The main contributions of this study can be as follows. First, the proposed method

can be applied inside a vehicle without causing interference with the existing auto-

motive radar systems. By using a 60 GHz band designated for short range radar by

the Federal Communications Commission (FCC) in 2021 [104], the proposed method

avoids interference by automotive radars using 24 GHz and 77 GHz bands [105, 106].

In addition, the 60 GHz radar can transmit a narrow beam in the desired direction

through a miniaturized, high-directivity antenna system [107]. Next, the proposed

method can monitor passengers in all seats regardless of their movement. By applying

a clutter suppression method based on mean-subtraction (MS) and variance, the sig-

nals from passengers can be separated from those of stationary objects. Furthermore,

by capturing the micro-movements of human that result from breathing and heart-

beat, it is possible to detect both stationary and non-stationary passengers. Lastly, an

analysis of various classification algorithms is presented, along with comparison with

existing studies. By examining the classification accuracy of various algorithms and
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network structures, it is verified that the proposed method using CNN classifier with

variance-based clutter suppression method can detect passenger occupancy with the

highest accuracy.

The remainder of study is organized as follows. In Chapter 5.3.2, the FMCW

radar signal model and the experimental environment are presented. Then, the pre-

processing of FMCW radar signal and clutter suppression methods are introduced in

Chapter 5.3.3. In Chapter 5.3.4, three passenger occupancy detection methods are pre-

sented, which are based on SVM, MLP, and CNN. Next, the performance of the pro-

posed method is evaluated in Chapter 5.3.5 by comparing the performance of various

classification algorithms according to network structure. Finally, the conclusions are

given in Chapter 5.3.6.

5.3.2 Experimental Environment

For the measurement, an IWR6843ISK FMCW radar sensor manufactured by

Texas Instruments was used. The radar sensor was connected to MMWAVEICBOOST

and DCA1000EVM modules to capture the raw data. The carrier frequency of the

radar was 60 GHz, and a bandwidth of 4 GHz was used to obtain a distance resolution

of 3.75 cm [108]. The chirping duration and repetition interval between chirps were 60

µs and 160 µs, respectively. In addition, an array antenna system with two Tx anten-

nas and four Rx antennas is used, which results one Tx antenna and eight Rx antennas

having the angle resolution of 15◦ in the boresight direction [109]. The frame duration

was set to 100 ms; the data capture rate was ten frames per second.

The experimental environment is described in Fig. 5.17a. The Santa Fe (DM) man-

ufactured by Hyundai Motor was used which has two front seats and three rear seats.

The radar sensor was installed at the rear-view mirror position to provide a LOS path

between the radar and all seats. The seats were numbered from 1 to 5, as shown in

Fig. 5.17b. The total number of experimental cases was 32 depending on whether a

passenger occupied each seat, as shown in Fig. 5.18. Seven people participated in the
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(a) Vehicle interior (b) Side view (c) Bird’s-eye view

Figure 5.17: Experimental environment

experiment; the experiment was performed by randomly changing the arrangement of

participants. Fig. 5.17c shows a bird’s-eye view of the experimental environment. The

minimum and maximum distances between the radar and front seats were 60 cm and

80 cm, and those between the radar and rear seats were 166 cm and 180 cm, respec-

tively.

5.3.3 Pre-processing of FMCW Radar Signal

Analysis of FMCW Radar Signal

As mentioned in Chapter 2.1, the FMCW radar signal can be formulated as a 3D

exponential form, which is commonly referred to as a radar data cube. By applying

Figure 5.18: Experimental cases
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FFT to each dimension of the radar data cube, the range, velocity, and angle spectrum

can be obtained. The 2D spectrum in range-angle domain and range-velocity domain

are denoted as the range-angle map and range-velocity map, respectively. The range-

angle map and range-velocity map are shown in Figs. 5.19a and 5.19b, respectively,

with passengers located in seats 3 and 5 (case 6). In Fig. 5.19a, there are undesired

signals caused by the antenna coupling effect and background clutters, and the tar-

get signals at 1.7 m cannot be clearly identified. The reflected signals from stationary

objects such as the seat, wall, and roof can obscure the desired signal because the

reflectivity of a passenger is relatively weak. In addition, the range-velocity map in

Fig. 5.19b indicates that there are only zero-Doppler components because the passen-

gers are quasi-stationary. Stationary objects are also detected in the zero-Doppler bin;

the target signal at 1.7 m can be masked by signals from other stationary objects. Thus,

the clutter signals must be suppressed to extract the passenger signals from overlapped

signals.

Clutter Reduction

Clutter suppression is generally performed using the Doppler component [110],

based on the assumption that the desired target is moving and the clutter signal is

stationary. However, for an in-vehicle environment, the passengers are usually in a

quasi-stationary state and the foregoing assumption is not valid. The passenger signals

can be detected in the nonzero-Doppler bin only if the passengers are intensely mov-

ing; this is usually not the case. Thus, a clutter suppression technique that does not

use the Doppler component is required so that the method can be applied regardless of

passenger movement.

To this end, the phase value ψn in (2.8) is used, which is a function of the distance

between the radar and target. As shown in Fig. 5.20, the distance to a stationary object

does not change over time, whereas a slight variation of distance to a passenger occurs

due to movement of the chest caused by breathing. The chest cavity changes in mm-
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suppression
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(c) Range-angle map with clutter suppres-

sion (MS-based)
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(d) Range-angle map with clutter suppres-

sion (Variance-based)

(e) Probability distribution of two clutter

suppression methods

0 0.2 0.4 0.6 0.8 1

Normalized magnitude

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty
 (

%
)

MS-based clutter suppression

Variance-based clutter suppression

(f) Cumulative probability distribution of

two clutter suppression methods

Figure 5.19: FMCW radar detection results (Case 6)
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scale as the diaphragm contracts or expands during inhalation and exhalation [111].

By considering these micro-movements, the distance to the target can be modified as

rn[p] = r̄n + ∆rn[p], (5.14)

where p is the frame index, r̄n is the large-scale distance with a scale greater than cm,

and ∆rn is the small-scale distance in mm, respectively. Then, the phase of the target

can be re-expressed as

ψn[p] =
2rn[p]

λ
=

2(r̄n + ∆rn[p])

λ
. (5.15)

By using a 60 GHz millimeter wave FMCW radar sensor with a mm wavelength, the

micro-movements of passenger in mm scale can be detected using the phase value.

Also, it is possible to separate stationary and non-stationary targets using the phase

variations in (5.15) for multiple frames [112]. For example, the large-scale and small-

scale distances of stationary objects are both constant; thus, the phase of the corre-

sponding signal does not change over time. In contrast, the large-scale distance of a

stationary passenger is constant, but there are small-scale distance variations due to

micro-movements and the phase of the passenger changes over time. Moreover, when

a passenger is moving, the phase changes more abruptly because the large-scale dis-

tance also changes over time. Thus, by analyzing the phase variations of the received

signal, it is possible to distinguish passenger signals from stationary clutter signals.

Prior to applying the clutter suppression method, the FMCW radar signal should be

modified in an appropriate structure to reflect the phase variation characteristics over

time. Because the velocity term is not required for in-vehicle passenger detection, the

frequency fnd along the chirp index axis in (2.8) is not considered. A range-angle map

is generated by applying 2D-FFT to the beat signal in (2.8), which can be expressed as

X[fk, fl] =

Nr−1∑
k=0

Na−1∑
l=0

X[k, l]e−j
2π
Nr

kfke−j
2π
Na

lfl

(fk = 0, 1, · · · , Nr − 1)

(fl = 0, 1, · · · , Na − 1), (5.16)
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Figure 5.20: Comparison of distance variation for stationary object and passenger

where Nr and Na are the number of FFT points along the k and l indices, respectively.

Because the size of the vehicle is limited and it is not necessary to use all data along

the range axis, the size of the 2D matrix is truncated from RNr×Na to RN̂r×Na . The re-

sulting range-angle map obtained at the p-th frame is denoted as X̃p, which represents

the image of passengers inside the vehicle. This process is repeated for P consecutive

frames; multiple range-angle maps are accumulated to form a 3D data. The overall

procedure of 2D-FFT, truncation, and frame accumulation is summarized in Fig. 5.21.

Two clutter suppression methods based on MS and variance are considered to ex-

tract the signal from the desired target. The MS method can be regarded as a high-pass

filtering operation that calculates the mean of the accumulated range-angle map for

multiple frames and subtracts it from the original range-angle map. The resulting sig-

nal after applying the MS method can be expressed as

CM =

∣∣∣∣X̃P −
1

P

P∑
p=1

X̃p

∣∣∣∣, (5.17)

which indicates the extent to which the signal fluctuates with respect to its average

value. The variance-based method calculates the average of the squared deviation,

which can be expressed as

CV =
1

P − 1

P∑
p=1

(
X̃p −

1

P

P∑
p=1

X̃p

)2

. (5.18)
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Figure 5.21: Pre-processing of FMCW radar signal

Unlike the MS-based method, the variance-based method captures the characteristics

of the range-angle map for multiple frames.

The detection results after applying the two clutter suppression methods are shown

in Figs. 5.19c and 5.19d. Compared to the raw range-angle map in Fig. 5.19a, both

methods successfully eliminate the undesired signals from the antenna coupling effect

and stationary clutter signals; two passengers located at 1.5 m are clearly detected. The

difference between the two clutter suppression methods is examined in Figs. 5.19e and

5.19f using the probability distribution of the normalized magnitude of the range-angle

map. The probability distribution of normalized magnitude indicates the degree of

concentration and can be used to show the prominence of peak value. For the MS-based

method, the magnitude of the peak value is smaller than that for the variance-based

method, and multiple local peaks with intermediate magnitude are detected around

the maximum peak value. Thus, a number of multipath components are present near

the passenger location. For the variance-based method, more than 60% of the signal

is concentrated near the normalized magnitude of zero, and signals with intermediate
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magnitude are less likely to be detected. As a result, the passenger signal is clearly

identified in the area where the passenger is located. The range-angle maps obtained

from both clutter suppression methods are used as an input to various machine learning

algorithms in Chapter 5.3.4.

5.3.4 Passenger Occupancy Detection Methods

In this study, a method of detecting the occupancy of passengers inside a vehi-

cle using the processed range-angle map is presented. The overall block diagram of

the proposed method is shown in Fig 5.22. To estimate the location and number of

passengers, various machine learning algorithms including the SVM, MLP, and CNN

are used. Prior to applying the machine learning algorithms, additional signal process-

ing is applied to transform the range-angle map into a data structure suitable for each

machine learning algorithm. The SVM-based method is presented, followed by the

MLP-based and CNN-based methods.

SVM-based Method

The SVM is a representative machine learning algorithm that is widely used for

classification of multi-dimensional data. The algorithm finds a hyperplane in multi-

dimensional space that can separate each individual class with the largest margin. As

Figure 5.22: Block diagram of proposed method
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(a) Structure of SVM

(b) Structure of MLP

(c) Structure of CNN

Figure 5.23: Passenger occupancy detection method with hyper parameter

shown in Fig. 5.23a, the input data is transformed into high-dimensional space using

a mapping function. Linear, polynomial, and Gaussian kernel functions are commonly

used as mapping functions to reduce the computational complexity. In this study, the

SVM algorithm is used to classify various arrangement of passengers inside the vehi-

cle.

To apply the range-angle map as an input to the SVM, the 2D matrix of size

RN̂r×Na must be vectorized as a 1D vector of size R1×N̂rNa . However, because the

size of the vector is too large, using this vector as the input increases the computational
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complexity in the classifier; a phenomenon known as the ‘curse of dimensionality’ can

occur [113]. Thus, the dimension of the input data must be reduced to be suitable as

an input to the SVM.

The PCA [61] algorithm can be used to reduce the dimension of input data by

finding a set of principal axes that contain as much information as the original data. The

principal axes are found by applying eigen-decomposition to the input data. Because

the size of the vectorized 1D range-angle map is R1×N̂rNa , N̂rNa eigenvalues and

eigenvectors are generated. The eigenvector and eigenvalue represent the principal axis

and the data variance explained by the corresponding eigenvector, respectively. To

reduce the dimension of data, a subset of principal axes with the highest eigenvalues

is selected by solving the following optimization problem,

minimize α

subject to

∑α
i=1 λi∑N̂rNa
i=1 λi

× 100 ≥ T, (5.19)

where λi (i = 1, · · · , N̂rNa) are the eigenvalues and α is the optimization parameter

representing the number of principal axes to be used. After α principal axes are de-

termined, the original input data are projected onto these axes and the size of the 1D

vector is reduced from R1×N̂rNa to R1×α. The appropriate value of T determining the

dimension of data is discussed in Chapter 5.3.5.

MLP-based Method

The MLP is a basic algorithm in a deep neural network where each layer is fully

connected to the adjacent layers. Unlike machine learning algorithms such as the SVM,

feature extraction is not necessary. The structure of the MLP network is shown in

Fig. 5.23b, which consists of an input layer, multiple hidden layers, and an output

layer. For the input layer, the vectorized 1D range-angle map of size R1×N̂rNa is used;

the output layer consists of 32 nodes to classify 32 different arrangement of passengers

inside the vehicle.
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The weight parameters of the network are updated through a process of forward

and backward propagation, which is defined as an epoch. In forward propagation, the

weighted sum of the input is passed through an activation function and sent to the

next layer. Activation functions such as the sigmoid, hyperbolic tangent, and ReLU

functions are used to introduce non-linearity to the data. In backward propagation, the

weight parameters are updated using the gradient descent algorithm to minimize the

loss function between the actual and estimated value. The cross-entropy is used as the

loss function, and the softmax function is used in the output layer to convert the output

value into a probability distribution.

CNN-based Method

The CNN is one of the most widely used algorithms in a deep neural network

which is mainly used to analyze image or video data. Because the CNN uses high-

dimensional data in forward and backward propagation, the spatial information of

high-dimensional input data such as an RGB image can be preserved. In this study,

the 2D range-angle map of size RN̂r×Na is used as input to the CNN; the input is nor-

malized to have a value between zero and one. The overall structure of the proposed

CNN network is shown in Fig. 5.23c, which can be divided into the feature extraction

stage and the classification stage. In the feature extraction stage, multiple convolution

blocks are used to extract features representing the properties of the input data. Each

block consists of multiple layers that perform convolution, batch normalization (BN),

non-linear transformation, and average pooling. In the convolution process, the size of

the filter is set as 3 × 3, and zero-padding is used to maintain the size of the input.

Also, an average pooling with a filter size of 2 × 2 and a stride of 2 is applied to the

output of the ReLU layer to downsample the data and prevent overfitting. In the clas-

sification stage, the output of the feature extraction stage is passed through multiple

fully connected layers. Similar to the structure used in the MLP, the number of nodes

in the final fully connected layer is set as 32 to classify 32 different arrangement of
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passengers inside the vehicle. Using this CNN structure, the weight parameters are

updated through forward and backward propagation.

5.3.5 Performance Evaluation

In this study, the performance of the proposed in-vehicle passenger occupancy de-

tection method is evaluated using experimental data. The experiment was conducted

inside the vehicle for 32 different cases. For each experimental case, measurement was

conducted ten times with randomly changed participants. The number of frames per

measurement was set as 600; each measurement lasted for a minute. In accumulating

multiple range-angle maps as shown in Fig. 5.21, the number of frames to accumu-

late (P ) was determined by considering the micro-movement cycle of human arising

from respiration. For an adult, the respiration rate is approximately 12-20 breaths per

minute; a child or elderly person has a higher respiration rate [114]. To capture at least

half of the respiration cycle and identify the phase change arising from respiration, the

number of frames to accumulate (P ) was set as 20. Thus, 600 frames of radar data

obtained for each measurement were divided into 30 non-overlapping sections with

20 frames. In addition, when training the SVM, MLP, and CNN models, the five-fold

cross-validation method was used to evaluate the performance of the trained model.

The entire dataset was divided into five groups; one group was used as the test set

and the remaining groups were used as the training set. This process was repeated five

times, such that each group is used as a test set; the final classification accuracy was

calculated by averaging the results from each test set.

First, I investigated the performance of the PCA algorithm to analyze the impor-

tance of each principal component and reduce the size of the input. The eigenvalue

distributions using two different clutter suppression methods are shown in Fig. 5.24.

In the figure, the eigenvalues are plotted in descending order starting from the first

principal component, along with the cumulative eigenvalues. When using the variance-

based method, the eigenvalues of a few upper principal components accounted for most
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Figure 5.24: Principal component analysis of two clutter reduction methods

of the data. The cumulative eigenvalues corresponding to 70%, 80%, 90%, and 99%

were obtained using 12, 19, 36, and 117 upper principal components, respectively. This

means that the data are distributed along a few principal axes, which is consistent with

the probability distribution results in Chapter 5.3.3. The MS-based method showed a

similar trend, but the degree of concentration was slightly less than that of the variance-

based method. The cumulative eigenvalues corresponding to 70%, 80%, 90%, and 99%

were obtained using 23, 45, 111, and 423 upper principal components, respectively.

Compared to the variance-based method, more principal components were required

to explain the same amount of data. The number of principal components to be used

was determined by solving the optimization problem in (5.19) by varying the threshold

parameter T .

After reducing the dimension of data using the PCA algorithm, I applied the SVM

algorithm to classify various arrangements of passengers inside the vehicle. Fig. 5.25

shows the classification accuracy by varying the threshold coefficient T and kernel

functions. For both clutter suppression methods, a linear kernel function produced a

higher classification accuracy than polynomial and Gaussian kernel functions. For the

MS-based method, the classification accuracy was highest with a threshold value of

75, which corresponds to using 32 principal components. The variance-based method

produced the highest classification accuracy when the threshold value was 90, which
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Figure 5.25: Classification results using SVM method

corresponds to using 36 principal components. The classification accuracy in these

conditions was 91.56% for the MS-based method and 85.15% for the variance-based

method.

Next, I analyzed the performance of the MLP algorithm using the vectorized 1D

range-angle map as the input. The hyperparameters that must be considered in the

MLP algorithm are the type of activation function and the number of layers and nodes.

Therefore, the network performance was evaluated by changing these hyperparame-

ters. Among the ReLU, sigmoid, and hyperbolic tangent activation functions, the sig-

moid function showed the best training performance. Then, to find the appropriate

number of layers and nodes, I varied the number of layers from one to five and the

number of nodes from 10 to 200 in intervals of 10. Fig. 5.26 shows the network per-

formance with the sigmoid function used as the activation function. For both clutter

suppression methods, the classification accuracy tended to increase and converge with

an increasing number of nodes. For the highest classification accuracy, 2 layers and

180 nodes were used for the MS-based method, resulting in a classification accuracy

of 94.74%. Also, for the variance-based method, a classification accuracy of 95.50%

was obtained with 5 layers and 170 nodes.

Furthermore, I applied the CNN algorithm using the 2D range-angle map as the

input. Similar to the MLP-based method, the CNN network performance was analyzed
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Figure 5.26: Classification results using MLP method

by changing hyperparameters such as the number of filters and blocks. Fig. 5.27 shows

the classification accuracy by changing the number of filters from 2 to 128 in units of

2n and the number of blocks from 2 to 5. In both cases, the CNN network perfor-

mance was highest when the number of blocks was 2. The number of filters resulting

in the highest classification accuracy was 128 and 32, respectively, with classification

accuracies of 95.36% and 97.68%.

The classification accuracy of various methods is summarized in Table 5.8. The
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Figure 5.27: Classification results using CNN method
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Table 5.8: Comparison of classification methods

Type Accuracy

SVM method (MS-based) [101] 91.56%

SVM method (Variance-based) 85.15%

MLP method (MS-based) 94.74%

MLP method (Variance-based) 95.50%

CNN method (MS-based) 95.36%

CNN method (Variance-based) 97.68%

method in [101] used the MS-based clutter suppression method; the PCA algorithm

was used to reduce the dimension of data before applying the SVM algorithm. The

method is similar to the MS-based SVM method in this study, resulting in a classifica-

tion accuracy of 91.56%. The MLP method resulted in higher classification accuracy

than the SVM method for both clutter suppression methods because the MLP method

uses the entire range-angle map as the input, whereas the SVM method is based on

feature extraction and information can be lost. The highest classification performance

was achieved using the CNN method. The CNN method can learn the non-linear char-

acteristics of the data using the 2D range-angle map as the input. Unlike the SVM

and MLP methods that vectorize the 2D range-angle map, the CNN method can pre-

serve the spatial information and correlation between distance and angle. Moreover,

the variance-based method demonstrated higher classification performance than the

MS-based method when a deep neural network was used. This is because the variance-

based method has prominent peaks at passenger location and few intermediate values,

as shown in Figs. 5.19 and 5.24. As a result, the variance-based CNN method demon-

strated the highest classification accuracy of all methods.
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5.3.6 Summary

In this study, I proposed a method to detect passenger occupancy inside a vehicle

using multi-channel 60 GHz FMCW radar sensor. The measurement was conducted

for 32 experimental cases by changing the location and number of passengers. The re-

ceived radar signal was converted into a range-angle map, and clutter suppression was

performed using MS-based and variance-based methods. To detect the occupancy of

passengers in each seat, three classification algorithms (SVM, MLP, and CNN) were

used. Because each algorithm uses a different type of input, additional signal process-

ing was performed to transform the data into a form suitable for input. The appropriate

structure of each algorithm was determined by varying the network hyperparameters

and analyzing the classification accuracy. Of all classification algorithms and clut-

ter suppression methods, the CNN algorithm using variance-based clutter suppression

produced the highest classification accuracy (97.68%). Thus, it is verified that the lo-

cation and number of passengers inside a vehicle can be accurately estimated regard-

less of whether passengers are moving. Moreover, the performance of the proposed

method can be further improved using high-resolution imaging radar with enhanced

angular resolution.
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Chapter 6

CONCLUSION

In this dissertation, I proposed various radar signal processing techniques to solve

issues that must be considered in autonomous driving. The research topic was divided

into three categories: ego-motion estimation, orientation estimation of surrounding ve-

hicles, and occupancy detection of passengers inside the vehicle. The research was

conducted by using an IR-UWB and FMCW radar.

First, I proposed a method to estimate the ego-motion of the radar-equipped plat-

form by only using radar sensor data. The rotation angle was estimated by using the

distribution of the detected points at successive time instants and correlating with each

other. In addition, the moving velocity of the robot was estimated from the trend line

formed by the detected points on the angle-velocity 2D plane. The estimation results

showed that the proposed method can estimate the ego-motion of the robot with high

accuracy. Also, the proposed method can be applied to estimate the ego-velocity of the

vehicle using automotive radar.

Next, I proposed a method to estimate the heading direction of vehicle using au-

tomotive radar. The received radar data were converted into range-angle map or point

cloud data. By using a high-resolution range-angle map, various movements of the

front vehicle were classified with high accuracy. Also, by using the point cloud data,

the orientation angle was accurately estimated by applying regression algorithm.
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Finally, I proposed a method to detect the occupancy of passengers inside vehicle

using IR-UWB or FMCW radar sensor. The received radar signal was processed to

separate target signal from clutter and noise. Two methods were proposed based on

whether the features are extracted or not. The performance was compared by using

various machine learning algorithms, and the number and position of people sitting

inside vehicle was accurately estimated.
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“A multi-agent system to avoid heatstroke in young children left in baby car seats

124



inside vehicles,” in Proc. Int. Conf. Comput. Sci. Comput. Intell., Mar. 2014, pp.

245-248.

[72] S. Abdulatif, Q. Wei, F. Aziz, B. Kleiner, and U. Schneider, “Micro-Doppler

based human-robot classification using ensemble and deep learning approaches,”

in Proc. IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 1043-1048.

[73] D. W. Paglieroni, D. H. Chambers, J. E. Mast, S. W. Bond, and N. R. Beer,

“Imaging modes for ground penetrating radar and their relation to detection per-

formance,” IEEE J. Sel. Topics Appl. Earth Observ. Reomete Sens., vol. 8, no. 3,

pp. 1132-1144, Mar. 2015.

[74] J. Li, Z. Zeng, J. Sun, and F. Liu, “Through-wall detection of human being’s

movement by UWB radar,” IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp.

1079-1083, Nov. 2012.

[75] M. G. Amin, Radar for Indoor Monitoring: Detection, Classification, and As-

sessment. Boca Raton, FL, USA: CRC Press, 2017.

[76] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-

Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in Proc.

29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2007, pp. 2300-2302.

[77] A. R. Diewald, J. Landwehr, D. Tatarinov, P. D. M. Cola, C. Watgen, C. Mica,

M. Lu-Dac, P. Larsen, O. Gomez, and T. Goniva, “RF-based child occupation

detection in the vehicle interior,” in Proc. 17th Int. Radar Symp. (IRS), May 2016,

pp. 1-4.

[78] 2019 Hyundai Santa Fe Rear Occupant Alert Aims to Protect Kids

From Hot Cars. Accessed: Oct. 27, 2019. [Online]. Available:

https://www.consumerreports.org/car-safety/hyundai-santa-fe-rear-occupant-

alert-aims-to-protect-kids-from-hot-cars/

125



[79] D. Lowd and J. Davis, “Improving Markov network structure learning using de-

cision trees,” J. Mach. Learn. Res., vol. 15, pp. 501-532, Feb. 2014.

[80] J. Su and H. Zhang, “A fast decision tree learning algorithm,” in Proc. 21st Nat.

Conf. on Artif. Intell., Jul. 2006, pp. 500-505.

[81] J. M. Lee, J. W. Choi, and S. H. Cho, “Movement analysis during sleep using an

IR-UWB radar sensor,” in Proc. IEEE Int. Conf. Netw. Infrastruct. Digi. Content,

Sep. 2016, pp. 486-490.

[82] S. Lee, B.-H. Lee, J.-E. Lee, and S.-C. Kim, “Statistical characteristic-based road

structure recognition in automotive radar systems,” IEEE Trans. Intell. Transp.

Syst., vol. 20, no. 7, pp. 2418-2429, Jul. 2019.

[83] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy K-nearest neighbor al-

gorithm,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 4, pp. 580-585,

Jul./Aug. 1985.

[84] C.-C. Chang and C.-J. Lin “LIBSVM: A library for support vector machine,”

ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Apr. 2011.

[85] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and Applications.

New York, NY, USA: Springer, 2012.

[86] Y. Freund, R. E. Schapire, and N. Abe, “A short introduction to boosting,” J. Jpn.

Soc. Artif. Intell., vol. 14, no. 5, pp. 771-780, Sep. 1999.

[87] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123-140,

Aug. 1996.
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초록

최근 들어 자율주행에 대한 사람들들의 관심이 증가하면서 자율주행용 센서들

과신호처리기법에대한연구가활발히이루어지고있다.자율주행용플랫폼으로

는 자율주행 로봇, 드론, 차량 등이 개발되고 있으며, 자율주행용 센서로는 라이다,

카메라,레이더,초음파센서등이사용되고있다.이들중레이더센서는빛이없는

환경이나악천후에도안정적인성능을발휘하며타센서들에비해넓은감지거리를

가져 필수적인 센서로 여겨지고 있다. 레이더 센서는 로봇, 차량, 드론에 장착되어

주변환경을인지하거나탐지된타깃들의상대속도,거리,각도정보를얻을수있다.

본 학위 논문에서는 레이더 센서 기반의 실내외 자율주행을 위한 향상된 신호

처리기법들을제안한다.자율주행에서동시적위치추정및지도작성기술의중요

성이높아지고있다.자율주행기기가동시적위치추정및지도작성을위해자신의

위치를 정확하게 추정하려면 움직이는 플랫폼의 회전 각도나 속도와 같은 자차의

움직임에 대한 정보가 필수적으로 고려되어야 한다. 본 학위 논문에서는 추가적인

기기 설치 없이 레이더 센서만을 이용하여 레이더가 장착된 플랫폼의 자차 움직임

을추정하는연구를제안한다.또한,고속도로나도심도로와같은복잡한환경에서

주행 시 다양한 타깃이 존재하며 예측 불가능한 상황이 발생할 수 있다. 만약 주변

차량의 경로를 미리 예측할 수 있다면 사전에 잠재적인 위험을 예방할 수 있을 뿐

만 아니라 차선을 변경하거나 자차의 속도를 조절하는데 활용할 수 있다. 따라서

본 학위 논문은 레이더 센서를 이용하여 주변 차량의 진행 방향을 추정하는 연구

를 제안한다. 마지막으로, 차량 내 유아나 동물을 두고 내려 사망에 이르는 사건이

빈번하게 발생함에 따라 자율주행 차량에 실내 탑승객 감지 시스템이 의무적으로

131



장착되도록 요구되고 있다. 탑승객의 위치를 모니터링함으로써 승객의 안전을 보

장할수있으며,차량내에너지를효율적으로관리할수있다.또한레이더센서를

이용함으로써 비접촉으로 다중 사람을 감지할 수 있으며, 사람이 움직이지 않더라

도위치를정확하게추정할수있다.따라서본학위논문은차량내레이더센서를

사용하여탑승객의수와위치를탐지하는기법을제안한다.

주요어: 임펄스 무선 광대역 레이더, 자율주행, 자차 움직임 추정, 주파수 변조

연속파레이더,차량내승객탐지,차량진행방향추정

학번: 2017-25081
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