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Abstract

Establishing a class-balanced dataset on a large scale for stable learning is impractical

for real-world problems, as collecting samples is extremely hard for certain categories or

groups. This imbalance results mainly from the natural characteristics of these minorities

and the hierarchical structure of underlying attributes. It causes a disparity or unfairness in

performance among groups. Several existing approaches encourage a model to pay equal at-

tention to all groups by resampling or reweighting minority groups. Also, data augmentation

or generative methods have been used to resolve this problem and improve generalization

performance. However, all these methods fail to eliminate the negative impacts of overfit-

ting caused by the lack of diversity in minorities. In this paper, we first demonstrate the

classifier’s tendency to be over-confident in its predictions. Then we propose a novel post-

processing method called Prediction Penalty that places a penalty on majorities to enhance

the performance of minority groups in terms of accuracy. It is compatible with other meth-

ods, and we introduce an adaptive algorithm to find the best-performing penalty function.

Our approach suggests a novel perspective on making a decision boundary robust to data

imbalance and bias. Experimental results on various datasets and imbalance settings show

significant performance enhancement in both average and robustness and demonstrate the

benefit of the new robust decision boundary for imbalanced learning.

Keyword: imbalanced learning, post-processing, image classification

Student Number: 2021-27158
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Chapter 1

Introduction

Recent advances in machine learning and deep learning require a vast amount of training

data to enable reasonable performance in the sense of generalization by avoiding overfitting.

It heavily depends on emerging techniques to collect and manage many training samples in

fields like computer vision, natural language processing, and reinforcement learning. How-

ever, collecting a balanced dataset in the real world is not practical, and a balance between

populations of categories usually collapses during collecting samples. This problem often

limits the utilization of recent algorithms that assume the balance among categories. Various

works revealed the necessity of balancing categories for fair and robust model performance

[2, 3, 13, 17, 24, 25, 33, 35]. Recent approaches have begun to consider this imbalance to

deal with real-world problems in practical domains [4, 8, 30, 40].

The category imbalance occurs due to several reasons in the real world. First, some

categories are naturally rare, and it is challenging to secure enough samples belonging to

these minority groups. For example, pictures of some marine animals, such as whales and

dolphins, are more brutal to be obtained than cats and dogs, and there are extreme cases
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in reinforcement learning scenarios that rarely occur with fewer populations. Furthermore,

as the number of categories increases to build a more challenging classification task such as

ImageNet-1K [6], the appearance of so-called tail categories is inevitable [33]. Recent cases

are more extreme, like the ImageNet-21K [26] task containing a total of 21,841 categories.

Second, the hierarchical structure among attributes causes an imbalance between categories

when these attributes are correlated. This problem has been discussed in various approaches

concerning fairness, where specific attributes have spurious correlations [8, 30, 38]. Although

we wish the model not to consider race when it predicts hair color, correlation in natural

data tends to deceive the model. This imbalance in training data often leads to unfair

predictions.

The lack of training samples in minority groups usually results in inferior performance

in two ways, depending on the degree of imbalance. In the extreme case, the model ignores

minority groups during training and fails to predict minority samples. On the other hand,

for relaxed imbalance, it overfits the minority samples in the training dataset and cannot

provide reasonable decision boundaries for test samples. Although these different cases are

distinguishable by comparing training errors in the minority groups, the overall performance

in the training set is superior while the generalization performance is poor for both cases.

Consequently, the performance of minority groups tends to be disastrous, and it is impossible

to utilize these models for minority groups.

1.1 Related Work

1.1.1 Imbalanced Learning and Robust Training

Beyond the superior performance of recent deep neural networks, reliability receives broad

attention for practical applications. Much research dedicates to robust machine learning

techniques in an imbalanced or polluted dataset. This paper mainly focuses on an imbal-

anced training dataset and releasing its effects on the classifiers.

Typically there are three lines of approaches to dealing with an imbalanced dataset: pre-

processing, in-processing, and post-processing. Pre-processing methods balance the number
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of samples among categories by adjusting the sampling rate of each category [3, 17, 28, 29,

35] or generating samples from minority distribution [4, 36, 40]. In-processing approaches

use a regularization objective to modify the decision boundary of classifiers for a better

generalization to unseen samples in minority groups [5, 8, 23, 27, 30, 37, 38]. Few methods

post-process the classifier predictions to take account of the category imbalance [10, 11]

or unfairness [15, 20, 21, 34]. They modify the output of a model to achieve balance or

fairness, and common methodologies adjust decision boundaries for each subgroup based on

the fairness objective.

The most commonly used methods for dealing with imbalance are based on data resam-

pling. Simple methods that have performed well include oversampling from the minority

groups [18] and undersampling from the majority groups [14]. A similar approach is to

reweight the loss of samples from different subgroups [39]. Although we categorized re-

sampling into a pre-precessing method and reweighting into an in-processing method, they

share a similar idea of repopulating a training dataset. Among these resampling/reweighting

methods, sampling from each subgroup with equal probability is known to outperform others

[2].

Recent works introduce optimization methods that are robust to class imbalance. GDRO

replaces the ERM objective with a distributionally robust optimization objective so that

the model maximizes the worst-case subgroup accuracy instead of the average [30]. SGDRO

maximizes the worst-case class-conditional subgroup accuracy to consider cases with class-

subgroup hierarchy [8]. SGDRO becomes reweighting each subgroup equally when there is

no class-subgroup hierarchy and subgroups serve as categories.

1.1.2 Fairness in Machine Learning

Fair prediction is also required for reliable applications of machine learning techniques. Since

empirical data frequently contain unfair bias and can impair performance and cause social

problems, algorithms for training a fair classifier have developed increasingly. While there

are many notations and metrics to measure fairness in machine learning, disparate impact

[7], equalized odds [9], and equal opportunity [1] are mainly used to estimate the fairness
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of classifiers. Fairness in classification tasks aims to balance errors across subgroups, i.e.,

genders or racial groups. Definitions of other forms of fairness can be found in [31]. In this

paper, we do not consider fairness measures as major metrics. However, we use datasets

with correlated attributes to consider spurious correlation and test our algorithms in an

attribute-based classification task.

More recently, [32] pointed out that most methods improve fairness measures by wors-

ening the classification accuracy for both majority and minority groups. [40] claimed that

using the accuracy of minority groups is a more reliable measurement of fairness than pre-

vious definitions. We compare both average accuracy and minority group accuracy (Robust

accuracy) to demonstrate the robustness of algorithms. Moreover, a discrepancy between

maximum and minimum category accuracy is also used instead of previous fairness measures.

1.2 Contributions

Besides manipulating the training procedure, we propose adjusting classifiers’ decision bound-

aries. The tendency of over-parameterized neural networks to be over-confident in their pre-

dictions provides a rationale for this adjustment. Our method expands the region occupied

by minority groups in the decision space and reduces that of majority groups, encourag-

ing the classifier to generalize better to minorities. It post-process the model predictions

and does not affect the training dynamics. Our experimental results demonstrate that this

modification does not harm the performance in overall groups.

This paper proposes a novel paradigm to adjust a decision boundary to penalize the

predictions on majority groups. While adjusting decision boundaries is not unique, our

method exploits the population of a training dataset to compute a statistic vector. It

penalizes the model prediction using it as shown in Fig. 1.1. Ours is compatible with other

methods and does not affect the stability of training algorithms, as the penalty quantity is

independent of the classifier and training dynamics. Also, our adaptive penalizing algorithm

efficiently determines the most effective penalty function without additional hyperparameter

search. It only requires a small set of validation samples which is possibly imbalanced. Our
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Figure 1.1. The Diagram of our Prediction Penalty method. After the training ends, the model
prediction is penalized using the statistic vector computed from a training set. Once the statistic
vector and the penalty quantity are computed, they are used with little computation overhead,
requiring no additional computation for each sample. The model should be strongly sure to classify
as majorities since these categories have a massive penalty. On the other hand, a little penalty is
exerted on minority categories.

method demonstrates an impressive performance gain in the average and robust sense for

various imbalanced environments. Our work is different from previous works in that it

adaptively adjusts the decision boundaries based on the populations of the training set

rather than using a fixed modification method from a given fairness measure.

Our contributions are as follows:

• We demonstrate the tendency of over-parameterized networks to be over-confident in

their predictions.

• We propose a novel post-processing method called Prediction Penalty that works in-

dependently of the training process and requires no additional resources.

• Our extensive experiments on several imbalanced settings and datasets reveal the effect

of our adaptive algorithm for the Prediction Penalty method in real-world problems.
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Chapter 2

Background

We explain the notations and baseline methods in this chapter. We compare Empirical Risk

Minimization (ERM) as a default baseline method. Based on ERM, we suggest Subgroup

Resampling (SR) and Distributionally Robust Optimization (DRO) as representatives for

pre-processing and in-processing methods, respectively. They differ in the underlying data

distribution assumed and optimization strategy. A brief explanation and our realization of

these algorithms are provided in the following.

2.1 Notations and Setting

This paper mainly considers a C-way classification task. The goal is to find a parameter θ

in a family of parameters Θ that a classifier f(x; θ) predicts a label y ∈ Y provided an input

x ∈ X . The training algorithms aim to optimize an objective under some target distribution

P , which is their assumption of the test distribution. Given a loss function l(y, f(x; θ)) that

evaluates a model prediction, an objective function is the expectation of this loss function

under P .
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A set of sampled data points is required to optimize the expectation under P . We

denote a dataset D = {(xi, yi)|i ∈ [1 : N ]} as a collection of data sampled from an empirical

distribution P̂ . The algorithm can not manipulate the empirical distribution P̂ , but it

models P to optimize the objective function.

Both the natural characteristics (true distribution) and the sampled dataset (empirical

distribution) can cause a data imbalance. No matter what the reason is, imbalanced learning

or training is required when disjoint sub-datasets Dc = {(xi, yi)|i ∈ [1 : N ], yi = c} are

not balanced where
⋃
Dc = D. We denote the size of each sub-dataset Dc as Nc. The

distribution of these sizes represents an imbalance in a training dataset.

2.2 Distributionally Robust Optimization

2.2.1 ERM and limitations

ERM assumes that P̂ is sampled from P without any bias and directly optimizes a classifier

under the empirical distribution. Therefore it samples data points in D uniformly without

any considerations of imbalance. The objective of ERM is

θERM = argmin
θ∈Θ

E(x,y)∼P̂ [l(y, f(x; θ))], (2.1)

where the model is optimized using a naive mean of loss values computed on the dataset D

sampled from P̂ . As a result, ERM optimizes a classifier to work well on a test distribution

identical to an empirical one where data samples for training are obtained.

The overfitting occurs even when train and test distributions are identical because D

cannot represent P̂ perfectly. ERM suffers from additional overfitting caused by any pos-

sible disparity between the train and test distributions, which usually take the form of an

imbalance in a training set. It makes ERM inapplicable when robust performance on mi-

norities is required or minority groups in the training set are no longer minor in the test

samples.

There are two problems to consider under the imbalance among categories. First, the
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limited samples of minority groups cannot demonstrate the empirical distribution. ERM

usually exhibits serious overfitting on the minority groups as it assumes nothing about this

imbalance. Next, the test distribution is usually i.i.d. or less imbalanced than the train

distribution. It causes a mismatch between ERM’s assumption and the actual distribution

for test or application.

2.2.2 Group DROs

A training dataset often contains biases and spurious correlations, which lead a model to

learn heuristics that work well on most training samples but perform poorly on test data.

DRO [8, 30, 38] was introduced to improve the test performance by minimizing the worst-

case objective over all potential test distributions. Empirically, the training set is divided

into groups, and the worst-case objective is optimized.

Group DRO (GDRO) [30] is an instantiation of DRO on groups which has shown notable

performance in generalization for minority groups when used with adequate regularization

terms. Groups are organized to share some attributes or belong to the same class. The

objective of GDRO is defined as the worst-case group training loss for all predefined groups

and is estimated with

θGDRO = argmin
θ∈Θ

max
c∈[1,C]

E(x,y)∼P̂c
[l(y, f(x; θ))]. (2.2)

More recent work proposes SGDRO [8], which introduces class-subgroup hierarchy to

obtain class-conditional subgroup robustness. It encourages the model not to overlook

certain classes when subgroups are organized within categories. The objective of SGDRO is

θSGDRO = argmin
θ∈Θ

Ey∈Y {max
c∈Cy

E(x,y)∼P̂c
[l(y, f(x; θ))]}, (2.3)

where Cy is a set of subgroups that samples to class y can belong. When there is no

hierarchy, the objective of SGDRO is a mean value of each category’s objective, and it is

similar to that of subgroup resampling in the next section.
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2.3 Subgroup Resampling

Subgroup Resampling (SR) assumes the uniform distribution over the prior distribution of

groups or categories, although the empirical distribution P̂ does not seem to be. Accordingly,

it requires adjustment in sampling data in the training set. It samples a category following

a uniform distribution, then data points according to conditional distribution on it. This

strategy stresses all categories equally by compelling the number of samples per category to

remain the same. Accordingly, the objective of SR is

θSR = argmin
θ∈Θ

EPc∼U{1,C}E(x,y)∼P̂c
[l(y, f(x; θ))], (2.4)

where Pc is a prior over category c and U{1,C} is a discreet uniform distribution over cat-

egories. Note that SR samples the same number of data points from each sub-dataset. It

causes some samples from majority groups not to be selected, while samples from minorities

can be sampled multiple times. Sample complexity differs from that of SGDRO when there

is no category-subgroup hierarchy while they have similar objective forms.

We implement SR by adjusting each sample’s sampling rate according to the training

set’s group population. The sampling ratio of a data point in Dc is 1
CNc

while it is sampled

by 1
N for ERM. More general methods [3, 17, 28, 29] adjust the sampling rate sample-wise.

However, we use this simplified resampling strategy for comparison as sample-wise resam-

pling or reweighting methods usually require additional computational costs and resources.

2.4 Over-Confidence of Neural Networks

While over-parameterized neural networks represent impressive performance on various clas-

sification tasks, the problem of over-confidence has arisen for their applications. Besides

their success in overall performance, the prediction for each sample does not stand for the

likelihood that it belongs to the categories. Fundamentally, these models are trained to

output a one-hot vector when the cross-entropy loss is used as a criterion, and this strategy

fails to consider the ambiguity of underlying data distribution. Accordingly, a user cannot

9



(a) An imbalanced train dataset. There are
10000 and 500 points in majority and minority,
respectively.

(b) A balanced test dataset. The classifier fails
to demonstrate robust performance on balanced
datasets due to biased decision boundaries.

Figure 2.1. The decision surface of the classifier on an imbalanced synthetic dataset. The red and
blue points demonstrate the majority and minority, respectively. The thickness of the color in the
background represents the prediction confidence of the model. The model is almost perfectly sure
about its predictions except for the vicinity of the decision boundary. While the classifier fails to
classify many minority samples, it is over-confident in the wrong predictions.

estimate the danger of utilizing the model. Both the nature of the cross-entropy loss and

the massive model capacity are responsible for this problem, and it becomes more severe for

the prediction of minority groups since it affects the decision boundaries of the models.

Fig. 2.1 illustrates the behavior of a classifier and the decision boundary on a synthetic

dataset when the imbalance in a training set is present. The ratio between the majority

and minority categories is 20, and the simple model exhibits superior average performance.

The plane’s thickness represents the classifier’s confidence in its prediction. The classifier

is very confident in its prediction except for the vicinity of the boundary, even though it

failed to work on the training set as shown in Fig. 2.1a. Moreover, the model provides

a more favorable decision boundary to the majority group that divides the region of the

minority group. Accordingly, Fig. 2.1b shows the failure of generalization on balanced test

distribution. The model should consider the imbalance in a training dataset and adjust

its boundary for safer prediction. We introduce a novel method to eliminate this bias by

penalizing the model predictions when the imbalance is present in a training dataset.
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Chapter 3

Prediction Penalty

This section introduces our Prediction Penalty (P.P.) method to exert penalties on model

predictions. Penalties are computed using a statistic vector and a penalty function. This

section demonstrates our method’s process, components, and adaptive algorithm.

3.1 Process of Prediction Penalty

To mitigate the negative impacts of data imbalance, we compute the statistic vector S(D)

once the training is over or before the training begins. Although it should be computed after

the training for each epoch or batch ends when it is a function of training dynamics such as

validation error or performance, we propose to use a simpler value such as group population

and demonstrate that it works well. In that case, the timing to compute the statistic vector

does not matter as it is neither used nor adjusted during training. It is a characteristic

of the training dataset that does not change. Also, this vector is computed category- or

group-wise rather than sample-wise in our instantiation, making the computation trivial.

When the model infers, an unprocessed prediction is penalized using this M -dimensional
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statistic vector S(D) and a penalty function g : RM → RC as

PP [ŷ = c|x; θ] = P [ŷ = c|x; θ]− gc(S(D)) (3.1)

=
efc(x;θ)

C∑
i=1

efi(x;θ)

− gc(S(D)) (3.2)

where the unprocessed prediction is a probability vector computed using a softmax func-

tion. The penalty function outputs C-dimensional vector that each dimension represents a

category.

Prediction Penalty is a post-processing method with several advantages compared to

other pre- or in-processing methods. First, this method applies to other debiasing methods

where a training dataset is provided, and a model prediction is generated in the form

of probability. Second, there is little computation overhead for computing penalties and

penalized prediction. The penalties are computed in advance like the statistic vector, or

various penalty functions are compared simultaneously to find the best one for validation.

3.2 Statistic Vector and Prediction Function

The statistic vector of a dataset is designed to measure the generalization capacity of each

category. Although formal generalization depends on a model’s prediction, the general-

ization (or overfitting) capacity partly depends on a dataset’s innate character, such as

imbalance, after the model converges. Thus our implementation excludes the model and

entirely depends on the training dataset. Many design choices are possible if they can repre-

sent the category- or group-wise generalization capacity. Penalizing each category using this

vector results in equalized generalization level, removing the imbalance effects from a train-

ing dataset. In order words, a penalty measures the superiority of major groups compared

to minorities in the training procedure.

As discussed above, the statistic vector can be any measure of the training dataset that

quantifies the portion of each sub-dataset Dc. Accordingly, we design the statistic vector to
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be computed component-wise on the corresponding sub-dataset Dc represented as

Sc(D) = s(Dc), (3.3)

where s(·) is a scalar value function of each sub-dataset Dc andM = C. However, the form of

the statistic vector is not limited to C-dimensional vector in general. Vector representation

can be used to express each category or a single scalar value can be used to represent all

categories.

Although we provide the most straightforward method, where each component of the

statistic vector is a function of corresponding sub-dataset Dc, other variants to use similar-

ities among samples or pre-trained features are also applicable. However, we demonstrate

that our simple method constantly improves classification performance with minimum ef-

fort. Also, because of its instability, we do not use real-time generalization measures such

as validation loss or accuracy, although they are conceptually applicable.

The little computation overhead required for penalizing enables us to simultaneously

assess many variants of penalty functions (in terms of penalty strength). Normalization is

the only condition of these penalty functions, as the penalties are exerted to the probability

value. Accordingly, we provide an adaptive algorithm that finds the best penalty function

on a validation set and then uses it for inference.

3.3 Adaptive Prediction Penalty

We propose an adaptive algorithm for Prediction Penalty that determines the most promis-

ing penalty functions based on validation performances, which requires complete separation

of train and validation procedure. Our proposal on unconstrained design choices of the

statistic vector and the penalty function enables this modified algorithm to be effective.

The only requirement for this adaptive algorithm is to track the best penalty function

among all possibilities, and it can be seen as an application of validation monitoring.

The adaptive characteristics relieve any additional hyperparameter search, which is one

of the most powerful advantages of our work. Algorithm 1 represents the detailed process
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Algorithm 1: Adaptive Prediction Penalty

Input: ModelM, a set of prediction functions G
Train dataset D, valid dataset Dv

1 Prepare:
2 Compute a statistic vector S(D)
3 A set of penalties P ← []
4 for g in G do
5 Compute the penalty g(S(D))
6 Put g(S(D)) in P

7 Train:
8 whileM converges do
9 M ← Train(M, D)

10 Find Penalty:
11 acc ← 0
12 penalty ← None
13 for p in P do
14 if acc < Evaluate(M, Dv, p) then
15 acc ← Evaluate(M, Dv, p)
16 penalty ← p

Output: M, penalty

of our adaptive algorithm, and the example of penalty functions can be found in Sec. 6.1.

Algorithm 1 can be modified further to validate more than one statistic vector while it now

uses a single statistic vector. As mentioned above, a more complex version may use a statistic

vector concerning real-time training dynamics such as validation error or performance and/or

sample-wise vectors. In that case, prepare part will be aggregated in find prediction part in

Algorithm 1.
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Chapter 4

Experiments

As discussed in Chapter 1, two types of imbalance can occur in the real world. First, the

number of samples is limited due to the characteristic of the category itself, while there is

no or less correlation with other categories. Standard image classification tasks fall into this

type. We refer to it as category-based classification and use imbalanced versions of MNIST,

FashionMNIST, and CIFAR10 datasets to demonstrate the effect of Prediction Penalty on

this setting. We refer to the other type as attribute-based classification, which occurs when

underlying attributes for categorization have correlations. In this case, some attributes are

highly correlated to specific categories, fooling the classifiers into basing these attributes

rather than actual features for their inference. We use Waterbird and CelebA datasets for

attribute-based classification.

4.0.1 Baselines

We compare the Prediction Penalty method to SR and GDROs. However, SR and GDROs

can be combined since they are pre-processing and in-processing methods. Accordingly, we
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categorize methods into ERM, GDRO, and SGDRO, then compare performance with/without

SR and Prediction Penalty. We test each optimization strategy on these four settings and

demonstrate how our Prediction Penalty method enhances previous methods.

The performance of GDRO depends heavily on the group adjustment parameter, which

benefits the minority group in the optimization procedure introduced in [30]. We use the

best result from various group adjustment parameter choices. The detailed performance

on each value that is not provided in the main text due to the page limit can be found in

Sec. 6.2.1.

While SGDRO finds the worst group for optimization class-wise, there is only one sub-

group per category in our setting. Accordingly, SGDRO works by averaging group-wise loss,

and the form of the objective function is similar to the subgroup reweighting strategy, where

the loss of each sample is reweighted to balance the population. We note the difference from

SR as there is no random sampling, and the performance of ERM + SR is usually worse

than that of SGDRO.

The most simple version of the Prediction Penalty method is used for comparison. We

use the sub-dataset population as the statistic vector and the adaptive Prediction Penalty

algorithm with penalty functions introduced in Sec. 6.1.

4.0.2 Metrics

Comparing average accuracy for classification has a limitation when a huge discrepancy

between the majority and minority performance due to a severe imbalance in a training

dataset exists. Well-trained classifiers should be able to classify an input fairly among

categories without bias. We demonstrate robust accuracy as the minimum accuracy among

categories and the accuracy gap as the discrepancy between the maximum and minimum

category accuracy. These metrics represent the model’s ability to operate robustly under

the imbalanced training set.

We report the averaged performance over three runs per case, and a 95% confidence

interval is also reported. The best value for each metric is highlighted in bold, and the

values contained in the most narrow confidence from the best values are also highlighted.
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Datasets Imbalance Type Imbalance Population

MNIST Tailed Minority [10, 20, 40, 80, 150, 250, 500, 1000, 2000, 5000]
Group Imbalance [25, 25, 25, 25, 25, 5000, 5000, 5000, 5000, 5000]

CIFAR10 Tailed Minority [225, 225, 450, 450, 900, 900, 1800, 2700, 3600, 4500]
Group Imbalance [225, 225, 225, 225, 225, 4500, 4500, 4500, 4500, 4500]

Table 4.1. Imbalance populations for category-based classification. The figures are artificially
determined to represent a strong imbalance. Results for these imbalances are provided in Tab. 4.2
and Tab. 4.3. Comparisons for relaxed settings are provided in Sec. 4.3.

Higher average and robust accuracy are promising, while a lower accuracy gap is better.

4.1 Category-based Classification

Category-based classification is a standard setting where each category is independent. No

correlation among categories is assumed for this problem. In this case, an imbalance in the

training dataset occurs independently in each category.

4.1.1 Datasets

We use imbalanced versions of MNIST, FashionMNIST, and CIFAR10 datasets for category-

based classification. Each task is a 10-way image classification following the setting of the

original datasets.

Two types of imbalance settings are considered for category-based classification: tailed

minority and group imbalance. For the tailed minority, the number of samples per category

is reduced gradually. It is a general scenario where the number of possible samples per

category is independent and depends on the category’s characteristics. On the other hand,

half of the categories belong to the majority group, while others belong to the minority group

in the group imbalance setting. It is also an applicable situation where different datasets are

combined for an augmented classification task. The detailed population is demonstrated in

Tab. 4.1 for each dataset. We also provide results on the degree of the imbalance for each

case in Sec. 4.3.

17



Average Acc. Robust Acc. Accuracy Gap.

ERM 0.827 ± 0.018 0.556 ± 0.042 0.429 ± 0.041
+ P.P. 0.871 ± 0.006 0.704 ± 0.028 0.269 ± 0.023
+ SR 0.877 ± 0.021 0.791 ± 0.026 0.167 ± 0.039
+ SR + P.P. 0.885 ± 0.025 0.814 ± 0.016 0.140 ± 0.023

GDRO 0.909 ± 0.006 0.847 ± 0.009 0.105 ± 0.010
Tailed + P.P. 0.906 ± 0.011 0.858 ± 0.013 0.088 ± 0.007

Minority + SR 0.900 ± 0.010 0.811 ± 0.031 0.151 ± 0.041
+ SR + P.P. 0.909 ± 0.008 0.863 ± 0.008 0.088 ± 0.012

SGDRO 0.881 ± 0.023 0.755 ± 0.072 0.199 ± 0.064
+ P.P. 0.894 ± 0.021 0.798 ± 0.050 0.166 ± 0.048
+ SR 0.884 ± 0.018 0.776 ± 0.034 0.195 ± 0.033
+ SR + P.P. 0.893 ± 0.021 0.805 ± 0.031 0.162 ± 0.026

ERM 0.777 ± 0.004 0.465 ± 0.018 0.527 ± 0.015
+ P.P. 0.901 ± 0.002 0.829 ± 0.026 0.126 ± 0.020
+ SR 0.860 ± 0.005 0.715 ± 0.030 0.234 ± 0.022
+ SR + P.P. 0.913 ± 0.004 0.862 ± 0.005 0.116 ± 0.004

GDRO 0.891 ± 0.009 0.818 ± 0.028 0.157 ± 0.022
Group + P.P. 0.896 ± 0.009 0.844 ± 0.020 0.123 ± 0.045

Imbalance + SR 0.898 ± 0.006 0.808 ± 0.020 0.170 ± 0.030
+ SR + P.P. 0.892 ± 0.016 0.836 ± 0.025 0.125 ± 0.009

SGDRO 0.877 ± 0.006 0.711 ± 0.068 0.271 ± 0.071
+ P.P. 0.904 ± 0.003 0.831 ± 0.010 0.139 ± 0.010
+ SR 0.853 ± 0.009 0.640 ± 0.051 0.343 ± 0.063
+ SR + P.P. 0.906 ± 0.008 0.848 ± 0.025 0.122 ± 0.037

Table 4.2. Category-based classification results on the imbalanced MNIST dataset. The imbalance
ratio is 500 and 200 for the tailed minority and group imbalance, respectively, as provided in
Tab. 4.1.

4.1.2 Architecture

We use fully-connected neural networks with two hidden layers, each containing 100 neurons

for MNIST variants following [22]. To deal with higher data complexity, ResNet 18 archi-

tecture for 32 × 32 resolution is used for the CIFAR10 dataset [12]. The ReLU activation

function is used for all cases. We use Adam optimizer [16] for MNIST and SGD optimizer for

CIFAR10, respectively, with a learning rate of 0.001. These settings on model architecture

are chosen where it fits on the balanced version and fails to generalize on its imbalanced

counterpart.
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Average Acc. Robust Acc. Accuracy Gap.

ERM 0.496 ± 0.006 0.139 ± 0.032 0.744 ± 0.030
+ P.P. 0.525 ± 0.007 0.319 ± 0.014 0.450 ± 0.065
+ SR 0.424 ± 0.028 0.179 ± 0.040 0.513 ± 0.055
+ SR + P.P. 0.443 ± 0.026 0.272 ± 0.032 0.474 ± 0.063

GDRO 0.565 ± 0.023 0.380 ± 0.038 0.445 ± 0.105
Tailed + P.P. 0.561 ± 0.012 0.418 ± 0.025 0.320 ± 0.062

Minority + SR 0.473 ± 0.040 0.254 ± 0.047 0.502 ± 0.073
+ SR + P.P. 0.486 ± 0.040 0.323 ± 0.023 0.436 ± 0.047

SGDRO 0.431 ± 0.047 0.258 ± 0.064 0.405 ± 0.033
+ P.P. 0.444 ± 0.038 0.270 ± 0.029 0.360 ± 0.067
+ SR 0.426 ± 0.031 0.225 ± 0.047 0.433 ± 0.129
+ SR + P.P. 0.434 ± 0.041 0.304 ± 0.026 0.279 ± 0.059

ERM 0.499 ± 0.007 0.080 ± 0.015 0.815 ± 0.005
+ P.P. 0.528 ± 0.008 0.386 ± 0.019 0.302 ± 0.041
+ SR 0.421 ± 0.027 0.165 ± 0.025 0.568 ± 0.092
+ SR + P.P. 0.456 ± 0.012 0.328 ± 0.006 0.293 ± 0.006

GDRO 0.509 ± 0.052 0.339 ± 0.072 0.341 ± 0.103
Group + P.P. 0.580 ± 0.011 0.447 ± 0.001 0.351 ± 0.060

Imbalance + SR 0.390 ± 0.028 0.171 ± 0.012 0.501 ± 0.088
+ SR + P.P. 0.536 ± 0.022 0.388 ± 0.013 0.378 ± 0.006

SGDRO 0.475 ± 0.014 0.235 ± 0.100 0.535 ± 0.122
+ P.P. 0.502 ± 0.002 0.352 ± 0.003 0.307 ± 0.020
+ SR 0.410 ± 0.029 0.149 ± 0.053 0.530 ± 0.082
+ SR + P.P. 0.454 ± 0.012 0.320 ± 0.019 0.304 ± 0.038

Table 4.3. Category-based classification results on imbalanced CIFAR10 dataset. The imbalance
ratio is 20 for both types, as provided in Tab. 4.1.

4.1.3 Results

Tab. 4.2 and Tab. 4.3 show the results of category-based classification on imbalanced MNIST

and CIFAR10 datasets. Results on the FashionMNIST dataset and more relaxed imbalance

settings are provided in Sec. 6.2. The tables demonstrate our Prediction Penalty method’s

effects and compatibility with existing robust learning methods.

On the MNIST dataset, our Prediction Penalty method always enhances robust accu-

racy and reduces the accuracy gap while preserving the average accuracy. While it is widely

believed that there is a definite trade-off between average and robust accuracy, it improves

both measures in most cases for these multi-way classification problems. The results suggest

that ours adjusts the generalization level of majority categories effectively. Moreover, it is
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Datasets Categorization Population

WaterBird Land bird in the land, Land bird in the water 3498, 184
Water bird in the land, Water bird in the land 56, 1057

CelebA Black hair female, Black hair male 4054, 66874
Blond hair female, Blond hair male 22880, 1387

Table 4.4. Categorization and imbalance populations for attribute-based classification. The popu-
lations are decided in advance, and we undersample “black hair female” category to reveal a more
apparent hierarchy.

notable that a simple adjustment to model predictions significantly improves the perfor-

mance of ERM, and the previous way to determine the model prediction is unsuitable for

imbalanced classification.

Our method also improves the robust performance in the imbalanced version of the

CIFAR10 dataset. It provides evidence that Prediction Penalty works on more complicated

model architecture and data. In fact, it works better for a more complicated classification

task. Surprisingly, SR fails to improve the performance of ERM. Although ERM + SR +

P.P. shows poor performance on the tailed minority, P.P. works well without SR.

4.2 Attribute-based Classification

Some explicit attributes may be highly correlated to the target value in real-world classi-

fication tasks. However, these spurious correlations provide incorrect bias to the classifier

and generate unfairness in the prediction. For example, it is unfair to decide one’s gender

according to their hair color, even if men usually have black hair while women are blond.

The bias gets even worse when an imbalance in the populations of women and men presents

in a training set. Also, the background of the images may provide some evidence to the clas-

sifier, but it should not consider the background and bases its prediction on exact features.

Attribute-based classification task considers such problems where attributes are highly but

incorrectly correlated to the targets.
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Average Acc. Robust Acc. Accuracy Gap.

ERM 0.729 ± 0.011 0.289 ± 0.051 0.700 ± 0.051
+ P.P. 0.779 ± 0.016 0.693 ± 0.012 0.228 ± 0.020
+ SR 0.757 ± 0.085 0.654 ± 0.037 0.214 ± 0.064
+ SR + P.P. 0.815 ± 0.009 0.788 ± 0.023 0.070 ± 0.020

GDRO 0.849 ± 0.010 0.820 ± 0.002 0.051 ± 0.014
+ P.P. 0.854 ± 0.005 0.826 ± 0.010 0.054 ± 0.022

WaterBird + SR 0.819 ± 0.031 0.786 ± 0.017 0.083 ± 0.033
+ SR + P.P. 0.829 ± 0.007 0.820 ± 0.007 0.027 ± 0.020

SGDRO 0.830 ± 0.009 0.685 ± 0.061 0.253 ± 0.076
+ P.P. 0.824 ± 0.005 0.807 ± 0.010 0.051 ± 0.010
+ SR 0.798 ± 0.007 0.655 ± 0.023 0.245 ± 0.028
+ SR + P.P. 0.812 ± 0.004 0.779 ± 0.019 0.085 ± 0.028

ERM 0.850 ± 0.002 0.215 ± 0.013 0.771 ± 0.013
+ P.P. 0.843 ± 0.005 0.713 ± 0.013 0.244 ± 0.014
+ SR 0.870 ± 0.003 0.644 ± 0.013 0.266 ± 0.021
+ SR + P.P. 0.808 ± 0.005 0.691 ± 0.033 0.204 ± 0.038

GDRO 0.875 ± 0.010 0.742 ± 0.084 0.143 ± 0.103
+ P.P. 0.888 ± 0.001 0.730 ± 0.019 0.171 ± 0.021

CelebA + SR 0.860 ± 0.013 0.717 ± 0.059 0.158 ± 0.080
+ SR + P.P. 0.879 ± 0.006 0.738 ± 0.026 0.151 ± 0.027

SGDRO 0.879 ± 0.003 0.682 ± 0.016 0.231 ± 0.020
+ P.P. 0.884 ± 0.002 0.736 ± 0.028 0.162 ± 0.030
+ SR 0.865 ± 0.002 0.684 ± 0.024 0.222 ± 0.029
+ SR + P.P. 0.878 ± 0.007 0.734 ± 0.051 0.159 ± 0.055

Table 4.5. Attribute-based classification results on WaterBird and CelebA dataset. Pre-trained
ResNet 50 is used.

4.2.1 Datasets

WaterBird [30] and CelebA [19] datasets are widely used in fairness literature that considers

the spurious correlations among attributes. WaterBird is constructed by generating an

artificial correlation between an image’s object and background. For CelebA, we use “Blond

Hair” and “Male” features to decide the dataset’s category. We downsample it to stress the

spurious correlations among these features. We use these two attributes per dataset to form

a 4-way classification task on correlated attributes, while other works usually use a 2-way

classification. The populations and detailed categorization can be found in Tab. 4.4.
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4.2.2 Architecture

We use ResNet 50 and ResNet 18 architectures [12] for the attribute-based classification task.

The detailed configuration differs from that was used for the CIFAR10 since this task’s image

resolution is 224× 224. We use pre-trained weights from PyTorch and torchvision. We use

the SGD optimizer with a learning rate of 0.001 and 0.0001 for Waterbird and CelebA,

respectively.

4.2.3 Results

Tab. 4.5 demonstrates the results of the attribute-based classification on ResNet 50 archi-

tecture. Results on ResNet 18 architecture can be found in Tab. 6.11. Our Prediction

Penalty method improves the performance of existing methods in most cases. It improves

both average and robust performance, proving compatibility with other methods. ERM’s

remarkably low robust accuracy stands for the spurious correlations in these datasets, and

improved performance demonstrates that ours effectively removes them. It shows that our

method is capable of eliminating various imbalances with no modification or assumption.

4.3 More Imbalance Settings for Category-based Classification

We examine the Prediction Penalty method on more imbalance settings for MNIST and CI-

FAR10 datasets to demonstrate the robustness of our Prediction Penalty method to various

imbalance strengths. More settings are provided in Tab. 4.6. The strength of imbalance

increases as the imbalance ID decreases.

Fig. 4.1 demonstrates the performance of the Prediction Penalty method on MNIST

dataset when the model is optimized using ERM objective. Regardless of imbalance strength,

our method significantly improves naive ERM and SR. It is notable that the difference in

performance between ERM + P.P. and ERM + SR + P.P. for Group Imbalance setting is

trivial. This implies that the effect of SR disappears when the model prediction is penal-

ized. Detailed and additional performance on other datasets and GDROs can be found in

Sec. 6.2.2, Sec. 6.2.3 and Sec. 6.2.4.
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Datasets Imbalance Imbalance Imbalance
Name ID Population

MNIST Tailed 1 [10, 20, 40, 80, 150, 250, 500, 1000, 2000, 5000]
Minority 2 [20, 40, 80, 150, 300, 500, 1000, 2000, 5000, 5000]

3 [50, 100, 200, 400, 800, 1500, 3000, 3000, 5000, 5000]
Group 4 [25, 25, 25, 25, 25, 5000, 5000, 5000, 5000, 5000]

Imbalance 5 [50, 50, 50, 50, 50, 5000, 5000, 5000, 5000, 5000]
6 [100, 100, 100, 100, 100, 5000, 5000, 5000, 5000, 5000]

CIFAR10 Tailed 1 [225, 225, 450, 450, 900, 900, 1800, 2700, 3600, 4500]
Minority 2 [450, 900, 1350, 1800, 2250, 2700, 3150, 3600, 4050, 4500]

3 [900, 900, 1800, 1800, 2700, 2700, 3600, 3600, 4500, 4500]
Group 4 [225, 225, 225, 225, 225, 4500, 4500, 4500, 4500, 4500]

Imbalance 5 [450, 450, 450, 450, 450, 4500, 4500, 4500, 4500, 4500]
6 [900, 900, 900, 900, 900, 4500, 4500, 4500, 4500, 4500]

Table 4.6. Additional imbalance populations for category-based classification for MNIST and CI-
FAR10 datasets. Results for imbalance ID 1 and 4 for MNIST and CIFAR10 datasets are shown
in Sec. 4.1, and other results are provided in Sec. 6.2.

Figure 4.1. The Performance plot on MNIST dataset optimized using ERM objective. The detailed
populations of the imbalanced training dataset are provided in Tab. 4.6.

4.4 On Distribution Match between Valid and Test

As our adaptive algorithm determines the best penalty function on the validation set, we

confirm whether the superior performance on test data originated from carefully selecting a
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valid dataset similar to the test one. We compare the train, valid, and test performance using

the best penalty function selected on the validation dataset. Note that training samples are

not penalized during training and these results are computed for this comparison.

Tab. 4.7 compares the train, valid, and test performance on WaterBird and CelebA

datasets optimized using ERM objective and post-processed using our Prediction Penalty

method. The penalty function is selected using the validation performance. It represents

that the best-performing prediction function works well on the training and test datasets,

which stands for that the choice is not over-fitted to the validation dataset. Additional

results on other datasets can be found in Sec. 6.2.6.

Average Acc. Robust Acc. Accuracy Gap.

WaterBird ERM train 0.929 ± 0.026 0.904 ± 0.036 0.096 ± 0.036
valid 0.734 ± 0.064 0.661 ± 0.010 0.299 ± 0.009
test 0.779 ± 0.016 0.693 ± 0.012 0.228 ± 0.020

ERM + SR train 0.906 ± 0.024 0.738 ± 0.057 0.262 ± 0.057
valid 0.807 ± 0.017 0.793 ± 0.006 0.114 ± 0.005
test 0.815 ± 0.009 0.788 ± 0.023 0.070 ± 0.020

CelebA ERM train 0.860 ± 0.013 0.822 ± 0.017 0.150 ± 0.016
valid 0.826 ± 0.024 0.793 ± 0.003 0.164 ± 0.002
test 0.843 ± 0.005 0.713 ± 0.013 0.244 ± 0.014

ERM + SR train 0.940 ± 0.007 0.859 ± 0.006 0.140 ± 0.006
valid 0.874 ± 0.006 0.866 ± 0.002 0.040 ± 0.005
test 0.808 ± 0.005 0.691 ± 0.033 0.204 ± 0.038

Table 4.7. Performance gap between the train, valid, and test datasets for selected penalty func-
tion in the attribute-based classification task. The best function is chosen according to the valid
performance, and it works well in training and test data where the data distribution may differ.
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Chapter 5

Conclusion

We propose the Prediction Penalty method, a novel post-processing method for bias elimina-

tion on a training dataset. We build on the tendency of over-parameterized neural networks

to be over-confident in their predictions. It suggests an innovative perspective on the deci-

sion boundary of deep neural networks.

Our method penalizes the model predictions using the statistic vector computed from a

training dataset. It effectively removes the model bias originating from data imbalance and

balances out the generalization level of the predictions. Also, it allows an adaptive algorithm

that evaluates multiple penalty functions simultaneously due to an isolated mechanism from

the training procedures. Extensive experiments reveal the superiority of our method in

various imbalanced settings. It consistently improves previous debiasing methods on the

performance of both in average and robustness terms.
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Chapter 6

Supplementary

We provide an example of penalty functions and additional results not contained in the

main paper due to space limitations. Sec. 6.1 is about the penalty function pool we use for

the adaptive algorithm. Sec. 6.2 demonstrates the additional results on imbalances settings

and the ablation results.

6.1 An example pool of penalty functions

The only requirement for the penalty function is that it should output normalized values

for effective penalizing. In our setting, the penalty gap among elements that exceed 1.0

means the infeasibility of the target. We provide a set of penalty functions for the adaptive

prediction penalty algorithm as follows:

G = [
S

C∑
i=1

Si

,
S2

C∑
i=1

S2
i

,
S3

C∑
i=1

S3
i

,
S4

C∑
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S4
i

], (6.1)
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where S is the C-dimensional statistic vector. Note that the statistic vector can be any

shape in general.

6.2 Additional Experiments

This section provides additional results that are not provided in the main paper due to space

limitations.

6.2.1 Ablation results on group adjustment parameter of GDRO

The performance of GDRO varies by group adjustment parameter. We compare the robust

accuracy for four parameter candidates 0.0, 1.0, 2.0, and 5.0. In the main paper, we provide

the results from the best-performing parameter. This section demonstrates the detailed

performance for varying group adjustment parameters not provided in the main text.

Tailed Minority 1 Group Imbalance 4
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

GDRO 0 0.876 ± 0.030 0.798 ± 0.049 0.142 ± 0.019 0.872 ± 0.026 0.739 ± 0.073 0.232 ± 0.084
1 0.909 ± 0.006 0.847 ± 0.009 0.105 ± 0.010 0.887 ± 0.001 0.730 ± 0.043 0.245 ± 0.058
2 0.895 ± 0.008 0.829 ± 0.016 0.142 ± 0.015 0.885 ± 0.044 0.784 ± 0.025 0.181 ± 0.032
5 0.861 ± 0.010 0.800 ± 0.011 0.159 ± 0.034 0.891 ± 0.009 0.818 ± 0.028 0.157 ± 0.022

GDRO + P.P. 0 0.896 ± 0.007 0.832 ± 0.024 0.116 ± 0.028 0.896 ± 0.009 0.844 ± 0.020 0.123 ± 0.045
1 0.906 ± 0.011 0.858 ± 0.013 0.088 ± 0.007 0.901 ± 0.015 0.834 ± 0.031 0.136 ± 0.038
2 0.900 ± 0.006 0.849 ± 0.024 0.113 ± 0.018 0.900 ± 0.005 0.833 ± 0.010 0.138 ± 0.026
5 0.858 ± 0.015 0.764 ± 0.052 0.210 ± 0.040 0.892 ± 0.006 0.824 ± 0.002 0.149 ± 0.016

GDRO + SR 0 0.878 ± 0.010 0.780 ± 0.014 0.187 ± 0.035 0.824 ± 0.015 0.602 ± 0.056 0.366 ± 0.066
1 0.900 ± 0.010 0.811 ± 0.031 0.151 ± 0.041 0.887 ± 0.007 0.707 ± 0.040 0.276 ± 0.041
2 0.881 ± 0.016 0.803 ± 0.050 0.145 ± 0.069 0.883 ± 0.024 0.762 ± 0.034 0.195 ± 0.052
5 0.846 ± 0.004 0.758 ± 0.005 0.191 ± 0.034 0.898 ± 0.006 0.808 ± 0.020 0.170 ± 0.030

GDRO + SR + P.P. 0 0.890 ± 0.004 0.826 ± 0.012 0.135 ± 0.040 0.889 ± 0.011 0.824 ± 0.025 0.135 ± 0.040
1 0.909 ± 0.008 0.863 ± 0.008 0.088 ± 0.012 0.890 ± 0.022 0.808 ± 0.042 0.173 ± 0.041
2 0.891 ± 0.007 0.833 ± 0.042 0.113 ± 0.057 0.892 ± 0.016 0.836 ± 0.025 0.125 ± 0.009
5 0.848 ± 0.003 0.766 ± 0.040 0.195 ± 0.041 0.896 ± 0.005 0.819 ± 0.020 0.161 ± 0.025

Table 6.1. Results on ablation study on group adjustment parameter for MNIST dataset.
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Tailed Minority 1 Group Imbalance 4
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

GDRO 0 0.541 ± 0.035 0.321 ± 0.012 0.441 ± 0.075 0.483 ± 0.035 0.271 ± 0.045 0.426 ± 0.070
1 0.565 ± 0.023 0.380 ± 0.038 0.445 ± 0.105 0.505 ± 0.022 0.318 ± 0.017 0.379 ± 0.114
2 0.555 ± 0.027 0.355 ± 0.026 0.401 ± 0.033 0.509 ± 0.052 0.339 ± 0.072 0.341 ± 0.103
5 0.509 ± 0.042 0.353 ± 0.014 0.338 ± 0.102 0.499 ± 0.020 0.298 ± 0.034 0.411 ± 0.026

GDRO + P.P. 0 0.559 ± 0.045 0.396 ± 0.014 0.427 ± 0.066 0.580 ± 0.011 0.447 ± 0.001 0.351 ± 0.060
1 0.561 ± 0.012 0.418 ± 0.025 0.320 ± 0.062 0.559 ± 0.018 0.429 ± 0.023 0.398 ± 0.039
2 0.553 ± 0.024 0.387 ± 0.006 0.379 ± 0.069 0.571 ± 0.032 0.428 ± 0.014 0.401 ± 0.030
5 0.597 ± 0.033 0.384 ± 0.026 0.403 ± 0.044 0.553 ± 0.030 0.414 ± 0.030 0.345 ± 0.063

GDRO + SR 0 0.473 ± 0.040 0.254 ± 0.047 0.502 ± 0.073 0.390 ± 0.028 0.171 ± 0.012 0.501 ± 0.088
1 0.452 ± 0.017 0.246 ± 0.065 0.483 ± 0.043 0.418 ± 0.041 0.144 ± 0.076 0.580 ± 0.268
2 0.461 ± 0.008 0.243 ± 0.026 0.514 ± 0.091 0.429 ± 0.051 0.099 ± 0.048 0.644 ± 0.170
5 0.475 ± 0.052 0.195 ± 0.043 0.584 ± 0.168 0.417 ± 0.032 0.165 ± 0.071 0.519 ± 0.142

GDRO + SR + P.P. 0 0.527 ± 0.031 0.319 ± 0.028 0.461 ± 0.057 0.536 ± 0.022 0.388 ± 0.013 0.378 ± 0.006
1 0.486 ± 0.040 0.323 ± 0.023 0.436 ± 0.047 0.506 ± 0.012 0.372 ± 0.036 0.372 ± 0.035
2 0.504 ± 0.052 0.282 ± 0.038 0.551 ± 0.012 0.506 ± 0.044 0.339 ± 0.006 0.419 ± 0.042
5 0.551 ± 0.010 0.290 ± 0.013 0.546 ± 0.034 0.514 ± 0.014 0.354 ± 0.027 0.342 ± 0.058

Table 6.2. Results on ablation study on group adjustment parameter for CIFAR10 dataset.

WaterBird CelebA
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

GDRO 0 0.813 ± 0.028 0.722 ± 0.036 0.161 ± 0.059 0.884 ± 0.002 0.719 ± 0.011 0.183 ± 0.011
1 0.848 ± 0.035 0.773 ± 0.009 0.116 ± 0.027 0.883 ± 0.010 0.682 ± 0.010 0.218 ± 0.026
2 0.837 ± 0.009 0.752 ± 0.036 0.121 ± 0.032 0.882 ± 0.005 0.719 ± 0.034 0.175 ± 0.044
5 0.849 ± 0.010 0.820 ± 0.002 0.051 ± 0.014 0.875 ± 0.010 0.742 ± 0.084 0.143 ± 0.103

GDRO + P.P. 0 0.844 ± 0.009 0.817 ± 0.011 0.065 ± 0.020 0.889 ± 0.000 0.710 ± 0.007 0.187 ± 0.006
1 0.842 ± 0.010 0.821 ± 0.016 0.054 ± 0.023 0.888 ± 0.008 0.717 ± 0.032 0.179 ± 0.036
2 0.845 ± 0.011 0.823 ± 0.022 0.053 ± 0.026 0.887 ± 0.002 0.725 ± 0.033 0.171 ± 0.039
5 0.854 ± 0.005 0.826 ± 0.010 0.054 ± 0.022 0.888 ± 0.001 0.730 ± 0.019 0.171 ± 0.021

GDRO + SR 0 0.816 ± 0.031 0.692 ± 0.098 0.200 ± 0.121 0.868 ± 0.009 0.663 ± 0.050 0.239 ± 0.059
1 0.796 ± 0.045 0.718 ± 0.013 0.151 ± 0.037 0.864 ± 0.008 0.691 ± 0.046 0.198 ± 0.059
2 0.803 ± 0.030 0.729 ± 0.073 0.139 ± 0.074 0.864 ± 0.012 0.689 ± 0.026 0.200 ± 0.052
5 0.819 ± 0.031 0.786 ± 0.017 0.083 ± 0.033 0.860 ± 0.013 0.717 ± 0.059 0.158 ± 0.080

GDRO + SR + P.P. 0 0.808 ± 0.027 0.773 ± 0.061 0.095 ± 0.072 0.881 ± 0.004 0.725 ± 0.061 0.164 ± 0.065
1 0.819 ± 0.023 0.798 ± 0.030 0.075 ± 0.019 0.879 ± 0.006 0.738 ± 0.026 0.151 ± 0.027
2 0.830 ± 0.011 0.817 ± 0.018 0.040 ± 0.021 0.881 ± 0.004 0.723 ± 0.004 0.169 ± 0.007
5 0.829 ± 0.007 0.820 ± 0.007 0.027 ± 0.020 0.882 ± 0.001 0.693 ± 0.041 0.206 ± 0.044

Table 6.3. Results on ablation study on group adjustment parameter for WaterBird and CelebA.
Pre-trained ResNet 50 architecture is used.

6.2.2 Additional MNIST experiments
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Tailed Minority 2 Group Imbalance 5
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.889 ± 0.002 0.761 ± 0.031 0.229 ± 0.035 0.861 ± 0.007 0.662 ± 0.016 0.329 ± 0.019
ERM + P.P. 0.919 ± 0.005 0.836 ± 0.019 0.141 ± 0.012 0.925 ± 0.006 0.877 ± 0.025 0.091 ± 0.033
ERM + SR 0.918 ± 0.008 0.816 ± 0.010 0.168 ± 0.013 0.881 ± 0.004 0.767 ± 0.044 0.191 ± 0.047
ERM + SR + P.P. 0.921 ± 0.010 0.872 ± 0.019 0.103 ± 0.022 0.925 ± 0.006 0.877 ± 0.018 0.099 ± 0.021

GDRO 0 0.907 ± 0.008 0.856 ± 0.014 0.101 ± 0.011 0.894 ± 0.009 0.788 ± 0.026 0.177 ± 0.039
1 0.925 ± 0.007 0.883 ± 0.006 0.087 ± 0.006 0.914 ± 0.016 0.824 ± 0.014 0.159 ± 0.021
2 0.924 ± 0.001 0.894 ± 0.002 0.066 ± 0.007 0.909 ± 0.013 0.812 ± 0.014 0.162 ± 0.012
5 0.905 ± 0.005 0.856 ± 0.009 0.124 ± 0.007 0.917 ± 0.001 0.844 ± 0.024 0.134 ± 0.028

GDRO + P.P. 0 0.926 ± 0.011 0.871 ± 0.003 0.095 ± 0.013 0.918 ± 0.010 0.872 ± 0.021 0.102 ± 0.027
1 0.932 ± 0.008 0.896 ± 0.006 0.074 ± 0.011 0.927 ± 0.005 0.867 ± 0.018 0.112 ± 0.014
2 0.926 ± 0.002 0.889 ± 0.021 0.075 ± 0.025 0.914 ± 0.014 0.861 ± 0.013 0.119 ± 0.018
5 0.904 ± 0.006 0.848 ± 0.017 0.119 ± 0.004 0.912 ± 0.008 0.862 ± 0.007 0.111 ± 0.008

GDRO + SR 0 0.902 ± 0.017 0.839 ± 0.021 0.124 ± 0.037 0.893 ± 0.005 0.773 ± 0.059 0.199 ± 0.080
1 0.919 ± 0.006 0.866 ± 0.019 0.101 ± 0.031 0.912 ± 0.010 0.773 ± 0.054 0.213 ± 0.054
2 0.926 ± 0.003 0.874 ± 0.013 0.096 ± 0.026 0.918 ± 0.006 0.782 ± 0.019 0.194 ± 0.020
5 0.899 ± 0.011 0.838 ± 0.015 0.133 ± 0.014 0.912 ± 0.004 0.852 ± 0.010 0.110 ± 0.020

GDRO + SR + P.P. 0 0.919 ± 0.010 0.867 ± 0.019 0.098 ± 0.016 0.918 ± 0.006 0.878 ± 0.006 0.095 ± 0.009
1 0.927 ± 0.006 0.885 ± 0.007 0.076 ± 0.014 0.922 ± 0.007 0.868 ± 0.010 0.107 ± 0.010
2 0.922 ± 0.001 0.889 ± 0.011 0.081 ± 0.025 0.921 ± 0.006 0.862 ± 0.010 0.121 ± 0.011
5 0.904 ± 0.005 0.859 ± 0.019 0.097 ± 0.024 0.912 ± 0.010 0.864 ± 0.024 0.106 ± 0.035

SGDRO 0.917 ± 0.005 0.861 ± 0.016 0.101 ± 0.029 0.904 ± 0.018 0.775 ± 0.021 0.207 ± 0.017
SGDRO + P.P. 0.921 ± 0.006 0.871 ± 0.004 0.096 ± 0.006 0.926 ± 0.004 0.878 ± 0.014 0.100 ± 0.012
SGDRO + SR 0.921 ± 0.008 0.844 ± 0.034 0.134 ± 0.035 0.890 ± 0.014 0.772 ± 0.020 0.203 ± 0.034
SGDRO + SR + P.P. 0.928 ± 0.005 0.883 ± 0.025 0.089 ± 0.034 0.924 ± 0.005 0.874 ± 0.014 0.106 ± 0.023

Table 6.4. Category-based classification on MNIST in imbalance settings 2 and 5.

Tailed Minority 3 Group Imbalance 6
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.930 ± 0.005 0.835 ± 0.023 0.153 ± 0.030 0.898 ± 0.003 0.752 ± 0.014 0.240 ± 0.010
ERM + P.P. 0.943 ± 0.006 0.906 ± 0.014 0.074 ± 0.021 0.938 ± 0.010 0.898 ± 0.017 0.081 ± 0.018
ERM + SR 0.945 ± 0.008 0.902 ± 0.019 0.082 ± 0.019 0.915 ± 0.023 0.812 ± 0.009 0.173 ± 0.015
ERM + SR + P.P. 0.953 ± 0.001 0.920 ± 0.011 0.058 ± 0.011 0.941 ± 0.000 0.903 ± 0.006 0.081 ± 0.007

GDRO 0 0.945 ± 0.011 0.915 ± 0.010 0.057 ± 0.018 0.914 ± 0.019 0.847 ± 0.008 0.127 ± 0.020
1 0.954 ± 0.004 0.924 ± 0.008 0.053 ± 0.016 0.929 ± 0.010 0.867 ± 0.015 0.100 ± 0.022
2 0.956 ± 0.002 0.929 ± 0.015 0.046 ± 0.019 0.944 ± 0.003 0.877 ± 0.015 0.100 ± 0.016
5 0.940 ± 0.001 0.898 ± 0.018 0.077 ± 0.012 0.942 ± 0.004 0.903 ± 0.011 0.076 ± 0.008

GDRO + P.P. 0 0.950 ± 0.003 0.931 ± 0.005 0.043 ± 0.008 0.930 ± 0.021 0.887 ± 0.024 0.096 ± 0.016
1 0.953 ± 0.002 0.930 ± 0.016 0.042 ± 0.017 0.941 ± 0.001 0.907 ± 0.005 0.070 ± 0.009
2 0.953 ± 0.005 0.938 ± 0.011 0.034 ± 0.017 0.939 ± 0.000 0.895 ± 0.010 0.088 ± 0.007
5 0.938 ± 0.002 0.896 ± 0.015 0.076 ± 0.018 0.937 ± 0.008 0.897 ± 0.009 0.088 ± 0.010

GDRO + SR 0 0.941 ± 0.005 0.894 ± 0.006 0.084 ± 0.003 0.911 ± 0.015 0.824 ± 0.038 0.148 ± 0.039
1 0.949 ± 0.004 0.913 ± 0.004 0.071 ± 0.008 0.925 ± 0.022 0.853 ± 0.002 0.125 ± 0.021
2 0.949 ± 0.003 0.917 ± 0.013 0.065 ± 0.015 0.940 ± 0.002 0.869 ± 0.008 0.114 ± 0.010
5 0.938 ± 0.009 0.907 ± 0.013 0.064 ± 0.022 0.940 ± 0.005 0.895 ± 0.016 0.082 ± 0.016

GDRO + SR + P.P. 0 0.905 ± 0.005 0.914 ± 0.013 0.057 ± 0.015 0.935 ± 0.014 0.886 ± 0.038 0.081 ± 0.035
1 0.949 ± 0.004 0.921 ± 0.009 0.050 ± 0.009 0.940 ± 0.007 0.899 ± 0.003 0.080 ± 0.007
2 0.948 ± 0.005 0.917 ± 0.006 0.055 ± 0.007 0.937 ± 0.000 0.902 ± 0.004 0.079 ± 0.009
5 0.945 ± 0.003 0.905 ± 0.012 0.071 ± 0.019 0.939 ± 0.003 0.909 ± 0.004 0.071 ± 0.008

SGDRO 0.949 ± 0.004 0.897 ± 0.009 0.084 ± 0.014 0.934 ± 0.006 0.851 ± 0.021 0.124 ± 0.032
SGDRO + P.P. 0.949 ± 0.007 0.922 ± 0.013 0.051 ± 0.021 0.942 ± 0.002 0.904 ± 0.014 0.077 ± 0.017
SGDRO + SR 0.949 ± 0.006 0.896 ± 0.003 0.086 ± 0.009 0.935 ± 0.006 0.848 ± 0.019 0.134 ± 0.022
SGDRO + SR + P.P. 0.955 ± 0.004 0.921 ± 0.008 0.058 ± 0.010 0.939 ± 0.006 0.910 ± 0.013 0.071 ± 0.005

Table 6.5. Category-based classification on MNIST in imbalance settings 3 and 6.

6.2.3 FashionMNIST experiments
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Tailed Minority 1 Group Imbalance 4
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.747 ± 0.006 0.311 ± 0.084 0.678 ± 0.085 0.670 ± 0.018 0.155 ± 0.010 0.826 ± 0.011
ERM + P.P. 0.762 ± 0.018 0.389 ± 0.115 0.590 ± 0.117 0.721 ± 0.022 0.570 ± 0.040 0.340 ± 0.046
ERM + SR 0.783 ± 0.008 0.559 ± 0.035 0.386 ± 0.035 0.766 ± 0.026 0.499 ± 0.065 0.451 ± 0.073
ERM + SR + P.P. 0.777 ± 0.015 0.561 ± 0.075 0.368 ± 0.070 0.746 ± 0.029 0.523 ± 0.068 0.400 ± 0.104

GDRO 0 0.785 ± 0.007 0.576 ± 0.045 0.366 ± 0.042 0.759 ± 0.005 0.505 ± 0.065 0.447 ± 0.092
1 0.770 ± 0.020 0.558 ± 0.027 0.365 ± 0.042 0.765 ± 0.022 0.482 ± 0.106 0.468 ± 0.108
2 0.777 ± 0.019 0.604 ± 0.005 0.326 ± 0.021 0.757 ± 0.009 0.530 ± 0.024 0.419 ± 0.011
5 0.697 ± 0.028 0.482 ± 0.021 0.450 ± 0.063 0.758 ± 0.009 0.536 ± 0.010 0.420 ± 0.022

GDRO + P.P. 0 0.776 ± 0.028 0.593 ± 0.032 0.336 ± 0.007 0.749 ± 0.024 0.579 ± 0.012 0.343 ± 0.041
1 0.765 ± 0.026 0.565 ± 0.040 0.369 ± 0.036 0.728 ± 0.039 0.571 ± 0.036 0.339 ± 0.054
2 0.773 ± 0.020 0.595 ± 0.015 0.340 ± 0.013 0.754 ± 0.014 0.581 ± 0.038 0.364 ± 0.033
5 0.669 ± 0.006 0.449 ± 0.033 0.477 ± 0.068 0.766 ± 0.005 0.567 ± 0.046 0.380 ± 0.060

GDRO + SR 0 0.767 ± 0.016 0.548 ± 0.047 0.405 ± 0.040 0.754 ± 0.016 0.464 ± 0.036 0.476 ± 0.029
1 0.765 ± 0.017 0.573 ± 0.014 0.358 ± 0.009 0.747 ± 0.023 0.494 ± 0.099 0.451 ± 0.082
2 0.755 ± 0.032 0.564 ± 0.049 0.370 ± 0.065 0.743 ± 0.022 0.528 ± 0.063 0.399 ± 0.073
5 0.713 ± 0.011 0.485 ± 0.069 0.445 ± 0.083 0.744 ± 0.016 0.540 ± 0.019 0.377 ± 0.022

GDRO + SR + P.P. 0 0.778 ± 0.003 0.599 ± 0.010 0.350 ± 0.017 0.748 ± 0.023 0.582 ± 0.010 0.329 ± 0.034
1 0.764 ± 0.013 0.585 ± 0.028 0.361 ± 0.025 0.717 ± 0.027 0.578 ± 0.059 0.308 ± 0.070
2 0.747 ± 0.008 0.538 ± 0.059 0.371 ± 0.054 0.753 ± 0.041 0.574 ± 0.029 0.350 ± 0.018
5 0.673 ± 0.042 0.467 ± 0.115 0.501 ± 0.153 0.753 ± 0.003 0.557 ± 0.023 0.376 ± 0.018

SGDRO 0.790 ± 0.014 0.578 ± 0.033 0.375 ± 0.030 0.780 ± 0.013 0.519 ± 0.011 0.455 ± 0.017
SGDRO + P.P. 0.795 ± 0.005 0.598 ± 0.029 0.354 ± 0.032 0.748 ± 0.028 0.595 ± 0.019 0.335 ± 0.028
SGDRO + SR 0.763 ± 0.021 0.469 ± 0.091 0.485 ± 0.089 0.768 ± 0.008 0.485 ± 0.041 0.463 ± 0.045
SGDRO + SR + P.P. 0.771 ± 0.018 0.511 ± 0.065 0.414 ± 0.082 0.760 ± 0.016 0.564 ± 0.016 0.381 ± 0.029

Table 6.6. Category-based classification on FashionMNIST in imbalance settings 1 and 4.

Tailed Minority 2 Group Imbalance 5
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.771 ± 0.018 0.451 ± 0.019 0.533 ± 0.018 0.717 ± 0.020 0.299 ± 0.023 0.686 ± 0.025
ERM + P.P. 0.789 ± 0.012 0.522 ± 0.035 0.451 ± 0.027 0.735 ± 0.003 0.601 ± 0.028 0.311 ± 0.028
ERM + SR 0.796 ± 0.008 0.612 ± 0.022 0.352 ± 0.048 0.804 ± 0.002 0.607 ± 0.029 0.350 ± 0.023
ERM + SR + P.P. 0.798 ± 0.007 0.633 ± 0.002 0.324 ± 0.025 0.752 ± 0.036 0.607 ± 0.014 0.333 ± 0.020

GDRO 0 0.789 ± 0.010 0.622 ± 0.039 0.325 ± 0.025 0.789 ± 0.007 0.610 ± 0.008 0.335 ± 0.022
1 0.789 ± 0.024 0.625 ± 0.005 0.303 ± 0.006 0.796 ± 0.004 0.624 ± 0.021 0.318 ± 0.018
2 0.792 ± 0.007 0.609 ± 0.006 0.342 ± 0.018 0.785 ± 0.011 0.614 ± 0.034 0.333 ± 0.036
5 0.791 ± 0.009 0.602 ± 0.012 0.337 ± 0.041 0.780 ± 0.012 0.622 ± 0.026 0.322 ± 0.045

GDRO + P.P. 0 0.784 ± 0.016 0.649 ± 0.021 0.278 ± 0.025 0.770 ± 0.014 0.638 ± 0.009 0.295 ± 0.024
1 0.794 ± 0.021 0.626 ± 0.023 0.316 ± 0.053 0.777 ± 0.027 0.639 ± 0.044 0.300 ± 0.050
2 0.775 ± 0.003 0.610 ± 0.006 0.313 ± 0.038 0.777 ± 0.029 0.625 ± 0.029 0.303 ± 0.042
5 0.769 ± 0.010 0.620 ± 0.028 0.334 ± 0.031 0.771 ± 0.039 0.634 ± 0.011 0.312 ± 0.023

GDRO + SR 0 0.774 ± 0.040 0.561 ± 0.006 0.383 ± 0.021 0.774 ± 0.013 0.581 ± 0.018 0.365 ± 0.034
1 0.777 ± 0.006 0.587 ± 0.042 0.346 ± 0.025 0.784 ± 0.006 0.580 ± 0.035 0.350 ± 0.047
2 0.783 ± 0.009 0.597 ± 0.060 0.335 ± 0.078 0.768 ± 0.025 0.593 ± 0.034 0.338 ± 0.050
5 0.774 ± 0.014 0.610 ± 0.010 0.328 ± 0.049 0.777 ± 0.016 0.581 ± 0.049 0.345 ± 0.043

GDRO + SR + P.P. 0 0.761 ± 0.005 0.606 ± 0.021 0.320 ± 0.023 0.757 ± 0.030 0.617 ± 0.015 0.294 ± 0.062
1 0.777 ± 0.006 0.602 ± 0.033 0.337 ± 0.040 0.779 ± 0.015 0.637 ± 0.022 0.297 ± 0.027
2 0.784 ± 0.011 0.616 ± 0.023 0.316 ± 0.030 0.755 ± 0.042 0.617 ± 0.024 0.306 ± 0.031
5 0.772 ± 0.021 0.619 ± 0.013 0.334 ± 0.042 0.759 ± 0.031 0.601 ± 0.014 0.310 ± 0.030

SGDRO 0.807 ± 0.011 0.587 ± 0.007 0.382 ± 0.010 0.817 ± 0.008 0.600 ± 0.043 0.374 ± 0.037
SGDRO + P.P. 0.811 ± 0.008 0.614 ± 0.036 0.328 ± 0.030 0.794 ± 0.030 0.628 ± 0.032 0.313 ± 0.054
SGDRO + SR 0.800 ± 0.008 0.569 ± 0.023 0.378 ± 0.021 0.795 ± 0.011 0.580 ± 0.014 0.376 ± 0.021
SGDRO + SR + P.P. 0.798 ± 0.007 0.595 ± 0.051 0.340 ± 0.060 0.767 ± 0.066 0.606 ± 0.023 0.337 ± 0.043

Table 6.7. Category-based classification on FashionMNIST in imbalance settings 2 and 5.

6.2.4 Additional CIFAR10 experiments
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Tailed Minority 3 Group Imbalance 6
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.809 ± 0.005 0.454 ± 0.055 0.525 ± 0.058 0.771 ± 0.013 0.446 ± 0.022 0.535 ± 0.021
ERM + P.P. 0.816 ± 0.007 0.558 ± 0.048 0.401 ± 0.063 0.771 ± 0.003 0.647 ± 0.017 0.294 ± 0.016
ERM + SR 0.824 ± 0.007 0.634 ± 0.046 0.331 ± 0.037 0.820 ± 0.002 0.643 ± 0.004 0.322 ± 0.007
ERM + SR + P.P. 0.807 ± 0.005 0.610 ± 0.042 0.339 ± 0.053 0.802 ± 0.039 0.650 ± 0.009 0.306 ± 0.025

GDRO 0 0.817 ± 0.003 0.657 ± 0.019 0.294 ± 0.027 0.807 ± 0.007 0.647 ± 0.009 0.299 ± 0.014
1 0.807 ± 0.010 0.647 ± 0.020 0.286 ± 0.026 0.802 ± 0.024 0.640 ± 0.011 0.309 ± 0.044
2 0.822 ± 0.017 0.666 ± 0.015 0.282 ± 0.021 0.810 ± 0.019 0.659 ± 0.003 0.295 ± 0.014
5 0.813 ± 0.011 0.681 ± 0.014 0.248 ± 0.013 0.810 ± 0.002 0.669 ± 0.018 0.277 ± 0.017

GDRO + P.P. 0 0.815 ± 0.002 0.669 ± 0.007 0.280 ± 0.018 0.797 ± 0.021 0.671 ± 0.015 0.264 ± 0.015
1 0.810 ± 0.013 0.652 ± 0.025 0.284 ± 0.033 0.798 ± 0.006 0.652 ± 0.015 0.298 ± 0.008
2 0.809 ± 0.011 0.683 ± 0.013 0.250 ± 0.020 0.797 ± 0.006 0.685 ± 0.019 0.239 ± 0.034
5 0.796 ± 0.017 0.678 ± 0.020 0.270 ± 0.036 0.784 ± 0.015 0.665 ± 0.009 0.270 ± 0.011

GDRO + SR 0 0.807 ± 0.016 0.629 ± 0.062 0.307 ± 0.069 0.795 ± 0.013 0.604 ± 0.064 0.347 ± 0.064
1 0.809 ± 0.015 0.647 ± 0.029 0.300 ± 0.051 0.795 ± 0.002 0.649 ± 0.013 0.298 ± 0.028
2 0.808 ± 0.016 0.642 ± 0.056 0.288 ± 0.067 0.780 ± 0.019 0.613 ± 0.044 0.315 ± 0.060
5 0.814 ± 0.010 0.654 ± 0.031 0.275 ± 0.011 0.796 ± 0.014 0.664 ± 0.010 0.283 ± 0.018

GDRO + SR + P.P. 0 0.808 ± 0.024 0.667 ± 0.029 0.275 ± 0.018 0.801 ± 0.005 0.662 ± 0.015 0.289 ± 0.028
1 0.814 ± 0.022 0.668 ± 0.014 0.274 ± 0.027 0.798 ± 0.022 0.652 ± 0.020 0.283 ± 0.023
2 0.802 ± 0.016 0.662 ± 0.014 0.263 ± 0.024 0.796 ± 0.026 0.658 ± 0.033 0.272 ± 0.039
5 0.804 ± 0.024 0.657 ± 0.017 0.281 ± 0.023 0.793 ± 0.022 0.669 ± 0.022 0.273 ± 0.034

SGDRO 0.835 ± 0.004 0.649 ± 0.028 0.312 ± 0.011 0.825 ± 0.004 0.648 ± 0.030 0.317 ± 0.040
SGDRO + P.P. 0.840 ± 0.001 0.662 ± 0.026 0.310 ± 0.024 0.820 ± 0.014 0.681 ± 0.009 0.266 ± 0.003
SGDRO + SR 0.820 ± 0.012 0.602 ± 0.021 0.364 ± 0.027 0.820 ± 0.001 0.625 ± 0.039 0.328 ± 0.039
SGDRO + SR + P.P. 0.819 ± 0.006 0.631 ± 0.024 0.316 ± 0.040 0.789 ± 0.041 0.647 ± 0.023 0.294 ± 0.019

Table 6.8. Category-based classification on FashionMNIST in imbalance settings 3 and 6.

Tailed Minority 2 Group Imbalance 5
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.597 ± 0.012 0.346 ± 0.021 0.526 ± 0.024 0.535 ± 0.010 0.171 ± 0.013 0.723 ± 0.010
ERM + P.P. 0.590 ± 0.026 0.469 ± 0.018 0.331 ± 0.022 0.553 ± 0.005 0.433 ± 0.020 0.275 ± 0.044
ERM + SR 0.535 ± 0.021 0.354 ± 0.015 0.409 ± 0.042 0.466 ± 0.025 0.256 ± 0.038 0.519 ± 0.017
ERM + SR + P.P. 0.543 ± 0.019 0.416 ± 0.037 0.318 ± 0.179 0.480 ± 0.014 0.329 ± 0.028 0.361 ± 0.015

GDRO 0 0.644 ± 0.030 0.490 ± 0.031 0.361 ± 0.062 0.577 ± 0.040 0.370 ± 0.029 0.474 ± 0.033
1 0.667 ± 0.035 0.521 ± 0.018 0.316 ± 0.101 0.580 ± 0.004 0.387 ± 0.011 0.376 ± 0.038
2 0.676 ± 0.010 0.506 ± 0.015 0.366 ± 0.037 0.580 ± 0.010 0.363 ± 0.032 0.444 ± 0.107
5 0.684 ± 0.022 0.515 ± 0.019 0.353 ± 0.032 0.553 ± 0.034 0.385 ± 0.034 0.341 ± 0.126

GDRO + P.P. 0 0.681 ± 0.029 0.547 ± 0.023 0.314 ± 0.032 0.636 ± 0.029 0.484 ± 0.037 0.380 ± 0.044
1 0.709 ± 0.016 0.546 ± 0.011 0.342 ± 0.010 0.636 ± 0.015 0.486 ± 0.025 0.338 ± 0.066
2 0.674 ± 0.025 0.538 ± 0.031 0.313 ± 0.011 0.640 ± 0.043 0.494 ± 0.022 0.308 ± 0.063
5 0.693 ± 0.019 0.526 ± 0.014 0.324 ± 0.028 0.636 ± 0.012 0.494 ± 0.020 0.385 ± 0.066

GDRO + SR 0 0.612 ± 0.035 0.436 ± 0.021 0.421 ± 0.093 0.466 ± 0.028 0.255 ± 0.035 0.459 ± 0.022
1 0.625 ± 0.029 0.432 ± 0.040 0.429 ± 0.108 0.459 ± 0.036 0.218 ± 0.034 0.532 ± 0.087
2 0.611 ± 0.047 0.443 ± 0.032 0.348 ± 0.113 0.499 ± 0.034 0.225 ± 0.073 0.563 ± 0.138
5 0.611 ± 0.019 0.407 ± 0.029 0.439 ± 0.083 0.491 ± 0.069 0.216 ± 0.041 0.491 ± 0.194

GDRO + SR + P.P. 0 0.656 ± 0.009 0.508 ± 0.021 0.351 ± 0.045 0.603 ± 0.023 0.421 ± 0.032 0.408 ± 0.030
1 0.636 ± 0.045 0.479 ± 0.029 0.321 ± 0.019 0.603 ± 0.019 0.425 ± 0.017 0.380 ± 0.023
2 0.642 ± 0.057 0.498 ± 0.035 0.331 ± 0.033 0.596 ± 0.018 0.450 ± 0.033 0.398 ± 0.062
5 0.677 ± 0.026 0.495 ± 0.041 0.371 ± 0.046 0.605 ± 0.008 0.435 ± 0.009 0.401 ± 0.012

SGDRO 0.569 ± 0.034 0.367 ± 0.024 0.432 ± 0.023 0.511 ± 0.013 0.257 ± 0.057 0.500 ± 0.106
SGDRO + P.P. 0.583 ± 0.002 0.396 ± 0.015 0.403 ± 0.070 0.533 ± 0.011 0.382 ± 0.038 0.342 ± 0.071
SGDRO + SR 0.503 ± 0.008 0.318 ± 0.039 0.409 ± 0.042 0.465 ± 0.004 0.222 ± 0.057 0.521 ± 0.070
SGDRO + SR + P.P. 0.532 ± 0.011 0.406 ± 0.011 0.337 ± 0.128 0.489 ± 0.006 0.361 ± 0.022 0.325 ± 0.029

Table 6.9. Category-based classification on CIFAR10 in imbalance settings 2 and 5.

6.2.5 Attribute-based classification on ResNet 18 architecture
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Tailed Minority 3 Group Imbalance 6
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.610 ± 0.015 0.390 ± 0.045 0.488 ± 0.040 0.587 ± 0.014 0.287 ± 0.018 0.593 ± 0.043
ERM + P.P. 0.597 ± 0.006 0.469 ± 0.010 0.358 ± 0.059 0.593 ± 0.004 0.446 ± 0.009 0.291 ± 0.020
ERM + SR 0.536 ± 0.049 0.337 ± 0.055 0.408 ± 0.133 0.519 ± 0.029 0.278 ± 0.041 0.495 ± 0.115
ERM + SR + P.P. 0.548 ± 0.006 0.402 ± 0.022 0.334 ± 0.028 0.541 ± 0.013 0.403 ± 0.019 0.341 ± 0.040

GDRO 0 0.684 ± 0.053 0.512 ± 0.075 0.330 ± 0.048 0.636 ± 0.043 0.426 ± 0.009 0.426 ± 0.010
1 0.704 ± 0.022 0.531 ± 0.030 0.368 ± 0.021 0.644 ± 0.016 0.436 ± 0.026 0.386 ± 0.025
2 0.677 ± 0.033 0.515 ± 0.027 0.366 ± 0.050 0.635 ± 0.015 0.456 ± 0.070 0.386 ± 0.160
5 0.688 ± 0.035 0.510 ± 0.044 0.358 ± 0.137 0.641 ± 0.020 0.456 ± 0.025 0.369 ± 0.090

GDRO + P.P. 0 0.707 ± 0.014 0.557 ± 0.014 0.353 ± 0.015 0.685 ± 0.016 0.529 ± 0.022 0.348 ± 0.024
1 0.704 ± 0.017 0.579 ± 0.005 0.309 ± 0.030 0.689 ± 0.012 0.557 ± 0.018 0.334 ± 0.040
2 0.685 ± 0.030 0.557 ± 0.027 0.313 ± 0.048 0.683 ± 0.044 0.540 ± 0.020 0.342 ± 0.019
5 0.700 ± 0.017 0.558 ± 0.034 0.339 ± 0.085 0.689 ± 0.026 0.538 ± 0.019 0.361 ± 0.008

GDRO + SR 0 0.688 ± 0.023 0.490 ± 0.045 0.416 ± 0.053 0.548 ± 0.078 0.279 ± 0.053 0.462 ± 0.068
1 0.676 ± 0.026 0.509 ± 0.050 0.376 ± 0.065 0.536 ± 0.013 0.349 ± 0.085 0.464 ± 0.112
2 0.680 ± 0.019 0.484 ± 0.021 0.397 ± 0.081 0.552 ± 0.018 0.339 ± 0.028 0.429 ± 0.148
5 0.663 ± 0.016 0.498 ± 0.027 0.386 ± 0.054 0.583 ± 0.020 0.330 ± 0.054 0.573 ± 0.072

GDRO + SR + P.P. 0 0.678 ± 0.010 0.537 ± 0.019 0.345 ± 0.020 0.667 ± 0.009 0.482 ± 0.033 0.387 ± 0.021
1 0.688 ± 0.028 0.529 ± 0.072 0.346 ± 0.097 0.633 ± 0.029 0.496 ± 0.035 0.379 ± 0.020
2 0.687 ± 0.014 0.529 ± 0.032 0.371 ± 0.035 0.667 ± 0.006 0.498 ± 0.027 0.389 ± 0.027
5 0.668 ± 0.015 0.545 ± 0.032 0.276 ± 0.007 0.609 ± 0.039 0.476 ± 0.029 0.358 ± 0.071

SGDRO 0.585 ± 0.015 0.402 ± 0.046 0.371 ± 0.125 0.537 ± 0.007 0.332 ± 0.047 0.393 ± 0.024
SGDRO + P.P. 0.575 ± 0.019 0.411 ± 0.044 0.367 ± 0.105 0.576 ± 0.008 0.422 ± 0.028 0.360 ± 0.023
SGDRO + SR 0.553 ± 0.007 0.345 ± 0.021 0.455 ± 0.061 0.493 ± 0.051 0.284 ± 0.062 0.457 ± 0.123
SGDRO + SR + P.P. 0.554 ± 0.011 0.375 ± 0.003 0.378 ± 0.064 0.552 ± 0.020 0.381 ± 0.027 0.375 ± 0.022

Table 6.10. Category-based classification on CIFAR10 in imbalance settings 3 and 6.

WaterBird CelebA
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM 0.712 ± 0.009 0.218 ± 0.036 0.773 ± 0.036 0.867 ± 0.004 0.245 ± 0.031 0.740 ± 0.031
ERM + P.P. 0.727 ± 0.015 0.680 ± 0.008 0.228 ± 0.011 0.864 ± 0.007 0.736 ± 0.028 0.225 ± 0.028
ERM + SR 0.782 ± 0.029 0.587 ± 0.099 0.279 ± 0.180 0.892 ± 0.007 0.685 ± 0.048 0.240 ± 0.057
ERM + SR + P.P. 0.802 ± 0.009 0.774 ± 0.010 0.090 ± 0.022 0.895 ± 0.002 0.762 ± 0.016 0.147 ± 0.019

GDRO 0 0.804 ± 0.044 0.687 ± 0.035 0.177 ± 0.020 0.902 ± 0.000 0.706 ± 0.062 0.219 ± 0.062
1 0.790 ± 0.010 0.667 ± 0.125 0.188 ± 0.123 0.889 ± 0.013 0.783 ± 0.052 0.122 ± 0.057
2 0.828 ± 0.012 0.710 ± 0.044 0.192 ± 0.084 0.892 ± 0.006 0.768 ± 0.026 0.135 ± 0.023
5 0.812 ± 0.034 0.753 ± 0.024 0.115 ± 0.042 0.891 ± 0.006 0.740 ± 0.026 0.166 ± 0.024

GDRO + P.P. 0 0.826 ± 0.015 0.793 ± 0.005 0.053 ± 0.011 0.900 ± 0.003 0.749 ± 0.026 0.159 ± 0.030
1 0.822 ± 0.030 0.783 ± 0.029 0.090 ± 0.037 0.897 ± 0.004 0.779 ± 0.030 0.130 ± 0.024
2 0.851 ± 0.004 0.819 ± 0.008 0.056 ± 0.011 0.901 ± 0.003 0.743 ± 0.018 0.169 ± 0.019
5 0.834 ± 0.008 0.776 ± 0.042 0.100 ± 0.047 0.897 ± 0.007 0.742 ± 0.051 0.167 ± 0.052

GDRO + SR 0 0.775 ± 0.028 0.570 ± 0.085 0.343 ± 0.103 0.895 ± 0.011 0.667 ± 0.022 0.252 ± 0.033
1 0.789 ± 0.020 0.551 ± 0.022 0.374 ± 0.082 0.895 ± 0.002 0.676 ± 0.043 0.243 ± 0.044
2 0.796 ± 0.024 0.672 ± 0.039 0.234 ± 0.079 0.887 ± 0.012 0.732 ± 0.086 0.164 ± 0.105
5 0.815 ± 0.017 0.763 ± 0.015 0.094 ± 0.020 0.894 ± 0.009 0.712 ± 0.060 0.200 ± 0.066

GDRO + SR + P.P. 0 0.800 ± 0.012 0.760 ± 0.010 0.104 ± 0.018 0.895 ± 0.002 0.753 ± 0.019 0.156 ± 0.021
1 0.805 ± 0.019 0.784 ± 0.027 0.074 ± 0.041 0.893 ± 0.002 0.764 ± 0.006 0.142 ± 0.004
2 0.819 ± 0.012 0.785 ± 0.010 0.065 ± 0.009 0.894 ± 0.000 0.749 ± 0.037 0.160 ± 0.035
5 0.827 ± 0.000 0.782 ± 0.014 0.070 ± 0.012 0.897 ± 0.003 0.751 ± 0.033 0.163 ± 0.036

SGDRO 0.798 ± 0.047 0.706 ± 0.035 0.176 ± 0.034 0.897 ± 0.001 0.699 ± 0.054 0.223 ± 0.058
SGDRO + P.P. 0.801 ± 0.007 0.794 ± 0.005 0.040 ± 0.015 0.900 ± 0.005 0.747 ± 0.017 0.162 ± 0.017
SGDRO + SR 0.779 ± 0.017 0.589 ± 0.070 0.288 ± 0.090 0.889 ± 0.001 0.691 ± 0.028 0.218 ± 0.035
SGDRO + SR + P.P. 0.808 ± 0.007 0.790 ± 0.015 0.053 ± 0.007 0.894 ± 0.002 0.738 ± 0.026 0.168 ± 0.030

Table 6.11. Attribute-based classification results on WaterBird and CelebA datasets for Res 18
architecture.

6.2.6 Comparison of train and valid performance on selected penalty

function

The distributional similarity between valid and test datasets can cause the superior perfor-

mance of our adaptive prediction penalty algorithm. To validate that this is not the case,
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we compare our method’s train and valid performances on the best penalty function and

the worst-case best model. Tables demonstrate a typical generalization gap between these

performances, and the best case chosen from the validation dataset does not fail on the

training dataset. These results suggest that our method does not overfit the validation set

and provides a proper penalty to the model trained on the training dataset.

Tailed Minority Group Imbalance
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM train 0.966 ± 0.024 0.943 ± 0.039 0.053 ± 0.035 0.945 ± 0.010 0.932 ± 0.015 0.068 ± 0.015
valid 0.863 ± 0.008 0.686 ± 0.044 0.293 ± 0.042 0.899 ± 0.003 0.841 ± 0.013 0.111 ± 0.008

ERM + SR train 0.957 ± 0.050 0.848 ± 0.143 0.152 ± 0.143 0.964 ± 0.004 0.913 ± 0.012 0.087 ± 0.012
valid 0.882 ± 0.025 0.814 ± 0.015 0.134 ± 0.032 0.909 ± 0.003 0.866 ± 0.004 0.099 ± 0.011

GDRO 0 train 0.923 ± 0.016 0.898 ± 0.018 0.102 ± 0.018 0.907 ± 0.012 0.890 ± 0.016 0.110 ± 0.016
valid 0.892 ± 0.007 0.829 ± 0.036 0.122 ± 0.042 0.896 ± 0.008 0.851 ± 0.020 0.113 ± 0.042

GDRO 0 + SR train 0.967 ± 0.018 0.863 ± 0.091 0.137 ± 0.091 0.944 ± 0.019 0.856 ± 0.057 0.144 ± 0.057
valid 0.886 ± 0.005 0.818 ± 0.015 0.144 ± 0.034 0.882 ± 0.010 0.821 ± 0.014 0.127 ± 0.018

GDRO 1 train 0.892 ± 0.039 0.846 ± 0.069 0.154 ± 0.069 0.918 ± 0.030 0.902 ± 0.036 0.098 ± 0.036
valid 0.902 ± 0.013 0.864 ± 0.021 0.098 ± 0.034 0.900 ± 0.018 0.852 ± 0.013 0.112 ± 0.015

GDRO 1 + SR train 0.976 ± 0.003 0.898 ± 0.014 0.102 ± 0.014 0.950 ± 0.017 0.875 ± 0.042 0.125 ± 0.042
valid 0.913 ± 0.005 0.879 ± 0.006 0.081 ± 0.003 0.886 ± 0.022 0.821 ± 0.023 0.158 ± 0.015

MNIST GDRO 2 train 0.851 ± 0.056 0.792 ± 0.089 0.208 ± 0.089 0.907 ± 0.018 0.870 ± 0.026 0.130 ± 0.026
valid 0.890 ± 0.004 0.834 ± 0.008 0.119 ± 0.011 0.898 ± 0.006 0.847 ± 0.013 0.112 ± 0.008

GDRO 2 + SR train 0.955 ± 0.016 0.830 ± 0.089 0.170 ± 0.089 0.941 ± 0.012 0.844 ± 0.023 0.156 ± 0.023
valid 0.885 ± 0.012 0.840 ± 0.015 0.099 ± 0.024 0.883 ± 0.020 0.834 ± 0.022 0.121 ± 0.008

GDRO 5 train 0.769 ± 0.053 0.688 ± 0.041 0.312 ± 0.041 0.889 ± 0.013 0.851 ± 0.016 0.149 ± 0.016
valid 0.851 ± 0.015 0.775 ± 0.024 0.187 ± 0.016 0.886 ± 0.004 0.841 ± 0.004 0.111 ± 0.015

GDRO 5 + SR train 0.885 ± 0.012 0.580 ± 0.201 0.420 ± 0.201 0.954 ± 0.004 0.868 ± 0.011 0.132 ± 0.011
valid 0.841 ± 0.010 0.765 ± 0.009 0.199 ± 0.020 0.896 ± 0.010 0.838 ± 0.006 0.136 ± 0.008

SGDRO train 0.933 ± 0.047 0.910 ± 0.063 0.090 ± 0.063 0.923 ± 0.010 0.906 ± 0.014 0.094 ± 0.014
valid 0.880 ± 0.016 0.763 ± 0.062 0.197 ± 0.061 0.898 ± 0.005 0.844 ± 0.011 0.122 ± 0.011

SGDRO + SR train 0.958 ± 0.054 0.859 ± 0.138 0.141 ± 0.138 0.968 ± 0.004 0.923 ± 0.009 0.077 ± 0.009
valid 0.892 ± 0.019 0.813 ± 0.026 0.164 ± 0.018 0.905 ± 0.012 0.853 ± 0.020 0.116 ± 0.018

Table 6.12. Performance gap between the train and valid for selected penalty function on MNIST
dataset. The best function is chosen according to the valid performance and works well in training
data where the data distribution can differ. Validation performance in this table is the approxima-
tion of the test performance represented in other tables.
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Tailed Minority Group Imbalance
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM train 0.988 ± 0.012 0.817 ± 0.071 0.183 ± 0.071 0.781 ± 0.058 0.660 ± 0.076 0.340 ± 0.076
valid 0.783 ± 0.015 0.425 ± 0.092 0.562 ± 0.090 0.732 ± 0.016 0.594 ± 0.023 0.318 ± 0.030

ERM + SR train 0.892 ± 0.017 0.560 ± 0.064 0.440 ± 0.064 0.907 ± 0.022 0.623 ± 0.155 0.375 ± 0.153
valid 0.783 ± 0.014 0.599 ± 0.064 0.335 ± 0.058 0.758 ± 0.028 0.584 ± 0.024 0.344 ± 0.056

GDRO 0 train 0.800 ± 0.141 0.708 ± 0.190 0.292 ± 0.190 0.817 ± 0.061 0.674 ± 0.075 0.326 ± 0.075
valid 0.789 ± 0.024 0.606 ± 0.015 0.325 ± 0.014 0.763 ± 0.015 0.623 ± 0.010 0.317 ± 0.036

GDRO 0 + SR train 0.923 ± 0.022 0.804 ± 0.019 0.180 ± 0.040 0.914 ± 0.030 0.756 ± 0.083 0.244 ± 0.083
valid 0.796 ± 0.010 0.648 ± 0.022 0.300 ± 0.026 0.752 ± 0.016 0.586 ± 0.019 0.341 ± 0.016

GDRO 1 train 0.790 ± 0.123 0.610 ± 0.132 0.364 ± 0.095 0.736 ± 0.062 0.597 ± 0.071 0.403 ± 0.071
valid 0.776 ± 0.023 0.601 ± 0.020 0.330 ± 0.017 0.735 ± 0.038 0.604 ± 0.043 0.324 ± 0.051

GDRO 1 + SR train 0.905 ± 0.057 0.753 ± 0.079 0.233 ± 0.064 0.872 ± 0.026 0.636 ± 0.057 0.364 ± 0.057
valid 0.777 ± 0.013 0.629 ± 0.021 0.306 ± 0.023 0.734 ± 0.023 0.621 ± 0.042 0.273 ± 0.054

FMNIST GDRO 2 train 0.828 ± 0.043 0.717 ± 0.018 0.283 ± 0.018 0.810 ± 0.043 0.647 ± 0.049 0.340 ± 0.064
valid 0.782 ± 0.016 0.630 ± 0.013 0.304 ± 0.028 0.769 ± 0.018 0.616 ± 0.018 0.331 ± 0.036

GDRO 2 + SR train 0.798 ± 0.028 0.557 ± 0.052 0.426 ± 0.061 0.918 ± 0.029 0.745 ± 0.059 0.255 ± 0.059
valid 0.762 ± 0.011 0.583 ± 0.049 0.327 ± 0.067 0.766 ± 0.035 0.618 ± 0.015 0.326 ± 0.036

GDRO 5 train 0.692 ± 0.071 0.412 ± 0.069 0.588 ± 0.069 0.832 ± 0.040 0.734 ± 0.068 0.266 ± 0.068
valid 0.676 ± 0.003 0.474 ± 0.044 0.437 ± 0.099 0.774 ± 0.006 0.608 ± 0.016 0.338 ± 0.010

GDRO 5 + SR train 0.776 ± 0.037 0.465 ± 0.134 0.535 ± 0.134 0.901 ± 0.031 0.683 ± 0.125 0.317 ± 0.125
valid 0.680 ± 0.035 0.475 ± 0.099 0.473 ± 0.153 0.767 ± 0.009 0.594 ± 0.016 0.332 ± 0.022

SGDRO train 0.926 ± 0.023 0.699 ± 0.042 0.301 ± 0.042 0.804 ± 0.041 0.651 ± 0.056 0.349 ± 0.056
valid 0.808 ± 0.012 0.630 ± 0.005 0.323 ± 0.016 0.755 ± 0.035 0.630 ± 0.026 0.301 ± 0.027

SGDRO + SR train 0.841 ± 0.048 0.413 ± 0.147 0.587 ± 0.147 0.928 ± 0.009 0.739 ± 0.054 0.261 ± 0.054
valid 0.787 ± 0.007 0.564 ± 0.037 0.356 ± 0.046 0.776 ± 0.017 0.598 ± 0.022 0.359 ± 0.040

Table 6.13. Performance gap between the train and valid for selected penalty function on FMNIST
dataset. The best function is chosen according to the valid performance and works well in training
data where the data distribution can differ. Validation performance in this table is the approxima-
tion of the test performance represented in other tables.

Tailed Minority Group Imbalance
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM train 0.996 ± 0.003 0.972 ± 0.019 0.028 ± 0.019 0.995 ± 0.004 0.990 ± 0.006 0.010 ± 0.006
valid 0.535 ± 0.010 0.322 ± 0.023 0.469 ± 0.020 0.530 ± 0.014 0.417 ± 0.012 0.275 ± 0.075

ERM + SR train 0.677 ± 0.035 0.430 ± 0.054 0.564 ± 0.051 0.968 ± 0.022 0.924 ± 0.047 0.076 ± 0.047
valid 0.444 ± 0.023 0.291 ± 0.028 0.467 ± 0.054 0.467 ± 0.007 0.351 ± 0.023 0.305 ± 0.022

GDRO 0 train 0.692 ± 0.174 0.470 ± 0.245 0.530 ± 0.245 0.731 ± 0.063 0.665 ± 0.099 0.335 ± 0.099
valid 0.561 ± 0.042 0.423 ± 0.019 0.404 ± 0.071 0.589 ± 0.010 0.464 ± 0.021 0.369 ± 0.052

GDRO 0 + SR train 0.869 ± 0.117 0.647 ± 0.159 0.329 ± 0.130 0.901 ± 0.007 0.781 ± 0.014 0.219 ± 0.014
valid 0.538 ± 0.035 0.323 ± 0.024 0.474 ± 0.053 0.538 ± 0.022 0.405 ± 0.026 0.362 ± 0.052

GDRO 1 train 0.680 ± 0.102 0.581 ± 0.136 0.370 ± 0.158 0.787 ± 0.059 0.749 ± 0.075 0.251 ± 0.075
valid 0.565 ± 0.016 0.457 ± 0.028 0.298 ± 0.025 0.598 ± 0.014 0.465 ± 0.011 0.348 ± 0.020

GDRO 1 + SR train 0.787 ± 0.180 0.663 ± 0.225 0.260 ± 0.137 0.884 ± 0.066 0.722 ± 0.184 0.278 ± 0.184
valid 0.485 ± 0.056 0.323 ± 0.013 0.443 ± 0.141 0.537 ± 0.010 0.413 ± 0.017 0.341 ± 0.039

CIFAR10 GDRO 2 train 0.662 ± 0.149 0.564 ± 0.165 0.404 ± 0.140 0.726 ± 0.060 0.667 ± 0.075 0.333 ± 0.075
valid 0.564 ± 0.034 0.426 ± 0.015 0.376 ± 0.023 0.571 ± 0.009 0.436 ± 0.006 0.341 ± 0.030

GDRO 2 + SR train 0.703 ± 0.085 0.540 ± 0.093 0.328 ± 0.149 0.914 ± 0.020 0.808 ± 0.032 0.192 ± 0.032
valid 0.477 ± 0.020 0.336 ± 0.041 0.429 ± 0.057 0.546 ± 0.015 0.399 ± 0.007 0.375 ± 0.029

GDRO 5 train 0.644 ± 0.088 0.550 ± 0.097 0.371 ± 0.077 0.699 ± 0.058 0.623 ± 0.066 0.377 ± 0.066
valid 0.532 ± 0.011 0.420 ± 0.002 0.289 ± 0.016 0.578 ± 0.026 0.439 ± 0.010 0.367 ± 0.084

GDRO 5 + SR train 0.776 ± 0.166 0.451 ± 0.236 0.506 ± 0.228 0.962 ± 0.030 0.912 ± 0.068 0.088 ± 0.068
valid 0.486 ± 0.058 0.318 ± 0.007 0.380 ± 0.137 0.571 ± 0.008 0.428 ± 0.015 0.272 ± 0.040

SGDRO train 0.497 ± 0.149 0.379 ± 0.117 0.497 ± 0.027 0.901 ± 0.078 0.884 ± 0.087 0.116 ± 0.087
valid 0.450 ± 0.036 0.291 ± 0.032 0.338 ± 0.055 0.512 ± 0.014 0.376 ± 0.021 0.316 ± 0.020

SGDRO + SR train 0.645 ± 0.134 0.347 ± 0.122 0.631 ± 0.089 0.954 ± 0.054 0.884 ± 0.133 0.116 ± 0.133
valid 0.440 ± 0.029 0.327 ± 0.009 0.260 ± 0.030 0.456 ± 0.010 0.355 ± 0.013 0.262 ± 0.049

Table 6.14. Performance gap between the train and valid for selected penalty function on CIFAR10
dataset. The best function is chosen according to the valid performance and works well in training
data where the data distribution can differ. Validation performance in this table is the approxima-
tion of the test performance represented in other tables.
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Waterbird CelebA
Average Acc. Robust Acc. Accuracy Gap. Average Acc. Robust Acc. Accuracy Gap.

ERM train 0.929 ± 0.026 0.904 ± 0.036 0.096 ± 0.036 0.860 ± 0.013 0.822 ± 0.017 0.150 ± 0.016
valid 0.734 ± 0.064 0.661 ± 0.010 0.299 ± 0.009 0.826 ± 0.024 0.793 ± 0.003 0.164 ± 0.002

ERM + SR train 0.906 ± 0.024 0.738 ± 0.057 0.262 ± 0.057 0.940 ± 0.007 0.859 ± 0.006 0.140 ± 0.006
valid 0.807 ± 0.017 0.793 ± 0.006 0.114 ± 0.005 0.874 ± 0.006 0.866 ± 0.002 0.040 ± 0.005

GDRO 0 train 0.841 ± 0.025 0.809 ± 0.024 0.191 ± 0.024 0.897 ± 0.004 0.889 ± 0.004 0.109 ± 0.005
valid 0.832 ± 0.013 0.819 ± 0.015 0.063 ± 0.025 0.886 ± 0.005 0.880 ± 0.004 0.023 ± 0.005

GDRO 0 + SR train 0.912 ± 0.027 0.752 ± 0.076 0.248 ± 0.076 0.938 ± 0.005 0.872 ± 0.008 0.126 ± 0.009
valid 0.806 ± 0.005 0.775 ± 0.029 0.145 ± 0.026 0.877 ± 0.005 0.868 ± 0.006 0.035 ± 0.021

GDRO 1 train 0.878 ± 0.010 0.849 ± 0.021 0.151 ± 0.021 0.899 ± 0.016 0.886 ± 0.018 0.113 ± 0.017
valid 0.839 ± 0.010 0.825 ± 0.008 0.073 ± 0.011 0.884 ± 0.007 0.879 ± 0.003 0.029 ± 0.003

GDRO 1 + SR train 0.931 ± 0.040 0.808 ± 0.064 0.188 ± 0.061 0.929 ± 0.011 0.857 ± 0.019 0.139 ± 0.016
valid 0.816 ± 0.008 0.801 ± 0.017 0.112 ± 0.010 0.874 ± 0.003 0.872 ± 0.002 0.024 ± 0.008

GDRO 2 train 0.876 ± 0.016 0.846 ± 0.018 0.154 ± 0.018 0.893 ± 0.012 0.877 ± 0.013 0.123 ± 0.013
valid 0.839 ± 0.014 0.832 ± 0.009 0.030 ± 0.017 0.883 ± 0.004 0.880 ± 0.002 0.045 ± 0.003

GDRO 2 + SR train 0.946 ± 0.001 0.836 ± 0.008 0.164 ± 0.008 0.934 ± 0.011 0.861 ± 0.017 0.137 ± 0.015
valid 0.826 ± 0.006 0.817 ± 0.010 0.060 ± 0.022 0.876 ± 0.005 0.872 ± 0.002 0.028 ± 0.009

GDRO 5 train 0.865 ± 0.011 0.848 ± 0.016 0.152 ± 0.016 0.898 ± 0.006 0.880 ± 0.007 0.120 ± 0.007
valid 0.851 ± 0.006 0.836 ± 0.009 0.034 ± 0.024 0.885 ± 0.005 0.880 ± 0.004 0.026 ± 0.012

GDRO 5 + SR train 0.926 ± 0.001 0.830 ± 0.008 0.170 ± 0.008 0.946 ± 0.001 0.868 ± 0.009 0.132 ± 0.009
valid 0.830 ± 0.009 0.823 ± 0.003 0.044 ± 0.003 0.875 ± 0.007 0.869 ± 0.003 0.042 ± 0.004

SGDRO train 0.805 ± 0.014 0.770 ± 0.013 0.230 ± 0.013 0.884 ± 0.008 0.865 ± 0.010 0.133 ± 0.011
valid 0.819 ± 0.008 0.805 ± 0.005 0.070 ± 0.002 0.877 ± 0.005 0.871 ± 0.004 0.054 ± 0.006

SGDRO + SR train 0.910 ± 0.005 0.757 ± 0.007 0.243 ± 0.007 0.928 ± 0.011 0.853 ± 0.020 0.145 ± 0.019
valid 0.805 ± 0.025 0.796 ± 0.017 0.091 ± 0.015 0.873 ± 0.007 0.868 ± 0.005 0.029 ± 0.012

Table 6.15. Performance gap between the train and valid for selected penalty function in the
attribute-based classification task. The best function is chosen according to the valid performance
and works well in training data where the data distribution can differ. Validation performance in
this table is the approximation of the test performance represented in other tables.
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Abstract in Korean

특정 범주에서는 충분한 표본을 얻는 것이 굉장히 힘들기 때문에 실제 문
제에서 범주 별로 균형 잡힌 큰 규모의 데이터셋을 구축하는 것은 현실적
으로 어려움이 있다. 이러한 불균형은 주로 소수 범주의 자연적인 특징이
나 잠재적인 특성의 계층적인 구조에 의한다. 이는 집단 간의 성능 차이
나 불공정성을 야기한다. 소수 집단을 강조하는 방식으로 그룹들을 공정
하게 대하려는 다양한 방법들이 존재한다. 또한 데이터 증대나 생성 모델
들 또한 이러한 문제를 해결하여 일반화 성능을 증대하기 위해 사용되었
다. 하지만 이러한 접근법들은 소수 집단의 다양성 부족에 의한 과접합 
문제에 의한 부정적인 영향을 완전히 제거하는 데에는 실패했다. 본 논문
에서는 분류기들이 각자의 예측을 과신하는 경향을 실증한다. 또한 과반
수 범주에 대한 예측에 불이익을 가해 소수 범주의 성능을 증대시키는 새
로운 후처리 방법을 제안한다. 이 방법은 기존의 방법들과 양립하며, 최적
의 불이익 함수를 얻기 위한 적응 알고리즘 또한 제안한다. 본 방법은 데
이터의 불균형이나 편향에 강건한 예측 경계를 구축하는 새로운 관점을 
제시한다. 다양한 데이터셋과 불균형 환경에 대한 다양한 실험 결과들을 
통해 평균 성능과 최소 성능 두 측면에서의 상당한 향상을 보이고 새로운 
예측 경계의 장점을 제안한다.

주요어 : 불균형 학습, 후처리 방법, 이미지 분류
학  번 : 2021-27158
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