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Abstract

In the physical design of chip implementation, designing high-quality standard cell

layout and accurately predicting post-route DRV (design rule violation) at an early

stage is an important problem, especially in advanced technology nodes. This disser-

tation presents two methodologies that can contribute to improving the design quality

and design turnaround time of physical design flow.

Firstly, we propose an integrated approach to the two problems of transistor folding

and placement in standard cell layout synthesis. Precisely, we propose a globally opti-

mal algorithm of search tree based design space exploration, devising a set of effective

speeding up techniques as well as dynamic programming based fast cost computation.

In addition, our algorithm incorporates the minimum oxide diffusion jog constraint,

which closely relies on both of transistor folding and placement. Through experiments

with the transistor netlists and design rules in advanced node, our proposed method is

able to synthesize fully routable cell layouts of minimal size within a very fast time for

each netlist, outperforming the cell layout quality in the manual design.

Secondly, we propose a novel ML based DRC hotspot prediction technique, which

is able to accurately capture the combined impact of pin accessibility and routing con-

gestion on DRC hotspots. Precisely, we devise a graph, called pin proximity graph,

that effectively models the spatial information on cell I/O pins and the information

on pin-to-pin disturbance relation. Then, we propose a new ML model, which tightly

combines GNN (graph neural network) and U-net in a way that GNN is used to em-

bed pin accessibility information abstracted from our pin proximity graph while U-net

is used to extract routing congestion information from grid-based features. Through

experiments with a set of benchmark designs using advanced node, our model outper-

forms the existing ML models on all benchmark designs within the fast inference time

in comparison with that of the state-of-the-art techniques.
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Chapter 1

Introduction

1.1 Standard Cell Layout Synthesis

Standard cell layout synthesis belongs to a constrained optimization problem whose

most important objective is to find a solution that minimizes the cell area. Since cell

layout optimization is NP-hard [6], it is generally performed in a sequence of three

steps: transistor folding, transistor placement, and in-cell routing, in which transistor

placement plays a key role in minimizing cell area. Through transistor placement, cell

of minimum area, regardless of in-cell routability, can be obtained by ordering transis-

tors in a way to maximize the possibility of diffusion sharing between two transistors

adjacent to each other. A lot of methods of transistor placement have been proposed.

The existing methods can be classified as: integer linear programming (ILP) based

(e.g., [7, 8]), graph theory based (e.g., [9, 10, 11, 12]), Boolean satisfiability (SAT)

based (e.g., [13, 14, 15]), simulated annealing based (e.g., [16]), dynamic program-

ming based (e.g., [17]), machine learning based (e.g., [18, 19]), and search tree explo-

ration based (e.g., [20, 21]). Also, numerous in-cell routing methodology for synthesiz-

ing optimized standard cell layout has been proposed. (e.g., [22, 23, 24, 25, 26, 27, 28])

In practical cell layout synthesis, the size of each transistor is determined individu-

ally by taking into account the cell’s performance constraints. For a pre-specified limit

1



on the width, denoted by WP and WN , of P and N diffusions, transistors of large

size cannot be implemented with single channels. Transistor folding is the process of

splitting a large transistor into multiple small and equal-sized (sub)-transistors, called

fingers, that are connected in parallel and placed contiguously with diffusion sharing

[29]. Static folding refers to folding every transistor in the cell with its minimal num-

ber of fingers such that their channel widths1 exactly equal to the value of WP or WN

while dynamic folding refers to folding the transistors individually with some number

of fingers of uniform channel width that is less than or equals to the value of WP or

WN . Fig. 1.1(a) illustrates no folding on transistor b in a transistor placement, resulting

in the violation of WN constraint in b. On the other hand, Fig. 1.1(b) shows a static

folding on transistor b, resolving the violation, but requiring a diffusion break between

transistors b and c. Fig. 1.1(c) shows a dynamic folding on b. It creates one more fin-

gers (2 → 3) over that in Fig. 1.1(b), but enables a diffusion sharing between b and

c. Note that dynamic folding is a generalization of static folding. Given WP and WN ,

the cell size is determined by the following closely inter-related factors: (1) the number

and orientation (i.e., flip or no-flip) of fingers for each transistor, (2) the placement of

fingers, and (3) the amount of diffusion sharing.

To our knowledge, all existing works have addressed transistor placement with

no or partial consideration of transistor folding (e.g., [7, 8, 10, 11, 12, 13, 17, 18,

19, 21, 29]). Jo et al. [12] expressed input netlist as a graph model where each node

represents a distinct net and an edge exists between two nodes if there is a transistor

connecting the nets corresponding to the nodes, and obtained a transistor placement

that maximizes the number of diffusion sharing through searching Euler trail on the

graph; Iizuka et al. [13] transformed the problem of finding a minimum-width multi-

row transistor placement into a pseudo-Boolean optimization problem, and made use

of SAT solver to discover optimal placements; Li et al. [17] utilized a dynamic pro-

gramming based algorithm to find an optimal transistor placement with the objective
1The channel width means to the size of the finger.

2
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3𝑊𝑁
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(a) No folding on transistor b in a transis-

tor placement.

𝑊𝑁 1 2 2 3 3 2 3 4

𝑎 𝑏 𝑏 𝑐

(b) Static folding on b in the transistor placement in (a).

𝑊𝑁

𝑎 𝑏 𝑏 𝑐𝑏

1 2
2 3 3 2 2 3

3 4

(c) Dynamic folding on b in the transistor placement in

(a).

Figure 1.1: An illustration of transistor folding on a transistor and the impact of folding

on diffusion sharing. (WN represents the maximum width constraint of N diffusion.)

of not only minimizing cell area but also maximizing the in-cell routability of the tran-

sistor placement; Lee et al. [18] tried to search a minimum-area transistor placement

using Monte-Carlo search tree algorithm and estimated the ranking of the cell delay

of the placements by exploiting convolutional neural network (CNN) model; Ren et

al. [19] proposed a reinforcement learning based transistor placement engine to find

optimal results. For a set of pMOS and nMOS transistor sizes in a cell, Kim and Kang

[29] proposed a polynomial-time algorithm of finding an optimal folding size, equiva-

lently optimal values of WP and WN , which leads to minimize the resulting cell size.

The algorithm has two disabilities. It did not consider the diffusion breaks which may

be caused by the transistor placement and finger orientation. Further, it assumed to

produce all fingers of identical size. Gupta and Hayes [7] formulated the combined

problem of transistor folding and placement as a 0-1 integer linear programming (ILP)

problem to produce optimal results. However, in a strict sense, they attempted to solve

the problem of, so-called transistor placement with static folding rather than to solve

3



the problem of transistor placement with dynamic folding, in that they fixed the num-

ber of fingers to d tPWP
e or d tNWN

e for each pMOS or nMOS transistor where tP and tN

respectively represent the size of the pMOS or nMOS transistor, and then determined

their position and orientation to minimize the cell size. Lu et al. [8] proposed an ILP

based approach to the problem of transistor placement combined with sizing of indi-

vidual fingers to minimize the resulting cell area. However, the approach assumed that

the number of fingers for each transistor has been given as input and never considered

as a parameter to be optimized. To sum up, the works in [7, 8, 11, 12, 13, 17, 18, 19, 29]

did not fully exploit the various effects of dynamic folding on diffusion sharing, ulti-

mately on reducing the cell size.

On the other hand, Cortadella [10] constructed a graph model from the transis-

tor netlist of an input cell to formulate an instance of dynamic folding problem, and

solved the folding problem by minimally adding new edges to the graph until the

existence of Eulerian path in the graph is guaranteed. He applied a mixed ILP for-

mulation to find the minimal number of extra edges called Eulerization cost, which

was used to estimate the number of diffusion breaks in transistor placement. Since

the method processed two graphs independently, one for netlist of nMOS transistors

and one for pMOS, the Eulerization costs totally ignored the gate sharing of transis-

tors, also known as transistor pairing, in placement. Recently, Cleef et al. [21] pro-

posed a search tree based exploration approach to find the best placement and dynamic

folding of transistors. As a search tree pruning technique, they estimated the number

of diffusion breaks by using a graph model similar to that in [10]. They performed

pMOS transistor placement and nMOS transistor placement separately and combined

the two placement solutions for generating entire placement. The fundamental limita-

tion of performing pMOS and nMOS placements separately is that it incurs many gate

(vertical) misalignments. Gate misalignment incurs when a pair of pMOS and nMOS

transistors sharing a net are not aligned vertically in a single column. Since those two

transistors cannot be implemented with a vertical straight poly gate, a metal resource
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placement.

Figure 1.2: Design rule for minimum OD (oxide-diffusion) jog.

is required to connect them, which eventually hinders in-cell routability.

Recently, a number of transistor placement methods using SMT (Satisfiability

Modulo Theories) solvers with OMT (Optimization Modulo Theories) are proposed.

(e.g. [2, 15]) Lee et al. [15] constructed an SMT-based framework called SP&R for

performing simultaneous transistor placement and in-cell routing. Jo and Kim [2] pro-

posed an optimal transistor placement method combined with global in-cell routing to

ensure good routability of the placement solutions. They defined the global routing bin

and tried to find the solutions with the objectives of minimizing a weighted sum of cell

area and global routing wirelength. One critical limitation of the SMT-based methods

is that as the cell size increases, the runtime increases exponentially. Thus, practically,

it is not acceptable to integrate dynamic folding option in their SMT-based placement

formulations.

Clearly, it is highly desirable to solve the two problems of transistor folding and

placement in an integrated fashion. However, all prior works have not proposed fully

integrated solutions. One of the main reasons is an exponential time complexity on

exploring the search space. Nevertheless, as the technology scaling continues, solv-

ing the two problems in an integrated framework is appealing since it introduces new

DRs (design rules), which are closely affected by both of transistor folding and place-
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ment. One such noticeable DR is the minimum OD (oxide diffusion) jog rule [30]:

Transistors can have different OD region heights according to dynamic folding. When

transistors in a cell with different OD heights abut or cells with different OD heights

in the cell boundaries abut, OD jog violation can occur as shown in Figs. 1.2(a) and

(b).

1.2 Machine Learning for Electronic Design Automation

Electronic design automation (EDA) is one of the important research areas in elec-

tronic engineering. As the technology nodes shrink, the complexity of chip imple-

mentation flow exponentially increases. Currently, most EDA problems are known as

NP-Complete problems, so it is required to develop algorithms that can effectively

handle explosively large design spaces.

Machine learning (ML) plays an important role in our life these days. With the

rapid growth of hardware computing power such as GPUs, machine learning has shown

great performance on classification, detection, and design space exploration problems

in recent years. Commercial EDA tools adopt algorithmic approach for designing

chips, but it has not solved the scalability problems caused by the rapid increase in

the size of design space on modern IC designs. Machine learning-based approaches

can be alternative solutions for EDA problems, so in recent years, machine learning

for EDA has gained popularity and lots of studies have been proposed. These works

tried to efficiently exploit machine learning algorithms on the current EDA tool chain,

and covered the whole process of chip implementation flow composed of logic syn-

thesis, placement, clock tree synthesis, routing, timing analysis, and manufacturing.

Current works can be classified as three categories; acceleration of existing algo-

rithms, early stage quality prediction and design space exploration/optimization. The

detailed explanations of each category are as follows.

The acceleration of the existing algorithm is enabled by maximizing the parallel
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computing using GPU programming systems and AI SW libraries. It covers global

placement [31] and global routing [32, 33]. These approaches do not use machine

learning itself, but it modifies the existing algorithmic approaches to maximize paral-

lelism. DREAMPLACE [31] started with the idea that the backpropagation of deep

learning and the cost optimization process of global placement have similar com-

putational methods, achieving substantial speedup compared to the conventional ap-

proaches. FastGR [32] and GAMER [33] also utilize the potential of GPUs on global

routing. These works propose a pathfinding-level parallel 3D routing methodology im-

plemented on the CUDA platform.

Fast and accurate early-stage quality prediction is essential to chip implementa-

tion since it can boost the total design time. Supervised learning is exploited in this

category, training the model by extracting information from previously implemented

designs, and then predict the quality of the new design based on this. Baek et al. [34]

and Lu et al. [35] utilized graph neural network to predict post-route DRC hotspots

and timing information in terms of total negative slack at the placement stage of the

physical design flow. MAVIREC [36] was inspired by U-Net architecture [4] adopting

three-dimensional convolutional layers to perform IR drop estimation in early stages.

GRANNITE [37] learned the toggle rate of combinational logic from the RTL simula-

tion results, enabling fast power estimation.

Design space exploration/optimization is one of the most important points in solv-

ing the EDA problems, which considers how to handle the large design space and find

the optimization points in a fast time. Recently, bayesian optimization (BO) and rein-

forcement learning (RL) techniques have shown high performance in design space op-

timization problems. A lot of studies have been proposed to utilize these techniques on

chip implementation flow including standard cell layout synthesis [19], logic synthe-

sis [38], macro placement [39], routing [40, 41] and P&R flow optimization [42, 43].

NVcell [19] proposed a methodology to fix the routing DRCs using reinforcement

learning-based agents from the initial routing solutions performed by genetic algo-
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rithm. DRiLLS [38] tried to find the optimal logic synthesis command order of the

commercial tool to minimize the area and delay of the netlist. Mirhoseini et al. [39]

proposed an RL agent that extracts features from netlist graphs using the GNN model

and optimizes the PPA of chips through efficient macro block placement. Liao et al.

[40, 41] suggested deep Q network (DQN) [44] based global router and attention-based

track assignment algorithm in detailed routing. RL-sizer [42] utilized deep determinis-

tic policy gradient (DDPG) algorithm [45] to find the best transistor sizing for timing

optimization. Agnesina et al. [43] proposed a framework that finds the optimal place-

ment parameters of the P&R flow with only a small number of inferences.

1.3 Prediction of Design Rule Violation

In modern integrated circuit designs, the introduction of new complex design rules at

the advanced technology nodes makes implementing chips very challenging. Particu-

larly, the complex design rules put so much burden on physical design, demanding lots

of iterations on the time-consuming process of cell placement and net routing to clean

up all DRVs (design rule violations) before tapping out. Thus, at the placement stage,

if we were able to identify, with high confidence, DRC (design rule check) hotspots

that would be likely to occur at the routing stage, we can pay more attention on the

cell placements in those DRC hotspots, so that the iteration process of placement and

routing should quickly converge to DRV-clean.

Traditionally, commercial place-and-route tools have used congestion map deliv-

ered from initial global routing (GR) or trial routing as an early DRC hotspot esti-

mator at the placement. However, as the technology node shrinks, the DRC hotspots

predicted by GR congestion map alone is not fully correlated with the post-route DRC

hotspots, as shown in Fig. 1.3. At the advanced node, it is known that I/O pin inacces-

sibility in standard cells is one of the main causes of the DRC hotspot misprediction.

Since the high increase of pin inaccessibility in routing is attributed by the cell size re-
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Figure 1.3: Comparison between GR congestion map and actual DRC hotspots on

ECG circuit. (a) GR congestion. (b) An overlay of actual hotspots (white crosses) and

predicted hotspots (red crosses) by GR congestion in (a).

duction and the reduced number of routing tracks over the cells, one of the top priority

in placement stage is resolving pin inaccessibility issue [46, 47, 48, 49]. Furthermore,

as the routing complexity considering complex design rules increases, routers expose

more often unpredictable behaviors, which is also one of main causes of the increase

of DRC hotspot misprediction.

To sum up, routing congestion and pin accessibility are two major causes of DRVs.

The prior works of DRC hotspot prediction previously had considered routing con-

gestion, but paid little or no attention on pin accessibility, then gradually taking into

account pin accessibility as the technology node shrinks.

The shortage of routing capacity in the area of routing congested region ends up

committing design rule violations. In order to discover the routing congestion related

DRVs, Chan et al. [50, 51] extracted, as features, the number of pins, the incoming

and outgoing hyper-edges, and others from a local window, and used a SVM (sup-

port vector machine) model to predict occurrence of DRVs in the window. Zeng et al.

[52] proposed random forest-based prediction model, and utilizes SHAP tree explainer

to analyze the impact of input features on output prediction. Hung et al. [53] used a
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CNN (convolutional neural network) model to capture routing congestion around a lo-

cal window based on the congestion map (extracted from global routing information)

of adjacent grids. Yu et al. [54] exploited cGAN(conditional generative adversarial

nets) model to generate routing congestion map image on FPGA circuit. Xie et al.

(RouteNet) [55] utilized FCN (fully convolutional network) structure. They divided

the entire placement region into grids of small size, and concatenated various DRV

related features for each grid into three-dimensional feature map to maintain spatial

information. One common feature of the aforementioned works is that they all fo-

cused on developing ML (machine learning) models of routing congestion aware DRC

hotspot prediction and never incorporated pin accessibility into their models.

Recently, noticeable studies addressing pin accessibility aware DRC hotspot pre-

diction have emerged. Yu et al. [56, 57] exploited CNN to predict DRVs mainly in-

duced by low pin accessibility in a local window. They used fine-grained pin pattern

images as input feature to express the shape of the pins in detail. Liang et al. [58] sug-

gested a novel neural networks structure called J-net, which is a sort of modified model

of U-net, adding a series of down-sampling modules in front of the encoding path of

U-net to accommodate not only high-resolution pin pattern images but also grid-based

feature maps as input feature. Although Yu et al. [56, 57] and J-net [58] both have tried

to express pin information with fine-grained pin pattern images, these works have two

critical limitations.

Firstly, local pin accessibility cannot be accurately modeled by pin pattern image

alone, which represents only the detailed shape and location of the pins. Rather, DRC

hotspots heavily rely on how metal wires approach to their target pins and how many

metal wires go through over the pins together with the situation of accessing neighbor-

ing pins even though the pin information such as shape or location are identical. For

example, Fig. 1.4 illustrates the different pin accessing situations with the same pin

layouts, in which pins p1, p2, and p3 are easily accessible if nothing tries to obstruct

the connections as shown in Fig. 1.4(a). However, as illustrated in Fig. 1.4(b), if other
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Figure 1.4: Pin accessing situations. (a) The three pins are accessed easily if any metal

wires pass on them. (b) p2 is blocked when metal wires obstruct the pins. (c) p2 can

be accessible if p1 and p3 are accessed through different directions even in the same

situations with (b).

metal wires expand metal tracks near the pins, a DRV occurs since p2 is not accessible

by being blocked by other metals. Even with the same pin layouts, if p1 and p3 are ac-

cessed through different directions, the inaccessibility to p2 can be resolved as shown

in Fig. 1.4(c). Secondly, using high-resolution pin pattern images incur significant ad-

ditional run-time as well as memory overhead to the prediction models. J-net [58] used

pin pattern images which required more than thousands of pixels for representing pin

layouts in a single grid. However, as mentioned above, the pin layout itself does not

accurately describe the pin accessibility problem. Furthermore, the models consume

most of the computation time for processing the massive size of images.

1.4 Contributions of This Dissertation

In this dissertation, we present several methodologies to improve design quality and

design turnaround time in physical design stage.

In Chapter 2, we propose a methodology of synthesizing standard cell layout of

advanced nodes under 10nm process with simultaneous transistor folding and place-
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ment [59]. This work overcomes the critical limitation of existing transistor placement

works, that is, not fully integrating transistor folding into transistor placement. The

contributions of our work can be summarized as:

1. We propose a search tree based algorithm that exhaustively explores the solu-

tion space of transistor folding and placement. Unlike the conventional methods

targeting to generate exactly one compact (optimal) layout for each input netlist

of transistors in a cell, our algorithm is able to produce diverse optimal layouts,

so that designers can choose the layout that is best suited to the implementation

objectives and constraints.

2. To be computationally viable, we devise a set of well-defined speeding up tech-

niques as well as dynamic programming based fast cost computation to effec-

tively and efficiently prune the search space of transistor folding and placement

without losing optimality.

3. We take into account the minimum OD jog constraint in our integrated algorithm

of transistor folding and placement, so that OD jog violation never occurs inside

the synthesized cells. We show in experiments that tightly linking the two tasks

of transistor folding and placement to avoid OD jog violation can save more cell

area, which otherwise, were necessary to resolve OD jog violations afterwards.

4. We provide a fast routability estimation metric to assess transistor placement

solutions and a cell layout synthesis flow to explore cell layouts by varying the

cell size constraint. With using the routability estimator and full synthesis flow

down to in-cell routing, We can generate complete cell layout solutions of small-

area with effective use of metal resources in in-cell routing.

In Chapter 3, we propose a novel methodology of predicting DRC hotspots with

a combined model of GNN (graph neural network) and U-net to accurately and effi-

ciently capture the compound impact of pin accessibility and routing congestion on
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DRC hotspot prediction [34]. The main contributions of our work can be summarized

as follows:

1. We propose a pin proximity graph that effectively models not only the spatial

information of each pin but also the information on how each net accesses to its

target pin. To the best of our knowledge, this is the first work that uses a graph

for modeling pin information.

2. We propose GNN architecture compatible with pin proximity graph. The sug-

gested architecture aggregates the information of the neighboring pins from the

reference pin to consciously formulate pin accessibility.

3. We propose a novel deep ML model, called PGNN (Pin accessibility aware

GNN and U-Net), which is a combined model of GNN and U-net. PGNN can

adopt pin proximity graph as well as grid-based feature map as input feature.

GNN in PGNN embeds pin accessibility information of each grid taken from

the pin proximity graph, and U-net in PGNN extracts routing congestion infor-

mation from the grid-based features.

4. In comparison with the prior works, which have utilized high-quality pin shape

images for the construction of pin accessibility metrics, our graph formulation

of PGNN tremendously saves the runtime for both training and inference.
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Chapter 2

Standard Cell Layout Synthesis of Advanced Nodes with

Simultaneous Transistor Folding and Placement

2.1 Motivations

If transistor folding is performed before or after transistor placement, optimal solutions

may not be found. Fig 2.1 shows the impact of transistor folding on the cell width

(i.e., cell size). Fig 2.1(a) shows an optimal transistor placement for four transistor

pairs t1, t2, t3, and t4 with no transistor folding, which requires total of 6 poly gates

including 2 dummy gates to make a diffusion break. Note that for transistor pairs t1

and t2, each has P diffusion region of width larger than WP . Thus, it is required that

the transistors of t1 and t2 in P diffusion region should be folded. There will be three

possible temporal combinations of transistor folding and placement:

• Combination 1 (placement → folding): performing transistor placement first and

then performing transistor folding. For example, Fig. 2.1(b) shows an optimal fold-

ing result for the optimal transistor placement in Fig. 2.1(a), in which to avoid dif-

fusion breaks between t1 and t2 and between t2 and t3, t1 and t2 are folded with

two and three fingers, respectively. This results in a total of 9 poly gates including 2

dummy gates between t3 and t4.
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Figure 2.1: An example illustrating three possible temporal combinations of transistor

folding and placement.
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• Combination 2 (folding→ placement): performing transistor folding first and then

performing transistor placement. For example, Fig. 2.1(c) shows an optimal place-

ment result for the minimal number of fingers produced by applying folding indi-

vidually to the transistor pairs in Fig. 2.1(a). This results in total of 8 poly gates

including 2 dummy gates. Most of the existing works belong to this temporal com-

bination (e.g., [7, 12, 13, 8, 15, 2]).

• Combination 3 (folding + placement): performing transistor folding and placement

simultaneously. For example, Fig. 2.1(d) shows an optimal result of folding and

placement for the four transistor pairs in Fig. 2.1(a). Unlike Combination 2, t2 is

folded by three fingers to implement diffusion sharing with t1 and t3, saving two

and one poly gates in comparison with the results produced by Combinations 1 and

2, respectively.

As illustrated in Fig. 2.1, it is highly desirable to perform two tasks of transistor

folding and placement in an integrated framework, that is, Combination 3 to produce

cell layouts of minimal area.

2.2 Algorithm for Standard Cell Layout Synthesis

2.2.1 Problem Definition

Let ti = (tpi and tni ) be a pair of pMOS and nMOS transistors sharing a gate poly in

an input transistor netlist of CMOS standard cell. We assume a transistor pair set T is

composed of such K pairs of transistors. Each pMOS or nMOS transistor txi , x = p or

n is characterized by a tuple (ns, ng, nd, size, type) where ns, ng, and nd represent

source, poly gate, and drain nets of txi , respectively, size(txi ) denotes the transistor

size1, and type ∈ {pMOS, nMOS} indicates the transistor type. Design rules to be

satisfied in the process of transistor folding and placement are the followings. (Con-

stant parameters are shown in parentheses.)
1We set size(txi ) to the number of fins required in implementation.
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• DR 1 (Diffusion break constraint (Ngate
dummy)): If two transistors adjoining each

other have different diffusion nets in between them, at least Ngate
dummy number

of dummy poly gates should be inserted between the transistors. Typically, the

value of Ngate
dummy is 1 or 2 depending on the process technology used.

• DR 2 (Diffusion width constraint (WP , WN , WMIN )): Diffusion widths, in

terms of the number of fins, of all transistors should be larger than or equal

to the value of WMIN but should not exceed the value of WP for pMOS or the

value of WN for nMOS.

• DR 3 (Oxide diffusion jog constraint (LOD)): The oxide diffusion region height

should be uniformly maintained. The uniformed height should be lengthened to

be more than the value of LOD.

Let Λ(ti, ·) be an instance of folding shape that can be produced by applying dynamic

folding to both tpi and tni to satisfy DR 2 i.e. the diffusion width constraint and DR 3 i.e.

OD jog constraint. In addition, let Si (= {Λ(ti, 1),Λ(ti, 2) · · · }) be the set of all valid

folding shapes of ti and len(Λ(ti, ·)) denote the horizontal length of folding shape

Λ(ti, ·), expressed in terms of the number of poly gates. (Details on folding shapes

and their generation will be described in Sec. 2.2.3.) Then, we define a function, called

folding function, F(ti), i = 1, 2, · · · ,K:

F(ti) = Λ(ti, ·) ∈ Si, (2.1)

which maps transistor pair ti to a legal folding shape in set Si.

Problem 1 (Transistor folding and placement): For an input transistor netlist of CMOS

standard cell with K pairs of transistors, find (i) a mapping function F(·) and (ii)

a linear order of the folding shapes F(t1),F(t2), · · · ,F(tK) which minimizes the

quantity of Cost:

Cost =
∑

i=1,··· ,K
len(F(ti)) +Ngate

dummy ·Nbreak − αtot (2.2)
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while satisfying DR 1, 2, and 3, whereNbreak is the number of diffusion breaks inserted

between the folding shapes to meet DR 1 i.e. diffusion break constraint, and αtot is

the total number of vertical lines of poly gates that can be saved by abutting folding

shapes2.

2.2.2 Overall Flow

Fig. 2.2 shows the flow of our proposed cell layout generator, called CSyn-fp (Cell

Synthesis with simultaneous Folding and Placement), which performs the following

four steps: For an input transistor netlist N of cell with K transistor pairs and design

rule parameters (Ngate
dummy, WP , WN , WMIN and LOD), (Step 1) enumerating the set

of all feasible folding shapes Si with no DR 2 and DR 3 violations for every transistor

pair ti, i = 1, · · · ,K in N ; (Step 2) building-up a search tree based design space

exploration to find mapping functions F(·) and linear orders of the folding shapes

F(t1),F(t2), · · · ,F(tK) which minimize the quantity of Cost in Eq.2.2 while con-

sidering the impact of DR 1 and DR 3; (Step 3) applying a conventional in-cell router

to the folding and placement results L1, · · · in Step 2 to produce legal and complete

layouts L′1, · · · corresponding to N . (Step 4) splitting folding shapes in solutions of

Step 3 to further reduce cell area. (It is an optional step since it may induce additional

in-cell routing resource.); (Step 5) If no legal cell layouts are found (all placement

solutions are unroutable), reperform the algorithm by relaxing the minimum-area con-

straint to search routable placement solutions.

2.2.3 Step 1: Generation of Folding Shapes

We illustrate our method of folding shape generation for a transistor pair ti = (tpi , t
n
i ) ∈

T using an example shown in Fig. 2.3(a) where size(tpi ) = 6, size(tni ) = 4, WP = 4,

WN = 3, and WMIN = 2.

Step 1.1 (Generating all folding configurations for pMOS tpi ): This step generates all

2For example, see Fig. 2.5.
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Figure 2.2: The flow of our proposed cell layout generator CSyn-fp.
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feasible folding configurations for tpi while satisfying WP = 4 and WMIN = 2. For

example, configuration Γp1, shown in Fig. 2.3(b), is composed of two fingers, one with

4 fins and the other with 2 fins, thus total of 6 fins (= size(tpi )). Γp2 is produced by cyclic

orientation of the diffusion nets by one-step move to the left or right while Γp3 and Γp4

are produced by applying left-to-right flipping to Γp1 and Γp2, respectively.

Step 1.2 (Generating all folding configurations for nMOS tni ): This step is identi-

cal to step 1.1 except that the transistor to be folded is now tni . For example, since

WMIN = 2, the bottom configuration shown in Fig. 2.3(c), which has a finger of size

1, is not allowed while Γn1 and Γn2 (orientation of Γn1 ) are both feasible nMOS folding

configurations.

Step 1.3 (Generating all folding shapes Λ(ti, ·) = (Γpj1 ,Γ
n
j2
, δ)): A distinct folding

shape can be produced by a pair of pMOS and nMOS configurations and offset value

(δ) with respect to the left alignment of the configurations. For example, for Γp1 and

Γn1 , the minimum length folding shape is only that labeled as (Γp1, Γn1 , 0) in Fig. 2.3(d)

whereas for Γp7 and Γn1 , the minimum length folding shapes are the those labeled as

(Γp7, Γn1 , 0) (Γp7, Γn1 , 1) in Fig. 2.3(d).

It should be noted that since some transistor pairs have the same values of pMOS

size (i.e., the number of fins) and the same values of nMOS size, to avoid redundant

computation, CSyn-fp stores only the distinct folding shapes in a lookup table with

pMOS and nMOS sizes as key.

2.2.4 Step 2: Search-tree Based Design Space Exploration

Fig. 2.4 shows a conceptual view of our search tree based design space exploration for

finding linear orders of minimal length for the transistor pairs in T of input transistor

netlist. Whenever a new node (e.g. (t1, t3, t2) in Fig. 2.4) is expanded in the tree traver-

sal, CSyn-fp extracts a minimal amount of information on the partial order of the least

cost (i.e., size) from the information retained in its parent node (e.g., (t1, t3)) and will

retain the information to be used for its children. (The details will be described in the
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Figure 2.3: Illustration of folding shape generation. (a) Specification of a transistor

pair ti = (tpi , t
n
i ) ∈ T and diffusion width constraints: size(tpi ) = 6, size(tni ) = 4,

WP = 4, WN = 3, and WMIN = 2. (b) Generating all folding configurations for

tPi . (c) Generating all folding configurations for tNi . (d) Generating all folding shapes

(Γpj1 ,Γ
n
j2

, δ).
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Figure 2.4: A conceptual view of a search tree based design space exploration by

CSyn-fp for finding linear orders of minimal length for K transistor pairs. CSyn-

fp employs a fast cost computation based on dynamic programming as well as a set of

effective speeding up techniques.

following.) In addition, CSyn-fp employs a number of simple but effective speeding

up techniques, which will be described in Sec. 2.2.5.

Definition 1 (Cost formulation for partial linear placement of folding shapes). C[ti1 , ti2 ,

· · · , tik−1
, tik |tik = Λ(tik , j)] is defined to be the minimal number of poly gates includ-

ing dummy gates that are required for making the linear order listed as ti1 , ti2 , · · · , tik−1
,

tik under the condition that folding shape of tik should be Λ(tik , j).

Then, we can derive a recurrence relation for k ≥ 2:

C[ti1 , · · · , tik−1
, tik |tik = Λ(tik , j1)]

= min
j2∈U
{C[ti1 , · · · , tik−1

|tik−1
= Λ(tik−1

, j2)] + len(Λ(tik , j1))

+ max(µDB ·Ngate
dummy, µOD · LOD)− α}. (2.3)

where U = {1, · · · , |Sik−1
|}3, and µDB = 0 if the left side of folding shape Λ(tik , j1)

can abut on the right side of Λ(tik−1
, j2) without a diffusion break and µDB = 1,

otherwise. If the minimum OD jog violation occurs when Λ(tik−1
, j2) and Λ(tik , j1)

3Sik−1 is the set of folding shapes for transistor pair tik−1 .
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abut to each other, µOD = 1. Otherwise, µOD = 0. α is the number of vertical line of

poly gates saved by abutting the folding shapes.

In addition, for k = 1:

C[ti|ti = Λ(ti, j)] = len(Λ(ti, j)),∀ti ∈ T . (2.4)

Definition 2 (Cost formulation for full linear placement of folding shapes). C[ti1 , ti2 ,

· · · , tiK ] is defined to be min
j∈U
{C[ti1 , ti2 , · · · , tiK | tiK = Λ(tiK , j)]} where U =

{1, · · · , |SiK |}.

Then, the minimum among the values of C[ti1 , ti2 , · · · , tiK ] for every linear order of

the K transistor pairs in T is exactly the quantity of the minimal Cost in Eq.2.2 in

Problem 1.

Fig. 2.5 shows an illustration of calculating the values of C[· · · , tik−1
, tik |tik =

Λ(tik , j1)], j1 = 1, 2, and 3 in Eq.2.3 and the chosen (parent) folding shapes by utilizing

the parent information of C[· · · , tik−1
|tik−1

= Λ(tik−1
, j2)], j2 = 1, 2, and 3. For

example, CSyn-fp obtains the value of C[· · · , tik−1
, tik |tik = Λ(tik , 2)], shown on

the second row and third column in Fig. 2.5 by computing the sum of the minimum of

C[· · · , tik−1
|tik−1

= Λ(tik−1
, j)] + max(µDBj · N

gate
dummy, µODj · LOD) - αj for j =

1, 2, and 3, and len(Λ(tik , 2)), which is min{6 + 0− 1, 5 + 2− 0, 6 + 1− 1} + 2 = 7

where Ngate
dummy and LOD are set to 2 and 1, respectively, and len(Λ(tik , 2)) = 2 poly

gates, as shown in Fig. 2.5. Note that α1 = 1 since abutting Λ(tik , 2) on Λ(tik−1
, 1)

saves one vertical space of poly gate. The red arrow in Fig. 2.5 indicates the folding

shaping combination with the shortest length.

2.2.5 Speeding up Techniques

• Pruning partial linear placement of folding shapes: Let us suppose that the cost

computation of the current node in the search tree is completed, producing a set of op-

timal (conditional) partial linear placement of folding shapes corresponding to C[· · · ,

tik−1
, tik |tik = Λ(tik , j)], j = 1, 2, · · · |Sik |.
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Figure 2.5: Example illustrating the dynamic programming based calculation of

the values of C[· · · , tik−1
, tik |tik = Λ(tik , j1)], j1 = 1, 2, and 3 together with

the corresponding (parent) folding shapes by utilizing the parent information of

C[· · · , tik−1
|tik−1

= Λ(tik−1
, j2)], j2 = 1, 2, and 3.
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Figure 2.6: Example of showing the relation that L1 dominates L2.

Definition 3 (Dominance relation). For two partial linear placements of folding shapes,

L1 and L2, corresponding to C[· · · , tik−1
, tik |tik = Λ(tik , j1)] and C[· · · , tik−1

, tik |

tik = Λ(tik , j2)], it is said that L1 dominates L2 if and only if the following four

conditions are satisfied. (An illustrated example is shown in Fig. 2.6.)

1. lenp(L1) ≤ lenp(L2) where lenp(Li), i = 1, 2 is the horizontal length, in terms

of the number of vertical spaces for poly gates, up to the rightmost pMOS poly

gate for Li.

2. lenn(L1) ≤ lenn(L2) where lenn(Li), i = 1, 2 is the horizontal length, in

terms of the number of vertical spaces for poly gates, up to the rightmost nMOS

poly gate for Li.

3. The two diffusion nets on the right of the rightmost pMOS in Λ(tik , j1) and in

Λ(tik , j2) are the same.

4. The two diffusion nets on the right of the rightmost nMOS in Λ(tik , j1) and in

Λ(tik , j2) are the same.

For example, the partial linear placement corresponding to C[· · · , tik |tik = Λ(tik , 3)]

on the bottom row and right column in Fig. 2.5 dominates the order corresponding to

C[· · · , tik |tik = Λ(tik , 1)] on the first row and right column in Fig. 2.5. Likewise, as

illustrated in Fig. 2.6, the linear order corresponding to the left one dominates the right
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CSyn-fp.

Figure 2.7: Illustration of search tree pruning based on lower bound and placement

symmetry.

one since the conditions are met, as highlighted in Fig. 2.6. Whenever a new node

is created in the search tree, CSyn-fp keeps only the most dominating partial linear

placements.

• Pruning based on lower bound of minimal length of linear placement: From

a current node in search tree, CSyn-fp does not expand the search tree further if the

following two conditions are satisfied. (An illustrated example is shown in Fig. 2.7(a).)

1. Let lpcurrent be the smallest horizontal length of pMOS diffusion region among

all the partial linear placements corresponding to the current node and lpunvisit

be the total sum of the smallest numbers of poly gates among the pMOS folding

configurations of the transistor pairs that are unexplored yet. Then, it should be

that lpcurrent + lpunvisit < lbsofar where lbsofar is the minimal length among the

full linear placements of all transistor pairs explored so far.

2. By the same token, it should be that lncurrent + lnunvisit < lbsofar.

• Eliminating linear placement redundancy by cell flipping: Since a cell can be

flipped in the cell placement and CSyn-fp considers all feasible folding shapes in-

cluding their flipped ones, a linear placement of all transistor pairs from left to right by
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Figure 2.8: Example of articulation point based netlist graph partitioning for cell

DFFHQNx1 in ASAP7 7nm library.

our CSyn-fp also implicitly includes the consideration of the linear placement from

right to left. (An illustrated example is shown in Fig. 2.7(b).) Consequently, it suffices

for CSyn-fp to constrain one particular transistor pair in T to be placed only to the

first half of full linear placement.

• Partitioning netlist for large cells: For a cell with large number of transistor pairs

like flip-flop cells, CSyn-fp partitions the netlist into a number of sub-nets of reason-

able size. We observe that some transistor pair in a certain group of transistor pairs in

netlist should not necessarily be placed in adjacent to some transistor pair in another

group of transistor pairs. For example, the schematic of cell DFFHQNx1 in ASAP

7nm library shown in Fig. 2.8 has 6 such groups. An articulation point in netlist graph

can be a candidate to split the netlist into multiple parts, each of which can be then

treated a single unit for group-level transistor folding and placement.

Precisely, Csyn-fp performs the following steps for netlist partitioning. Firstly, the

input netlist is formulated into a graph where each node indicates a distinct net that

is connected to at least one of the source or drain of a transistor and each transistor is

represented by an edge connecting the nodes corresponding to the nets of source and
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drain of the transistor. An articulation point refers to the node where its net connects

to both pMOS and nMOS transistors. With each of articulation points as a starting

point, Csyn-fp performs the depth first search (DFS) on the graph, and all transistors

traversed during the search are partitioned into the same group.

Once the net partitioning is done, CSyn-fp performs a hierarchical two-level tran-

sistor folding and placement. At the first level, CSyn-fp finds an optimal solution for

each group of transistor pairs. At the second level, CSyn-fp finds an optimal solution

for the cell by exhaustively exploring the group placements.

2.2.6 In-cell Routability Estimation

With Step 2, CSyn-fp can find diverse minimum-area transistor placement solutions,

but unroutable solutions are useless. We devise an in-cell routability estimation metric

which is able to quantify the routing difficulty of the placement solutions from various

aspects. The cost function consists of several factors, as follows. (We assume that the

placement solution is divided into routing grids, and the pins to be connected by each

net are located inside the grid.)

• HPWL (half parameter wire length): For a net, its HPWL is defined to w+ h

if the (minimal-size) size of bounding box of the net is w × h routing grids. If

HPWL is long, in-cell router requires longer metal wires, which poses a high

possibility of inducing dense routing congestion inside the cell. To fit the scale

of this value among the cells, the calculated HPWL value is normalized by the

HPWL of the cell.

• Peak horizontal/vertical net density: For the bounding box of size w×h rout-

ing grids of a net, we define horizontal/vertical/pin density maps as follows. It

indicates the expected number of nets passing through the grids for each di-

rection. Horizontal and vertical net densities are 1
w and 1

h , and these values are

accumulated to the grids inside the bounding box individually. Since each net
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Figure 2.9: Example of calculating horizontal/vertical net density. (a) Multi-pin net.

(b) Pin density map. (c) Horizontal net density map. (d) Vertical net density map.
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must pass through the grid that contains the pin access point, pin density map

calculates the accessing probability of the access points of pin p, which is the
1

#AP (p) where #AP (p) is the number of access points on pin p. For example,

see Fig 2.9 where the size of bounding box of a net is 4×5. Thus, the horizontal

and vertical net densities of the net is 1
4 and 1

5 , respectively. Also, since the net

has three pins (p1, p2, p3), and p1 and p2 each has two access points, the pin den-

sity of p1 and p2 each is 1
2 . Pin density is accumulated to the horizontal/vertical

net density to consider high congestion around the pins, and if the sum exceeds

1, net density becomes 1 to avoid overestimation. We use the maximum hori-

zontal/vertical net density among the grids as an estimation metric, since in-cell

routing failure usually occur in the high congested region.

We formulate the in-cell routability cost as follows:

Cost = α×HPWL+ β ×MH + γ ×MV (2.5)

where MH and MV indicate the maximum horizontal and vertical net densities in the

grids, and α, β, and γ are set to 0.5, 0.25, 0.25 in this work. The cost is calculated for

all obtained placement solutions, and the placement solutions with low cost become

our in-cell routing candidates.

2.2.7 Step 3: In-cell Routing

We implement a grid-based in-cell router using SMT solver inspired by [15]. Our

router follows ASAP7 PDK [3] design rules, but any PDK information can be adopted

to our router with a slight modification. In-cell routing process comprises the following

three steps.
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Figure 2.10: Illustration of implementing our SMT-based in-cell router. (a) Grid con-

figuration. (b) Pre-M0 routing. (c) Multi-pin decomposition and supernode for each

pin. (d) Design rules in consideration.

31



Grid configuration

The grid configuration is illustrated in Fig. 2.10(a). We have total of 7 horizontal pos-

sible routing tracks: two in pMOS region (tracks 1, 2), two in nMOS region (tracks

6, 7), and three in middle region (tracks 3, 4, 5). The tracks in pMOS and nMOS re-

gions satisfy the side to side spacing rule each other (i.e. 18nm), but the tracks in the

middle region are tightly arranged, 9nm spacing between them. There are two reasons:

(1) gate poly is usually contacted by its center position. Thus, we have track 4 in the

center of the cell and (2) router encourages to maximize the usage of routing resource

of the middle region. The vertical track pitch of the grid is half of the gate pitch and

the grid line is located at the center of the gate poly and active region.

Pre-MOL connection

There are two MOL (Middle-Of-Line) layers called LISD and LIG in ASAP7 PDK.

LIG is used to connect consecutive gate polys with the same signal, and LISD is used

to connect distant gates or active regions above the gates. Before using metals for

routing, the adjacent active regions and gate polys with the same signal are connected

by LISD and LIG, respectively like that in Fig 2.10(b). Then, we identify MOL routing

resource that does not cause design rule violation with other MOL metals. This region

also be considered as possible MOL routing region in the next metal routing step.

Metal routing by SMT

Assume that a net has a set of pins P (n) = {p1, p2, ..., pk} to be connected. Each

pin pi may have multiple access points, and when routing, it is necessary to be con-

nected to at least one of these points. To ensure this, for all pins in P (n), we create a

supernode spi which is connected to all access points of pin pi, and SMT formulation

ensures that these supernodes should be connected. Fig. 2.10(c) shows an example of

the supernode generation. Multi-pin nets are decomposed into multiple two-pin nets

by Kruskal algorithm [60] to minimize the wirelength. Also, we consider various de-
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Table 2.1: Notations for the SMT-based in-cell router of the CSyn-fp framework.

Notation Description

G(V,E) Grid graph

e(v, v′) Edge between node v and v′

N(v) A set of neighboring nodes of node v

P (p) A set of possible pin location points of pin p

PL(v, p) 0/1 variable if pin p is located on node v

h(x, y, z, n) 0/1 variable if horizontal edge between (x, y, z) and (x+ 1, y, z) is connected by net n

v(x, y, z, n) 0/1 variable if vertical edge between (x, y, z) and (x, y + 1, z) is connected by net n

i(x, y, z, n) 0/1 variable if via edge between (x, y, z) and (x, y, z + 1) is connected by net n

m(x, y, z, n) 0/1 variable if node (x, y, z) is possessed by net n

sign rules like side-to-side (S2S) spacing, tip-to-side (T2S) spacing, minimum area

rule (MAR), tip-to-tip (T2T) spacing, corner-to-corner (C2C) spacing, and via spacing

rule. Detailed illustration of these rules are shown in Fig. 2.10(d). Our SMT formula-

tion for ensuring net connection and considering the design rules are identical to that in

[15], and we set the objective function of SMT to minimizing metal 2 usage in the first

priority and metal 1 wirelength usage in the second priority. We assume that MOL and

metal 1 layer use 2D routing and metal 2 layer routing is performed by 1D horizontal

routing.

Detailed SMT formulation of our in-cell router is as follows. Basic notations are

defined in Table 2.1.

• Vertex exclusiveness: Definition of metal grid is shown in Eq. 2.6.

m(x, y, z, n) =
∨

e∈E(x,y,z,n)

e, ∀(x, y, z) (2.6)

where E(x, y, z, n) = {h(x− 1, y, z, n), h(x, y, z, n), v(x, y − 1, z, n), v(x, y, z, n),

i(x, y, z − 1, n), i(x, y, z, n)}. Two different net can not possess a node v ∈ G(V,E)

simultaneously. ∑
∀n

m(x, y, z, n) ≤ 1, ∀(x, y, z) (2.7)
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• Ensuring connectivity: For mth two-pin net of net n, source supernode smn and

destination supernode dmn should have one active adjacent edge.

∑
v∈N(smn )

emn (smn , v) = 1,
∑

v∈N(dmn )

emn (dmn , v) = 1 (2.8)

and grid nodes have 0 or 2 active edges.

∑
e∈Am(x,y,z,n)

e = 0 or 2, ∀(x, y, z) (2.9)

where Am(x, y, z, n) = Em(x, y, z, n) ∪ {em(v, smn )|v ∈ V (smn )} ∪ {em(v, dmn )|v ∈

V (dmn )}. Routing result of net n can be obtained as in Eq. 2.10.

∨
∀e=(v,v′)∈E

emn (v, v′) = en(v, v′) (2.10)

• Pin allocation: For I/O pin p, location of the pin must be guaranteed.

∑
v∈P (p)

PL(v, p) = 1, (PL(v, p) == 1) =⇒ (m(v, p) == 1) (2.11)

• Side-to-side spacing: Vertical metal cannot be placed adjacently.

S2S = ¬(v(x, y, z) ∧ v(x+ 1, y, z)), ∀(x, y, z) (2.12)

• Tip-to-side spacing: Horizontal metal tip and vertical metal should maintain enough

space between them.

T2S1 = v(x, y, z) ∧ v(x, y + 1, z) ∧ ¬h(x, y + 1, z) ∧ h(x+ 1, y + 1, z)

T2S2 = v(x+ 2, y, z) ∧ v(x+ 2, y + 1, z) ∧ ¬h(x+ 1, y + 1, z) ∧ h(x, y + 1, z)

T2S = ¬(T2S1 ∨ T2S2), ∀(x, y, z) (2.13)

• Tip-to-tip spacing: Two Horizontal metal tip should be placed two edges apart.

T2T = ¬(h(x, y, z) ∧ ¬h(x+ 1, y, z) ∧ h(x+ 2, y, z)), ∀(x, y, z) (2.14)
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• Corner-to-corner spacing: Two near vertices of the two horizontal metals must be

far apart.

C2C1 = h(x, y, z) ∧ h(x+ 2, y + 1, z) ∧ ¬h(x+ 1, y, z) ∧ ¬h(x+ 1, y + 1, z)

∧ ¬v(x+ 1, y, z) ∧ ¬v(x+ 2, y, z)

C2C2 = h(x+ 2, y, z) ∧ h(x, y + 1, z) ∧ ¬h(x+ 1, y, z) ∧ ¬h(x+ 1, y + 1, z)

∧ ¬v(x+ 1, y, z) ∧ ¬v(x+ 2, y, z)

C2C = ¬(C2C1 ∨ C2C2), ∀(x, y, z) (2.15)

•Minimum area rule: The area of the metal should not be too small.

MAR = m(x, y, z) ∧ ¬h(x− 1, y, z) ∧ ¬h(x, y, z) ∧ ¬v(x, y − 1, z)

∧ ¬v(x, y − 1, z), ∀(x, y, z) (2.16)

To ensuring design rule violation during in-cell routing, constraint of Eq. 2.17 is

included in SMT formulation.

¬S2S ∧ ¬T2S ∧ ¬T2T ∧ ¬C2C ∧ ¬MAR (2.17)

It should be noted that other than the proposed SMT-based router, we can apply

any of conventional in-cell routers to the solutions of transistor folding and placement

produced by Steps 1 and 2 in CSyn-fp.

2.2.8 Step 4: Splitting Folding Shapes

CSyn-fp has used the folding shapes as basic units since treating the fingers in the

folding shapes individually requires additional metal resource to connect the fingers

apart. However, splitting the fingers in folding shapes may reduce the cell size, as il-

lustrated in Fig. 2.11. Fig. 2.11(a) shows a section of transistor folding and placement,

in which folding shape Λ(t1, 1) consists of three fingers. This is because if transis-

tor pair t1 were replaced with Λ(t1, 2) of two fingers, as shown in Fig. 2.11(b), two

dummy poly gates (Ngate
dummy = 2) should be needed to break diffusion. However, if
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Figure 2.11: Impact of splitting folding shape on cell size. (a) t1 is placed in three

fingers. (b) If t1 is folded by two fingers, the diffusion break between t1 and t3 is

inevitable. (c) Diffusion break can be resolved by placing two fingers of t1 separately.
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(a) Layout before folding shape splitting
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(b) Layout after folding shape splitting

Figure 2.12: Layouts of AOI21x1 in ASAP 7nm library [3] produced before and after

the application of our refinement step in CSyn-fp.

one finger in Λ(t1, 2) (generally half of the fingers in the folding shape of even num-

ber of fingers) is displaced as shown in Fig. 2.11(c), the dummy gates are not needed,

thereby providing a potential saving of cell area.

CSyn-fp implements this idea as an optional step as follows. For each folding

shape with an odd number of fingers in a layout solution, Li, obtained in Step 3 of

CSyn-fp, we update the folding shape to have one fewer number of fingers and then

perform an iterative process of swapping fingers in a short distance while controlling

the number of iterations. We repeat this process for all folding shapes of odd number

of fingers inLi. For example, Figs. 2.12(a) and (b) show the layouts of cell AOI21x1 in

ASAP 7nm library [3] produced before and after the application of our refinement step
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Figure 2.13: Example finding optimal partial placements of Λ(tik , 2) when the area

relaxation constraint k is s t to 1. The node keeps not only the 7 CPP placements but

also the 8 CPP placement solutions.

(i.e., folding shape splitting) in CSyn-fp, respectively. It is shown that by splitting the

folding shape with dashed box and swapping one split finger labeled A1 with fingers

labeled A2, CSyn-fp reduces the total number of poly gates from 7 to 6.

2.2.9 Step 5: Relaxing Minimum-area Constraints

The minimum area solutions can be found through Steps 1 and 2, but all of these

placements may be unroutable or using too much metal 2 resources. This situation

occurs a lot in sequential cells where there are many nets to be connected and exist

crossover signals. This step tries to find placement solutions with a little larger area

than minimum-area solution but better in-cell routability by relaxing the minimum

area related constraint.

We define k to the area relaxation constraint such that we want to find the place-
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ment solutions with k more gate polys than that of the minimum-area solution. To

explore the solutions, we simply keep the partial placements that have k more polys

than minimum in the dynamic programming calculation process for each node during

the search tree. For example in Fig. 2.13, optimal partial placement of Λ(tik , 2) is the

right top partial placement with 7 polys, but when the area constraint k is relaxed to 1,

the right bottom placement with 8 polys can generate the placement solution that is 1

CPP more than the minimum one. When the expansion on the tree search reaches leaf

nodes, Csyn-fp collects the complete placement solutions such that their widths are

smaller than or equal to wmin + k where wmin is the minimum width obtained by the

first run of our algorithm.

Since this step forces the nodes in the search tree to keep partial placements more

than that when finding minimum-area placements only, additional runtime overhead

during the dynamic programming based cost calculation inside the nodes is necessary.

To speedup the second run of our algorithm, we fix the lower bound of the search tree

as wmin+k. This procedure is able to significantly reduce the overall runtime through

efficient pruning of the search space that is unlikely to contain placement solutions we

look for.

2.3 Experimental Results

We implemented CSyn-fp using C++ on a linux machine with Intel i7-8700K 4.7GHz

CPU and 64GB memory. CSyn-fp of transistor folding and placement is applied to

the ASAP 7nm standard cell library publicly available in [1] in which the design rule

parameters have been set as: Ngate
dummy = 2, WMIN = 1, WP = 3, WN = 3 and

LOD = 1. CSyn-fp synthesizes 172 cells in the ASAP 7nm library, and in-cell router

is implemented with Z3 SMT solver [61].
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2.3.1 Comparison with ASAP 7nm Cell Layouts

Table 2.2 shows a comparison of 172 all cells in ASAP 7nm cell library [1] with the

cells produced by CSyn-fp. Since CSyn-fp aims not only to find a minimal-area tran-

sistor placement solution but also to minimize the usage of metal 2 in in-cell routing,

to validate the efficacy of CSyn-fp, we also applied Csyn-fp’s in-cell router to the

placement in ASAP cells. In Table 2.2, the cell size is specified in terms of the number

of CPPs (contacted poly pitches) on the cell; the numbers of cells successfully routed

by using metal 1 layer only and by using both of metal 1 and metal 2 layers are spec-

ified in the M1 only and M1+M2 columns, respectively; the portion of wire usage on

the metal 2 layer for in-cell routing is shown in the M2 wire column.

For combinational cells, CSyn-fp reduces area on AO/AOI, OA/OAI, and AND/NAND

types at the expense of using wire on metal 2 layer. In particular, among six ASAP

cells of XOR/XNOR type, two ASAP cells use metal 2 wire while Csyn-fp gener-

ates in-cell routing on the six cells of the same transistor placement as that of ASAP

cells, in which Csyn-fp uses metal 2 wire on four cells. This is mainly because of

the adoption of grid-based routing structure by Csyn-fp. Overall, Csyn-fp is able to

produce placement outcomes with better in-cell routability by utilizing our routabil-

ity estimation metric. On the other hand, by applying Csyn-fp to both of transistor

placement and in-cell routing on the six XOR/XNOR types it produces layouts among

which only two types use metal 2 wire, which implies that the placements produced

by Csyn-fp exhibit better in-cell routability than that of the ASAP cells. Particularly,

for XOR/XNOR and FA cells, CSyn-fp produces layouts with less usage of metal 2

wire over that of the corresponding ASAP ones.

For sequential cells, Csyn-fp reduces cell area by 6.25% for latches and by 11.4%

for DFFs on average. For latch cells, Csyn-fp improves both of cell area (16.0→ 15.0)

and metal 2 usage (19.8% → 15.5%). Figs. 2.14(a) and (b) compares the layouts of

the latch DHLx3 in ASAP 7nm library and produced by Csyn-fp. CSyn-fp is able to

produce layout with 15 CPPs, which is 11.8% (17 → 15) smaller than that of ASAP
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Poly gate M1Fin LISD LIG GCUT V0Diffusion V1 M2

CLK D Q

Q CLK D

(a)
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Figure 2.14: Layout comparison for latch DHLx3 in [1]. CSyn-fp synthesizes cells

with 11.8% smaller area with less metal 2 wire usage. (a) Layout in ASAP cell library.

(b) Layout by CSyn-fp.
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Table 2.3: Running time of CSyn-fp with the option of static or dynamic folding for

netlists of the cells in ASAP 7nm library.

Cells #FETs
CSyn-fp with static folding CSyn-fp with dynamic folding

#CPPs Time (s) #CPPs Time (s)

AND4x2 10 16 1.497 15 0.586

AO22x1 10 9 0.038 8 0.128

AO322x2 16 13 0.334 12 0.374

AOI211x1 8 12 0.477 11 0.408

AOI221x1 10 14 2.801 13 3.049

AOI222xp33 12 10 0.183 9 0.149

OA31x2 10 14 0.756 13 2.576

OAI221xp5 10 9 0.015 8 0.029

Others (164 Cells) 2∼32 10.6 0.720 10.6 3.314

cell while using less wire usage on metal 2 layer. For DFF cells, Csyn-fp reduces area

by 11.4%, but it uses 6.1% more metal 2 wire usage.

2.3.2 Effectiveness of Dynamic Folding

To activate dynamic folding, CSyn-fp generates various folding shapes for each tran-

sistor pair in Step 1. These folding shapes enable to find a minimum area transistor

placement solution through the exploration of folding options. To assess the effect of

dynamic folding on area improvement, we compare the area of cells produced by ap-

plying static folding with that produced by dynamic folding. For static folding, we

generate only the folding shapes of minimum number of fingers on each of pMOS and

nMOS transistors for every transistor pair in Step 1 of our algorithm.

Table 2.3 shows the running time of CSyn-fp when cell layouts are synthesized

with the option of static folding and dynamic folding. Total of 8 cells show area im-

provement when dynamic folding is performed, and the rest have the same area of

cell layout with static folding option. Since dynamic folding explores more folding
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configurations than static folding, the runtime on transistor placement is longer when

performing dynamic folding. On average, Csyn-fp takes about 0.7 seconds using static

folding and about 3.2 seconds using dynamic folding. In some cells such as AND4x2,

AOI211x1 and AOI222xp33, using static folding takes longer time than using dynamic

folding, which is caused by a quick finding on the optimal lower bound in the search

tree exploration.

Figs. 2.15(a) and (b) show the layouts of cell AOI211x1 produced by using static

and dynamic folding, respectively. It shows that using static folding option uses two

fingers for every transistor of size 6, causing a diffusion break in the middle of the

layout, resulting in generating cell with 12 CPPs. On the other hand, by using dynamic

folding, transistor MM6 in the black box in Figs. 2.15(b) is folded into three fingers

to avoid diffusion break, resulting in generating cell with 11 CPPs. Note that since the

design space for dynamic folding properly covers the design space of static folding, it

is required to use dynamic folding if a minimal-area cell is the primary objective.

2.3.3 Effectiveness of Speeding Up Techniques

Table 2.4 shows the running time comparison of the combinational cells when the

three speeding up techniques in Sec. 2.2.5 are incrementally applied. When the dom-

inance elimination technique is applied, the runtimes are boosted by 1.9x for all test

cases on average. As explained in Sec. 2.2.5, CSyn-fp efficiently removes redundant

partial placements on the internal nodes of search tree, and this technique shows a

great efficiency for the cells which have transistor pairs with numerous folding shapes.

The significant runtime improvement on AND/NAND types is mainly due to the cell

“NAND3x2” whose transistor pairs have 18 fins on pMOS and 6 fins on nMOS. Thus,

each pair has a large number of folding shapes, showing 98.6x runtime improvement

on the cell by this technique. Since the eliminating symmetry technique reduces the

size of the entire search space by half, by applying it combined with the redundant

partial placement removal technique, the runtime is improved by 3.3x on average. In
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MM21 MM21 MM0 MM0
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Figure 2.15: Layout comparison for cell AOI211x1 between static folding and dynamic

folding options. (a) Layout with 12 CPPs produced by using static folding. (b) Layout

with 11 CPPs produced by using dynamic folding.

44



Ta
bl

e
2.

4:
R

un
ni

ng
tim

e
co

m
pa

ri
so

n
of

co
m

bi
na

tio
na

lc
el

ls
w

he
n

gr
ad

ua
lly

ap
pl

yi
ng

th
e

sp
ee

di
ng

up
te

ch
ni

qu
es

(S
Y

M
:E

lim
in

at
in

g

sy
m

m
et

ry
,D

O
M

:E
lim

in
at

in
g

do
m

in
an

tp
ar

tia
lp

la
ce

m
en

t,
an

d
B

O
U

N
D

:S
ea

rc
h

tr
ee

bo
un

di
ng

ba
se

d
on

lo
w

er
bo

un
d)

.

C
el

ls
#F

E
T

s
N

on
e

D
O

M
SY

M
+D

O
M

SY
M

+D
O

M
+B

O
U

N
D

Ty
pe

#C
el

ls
M

in
.

M
ax

.
Ti

m
e

(s
)

Ti
m

e
(s

)
Sp

ee
du

p
Ti

m
e

(s
)

Sp
ee

du
p

Ti
m

e
(s

)
Sp

ee
du

p

A
O

/A
O

I
42

8
20

34
.5

42
12

.0
86

2.
86
×

11
.3

30
3.

05
×

9.
37

9
3.

68
×

O
A

/O
A

I
34

8
20

20
.3

19
16

.9
34

1.
20
×

8.
75

3
2.

32
×

3.
19

6
6.

36
×

A
N

D
/N

A
N

D
22

4
12

19
.8

15
0.

32
3

61
.3

5×
0.

21
9

90
.4

8×
0.

20
8

95
.2

6×

O
R

/N
O

R
22

4
12

0.
17

5
0.

09
9

1.
77
×

0.
09

4
1.

86
×

0.
04

6
3.

80
×

X
O

R
/X

N
O

R
6

10
12

7.
96

4
6.

84
2

1.
16
×

3.
25

6
2.

45
×

1.
46

0
5.

45
×

B
U

F/
IN

V
28

2
12

0.
04

7
0.

03
6

1.
31
×

0.
02

5
1.

88
×

0.
01

9
2.

47
×

H
A

/F
A

6
10

24
0.

58
9

0.
33

1.
78
×

0.
21

7
2.

71
×

0.
08

4
7.

01
×

A
vg

.
1.

90
×

3.
29
×

5.
03
×

45



clkb

VDD

VSS

CLK
clkn

VDD

VSS

SH

QN

VDD

VSS

SH
SS

VDD

VSS

VDD

VSS

SS

clkbclkn

clkb clkn

SS

VDD

VSS

D SEn

SISE

clkb clkn

MS D

MH

MH

Group 1 (clkn) Group 2 (clkb) Group 4 (MH)

Group 5 (SH)

Group 6 (SS)

Group 7 (QN)

clkn

MS

clkb

clkn

D

clkn

SEn

VDD

VSS

SE

Group 3 (SEn)

𝑪𝑳𝑲 𝑺𝑬 𝑫 𝑺𝑬𝒏 𝑺𝑬 𝑺𝑰 𝒄𝒍𝒌𝒏 𝒄𝒍𝒌𝒃 𝒄𝒍𝒌𝒏 𝑴𝑺 𝒄𝒍𝒌𝒏 𝒄𝒍𝒌𝒏 𝑴𝑯 𝒄𝒍𝒌𝒏 𝒄𝒍𝒌𝒃 𝒄𝒍𝒌𝒏 𝑺𝑺 𝑺𝑯 𝑺𝑯 𝑺𝑯

clkn VDD SEn

141 VDD 141 120 141 120

MH pd2 VDD clkb VDD MS SH pd4 pd4 VDD VDDQN SS

clkn VSS SEn

118 167 VSS 166 118 118 MH

pd3 pd3 VSS clkb VSS MS MS SH pd5 VSS VSSQN SS

𝑮𝟏 𝑮𝟑 𝑮𝟒 𝑮𝟐 𝑮𝟕𝑮𝟓 𝑮𝟔

(a)

(b)

Figure 2.16: Result of netlist partitioning for cell SDFHx2 in ASAP 7nm cell library.

(a) CSyn-fp divides the entire netlist into seven groups. (b) The minimum area place-

ment solution found by two-level placement (25 CPPs).

addition, the search tree bounding technique efficiently reduces meaningless search to

the nodes that are very unlikely to produce optimal solutions. Thus, by applying all

three techniques, the runtime is boosted by 5.0x on average.

Table 2.5 shows the running time spent by CSyn-fp with the option of no-partitioning

or partitioning based on articulation points for netlists of 15 sequential cells in ASAP

7nm library. These cells are D flip-flop and scanned D flip-flop, which are the largest

sequential cells in the library. The comparison indicates that CSyn-fp employing ar-

ticulation point based netlist partitioning can generate layouts for large sequential cells

with significant runtime improvement. Furthermore, the layout optimality in terms of
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Table 2.5: Running time of CSyn-fp with the option of no-partitioning or partitioning

by articulation points for netlists of sequential cells in ASAP 7nm library.

Cells #FETs
CSyn-fp without partitioning CSyn-fp with partitioning

#CPPs Time (s) #CPPs Time (s)

DFFHQNx1 24 18 7.903 18 0.295

DFFHQNx2 24 18 21.41 18 0.837

DFFHQNx3 24 20 7.674 20 0.272

DFFHQNx4 24 22 447.2 22 3.899

DFFLQNx1 24 18 8.476 18 0.266

DFFLQNx2 24 18 17.85 18 0.717

DFFLQNx3 24 20 7.091 20 0.252

DFFLQNx4 24 22 501.1 22 3.937

SDFHx1 32 25 30798.9 25 3.792

SDFHx2 32 25 17665.0 25 1.096

SDFHx3 32 27 11935.7 27 4.767

SDFHx4 32 27 14094.7 27 1.145

SDFLx1 32 25 15205.2 25 3.525

SDFLx2 32 25 12325.3 25 0.998

SDFLx3 32 27 14317.8 27 4.438

SDFLx4 32 27 13687.5 27 1.149

Avg. Speedup 4176×
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#CPPs still holds for all netlists. Fig 2.16 shows a partitioning example of SDFHx2 in

the library and the placement result produced by Csyn-fp through two-level hierarchi-

cal placement. Csyn-fp divides the netlist into seven different groups automatically,

thereby producing a minimum-area placement solution in about 1 second.

Since our search tree based algorithm explores all possible permutations of transis-

tor pairs, the runtime complexity of the search without net partitioning isO(N !) where

N is the number of transistor pairs. On the other hand, the search space of two-stage

placement after partitioning is bounded by O(Ng! ·G!) where G is the number of par-

titioned groups and Ng indicates the maximum number of transistor pairs among the

groups. Therefore, if the partitioned netlist has a larger number of groups and the tran-

sistor pairs are evenly distributed among the groups, a significant runtime reduction

can be expected. Note that the netlist partitioning technique shows an excellent effi-

ciency on the sequential cells since they have multiple transmission gates. Considering

that articulation points can be found on the source/drain of these gates, the netlist of

sequential cells were partitioned into a large number of groups (i.e. more than 5 groups

in our experiment), thereby greatly reducing runtime. On the other hand, all the com-

binational cells are partitioned into up to 2 groups, and for each of most cells, one of

the groups is just an inverter with one transistor pair, revealing no gain on efficiency

on runtime.

2.3.4 Impact of Splitting Folding Shape

Table 2.6 shows the running time of Csyn-fp according to the choice of perform-

ing splitting folding shapes for all cells in the ASAP 7nm library. As explained in

Sec. 2.2.8, our folding shape generation assumes that all folded transistors of the same

transistor pair should be placed adjacently. Therefore, it is not possible to find the case

where the diffusion break can be eliminated when the folding shape is split and placed

separately. Experimental results show that we can find the minimum area cell layout

with folding shape splitting for the 10 cells in Table 2.6, and its runtime overhead is
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Table 2.6: Running time of CSyn-fp according to the choice of performing splitting

folding shape for netlists of the cells in ASAP 7nm library.

Cells #FETs
CSyn-fp without splitting CSyn-fp with splitting

#CPPs Time (s) #CPPs Time (s)

AND2x4 6 11 0.028 10 0.087

AND2x6 6 13 0.025 12 0.067

AO31x2 10 14 0.171 12 2.180

AOI21x1 6 9 0.003 8 0.135

AOI22x1 8 12 0.016 10 0.705

AOI31xp67 8 11 0.024 10 0.426

OAI21x1 6 9 0.005 8 0.130

OAI22x1 8 12 0.023 10 0.804

OAI31xp67 8 11 0.069 10 0.929

OR2x6 6 13 0.006 12 0.188

Others (162 Cells) 2∼32 10.6 1.089 10.6 3.214
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Figure 2.17: Cell layout of AO31x2 in ASAP 7nm library produced by Csyn-fp. (a)

Not performing folding shape splitting. (b) Performing folding shape splitting.

not significant because the runtime for the most cells are within 1 second. For the other

cells, splitting folding shape stage does not bring area improvement, and the runtime

overhead is about 3x over that without performing this step.

This process is especially effective for combinational cells, in which transistor

pairs have a multiple number of fingers. Figs 2.17(a) and (b) show layouts of AOI31x2

according to the choice of performing folding shape splitting. If transistor pairs with

A3 gate signal were split, Csyn-fp is able to save 2 CPP (16→ 14) by eliminating one

diffusion break in Fig 2.17(a). However, these pairs cannot be routed through MOL

layers due to A2 I/O pin between them, which may exacerbate in-cell routability since

these need to be connected using upper metal layers.
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Figure 2.18: Trend of runtime increment according to area relaxation constraint for

DFF and SDFF cells. If area relaxation is k, Csyn-fp searches transistor placement

solutions with up to k more CPPs than the CPPs of minimum-area solution.

2.3.5 Runtime Analysis According to Area Relaxation

If a minimum-area transistor placement is unroutable or using too much metal 2 re-

sources, we should find a placement solution with good routability at the cost of in-

creasing cell size. One valuable capability of Csyn-fp is that it can search placement

solution of various cell widths by performing Step 5, but it requires additional run-

time. Fig 2.18 shows the runtime increment trend according to the area relaxation con-

straint for D flip-flop and scanned D flip-flop cells. If the area relaxation is k, Csyn-fp

searches placement solution with up to k more CPPs than the CPPs of minimum-area

solution. As the area relaxation constraint value increases, the total runtime increases

exponentially. However, if the area relaxation is 2 or less, the runtime is within 1

minute. Our experimental results show that in-cell routing is successful for all cells

with solutions with 2 more CPPs. With this step, Csyn-fp is able to provide diverse

cell layouts, from which designers can choose the most suitable layout to their purpose.
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2.3.6 Comparison with Previous Works

Table 2.7 shows the comparison of the average number of CPPs (i.e. cell size) and its

running time produced by Csyn-fp and the SMT-based transistor placement algorithm

in [2]. The main obstacle of the SMT-based approach is the runtime scalability[62].

As the cell size and the number of transistors increase, the time spent by SMT-based

method increases exponentially. As a result, a complete solution is not obtainable in

a reasonable time for large cell. In fact, for large cells of the ASAP 7nm library, the

SMT-based approach in [2] could not find placement solutions within 2 hours. Thus,

only the cells whose layouts were obtained within 2 hours are compared with ours.

The comparison shows that Csyn-fp generates cell layouts of smaller area over

the layouts produced by [2], which is because the SMT-based method performs static

folding in order to avoid explosive runtime. Nevertheless, total runtime of Csyn-fp

is only 13.1% of that spent in [2]. The runtime saving is mainly contributed by our

speeding up techniques, which efficiently prune the search space while maintaining

the area optimality.
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Table 2.7: Comparison of CSyn-fp with the SMT-based placement method [2] for

netlists of the cells in ASAP 7nm library.

Cells SMT-based [2] CSyn-fp

Type #Cells #CPPs Runtime (s) #CPPs Runtime (s)

AO/AOI 38 8.9 43.060 8.8 9.232

OA/OAI 30 8.7 15.345 8.7 3.401

AND/NAND 16 7.1 0.964 7.1 0.066

OR/NOR 15 7.8 31.007 7.8 0.067

XOR/XNOR 6 10.7 11.821 10.7 1.460

BUF/INV 25 9.2 13.330 9.2 0.040

HA 5 6.2 0.270 6.2 0.056

Latch 1 15.0 506.422 15.0 0.036

1.000 1.000 0.996 0.131
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Chapter 3

Pin Accessibility and Routing Congestion Aware DRC

Hotspot Prediction using Graph Neural Network and

U-Net

3.1 Preliminary

3.1.1 Graph Neural Network

GNN is a powerful deep ML model specialized for graph data. Since many EDA prob-

lems can be formulated into optimization problems on graphs, GNN has been widely

adopted in this field. (e.g. [37, 43, 63, 64, 65, 66, 67, 68])

A graph G(V,E) is defined as a set, V , of vertices and a set, E, of edges. A

vertex matrix V ∈ Rn×d is a two-dimensional matrix, in which n = |V | and d is the

size of initial feature vector of each node in V . The edges in E are represented by an

adjacency matrixA ∈ {0, 1}n×n. A GNN takesG(V,E) withA as input and generates

the embedding vector of every node in G. Similar to the convolutional layer of CNN,

a graph convolutional layer is a main component of GNN, which iteratively updates

node features considering the influence of the neighboring nodes.

The process on a graph convolutional layer consists of two main operations, which

are message generation and neighbor aggregation. Fig. 3.1 illustrates the operation at
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Figure 3.1: Illustration of processing on a single graph convolutional layer in graph

neural network.

a single graph convolutional layer. For each node, its neighboring nodes generate mes-

sages by applying learnable fully connected layers to its node feature. These messages

are aggregated into one reduced message, and the feature of the node is updated by us-

ing the aggregated message. The graph convolutional layer operation can be expressed

as follows [69]:

x
(l)
i = AGG(l)({MSG(l)(x

(l−1)
j ), j ∈ {N(i) ∪ i}}) (3.1)

where x(l)i denotes a feature of node i at the l-th graph convolutional layer, N(i)

denotes the neighboring nodes of i, and MSG(l) and AGG(l) indicate the message

generation and neighbor aggregation operation in the l-th graph convolutional layer.

AGG(l) is typically a sum, max or mean operation. Existing GNNs such as GCN [69],

GraphSAGE [70] and GAT [71] differ with how graph convolutions are performed.

The global pooling layer is often applied after completing the operations on GNN to

obtain an embedding vector of the entire graph by aggregating the final features of all

nodes in the graph.
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Figure 3.2: Illustration of conventional U-Net architecture [4].

3.1.2 Fully Convolutional Network

Fully convolutional network (FCN) [72] is proposed to solve semantic segmentation

task, and all layers are composed of convolutional layers. Semantic segmentation in

image recognition is to identify the class of every pixel in an input image. Thus, ML

model for semantic segmentation should be able to take an arbitrary size of input im-

ages and outputs images of the same size as that of the inputs. DRC hotspot prediction

problem can be seen as semantic segmentation if a kind of grid-based prediction is

tried.

U-net [4] is an FCN based network and has achieved a great success in seman-

tic segmentation. It adopts encoder-decoder structure like that shown in Fig. 3.2. En-

coder gradually down-sample the input by applying a series of convolutional layers

and pooling layers. Decoder is also comprised of the multiple repetitive up-sampling

units, which takes a compacted feature map from the encoder as input, restoring them

into the original size of input. Each up-sampling unit first receives the intermediate

feature map from the encoder on the same level through the skip connections, and

concatenates it with the output of the previous up-sampling unit. It typically applies

transposed convolutional layers to scale up the input. The skip connection plays an
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Figure 3.3: The overall flow of our proposed methodology combined with the conven-

tional P&R flow.

important role in U-net, enabling the network to generate a high-quality prediction.

3.2 Proposed Prediction Methodology

3.2.1 Overall Flow

The overall flow of our proposed prediction methodology is depicted in Fig. 3.3. First,

the entire placement region is divided into two-dimensional (W × H) grids whose

width and height are equal to that of G-cell. For the training data preparation, we

conducted placement and routing on reference circuits with various placement settings.

Input features are extracted at the placement and DRVs are extracted as the ground-

truth after detailed routing. Output label is also a two-dimensional binary map with the

same size of input feature map, indicating which grids are DRC hotspot.

Trained model can be adopted in the commercial place-and-route flow. After place-

ment, input features are extracted from the placement results, and DRC hotspot pre-

diction is generated by our prediction model, which can be utilized to optimize the
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placement before routing.

3.2.2 Pin Proximity Graph

There are four factors that affect pin accessibility; (1) shape (or length) of pins, (2)

approaching direction of nets to connect pins, (3) pin accessing disturbance caused by

neighboring pins, and (4) number of nets passing through the grid. To accommodate

this information, we formulate the pin information in a local grid as pin proximity

graph where each node indicates a distinct pin and an influence between two pins is

represented by the existence of edge between the two nodes corresponding to the pins.

For each grid g(x,y), suppose that there is a set of pins P = {p1, p2, ..., pi} in g(x,y).

In pin proximity graph G(x,y)(V,E), every node vi ∈ V corresponds to a distinct pin

pi ∈ P , and the node feature of vi is formulated into −→vi = (xpi ,
−→
dpi) whose details are

as follows:

• Average x-coordinate pin access point xpi : This feature is the average value

of the x-coordinates of all access points in pin pi. In this case, the x-coordinate

is a relative coordinate based on grids. For example, if the access point is located

on the left edge of the grid, the x-coordinate is set to 0, and if it is located on the

right edge, the x-coordinate is set to 1. This feature indicates the x-directional

location of pi.

• Dominate x-coordinate pin access point dxpi : This feature is the most fre-

quent value of the x-coordinates of all access points in pin pi. In advanced nodes,

as the height of standard cell decreases, most pins have polygon shapes. In order

to express the shape of the pin in more detail, and since pin pi has the high-

est probability of being accessed through an access point with x-coordinates of

dxpi , so this value is incorporated in the node features.

• Pin digit vector
−→
dpi : The more the number of access points on a pin that span

metal 2 tracks is, the better the pin accessibility is. Pin digit vector of pin pi is a
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Figure 3.4: Overall picture of pin proximity graph.

binary vector that indicates if the individual metal 2 tracks cross an access point

on pi or not. For example, the cell in Fig. 3.4(a) has three pins p1, p2, and p3 in

the grid. The yellow dotted lines indicate metal 2 tracks, and there are 7 metal 2

tracks inside the grid, in which p3 does not have an access point on both top and

bottom metal 2 tracks, thus,
−→
dp3 = [0 1 1 1 1 1 0].

Edge eij ∈ E is a directed edge from nj ∈ V to ni ∈ V and indicates a disturbance

caused by the existence of pj when accessing pi. If pins pi and pj are located within

a certain short distance, which implies the two pins involve a nontrivial amount of
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interaction, eij exists. We extract diverse features that affect pin accessibility between

two pins, and formulate the features into −→eij = (
−→
dij , xdist, poij , hd) whose details are

as follows:

• Relative position of pj with respect to accessing direction (
−→
dij) of pi : For

pin pi, we apply the method presented in [49] to estimate the approaching direc-

tion of the nets among four possible directions (left, right, up, down), in which

it uses FLUTE [73] and edge shifting [74] techniques for fast wirelength and

congestion driven Steiner tree generation. We call the estimated direction pri-

mary direction, the opposite last direction, and the rest secondary direction. If

pj locates in the primary direction, it greatly affects the pi accessibility.
−→
dij is

a one-hot vector that represents the location of pj with respect to pi and its ap-

proaching direction. For example, in Fig. 3.4(c), FLUTE estimates that p2 is

accessed from the left direction. Since p1 is located on the left of p2 (i.e. pri-

mary direction),
−→
d21 = [1 0 0]. Otherwise, p3 is located on the right of p2 (i.e.

last direction),
−→
d23 = [0 0 1].

• Distance (xdist) between pi and pj : The closer two pins are located, the greater

the amount of influence on each other is. Especially, end-of-line or spacing rule

violation can possibly occur if the two pins are closely located.

• Overlapped access point track ratio poij : This feature refers to the ratio of

the number of metal-2 tracks on which both pi and pj have access points to the

number of metal-2 tracks on which pi has access points. For example, pin p1

in Fig. 3.4(b) has access points on 7 metal-2 tracks, and both pin p1 and p2 has

access points on 3 metal-2 tracks in the center, from which po12 = 3/7. This

feature represents the amount of horizontal influence of pj on pi.

• Horizontal routing congestion on grid hd : A high horizontal routing conges-

tion on the grid implies a high difficulty in accessing the pins in the grid due

to the influence of nets passing through the grid. Hence, we adopt horizontal
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net density as a feature of the edge of the pin proximity graph. The detailed

calculation of horizontal net density will be described in Sec. 3.2.3.

With these features, pin proximity graph can efficiently represent the complex in-

teraction among the pins in the grid. Each grid generates an independent pin proximity

graph, and there is no external connection between two graphs that correspond to two

distinct grids. We transform the graphs of all grids into a three-dimensional pin prox-

imity graph map while preserving location information.

3.2.3 Grid-based Features

The performance of prediction model is greatly affected by the features extracted from

the grid. Previous works [50, 51, 53, 55, 56, 57, 58] have proposed various kinds

of grid-based features. Through intensive experiments with many input features, we

chose a set of representative features that significantly affect the model performance.

Those features are described below.

• Pin density: This feature indicates the ratio of the area occupied by pins to the

area of the grid. Since most pins are on metal 1 layer, the density is extracted in-

dividually for metal 1 pins and metal 2 pins. A high value of pin density implies

an existence of a large number of pins on the grid, which leads to cause a dense

routing congestion around the grid.

• Global/Local net: Global net is an incoming or outgoing edge that connects

a pin inside the grid, and local net connects pins inside the grid. We count the

number of these nets and use them as input feature. A large number of those nets

on the grid means a high possibility of occurring DRV.

• Long/Short RUDY: RUDY [5] is a fast routing congestion estimator from a cell

placement result. It assumes that net wire is equally distributed in its bounding

box. Given bounding box of net n of size w × h grid, RUDY of n is defined as
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Figure 3.5: Example of calculating RUDY [5] for each grid.

the expected number of nets passing through the unit grid inside the bounding

box, that is, RUDYn = w+h
w×h . This value is added to every grid overlapped with

the bounding box. We generate two different RUDYs: Long RUDY for nets with

a large bounding box and short RUDY for the short nets. If the half parameter

of bounding box of a net is longer than 15 grids, it is classified as long net.

• Horizontal/Vertical routing capacity: If there are many metal tracks avail-

able, routing can be successfully performed without generating DRV even in ar-

eas with high routing demand. Since routing is performed in the horizontal and

vertical directions, we use the total number of horizontal/vertical metal tracks

per grid for each direction as feature.

• Horizontal/Vertical net density: Similar to RUDY, it indicates the expected

number of nets passing in the horizontal/vertical direction, which was firstly

proposed in [75]. Given bounding box of net n of size w × h grid, horizontal

density is 1
w and vertical density is 1

h for unit grids of each row and column.

These values are added to the grid overlapped with the bounding box.
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Figure 3.7: Overall picture of the proposed single graph convolutional layer in PGNN.

3.2.4 Overall Architecture of PGNN

Our proposed model called PGNN is composed of three modules: GNN module for

modeling pin information inside grid, U-net module for modeling routing congestion,

and final prediction module that accepts the outputs of the two modules and produces

prediction. Fig. 3.6 shows our PGNN architecture. The GNN and U-Net modules ac-

commodate different types of input feature. The input feature of GNN is the pin prox-

imity graph, which captures local pin accessibility inside grid. On the other hand, U-

net takes a set of grid-based features as input and generates representation of each grid

while preserves routing congestion from the global point of view. Then, the outputs

of the two modules are concatenated, and the final prediction module produces DRC

hotspot prediction map. If the prediction value exceeds a given threshold, we report

the corresponding grid to be DRC hotspot.

3.2.5 GNN Architecture in PGNN

Since our pin proximity graph has edge features, conventional GNNs such as GCN

[69], GraphSAGE [70] and GAT [71] are not able to be directly applied to our graph.

Therefore, we develop a novel graph neural network architecture that is highly appli-

cable to our graph.

In our problem, the node features obtained from GNN express the accessibility of
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the pins representing the corresponding nodes. Our GNN layer iteratively updates the

node features by considering the information of the neighboring nodes. Fig. 3.7 shows

the process of updating the node features of the graph in a single GNN layer. Note that

each node j represents pin pj in the grid. For updating the feature of node j (e.g., j = 1

in Fig. 3.7), GNN layer first calculates
−→
ijk which is the disturbance of the neighboring

pin pk when accessing pin pj . Since
−→
ijk is affected by edge feature as well as node

feature, it can be calculated as follows:

−→
ijk = fθ(

−→vj‖−→vk‖−→ejk) (3.2)

where fθ is a set of learnable parameters of fully-connected layers.

The total disturbance by all neighboring pins is the sum of all individual disturbance
−→
ijk:

−→
ij =

∑
k∈n(j)

−→
ijk (3.3)

where n(j) is the set of neighboring nodes of node j.

Finally, the node feature−→vj is updated through the fully-connected layer after concate-

nating the original node feature and the total disturbance
−→
ij :

−→vj
′

= fφ(−→vj‖
−→
ij ) (3.4)

where fφ is a set of learnable parameters of fully-connected layers.

For the pin proximity graph of each grid, the node features are obtained by pro-

cessing three consecutive GNN layers. To process them efficiently, we express the

graphs of all grids as a single super-graph, so that parallel processing can be applied.

To conduct grid-based prediction, we transform all node features into global graph

feature by applying graph average pooling, which simply takes an average of all node

features. We then convert this graph feature vector generated for each grid into a three-

dimensional matrix to restore spatial information.

65



3.2.6 U-net Architecture in PGNN

Fig. 3.8 shows the detailed architecture of U-Net in PGNN. The number in paren-

thesis in each block of Fig. 3.8 indicates the number of output kernels. The input of

U-net is grid-based features described in Section 3.2.3 with the size of 10 ×H ×W

where 10 is the number of grid-based features. For the encoding path of the U-net,

we adopt ResNet [76] backbone architecture, which consists of five down-sampling

blocks adopting shortcut connection structure. Each block applies a pair of 3x3 con-

volutional layers to its input. The first convolutional layer uses stride 2 to halve the

size of input. Shortcut connection applies 1x1 convolutions with stride 2 to control the

output dimension. Therefore, the encoder reduces the input size by 32 times.

Subsequently, the bottleneck block in Fig. 3.8 updates the output of the encoder

by 3x3 convolutions, and then the decoder restores the compressed feature map to

the original size through processing five up-sampling blocks. Each up-sampling block

doubles the input size by using a transposed convolutional layer, and concatenates the

doubled input with the feature map produced by the down-sampling block in the same

block level (counting from the bottleneck block) of the up-sampling block, followed by

performing 3x3 convolutions. We adopt group normalization [77] and ReLU activation

layers in each block. The output size of the decoder is 16×H ×W .

3.2.7 Final Prediction in PGNN

Our final prediction module concatenates the output feature maps of GNN and U-

net, resulting in a feature size of 32 × H ×W . The module then processes two 3x3

convolutional layers, one with 16 kernels and the other with 1 kernel, to generate a

final prediction map of size H ×W . Finally, the sigmoid layer is applied to make [0,

1] probability score. If the score exceeds a given threshold, the corresponding grid is

classified as DRC hotspot grid.
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3.3 Experimental Results

3.3.1 Experimental Setup

We implemented the feature extractor in C++ and PGNN in Python with Pytorch [78]

and Pytorch Geometric library [79]. We generated training and test data from 10 Open-

core [80] circuits. Table 3.1 shows the statistics of the benchmarks used in our exper-

iments. We obtained a total of 604 different placement data with different placement

parameter settings such as chip utilization, clock period, and number of routing lay-

ers. With Nangate 15nm library [81], we repeatedly applied logic synthesis, clock tree

synthesis, placement, and routing to collect ground-truth labels. We used Synopsys

Design Compiler for synthesizing all benchmarks, and used Synopsys IC Compiler 2

for placement and routing. Experiments were conducted on a linux machine with In-

tel i7-9700K 3.6GHz CPU, 32GB memory and RTX 2080Ti GPU. The size of unit

grid for prediction was 768nm× 768nm which is equal to the height of standard cell.

We trained PGNN by using AdamW optimizer [82] with initial learning rate 0.001

and weight decay 0.01. Cosine annealing scheduler [83] was utilized to control the

learning rate. Each model was trained with 150 training iterations.

We used two different schemes to separate training and test set data, as follows.

• Seen setting: We randomly divide the total of 604 placement data produced

from 10 benchmark circuits into 10 groups. Then, we conduct 10-fold cross-

validations on the groups i.e., at each fold, 9 groups are used for training and the

remaining 1 group for test. That is, we repeat experiments 10 times, each using

a distinct group for test and the rest for training. In this setting, both the training

and test sets may include data generated from the same benchmark circuit.

• Unseen setting: We use the data from 9 benchmark circuits among 10 for train-

ing and the remaining 1 for test. We repeat experiments 10 times, each using

the data from a distinct benchmark circuit for test and the rest for training. This

setting ensures that the test circuit is completely unseen from the training data.
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Table 3.1: Statistics for the circuits from the Opencore designs used in experiments.

Designs #Gates #Nets #Grids #Placements

AES 128 124,699 115,518 83,507 60

B18 38,166 33,556 21,267 60

B19 75,145 66,499 43,687 58

ECG 148,039 125,325 114,893 60

ETH 45,910 46,012 56,665 43

JPEG 291,460 244,078 164,686 74

LDPC 57,956 76,921 40,549 60

NOVA 208,536 152,845 121,483 72

TATE 314,515 256,753 222,333 57

VGA LCD 118,608 76,464 115,718 60

In both settings, 10% of training set is used as a validation set to determine the classi-

fication threshold.

Table 3.2: Illustration of the confusion matrix.

Actual

Positive Negative

Prediction
Positive

True Positive

(TP)

False Positive

(FP)

Negative
False Negative

(FN)

True Negative

(TN)

In binary classification problem, prediction results are classified into four groups

i.e., true positive (TP), true negative (TN), false positive (FP), and false negative (FN)

according to its prediction and ground-truth. TP/TN are the positive/negative samples

that predict correctly, and FN/FP are the positive/negative samples that mispredict.
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Figure 3.9: Illustration of ROC(Receiver Operating Characteristic) curve and

PR(Precision and Recall) curve.

(Confusion matrix is shown in Table 3.2.) Based on the four groups, we use the fol-

lowing five metrics to evaluate the performance of the model in experiments.

• Accuracy = TP+TN
TP+FP+FN+TN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• FPR (false positive rate) = FP
FP+TN

• F1-score = 2× Precision×Recall
Precision+Recall

• AUC metrics : DRV prediction model outputs a 0 to 1 continuous prediction

value, which indicates the probability of DRV occurrence inside the grid. At

this time, the performance of the model highly depends on how the threshold

is selected. To exclude the impact of threshold selection and examine the pure

performance of the model, we used AUC (Area Under Curve) metrics such as

AUC-ROC and AUC-PR. ROC curve is a graph with FPR and recall on the x-

axis and y-axis when the threshold changes from 0 to 1, and PR curve has recall
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and precision on the x-axis and y-axis with the same setting as ROC curve.

Fig 3.9 shows an illustration of ROC curve and PR curve. AUC-ROC and AUC-

PR are an area below the ROC curve and PR curve and their range is 0 to 1. High

values indicate that the model has high predictive performance, and the random

classifier shows a 0.5 value of these.

Models with better performance shows higher accuracy, precision, recall, and F1-

score with lower FPR. Especially in DRC hotspot prediction problem, since our dataset

is highly imbalanced i.e., only 2.4% of grids are DRC hotspot, F1-score is the most

reliable metric for evaluating the model performance.

3.3.2 Analysis on PGNN Performance

Table 3.3 summarizes the F1-scores of our PGNN produced by varying the usage of

input features. The GNN in PGNN is used to model pin accessibility in each local

grid, and the U-Net in PGNN is used to model routing congestion considering the

information of neighboring grids.

Table 3.3: Performance analysis, in terms of F1-score in seen data setting, of our

PGNN by varying the usage of input features.

Module Features Model setting

GNN Pin proximity graph X X

U-Net

Pin density X X X X X X

Global/Local net X X X X X

Routing capacity X X X X

Long/Short RUDY X X X

H/V net density X X

F1-score (%) 54.59 46.80 48.26 55.18 64.67 66.66 71.91

Firstly, We conduct experiments on the effectiveness of grid-based features by se-

lectively including the features to the U-Net. It is seen from Table 3.3 that pin density,
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routing capacity, and RUDY feature play a key role on the U-Net performance. In

the routing congestion perspective, a high pin density in a grid implies a large num-

ber of pins, which indicates a large number of nets are likely to be derived from the

grid. Although global/local net feature tells the exact number of nets on the grid, pin

density feature seems to sufficiently infer this information. On the other hand, RUDY

feature provides a coarse-grained routing congestion estimation, revealing a high leap

of F1-score if included to the U-net. For H/V net density feature, though it estimates

congestion in horizontal and vertical directions, the calculation method is similar to

RUDY. Consequently, it reveals little performance improvement. Finally, for routing

capacity feature, it helps to distinguish the situations of DRV variations by the number

of routing layers used in the same placement.

In summary, Table 3.3 shows that GNN and U-Net alone achieve 54.59% and

66.66% F1-score whereas the combined model achieves 71.91%. This means the prior

works that have used pin density feature only for describing pin accessibility do not

work well. By devising the pin proximity graph, formulating it into GNN, and inte-

grating the GNN with U-Net, we are able to achieve a high F1-score of DRC hotspot

prediction.

3.3.3 Comparison with Previous Works

To assess the performance of PGNN, we implement a set of representative DRV pre-

diction models from existing studies. It includes global routing congestion (denoted as

GR-Cong) from the representative commercial EDA tool, and representative research

results, such as RouteNet [55] and J-Net [58]. GR-Cong is obtained from ICC2 af-

ter global routing stage, and grids with high routing congestion are classified as DRC

hotspot. To implement J-Net similar to [58], pin pattern of the grid is represented by

32×32 pixels, and input feature maps are cropped with 80×80 size of window. Thus,

the size of pin pattern image for input becomes 2560 × 2560. The model architecture

and features of RouteNet and J-Net used in our experiment are the same as that in [55]
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Figure 3.10: F1-score comparison of RouteNet, J-Net and PGNN for all ten bench-

marks in seen setting.

and [58].

• Comparing model performance: Table 3.4 summarizes the comparison of model

performance of PGNN with that of the previous works. PGNN shows superior per-

formance over other models even without using GR congestion as a feature, achieving

7.8%, 12.5% of improvements on F1-score over J-Net in seen and unseen settings, re-

spectively. Figs. 3.10 and 3.11 show the comparison of F1-scores of RouteNet, J-Net

and PGNN on individual circuits in both settings. It is shown that PGNN outperforms

other models on all 10 benchmarks. Table 3.5 and 3.6 indicates detailed comparison of

precision, recall, FPR and F1-scores with previous works. For all benchmarks, PGNN

shows the highest prediction performance.

One main reason of the inferior performance of RouteNet is that it does not con-

sider pin accessibility since it just uses grid-based features. J-Net expresses pin in-

formation as pin pattern image. However, pin pattern image alone is not sufficient to

provide detailed information on how each net accesses to its target pins. Furthermore,

since pin pattern image requires a massive amount of parameters, J-Net should perform

input cropping to mitigate GPU memory overhead for inferencing, losing neighboring
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Figure 3.11: F1-score comparison of RouteNet, J-Net and PGNN for all ten bench-

marks in unseen setting.

information which limits J-Net performance. On the other hand, the pin proximity

graph of PGNN can effectively model not only the spatial information of pins but also

information on the direction of the pin signals by using much fewer parameters than

that of J-Net. In addition, our PGNN integrating GNN architecture abstracting pin

proximity graph exhibits a superior performance to J-Net.

Fig. 3.12 visualizes the DRC hotspot prediction results of the models for circuit

ECG. The left-top figure shows ground-truth whose yellow dots indicate DRC hotspot

grid. Red boxes in Figs. 3.12(b) and (c) represent grid region that is misclassified as

DRC hotspot grid. Since RouteNet and J-Net do not consider pin accessibility in depth,

they have relatively more misclassified regions over that by our PGNN.

• Comparing training and inference time: Model training and inference time is an-

other important factor for model adoption. Table 3.7 compares the training and infer-

ence time for the largest circuit TATE among the benchmarks.

The inference task consists of two stages: feature extraction and model predic-

tion. Since the model prediction stage can be performed quickly by using GPU, the

feature extraction stage accounts for the majority of total inference time. Note that
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(a) Ground truth (b) RouteNet [55]

(c) J-Net [58] (d) PGNN

Figure 3.12: Visualization of DRC hotspot prediction. Yellow dots represent DRC

hotspot grids.
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Table 3.7: Comparison of the training and inference time of our PGNN for circuit

TATE which has about 300,000 logic gates.

Task RouteNet [55] J-Net [58] PGNN

Training Time 0.7 hours 31.7 hours 3.8 hours

Global routing 8.7 mins N/A N/A

Feature extraction 29.9s 640.0s 119.8s

Prediction 1.9s 12.5s 2.9s

Tot. Inference Time 9.2 mins 10.9 mins 2.0 mins

since RouteNet uses GR congestion as input feature, the time taken by global routing

(8.7 mins) is included in the total inference time of RouteNet. Since RouteNet uses

grid-based features only, its feature extraction time is the shortest. Besides grid-based

features, J-net uses pin pattern image while PGNN uses pin proximity graph. For J-

Net, pin pattern image requires a massive number of parameters and input cropping

is essential, demanding expensive feature extraction time. For PGNN, generating pin

proximity graph includes the execution of FLUTE [73] to estimate approaching di-

rection and graph construction. (FLUTE is a look-up table based method to provide a

fast runtime.) The inference time comparison in Table 3.7 shows that PGNN achieves

5.5× and 4.6× faster inference time than J-Net and RouteNet, respectively.

Regarding training time, early convolutional layers for J-Net to process pin pattern

image require a huge amount of computation. PGNN can achieve 8.3× faster train-

ing time than J-Net by expressing core pin information using graph. Though model

training is a one-time-only process, PGNN shows a better scalability over J-Net.

Fig 3.13 shows the inference time trend of RouteNet, J-Net and PGNN for all 10

benchmarks. All benchmarks are listed on the x-axis of the figure 3.13 in the order

of the number of grids. For small-size circuits such as B18, B19 and ETH, the total

inference time of the three models is not significantly different. However, in the case
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Figure 3.13: Inference time comparison of RouteNet, J-Net and PGNN for all ten

benchmarks.

of LDPC, RouteNet shows a way longer runtime than the other models, which seems

that LDPC has large pin-per-net ratio, resulting in a longer execution time of global

routing. Also, as the number of grids in the benchmarks increases, J-Net and RouteNet

shows a trend of rapid runtime increase than PGNN. Note that the total inference time

of J-Net is dominated by the extraction time of pin pattern image and global routing

time accounts for the majority of RouteNet’s inference time. Since our graph model is

able to express pin accessibility related information by using fewer parameters than pin

pattern image and our prediction model does not require global routing information,

PGNN shows better scalability than the other two models.
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3.3.4 Adaptation to Real-world Designs

• Adaptation to real-world size designs: Benchmarks used in our experiments have

less than 300,000 gates, which is smaller than the design used in the real-world indus-

try which has at least 1 million gates. To verify the capability of our model on large-size

designs, we first produced a set of test circuits, JPEG X3 and TATE X3, tightly linking

three copies of original opencore circuit JPEG and TATE individually. Table 3.8 shows

the placement and routing results of JPEG X3 and TATE X3. We used 70% and 1.0ns

for utilization and clock period, and the two circuits have over 1 million cells after

implementation.

Table 3.8: Statistics for the large-size circuits JPEG X3 and TATE X3 which are pro-

duced by combining three copies of the original circuit JPEG and TATE.

Circuit Utilization Clock period #Cells #Grids #DRV #DRV grids

JPEG X3 70% 1.0ns 1,210,988
943,812

(971x972)
12,816

10,483

(1.11%)

TATE X3 70% 1.0ns 1,012,885
738,440

(859x860)
175,118

97,709

(13.23%)

DRC hotspot prediction on a large-size circuit can not be obtained by a single run

of PGNN due to the GPU memory limitation. To solve this, PGNN crops grid-based

input feature map into the reasonable size of windows. The window size is 400× 400

grids which is the maximum input size that PGNN can perform a prediction at once.

The prediction is performed by sliding the window with 360 × 360 strides, and only

the results of center 360 × 360 of the window are adopted as a prediction result to

prevent the loss of surrounding neighborhood information.

Fig 3.14 shows a visualization of DRC hotspot prediction of JPEG X3. Fig 3.14

(a) is a ground-truth result whose yellow dots indicate the actual DRC hotspot grid.

Fig 3.14 (b) is DRC hotspot prediction obtained from PGNN, and the grids with

brighter color has a higher probability of DRV occurrence. Finally, Fig 3.14 (c) is
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Table 3.9: Step-by-step comparison of the total inference time of PGNN between the

original circuits and the expanded circuits.

Task JPEG JPEG X3 TATE TATE X3

DEF parsing 14.63s 65.24s 14.59s 50.54s

Grid-based feature extraction 9.78s 43.23s 10.60s 36.83s

Net direction estimation 24.90s 94.04s 26.29s 85.04s

Graph extraction 33.63s 126.56s 26.20s 101.98s

Input data generation 51.41s 189.27s 39.37s 149.00s

Prediction 2.36s 4.59s 2.90s 4.53s

Total inference time 2.28 mins 8.72 mins 2.00 mins 7.13 mins

1.000 3.825 1.000 3.567

the DRC hotspot prediction after applying thresholding at Fig 3.14 (b). Although in-

put feature cropping potentially loses neighborhood information of edge grids of the

window, PGNN can generate high-quality prediction results by window overlapping.

Table 3.9 shows inference time comparison of JPEG X3 and TATE X3 with the

original circuit JPEG and TATE. The inference time is composed of three stages: DEF

parsing, feature extraction, and prediction. In the DEF parsing stage, cell placement

information is extracted by the DEF format output of commercial P&R tools at the

placement or clock tree synthesis stage. Then, the feature extraction stage obtains in-

put features for PGNN from the placement information. It first extracts grid-based

features for the input of U-Net, and for the extraction of the pin proximity graph, the

net direction is firstly estimated using the FLUTE algorithm and the graph is gener-

ated based on it. Finally, extracted features are transformed into the proper data struc-

ture (npz format) compatible with the prediction model, and PGNN generates a DRC

hotspot prediction map.

Experimental results show that JPEG X3 and TATE X3 have 3.825x and 3.567x

longer inference time than JPEG and TATE respectively. Considering that JPEG X3 and

82



(a
)

(b
)

(c
)

Fi
gu

re
3.

14
:

V
is

ua
liz

at
io

n
of

D
R

C
ho

ts
po

t
pr

ed
ic

tio
n

of
JP

E
G

X
3.

(a
)

G
ro

un
d-

tr
ut

h.
(b

)
D

R
C

ho
ts

po
t

pr
ed

ic
tio

n
lo

gi
ts

.(
c)

D
R

C

ho
ts

po
tp

re
di

ct
io

n
af

te
rt

hr
es

ho
ld

in
g.

83



100 200 300 400
window size

0%
5%

10
%

15
%

20
%

25
%

30
%

35
%

40
%

ov
er

la
p 

ra
tio

0.4478 0.4828 0.4869 0.4849

0.4551 0.4771 0.4913 0.4939

0.4559 0.4855 0.4905 0.4952

0.4711 0.4841 0.4934 0.4921

0.4666 0.4827 0.4871 0.4862

0.4593 0.4828 0.4804 0.4769

0.4615 0.4931 0.4691 0.4611

0.4640 0.4779 0.4813 0.4617

0.4651 0.4794 0.4852 0.4667 0.45

0.46

0.47

0.48

0.49

(a) JPEG X3

100 200 300 400
window size

0%
5%

10
%

15
%

20
%

25
%

30
%

35
%

40
%

ov
er

la
p 

ra
tio

0.6767 0.7217 0.7474 0.7573

0.6916 0.7353 0.7523 0.7583

0.6820 0.7327 0.7526 0.7565

0.6849 0.7377 0.7494 0.7570

0.6830 0.7352 0.7470 0.7558

0.6740 0.7362 0.7451 0.7510

0.6724 0.7319 0.7453 0.7508

0.6739 0.7339 0.7432 0.7498

0.6754 0.7306 0.7431 0.7470 0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

(b) TATE X3

Figure 3.15: F1-score according to the window size and overlap ratio when performing

input cropping for circuit JPEG X3 and TATE X3.

TATE X3 have 4.6 and 2.9 times more grids than JPEG and TATE respectively, the infer-

ence time increases linearly in proportion to the number of grids. Since the prediction

stage can be performed quickly by using GPUs, DEF parsing and feature extraction

stage account for the majority of the inference time, and the execution time of these

two stages is linearly related to the number of grids. It is because the number of input

parameters to be extracted is proportional to the number of grids. Also, for the large-

size circuits, the inference time is within 10 minutes which is extremely shorter than

the detailed routing time (about 6 hours).

Fig 3.15 shows the trend of F1-score according to the window size and sliding

stride when performing input cropping for circuit JPEG X3 and TATE X3. The overlap

ratio in the y-axis of the figure indicates what percentage of the two adjacent windows

overlap with the size of the window. For example, if the window size is 400 × 400

and overlap ratio is 10%, two adjacent windows share 40 grids in between them, and

sliding stride becomes 360× 360.

Experimental results in Fig 3.15 demonstrate that both JPEG X3 and TATE X3

show F1-score improvement as the window size increases. It is because a larger win-

dow size enables the prediction model to consider the huge amount of neighboring

information effectively. However, for the overlap ratio, the two circuits show different
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Table 3.10: Statistics for the macro circuits from the ISPD 2015 benchmarks used in

experiments.

Design #Macro #Standard cells #Placements

MGC EDIT DIST A 6 97,099 94

MGC FFT A 6 35,449 94

MGC DES PERF A 4 136,059 60

MGC MATRIX MULT A 5 196,061 14

MGC MATRIX MULT B 7 175,813 15

trends. In circuit TATE X3, overlap ratio changes do not impact the F1-score signif-

icantly. On the other hand, in the case of JPEG X3, F1-score is the highest when the

overlap ratio is 10%, where the F1-score decreases as the overlap ratio increase further.

In common, both circuits show the highest F1 when the window size is 400 and the

overlap ratio is 5∼10%.

• Adaptation to macro designs: Macros are an essential block in SoC designs, and it

is known that the presence of macro greatly affects the distribution of DRV [55]. Since

the opencore circuits used in the experiment of section 3.3.3 do not have macro blocks,

it is difficult to measure the capability of PGNN for the SoC design. We synthesized

five ISPD 2015 benchmarks [84] under Nangate 15nm cell library using Synopsys

Design Compiler and IC Compiler 2. Detailed statistics of the designs are shown in

Table 3.10. We generated a total of 277 data of macro circuits by varying macro floor-

planning and input placement parameters. To consider the effect of macros on DRV,

we additionally extracted macro density which means the ratio of the area occupied by

the macros inside the grid.

Table 3.11 shows a performance comparison of RouteNet [55] and PGNN at dif-

ferent training and test set coverage. ”Macro” in the training and test set column in-

dicates the circuits in Table 3.10 and ”Opencore” represents the circuits in Table 3.1.

20% of each circuit data is randomly selected as a test set, and the other data are classi-
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Table 3.11: Comparison of the performance of DRC hotspot prediction, in terms of

F1-score, of RouteNet and PGNN for macro and opencore circuits.

Training set Test set Model Precision Recall FPR F1

Macro Macro
RouteNet 74.62% 71.67% 0.37% 73.11%

PGNN 78.37% 75.73% 0.31% 77.03%

Opencore

+Macro
Macro

RouteNet 72.70% 69.63% 0.39% 71.13%

PGNN 78.45% 72.83% 0.30% 75.54%

Opencore Opencore
RouteNet 69.70% 70.12% 0.82% 69.91%

PGNN 74.35% 74.53% 0.69% 74.44%

Opencore

+Macro
Opencore

RouteNet 69.42% 69.37% 0.82% 69.39%

PGNN 74.02% 75.00% 0.70% 74.51%

fied as a training set. Experimental results show that PGNN achieves about 4% higher

F1-score on the macro test set than RouteNet, which is known to show high prediction

performance on macro design. Interestingly, when the opencore design is added to the

training set, the prediction performance for macro design is downgraded on both mod-

els. It seems that DRVs usually occur at the boundary of macros in SoC design, and the

prediction of this trend might be weakened as the training set includes the opencore

circuits without macros. On the other hand, PGNN outperforms RouteNet on open-

core test set, achieving about 5% high F1-score. This is because PGNN effectively

considers the pin accessibility of the standard cells by utilizing pin proximity graph as

an input.

3.3.5 Handling Data Imbalance Problem in Regression Model

To implement efficient placement improvement methodology, predicting how many

DRVs occur in the DRC hotspot grids is an important problem so that placement im-

provement engine is able to focus on optimizing grids expected to occur a lot of DRVs.
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To efficiently predict the number of DRVs in each grid, which is known as a regression

problem in machine learning domain, our regression model denoted as PGNN REG

removes the sigmoid layer at the final stage of PGNN and is trained towards the num-

ber of DRVs with weighted L2 MSE (Mean-Square-Error) loss function, which is for-

mulated as follows:

Loss(yN , ŷ) =
∑
N=0

wN (yN − ŷ)2 (3.5)

where wN is the weight assigned to class N which is composed of grids that have

N DRVs. To alleviate the data imbalance problem, we assign a higher weight to the

minority classes so that the loss function highly focuses on the accurate prediction

of these classes. To find the best weight assignment, we compare the following three

weight assignment strategies.

• Uniform weighting : wN = 1 for all classes.

• Positive class weighting : w0 = 1 for class 0, wN = #grids of class 0
#grids of other classes for

other classes.

• Classwise weighting : wN = #grids of class 0
#grids of other classes for all classes.

Table 3.12 shows the prediction accuracy and average error of each class for the

three weighting strategies. Note that class 0 accounts for 97.7% of total data and the

other classes each have less than 1% of total data, which shows extremely imbalanced

data distribution. The prediction result is rounded for classification. Accuracy of class

N denotes the ratio of grids predicted accurately to class N by the total number of grids

in class N, The accuracy of class N denotes the number of grids predicted accurately

to class N by the total number of grids in class N, and Avg. error of class N indicates

the average L1 loss of the grids in class N.

Experimental results show that all three strategies commonly show low accuracy

and high average error for the high DRV classes. The uniform weighting strategy has

the best accuracy and average error in class 0, but the worst performance in the other
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classes, which does not properly handle the data imbalance problem. The positive class

weighting strategy shows superior performance in classes 1 and 2, and it seems this

strategy is not effective over class 2 which has less number of grids compared to classes

1 and 2, because the same weight is applied for all classes except class 0. On the other

hand, classwise weighting more focuses on the classes with high DRVs, outperforming

the other strategies over class 2.

Fig 3.16 illustrates prediction distribution comparison of three weighting method-

ologies for benchmark NOVA. Prediction results for each class are displayed by a box,

where the orange line is a median, the upper and lower edges of the boxes indicate 25th

and 75th percentile, the straight line outside the box is the maximum and minimum

data point excluding outliers, and circle points illustrate outliers. The dotted line from

left-bottom to right-top indicates perfect prediction. In general, as the ground-truth in-

creases, the predicted value increases accordingly but shows lower prediction results

than the ground-truth in a high DRV range. When comparing Fig 3.16 (a) and (b),

positive class weighting does not significantly change the prediction range. However,

classwise weighting (see Fig 3.16 (c)) significantly increases the prediction results for

all classes, and in the high DRV region, its results are closer to the dotted line than the

other two methods, but the predictions of the low DRV region are overestimated.

Table 3.13 shows the coefficient of determination R2 comparison of the three

weighting strategies for all benchmarks. LargeR2 indicates a high correlation between

ground truth and prediction. Experimental results show that the uniform weighting

strategy outperforms other methods in all benchmarks, apparently because it is rela-

tively accurate in predicting class 0, which overwhelms the other classes in terms of the

number of grids. However, since the accurate prediction of high ground-truth classes

is important for early stage placement improvement, uniform and classwise weighting

can be used selectively depending on the user’s purpose.
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(a)

(b)

(c)

Figure 3.16: Visualization of DRV regression results for benchmark NOVA. (a) uniform

weighting (b) positive class weighting (c) classwise weighting.
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Table 3.13: R2 comparison between the three weighting strategies for all benchmarks.

Benchmark Uniform weighting Positive class weighting Classwise weighting

AES 0.497 0.295 0.127

B18 0.228 0.111 0.059

B19 0.269 0.142 0.080

ECG 0.553 0.428 0.289

ETH 0.527 0.402 0.233

JPEG 0.569 0.401 0.255

NOVA 0.626 0.457 0.375

TATE 0.603 0.403 0.216

VGA 0.514 0.357 0.289

Avg. 0.487 0.333 0.214
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Chapter 4

Conclusions

4.1 Chapter 2

In chapter 2, we proposed an integrated approach to the two problems of transistor

folding and placement. Precisely, we proposed a globally optimal algorithm of search

tree based design space exploration, devising a set of four effective speeding up tech-

niques as well as dynamic programming based fast cost computation. Our algorithm

also incorporated the minimum oxide diffusion jog constraint. In addition, to make an

effective cell layout synthesis flow down to in-cell routing, we provided a fast in-cell

routability estimation metric to be used in transistor placement and a method to explore

cell layouts by varying the cell size constraint. Through experiment with all transistor

netlists and design rules in the ASAP 7nm cell library, it was shown that our proposed

method was able to synthesize fully routable cell layouts of minimal size within a very

fast time in the ASAP 7nm library, outperforming the cell layout quality in the ASAP

7nm library, which otherwise, might take several hours or days to manually complete

layouts of the quality level comparable to ours.
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4.2 Chapter 3

In chapter 3, we addressed the problem of DRC hotspot prediction at the placement

stage. In comparison with the conventional ML (machine learning) based models,

which invariably revealed ineffectiveness on assembling the aggregate data on (1) pin

accessibility and (2) routing congestion, this work proposed a novel ML based DRC

hotspot prediction model called PGNN, which was able to accurately capture the com-

bined impact of items 1 and 2 on DRC hotspots by devising a new graph representation

so-called pin proximity graph and developing a tightly combined ML model of GNN

and U-net. In the meantime, through experiments using Nangate 15nm library, it was

confirmed that our PGNN consistently outperformed the existing ML models, achiev-

ing on average 7.8∼12.5% improvements on F1-score while taking 5.5× fast inference

time over the existing state-of-the-art technique. In the future, we want to develop a

placement optimization methodology which installs PGNN as a core engine.
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초록

칩구현의물리적설계단계에서,높은성능의표준셀설계와배선연결이후조

기에설계규칙위반을정확히예측하는것은최신공정에서특히중요한문제이다.

본논문에서는물리적설계에서의설계품질과총설계시간향상을달성할수있는

두가지방법론을제안한다.

먼저, 본 논문에서는 표준 셀 레이아웃 합성에서 트랜지스터 폴딩과 배치를 종

합적으로 진행할 수 있는 방법론을 논한다. 구체적으로 탐색 트리 기반의 최적화

알고리즘과 동적 프로그래밍 기반 빠른 비용 계산 방법과 여러 속도 개선 기법을

제안한다.여기에더해,최신공정에서트랜지스터폴딩과배치로인해발생할수있

는최소산화물확산영역설계규칙을고려하였다.최신공정에대한표준셀합성

실험결과,본논문에서제안한방법이설계전문가가수동으로설계한것대비높은

성능을보이고,설계시간도매우짧음을보인다.

두번째로,본논문에서는셀배치단계에서핀접근성과연결혼잡으로인한영

향을종합적으로고려할수있는머신러닝기반설계규칙위반구역예측방법론을

제안한다. 먼저 표준 셀의 입/출력 핀의 물리적 정보와 핀과 핀 사이 방해 관계를

효과적으로 표현할 수 있는 핀 근접 그래프를 제안하고, 그래프 신경망과 유넷 신

경망을효과적으로결합한새로운형태의머신러닝모델을제안한다.이모델에서

그래프신경망은핀근접그래프로부터핀접근성정보를추출하고,유넷신경망은

격자기반특징으로부터연결혼잡정보를추출한다.실험결과본논문에서제안한

방법은이전연구들대비더빠른예측시간에더높은예측성능을달성함을보인다.
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