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Abstract

In this paper, we introduce two techniques to efficiently apply clock gating in the
synthesis stage.

First, We propose a new clock gating methodology based on a precise power saving
analysis to overcome the ineffectiveness of the conventional logic structure based clock
gating. Two new features exploited in our proposed clock gating are (i) the multiplexer
selection signal probability that a flip-flop with multiplexer feedback loop receives a
new input and (ii) the joint probability of selection signals that two flip-flops with
different multiplexor selection signals both receive new inputs at the same clock cycle.
In summary, our method reduces the total power consumption by 2.46% on average
(up to 5.00%) over the conventional clock gating method.

In the second work, we address a new problem of transforming the long tog-
gling/untoggling sequences of flip-flops’ cycle-accurate activities into short embed-
ding vectors, so that the flip-flop grouping for clock gating is practically feasible in
terms of the memory usage and run time for checking activity similarity among flip-
flops. To this end, we propose a machine learning based generation of embedding
vectors which are accurate enough to predict the original flip-flop toggling sequences.
Precisely, we develop a neural network model of LSTM (long short-term memory)
based AE(autoencoder) model combined with SDAE (stacked denoising autoencoder)
to take into account the time-series (i.e., clock cycle) similarity feature among the tog-
gling sequences, which is essential to determine which flip-flops should be grouped
together for clock gating. By integrating (1) our LSTM based embedding vector gen-
eration model, we propose two additional ML models for clock gating: (2) joint state
probability predictor (JSP) model for generating O-state probability of two embedding
vectors, and (3) joint feature predictor (JFP) model for generating a new embedding

vector that combines two embedding vectors. Through experiments, it is confirmed



that our proposed LSTM combined with AutoEnc improves the toggling sequence pre-
diction accuracy up to 0.88 while an LSTM (long short-term memory) based AE model
produces accuracy to 0.72, thereby enabling our ML based clock gating framework to
save the dynamic power consumption further over that by the state-of-the-art commer-
cial clock gating tool, which relies on the flip-flops’ toggling probability for grouping
flip-flops. Through experiments with benchmark circuits in IWLS, it is shown that our
method is able to reduce the dynamic power by 14.0% on average over that by the

conventional toggling-driven clock gating.

keywords: clock gating, flip-flop grouping, low-power design
student number: 2021-25316
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Chapter 1

Selective Clock Gating Based on Comprehensive Power

Saving Analysis

1.1 Introduction

Clock gating saves dynamic power by shutting off a subtree of clock network dur-
ing the idle state of the driven logic blocks. This paper proposes a new clock gating
methodology based on a precise power saving analysis to overcome the ineffectiveness
of the conventional logic structure based clock gating. Two new features exploited in
our proposed clock gating are (i) the multiplexer selection signal probability that a flip-
flop with multiplexer feedback loop receives a new input and (ii) the joint probability
of selection signals that two flip-flops with different multiplexor selection signals both

receive new inputs at the same clock cycle.

1.2 Preliminary and Motivation

Figs. 1.1(a) and (b) show a part of Verilog RTL code that commonly appears in the
description of design behavior and its synthesized structure, respectively [3], from
which it is shown that each of the k flip-flops contains combinational multiplexer logic

at its input side. A flop-flop that has a multiplexer-feedback loop at its input side is

:l ¥
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f[0]
Lo 0] D‘} :
Verilog: ; - k1)
D MUX
FF fflk-1]

reg [k-1:0] £ VAN

always @(posedge clk) en A | gelk
be gil’l clk en—
if (en) ok
ff <=a+b,
ICG

end Static CG Logic Power (uW) Static CG Logic Power (UW)

Probability of Before Clock gating Probability of Atfter Clock gating
en' Prs | Py | Prow en’ Picg Pr_ | Puta

P(en)=0.3 0.63 45.84 46.47 P(en) = 0.3 0.32 11.81 12.13
Pen)=1 0.01 65.67 65.68 P(en) =1 1.81 66.61 68.42

(a) (b) (c)

Figure 1.1: (a) A section of RTL code in Verilog; (b) A synthesized logic for (a) without clock gating;

(c) Transformed clock gating structure for (a)

called a self-loop flip-flop. Fig. 1.1(c) shows the transformed logic structure for the
circuit in Fig. 1.1(b), produced by applying a conventional clock gating tool where the
k multiplexers are completely removed at the cost of allocating a single ICG (integrated
clock gating) to enable or disable the clock signal according to the state of the ‘en’
signal that was used, in Fig. 1.1(a), as a select input to the k multiplexers. The numbers
shown in the tables of the initial logic and the transformed logic structures are the
amounts of power consumption before and after the application of clock gating to
Fig. 1.1(b) with k = 8. Comparing the power consumptions with and without clock
gating (CG) when p(en) = 0.3 and p(en) = 1.0 indicates that as p(en) goes to 0, the
power saving by CG increases. This means that there may be cases where there is no
benefit in terms of power saving even if the clock gating logic is pre-defined in the RTL
code by the designer. We focus on the fact that the conventional clock gating of the
current commercial tool unconditionally applies clock gating without accurate power
analysis based on the switching activity of p(en), and we propose a method of applying
selective clock gating. We also propose a method to reduce the dynamic power of the

clock tree while ensuring the same logic function by formulating the merge condition



of two different clock enable signals based on accurate power analysis.

1.3 Selective Clock Gating

1.3.1 Concept of Selective Clock Gating

Table 1.1 summarizes the number of self-loop flip-flops in the circuits synthesized
from IWLS benchmark code [1, 3]. It is shown that the portion of self-loop flip-flops
s 49%~95% of the total number of flip-flops in circuits, which clearly indicates that
applying clock gating to such logic structures may lead to potentially a considerable
saving on dynamic power consumption as the value of k increases. Nevertheless, one
critically impacting factor that has not been taken into account by the conventional
clock gating tools is the behavior of ‘en’ signal. For a group of self-loop flip-flops like

that in Fig. 1.1(b), we define

p(en) = the probability that en = True. (1.1)

Then, it is obvious that the higher the p(en) value is, the less effective the power saving

is since ICG enables clock signal for most time of clock cycles.

Table 1.1: The portion of flip-flops with self-loops in benchmark circuits [1].

Circuit # of FFs | # of self-loops | % of self-loops
SPI 239 181 75.73%
WB_DMA 587 369 62.86%
AES_CORE 535 263 49.16%
WB_CONMAX 842 656 77.91%
MEM_CTRL 1181 869 73.58%
AC97_CTRL 2326 1691 72.70%
VGA_LCD 17762 16942 95.38%




VP(p(en). k) = Ei5) P(MUXi) + VP(FF) * (1-p(en)) - F(ICG) IfVP >0, IFYP <0,
l CG is better. NO-CG is better.

(breakeven points)
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Figure 1.2: The changes of power saving as the k and p(en) values change.

Consequently, a clock gating tool should selectively determine whether imple-
menting a clock gating is beneficial or not according to how much p(en) affects power
saving, as illustrated in the power tables in Figs. 1.1(b) and (c). Fig. 1.2 shows the
changes of power consumption for the transformed clock gated circuits as the p(en)
and k values change for the circuits in Fig. 1.1(b) where the curve marked as p cor-
responds to the collection of the breakeven points of power saving by clock gating.
The shape indicates V P(p(en), k) values calculated by Eq.1.2 for pairs of p(en) and
k values, in which the breakeven points correspond to the p(en) and k values such that
VP =0.

Our objective is to accurately predict the amount of power saving by clock gating
for a group of k self-loop flip-flops with p(en) value. Precisely, for a circuit with &
self-loop flip-flops and p(en), by constructing a clock gating structure for the circuit,

we want to analytically compute the amount of power saving VP:

VP(plen),k) = S P(MUXi) + VP(FF) (1 — p(en))-P(ICG)  (1.2)

where P(MUX i) and P(ICG) are the amounts of power saved by the removal of
) o B, | (. T [
s Aot



multiplexor at the i th flip-flop and power consumed by the ICG block, respectively,
and VP(FF) % (1 — p(en)) is the amount of flip-flop power saved by disabling clock
signal. Thus, the first two terms in Eq.1.2 indicate the amount of power saved by clock
gating while the last term indicates the power overhead induced by clock gating. Based

on Eq. 1.2, the condition to implement clock gating is

VP(p(en), k) > 0. (1.3)

Since the value of k£ is given from RTL code and the value of p(en) can be estimated
through simulation of the code with typical input patterns, we can easily compute the

quantity of VP(p(en), k) in Eq.1.2.

1.3.2 Joint probability of selection signals

Furthermore, for multiple groups of flip-flops with self-loops such that each group has
different multiplexer selection logic, for example, enl and en2 as shown in Fig. 1.3,
it is possible to merge some of the groups for clock gating if it could result in saving
more power. For example, in Fig. 1.3, a set of conditions to implement clock gating

for all flip-flops together is

VP(p(enl|en2),kl + k2) > VP(p(enl), k1) + VP (p(en2), k2),
VP(p(enl|len2), k1 + k2) > mazx(VP(p(enl), k1), VP(p(en2),k2)), (1.4)
VP(p(enl|len2),kl + k2) > 0 if|d; — da| < Dy,

where d; and ds are the center coordinates of the two groups of flip-flops, and Dy, is
the threshold (local) distance given by designer. We have implemented our idea for the
clock gating conditions in Eq.1.3 and Eq.1.4 by examining the k£ and P(en) values, and

selectively implemented clock gating structures to maximize the total power saving.
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Figure 1.3: Example of merging flip-flops for clock gating based on joint probability of enl and en2.
1.4 Experimental Results

1.4.1 Experimental Setup

We tested our method and the conventional clock gating method for circuits taken
from IWLS benchmarks [1]. The benchmarks were synthesized and physically imple-
mented by using Synopsys Design Compiler. The operating clock frequency was set
to 200 MHz for all circuits and we set the initial layout utilization to 70%. We used
Nangate 15nm Generic library [4] and a slow PVT corner to guarantee the worst case
performance. In addition, for power analysis we performed RTL simulations to get the
switching activity information of the benchmark circuits and used PrimeTime PX for
power estimation on MUX, ICG, and flip-flops.

We compared our selective clock gating called Selective CG with the existing clock
gating method (Conv. CG) as described by the two clock gating flows shown in Fig.1.4.
(We used Synopsys Design Complier with option —clock_gating [2] for Conv. CG.)
Our selective clock gating method was implemented as a 1-Pass flow in the process of
executing a commercial tool. Conventional CG flow invariably implements clock gat-
ing logics, one for each enable signal while our proposed selective CG flow considers

the switching activities of the enable signals. In the course of logic synthesis, our CG



flow estimates power saving by computing Eqs.1.2,1.3, and 1.4 with switching activ-
ity information. In this step, the amount of power saving is calculated using Eq.1.2
and joint prob Eq.1.4 using the required p(en) obtained from the Switching Activity
Interchange Format (SAIF) file from RTL simulation. However, since the clock gating
logic is already inserted into the netlist, the power value of £ multiplexors in Eq.1.2
and the power value of the newly created OR cell in Eq.1.4 for cost calculation are in-
sufficient. In order to calculate the power of cells that do not exist in this way, a virtual
cell is created to propagate the toggle rate and 1-Pass flow is introduced to calculate

the exact amount of power saving.

Logic netlist with placement proximity information

Extract groups of self-loop FFs

Extract groups of self-loop FFs

i !
\ Implement CG for each group | | Compute VP according to (2) and (4) }
i

with VP> 0 in (3)

l_I

Clock gated logic netlist

Implement CG for each group ‘

(a) Conventional CG flow (b) Our selective CG flow

Figure 1.4: Comparison of (a) conventional CG flow [2] and (b) our selective CG flow.

1.4.2 Experimental Result

Tables 1.2 and 1.3 summarize the results produced by the conventional clock gating
method provided by a commercial tool and our method. We compare the clock gating
ratio (i.e., the ratio of the number of gated flip-flops to the total number of flip-flops)
and the number of clock gating cells in Table 1.2 as well as the power consumptions of
clock tree (FPy), flip-flops (P ), combinational logics (Peompi), and the total power
consumption (Pjq;) in Table 1.3.

Compared with the conventional clock gating, the number of ICG cells is reduced

1 ™~ |

.-':l-\__i = 1_' . | i

-
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because unnecessary ICG cells disappeared or merged while applying the selective
clock gating method. The following table shows that the total power consumption is

reduced even though the clock gating ratio is reduced accordingly.

Table 1.2: Comparison of the ratio of flip-flops for CG and the number of ICGs used by Conv. CG [2]

and ours.
Conv. CG [2] Selective CG
Circuit
CGratio | #of ICGs | CGratio | # of ICGs

SPI 75.98% 10 69.33% 9
WB_DMA 56.39% 16 54.85% 13

AES_CORE 24.91% 5 24.15% 4
WB_CONMAX | 46.94% 24 38.18% 20
MEM_CTRL 74.51% 51 63.19% 43
AC97_CTRL 70.55% 68 70.11% 66
VGA_LCD 98.69% 704 98.46% 701

Compared with the conventional clock gating, the clock power P,y is reduced con-
sistently and effectively by our method for all test cases while there are fluctuations in
the flip-flop power Py due to the load changes on the multiplexers to the correspond-
ing flip-flops. In addition, the combinational logic power F,,,,;; increases because
more flip-flops are selectively gated by our method, which retains some multiplex-
ers as they are. However, the flip-flop power P and clock power P, dominate the
overall power, causing to decrease the total power consumption over the conventional
clock gating method. In summary, our method reduces the total power consumption by

2.46% on average (up to 5.00%) over the conventional clock gating method.



Table 1.3: Comparison of power saving for the implementations by our proposed input logic behavior

driven (selective) clock gating and the conventional logic structure driven clock gating [2].

Conv. CG [2] Selective CG
Power (uW)
Circuit

P p P P P p P Prota

clk combi total clk combi
If If Red.
316.17

SPI 4797 | 278.44 0.39 | 326.80 41.21 273.39 1.57
3.25%
637.99

WB_DMA 81.64 | 583.24 0.06 | 664.93 56.33 | 579.61 2.04
4.05%
541.27

AES_CORE 20.40 | 509.12 17.46 | 546.98 14.56 | 509.23 17.48
1.04%
1421.43

WB_CONMAX 108.89 | 1339.66 0.09 | 1448.64 79.58 | 1341.61 0.25
1.88%
941.73

MEM _CTRL 227.47 | 763.47 0.36 | 991.30 169.72 | 771.49 0.52
5.00%
600.62

AC97_CTRL 223.99 | 386.59 0.30 | 610.89 | 212.39 | 387.67 0.56
1.68%
4937.27

VGA_LCD 2525.87 | 550.71 | 1877.34 | 4953.91 | 2505.21 554.70 | 1877.37
0.34%
Avg. reduction 2.46%




1.5 Conclusion

We propose a new clock gating methodology based on a precise power saving analysis
to overcome the ineffectiveness of the conventional logic structure based clock gating.
In the existing conventional clock gating method, clock gating logic was inserted for
all flip-flops specified by RTL designer. However, in our selective clock gating method,
clock gating was selectively applied by analyzing the power based on the switching ac-
tivity of the clock gating enable signal. In addition, based on accurate power analysis,
a combination of enable signals that can reduce power consumption was selected. Two
new features exploited in our proposed clock gating are (i) the multiplexer selection
signal probability that a flip-flop with multiplexer feedback loop receives a new input
and (ii) the joint probability of selection signals that two flip-flops with different multi-
plexor selection signals both receive new inputs at the same clock cycle. Experimental
results have demonstrated that our approach of selective clock gating offered benefits

on reducing the power consumption of designs.
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Chapter 2

Machine Learning Based Flip-Flop Grouping for Tog-
gling Driven Clock Gating

2.1 Introduction

For synchronous digital systems, a considerable amount of dynamic power is con-
sumed by the signal on the clock network, up to consuming 70% of total dynamic
power consumption in the whole systems [5, 6]. This clock induced power dissipation
can be classified into two groups: (group I) the power consumed by the clock deliv-
ery network including the storage elements (i.e., flip-flops/latches) and (group 2) the
power consumed by the combinational logic synchronized by the sequential elements.
As a means to reduce the power consumption in group-2, clock gating has been known
to be one of the most effective techniques.

Clock gating reduces power by on-and-off a part of clock tree during the idle state
of its driven logic blocks or by blocking the clock signal to a flip-flop group during the
untoggling state of all flip-flops in that group [7]. This work belongs to the toggling
based clock gating.

The basic concept of toggling driven clock gating is to compare the current state

of the flip-flop with the data state of the next cycle, and then block the clock signal

11



supply of the subsystem of the clock network if the data is not toggled (ii.e, the state
being maintained as 0 — 0 or 1 — 1.) The structure of the toggling driven clock gating
consisting of k flip-flops is shown in Fig. 2.1 where the newly inserted XOR, OR, and
ICG (integrated clock gating) [3] cells are marked in blue. Assuming that k flip-flops
exist, the Boolean equation of generating clock disable signal EN is expressed as k

XOR gates and up to k£ — 1 2-input OR gates as follows.

EN=(D1®@Q1)+ (D26Q2) + ... + (Dr & Qx) 2.1
Ci Toggle Sequence X,
Integrated OR
Clock gating cell | o | tree Toggle Sequence X

Gated CK|

’ — =,

FFq

=
D, i - Q.

FFy

Figure 2.1: Block-level structure of the toggling driven clock gating.

One main issue in the conventional toggling based clock gating method is how the
flip-flops in the target design should be grouped so that the clock signal to the flip-flops
in each group is collectively enabled and disabled. Here, the key metric to measure the
quality of the flip-flop grouping is the amount of occurences of clock cycles at which
all the flip-flops in the group are in untoggling state. To accurately measure the metric,
a long length of toggling/untoggling simulation sequence of each flip-flop is required.
However, the sequence length is practically unacceptable due to the very expensive
memory usage and computational time to compare the toggling sequences and pro-
duce the union (i.e., bitwise-OR) of the toggling sequences of various combinations
of flip-flop groupings. Consequently, in practice, the conventional methods sample the

toggling sequences so that the sequence length be in a managable size at the expense of

12



losing the quality of flip-flop grouping. In the work, we overcome this limitation with
the help of machine learning based embedding vector (EV) generation to be used as the
representative of the original long toggling sequence of the flip-flops. The key consid-
eration in this work is that the EVs should be fully accurate to predict the original long
toggling sequences as well as the length of EVs is short enough to be computationally

and memory usage-wise economical.

2.2 Preliminaries and Prior Works

2.2.1 Preliminary and Motivation

Flip-flop’s toggling sequence can be obtained through simulation, producing so called
Value Change Dump (VCD) file, which is mostly so large reaching tens of giga bytes.
Thus, it is inefficient to load the VCD file directly a commercial tool provides. Instead,
in industry, a simplified one of VCD, called Switching Activity Interchange Format
(SAIF) is commonly used. Contrary to VCD which records the toggle information of
all signals in circuits on every clock cycle, SAIF includes only the percentage of time
at which each signal maintains 1-state as well as the total number of toggles of the
signal.

The state-of-the-art clock gating tools group flip-flops according to the information
in SAIF. However, since SAIF dose not have time-related information, it may miss
grouping flip-flops with high similarity on toggling sequence each other. As men-
tioned previously, the key factor for maximizing power saving by clock gating is to
find a group of flip-flops with the close similarity on the toggling patterns among the
flip-flops in the group. To this end, we propose a machine learning (ML) based flip-
flop grouping which is practically efficient and effective. Specifically, we compress
the cycle-accurate toggle sequences extracted from VCD into small-sized embedding
vectors (EVs), which are convenient to use for making a decision on flip-flop group-

ing. Our proposed ML based clock gating framework recognizes flip-flop grouping as

13



a clustering problem in the deep learning field, compresses high-dimensional informa-
tion into low-dimensional information, and then performs flip-flop grouping based on

the similarity between those embedded vectors.

2.2.2 Prior Works

The conventional methods of toggling driven gating are usually based on static proba-
bility and toggle rate of individual flip-flops for grouping flip-flops. Although the work
in [3] completed the vector-based grouping equation considering physical distance, it
is practically infeasible to perform flip-flop grouping due to a vast amount of sim-
ulation cycles. The work in [8] proposed a method of flip-flop grouping along with
logic optimization using Binary Decision Diagrams (BDDs) [9], but required a large
runtime-overhead. The work in [10] combined toggling driven clock gating and multi-
bit flip-flop to find the optimal bit according to the toggle rate, but did not focus on
the similarity of the toggle sequences. In addition, [11] made part of the clock gating
logic into a standard cell, and [12] reduced dynamic power by optimizing the clock
gating logic, so flip-flop grouping was not mentioned. On the other hand, the work in
[13] attempted grouping flip-flops by generating a correlation matrix using a long tog-
gle sequence, but it requires a lot of memory to support the matrix. The work in [14]
also calculated binary pattern based similarity, but did not consider realistic sequence
length. Finally, in [15] and [16], machine learning techniques have been applied in the
field of early power prediction, but the concept of compressing time-related informa-

tion was not introduced.

2.3 Machine Learning Based Clock Gating Framework

2.3.1 Primary Model: Embedding Vector Generation

A toggle sequence of tens of thousands of cycles can be thought of as a high-dimensional

binary vector. To represent the high-dimensional toggling sequence as a low-dimensional
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embedding vector, we applied a stacked autoencoder (SAE) [17]. The stacked autoen-
coder, illustrated in Fig. 2.2, is a deep neural network that compresses the input se-
quence (X) and reconstructs the compressed data back to the original input sequence.
Each hidden layer is implemented with a denoising autoencoder by applying random
corruption to the input data to efficiently restore the outcome of the previous layer.
(Refer to [18, 19] for implementing denoising autoencoder with one hidden layer.)

For the learning process of stacked denoising autoencoder (SDAE), the parame-
ters of each hidden layer are learned through layer-wise training that reconstructs the
outcome of the previous layer. Subsequently, MSE (mean square error) loss value be-
tween the reconstructed input sequence and the original input sequence is propagated
to all hidden layers to tune the parameter values.

Once training is done, the decoder is discarded and only the encoder is used to gen-
erate the low-dimensional embedding vector. We constructed a hidden layer in [3000,
500, 200, 10, 200, 500, 3000] to reduce the input toggle data of 5000 dimensions to 10
dimensions. The 5000 dimension is the length of the input toggle sequence obtained
through various experiments, which is the value that can reduce the dimension at the

maximum as long as memory is available in our experimental environment.

i MSE loss '
: ;
Toggle Denoised Input Encoder Intermediate Decoder Reconstructed
sequence toggle embedding input
sequence vector
X
—

000¢
00¢

(5000) (5000)

OOoooOoboo

[DOROOXO

DOROOXO
#
(O0D0O0O0OOO

Figure 2.2: Network structure of stacked denoising autoencoder.

Since the actual entire simulation cycle reaches tens to hundreds of thousands,

compressing toggling sequence using only SDAE is not sufficient. We want to ob-
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tain an embedding vector representing a huge input toggle sequence by introducing an
LSTM-based autoencoder (LSTM-AE) suitable for time-serise data expression. The
LSTM-AE that can learn sequence consists of a model that directly inputs the tog-
gling sequence, as shown in Fig. 2.3(a), and a 2-step model that inputs through SDAE,
as shown in Fig. 2.3(b). The LSTM-AE receives a 5000-dimensional toggle sequence
and sequentially learns m sequences to generate a target EV. For the SDAE based
LSTM-AE in Fig. 2.3(b), first, 5000-dimensional input sequence is compressed into
10-dimensional through SDAE to generate an intermediate-EV. Then, m /5000 inter-
mediate EVs pass through the LSTM to learn the reconstruction loss. If the model
generates sequence data at the desired level through training, the decoder part is re-
moved and only the encoder part left out for inference.

The LSTM model can be composed of Encoder-Decoder LSTM. It can support
variable-length input and output sequences via zero-padding, which makes it suitable

to be applied to various simulation cycles.

2.3.2 Secondary Models: Joint State Probability and Joint Feature Pre-

diction

According to the data-driven structure, the input toggling sequences of flip-flops grouped
together passes through the OR gate-tree to form a clock EN (Enable) toggle se-
quence. As the number of zeros in EN toggle sequence increases, all flip-flops in the
group can be in inactive state, saving dynamic power on the flip-flops. We tried to pre-
dict O-state probability by implementing with 2-input OR gate as a supervised learning
model. First, as shown on the left side in Fig. 2.4, the original signal pattern (D1, D3)
is converted into an input toggling sequence (X7, X2) using custom script. X7 and Xo
are then passed through the trained SDAE to generate the embedding vectors Z; and
Zs.

We devised two additional models to increase the accuracy of flip-flop grouping.

The first model, called Joint State Probability Predictor (JSP) shown on the upper-
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right side in Fig. 2.4, is used for flip-flop grouping, which is a 3-layer fully connected
neural network receiving a concatenated value of embedding vectors Z; and Z3, and
producing O-state probability of toggling sequence of X; and X» as label. If Z5 with
minimal state probability with Z; is found through the JSP-based greedy search, actual
OR gate insertion will be performed. Then, Z12, which is a newly combined embed-
ding vector, will be created to be used as an input to find the next flip-flop for grouping
in a greedy manner.

The second model, called Joint Feature Predictor (JFP) shown in the lower-right side
in Fig. 2.4, creates an embedding vector corresponding to the bit-wise ORing of X

and Xy when Z; and Z, enter the model as input.

Joint state prob. predictor (JSP)

O
B
X O Jomt
1 |0 SDAE state probability
(5000) ([] N of
D :‘ X, UXy)
- Zaf .
0 ) Joint feature predictor (JFP)
e L
g ] t
X 01I1
(50020) S_’ SDAE _’H H H H- embeddmg vector
(] X u X,)
(]
Trained encoder 'Concate.nated 2-FCN

intermediate EV

Figure 2.4: Network structure of JSP (joint state probability predictor) and JFP (joint feature predictor).

2.3.3 Distance Analysis Between Embedding Vectors

Euclidean distance between two embedding vectors can be another indicator of simi-
larity. In fact, many image machine learning fields are conducting image classification
based on the distance of low-dimensional embedding. We introduced the concept of

Euclidean distance during flip-flop grouping, confirming an improvement over that
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using the supervised learning model only.

2.3.4 Power Analysis Model

Whenever one additional flip-flop is selected to be included in a group during itertaion
process of flip-flop grouping, a stopping condition is required. The stopping condition
is (1) the number of flip-flops in the group reaches the pre-determined limit %, (2)
timing violation occurs, or (3) there is no power saving. For a circuit with & flip-flops,

we want to analytically compute the amount of power saving, VP, as

k k k—1
VP = Z Pss, - p(EN = 0) — Z Pyor, — Z Py, — Pieg (2.2)
i=1 i=1 j=1

where Pyor, Py, and P, represent the amounts of power consumed by the XOR-gate,
OR-gate and ICG cells, respectively, and Py, - p(EN = 0) indicates the amount of
flip-flop power saved by disabling clock signal. Thus, the first term in Eg.2.2 indicates
the amount of power saved by clock gating while the last three terms indicate the power
overhead induced by clock gating. Based on Eq.2.2, the condition to implement clock

gating for the current flip-flop grouping is VP > 0.

2.3.5 Opverall Flow of Flip-flop Grouping

Measuring similarity by comparing toggling sequences of three or more flip-flops at
the same time does not guarantee optimal flip-flop grouping. We use a greedy heuris-
tic to select flip-flops sequentially, one by one. Fig. 2.5 shows the flow of our flip-flop
grouping, to which a set of deep learning based models at the essential parts are ap-
plied. All machine learning models used in the flow perform inference only. Thus, an

optimal flip-flop is selected very quickly at each iteration of our greedy heuristic.
2.4 Experimental Results

Our ML based clock gating framework was implemented with PyTorch and was ver-

ified using IWLS benchmarks[1], Synopsys Design compiler and Primetime-PX. We
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Figure 2.5: Overall flow of our proposed ML based flip-flop grouping for clock gating.

used Nangate 15nm Generic library[20] and a slow PVT corner to guarantee the worst
case performance.

Dataset consists of six designs where two designs are used for training and three
designs are used for both training and inference. Although the simulation takes a long
sequence length, the actual toggling sequence is not much diverse, so, the dataset tends
to be sparse. Thus, for sufficient parameter learning, we generate random numbers and

used them as additional dataset.

2.4.1 Comparison of Dynamic Power Saving

The dymaic power saved by our proposed ML based clock gating is compared with
that by the clock gating of commercial tool (Synopsys Design compiler), and the re-
sult is summarized in Table 2.1. Power consumption was measured from gate-level
simulation on clock gating logic (i.e., XORs, OR-trees, and ICGs) as well as flip-flops.
In comparison with the saving by the commercial tool, Py (power by flip-flops) is re-
duced consistently and effectively by our method for all testcases except for WB_DMA
#Jx_'i o T
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while there is fluctuation on P, (power by clock gating logic) due to variance on the
number of ICGs. However, Pyy dominates the overall power, causing to decrease the
total power consumption by 14.0% on average over that by the conventional clock

gating.

Table 2.1: Comparison of CG logic and flip-flop power of conventional toggling-driven CG and our
ML-based toggling-driven CG

Cireui #of Datasets bandwidth Conventional Toggling-driven CG (uW) ML-based Toggling-driven CG (uW) Power
ircuit
FFs X .| #of .| #of saving (%)
Total | Train | Test CG ratio Py Pyy Piotar | CG ratio Py Pyy Piotal
ICGs ICGs

SPI 229 | 5k all - 84.7% 13 75.0 202.6 |277.7 | 90.8% 12 48.5 182.1 | 230.7 | 16.9%
AES_CORE 530 | 5k all - 15.1% 5 225 1625.5 | 1647.9 | 21.1% 7 314 1462.8 | 1494.2 | 9.3%
WB_CONMAX | 770 | 100k | - all 70.6% 41 180.8 | 1238.1 | 1418.9 | 81.0% 39 198.1 | 7753 | 9735 | 31.4%

MEM_CTRL 1065 | 100k | 0~50k | 50k~100k | 66.4% 53 670.8 | 1030.7 | 1701.5 | 89.3% 61 266.8 | 1061.2 | 1327.9 | 22.0%

AC97_CTRL 2199 | 100k | 0~50k | 50k~100k | 92.1% 256 | 972.8 | 1838.9 | 2811.6 | 95.6% 269 | 989.3 | 1683.9 | 2673.2 | 4.9%

WB_DMA 3009 | 100k | 0~50k | 50k~100k | 99.1% 193 1526.9 | 2691.9 | 4218.8 | 98.7% 194 1599.8 | 2713.6 | 4313.4 | -2.2%

Avg. saving in validation (except for SPI and AES_CORE) 14.0%

2.4.2 Performance of Auto-encoder Reconstruction Model

To compare the reconstruction errors of LSTM-AE and SDAE-based LSTM-AE, co-
sine similarity was introduced. As indicated in Table 2.2, SDAE-based LSTM AE
shows a higher cosine similarity (= 0.88) over that (= 0.72) of LSTM based AE, in
which the input dimension of SDAE is determined by sweeping from 1000 to 5000 cy-
cles and checking if the change in loss is acceptable and memory usage is at a feasible

level.

2.5 Conclusion

This paper addressed a new problem of transforming the long toggling sequences of
flip-flops’ cycle-accurate activities into short embedding vectors, so that the flip-flop
grouping for clock gating was practically feasible. To this end, we proposed a set of

ML model ingredients for clock gating: (1) LSTM based AE model combined with
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Table 2.2: Cosine similarity for assessing our LSTM combined with SDAE.

SDAE dim. | LSTM dim. | Cosine

Model
In Out | In Out | Similarity

LSTM AE - - 5000 | 128 | 0.72
SDAE based LSTM AE | 5000 | 10 | 10 64 | 0.88

SDAE for embedding vector generation, (2) joint state probability predictor (JSP)
model for generating 0-state probability of two embedding vectors, and (3) joint fea-
ture predictor (JFP) model for generating a new embedding vector that combined two

embedding vectors.
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