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Abstract

Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is
envisioned as a key technology to support ever-increasing data rates in 6G com-
munication systems. To make the most of THz UM-MIMO systems, acquisition
of accurate channel information is crucial. However, the THz channel acquisi-
tion is not easy due to the humongous pilot overhead that scales linearly with
the number of antennas. In this paper, we propose a novel deep learning (DL)-
based channel acquisition technique called Transformer-based parametric THz
channel acquisition (T-PCA) for the THz UM-MIMO systems. By learning the
complicated mapping function between the received pilot signal and the sparse
channel parameters (e.g., angles, distances, path gains) using Transformer, a
DL architecture that differently weights each input data based on the corre-
lations between the input data, T-PCA can make a fast yet accurate channel
estimation with a relatively small amount of pilot resources. Moreover, using
the attention mechanism of Transformer, we can promote the correlation struc-
ture of the received pilot signals in the feature extraction, thereby improving
the channel parameter estimation quality significantly. From the simulation re-
sults, we demonstrate that T-PCA is very effective in acquiring the THz channel

information and reducing the pilot overhead.

Keywords: Wireless communication, Terahertz communication systems, Chan-
nel estimation, Deep neural network, Transformer
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Chapter 1

Introduction

As a key technology to meet the demand for ever-increasing data rate in 6G, ter-
ahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) com-
munication has received a great deal of attention recently [1]. By exploiting
the plentiful spectrum resources in the THz frequency band (0.1 ~ 10 THz)
along with a large number of antennas, THz UM-MIMO communications can
support way higher data rates than the conventional sub-6GHz and millimeter-
wave wireless communication systems can offer. To maximize the potential gain
of THz UM-MIMO systems, the base station (BS) needs to acquire accurate
downlink THz channel information. Main challenge of the THz UM-MIMO sys-
tems is that the channel exhibits the near-field effect characteristics since the
array aperture of the massive number of antenna elements is comparable to the
communication distance [2]. Since the wavefront of the near-field THz signal is
spherical, the THz channel can be expressed as a function of a few parameters
in the spherical domain including angle of departures (AoDs), angle of arrivals

(AoAs), distances, and path gains.
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Figure 1.1: Correlation structure of the received pilot signal in THz UM-MIMO

systems.

Recently, various techniques have been proposed for the acquisition of the
THz channel parameters [3, 4, 5, 6, 7]. In [3, 4], compressed sensing (CS)-based
channel acquisition approaches have been proposed. In [5, 6, 7], deep learning
(DL)-based approaches that learn the mapping function between the received
pilot signals and the channel parameters using deep neural network (DNN)
have been proposed. Among various DNN architectures, a convolutional neural
network (CNN) is popular due to its simplicity and ability to extract spatial
features from the received pilot signals [7]. A major drawback of CNN, in the
perspective of the THz channel parameter acquisition, is that it might not be
effective in extracting the correlation between the spaced-apart pilot signals
since the filter kernel and convolution operations are performed locally.

In the DL-based channel parameter estimator, a feature map is extracted
from the DNN using the received pilot signals. By the feature map, we mean

the low-dimensional vector containing core information (e.g., MIMO antenna



array structure, locations of scatterers, and mobility of user equipment (UE))
of the large-dimensional input. To facilitate the feature extraction, one should
deliberately handle the correlation structure of the received pilot signals. No-
table characteristics of the received pilot signal of THz UM-MIMO systems are
twofold; First, the received pilot signals will have meaningful power only for
a few time slots. During the channel acquisition process, the BS employs the
multiple sharp training beams, each of which is directed toward distinct direc-
tions [8]. Thus, the received pilot signal will have a high power only when the
training beams are aligned with the direction of UE (see Fig 1.1). Second, the
THz channel is determined primarily by the scattering geometry around the
BS so the received pilot signals for each and every subcarrier can be expressed
as functions of the same geometric parameters (e.g. angles, distances), which
means that the received pilot signals, irrespective of their subcarrier positions,
are highly correlated.

An aim of this paper is to propose a DL-based channel acquisition tech-
nique for the THz UM-MIMO systems. The proposed technique, dubbed as
Transformer-based parametric THz channel acquisition (T-PCA), estimates the
channel parameters (angles, distances, path gains) using Transformer, a DL ar-
chitecture that differentially weights the significance of each input data (in our
case, the received pilot signals) using the attention mechanism [9]. To make the
most of the correlation structures of the received pilot signal, we employ two
distinct Transformer networks, i.e., temporal Transformer network (TTN) and
spatial Transformer network (STN). In TTN, using the received pilot signals
as inputs, the temporally-correlated features are extracted from the product
of the attention weight and the received pilot signal. Since only a small por-
tion of received pilot signals have a meaningful power, Transformer in TTN

is trained such that these dominant received pilot signals will have relatively



high attention weights. Clearly, this process will facilitate the extraction of the
temporally-correlated features. After that, using the low-dimensional features
generated from TTN as inputs, the spatio-temporally correlated features are
extracted in STN. As mentioned, the received pilot signals for all subcarriers
are expressed as functions of the same channel parameters so that all received
pilot signals, regardless of their positions, are correlated to each other. Main
purpose of Transformer in STN is to capture the correlated features of both the
adjacent and spaced-apart received pilot signals. Finally, the extracted features
are converted to the channel parameters via the fully-connected network.

From the simulation results, we demonstrate that T-PCA outperforms the
conventional channel acquisition schemes in terms of the normalized mean
square error (NMSE). For example, T-PCA achieves more than 5dB NMSE
gain over the CS-based scheme. Even when compared with the CNN-based
scheme, T-PCA achieves around 2.5 dB NMSE gain.



Chapter 2

Terahertz UM-MIMO System
Model

We consider the THz UM-MIMO OFDM systems where a single-antenna UE
transmits an uplink pilot signal to a BS equipped with a uniform linear array
(ULA) of M antennas. Specifically, T" time slots and S subcarriers are used for
the uplink pilot transmission (see Fig 1.1). By exploiting the channel reciprocity
of time-division duplexing (TDD) systems, the BS can recycle the acquired
uplink channel information for the downlink data transmission.

In this setup, the received pilot signal vector y; s € CNrx1 of the s-th pilot

subcarrier at {-th time slot is given by

Yts = W}—Ihsxts + W}—Int,s (21)
= VP WHR, + 1y, (2.2)

where NV, is the number of RF chains in BS, x; s = /P, is the uplink pilot,
P,, is the transmit power of UE, hy € CM*! is the THz channel vector at s-th

subcarrier, W; € CM*Nr is the receive beamforming matrix at the ¢-th time



slot, and n¢ s ~ CA/(0, 021)y) is the additive Gaussian noise. By concatenating
the received pilot signals over T' time slots, we obtain the received pilot signal
matrix at the s-th subcarrier Yy = [y1,5-- ~yT,8]T € CT*Nr
One notable characteristic of THz UM-MIMO systems is that the channel
exhibits the near-field characteristics [2]. Since the signal wavefronts are spheri-
cal in the near-field channel, the phase difference between two antenna elements
is affected by the distance r as well as the angle 6. Therefore, the near-field ar-
ray steering vector is expressed as a function of spherical coordinates (6, 7). In
fact, the near-field array steering vector bg(6,r) at s-th subcarrier is given by
4
bs(0,7)= [e—j%(l-i-%)(?"l—?“) . 6—3’27”(14-%)(7“1»1—7")]T’ (2.3)

where f. is the carrier frequency, fs is the baseband frequency of the s-th
subcarrier, and 7y, is the distance between the UE and the m-th BS antenna,

given by
od%cos? 0

rm=1—(m—1)dsinf + (m — 1) 5
,

(2.4)

In this work, we use the near-field geometric THz channel model where
the uplink channel vector h, from the UE to the BS at the s-th subcarrier is

expressed as

P
h, = Z ape I h (8, 7), (2.5)
p=1

where P is the number of propagation paths, 6, is the AoA, r, is the distance,
7, is the time delay, and «, is the path gain of the p-th path. Let 6 = [0, - - - GP]T
and r = [ry--- rp]T be the angle and distance vectors, respectively, and as; =
[ e727fsm ~--ozpe_j27rfsTP]T be the path gain vector for the s-th subcarrier,

then h; can be succinctly expressed as a function of channel parameters:

h, = B,(0,r)as, (2.6)



where B4(0,r) = [bs(01,71) - - - bs(0p,rp)] € CM*F is the near-field array steer-
ing matrix. Note that hy is parameterized by a few THz channel parameters,
i.e., angles 0, distances r, and path gains o, whose numbers are the same as the
number of paths. Since the number of paths P (e.g., P =1 ~ 3) is much smaller
than the number of antennas M (e.g., M = 256 ~ 1024) in the THz UM-MIMO
systems, one can significantly reduce the required number of measurements by
estimating the sparse channel parameters instead of the full-dimensional chan-

nel vector hg.



Chapter 3

Transformer-based parametric
Terahertz Channel Acquisition

Main goal of the proposed T-PCA is to estimate the sparse THz channel pa-
rameters (i.e., angles, distances, and path gains) using Transformer. Intriguing
characteristic of T-PCA is that we extract the features of the THz UM-MIMO
received pilot signals using the attention mechanism of Transformer. In essence,
the attention mechanism facilitates the generation of the attention weights rep-
resenting the correlations between input data. Using the product of the atten-
tion weights and the received pilot signals as input, one can extract the spatially
and temporally-correlated features inherent in the THz UM-MIMO systems.
Key ingredient of T-PCA is the combination of Transformer and fully-connected
network to learn a complicated nonlinear mapping between the received pilot

signals {Y,}5_, and the THz geometric channel parameters (6, r):

0,8} = g({Y}_1;T), (3.1)



where ¢ is the mapping function and I' are the network parameters. Once 6
and ¥ are acquired, the path gains {&s}5_; can be easily estimated using the

conventional approaches such as the least squares estimator [10]:
as = (VPWHB, (0, ) vec(YT), s=1,---,8, (3.2)

where W = [Wy --- Wyp] € CM*TNr Using the obtained the channel parame-

ters (0, ¥, {é}5_,), we can reconstruct the THz channels {hy}5_;:

h, = B,(0,#)d,, s=1,---,85. (3.3)

3.1 Basic of Transformer

In the conventional CNN-based acquisition technique, the features are extracted
by performing the convolution operation of a 2D/3D-shaped weight matrix
(called kernel) and a part of the received pilot signal [6]. While CNN is effective
in extracting the locally correlated features (e.g. correlation among antennas),
it might not be efficient in extracting the globally correlated feature due to the
locality of the filter kernel. Also, since the same kernel is multiplied to all input
signals, the nonuniform and irregular correlation structures of the received pilot
signals cannot be captured properly.

In a nutshell, Transformer extracts the features using the attention mecha-
nism. In the attention layer of Transformer, the correlations between the input
data (a.k.a., attention weight or attention map) are calculated and then mul-
tiplied to the input to generate the weighted input matrix [9]. Since the corre-
lations between each and every elements in the input sequences (a.k.a., token)
are used for the attention weight generation, Transformer can extract both the
locally and globally correlated features effectively.

T

To be specific, using the sequence of D x 1 input vectors Y = [y1---yr] " €

CI*D | the attention layer constructs three different embedding matrices, i.e.,
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Figure 3.1: Attention maps of TTN and STN.

the query Q = YWy, the key K = YWy, and the value V = YW\ where
Wo, Wi, Wy € CP*P are the weight matrices and L is the number of input
sequences. Since the query Q and the key K contains the features of the input
data, by performing the inner product of Q and K, we obtain the attention
map M € CLxL:

M = feoftmaz(QKT/VD), (3.4)

where fsottmaz(Y) is a row-wise softmax function defined as [fsoftmaz(Y)]ij =
eYii/ > eYii. Finally, by multiplying the attention map M with the value V,

we obtain the weighted input matrix (a.k.a., attention score) Z € C1*P:

Z =MV, (3.5)

Once the attention score is obtained, the output vector passes through the
fully-connected network, generating the output feature of Transformer.

To demonstrate the effect of the attention map in capturing the correlation
structure of the received pilot signals, we plot the attention maps of TTN and

STN in Fig 3.1. From Fig 3.1a, one can observe that the attention weights

10 = A L-tjj &



of TTN are concentrated on a small number of column vectors. Due to the
extremely narrow beamwidth of THz UM-MIMO systems (i.e., pencil beam),
the received pilot signals will contain the noise only when the training beams are
not aligned with the signal propagation paths. This means that only a few row
vectors of the received pilot signal matrix Y, = [y1-- -yT7S]T have relatively
high values (same for the key K generated from Y). Since the attention map
is constructed from the inner product of Q and K, the attention weights are
concentrated on a few column vectors corresponding to the dominant received

pilot signals.

3.2 Network Architecture of T-PCA

In T-PCA, the received pilot signal y; , is first separated into the real and imag-

inary parts y;s = [Re(yt,s)T Im(yt,S)T]T € R2Nr*1 and then concatenated

]T € RT*2Nr passes through the fully-connected

matrices Ys = [y1,5 YT.s
network to generate X, = Y, W, € RT*P (W, € R?NrxD g the weight ma-
trix). Then a representative vector xg s € RP*1 4 trainable vector containing
the correlated feature of the input data, is appended to the input matrices as
Xs = [Xos XST]T € RITH+DXD [11]. Also, to indicate the position of each ele-
ment in the input data sequence, a trainable matrix called positional embedding
matrix W, € RT+1XD ig added as XS =X, + W ,os. After that, the encoded
input sequences {Xs}le sequentially pass through the multiple Transformer
blocks. In the last Transformer block, the temporal feature vectors {f4"}5_,
are obtained from the first row vector of the output matrix.

Once the temporal feature matrix F@" = [f{t" ... fét"]T € R5*P is obtained,

F%" is used as an input matrix of STN. Similar to TTN, the representative

vector and the positional embedding matrix are added to F¥" and then the

]
11 -i == T
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Figure 3.2: Overall structure of T-PCA

output matrix passes through multiple Transformer blocks. Then the spatio-
temporal feature vector £5'" € RP*! is obtained from the first row vector of
the output matrix of the last Transformer block.

The extracted spatio-temporal feature vector £5!" passes through the fully-
connected network to generate the output vector z, = W,f" + b, € R?Px1
(W, € R?P*D is the weight matrix and b, € R?"*! is the bias vector). Af-

T

ter that, z, passes through the hyperbolic tangent layer fionn(z) = £-¢c" to

et+e®

generate the desired THz channel parameters {é, r}:

{é7f‘} = ftanh(zp)- (3.6)

The overall structure of T-PCA is depicted in Fig 3.2.

12 A =L



Chapter 4

Simulation Result

4.1 Simulation Setup

In our simulation, we consider the THz UM-MISO OFDM systems where a
BS equipped with M = 256 antennas and N, = 4 RF chains serves a single-
antenna UE. The UE is located randomly around the BS within the cell radius
of R = 50m. We use the wideband THz multi-path channel model where the
number of paths is P = 1, the carrier frequency is f. = 0.1THz, and the
channel bandwidth is B = 1 GHz'. We set the numbers of subcarriers and time
slots for pilot transmission to S = 16 and T" = 32, respectively. The angles
are generated randomly from [—m,7) and the distances are generated based
on the relative positions of BS and UE. We assume that the path gain is a
complex Gaussian random variable o ~ CN (0, p) where p is the large-scale

fading coefficient accounting for the path loss and the shadow fading. Also, we

'In the THz systems, due to the severe path loss and directivity of THz band, the power of
line-of-sight (LoS) component is almost 100 times stronger than that of the non-line-of-sight
(NLoS) component [12].

13 A L
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Figure 4.1: NMSE vs. SNR (M = 256, N, =4, T = 32, S = 16)

use the path loss model in 3GPP Rel. 16 [13].

In the proposed T-PCA, each Transformer network consists of two Trans-
former blocks with the embedding dimension D = 128. For the network pa-
rameter training, we use the unsupervised learning strategy where the network
parameters I' are updated iteratively in a way to minimize the NMSE-based

loss function J(I") [14]:

[|bs — hy||”
821 P 4
As a performance metric, we use the normalized mean square error (NMSE)
defined as NMSE = % Zle ”hHS}:%QHZ The number of training epochs and the
learning rate are set to Nirqining = 1000 and n = 1073, respectively. Also, for
comparison, we use four benchmark channel acquisition schemes: 1) CNN-based

scheme [6], 2) compressed sensing (CS)-based scheme [3], 3) linear minimum

mean square error (LMMSE) estimator, and 4) least squares (LS) estimator.

" . H E 1_'_” [



—O— Proposed T-PCA

—3— CNN-based scheme
CS-based scheme

—O— LMMSE

——LS

NMSE (dB)
o)

| | | | | T
16 20 24 28 32 36 40 44 48
Number of time slots

Figure 4.2: NMSE versus number of time slots (M = 256, N, = 4, S = 16,
SNR = 15dB)

4.2 Simulation Result

In Fig 4.1, we plot the NMSE as a function of transmit SNR. We observe that
T-PCA outperforms the conventional channel estimation techniques by a large
margin. For example, when SNR = 10dB, T-PCA achieves significant (more
than 9dB and 11dB) NMSE gains over the LMMSE and LS schemes, respec-
tively. Even when compared with the CS-based scheme, T-PCA achieves around
6 dB NMSE gain. This is because the mismatch between the true channel pa-
rameters and the quantized channel parameters is considerable in the CS-based
scheme while such is not the case for T-PCA since T-PCA estimates the channel
parameters in the continuous domain.

In Fig 4.2, we plot the NMSE as a function of the number of time slots. We
observe that T-PCA achieves more than 33% pilot overhead reduction over the
conventional schemes. For instance, to achieve the NMSE of —10dB, T-PCA

requires 24 time slots while the conventional schemes require more than 36 time

15 3'-! ‘._, L'.H [
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slots. This is not a surprise since the LMMSE and LS schemes estimate the full-
dimensional THz channel vector h directly so that the required number of time
slots is very large?. Whereas, by learning the complicated mapping between the
received pilot signals and the THz channel parameters using Transformer, T-
PCA can efficiently acquire the sparse THz channel parameters with a small
amount of pilot resources.

In Fig 4.3, we plot the NMSE as a function of the number of pilot subcarriers.
Since the proposed T-PCA promotes the correlation structure of received pilot
signals using the attention mechanism of Transformer, T-PCA achieves a sig-
nificant NMSE gain over the conventional schemes. For instance, when S = 20,
T-PCA achieves more than 1.8dB and 6 dB NMSE gains over the CNN and
CS-based schemes, respectively. Interestingly, the NMSE gain of T-PCA over

2In fact, to guarantee the accurate estimation of h,, the number of measurements TN,
should be larger than the number of antenna elements M. For example, when M = 256 and
N, = 4, we need to allocate more than 5 subframe (more than 50% of a frame in 5G NR) just
for the pilot transmission (14 slots/subframe x 5 subframe = 70 > M /N, = 64).

: s A



the conventional schemes increases with the number of pilot subcarriers. For ex-
ample, when the number of pilot subcarriers increases from S = 12 to S = 28,
the NMSE gain of T-PCA over the CNN-based scheme increases from 1.3dB
to 2dB.

17 ; .H kl 1_'.]'| (<



Chapter 5

Conclusion

In recent years, a remarkable success of DL in various disciplines (e.g., image
classification, speech recognition, and language translation) has stimulated in-
creasing interest in applying this paradigm to wireless communication systems.
In this paper, we proposed a DL-based channel acquisition technique for the
THz UM-MIMO systems. Intriguing feature of the proposed T-PCA is that to
promote the nonuniform and irregular correlation structures of the received pi-
lot signals, we exploit Transformer, a DL architecture that differently weights
each input data based on the correlations between the input data. Using the
attention mechanism of Transformer, T-PCA can facilitate the extraction of
spatially and temporally-correlated features inherent in the THz UM-MIMO
systems. In doing so, fast yet accurate channel parameter estimation can be
made with small pilot overhead. From the simulation results, we demonstrated
that T-PCA achieves more than 2.5dB NMSE gain and 33% pilot overhead
reduction over the conventional channel acquisition techniques. In our work, we

restricted our attention to channel estimation, but there are many interesting

-1
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applications of T-PCA such as channel feedback, beam tracking, and resource

allocation.
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Abstract (In Korean)

H|2}S| 2 = (terahertz; THz) 22 o5 48 o5 %@, (ultra massive-multiple

input multiple output; UM-MIMO)-2 6G
& EEE YT 7 e WY 7ler Al Qi THz UM-MIMO /\V\E“ =
gt &-gat=w ket Ad JH 50| Fasiry. Tyt ¢HHY 4eof whet
4y o Zrlehe stlsl =2 Qo Yo TH, A HEas Ao of3
20| ot B =FoA+= THz UM-MIMO A|AH-S QJ5F EfiA R 7|49t THz
Ad mtetelg &5 71 (Transformer-based parametric THz channel acquisi-
tion; T-PCA)o]gt= M 2-& | 219 (deep learning; DL) 7|4t 214 S & 7|&L
Alerettt. T-PCAE 94 dlolg te] A ¥AE 7|Rte =z ZF 49 HlolH
7S A tEA Foish= DL op7[8l A4 ¢l ER AL WS ALGSto] 41H
Aot Ad mEtulg (o 2k, A, A2 o]5) 1+ 537t wig drE
2AHAUAcR A2 odsl Aden: waHA Jeot Qd 4= D

in)
o)
m

H
Lo wo
4 ML 1o

o

L ESF ERAREHO Fo] W7 UZE (attention mechanism)-& E-83HO
FZ (feature extraction)of] Qlo] A o=l A5 o] A 21X E 8
9% 4 oItk 4FE Foko] SeL AL T-PCAT} TH, A JuE
Solm g oHFEE Folt o M AL melth

o gm %o ook
rlI o, —E‘
=

Jot

Fool: LAY, Hetdlzz B4 A2W, Ad 34, 4% 44, EdAL

SHH: 2021-25516
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