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Abstract

Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is

envisioned as a key technology to support ever-increasing data rates in 6G com-

munication systems. To make the most of THz UM-MIMO systems, acquisition

of accurate channel information is crucial. However, the THz channel acquisi-

tion is not easy due to the humongous pilot overhead that scales linearly with

the number of antennas. In this paper, we propose a novel deep learning (DL)-

based channel acquisition technique called Transformer-based parametric THz

channel acquisition (T-PCA) for the THz UM-MIMO systems. By learning the

complicated mapping function between the received pilot signal and the sparse

channel parameters (e.g., angles, distances, path gains) using Transformer, a

DL architecture that differently weights each input data based on the corre-

lations between the input data, T-PCA can make a fast yet accurate channel

estimation with a relatively small amount of pilot resources. Moreover, using

the attention mechanism of Transformer, we can promote the correlation struc-

ture of the received pilot signals in the feature extraction, thereby improving

the channel parameter estimation quality significantly. From the simulation re-

sults, we demonstrate that T-PCA is very effective in acquiring the THz channel

information and reducing the pilot overhead.

Keywords: Wireless communication, Terahertz communication systems, Chan-

nel estimation, Deep neural network, Transformer

Student Number: 2021-25516
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Chapter 1

Introduction

As a key technology to meet the demand for ever-increasing data rate in 6G, ter-

ahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) com-

munication has received a great deal of attention recently [1]. By exploiting

the plentiful spectrum resources in the THz frequency band (0.1 ∼ 10 THz)

along with a large number of antennas, THz UM-MIMO communications can

support way higher data rates than the conventional sub-6GHz and millimeter-

wave wireless communication systems can offer. To maximize the potential gain

of THz UM-MIMO systems, the base station (BS) needs to acquire accurate

downlink THz channel information. Main challenge of the THz UM-MIMO sys-

tems is that the channel exhibits the near-field effect characteristics since the

array aperture of the massive number of antenna elements is comparable to the

communication distance [2]. Since the wavefront of the near-field THz signal is

spherical, the THz channel can be expressed as a function of a few parameters

in the spherical domain including angle of departures (AoDs), angle of arrivals

(AoAs), distances, and path gains.
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Figure 1.1: Correlation structure of the received pilot signal in THz UM-MIMO

systems.

Recently, various techniques have been proposed for the acquisition of the

THz channel parameters [3, 4, 5, 6, 7]. In [3, 4], compressed sensing (CS)-based

channel acquisition approaches have been proposed. In [5, 6, 7], deep learning

(DL)-based approaches that learn the mapping function between the received

pilot signals and the channel parameters using deep neural network (DNN)

have been proposed. Among various DNN architectures, a convolutional neural

network (CNN) is popular due to its simplicity and ability to extract spatial

features from the received pilot signals [7]. A major drawback of CNN, in the

perspective of the THz channel parameter acquisition, is that it might not be

effective in extracting the correlation between the spaced-apart pilot signals

since the filter kernel and convolution operations are performed locally.

In the DL-based channel parameter estimator, a feature map is extracted

from the DNN using the received pilot signals. By the feature map, we mean

the low-dimensional vector containing core information (e.g., MIMO antenna
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array structure, locations of scatterers, and mobility of user equipment (UE))

of the large-dimensional input. To facilitate the feature extraction, one should

deliberately handle the correlation structure of the received pilot signals. No-

table characteristics of the received pilot signal of THz UM-MIMO systems are

twofold; First, the received pilot signals will have meaningful power only for

a few time slots. During the channel acquisition process, the BS employs the

multiple sharp training beams, each of which is directed toward distinct direc-

tions [8]. Thus, the received pilot signal will have a high power only when the

training beams are aligned with the direction of UE (see Fig 1.1). Second, the

THz channel is determined primarily by the scattering geometry around the

BS so the received pilot signals for each and every subcarrier can be expressed

as functions of the same geometric parameters (e.g. angles, distances), which

means that the received pilot signals, irrespective of their subcarrier positions,

are highly correlated.

An aim of this paper is to propose a DL-based channel acquisition tech-

nique for the THz UM-MIMO systems. The proposed technique, dubbed as

Transformer-based parametric THz channel acquisition (T-PCA), estimates the

channel parameters (angles, distances, path gains) using Transformer, a DL ar-

chitecture that differentially weights the significance of each input data (in our

case, the received pilot signals) using the attention mechanism [9]. To make the

most of the correlation structures of the received pilot signal, we employ two

distinct Transformer networks, i.e., temporal Transformer network (TTN) and

spatial Transformer network (STN). In TTN, using the received pilot signals

as inputs, the temporally-correlated features are extracted from the product

of the attention weight and the received pilot signal. Since only a small por-

tion of received pilot signals have a meaningful power, Transformer in TTN

is trained such that these dominant received pilot signals will have relatively

3



high attention weights. Clearly, this process will facilitate the extraction of the

temporally-correlated features. After that, using the low-dimensional features

generated from TTN as inputs, the spatio-temporally correlated features are

extracted in STN. As mentioned, the received pilot signals for all subcarriers

are expressed as functions of the same channel parameters so that all received

pilot signals, regardless of their positions, are correlated to each other. Main

purpose of Transformer in STN is to capture the correlated features of both the

adjacent and spaced-apart received pilot signals. Finally, the extracted features

are converted to the channel parameters via the fully-connected network.

From the simulation results, we demonstrate that T-PCA outperforms the

conventional channel acquisition schemes in terms of the normalized mean

square error (NMSE). For example, T-PCA achieves more than 5 dB NMSE

gain over the CS-based scheme. Even when compared with the CNN-based

scheme, T-PCA achieves around 2.5 dB NMSE gain.
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Chapter 2

Terahertz UM-MIMO System
Model

We consider the THz UM-MIMO OFDM systems where a single-antenna UE

transmits an uplink pilot signal to a BS equipped with a uniform linear array

(ULA) of M antennas. Specifically, T time slots and S subcarriers are used for

the uplink pilot transmission (see Fig 1.1). By exploiting the channel reciprocity

of time-division duplexing (TDD) systems, the BS can recycle the acquired

uplink channel information for the downlink data transmission.

In this setup, the received pilot signal vector yt,s ∈ CNr×1 of the s-th pilot

subcarrier at t-th time slot is given by

yt,s = WH
t hsxt,s + WH

t nt,s (2.1)

=
√
PtxW

H
t hs + ñt,s, (2.2)

where Nr is the number of RF chains in BS, xt,s =
√
Ptx is the uplink pilot,

Ptx is the transmit power of UE, hs ∈ CM×1 is the THz channel vector at s-th

subcarrier, Wt ∈ CM×Nr is the receive beamforming matrix at the t-th time
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slot, and nt,s ∼ CN (0, σ2
nIM ) is the additive Gaussian noise. By concatenating

the received pilot signals over T time slots, we obtain the received pilot signal

matrix at the s-th subcarrier Ys = [y1,s · · ·yT,s]
T ∈ CT×Nr .

One notable characteristic of THz UM-MIMO systems is that the channel

exhibits the near-field characteristics [2]. Since the signal wavefronts are spheri-

cal in the near-field channel, the phase difference between two antenna elements

is affected by the distance r as well as the angle θ. Therefore, the near-field ar-

ray steering vector is expressed as a function of spherical coordinates (θ, r). In

fact, the near-field array steering vector bs(θ, r) at s-th subcarrier is given by

[4]

bs(θ, r)=[e
−j 2π

λ
(1+ fs

fc
)(r1−r) · · · e−j 2π

λ
(1+ fs

fc
)(rM−r)

]T, (2.3)

where fc is the carrier frequency, fs is the baseband frequency of the s-th

subcarrier, and rm is the distance between the UE and the m-th BS antenna,

given by

rm = r − (m− 1)d sin θ + (m− 1)2
d2 cos2 θ

2r
. (2.4)

In this work, we use the near-field geometric THz channel model where

the uplink channel vector hs from the UE to the BS at the s-th subcarrier is

expressed as

hs =
P∑

p=1

αpe
−j2πfsτpbs(θp, rp), (2.5)

where P is the number of propagation paths, θp is the AoA, rp is the distance,

τp is the time delay, and αp is the path gain of the p-th path. Let θ = [θ1 · · · θP ]T

and r = [r1 · · · rP ]T be the angle and distance vectors, respectively, and αs =

[α1e
−j2πfsτ1 · · ·αP e

−j2πfsτP ]T be the path gain vector for the s-th subcarrier,

then hs can be succinctly expressed as a function of channel parameters:

hs = Bs(θ, r)αs, (2.6)
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where Bs(θ, r) = [bs(θ1, r1) · · ·bs(θP , rP )] ∈ CM×P is the near-field array steer-

ing matrix. Note that hs is parameterized by a few THz channel parameters,

i.e., angles θ, distances r, and path gains αs, whose numbers are the same as the

number of paths. Since the number of paths P (e.g., P = 1 ∼ 3) is much smaller

than the number of antennas M (e.g., M = 256 ∼ 1024) in the THz UM-MIMO

systems, one can significantly reduce the required number of measurements by

estimating the sparse channel parameters instead of the full-dimensional chan-

nel vector hs.
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Chapter 3

Transformer-based parametric
Terahertz Channel Acquisition

Main goal of the proposed T-PCA is to estimate the sparse THz channel pa-

rameters (i.e., angles, distances, and path gains) using Transformer. Intriguing

characteristic of T-PCA is that we extract the features of the THz UM-MIMO

received pilot signals using the attention mechanism of Transformer. In essence,

the attention mechanism facilitates the generation of the attention weights rep-

resenting the correlations between input data. Using the product of the atten-

tion weights and the received pilot signals as input, one can extract the spatially

and temporally-correlated features inherent in the THz UM-MIMO systems.

Key ingredient of T-PCA is the combination of Transformer and fully-connected

network to learn a complicated nonlinear mapping between the received pilot

signals {Ys}Ss=1 and the THz geometric channel parameters (θ, r):

{θ̂, r̂} = g({Ys}Ss=1;Γ), (3.1)
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where g is the mapping function and Γ are the network parameters. Once θ̂

and r̂ are acquired, the path gains {α̂s}Ss=1 can be easily estimated using the

conventional approaches such as the least squares estimator [10]:

α̂s = (
√
PWHBs(θ̂, r̂))†vec(YT

s ), s = 1, · · · , S, (3.2)

where W = [W1 · · ·WT ] ∈ CM×TNr . Using the obtained the channel parame-

ters (θ̂, r̂, {α̂s}Ss=1), we can reconstruct the THz channels {ĥs}Ss=1:

ĥs = Bs(θ̂, r̂)α̂s, s = 1, · · · , S. (3.3)

3.1 Basic of Transformer

In the conventional CNN-based acquisition technique, the features are extracted

by performing the convolution operation of a 2D/3D-shaped weight matrix

(called kernel) and a part of the received pilot signal [6]. While CNN is effective

in extracting the locally correlated features (e.g. correlation among antennas),

it might not be efficient in extracting the globally correlated feature due to the

locality of the filter kernel. Also, since the same kernel is multiplied to all input

signals, the nonuniform and irregular correlation structures of the received pilot

signals cannot be captured properly.

In a nutshell, Transformer extracts the features using the attention mecha-

nism. In the attention layer of Transformer, the correlations between the input

data (a.k.a., attention weight or attention map) are calculated and then mul-

tiplied to the input to generate the weighted input matrix [9]. Since the corre-

lations between each and every elements in the input sequences (a.k.a., token)

are used for the attention weight generation, Transformer can extract both the

locally and globally correlated features effectively.

To be specific, using the sequence of D×1 input vectors Y = [y1 · · ·yL]T ∈

CL×D, the attention layer constructs three different embedding matrices, i.e.,

9



(a) Attention map of TTN (b) Attention map of STN

Figure 3.1: Attention maps of TTN and STN.

the query Q = YWQ, the key K = YWK , and the value V = YWV where

WQ,WK ,WV ∈ CD×D are the weight matrices and L is the number of input

sequences. Since the query Q and the key K contains the features of the input

data, by performing the inner product of Q and K, we obtain the attention

map M ∈ CL×L:

M = fsoftmax(QKT/
√
D), (3.4)

where fsoftmax(Y) is a row-wise softmax function defined as [fsoftmax(Y)]i,j =

eYi,j/
∑

j e
Yi,j . Finally, by multiplying the attention map M with the value V,

we obtain the weighted input matrix (a.k.a., attention score) Z ∈ CL×D:

Z = MV, (3.5)

Once the attention score is obtained, the output vector passes through the

fully-connected network, generating the output feature of Transformer.

To demonstrate the effect of the attention map in capturing the correlation

structure of the received pilot signals, we plot the attention maps of TTN and

STN in Fig 3.1. From Fig 3.1a, one can observe that the attention weights

10



of TTN are concentrated on a small number of column vectors. Due to the

extremely narrow beamwidth of THz UM-MIMO systems (i.e., pencil beam),

the received pilot signals will contain the noise only when the training beams are

not aligned with the signal propagation paths. This means that only a few row

vectors of the received pilot signal matrix Ys = [y1,s · · ·yT,s]
T have relatively

high values (same for the key K generated from Ys). Since the attention map

is constructed from the inner product of Q and K, the attention weights are

concentrated on a few column vectors corresponding to the dominant received

pilot signals.

3.2 Network Architecture of T-PCA

In T-PCA, the received pilot signal yt,s is first separated into the real and imag-

inary parts ȳt,s = [Re(yt,s)
T Im(yt,s)

T]T ∈ R2Nr×1 and then concatenated

matrices Ys = [ȳ1,s · · · ȳT,s]
T ∈ RT×2Nr passes through the fully-connected

network to generate Xs = YsWe ∈ RT×D (We ∈ R2Nr×D is the weight ma-

trix). Then a representative vector x0,s ∈ RD×1, a trainable vector containing

the correlated feature of the input data, is appended to the input matrices as

X̄s = [x0,sX
T
s ]T ∈ R(T+1)×D [11]. Also, to indicate the position of each ele-

ment in the input data sequence, a trainable matrix called positional embedding

matrix Wpos ∈ R(T+1)×D is added as X̃s = X̄s +Wpos. After that, the encoded

input sequences {X̃s}Ss=1 sequentially pass through the multiple Transformer

blocks. In the last Transformer block, the temporal feature vectors {f ttns }Ss=1

are obtained from the first row vector of the output matrix.

Once the temporal feature matrix Fttn = [f ttn1 · · · f ttnS ]T ∈ RS×D is obtained,

Fttn is used as an input matrix of STN. Similar to TTN, the representative

vector and the positional embedding matrix are added to Fttn and then the

11
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Figure 3.2: Overall structure of T-PCA

output matrix passes through multiple Transformer blocks. Then the spatio-

temporal feature vector f stn ∈ RD×1 is obtained from the first row vector of

the output matrix of the last Transformer block.

The extracted spatio-temporal feature vector f stn passes through the fully-

connected network to generate the output vector zp = Wpf
stn + bp ∈ R2P×1

(Wp ∈ R2P×D is the weight matrix and bp ∈ R2P×1 is the bias vector). Af-

ter that, zp passes through the hyperbolic tangent layer ftanh(x) = ex−e−x

ex+e−x to

generate the desired THz channel parameters {θ̂, r̂}:

{θ̂, r̂} = ftanh(zp). (3.6)

The overall structure of T-PCA is depicted in Fig 3.2.
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Chapter 4

Simulation Result

4.1 Simulation Setup

In our simulation, we consider the THz UM-MISO OFDM systems where a

BS equipped with M = 256 antennas and Nr = 4 RF chains serves a single-

antenna UE. The UE is located randomly around the BS within the cell radius

of R = 50m. We use the wideband THz multi-path channel model where the

number of paths is P = 1, the carrier frequency is fc = 0.1THz, and the

channel bandwidth is B = 1GHz1. We set the numbers of subcarriers and time

slots for pilot transmission to S = 16 and T = 32, respectively. The angles

are generated randomly from [−π, π) and the distances are generated based

on the relative positions of BS and UE. We assume that the path gain is a

complex Gaussian random variable α ∼ CN (0, ρ) where ρ is the large-scale

fading coefficient accounting for the path loss and the shadow fading. Also, we

1In the THz systems, due to the severe path loss and directivity of THz band, the power of
line-of-sight (LoS) component is almost 100 times stronger than that of the non-line-of-sight
(NLoS) component [12].
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Figure 4.1: NMSE vs. SNR (M = 256, Nr = 4, T = 32, S = 16)

use the path loss model in 3GPP Rel. 16 [13].

In the proposed T-PCA, each Transformer network consists of two Trans-

former blocks with the embedding dimension D = 128. For the network pa-

rameter training, we use the unsupervised learning strategy where the network

parameters Γ are updated iteratively in a way to minimize the NMSE-based

loss function J(Γ) [14]:

J(Γ) =
1

S

S∑
s=1

||hs − ĥs||2

||hs||2
. (4.1)

As a performance metric, we use the normalized mean square error (NMSE)

defined as NMSE = 1
S

∑S
s=1

||ĥs−hs||2
||hs||2 . The number of training epochs and the

learning rate are set to Ntraining = 1000 and η = 10−3, respectively. Also, for

comparison, we use four benchmark channel acquisition schemes: 1) CNN-based

scheme [6], 2) compressed sensing (CS)-based scheme [3], 3) linear minimum

mean square error (LMMSE) estimator, and 4) least squares (LS) estimator.
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4.2 Simulation Result

In Fig 4.1, we plot the NMSE as a function of transmit SNR. We observe that

T-PCA outperforms the conventional channel estimation techniques by a large

margin. For example, when SNR = 10 dB, T-PCA achieves significant (more

than 9 dB and 11 dB) NMSE gains over the LMMSE and LS schemes, respec-

tively. Even when compared with the CS-based scheme, T-PCA achieves around

6 dB NMSE gain. This is because the mismatch between the true channel pa-

rameters and the quantized channel parameters is considerable in the CS-based

scheme while such is not the case for T-PCA since T-PCA estimates the channel

parameters in the continuous domain.

In Fig 4.2, we plot the NMSE as a function of the number of time slots. We

observe that T-PCA achieves more than 33% pilot overhead reduction over the

conventional schemes. For instance, to achieve the NMSE of −10 dB, T-PCA

requires 24 time slots while the conventional schemes require more than 36 time

15
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Figure 4.3: NMSE versus number of pilot subcarriers (M = 256, Nr = 4,
T = 32, SNR = 15 dB)

slots. This is not a surprise since the LMMSE and LS schemes estimate the full-

dimensional THz channel vector hs directly so that the required number of time

slots is very large2. Whereas, by learning the complicated mapping between the

received pilot signals and the THz channel parameters using Transformer, T-

PCA can efficiently acquire the sparse THz channel parameters with a small

amount of pilot resources.

In Fig 4.3, we plot the NMSE as a function of the number of pilot subcarriers.

Since the proposed T-PCA promotes the correlation structure of received pilot

signals using the attention mechanism of Transformer, T-PCA achieves a sig-

nificant NMSE gain over the conventional schemes. For instance, when S = 20,

T-PCA achieves more than 1.8 dB and 6 dB NMSE gains over the CNN and

CS-based schemes, respectively. Interestingly, the NMSE gain of T-PCA over

2In fact, to guarantee the accurate estimation of hs, the number of measurements TNr

should be larger than the number of antenna elements M . For example, when M = 256 and
Nr = 4, we need to allocate more than 5 subframe (more than 50% of a frame in 5G NR) just
for the pilot transmission (14 slots/subframe× 5 subframe = 70 > M/Nr = 64).
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the conventional schemes increases with the number of pilot subcarriers. For ex-

ample, when the number of pilot subcarriers increases from S = 12 to S = 28,

the NMSE gain of T-PCA over the CNN-based scheme increases from 1.3 dB

to 2 dB.
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Chapter 5

Conclusion

In recent years, a remarkable success of DL in various disciplines (e.g., image

classification, speech recognition, and language translation) has stimulated in-

creasing interest in applying this paradigm to wireless communication systems.

In this paper, we proposed a DL-based channel acquisition technique for the

THz UM-MIMO systems. Intriguing feature of the proposed T-PCA is that to

promote the nonuniform and irregular correlation structures of the received pi-

lot signals, we exploit Transformer, a DL architecture that differently weights

each input data based on the correlations between the input data. Using the

attention mechanism of Transformer, T-PCA can facilitate the extraction of

spatially and temporally-correlated features inherent in the THz UM-MIMO

systems. In doing so, fast yet accurate channel parameter estimation can be

made with small pilot overhead. From the simulation results, we demonstrated

that T-PCA achieves more than 2.5 dB NMSE gain and 33% pilot overhead

reduction over the conventional channel acquisition techniques. In our work, we

restricted our attention to channel estimation, but there are many interesting

18



applications of T-PCA such as channel feedback, beam tracking, and resource

allocation.
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Abstract (In Korean)

테라헤르츠 (terahertz; THz)초대규모다중입력다중출력 (ultra massive-multiple

input multiple output; UM-MIMO)은 6G 통신 시스템에서 증가하는 데이터 전

송 속도를 지원할 수 있는 핵심 기술로 각광받고 있다. THz UM-MIMO 시스템을

최대한 활용하려면 정확한 채널 정보 획득이 중요하다. 그러나 안테나 수에 따라

선형으로 증가하는 파일럿 오버헤드로 인해 정확한 THz 채널 획득하는 것에 어려

움이 있다. 본 논문에서는 THz UM-MIMO 시스템을 위한 트랜스포머 기반 THz

채널 파라미터 획득 기법 (Transformer-based parametric THz channel acquisi-

tion; T-PCA)이라는 새로운 딥 러닝 (deep learning; DL) 기반 채널 획득 기술을

제안한다. T-PCA는 입력 데이터 간의 상관 관계를 기반으로 각 입력 데이터의

가중치를 다르게 부여하는 DL 아키텍처인 트랜스포머를 사용하여 수신된 파일럿

신호와 채널 파라미터 (예: 각도, 거리, 경로 이득) 간의 복잡한 매핑 함수를 학습

함으로써 상대적으로 적은 파일럿 자원으로도 빠르면서 정확한 채널 추정을 할 수

있다. 또한 트랜스포머의 주의 메커니즘 (attention mechanism)을 활용함으로써

특징 추출 (feature extraction)에 있어 수신된 파일럿 신호의 상관 구조를 충분

히 반영할 수 있다. 실험을 통하여 우리는 제안하는 T-PCA가 THz 채널 정보를

획득하고 파일럿 오버헤드를 줄이는 데 매우 효과적임을 보인다.

주요어: 무선통신, 테라헤르츠 통신 시스템, 채널 추정, 심층 신경망, 트랜스포머

학번: 2021-25516
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