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Abstract 
 

Nayoung Lee 

Department of Naval Architecture and Ocean Engineering 

The Graduate School 

Seoul National University 

 

Recently, interest in digitalization is gradually increasing in the field of 

shipbuilding and marine. In particular, the digital twin enables monitoring by 

synchronizing the data of the real system with a virtual model in real-time and can 

be seen as a major platform that integrates various technologies related to 

digitalization. The digital twin consists of four major components: data, 

communication, model, and service. Among them, in the data and communication 

sector, much progress has been made due to the simultaneous development of new 

technologies such as the Internet of Things, big data, cloud, and 5G, and 

international standards such as ISO 23247, ISO/IEC30172, and 30173 have been 

established. It became. On the other hand, development in models and services, 

especially in the service sector, is relatively slow. The reason for this is that 

existing simulation models and analysis techniques lack the ability to handle and 

process sensor data collected and updated in real-time, and machine learning and 

data-based analysis techniques, which have recently emerged, are not immediately 

applicable to marine systems. It can be pointed out that additional engineering is 

required because it is not possible. 
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In this study, an anomaly detection model based on a machine learning model, a 

hazard detection model through sensor data prediction, and a process predictive 

maintenance model was modified and verified for use in marine systems. 

In first part, an anomaly detection model based on correlation between sensors 

that can be applied to process systems is proposed. This model is a modification of 

the MSCRED model. A two-dimensional correlation matrix calculated over time 

using Multivariate Time Series Data is used to generate a two-dimensional 

correlation matrix over time, and Conv-LSTM ED (Convolutional Long A 

reconstruction matrix is obtained using the -short Term Memory Encoder Decoder 

model, and a residual matrix is calculated through the difference with the input 

value. The anomaly score was calculated through the residual matrix calculated in 

this way in a different way from the existing method. This reflects the 

characteristics of the offshore process and enables monitoring of the entire process 

system even when there is no abnormal situation. Finally, the process state can be 

monitored by enabling classification of fault cases using the clustering technique 

for time-series abnormal scores. To verify the proposed anomaly detection model, 

a pilot-scale Mono Ethylene Glycol (MEG) regeneration process was used, and the 

model was trained using four normal operation data, one starting operation 

situation and four abnormal data. The model was verified using the abnormal 

situation data of pilot plant. As a result of learning using several normal driving 

data, the performance of the model was improved by performing time series 

synthesis based on specific normal data with high accuracy. As a result of the 

verification, anomaly detection was performed with an accuracy close to 88%, and 

as a result of clustering the anomaly score that came out as a result, it was 

confirmed that clustering was performed for each anomaly situation. 
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In the second part, Deep learning-based time series prediction framework for the 

lab-scale hydrate formation experiment was developed. This framework suggests 

methodologies to use the experimental data as the input of real-time time series 

prediction model, which can be scaled up for the field use using transfer learning. 

Preventing gas hydrate formation is critical in offshore gas and oil production 

systems.  Several models can predict hydrate formation, however, these empirical 

approaches have limitations due to dependency on geometries and fluid 

characteristics of the systems. The trends of hydrate formation or risk are 

considered statistical, which means there is no definite model to describe its 

behavior. Herein, we present a novel framework based on a combination of feature 

reduction methods and several deep learning models to predict the hydrate 

formation trend through the multivariate sensor data. Transition and segregation 

trends during hydrate formation were predicted in real-time using sequential time 

series data from the last 60 seconds. We employed various deep learning models 

(Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance 

the prediction ability of each model. Two groups of experimental data (200rpm, 

600rpm) were used for training and testing the prediction to examine the universal 

applicability of the model. Transfer learning in training the model was employed to 

apply the discrete experimental set to time-series data and enhance the accuracy. 

The results with higher layer numbers and a dropout rate of 0.2 ~ 0.6 showed the 

best performance. ARLSTM showed the smallest error among deep learning 

models and predicted the good trend of kinetic characteristics (transition and 

segregation part) during the hydrate formation. This approach based on deep 

learning can be adopted for risk and issue detection of pipelines in the gas 

production system. The research questions in this chapter are as follows : 
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In the third part, a novel framework using data-driven prognosis with fully deep 

learning models is suggested. Prognosis should be accompanied by fault detection, 

propagation prediction, and root cause diagnosis. This study proposes a framework 

for performing these tasks using deep learning-based methodologies. First, the 

feature extraction to latent space using a Convolutional Auto Encoder (CAE) to 

perform fault detection. Then, near-real-time prediction on the latent vectors using 

the Recurrent Neural Network (RNN). Online machine learning using transfer 

learning was applied to increase the accuracy of prediction in unlearned situations, 

since the fault case trajectory propagation of the chemical process is difficult to 

predict. Also autoregressive prediction using the trained RNN has been done to 

predict Remaining Useful Life (RUL). After that, the 𝑇! index for the prediction 

result was calculated, and the contribution on 𝑇! index was calculated by SHAP, 

a model agnostic eXplainable Artificial Intelligence (XAI) technique. This 

framework was tested and verified through CSTR and TEP datasets and showed 

the better prediction performance than other previous prognosis schemes.  

 

 

Keyword: Digitalization, Digital Transformation(DX), Digital Twin, Machine 

Learning, Process, Cyber Physical Twin, Anomaly Detection, Time Series 

Prediction, Prognosis 
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Chapter 1. Introduction 
 
 

1.1. Research background 

Recently, interest in digitalization is gradually increasing in the field of 

shipbuilding and marine. In particular, the digital twin enables monitoring by 

synchronizing the data of the real system with a virtual model in real-time and can 

be seen as a major platform that integrates various technologies related to 

digitalization. The digital twin consists of four major components: data, 

communication, model, and service. Among them, in the data and communication 

sector, much progress has been made due to the simultaneous development of new 

technologies such as the Internet of Things, big data, cloud, and 5G, and 

international standards such as ISO 23247, ISO/IEC30172/3 have been established. 

 

Fig. 1-1. simplified configuration of the digital twin 

 

 

Fig. 1-2. Components of the digital twin 
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Fig. 1-3. stages of digital twin and generic data analytics maturity model 

 

On the other hand, development in models and services, especially in the service 

sector, is relatively slow. The reason for this is that existing simulation models and 

analysis techniques lack the ability to handle and process sensor data collected and 

updated in real-time, and machine learning and data-based analysis techniques, 

which have recently emerged, are not immediately applicable to marine systems. It 

can be pointed out that additional engineering is required because it is not possible. 

In this study, an anomaly detection model based on a machine learning model, a 

hazard detection model through sensor data prediction, and a process predictive 

maintenance model was modified and verified for use in marine systems. 

 

In the Chapter 2, a plant-wide anomaly detection algorithm using Multi-Scale 

Convolutional Recurrent Encoder-Decoder (MSCRED) has been proposed. 

Automating the process plant anomaly detection using artificial intelligence is 

currently widely studied topic and is attracting attention of many researchers. But 

still, it is a challenging task to detect changes for the entire process, not for each 

single sensor data, and to perform anomaly detection and classify them by fault 
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type. This is because most of the anomaly detection algorithms perform without 

information on the degree of association between sensors. Accordingly, this study 

addresses the existing problems by expanding the Multi Scale Convolutional 

Recurrent Encoder Decoder (MSCRED) model, which allows the correlation 

between sensors to be matched in the form of 2D matrix to perform analysis 

detection based on changes in sensor correlation on a specific time window. In 

addition, the vulnerability of existing MSCRED models is compensated by 

replacing the anomaly score calculation method and threshold-based anomaly 

detection method with clustering technique using time series distance with normal 

data. The framework presented in this study was verified using the operational data 

of the actually operated pilot scale Mono Ethylene Glycol (MEG) regeneration 

plant, and additional studies were conducted on which data to use as training data 

to improve the accuracy of the model.  

The research questions in this chapter are as follows: 

• How to detect system wide anomaly using process sensor data and 

machine learning model? 

• Using MSCRED model on real world sensor data works well? 

• How does the training data affect on the performance of the detection 

model? 

• How to set the threshold for the given system? 

• How to classify the anomaly score result into a fault modes? 

 

In the Chapter 3, Deep learning-based time series prediction framework for the 

lab-scale hydrate formation experiment was developed. This framework suggests 

methodologies to use the experimental data as the input of real-time time series 
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prediction model, which can be scaled up for the field use using transfer learning. 

Preventing gas hydrate formation is critical in offshore gas and oil production 

systems.  Several models can predict hydrate formation, however, these empirical 

approaches have limitations due to dependency on geometries and fluid 

characteristics of the systems. The trends of hydrate formation or risk are 

considered statistical, which means there is no definite model to describe its 

behavior. Herein, we present a novel framework based on a combination of feature 

reduction methods and several deep learning models to predict the hydrate 

formation trend through the multivariate sensor data. Transition and segregation 

trends during hydrate formation were predicted in real-time using sequential time 

series data from the last 60 seconds. We employed various deep learning models 

(Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance 

the prediction ability of each model. Two groups of experimental data (200rpm, 

600rpm) were used for training and testing the prediction to examine the universal 

applicability of the model. Transfer learning in training the model was employed to 

apply the discrete experimental set into time-series data and enhance the accuracy. 

The results with higher layer numbers and a dropout rate of 0.2 ~ 0.6 showed the 

best performance. ARLSTM showed the smallest error among deep learning 

models and predicted the good trend of kinetic characteristics (transition and 

segregation part) during the hydrate formation. This approach based on deep 

learning can be adopted for risk and issue detection of pipelines in the gas 

production system. 

The research questions in this chapter are as follows: 

• How to select the feature from the many sensor data? 



 

 18 

• How to predict the event which are not like traditional time series 

prediction; non-stationary, non-periodical with statistical and single time 

occurrence event? 

• Training machine learning model with the experimental data which has 

set of multiple iterative time series data? 

• How to make the near-real time prediction model to use for field use? 

 

In the Chapter 4, a novel framework using data-driven prognosis with fully deep 

learning models is suggested. Prognosis should be accompanied by fault detection, 

propagation prediction, and root cause diagnosis. This study proposes a framework 

for performing these tasks using deep learning based methodologies. First, the 

feature extraction to latent space using an Convolutional AutoEncoder (CAE) to 

perform fault detection. Then, near-real-time prediction on the latent vectors using 

the Recurrent Neural Network (RNN). Online machine learning using transfer 

learning was applied to increase the accuracy of prediction in unlearned situations, 

since the fault case trajectory propagation of the chemical process is difficult to 

predict. Also autoregressive prediction using the trained RNN has been done to 

predict Remaining Useful Life (RUL). After that, the $T^2$ index for the 

prediction result was calculated, and the contribution on $T^2$ index was 

calculated by SHAP, a model agnostic eXplainable Artificial Intelligence (XAI) 

technique. This framework was tested and verified through CSTR and TEP datasets 

and showed the better prediction performance than other previous prognosis 

schemes. 

The research questions in this chapter are as follows: 
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• What is the best way to build the prognosis framework using different 

deep learning models?  

• How to boost the accuracy of the prediction on fault cases, when the fault 

case data is hard to get before it occurs? 

• How to predict the Remaining Useful Lifetime (RUL) using the deep 

learning-based prediction model? 

• Does diagnosis with an explainable artificial neural network on the 

prediction model available?  
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Chapter 2.  System-wide Anomaly Detection* 
 

 

2.1. Introduction 

 
Automatic anomaly detection and diagnosis [1, 2] are now largely getting 

attention, with the rising demand for the digitalization of process systems. 

Chemical process plants usually consist of many components like vessels, 

equipment, and pipelines. Sensors and controllers are attached to those components 

and gather data for the constant time interval. Indicators and controllers are the 

main categories of values we can get from the chemical plant. Indicators monitor 

the status like pressure, temperature, and liquid level. Controllers transmit values 

including Set Point (SP), Present Value (PV), and Valve Opening (OP). These 

measured values indicate the status of each component and the system and are used 

for monitoring. Sensor data in chemical processes has been measured for a long 

time since they are values closely related to the process yield, efficiency, and safety 

[3]. However, interpreting these values need domain knowledge, which makes it 

hard to automate. But with the recent rise of digital storage technology and big 

data-related technologies, the volume of collected data has been increasing and the 

algorithms for data utilization are becoming more sophisticated. Methodologies 

have been developed that enable machines to automatically perform necessary 

algorithms using data collected using machine learning and deep learning 

technologies. In addition, advances in sensor hardware and sensor data processing 

 
* This chapter is partially adapted from Plant-wide Anomaly Detection and Single-Value Monitoring 

using Conv-LSTM in Pilot-Scale MEG Regeneration Plant with authors N. Lee, H. Kim, J. Jang, and 
Y. Seo. (Preparing Submission) 
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technology have opened the way for various uses of the collected sensor data. With 

this, technologies that can automatically perform anomaly detection and failure 

cause analysis using sensor data using data-driven methods are starting to attract 

attention [4, 5]. Here we will suggest the monitoring and anomaly detection 

method using a deep learning model trained with historical sensor data. Though 

many AI methods do not use field data to ensure their accuracy [6], this study 

examines the proposed anomaly detection algorithm with real-world data which is 

obtained from the pilot plant. 

 

2.2. Related Work 

2.2.1 Fault monitoring and identification of the chemical 

plant 

Anomaly detection of a chemical process is a widely researched topic. Classical 

division for a process fault detection is like the following [7] : (1) data methods and 

signal methods (limit checking and trend checking, dimension reduction (PCA) [2], 

spectrum analysis and parametric models, pattern recognition (neural nets)) (2) 

Process model-based methods: parity equations, state observations, parameter 

estimation, nonlinear models (neural nets) (3) knowledge-based models : Expert 

systems, Fuzzy Logic [8].  

 

2.2.2 Process Anomaly Detection Using AI 

Most successful deep learning applications fall into the category of supervised 

learning. Assuming that the amount of data is sufficient, supervised learning can 
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now show guaranteed performance. Anomaly detection, however, cannot use 

supervised learning because anomalies are extraordinary in the whole data and not 

always present in the historical data [4, 9]. Instead, model training is performed 

using unsupervised learning such as clustering to find the normal state and detect 

anomalies by the deviance from the defined normal state.  

 Basically, Anomaly detection is a same task as defining the normal 

condition and finding its representation within the format of the given data. And AI 

model is trained entirely by the normal data given from operation. However, in 

chemical process plant (or in other applications), it is hard to define the normal 

status since its condition is constantly changing by demand and its range of normal 

status is large. 

 Within the domain of unsupervised models, the encoder-decoder model 

(also called an autoencoder model) is recently gaining its popularity due to its 

efficiency with a rather easy model architecture among the data-driven methods 

[10]. Also new ML methods such as Variational Auto Encoder – Generative 

Adversarial Network (VAE-GAN) was explored on fault detection on chemical 

process [11]. 

 

Table 2-1. Literature related to the major methodology in the ML area 

Literature Method Taxonomy 
Takehisa Yairi et al. 
(2001) 

K-Means Unsupervised, Classic ML, distance 

S. Ramaswamy et al., 
(2000) 

KNN Unsupervised, Classic ML, distance 

F. T. Liu, et al., 
(2008)  

Isolation 
Forest 

Unsupervised, Outlier detection, Trees 

P. Malhotra, et al., 
(2015) 

LSTM-AD Semi-supervised, Deep Learning, 
forecasting 
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M. Sakurada and T. 
Yairi. (2014) 

Autoencoder Semi-supervised, Deep Learning, 
reconstruction 

P. Malhotra, et al., 
(2016) 

Enc-Dec AD Semi-supervised, Deep Learning, 
reconstruction 

D. Park et al., (2018) LSTM-VAE Semi-supervised, Deep Learning, 
reconstruction 

Y. Su et al., (2019) OmniAnomaly Semi-supervised, Deep Learning, 
reconstruction 

C Zhang et al.,(2019) MSCRED Semi-supervised, Deep Learning, 
reconstruction 

 

Table 2-2. Literature related to the system correlation based anomaly 

detection on time series sensor data using Deep Learning 

Literature Method Outperforms Domain 
D. Hallac et al., 

(2017) TICC GMM, DTW, K-
means Driving sensor data 

D. Song et 
al.,(2018) 

Deep r-RSJBE 
(LSTM based) LSTM, CNN 

physical activity 
monitoring dataset, 

Sussex-Huawei 
Locomotion (SHL) 

dataset 
K. Jiang et 
al.(2019) CNN+BiLSTM AlexNet, CNN, 

BiLSTM 
Network Traffic Intrusion 

Detection 

I.S.Thaseen el 
al. (2020) CFS+ANN 

CNN+BiLSTM, 
Naïve BayesSVM, 

Devision Tree, 
Random Tree, CNN, 

AlexNet 

Network Intrusion 
Detection 

 

 

 

2.2.3 Plant-wide Anomaly Detection 

There are several advantages to developing a deep learning model that performs 

anomaly detection for the entire process with a single algorithm. There are some 

studies on plant-wide anomaly detection without deep-learning, as principal 

component analysis [12] or local outlier factor [3]. The reason for using a deep 

learning model that utilizes data from the entire process is that, first, creating a 
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combined model reduces the number of models to be trained much more than 

creating an individual anomaly detection algorithm model for each signal. Second, 

it is possible to detect anomalies in consideration of the connectivity between the 

sensors. Third, when an abnormality is detected, it can be explained in which part 

and for what reason in one deep learning model. However, this plantwide anomaly 

detection is not quite well researched in this field. MSCRED [13] considers every 

sensor data and its correlation by introducing a signature matrix. This signature 

matrix is a correlation matrix for a given time-series window. For a given time 

window, the signature matrix shows the system status by showing the average 

value of sensor value and the correlation between different pairs of the sensor time-

series data. multiscale anomaly detection is enabled by a multiple encoder which 

scales system into many stages. 

MSCRED has been used steadily in the field of anomaly detection in systems 

utilizing multivariate sensor data [14] and has been used as a basis for new 

algorithms [15] and demonstrated their usefulness. It is also receiving a lot of 

attention in the industrial field, which is thought to be due to MSCRED's efficient 

combination of association analysis and time series prediction to be considered in 

the industry. It is noteworthy that the cases used for predictive maintenance in the 

field of manufacturing were used. 

 

2.2.4 Timeseries Anomaly Detection 

Many of the process anomaly detection proposed so far have mainly been 

algorithms for performing fault diagnosis based on past data [16]. For this reason, 

although various anomaly detection models and algorithms have appeared, they 
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have not been actively introduced in the actual process. What is needed in the 

actual process is the prognosis, which predicts process abnormalities that will occur 

in the future and prevents them in advance, because this process was impossible 

using existing algorithms. As a method to compensate for this, a method of 

combining a recently introduced time series prediction model with an anomaly 

detection model may be introduced. Predictive maintenance is possible if the 

propagation of future sensor data is predicted using the existing process sensor data 

and the existing anomaly detection algorithm is introduced for the predicted value. 

A time series is not simply a set of values according to a time index, but a case in 

which the value of the previous time step affects the next time step. Time series-

based forecasting has been mainly done in the fields of stock and weather 

forecasting and control systems. 

Within the fault identification model, it is able to put timeseries model inside 

the anomaly detection architecture. RNN cells can be used after the encoder, and 

pass the output value to the decoder. Also, classical autoregressive models can also 

be used as a bridge between the encoder and decoder, but not implemented in this 

paper.  

It also enables dynamic fault detection in chemical process domain. In 

MSCRED framework, employing conv-LSTM model allows the time-series 

prediction. 
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2.3. Experiment: Pilot-plant data for MEG regeneration 

process 

The proposed model for abnormally detection is applied in the experimental plant 

(pilot scale) from MEG regeneration process, which is to recover a high 

concentration of MEG aqueous solution (Lean MEG) from low concentration of 

MEG aqueous solution (Rich MEG) and remove the salts inside the aqueous 

solution [17].  

 

2.3.1. Experimental apparatus and procedure 

Detailed description regarding the materials, equipment & sensor information 

employed in the present study, are included in our previous work [25]. The sensor 

data measured were recorded every 60 seconds through data acquisition system. 

The pilot plant of the MEG regeneration process consists of 4 main units: storage 

tank, pretreatment, distillation column, reclamation as shown in Fig. 2-1. The rich 

MEG solution (feed stream), of which the concentration of MEG is around 50 

wt%, was made with mixing the MEG and water at 40 ºC in two feed tanks 

(T101A, T101B) in advance. It is noted that the operating conditions in each 

equipment described are based on the normal operation. The feed entered the pre-

treatment vessel (V101) with a constant mass flow rate (200±10kg/hr). The 

purpose of vessel was to eliminate a small amount of divalent salt from the solution 

under the conditions of 80 ºC and 150 kPa. However, we didn’t include the 

observation of divalent salts in this paper. After the pre-treatment unit, the water 

from the solution stream was evaporated in the distillation column (C101) to 

increase the MEG concentration in the solution to 80 – 90wt%, called lean MEG. 
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The operating temperature of reboiler in distillation unit was controlled with the 

range of 125 ºC to 155 ºC. The bottom product of the distillation column, lean 

MEG, was split into two streams and one of them was entered into the reclamation 

unit. The purpose of the reclamation vessel (V111) was to flash the lean MEG 

solution to vapor phase and remove the residual monovalent salt (NaCl in this 

work) as the liquid phase under the vacuum condition. The vaporized lean MEG 

from the reclamation vessel were cooled down to liquid phase and mixed with the 

stream from bottom of distillation column. The combined stream returned to the 

feed tanks (T101 A/B). The NaCl liquid slurry was removed through filter units 

(F111 A/B).  

 
Fig. 2-1. Process flow diagram of pilot-scale MEG regeneration system 

 
 
Table 2-3. Description of operating conditions of units for the pilot-scale MEG 

regeneration plant. 

Unit Name Object Size 
Operatin

g 
condition 

Design 
condition 

(P/T) 
Feed T101A/ Storage 1.20 m3×2 F : 200 - 
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tank B tank kg/hr 
T : 313 K 

P : 100 
kPa 

Pretreat
ment 

V101 Flash tank 0.95 m(ID) 
×1.40m(H) 

F : 200 
kg/hr 

T : 353K 
P : 150 

kPa 

- 

E101 Recycle 
heater 

1.02m(ID)×0.0
1m(L) - 

1. Shell side : 
1080kPa/483K 
2. tube side : 
900kPa/403K 

F101A/
B Filter - - 750kPa/383K 

Distillat
ion 

column 

E103 Condenser 2.12m(ID) 
×0.012m(L) - 

1. Shell side : 
600 kPa/348K 
2. tube side : 
280kPa/413K 

V102 Reflux 
drum 0.043m3 

T : 372 – 
374 K 

P : 100 -
105 kPa 

280 kPa/373K 

C101 Tower 0.2545m(ID) 
×8.00m(H) - 280 kPa/473K 

E102 Reboiler 0.168 m3 

T : 398 – 
418 K 
P : 105 

kPa 

1. Shell side : 
280kPa/473K 
2. tube side : 

1080kPa/483K 

E104 
Column 
Bottom 
cooler 

1.61m(ID) 
×0.015m(L) - 

1. Shell side : 
600kPa/348K 
2. tube side : 
750kPa/473K 

Reclam
ation 

V111 Flash tank 0.55m(ID) 
×1.05m(H) 

F : 20 
kg/hr 

T : 400 - 
402K 

P : 11 kPa 

450 kPa/413K 

E111 
Reclamati

on inlet 
heater 

0.20m(ID) 
×0.018m(L) - 

1. Shell side : 
1080kPa/483K 
2. tube side : 
600kPa/453K 

E112 OVHD 
condenser 

1.61m(ID)×0.0
15m(L) - 

1. Shell side : 
600kPa/348K 
2. tube side : 
450kPa/413K 

V112 OVHD 
receiver 

2.12m(ID)×5.5
0m(H) - 450 kPa/413K 
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VP111 
Vacuum 
pump 

package 
- - - 

F111A/
B Filter - - 600kPa/433K 

 

 
Table 2-4. Description of sensors for the pilot-scale MEG regeneration plant 

Variables Sensor name Description 

Flowrate 

FIC 4010_PV Flowrate from feed tank (T101A/B) to 
pretreatment (V101) 

FIC_4003_PV Flowrate from pretreatment(V101) to filter 
(F101A/F101B) 

FIC_4005_PV Reflux flowrate of condenser (V102) to 
distillation column (C101) 

FIC_4004_PV Flowrate from bottom of column (E102) to 
reclamation vessel(V111) 

FIC_4014_PV Steam flowrate to reboiler 
FIC_4102_PV Reflux flowrate of reclamation vessel(V111) 

Pressure 
PI_4001_PV Pressure of pretreatment vessel (V101) 
PI_4002_PV Pressure of distillation column (C101) 

PIC_4101_PV Pressure of reclamation vessel (V111) 

Temperatur
e 

TI_4001_PV Temperature of pretreatment vessel (V101) 

TIC_4004_PV Flow temperature after pretreatment heat 
exchanger(E101) 

TI_4005_PV Flow temperature before distillation column 
(C101) 

TI_4010_PV Column internal temperature sensor 1 - 
Overhead temperature 

TIC_4011_PV Column internal temperature sensor 2 - 1st 
packing column 

TI_4012_PV Column internal temperature sensor 3 - 2nd 
packing column 

TIC_4014_PV Column internal temperature sensor 3 - 3rd 
packing column 

TI_4015_PV Column internal temperature sensor 4 - 
Reboiler temperature 

TI_4016_PV Column internal temperature - condenser 
receiver tank(V102) 

TI_4102_PV Temperature of reclamation vessel (V111) - 
top 

TI_4106_PV Temperature of overhead receiver to 
reclamation vessel (V112) 
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TIC_4052_PV Flow temperature after pretreatment vessel to 
filter (F401A/B) 

Level 
(liquid level 

percent) 

LI_4001A_PV Liquid level percent of feed tank (T101A) 
LI_4001B_PV Liquid level percent of feed tank (T101B) 

LIC_4002_PV Liquid level percent of condenser receiver 
tank(V102) 

LIC_4003_PV Liquid level percent of reboiler (E102) 
LIC_4111_PV Liquid level percent of pretreatment (V101) 

LIC_4103_PV Liquid level percent of reclamation vessel 
(V111) 

LIC_4104_PV Liquid level percent of overhead receiver to 
reclamation vessel (V112) 

 
 

2.3.2. Operation case 

  In this work, the simulation contains normal and abnormal operations. The 

normal operations consist of 4 cases, which contain the operating conditions of 

equipment and streams within the normal operating tolerance range. Each normal 

operation case is not a continuous process. A case name with ‘normal-total’ is a 

process in which each normal operation case is sequentially combined over time, 

and there is a discontinuity in the connection range of each case. The normal-total 

data and each of four cases were used to train the models.   

For verifying the algorithm used, four abnormal operation cases have tested, 

which means the operating condition goes outrange of the normal conditions. 

Table 2-5. summarized what is the event and how to take action for solving the 

event for each issue case. Issue-1 had the increase of liquid level percent of 

LIC003 in reboiler of column unit (E102). The liquid level percent of LIC003 was 

measured exceeded the operating range for normal operation. To decrease of the 

liquid level percent of LIC003, the flow rate of lean MEG at the bottom of the 

column should be increased. The value of FIC004 was manipulated to increase. 

Issue-2 described abruptly shutdown of feed flowrate controlled by FIC010 at 1.6 
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hr of operation. Accordingly, the liquid level percent (LIC001) of vessel V101 was 

reduced. Afterward, the FIC010 turned on with 250 kg/hr, which is higher than the 

normal operating condition of 200 kg/hr at 2.6 hr. Hence, the liquid level precent of 

V101 (value of LIC001) started to increase. Issue-3 case indicates a situation in 

which the problem continues to become more serious after the problem has 

occurred. The initial problem happened from the decrease of steam flowrate for 

reboiler (FIC014) at 1.5 hr. Liquid level percent of condenser (V102) at column 

(LIC002) results in decreasing due to lowering the operating temperature of 

distillation column (C101). The operator rapidly turned down the reflux flowrate 

from the condenser (FIC005) to zero for 5 minutes at 1.66 hr of operation time. 

Afterward, the value of FIC005 returned to original value (20 kg/hr). However, 

liquid level percent at LIC002 kept increasing to 77.2%, which is still abnormal 

operating condition. Issue-4 showed the abnormal operation with emergency 

shutdown. The issue occurred from the failure of heat exchanger, E111. Due to the 

failure of E111, the operating temperature of reclamation vessel, V111, was 

dropped and measured in TI102. Lower operating temperature led to decrease the 

amount of vapor to be flashed and increased the liquid level percent of V111, 

measured by LIC111. However, meaningful action has not been taken at LIC111 

and the measure value of LIC111 (liquid level percent of V111) increased 

continuously. The case was decided to emergency shutdown at around 12 hrs. The 

experimental profiles is described in section 5 for comparison with the model 

results. 
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Table 2-5. Summary of each abnormal operation case (issue) with event and 

action 

 

 

2.4. Model Framework 

In this study, we applied modified MSCRED framework as shown in 

Fig. 2. This framework suggests the combination of signature matrix and 

conv-LSTM ED model with Anoamly score calculation. conv-LSTM ED 

model has convolutional encoder followed by conv-LSTM with attention, 

followed by convolutional decoder. the model has been optimized for Mean 

Squared Error (MSE) with Adam stochastic gradient descent. 

Chemical process is a complex system with multivariate time series 

data of the networked sensors [21], where its measured data are physically 

interconnected and influence each other throughout the system. Also the 

measured values are closely interconnected with the static and dynamic 

status of the previous data. here, sensor data from the chemical plant is 

dependent with physical dependency by its adjacency of system and 

Case name Event Action for solving the 
event 

Issue-1 Liquid level percent of LIC003 was 
increased. 

Increase the flowrate of 
FIC004 (at 5.8 hr) 

Issue-2 Feed flowrate of FIC010 was 
abruptly shutdown. 

FIC010 restarted with 
target flowrate. 

Issue-3 

Steam flowrate for reboiler 
(FIC014) was decreased at 1.5 hr. 

Liquid level percent of condenser at 
column (LIC002) was decreased. 

FIC005 manipulated to 
stop the reflux flowrate to 

C101 from V102 for 5 
minutes at 1.66 hr. 

Issue-4 

Heat exchanger, E111, failed. 
Temperature of V111(TI102) was 
dropped and liquid level percent of 

V111 (LIC111) was increased. 

N/A. The operation was 
emergency terminated. 
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temporal continuity of each data points. This spatio-temporal dependency 

affects a lot in system monitoring. However, there is not many existing 

machine learning models that physically implements both spatial and 

temporal relationships. For spatially related (e.g. image) data, Convolutional 

Neural Network (CNN) is used for processing. For temporary related (e.g. 

audio signal) data, Recurrent Neural Network (RNN) is used for processing. 

To reflect both spatial and temporal data, conv-LSTM model has been used 

[26].   

         

 

Fig. 2-2. Configuration of the modified MSCRED framework with 4 encoding-

decoding layers 

 
 

2.4.1. Signature Matrix 

The signature matrix was introduced to represent the correlation of two 

given time-series signals. With two input sensor data(𝑖th and 𝑗th) under the 

same window of length 𝜔 at time 𝑡, 𝑥!" = (𝑥!#$" , 𝑥!#$"$%, …	 , 𝑥!#) and 
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𝑥&" = (𝑥&#$" , 𝑥&#$"$%, …	 , 𝑥&#), The (𝑖, 𝑗) component of the signature matrix 

at time t 𝑀# is 𝑚!&
#  , and this is the sum of the component-wise 

multiplication divided by window length 𝜔. 

𝑚!&
# =

∑ 𝑥!#$'𝑥&#$'"
'()

𝜔  (2-1) 

 

Signature matrix using above correlation value showed better performance 

than using correlation coefficients, such as Kendall or Spearman 

coefficients. Calculating this value for the whole combination of sensors 

makes the signature matrix 𝑀# which is a symmetric matrix However, 

unlike the signature matrix, the reconstructed matrix, the output of the 

Conv-LSTM ED model, is not always a symmetric due to the non-linearity 

of conv-LSTM model and nature of the encoder-decoder architecture. 

 

2.4.2. MSCRED Model 

2.4.2.1. Conv-LSTM 

Conv-LSTM [26] model is an extended version of an LSTM model, which 

allows larger dimension input for the conventional LSTM model. This 

model was initially used in video processing [26] and was used to find out 

how the motion of pixels changes over time in the data in the form of a 

moving image in which several images are overlapped over time. Although 

this study does not deal with image or image processing, the conv-LSTM 
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model was chosen since the correlation calculation matrix between sensor 

data used as an input value has the same data format as the image. This 

allows conv-LSTM to handle the spatiotemporal data 

In the Conv-LSTM model, each cell undergoes the following computational 

steps. 

𝑖# = 𝜎(𝑊*! ∗ 𝒳# +𝑊+! ∗ ℋ#$% +𝑊,! ∘ 𝒞#$% + 𝑏!)	

𝑓# = 𝜎9𝑊*- ∗ 𝒳# +𝑊+- ∗ ℋ#$% +𝑊,- ∘ 𝒞#$% + 𝑏-:	

𝒞# = 𝑓# ∘ 𝒞#$% + 𝑖# ∘ tanh(𝑊*, ∗ 𝒳# +𝑊+, ∗ ℋ#$% + 𝑏,)	

𝑜# = 𝜎(𝑊*. ∗ 𝒳# +𝑊+. ∗ ℋ#$% +𝑊,. ∘ 𝒞# + 𝑏.)	

ℋ# = 𝑜# ∘ tanh	(𝒞#) 

(2-2) 

 

𝒳 is the feature maps, 𝑊 is a convolutional kernel, ℋ is a hidden state, 

𝒞 is cell output, 𝑏 is the bias parameter of a given layer, 𝑓, 𝑖 and 𝑜 is gate 

tensor, 𝜎 is the sigmoid function, ∘ is Hadamard product, and ∗ 

convolutional operator. In the MSCRED framework, temporal attention was 

adopted in the current state estimate in the conv-LSTM model to selectively 

give weight to previous timesteps. To do this, the output of the feature map 

is given as follows: 
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ℋ# = Σ!∈(#$+,#)𝛼!ℋ! , 𝛼!

=
exp	 E𝑉𝑒𝑐(ℋ

#)3𝑉𝑒𝑐(ℋ!)
𝒳 I

Σ!∈(#$+,#)exp	 E
𝑉𝑒𝑐(ℋ#)3𝑉𝑒𝑐(ℋ!)

𝒳 I
 

(2-3) 

 

Here, ℋ is the last hidden state, ℎ is step length, 𝛼 is importance weights 

of previous steps through a softmax function, 𝑉𝑒𝑐 means vector, and 𝒳 is 

arbitrary rescale factor (here, 𝒳 = 5). This is slightly different from the 

original attention mechanism [27] as this does not employ transformers and 

context parameters.  

 

2.4.2.2. Encoder-Decoder Model 

The encoder-decoder structure is also called an autoencoder, and this 

methodology is widely used for detecting abnormalities not only in the field 

of chemical engineering [28] but in general time-series data [9, 16, 18]. and 

has proven its usefulness. In addition, research on process anomaly 

detection using many advanced autoencoder models initiated in the field of 

machine learning is also actively underway. As a method using an 

autoencoder, a deep learning model is created in which the dimension is 

reduced first and then increased again. In addition, learning is conducted to 

modify the internal parameters so that the normal data can be used to 

produce output data identical to the input data. The produced output is 
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called reconstructed data. When the test data is similar to the data used for 

the training data after completion of the training, the reconstructed data is 

almost the same as the input data. However, when test data show different 

characteristics from the training data, the reconstructed data is different 

from the input data. It results that the larger the difference between input 

and reconstructed data when the more different the abnormal value from the 

normal data value used as the training data. 

 

2.4.2.3. Encoder  

Encoders are responsible for dimension reduction and can take several 

different forms. The general model employs the form of a basic dense neural 

network and reduces the number of cells in the anomaly detection. In this 

paper, the model uses the convolution operation functions as an encoder 

[29], which is typically used in image processing [30]. At the same time, the 

conv-LSTM model is employed for each encoding step so that the results 

from multiple encoding steps could be used. In other words, the four-step 

encoder model using fully convolutional layer [31] is combined. 

𝒳# = 𝑓(𝑊 ∗ 𝒳# + 𝑏) (2-4) 

Here the function 𝑓 denotes activation function, 𝒳# is output feature map 

of the previous layer at time 𝑡, 𝑊 is convolutional kernels of size 

𝑘 × 𝑘 × 𝑑 , 𝑏 is a bias parameter, ∗ is convolutional operation. Selection 

of the number of the convolutional layer is arbitrary, however, this can be 
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affecting the size of the result since encoding allows to capture of the 

interconnectivity between sensors.  

 

2.4.2.4. Decoder  

The convolutional decoder has a symmetric architecture with the 

convolution encoder, with its layer and the size of the kernels. As shown in 

Eq. (5), The last decoder can decipher the values that passed through the 

conv-LSTM in the last encoder, and compute the other layers in reverse 

order. If not in the last layer, decoders must go through the process of 

adding the value of the previous output to the current output, to sum up the 

branches that entered the encoder and conv-LSTM.  

𝒳#,4$% = O 𝑓(𝑊#,4 ⊛ℋ#,4 + 𝑏#,4) 𝑙 = 	𝐿
𝑓(𝑊#,4 ⊛ [ℋ#,4⨁𝒳#,4] + 𝑏#,4) 𝑙 ≠ 𝐿

 (2-5) 

Here the function 𝑓 denotes activation function, 𝒳# is output of decoder 

at time t, 𝑊 is filter kernels which is same as convolutional kernel of each 

layer of size 𝑘 × 𝑘 × 𝑑 , 𝑏 is a bias parameter, 𝑙 is decoder number, 𝐿 is 

the largest decoder number, ⊛ is deconvolutional operation, and	⨁ is 

concatenation operation. 

 

2.4.2.5. Loss Function 

Since this is an encoder-decoder model as whole, the output of the model is 

the reconstructed matrix. Loss function is the sum of element wise 
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difference (L2 norm) between reconstructed matrix and signature matrix 

used as original input for whole time series. 
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Where 𝑠 is number of windows, 𝑛 is number of sensors, 𝑡 is the 

temporal length of the input data, 𝑖 is the row index of the matrix, 𝑗 is 

column index of the matrix, 𝑠 is number the of windows and 𝑐 is the 

index of windows. Adam optimizer was employed to minimize the loss.   

 

2.4.3. Anomaly Score 

Anomaly score is a sum of values in elements of Loss matrix in the original 

paper [21]. Here we introduce the state monitoring variable L(t), which 

processed under deep learning model to show single time-series monitoring. 
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 Where 𝑠 is number of windows, 𝑛 is number of sensors, 𝑡 is the 

temporal length of the input data. 

 

 

2.4.3.1. Anomaly Score Calculation 

The anomaly score is calculated over time. The score is greater when the 

value change is farther away compared to the normal state. However, the 
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large deviation of the values at a specific point does not mean that the score 

may increase and be vulnerable even if the overall time series pattern 

changes. This is because the conv-LSTM model can detect patterns on a 

continuous time series and may vary depending on the model configuration. 

That is, the anomaly score can produce different results depending on which 

anomaly detection model is used. 

In original MSCRED framework, anomaly score is calculated as a total 

sum of absolute values from reconstructed matrix, which is only larger than 

a predefined threshold value for each time window. However, in this work, 

anomaly score is a simple sum of absolute values from the whole 

reconstructed matrix for each time window regardless of the threshold 

value. The calculated score can see how the value propagates before the 

abnormal situation occurs. By this method, it is possible to monitor the 

status change during the non-anomaly state. Also, this allows the setting of a 

system-wide threshold rather than setting the threshold for each sensor, 

which is harder to optimize the threshold value. Threshold value is set by 

examining the output value of the normal case data. Using the threshold 

value before summing up the elements of the matrix makes hard to see the 

state of the process before the faults occur.  

In addition, empirical analysis of many different abnormal conditions is 

required to obtain the threshold, but in the case of chemical processes, there 

are not many analyses on the anomaly cases which leads to the failure of the 

process. Unlike mechanical systems, where the development of the existing 
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anomaly detection methodology is made, the chemical process may already 

be a serious problem even if minor sensor changes do not lead to major 

changes. Simply because the range of change is large does not mean that the 

problem is big. To prevent this situation, the threshold setting was excluded 

to prevent the prediction of a specific anomaly state if the threshold is set 

without analysis. and instead, time series classification was introduced to 

compensate for this, so that the normal state and anomaly state could be 

classified through clustering between the derived anomaly scores. 

 

2.4.4. Fault Classification by Anomaly Score Clustering 

Time series clustering is a general clustering technique performed 

according to time series [32]. This process was performed to replace the 

general threshold setting method for anonymous detection. Clustering uses 

distance to find similar clusters. For distance metric, correlation 

coefficients(including Kendall and Spearman correlation coefficient), 

Euclidean, MAPE(Maximum Averaged Percentage Error), and 

CBD(Compression Based Dissimilarity) [33] has been used in this paper. 

The distance was used to identify how the anomaly score is far from the 

normal case and thence classify the fault. Here, In addition, a dendrogram 

was written according to the degree of association so that it could be 

visualized. 
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2.5. Results 

2.5.1. Environmental Settings  

Environment : Google Colab with CPU Configuration of Intel(R) Xeon 

CPU 2.30GHz Dual CPU with Ubuntu 18.04 

 

2.5.2. Anomaly Score Result for Issues 

The anomaly score above a threshold indicates that the anomalies are 

more likely to appear. In this study, the threshold for anomaly score was 

calculated from the statistical distribution of the normal data’s model output. 

The normal value was put into the trained conv-LSTM model as an input 

value, and then the distribution of model output (anomaly score) was 

checked. After that, the boundary value of the distribution was set to 

threshold. The threshold value is set as constant value regardless of the 

situation, which is related only to the type of normal data used in training. 

Currently, it is a threshold value derived as a maximum value when trained 

using all four normal data, and is 0.94.  

Fig. 2-3 shows experimental and anomaly score trends with event 

moments for each issue (Issue-1, -2, -3, -4 as (a), (b), (c), (d), respectively). 

Anomaly scores are obtained from the model with different windows 

lengths of 10, 30, and 60. It should be noted that the time interval for each 

window is 0.015hr (53sec). Since the model output can be obtained after the 

largest input length, model result starts from 0.883h, not from 0h. Overall, 
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the period where the calculated anomaly score exceeded the threshold was 

observed similar to the section in which the event occurred in the 

experiment (see Fig. 2-3). In addition, when comparing the above anomaly 

detection results with the control point, it was seen that the anomaly scores 

decreased at the same point with the control action had been  taken.  

Depending on the size of the window, the value of the anonymous 

score appears differently. If the window size is small, it is suitable to catch 

more than short cycles, and if the window size is large, it is suitable to 

detect Anomaly with long cycles. Issue-1 (Fig. 2-3a)  and Issue-3 (Fig. 2-

3c) have some similar tendencies, which can be seen as cases where the 

cycle of abnormal situations is not clear or noisy.  

On the other hand, Issue-4 (Fig. 2-3d) shows the different trend 

depending on the size of window. It shows a similar score value on different 

size of window at the beginning, but the calculated score shows a different 

trend after 7 hrs of operation. The trend for 10 size of window shows similar 

trend to size of 60 but different to size of 30. This means that the period of 

the abnormal pattern appears only as a combination of a shorter period of 10 

or less and a longer period of 60 or more compared to an intermediate length 

pattern of about 30. According to the experimental data, the temperature of 

V111 vessel (TI102) drops sharply after 10 hours. As a result, the liquid 

level (LIC111) increases and finally exceeds the normal operating range 

(around 60%). The results shows that the score calculated from window size 
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of 10/60 tend to follow better than the scores calculated with a window size 

of 30. 

In the case of Issue-2 (Fig. 2-3b), the score calculated with each size of 

window shows the different trend for each section. At 2.5hr to 3.5hr, the 

score in window size of 10 is significantly higher than in windows 30 and 

60, so it can be considered that an abnormal situation with a short cycle may 

have occurred at this time. From 3.5 hr to 7 hr, the score at window 30 is 

remarkably high, so it may be thought that the cycle of abnormal situations 

may have been a little longer than at 2.5 hr to 3.5hr. 

Table 2-6. Accuracy of anomaly detection by Issues and windows  

 

Table 2-6. shows the accuracy of the anomaly detection result by different 

window length. However, each window length detects different anomaly so 

detection with a single window is not enough. For Issue-4, detection 

accuracy difference between window 30 and 60 is about 47%, which is very 

high. So, to derive the single system-wide anomaly score, anomaly scores 

obtained by different windows should be combined. Max index identifies 

anomaly if one of the scores among all windows exceeds threshold. Mean 

 Issue 1 Issue 2 Issue 3 Issue 4 
Max Index  87.2% 78.9% 49.8% 88.0% 

Mean 
Index  78.6% 54.5% 49.5% 79.5% 

Window 
10 84.5% 64.0% 58.6% 67.6% 

Window 
30 82.7% 55.3% 49.5% 39.1% 

Window 
60 73.6% 58.2% 49.5% 86.7% 
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index averages all scores (in this case, averaged score of window length of 

10, 30, 60). As a result of comparing them, in the case of performing 

anomaly detection by selecting the largest value among the three(Max 

index), the result was higher than that of separately checking the results for 

each window. In particular, For Issue 2 the accuracy of max index showed 

highest, which is higher than 2nd highest detection result by more than 14%. 

 

 
Fig. 2-3. Experiment and calculated anomaly score trend for issue 1(a), issue 

2(b), issue 3(c), and issue 4(d) with different with different window size was 

(10, 30, 60). Pink dotted line denotes threshold obtained from distribution of 

normal data’s anomaly score . Grey marked area shows event from 

experiment case and labeled anomalies. Calculated threshold value is 0.94. 
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Fig. 2-4. Heatmap of anomaly score on (a) issue 1, (b) issue 2, (c) issue 3, (d) 

issue 4with different models which trained with different train data : Normal 

1~4, Normal Total. 

 
2.5.3. Result of anomaly scores with different train 

data(train1~4, Sum of train data, synthesized train data) 

The challenge of deep learning-based technology is to require huge amount of 

data for better performance and its performance can be susceptible to the quality of 

train data/model structures [34]. In this paper, we learned that the internal 

parameters and performance of the anomaly detection model may be greatly 

influenced depending on what data is used as an input, and conducted a case study. 

Four separately collected data were considered normal data, which have slightly 

different in its characteristics. In addition, results using synthetic data were added. 

This was then performed to further find out whether it would be possible to 
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perform training using the synthesized time series data. Synthesis used TimeGAN. 

As a result, there were quite a few differences depending on what train data was 

used. In addition, when all train data were combined and used, it was found that the 

anomaly score was significantly lower than that of each use. This is believed to be 

because when learning using each case of trains 1 to 4, only each case of trains 1 to 

4 is determined to be normal, but when learning using the whole, all cases are 

determined to be normal, so if any of trains 1 to 4 are determined to be normal, it is 

considered normal. So using the synthetic data which includes every feature of the 

separated train data or the parallel use of different models trained with different 

training dataset would be recommended. 

 
2.5.4. Anomaly Score Timeseries Clustering 

The results of the time series clustering data above show that the average score 

value is well separated for each issue. This is the result of clustering six different 

windows (length of 1, 5, 10, 30, 60, and 90) using Issue1 to 4, normal data (valid). 

Each is clustered using different methods, and clustering results are slightly 

different. 

Figure shows anomaly score value as output of model trained with normal data 3. 

This anomaly score is separated using several time series-based clustering 

methods. In Figure, (a), (b), and (c) are clustering techniques based on correlation 

coefficient, which best isolate issues. (a)The results of clustering based on Pearson, 

(b) Kendall, and (c) Spearman coefficients. (d) and (e) are clustering results based 

on the Maximum Average Precious Error (MAPE) and Euclidean distance, 

respectively, indicating that they separate normal data well, but not in the 

separation of Issue. (f) uses the CBD technique of clustering after performing 
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compression by determining a section, and the distance for each case is calculated 

around the default value of 0.5, but it is difficult to say that clustering was 

performed according to the purpose. Among them, (a) based on Pearson correlation 

coefficient and (b) based on Kendall correlation coefficient shows the most 

obvious clustering for each case and the largest difference between normal data and 

other Issue data. Through this result, it can be confirmed that when a specific 

clustering technique is used, the presence or absence of a steady state can be 

monitored only with the Anomaly score result value, and based on this, which issue 

can be inferred. 

  



 

 49 

 
Fig. 2-5. dendrogram of clustering result using 6 clustering methods : Pearson 

correlation coefficient(a), Kendall correlation coefficient(b), Spearman 

correlation coefficient(c), MAPE based distance(d), and Euclidean distance(e), 
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CBD(f). Input of clustering was anomaly score for 6 case(Normal, Issue 1~4, 

Start-up) with 6 window size(1, 5, 10, 30, 60, 90). 

 

2.6. Summary and Discussion 

Through this study, anomaly detection was performed based on the 

interconnected side of process plant sensor data rather than simple sum of single 

sensor data. This model used a framework that modified the method of calculating 

the anomaly score based on the MSCRED framework for the chemical process. 

Also, we established methodology to process the anomaly detection using multiple 

windows. In addition to performing anomaly detection, the effect of the training 

data on the anomaly detection performance of the model was analyzed, and the 

situation and timing of separation of each issue were possible. 

 

Topics need more discussion are as below :  

• Impact of adjacency in signature matrix - When creating a signature 

matrix, the order of sensor data or how adjacent sensors are impacting on the 

output. Manually collecting related sensors and processing them in a 

hierarchical manner can improve performance. Additional studies are needed. 

• Finding the best training data - The exact condition of normal data to 

training the data is not yet determined. more robust study is needed to 

determine the optimal training data for the anomaly detection. It can be seen 

that the results of anomaly detection vary depending on which data is used as 

input data. Through this, it was possible to confirm the importance of 

selecting learning data for the anonymous detection model. However, it has 
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yet to reach a general answer to which data makes the best anomaly detection 

model. If we can figure this out, I think it will be a great contribution to data-

driven industrial animation detection. 

• Identification of fault type and cause diagnosis in real time - Anomaly 

score of each issue was separated through clustering, but it cannot 

automatically classified. Making automatic classification can be more helpful 

for actual use. 

 

2.7. Acknowledgement 

This chapter is partially adapted from Plant-wide Anomaly Detection and Single-

Value Monitoring using Conv-LSTM in Pilot-Scale MEG Regeneration Plant with 

authors N. Lee, H. Kim, J. Jang, and Y. Seo. (Preparing Submission) 

 

 

  



 

 52 

Chapter 3. Multivariate Time Series Prediction** 
 

3.1. Introduction 

Gas hydrates are crystalline compounds in which hydrogen-bonded water 

molecules form lattice structures that encage gas molecules such as methane, 

ethane, and carbon dioxide [76]. These molecules are the predominant components 

of natural gas, thus the gas hydrates attract attention as natural resources trapping 

huge amounts of methane or a gas storage medium. Clathrate gas hydrate can store 

approximately 170 volume of gas per volume of hydrate(STP) in theory [82]. From 

the perspective of the energy industry, gas hydrates have been an operational risk 

that may block the subsea flowlines transporting the produced hydrocarbon fluids. 

In addition, the gas hydrates have been also applied in environmental fields 

including carbon dioxide (CO2) capture and storage [84]. Therefore, understanding 

the formation characteristics of gas hydrates has been central to managing the 

operational risks of offshore gas fields and developing novel gas storage 

technologies for methane and even hydrogen.  

Early recognition of hydrate formation kinetics suggested the mass transfer of gas 

molecules into forming hydrate particles through a liquid phase, leading 

researchers to improve the interfacial interaction between water and gas molecules 

by adopting kinetic promoters including anionic surfactants such as SDS [39-41]. 

Without these promoters, gas hydrates eventually formed the film on the interface 

 
** This chapter is partially adapted from Time series prediction of hydrate dynamics on flow 

assurance using PCA and Recurrent neural networks with iterative transfer learning in Chemical 
Engineering Science with authors Lee, N., Kim, H., Jung, J., Park, K. H., Linga, P., & Seo, Y. 
(https://doi.org/10.1016/j.ces.2022.118111). 
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between water and gas phases, limiting the continued transfer of gas molecules. A 

mechanical stirred-tank reactor was used to continuously form the gas hydrates, but 

increasing hydrate fraction in the aqueous phase results decreasing formation rate 

due to mass transfer limitation [37]. To avoid the blockage of the reactor 

connecting downstream units, water and gas flow rates need to be optimized or 

novel devices like impinging jets and spray nozzles must be implemented. Times 

New Roman pointed out that hydrate formation kinetics might be the major 

challenge to develop hydrate-based technologies and understanding the naturally-

occurring marine gas hydrates.  

There have been studies about the hydrate formation mechanism in different 

systems: oil-dominated [80], gas-dominated [50], and water-dominated systems 

[59]. In a gas-dominated system, the flow regime changes from homogeneous to 

heterogeneous suspensions of gas hydrate particles in the liquid phase, termed as a 

transition point [59]. Upon becoming a heterogeneous flow regime, segregation of 

hydrate particles was observed from the continuous phase, resulting in the 

formation of hydrates beds on the wall. The hydrate beds eventually became 

blockages for the continuous liquid phase, thus considered an operational risk. The 

transition points may vary depending on the Gas-to-Oil Ratio (GOR), Reynolds 

number, the velocity of the mixed flow and liquid loading, etc. [37, 42, 43]. Aman 

et al. [37] investigated the hydrate fraction at the transition point and calculated the 

Reynolds number in the gas-water system. Chaudhari et al. [42] developed the 

correlation between the transition point, Reynolds number, capillary number, and 

liquid loading in oil-dominated flowlines. However, these empirical approaches 

have limitations in the scale-up application and may demand a scale-up factor to be 

verified on other scales. Davies et al. [49] developed the model for hydrate 
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formation in oil-dominated flowlines to predict the pressure drop and viscosity 

change due to the agglomeration of hydrate particles. Lorenzo et al. [50] quantified 

the pressure drop due to the hydrate deposition and sloughing in a gas-dominated 

flow-loop through the pressure, and temperature profiles by using the empirical 

parameters. Charlton et al. [41] proposed the hydrate growth model and verified 

with the experimental results from the gas-dominated flow loop. These attempts 

tried to link the pressure profiles with viscosity change, resulting in a transition 

from homogeneous to heterogeneous flow. They manipulated the intrinsically 

linked parameters in the flow-loop to match the predicted and experimental results, 

but still, it may challenge the scale-up issue.  

Recently, there has been an attempt to advance the hydrate kinetics model. Qin et 

al. [71] applied the classification/regression machine learning techniques to analyze 

the relationship between the hydrate fraction and the probability of hydrate 

plugging in the pipeline according to the independent input features such as water 

cut, GOR. However, the statistical methods used the classification state of the data 

and cannot analyze the trend of plugging risk. It is still required to develop a 

method for predicting the hydrate risk in pipelines through real-time sensing data. 

 

Table 3-1. Literature related to the hydrate formation prediction 

Literature Objective Variable Methodology 

P. J. Metaxas, et 
al. (2019) 

Formation 
probability fitting  

𝑃 Fitting formulation by 
experiment 

V. W. Lim, et al. 
(2020) 

Formation 
probability fitting  

𝑃 Fitting formulation by 
experiment 

B. X. Ferreira et 
al. (2022) 

Near future 
prediction 

∆𝑃 Multi layer perceptron 
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In pipeline, lots of variables (i.e. pressure, temperature) are acquired from sensors. 

Those sensor logging data can be classified as time series data, which is the data 

logged continuously with fixed time interval (time step). In this work, we tried to 

adopt data analysis techniques to analyze the features of the hydrate formation 

process in terms of pressure, temperature, and torque data. The Principal 

Component Analysis (PCA) technique can reduce a set of different time-series data 

as one single time-series data (principal component) without losing its important 

features. Koegh et al. [61] showed multivariate time series clustering with PCA as 

a feature reduction technique for anomaly detection. Gupta et al. [54] predicted the 

point when fatigue damage crack occurs and its length propagation by time using 

the PCA technique. Once we reduce the multivariate time series data into a single 

principal component, we can develop a data-driven model to predict the time-series 

trend for the desired period, i.e. temporal prediction. The sliding window is widely 

used in treating time series, also known as time series segmentation [47] . Common 

methods for time series prediction can be statistical methods like Auto Regressive 

Integrated Moving Average (ARIMA) and particle filtering, and deep learning 

methods like Long-Short Term Memory (LSTM) and Gated Recurrent Unit 

(GRU). Siami-Namini et al. (2018) compared the statistical model (ARIMA) and 

deep learning model (LSTM), where the prediction accuracy of the deep learning 

model was 85% better than that of the statistical model.  

Deep learning is a subset of machine learning, a computational model used for 

regression and classification of time-series data [65]. The type of deep learning 

varies by its architecture but is classified into three large categories, Multi-Layer 

Perceptron (MLP), Convolution Neural Network (CNN), and Recurrent Neural 

Network (RNN). MLP is the most basic type of neural net architecture [65] with 
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many cells in one layer and interconnected with the previous one. CNN is 

specialized in image data, involving convolution with filter in preprocessing step. 

RNN is specialized in sequential data like continuous signals, connecting cells side 

by side to mimic the continuous temporal behavior [65]. In literature, most 

prediction and forecasting tasks show that RNN families (RNN, LSTM, GRU) 

produce the best results [79].  

The objective of this work is to develop the time series prediction model for 

hydrate formation based on a novel data-driven framework. We first investigate the 

hydrate formation characteristics in a gas-water system with experimental results 

from a high-pressure autoclave under different initial conditions. Then we applied a 

sliding window and a PCA technique for the experimental data. The time-series-

based deep learning models predicted the principal components for hydrate 

formation and transition from homogeneous to heterogeneous flows. After making 

the prediction model, the model was trained through the transfer learning by each 

experiment batch to enhance the performance. Using the combination of PCA and 

deep learning models with the transfer learning method, the developed framework 

was useful to predict the hydrate formation trend from the obtained data during 

specific periods. 

 

Table 3-2. Literature related to the time series prediction 

Literature Method
ology 

Comparati
ve 
advantage 

Application 
Stati
onar
y 

Seas
onali
ty 

Training 
method 

X. Ma et al., 
(2015) LSTM 

MLP, 
NARX, 
SVM 

Traffic speed X O Single 
sequence 

A. Sagheer 
and M. 
Kotb (2019) 

LSTM 
ARIMA, 
ERNN, 
GRU 

Petroleum 
production X X Single 

sequence 
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L. Kuan et 
al., (2017) GRU LSTM, 

GRU Electricity load X O Single 
sequence 

Y. Wang, et 
al., (2018) GRU 

LSTM, 
SVM, 
ARIMA 

Photovoltaic 
power X X Single 

sequence 

U. Ugurlu, 
et al., (2018) GRU 

MLP, 
CNN, 
LSTM 

Electricity 
price O O Single 

sequence 

C. Tian et 
al., (2018) 

Hybrid 
CNN-
LSTM 

RNN, 
LSTM Electricity X O Single 

sequence 

Z. Shen et 
al., (2020) 

Hybrid 
CNN-
LSTM 

LSTM, 
CNN Financial X O Single 

sequence 

This Study ARLST
M 

Dense, 
LSTM, 
GRU 

Hydrate 
Formation X X Multiple 

sequence 

 

 

3.2. Experiment 

3.2.1 Materials and Methods 

A methane gas (99.9%) was supplied by Alpha Gas (South Korea). Deionized 

water (99.0% purity) was used without further purification. A high-pressure 

autoclave was made to investigate information related to the hydrate onset time and 

the volumetric amount of hydrate formation while monitoring pressure, the 

temperature of the autoclave, and torque changes of the mechanical stirrer. The 

experimental apparatus is as shown in Fig. 3.1. The autoclave was made of 316 

SUS and had an anchor-type impeller to mix the system. The impeller was located 

on the base of the shaft and the torque of the rotating shaft was measured by a 

torque sensor (TRD-10KC) having a platinum-coated connector with an 

uncertainty of 0.3%. Transducers measured the pressure with an uncertainty of 0.1 

bar. The cell was immersed in a refrigerator to control and maintain the 

temperature of the cell. The platinum resistance thermometers measured the 
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temperature of the liquid and gas phase with an uncertainty of 0.15℃. The torque, 

pressure, and temperature data were recorded through a data acquisition system in 

real-time every 10 sec.  

 

 

Fig. 3-1. Schematic diagram of the experimental apparatus [63] 

 

The constant cooling method was used to investigate the hydrate formation 

kinetics. The cell was filled with 200 ml of aqueous solutions with inhibitors and 

310 ml of methane gas. The cell was pressurized to 130 barg or 100 barg at 24 ℃ 

and mixed with the target mixing rate to saturate the liquid phase with gas till 

reaching a steady-state condition. The cell was cooled to 1 ℃ at 0.25 ℃ per minute 

by a bath circulator and maintained at 1 ℃ for 10 hours to consider outside 

temperature and resident time in the subsea pipeline. The performance of hydrate 

risk for agglomeration of hydrate particles was evaluated using torque changes 

because torque changes could be an indicator of resistance-to-flow [58]. In this 

work, a total of 16 experiments were carried out as shown in Table 3-3. Hydrate 

nucleation and growth were recognized from a rapid pressure decrease and 

temperature spikes from exothermic heat of hydrate formation. 
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Table 3-3. A summary of the tested condition for hydrate formation 

characteristics 

Batch number Initial pressure (barg) Mixing rate (rpm) 
1 – 4 100 200 
5 – 8 130 200 
9 – 12 100 600 
13 – 16 130 600 

 
To assess the characteristics of hydrate kinetics from sensing data, the relative 

torque is calculated as the ratio of the torque recorded during the experiment at a 

certain time (τ") to the torque measured before nucleation (τ#) using Eq. (3-1). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑜𝑟𝑞𝑢𝑒 = $!	
$"	

   (3-1) 

The moles of consumed gas during hydrate formation was calculated from 

followed equation, which is based on the difference between experimentally 

measured pressure and estimated equilibrium pressure at a certain temperature. The 

methods to get the moles of consumed gas and the hydrate fraction values have 

been suggested in the literature as a method for studying hydrate formation in 

small-scale apparatus [63]. 

 

∆𝑛&," = ((#$%)#&%%
*+,

)" − 6
(&'()#&%%
*+,

7
"
= 6∆(	)#&%%

*+,
7
"
  (3-2) 

 

The hydrate fraction in the liquid phase was calculated using the amount of 

consumed gas by Eq. (3-3) [62],  
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, where Vw is the volume of water, Vw,conv is the volume of the water converted to 

hydrate, and Vhyd is the volume of formed hydrates. 

 

 
3.2.2 Experimental Results on Hydrate Formation 

Fig. 3-2. shows the measured results (pressure, temperature, relative torque) and 

calculated hydrate fraction as a function of the time for the experiment (batch 

No.12 in Table 3-3.). It is noted that relative torque could indicate the flow-to-

resistance due to the hydrate particle agglomeration [37, 58]. The experiment set 

appears the five distinct regions (labeled with A-E).  

 

 

Fig. 3-2. Measured pressure, temperature (a), and calculated hydrate fraction 

measured relative torque (b) during the cooling and hydrate formation 

(experimental batch No. 12) 
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Each region is characterized by the rate of hydrate formation and changes in 

relative torque. Region A is a stage before hydrate nucleation and the pressure 

decreases just from the cooling effect. Then hydrate nucleation occurs in region B 

designated as an early stage of hydrate formation. The temperature rises 

instantaneously due to the exothermic heat of hydrate formation while the pressure 

decreases sharply due to gas consumption. The relative torque was stable with the 

small population of hydrate particles homogeneously dispersed in the liquid phase. 

Region B is relatively short.  

In followed region C, the pressure was sharply dropped from the fast formation 

and growth of hydrate particles. In this region, the relative torque increases as 

increasing hydrate fraction results in the increasing viscosity of the liquid phase. 

The beginning of region C indicates the transition point from homogeneous to 

heterogeneous flow. Continuous increase of the relative torque was then followed 

by fluctuation in region D, which started from the segregation point. This behavior 

would be attributed to the break of hydrate particles with continuous mixing from 

increased fluid shear stress [50]. Segregated hydrate particles tend to repeat the 

deposition and breaking from the wall. After several fluctuations of the relative 

torque, a sudden surge of the torque and motor stoppage were observed possibly 

due to the thick deposition of the hydrate beds that the motor couldn’t break. This 

is region E. It should be noted that a safety lock has been implemented for the 

impeller stopping when the torque is higher than 50 N∙cm, this is to protect the 

motor and torque sensor [77]. 

Fig. 3-3. showed the relative value changes as a function of hydrate volume 

fraction during hydrate formation under low (200 rpm) and high (600 rpm) mixing 

rates after the hydrate nucleation. Both experimental data and prediction data from 
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the viscosity model were presented. At both mixing rates, the relative torque 

increased sharply as increasing the hydrate fraction from region B to region C. 

Similar to previous works [59], the flow characteristics changed from region B to 

region C when the hydrate fraction reached about 0.15.  

The point below the transition fraction is generally said to be able to transport 

hydrates safely and the “No Plug” zone [71]. As we mentioned, the transition point 

is dependent on lots of features such as liquid loading, fluid velocity, and driving 

force for hydrate formation (pressure, temperature, etc.). In regions D and E, the 

relative torque fluctuated and eventually stopped as increasing hydrate fraction. 

The operation of the motor stopped around 0.25 to 0.3 of hydrate fraction due to 

the surge in the relative torque value at a low mixing rate (200 rpm) as shown in 

Fig. 3-3a. In contrast, the relative torque at a high mixing rate (600 rpm) suddenly 

decreased and fluctuated with a larger amplitude (Fig. 3-3b.). A faster mixing rate 

could lead to the continuous breakage of hydrate particles avoiding the hydrates 

bedding. For the four of eight experiments, the motor stopped at around 0.5 - 0.6 of 

hydrate fraction due to over range of torque levels that may be caused by jamming 

and plugging of segregated hydrate beds.  
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Fig. 3-3. Relative torque changes were observed during hydrate formation at 

200 rpm (a) and 600 rpm (b) 

 

Joshi et al. [59] observed that the flow behavior with hydrate particles is changed 

from homogenous to heterogeneous distribution, which then induces particle 

accumulation and jamming. The hydrate volume fraction at which this transition 

occurs is referred to as the transition hydrate fraction (𝛷transition) [59]. The relative 

viscosity of hydrate slurry increases rapidly with increasing hydrate fraction after 

the transition hydrate fraction. In autoclave experiments, changes in relative torque 

indicate the changes in the rheological properties of hydrate slurry. To predict the 

transportability of hydrate slurry, we compare the relative torques obtained from 

the autoclave experiments to the relative viscosities estimated from the viscosity 

model of hydrate slurry.  

The relative torque was calculated from the experimental results and Eq. (3-1). 

The hydrate slurry behaves as a non-Newtonian fluid [74] and the viscosity of 

hydrate slurry can be developed from the viscosity of the concentrated suspension. 

Camargo and Palermo [40] presented a model for hydrate slurry viscosity as a 
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function of particle volume fraction using the Mills model [68], which considers 

the rheological properties of immobilized fluid trapped between the particles. As 

the particles form, the amount of suspended fluid decreases, and the viscosity of 

the fluid system increases [66]. Thus, the viscosity of the hydrate slurry changes 

depending on the hydrate fraction in the fluid. Herein, we investigate the relative 

viscosity (𝜇5) of hydrate slurry, which is the ratio of the viscosity between hydrate 

slurry and continuous fluid (water). The relative viscosity (𝜇5) can be derived from 

Eq. (3-4) and Eq. (3-5) due to the fractal structure of aggregates as shown in Fig. 

3-4.  
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, where 𝛷:;; is an effective volume fraction of immobilized fluid and 𝛷=>? is 

the maximum packing fraction, which is typically in the range of 0.64 to 0.74 [67]. 

This work assumed the maximum packing fraction of 0.74 [66].   

The size of the agglomeration (dA) was calculated under steady-state force balance 

using Eq. (3-6). In the equation, dA and dp denote the size of agglomeration and 

monomer size, respectively. the particle size is determined by shear stress and 

cohesion force between hydrate particles [40]. Fa is the cohesion force between 

hydrate particles and f is the fractal dimension assumed to be 2.5 from previous 

literature [49]. 𝜇@ is the viscosity of the continuous phase. 𝛷 is the volume 

fraction of hydrate in the slurry, and 𝛾 is the shear rate of the system. The shear 
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rate in the autoclave was derived from the mixing rate and autoclave geometry 

[69]. 
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In this work, the monomer size was assumed from the Sauter mean diameter of the 

entrained droplets in a gas-dominated flow loop [38]. The viscosity of continuous 

solution (𝜇@) was derived from multiflash v6.2 with the CPA infochem model set. 

The cohesion force (Fa) between CH4 hydrates was assumed to be 37.5 mN/m, 

which Wang et al. [83] measured under 3.2 MPa. 

The estimated relative viscosity of hydrate slurry in Fig. 3-3. increased 

exponentially with increasing hydrate volume fraction regardless of phase 

transition. Likely, the viscosity model could not demonstrate the fluctuation of the 

relative torques induced by the segregation and deposition of hydrate particles. Gas 

hydrate particles tend to agglomerate rapidly from the transition point. 

Understanding the hydrates flow behavior is central to the safe operation of subsea 

flowlines. Hydrate formation characteristics have been investigated for more than 

decades using bench-scale autoclaves as well as pilot-scale flow loops, but the 

probabilistic and non-linear relationship of hydrate formation with the parameters 

of the fluid only make it difficult to predict or analyze the hydrate formation 

characteristics using the analytical models. 
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Fig. 3-4. Flow diagram of relative viscosity model in the autoclave 

 

 

3.3. Computational Methodology 

To overcome the limitation of the model-based prediction of hydrate formation, 

the time series prediction using experimental data was adopted to analyze and 

forecast the hydrate formation characteristics. We predicted the hydrate formation 

behavior according to time and mostly focused on the two kinetic behavior: the 

transition point and the segregation point.  

The obtained experimental data are difficult to directly use in the conventional 

prediction model due to following reasons: 
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(1) Trend of one specific sensor data (pressure, temperature, relative torque) is not 

a definite indicator in the prediction of transition and segregation points. Prediction 

cannot be dependent on specific formula or relation.   

(2) Data used for time series prediction usually assume stationary or periodical 

repetition. However, transition and segregation behavior during hydrate formation 

are one-time occurrence, that is not repeated but occurs once in each experiment. 

Application of time series prediction for one-time occurrence is not common. 

(3) Most time series prediction is typically applied on continuous non-split 

historical data like weather or electricity consumption [55]. However, hydrate 

formation experiments are carried out in a batch-by-batch manner and are 

segmented rather than continuous. Since there is no continuity between two 

experimental batches, simply concatenating the time series data of many batches 

and putting it into the existing framework should be avoided.  

(4) Prediction cycle is much shorter than other continuous historical data and 

should carry out on a real-time basis. The kinetic behavior such as phase transition 

and segregation of hydrate particles occurs in a short duration. Therefore, the 

prediction model should receive the small and restricted length of time series data 

and should return following prediction ahead.  

 

To consider the above limitation for acquired data, this work proposed a novel 

framework in cooperating with the prediction scheme for hydrate experimental 

data. Schematics of the proposed framework to train the prediction model are 

shown in Fig. 3-5. First, in preprocessing step, PCA is applied to input data to use 

every time series data rather than one specific sensor data. Single time series data 

may show good results in making predictions, but it cannot be a definite indicator 
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for the transition or segregation points during hydrate formation. Therefore, we 

employed the PCA technique to include the effect of whole sensor data. Next, 

windowing is applied to treat data into a suitable foam for Neural Network (NN) 

inputs and to make a real-time prediction using a small set of adjacent historical 

data points. Then, in the model training phase, NN is used to predict an 

indeterministic system with a vague factor. Transfer learning has been carried out 

to preserve the characteristics of experimental data, which is done in a batch-by-

batch manner and initialized after one batch finishes. After that, model validation is 

carried out to check if the model prediction result is reasonable and accurate. One 

model has been validated; the model can be deployed to use in real-time. Finally, in 

the operation phase, a trained neural network model can predict the future trend of 

PCA processed data in real-time with windowing. The proposed framework can be 

implemented universally with various types of input data (i.e., sensors, parameters 

etc.) to forecast the hydrate formation behavior. However, the input data can affect 

the accuracy of each model. It is noted that since PCA is a linear transformation 

and its parameters had been calculated/determined in the training phase, the speed 

of preprocessing can be done under real-time speed. 
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Fig. 3-5. Schematics of hydrate formation characteristics prediction model 

 

3.3.1 Data Processing 

3.3.1.1. Principal Component Analysis 

In the proposed model, rather than predicting the sensor time series as it is, the 

prediction was performed after reducing the dimension to a latent space. A latent 

space can be said to be a reduced dimension in which similar data are intertwined, 

and PCA is a representative algorithm that performs dimensionality reduction to a 

latent space. Although PCA reduces the number of dimensions, it does not reduce 

the dimension by extracting only the important ones from the existing features but 

creates new variables composed of a combination of features. For example, if PCA 

is performed with seven sensor data, it is not reduced to a part of seven sensor data, 

but the importance of seven sensor data is multiplied and used as a weighted sum 
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to obtain a combined characteristic value. If this is used, the training time of the 

machine learning model can be reduced, and the prediction performance can be 

improved because the number of features is reduced while all values of the sensor 

can be reflected. Machine learning, especially deep learning models, has the 

concept of a 'curse of dimension', in which the complexity increases exponentially 

as the number of features increases, resulting in lower accuracy, which can be 

solved by reducing the number of dimensions of the input value. 

PCA is a commonly used numerical method for feature reduction and clustering. 

By using PCA, feature numbers are reduced and original features are reconstructed 

in a latent space. Latent space is a lower-dimensional manifold of high-dimensional 

data, where dimension means the number of features in this context. PCA is an 

optimization problem found below [46]  : 

𝑚𝑎𝑥GHI
G8J8JG
G8G

  (7) 

, where 𝑣 ∈ ℛ= is set of orthogonal vectors and 𝑋 is matrix consists of train 

data with n observations and m process variables. The PCA process itself can be 

used as an anomaly detection tool since it performs both feature reduction and 

clustering [51, 57, 73]. This reduces the training time of the deep learning model 

far less than using every feature in the dataset while conserving their characteristics 

of them. When applied in time series data, PCA plays an additional role in 

denoising either.  
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3.3.1.2. Windowing 

Windowing is a common preprocessing method in time series analysis 

[39].Windowing is similar to convolution in the sense that it gives stride values, 

but it is displayed with the 1D array type. Windowing is making the original time 

series into many shorter pieces called windows, by sliding through the sequence 

shown in Fig. 3-6. If the window length is 𝑛 and its stride (gap between two 

windows) is 𝑘, then the first window should be [𝑥6, 𝑥!, . . . , 𝑥K] and the second 

window will be [𝑥L16, 𝑥L1!, . . . , 𝑥L1K], and the third one would be 

[𝑥!L16, 𝑥!L1!, . . . , 𝑥!L1K]… so on. windowing enables the real-time prediction 

model by training on the window, not on historical sequences. In this paper, the 

total window length was set as 120, with the input length of 60 and output length of 

60. 

 

 
Fig. 3-6. Concept of windowing 
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3.3.2 Deep Learning Schematics 

3.3.2.1. Model Architecture 

The most basic model of deep learning is called MLP. MLP model consists of 

several layers with many cells. Layers are divided into three types: input layer, 

hidden layer, and output layer. For the deep learning model, there are many hidden 

layers and inside the hidden layers, many cells are only interconnected with the 

cells in adjacent layers and each cell in the same layer is not connected. Each cell 

consists of receiving part which gathers the previous layer's output values as a 

weighted sum and an activation function part that adds non-linear behavior. The 

output value of the activation function is sent to the next layer's input.   

Deep learning starts with defining model architecture. The model architecture 

consists of the type of model layers (dense (=MLP), CNN, RNN, and other 

variants), the number of layers, and the cell number in each layer. Also, selection 

of activation functions inside the cell (linear/nonlinear activation functions (e.g. 

tanh, Sigmoid, Rectified Linear Unit (ReLU), Scaled Exponential Linear Unit 

(SeLU)…)), Selection of loss metric (e.g. Mean Squared Error (MSE), Mean 

Squared Percentage Error (MAPE)), selection of optimization function (e.g. 

Stochastic Gradient Descent (SGD), Root Mean Squared Propagation (RMSprop), 

Adam, Adagrad, Adamax) and additional techniques like attention [81] and 

dropout [78] are followed to boost the accuracy of the prediction. In this study, four 

model types were selected; dense, LSTM, GRU, and Auto Regressive Long Short-

Term Memory (ARLSTM) as shown in Fig. 3-8. LSTM, GRU, and ARLSTM 

models are variants under the RNN family. RNN has been made for processing 

sequential data and applied in the areas like speech recognition.  
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These basic deep learning layers are made of interconnected cells between layers, 

and each of them receives the sum of the product of weight and cell outputs from 

the previous layer. The name “Dense” comes from the fact that each cell inside the 

layer has a full connection with every cell inside the previous layer. In time series 

prediction, a dense layer has the input of one window and trains to have the output 

of a targeted prediction sequence as shown in Fig. 3-8a. LSTM is the advanced 

version of RNN [53, 56] , that allows the past information to persist. LSTM cells 

are connected sequentially in temporal order as shown in Fig. 3-8b. A detailed 

description of the LSTM model is provided in Fig. 3-7a. LSTM cells are connected 

sequentially in temporal order as shown in Fig. 3-8b. GRU (Gated Recurrent Unit) 

cells are simplified forms of LSTM cells for faster computing and easier 

implementation [48, 60]. A typical GRU cell consists of two gates: update and 

output gate whereas the LSTM cell has three gates (forget, input, output) to give 

the memory cells ability. Like LSTM cells, GRU cells are also connected 

sequentially as in Fig. 3-8c. ARLSTM model uses the previous timestep outputs as 

another dimension of current step input, which is autoregressive in terms of making 

predictions using its output shown in Fig. 3-8d. Autoregressive behavior can be 

described below.  

 

𝑝(𝑥) = ∐ 𝑝(𝑥M|𝑥6, ⋯ , 𝑥M36)M = 𝑝(𝑥6) ∙ 𝑝(𝑥!|𝑥6) ∙ 	⋯	∙

(𝑥M|𝑥6, ⋯ , 𝑥M36)  
(8) 

 

With these equations, the network learns temporal patterns from the input 

sequence with its past predictions. 

 



 

 74 

A. LSTM (Long Short-Term Memory) model 

As shown in Fig. 3-7a, LSTM model added operations inside the cell to keep cell 

states and controlled by three gates: input, output, forget. By this allows the model 

to selectively take past information into account.  

 

𝑓" = 𝜎(𝑊; ⋅ [ℎ"36, 𝑥"] + 𝑏;)  (4) 

𝑖" = 𝜎(𝑊M ⋅ [ℎ"36, 𝑥"] + 𝑏M)  (5) 

𝐶" = 𝑡𝑎𝑛ℎ(𝑊N ⋅ [ℎ"36, 𝑥"] + 𝑏N)  (6) 

𝐶" = 𝑓" ∗ 𝐶"36 + 𝑖" ∗ 𝐶"  (7) 

𝑜" = 𝜎(𝑊O ⋅ [ℎ"36, 𝑥"] + 𝑏O)  (8) 

ℎ" = 𝑜" ∗ 𝑡𝑎𝑛ℎ(𝐶")  (9) 

  

where 𝑓" is forget gate, 𝑖" is input gate, 𝐶" is cell state, 𝑜" is output gate. ℎ" 

is hidden state at time t, ℎ"36 is hidden state at time (t-1) or the initial hidden state 

at time o, 𝑐" is cell state at time t, 𝑥" is input at time t, 𝑖" is input gate at time t, 

𝑓" is forget gate at time t, 𝐶" is cell gate at time t, 𝑜" output state at time t, and ∗ 

is Hadamard product, 𝜎 is sigmoid function.  

 

B. GRU (Gated Recurrent Unit) model 

While LSTM cells have three gates (forget, input, output), GRU cells only have 

two gates (update, output) as shown in Fig. 3-7b. GRU integrated both cell state 

and hidden state while LSTM has both. This integration allows GRU layers to learn 

and predict faster than LSTM layer without the loss of accuracy. 

𝑧" = 𝜎(𝑊*	 ⋅ [ℎ"36, 𝑥"])  (10) 
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𝑟" = 𝜎(𝑊5	 ⋅ [ℎ"36, 𝑥"])  (11) 

ℎ" = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟"	 ∗ ℎ"36, 𝑥"])  (12) 

ℎ" = (1 − 𝑧") ∗ ℎ"36 + 𝑧" ∗ ℎ"  (13) 

, where ℎ" is hidden state at time t, ℎ"36 is hidden state at time (t-1) or the 

initial hidden state at time o, 𝑥" is input at time t, 𝑟" is reset gate, 𝑧" is update 

gate, 𝑛" is new gate, ∗ is Hadamard product, and 𝜎 is sigmoid function. 

 

 
Fig. 3-7. Computational graph inside cell of (a) LSTM, (b) GRU 
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Fig. 3-8. Configuration between deep learning cells, input window, prediction. 

(a) Dense (b) LSTM (c) GRU (d) ARLSTM. Prediction denotes the predicted 

value from the deep learning model 
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3.3.2.2. Model Architecture Configuration 

Using model types described above, model architecture has been configured as in 

Table 3-4. In whole models, ReLU was used as an activation function for every 

cell. In this study, the effects of the number of model layers, dropout, and the 

number of cells were investigated with four selected model types. Dropout was 

included in the model since it boosts the accuracy of the RNN models [45, 52]. 

This study compared the results through four types based on the dense models 

(Dense-1 to Dense-4 in Table 3-4.), seven types based on the LSTM models 

(LSTM-1 to LSTM-7 in Table 3-4.), three types based on the GRU models (GRU-

1 to GRU-3 in Table 3-4.) and three types based on the ARLSTM models 

(ARLSTM-1 to ARLSTM-3 in Table 3-4.). For the dense model, architecture was 

set to examine the effect of stacking model layers and the dropout technique. 

Dense-1 and Dense-2 models are basic models with a single dense layer for a 

hidden layer without and with a dropout rate of 0.2, respectively. The Dense-3 

model has two dense layers stacked and the Dense-4 model is two stacked dense 

layers, each layer with a dropout rate of 0.2. In the LSTM model, seven models 

have been implemented to investigate the effect of the dropout rate. LSTM-1 to 

LSTM-5 has a single LSTM layer for hidden layer with dropout rate of 0 (no 

dropout), 0.2, 0.4, 0.6, 0.8, respectively. LSTM-6 and LSTM-7 models have two 

stacked LSTM layers for the hidden layer with a dropout rate of 0 and 0.2, 

respectively. GRU models consist of two stacked GRU layers with various dropout 

rates (0, 0.2, 0.4). ARLSTM models are studied according to various cell numbers 

(32, 64, 128), which are only parameters. Noted that cell numbers of each model 

were set differently, as the structures of each cell are different. Base cell numbers 
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of each model were set as the most used value, for example, 32 for LSTM and 128 

for GRU.  

Table 3-4. Summary of model architecture configuration 

 

3.3.2.2. Transfer Learning by Batch 

Transfer learning is the method to use knowledge from the other machine learning 

models [70] widely used in CNN Architectures. In general, the knowledge to be 

ransferred refers to trained cell weights of hidden layers from another dataset. 

Transfer learning is a method to train a model with already-trained other datasets. 

As we mentioned above, our experiment data have a format of discrete yet iterative 

time series for each experiment set. Since we are interested in the prediction of an 

Model Name No. Model Architecture 

Dense 

1 lambda + dense (512, relu) + dense (out_steps) + reshape 

2 lambda + dense (512, relu) + dropout (0.2) + dense (out_steps) + 
reshape 

3 lambda + dense (512, relu) + dense (512, relu) + dense 
(out_steps) + reshape 

4 lambda + dense (512) + dropout (0.2) +dense (512) + dropout 
(0.2) + dense (out_steps) + reshape 

LSTM 

1 LSTM (32) + dense (out_steps) + reshape 

2 LSTM (32) + dropout (0.2) + dense (out_steps) + reshape 

3 LSTM (32) + dropout (0.4) + dense (out_steps) + reshape 

4 LSTM (32) + dropout (0.6) + dense (out_steps) + reshape 

5 LSTM (32) + dropout (0.8) + dense (out_steps) + reshape 

6 LSTM (128) + LSTM (32) + dense (out_steps) + reshape 

7 LSTM (128) + dropout (0.2) + LSTM (cell 32) + dropout (0.2) + 
dense (out_steps) + reshape 

GRU 

1 GRU (128)+ GRU (32) + dense (out_steps) + reshape 

2 GRU (128) + dropout (0.2) + GRU (32) + dropout (0.2) + dense 
(out_steps) + reshape 

3 GRU (128) + dropout (0.4) + GRU (32) + dropout (0.4) + dense 
(out_steps) + reshape 

ARLSTM 

1 ARLSTM (32) + dense (out_steps) + reshape 

2 ARLSTM (64) + dense (out_steps) + reshape 

3 ARLSTM (128) + dense (out_steps) + reshape 
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irregular and abrupt event, simply concatenating time series data should be 

avoided. Due to the discontinuous points. To train the model with several 

experiments set by concatenating the individual sets of experiments, a transfer 

learning method has been employed. One experimental batch is trained at a time 

and then the training results are saved with a form of weight parameter. These 

weight parameters are transferred and loaded when training the next batch. 

 

3.4. Results and Discussion 

The working environment of the proposed approach was done on Google Colab, 

and GPU was used in some batches to boost the running speed. CPU/GPU 

Selection is mainly affecting on the speed of computation but does not plays an 

important role in the result of prediction. CPU Configuration is Intel (R) Xeon 

CPU 2.30GHz Dual CPU with Ubuntu 18.04, GPU Configuration is Tesla K80 

with Cuda 11.2. Each model has been trained and saved its cell weights as .h5 files 

during each training process on transfer learning. 

 

3.4.1. Preprocessing 

PCA was introduced to define hydrate formation characteristics considering 

many factors. PCA was carried out from seven features. Four features are time-

series signal from the measured sensor (pressure, relative torque, temperature, 

hydrate fraction). By PCA, input features are reduced to smaller dimensions that 

are different from previous variables but still contain the fractions of the input 

features. PCA calculates the parameters for linear transformation, and the set of 

values for multiplication is called an eigenvector. With the given training sets 
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(batch No.1~7, 10~16 in Table 3-3.), PCA returns the multiplication factor for the 

original seven features to be transformed as 1st principal component. 

Fig. 3-9a. shows the major principal component through PCA analysis during 

the whole experiment including before and after hydrate transition at the mixing 

rate of 200 rpm (batch No. 1~8 in Table 3-3.). It shows the distinction between 

regions before and after the hydrate transition fraction in its reduced feature space. 

Red dots and black dots can be clustered and divided. This distinction allows 

feature space to divide the regions by transition point, which indicates the initial 

point of the sudden and rapid hydrate growth. In addition, the PCA result of points 

before the transition point shows two different line-shaped clusters with a gap due 

to the different initial pressure conditions of 100 barg and 130 barg. The two 

different initial condition leads to the different slopes of PCA results. More 

experiment data with the different initial conditions would be beneficial to 

determine the hydrate region and the boundary shape more precisely, which 

supposed as linear in this paper. 

 

Fig. 3-9. (a) Reduced feature space of experiment data at 200rpm (1st to 8th 

batch) before transition (block dot) and after transition point (Red dot) of 

hydrate using 3 dimensional PCA results (7 features to 3 features). (b) 

relationship between pressure and to 
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As we observed in section 2, the hydrate transition and segregation trend could 

be identified from the relationship between hydrate fraction and relative torque. 

Hydrate fraction can be calculated from pressure and temperature by using Eq. (3-

2)-(3-3). PCA results in Fig. 3-9a. show a similar trend with the relationship charts 

between pressure and relative torque or temperature and relative torque in Fig. 3-

9b. and Fig. 3-9c. The results suggested that the PCA results can be used as an 

indicator of hydrate formation behavior since they can preserve the original 

relationships between the experimental values.  

However, feature reduction itself is not time dependent. To keep the temporal 

information of PCA results, we use PCA data in time series format by adding a 

new column on pre-PCA data as shown in Fig. 3-10. The PCA results formatted 

with time series are used as an input for a deep learning model after the windowing 

process. 
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Fig. 3-10. 1st and 2nd Components of Principal Component Analysis 

 

3.2. Prediction Results 

To analyze the trend of hydrate formation behaviors with time-dependent, the 

model was trained with 7 experimental batches (batch no. 1 – 7 in Table 3-3.) and 

tested on the 8th batch (batch no. 8 in Table 3-3.). The 1st principal component 

from PCA was trained. Each model training was done for 20 epochs without 

callbacks and optimizer with Adamax. To evaluate the performance of prediction 

results, MSE and MAPE are adopted as loss metric and error metric, respectively, 

from the following equations:  

 

𝑀𝐴𝐸 =	 6
K
∙ ∑ ^𝑦OP#:5G:0 − 𝑦Q5:0M@":0^K

MR6   (3-9) 
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𝑀𝐴𝑃𝐸 = 100 ∙ 6
K
∙ ∑

S/.9"&:0&+3/(:&+;#!&+S
/.9"&:0&+

K
MR6   (3-10) 

 

, where n is the length of time series, 𝑦OP#:5G:0 is the observed or real value, 

and 𝑦Q5:0M@":0 is the predicted value by the model. Typically, lesser MAPE shows 

better performance, since MAPE is negatively oriented values with a range of 0 to 

positive infinite. MAE value itself cannot be used as an absolute accuracy measure. 

Rather than MAE, MAPE is recommended in data with different ranges. 

 

3.2.1. Effect of Transfer learning 

To take the characteristics of individual experiment data into the continuous-

time series prediction model, the transfer learning method has been used. The 

accuracy of the model under various experimental conditions was analyzed by 

training with experimental data for 1st to 7th batches at a mixing rate of 200 rpm, 

sequentially, then for 10th to 16th batches at a mixing rate of 600 rpm. Finally, the 

trained model was used for testing the performance for 8th batches at a mixing rate 

of 200 rpm.  

MAPE was evaluated for every training batch by each model used to predict 1st 

principal component of PCA as shown in Fig. 3-11. MAPE observation shown in 

Fig. 3-11. And Table 3-5. shows that transfer learning is an effective method in 

training, as it reduces error as training proceeds. MAPE was decreased in the range 

of 30 to 83% depending on the model after completing to train the 7th batch 

compared to the 1st batch. There is a slight increase in MAPE after training the 6th 

batch due to some discrete points in the 6th batch data. Except for that, MAPE 

gradually decreased as the batch number increased, which suggested that transfer 
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learning worked effectively for all deep learning models used in the study. When 

the models trained with the 600rpm data after the 200rpm data consecutively 

(training with 1st ~ 7th and 10th ~ 16th batch sequentially), the MAPE increased 

compared to training with only 200rpm data (training with 1st ~ 7th batch) as shown 

in Fig. 3-11. All models except for GRU-2 and ARLSTM-1 models show the 

negative values for the difference in MAPE between the 7th batch and 16th batch 

((T)3(U)
(T)

∙ 100 in Table 3-5.). The results suggested that the prediction accuracy for 

the model could be higher when the model is trained with the data under constant 

experimental conditions, even if the amount of training data is small. Also, the 

slope of MAPE reduction after training 600rpm batches ((N)3(U)
(N)

∙ 100 in Table 3-

5.) was less steep compared to using only 200rpm batches ((V)3(T)
(V)

∙ 100 in Table 

3-5.). This is partly due to the general relation between the amount of training data 

and the amount of MAPE showing a logarithmic decrease. However, MAPE has 

decreased even in 600 rpm batches as the batch continued to transfer learning. The 

results suggest that putting more data contributes to lowering error, which implies 

more data is needed to train the model as universally applicable with higher 

accuracy. 
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Fig. 3-11. Training loss for 1st principal component using the experiment 

batches at a mixing rate of 200 rpm and 600 rpm for various model 

architectures (Dense, LSTM, GRU, ARLSTM) 

 
 

Table 3-5. MAPE by model calculated after training with 1st batch (A), after 

training batch 1 to batch 7 (B), after training 1st~7th and 10th batch (C), after 

training 1st~7th and 10th ~16th batch (D) 

Model Name Model 
No. 

200rpm 200rpm+600rpm MAPE 
Reduction 

after 
600rpm 
(𝑩) − (𝑫)

(𝑩)
∙ 𝟏𝟎𝟎 

1st 
Batch 

(A) 

7th 
Batch 

(B) 

MAPE 
Reduction 
(𝑨) − (𝑩)

(𝑨)
∙ 𝟏𝟎𝟎 

10th 
Batch 

(C) 

16th 
Batch 

(D) 

MAPE 
Reduction 
(𝑪) − (𝑫)

(𝑪)
∙ 𝟏𝟎𝟎 

Dense 

1 304.2 119.4 60.7% 347.6 189.0 45.6% -33.1% 

2 283.2 56.7 80.0% 176.6 53.7 69.6% -15.0% 

3 612.2 105.1 82.8% 430.3 252.7 41.3% -100.7% 

4 320.3 60.1 81.2% 364.7 114.9 68.5% -18.6% 

LSTM 

1 103.0 71.9 30.2% 294.1 91.0 69.1% 56.3% 

2 201.5 52.4 74.0% 98.7 64.1 35.0% -111.2% 

3 159.6 53.1 66.7% 101.5 38.1 62.4% -6.9% 

4 159.4 70.0 56.1% 264.2 94.9 64.1% 12.5% 
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5 155.4 63.6 59.1% 246.7 140.7 43.0% -37.5% 

6 239.3 53.7 77.6% 185.8 126.9 31.7% -144.6% 

7 151.9 52.7 65.3% 199.0 92.7 53.4% -22.2% 

GRU 

1 207.0 70.7 65.8% 350.3 149.7 57.3% -15.0% 

2 158.7 65.6 58.7% 81.4 125.4 -54.0% 208.5% 

3 149.9 67.5 54.9% 237.8 112.6 52.6% -4.4% 

ARLSTM 

1 153.5 100.2 34.7% 336.2 168.9 49.8% 30.3% 

2 191.2 55.1 71.2% 429.1 208.4 51.4% -38.4% 

3 164.5 77.0 53.2% 304.2 261.0 14.2% -274.9% 

Average  63.1%  44.4% -30.3% 

 
 
The trained prediction model was employed to locate the two major events 

during the hydrate formation, the transition point followed the segregation point. 

The experimental results of the test batch (no. 8) showed that transition point at 

5830 second and a segregation point at 6250 second. The prediction results from 

the LSTM-1 model were presented with a graph shown in Fig. 3-12. for each case 

demonstrated in Table 3-6. for (a) window without transition nor segregation 

point, (b) window with transition point, and (c) window with segregation point. 

Like MAPE performance shown in Fig. 3-11., the model trained with transfer 

learning (Case 2 and 3 in Table 3-6.) shows far better performance than that with 

only the 1st batch (Case 1 in Table 3-6.). In addition, transfer learning had an 

advantage for accuracy on repeated cycles compared to concatenated cases. The 

predicted results with transfer learning followed the actual value better than those 

with concatenated batch.  
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Table 3-6. Case description for time-series modeling 

Case no. Description 
Case 1 Training only with 1st batch 
Case 2 Training with 1st to 7th batch by transfer learning 
Case 3 Training with 1st to 7th and 10th to 16th by transfer learning 
Case 4 Training with 1st to 7th batch by concatenating 
Case 5 Training with 1st to 7th and 10th to 16th by concatenating 

 
 

 
Fig. 3-12. Comparison of prediction results and true values for the test batch 

(No. 8) by LSTM-1 model with different cases of transfer learning. The 

prediction was shown at three points: (a) window without transition nor 

segregation point, (b) window including t ransition point, and (c) window 

including segregation point 

 

These results suggested that the transfer learning method could improve the 

accuracy of prediction, especially on the irregular trend like transition and 

segregation, when the time-series data exists in an individual for each batch cycle. 
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The more the model is trained with many data batches, the more accurate model 

there will be. Further studies with a larger number of data set under various 

experimental condition would be beneficial to verify the scalability of the 

framework.  



 

 89 

3.2.2. Effect of Deep Learning Model Configurations 

In the previous section, the transfer learning method with the 1st to 7th batch 

(case 2 in Table 3-6.) showed the best performance for predicting the hydrate 

formation characteristics for testing the 8th batch by the LSTM-1 model. In this 

section, we apply the various deep learning model and configurations as shown in 

Table 3-4. To determine which model shows the best performance. Table 3-7. 

shows the forecasting results estimated with MAPE by each model for four 

window sections: (1) whole time series, (2) window without transition nor 

segregation point, (3) window with transition point, and (4) window with 

segregation point. Concerning MAPE results, LSTM and GRU models showed 

better performance compared with other models for the whole time series. In 

particular, the LSTM-2 model had the best performance with the lowest MAPE in 

the whole window.  

However, the forecasting performance of each model showed a difference for 

each window section of hydrate formation. For windows except for the transition 

and segregation points (Section 1 in Table 3-7.), ARLSTM and GRU showed 

better results than other models. ARLSTM-3 showed the smallest MAPE. The 

model accuracy at the window of transition point (Section 3 in Table 3-7.) and 

segregation point (Section 4 in Table 3-7.) was dropped with higher MAPE 

compared to the data where the transition and segregation did not occur (Section 2 

in Table 3-7.). For transition point, the Dense-2 model has the lowest MAPE, but 

GRU-based models show the best overall average MAPE results. ARLSTM and 

Dense models had a good performance on the prediction of segregation point with 

the lowest MAPE of the ARLSTM-2 model.  
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To investigate which models fit the best to predict the two characteristics: 

transition and segregation point, we calculated the averaged MAPE of window 

sections including transition and segregation point. With this, the GRU-3 model 

and ARLSTM-2 model show the best results and ARLSTM models show better 

results than other model types. Overall, each model has its best prediction points. 

This indicates that MAPE results alone cannot decide which model makes the best  

prediction. Also, the MAPE result only shows the difference between predictions 

and true values on the given window, thus it is not likely to determine if the models 

predict the right trend. This needs another investigation by trend-prediction rather 

than MAPE only. In the rightmost column in Table 3-7., Dense-2, LSTM-3, GRU-

3, and ARLSTM-2 show the best prediction result in each model type, respectively. 

 

Table 3-7. MAPE is calculated by model on the whole window (1), a window 

without transition nor segregation point (2), a window including transition 

point (3), and the window including segregation point (4). 

Model 
Name 

Model 
No. 

Whole 
Windo

w 
(1) 

Window 
w/o 

Transition 
& 

Segregatio
n Point (2) 

Window 
Including 
Transition 

Point 
(3) 

Window 
Including 
Segregatio

n Point 
(4) 

Average 
of 

(3) and (4) 

Dense 

1 119.4 26.1 95.6 73.4 84.5 
2 56.7 102.2 80.4 85.2 82.8 
3 105.1 15.7 136.7 44.4 90.5 
4 60.1 19.1 177.0 81.1 129.0 

LSTM 

1 71.9 12.0 359.9 117.2 238.5 
2 52.4 37.1 110.4 89.8 100.1 
3 53.1 51.4 96.5 68.5 82.5 
4 70.0 43.7 101.4 77.4 89.4 
5 63.6 83.3 98.5 149.1 123.8 
6 53.7 16.8 173.3 134.9 154.1 
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Fig. 3-13. Comparison of prediction results and true values for the test batch 

(No. 8) by each model; (a) Dense-2, (b) LSTM-3, (c) GRU-3, and (d) 

ARLSTM-2 model. Each model has shown in 3 points were (1) window 

without transition nor segregation point (2) window including transition point 

(3) window including segregation point. 

 

Fig. 3-13. graphically expresses the results of the true and prediction values by 

each model type during the hydrate formation for trend evaluation. As above, the 

results were presented for three windows: (a) before the transition of hydrate 

particles, (b) when the transition occurs, and (c) when segregation occurs after the 

transition. The model used in Fig. 3-13. was chosen from Table 3-7., which 

showed the best MAPE result on each model type (Dense, LSTM, GRU, 

7 52.7 35.0 178.0 82.2 130.1 

GRU 
1 70.7 6.2 122.8 65.9 94.3 
2 65.6 35.4 139.9 131.0 135.5 
3 67.5 55.7 99.5 36.1 67.8 

ARLSTM 
1 100.2 18.9 161.2 70.8 116.0 
2 55.1 7.3 119.9 36.0 77.9 
3 77.0 5.2 112.6 53.1 82.8 
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ARLSTM). Noted that the results from other configurations for each model type 

are provided in Fig. 3-14. to 3-17.  

 

 

 
Fig. 3-14. Comparison of prediction results and true values for the test batch 

(No. 8) on Dense-based model 
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Fig. 3-15. Comparison of prediction results and true values for the test batch 

(No. 8) on LSTM-based model. 

 

 

 

 

 

 

 

(a-1)

(b-1)

(c-1)

(d-1)

(a-2)

(b-2)

(c-2)

(d-2)

(a-3)

(b-3)

(c-3)

(d-3)Transition Point

Transition Point

Transition Point

Transition Point Sloughing Point

Sloughing Point

Sloughing Point

Sloughing Point

(e-1)

(f-1)

(g-1)

(e-2)

(f-2)

(g-2)

(e-3)

(f-3)

(g-3)
Transition Point

Transition Point

Transition Point Sloughing Point

Sloughing Point

Sloughing Point



 

 94 

 

Fig. 3-16. Comparison of prediction results and true values for the test batch 

(No. 8) on GRU-based model 

 

 

Fig. 3-17. Comparison of prediction results and true values for the test batch 

(No. 8) on ARLSTM-based model 

 

The prediction by ARLSTM-2 followed the trend well with experimental results 

for three windows rather than other models as shown in Fig. 3-12. However, the 

results predicted by the Dense-2 model did not show good agreement with actual 

values even before the transition point. Even though the results followed the trend 
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at the transition and segregation point, their magnitude and timing were not precise. 

Prediction results from other dense models show a similar tendency in Fig. 3-13 

The prediction with the LSTM-3 model shows poor performance compared to 

other model types. LSTM-3 model does not predict the trend of the transition point. 

Even though other LSTM models are not that good for predicting transition trends, 

LSTM-1 and LSTM-6 followed the trend well (see Fig. 3-14.). Compared to the 

LSTM-based model, the GRU-based model predicts the transition trend and 

segregation trends but is not good at predicting the precise magnitude. GRU-2 had 

a particularly inaccurate performance of prediction as shown in Fig. 3-15. 

 

Table 3-8. Prediction result and amount of error on transition point and 

segregation point for test batch (No. 8) of each model 

* It did not show the particular point for prediction. 

 
Transition Point Segregation Point 

Predicted 
Time (sec) 

Error 
(sec) 

Predicted 
Time (sec) 

Error 
(sec) 

Dense 

1 5820 -10 6220 30 
2 5330 -500 6220 30 
3 5340 -490 6220 30 
4 5780 -50 6220 30 

LSTM 

1 5840 10 6200 50 
2 5790 -40 6200 50 
3 5660 -170 6200 50 
4 6100 270 6200 50 
5 N/A* N/A* 6200 50 
6 5910 80 6200 50 
7 5600 -230 6200 50 

GRU 
1 5910 80 6200 50 
2 5600 -230 6200 50 
3 5920 90 6200 50 

ARLSTM 
1 5880 50 6200 50 
2 5870 40 6210 40 
3 5900 70 6220 30 
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Table 3-8. shows the prediction result of the transition point and segregation 

point for the test batch (no. 8) of each model. The transition point (time: 5830sec) 

was defined as the first point to reach below the original 1st principal value of the 

actual transition point. Segregation point (time: 6190sec) was defined as the abrupt 

slope change from negative to positive. This shows how well the models predict 

each point. Dense and LSTM models show high variance between models, but 

ARLSTM models show consistency between models and their errors are low, 

though not best, compared to other model types. 

Overall, ARLSTM-based models showed the best performance in the prediction 

of timing and trend when transition and segregation occurred (see Fig. 3-18. and 

Table 3-8.). Even though ARLSTM-2 did not exactly detect the 1st trough (the 

initial part of phase transition), the model predicted the overall trend of the phase 

transition section better than the other types. In particular, the prediction results at 

segregation points followed the true value with a similar trend and magnitude in all 

ARLSTM-based models. In ARLSTM-based models, large cell numbers (64 and 

128) with ARLSTM-2 and the ARLSTM-3 model showed better results than small 

cell numbers (32) with ARLSTM-1. Through the evaluation of MAPE and trend 

prediction, ARLSTM-based models show the best performance for the prediction 

of hydrate formation behavior, followed by GRU-based models. Dense-based 

models and LSTM-based models showed nonuniform performance depending on 

their configuration. Also, from the comparison of the several dropout rates, the 

effective dropout rate was showing the range of 0.2~0.6.  
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Fig. 3-18. Comparison of prediction results and actual values for the test batch 

(No. 8) on ARLSTM-based model at window including transition point (a) and 

segregation point (b) 

 

Using the combination of PCA and deep learning models with the transfer 

learning method, this framework can be used more universally in a system that 

repeatedly gathers many sensor data for specific periods. This approach 

automatically clusters the hydrate risk of the given system using PCA and trains 

the prediction neural network to be fitted with the given system. This work 

suggests, for the first time, a novel framework based on the combination of PCA 

technique and deep learning model to demonstrate the hydrate formation 

characteristics. The developed model predicted the time-series hydrate formation 

behavior for phase transition and hydrate segregation points by using the pressure, 

temperature, and relative torque data. This would provide the possibility to detect 

the hydrate formation and plugging risks in the early stage with reliable ways for 
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the safe operation of subsea flowlines. Further studies would be considered to 

predict the probability and the amount of remaining time to the point of hydrate 

blockage by using the frameworks. Furthermore, the data-driven deep learning 

method can be integrated into the governing physics to improve the limitation on 

generalization, which is called as a Physics Based Neural Network (PBNN) (Ren et 

al., 2020). Further studies using PBNN with time-series prediction would be 

beneficial to improve the performance of deep learning into flow assurance 

applications. 
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3.5. Conclusions 

Prediction of hydrate formation characteristics with real-time data is important to 

safely operate the subsea flowlines. However, due to uncertain relations between 

measurable data and hydrate formation behavior, it was difficult to develop an 

accurate prediction method. With significant advancements in time series analysis 

and prediction models using deep learning, predicting the uncertain future trend 

was possible. In this work, we propose a novel data-driven framework to assess 

and predict the hydrate formation behavior using various deep learning models, 

especially the RNN family. The obtained results showed the models can predict the 

transition and segregation points well. Here is the comparison between the models. 

 

1) PCA on many data can cluster the points by before/after transition point, 

which indicates the sudden and rapid hydrate growth. Also, PCA reduces the 

number of features, which makes training deep learning models more efficient.  

2) Windowing was done on given time-series data to make a real-time 

prediction model which gets input from the near past. 

3) Prediction using deep learning models (Dense, LSTM, GRU, ARLSTM) 

shows reasonable results on prediction transition and segregation points. Among 

the models, ARLSTM shows the best results. For layer number, the single layer 

shows larger MAPE than stacked layers. The dropout rate between 0.2~0.6 

showed significant improvement in accuracy. 

4) Using dataset for deep learning model, training under similar 

experimental conditions (training until 7th batch; only with 200rpm data) shows 

the best result. The data under different experimental conditions (training with 
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1~7 and 9~16th batch; adding 600rpm data after 200rpm data) increases MAPE 

but the MAPE is decreasing as training the model with multiple batches. Enough 

amount data is used in the training, the better the prediction results become. 
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Chapter 4. Prognosis on System 
 

4.1. Introduction 

Prognosis is a important goal in the domain of process monitoring, yet no 

definitive definition or the framework has been given. It is to detect a fault before it 

occurs and find out its root cause to prevent in advance. Fault prognosis in 

chemical processes has been proposed by the several literature from [85, 86] to 

recent model using combined approach of hidden Markov and Bayesian network 

model [87], but the framework is not yet has been standardized as the research is 

still in its early stage, and has only been centered around in each separated 

subcategory; fault detection, prediction in fault case, and root cause diagnosis. 

Until now, numerous studies have attempted to find and explore the new 

algorithms. However, in order to use this effectively, prediction is needed to find 

when and what faults will occur and a diagnostic that determines what causes them 

to occur are needed together. From the perspective of maintenance, if the control or 

maintenance point of a system can be predicted and informed in advance, it is 

called prognosis, which is the most efficient among various maintenance 

techniques. And ultimate purpose of fault detection is to build a system that enables 

prognosis within a process system, which requires fault prediction and diagnostics. 

 

4.1.1. Deep learning based fault detection 

 In domain of fault detection using deep learning, there are 3 major subsets on 

its techniques [88]. (1) deep learning of feature extraction, (2) learning feature 

representations of normality, (3) end-to-end anomaly score learning. On the second 
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category, learning feature representations of normality, includes the generic 

normality feature learning and anomaly measure-dependent feature learning. 

Generic normality feature learning is the methods which gaining its popularity 

nowadays, which includes the autoencoders [89]-[91], generative adversarial 

networks [92], predictability modeling [93], and self-supervised classification [94]. 

 

4.1.2. Deep learning based propagation prediction 

Machine learning based time series prediction methods has been successfully 

applied in many domains related to time series, including sensor networks. Time 

series prediction requires the ability to effectively handle the complex and innate 

features of temporal relationships and since the machine learning models have 

superiority in their ability to process big data with high dimensionality and 

representability[95]. Machine learning based time series prediction method is 

divided into 2 major subsets. One is discriminative and the other is generative. 

Discriminative prediction methods learn to act from the statistics from the observed 

data, where the methods like Support Vector Machine (SVM), Shallow neural 

network (In the category of classical machine learning), Convolutional Neural 

Network (CNN), Long-short Term Memory (LSTM), Auto-Encoder (AE), and 

Deep Stacking Net (DSN) (In the category of deep learning) are included. The 

generative prediction method considers the joint probability distribution of both 

observed data and target data, where the Gaussian Process (GP), Bayesian Network 

(BN) & Hidden Markov Model (HMM) (In the category of classical machine 

learning), Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), 

and Generative Adversarial Networks (GANs) (In the category of deep learning) 
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are included. Other than these two major categories, clustering-based models and 

hybrid deep learning models are also present. The prediction model used for the 

prognosis for chemical process are widely studied. Some used AE, HMM [96]. 

Here, we are using the LSTM model to effectively use the autoregressive trajectory 

propagation prediction. 

 

4.1.3. Deep learning based diagnosis 

 For fault diagnosis, we employed eXplainable Artificial Intelligence (XAI) 

method. Unlike fault detection and propagation prediction, XAI methods are not a 

standalone model but the algorithms for the given model. Here, we apply the XAI 

method to the fault detection and propagation prediction model to perform the fault 

diagnosis to identify the cause of the problem. XAI methods can be categorized by 

the scope, methodology and usage. By its scope, there are 3 major subsets : (1) the 

local, (2) global or (3) hybrid methodologies. The local explanation method 

calculates the contribution of input features to output in the training stage. 

Activation maximization, saliency map, Layer-wise Relevance BackPropagation 

(LRP), Local Interpretable Model-agnostic Explanations (LIME), and Shapley 

Additive exPlanations (SHAP) [97] is included. The global explanation method is 

about the set of decision-making rules applied by the model to analyze the global 

behavior of an AI model on all input variables, not each of them. Global surrogate 

models, Class model visualization, LIME for Global Explanations, Concept 

Activation Vectors (CAVs), Spectral Relevance Analysis (SpRAy), Global 

attribution mapping, and Neural Additive Models (NAMs) are included in this 

category. The hybrid XAI explanation combines the above-mentioned approaches. 
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Here, we are using SHAP, which is the local and model agnostic XAI method, on 

the deep learning model. Model is made up of two different deep learning models : 

one is performing the fault detection and the other performing the prediction. There 

are a few literatures with SHAP employed on a time series prediction model, 

however, VegaGarcia et al. [98] used DeepSHAP-based method to explain the 

predictions of time-series signals involving Long Short-Term Memory (LSTM) 

networks. Explanations were generated for each time step of each input instances. 

 This study introduces the novel deep learning based prognosis scheme 

including 3 major parts : fault detection, propagation prediction and root cause 

diagnosis. This study is distinguished from previous studies as the framework is 3 

main parts are fully deep-learning based, and the prediction technique employs 

novel methodology to enhance the prediction accuracy under the unprecedented 

situation and to predict the RUL until the threshold.  
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Fig. 4-1. Schematic of fault prognosis suggested in this paper 

 

4.2. Process prognosis framework 

As it is a combination of many algorithms, it is important to connect them 

with the flow. Also, in the case of this study, the algorithms used were closely 

connected, so the framework configuration was an important part of the study. In 

this study, we first train the fault detection model and fix the encoder and decoder 

models. After that, the latent space between the encoder-decoder used for fault 

detection was used, and this was considered as a reduced feature dimension and 

used as a preprocessing step for fault prediction. 𝑇!index value was calculated 

using this predicted value, and fault diagnosis was performed through contribution 

analysis on variables that affect the change of this index. In addition, windowing, a 

method of dividing the time series into pieces, was introduced to perform 
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prediction in real time, and the code of the existing algorithm was changed and 

applied to apply this windowing to fault detection and diagnosis. Also, attention 

was paid to the interpretation of the result value as the format of input and output 

was changed by windowing. 

 

 

 

Fig. 4-2. Auto regressive prediction on current fault for calculating RUL 
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4.2.1. Offline modeling 

4.2.1.1. Feature extraction using convolutional autoencoder 

The raw data obtained from the chemical process is first processed with a sliding 

window with a fixed length 𝐿, followed by a normalization between 0 and 1. The 

data is transformed into matrices of the size 𝐿 × 1 × 𝑛, where 𝑛 represents the 

process variable number. 

The model used for feature extraction is CAE. We employ CAE to deal with 

multivariate time-series data. It should be noted that the point-wise convolution 

which uses 1 × 1 kernel is conducted to only extract information across channels 

without destroying the features in time series. Although it varies from the 

autoencoder in that it uses a convolutional layer instead of a dense layer, the 

dimension reduction operation itself is the same because the kernel size is 1. The 

encoder part of CAE map the input to a hidden representation by the nonlinear 

transformation. Then, the hidden representation is reconstructed to the output 

through the decoder part. The model is trained by optimizing the mean squared 

error between input and reconstructed output.  

 

4.2.1.2. Prediction using RNN 

Here, RNN model combined with the online machine learning technique was used 

for prediction. Long-Short Term Memory (LSTM), is one of the most popular 

model amongst the RNN family. LSTM model has operations inside the cell to 

keep cell states and controlled by three gates : input, output, forget. By this the 

model can selectively take past information into account. This is expressed as : 
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(4-1) 

 , where ℎ" is hidden state at time 𝑡, ℎ"36 is hidden state at time 𝑡 − 1 or the 

initial hidden state at time 𝑜, 𝑐" is cell state at time 𝑡, 𝑥" is input at time 𝑡, 𝑖" is 

input gate at time 𝑡, 𝑓" is forget gate at time 𝑡, 𝒞"is cell gate at time 𝑡, 𝑜" 

output state at time 𝑡, and ∗ is the Hadamard product, 𝜎 is the sigmoid function. 
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Fig. 4-3. Configuration of RNN cells 

 
 
LSTM is widely studied model and proved its usefulness [99]. But there are not 

many research has been done on LSTMs with online learning. However, the 

combination of LSTM and online learning is very essential for fault prediction 

since It is difficult to detect a fault condition promptly using unsupervised data, and 

Predicting the fault condition using offline risk calculation based 

on a normal dataset is not accurate [100]. Unlike general prediction, process fault 

prediction must predict propagation that has never been made before. This is a 

'abnormal' situation where abnormal situations that occur in the process are literally 

not encountered before, and fault prediction must make predictions in these 

abnormal situations. For this reason, the accuracy is very poor if the existing 

recurrent neural network is used as it is. 
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Fault prediction is made for the latent vector obtained after passing through the 

encoder used in the fault detection step. These values, which are feature redux, can 

increase accuracy and reduce time. The latent vector is put as an input to the RNN 

model so that learning is performed. This paper attempted to verify using various 

models through mixing and matching with various models and various types of 

current natural network models. The training data used in the prediction model 

contains some of the fault data as well as pure normal data, unlike the training data 

in the fault detection model. Combination of CAE and LSTM is a bit similar to the 

of CNN-LSTM, which combines the CNN and LSTM shown in [100], however, 

the training process is different since this study treats CAE and LSTM as the 

different model and train with different data. 

 

4.2.1.3. Monitoring statistics 

The indicator for process monitoring is calculated using the future latent vector 

predicted by LSTM predictor. The Hotelling's T2 statistic [101] is a way of 

measuring the variation captured in the latent vector, and it is expressed as: 

 

𝑇! = 𝑧,𝛥36𝑧 (4-2) 

 

where 𝛥 is the covariance matrix of the latent vector 𝑧. A fault is detected when 

the 𝑇! exceeds a specific threshold, where the deviation from the normal state is 

observed. The threshold is determined through a kernel density estimation of 𝑇! 

with a given confidence level 𝛼. It should be noted that, in order to consider the 
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accumulated error while passing through the LSTM predictor, the future normal 

latent vector which is not obtained from CAE but from LSTM is used for 

calculating the threshold. 

 

4.2.2. Online monitoring 

4.2.2.1. Online learning 

For real-time prediction, 𝑁 inputs were received and 𝑀 prediction results were 

presented as outputs. This is to make it available in real time in the actual process. 

Based on this, the methods of fault detection and fault diagnostics were also 

changed. 

After completing the fault prediction, the 𝑇!	value was calculated using each 

latent variable. That is, since it is possible to calculate the future 𝑇!value, it is 

possible to predict whether or not a fault will occur in the future. 

Online learning means training a system by iteration of small amounts of data 

sequentially. Examples of applying online learning to deep learning include the 

case of changing the cell structure itself [102] and the case of using batch learning 

[103]. 

It is suitable for systems that receive data continuously and have to adapt itself to 

rapid changes, so it can compensate for the lack of data at the time of process 

failure by allowing the prediction model in the process system to run online. In 

general, if only online learning is enabled, system performance can degrade when 

bad data is injected into the system. To compensate for this, the framework was 

configured so that it could learn using existing historical data and online learning 

using transfer learning while monitoring was performed. As a result of comparing 
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several cases, the shorter the update cycle and the longer the sample returned at 

once, the shorter the learning time was. The time required for learning is expected 

to be shortened if the simulation is performed in a better environment. 

 

4.2.2.2. RUL estimation using autoregressive trajectory prediction 

RUL is an amount of time left for which a unit under test is usable [104]. This is 

an important index for calculating the lifespan of equipment and for maintenance 

of process plants and prevention of faults. RUL has mainly been studied in relation 

to mechanical equipment as shown in [105]-[107] rather than chemical processes. 

So There is a difficulty in RUL prediction in chemical processes can be viewed as 

the time it takes to reach a specific fault condition rather than mechanical failure. 

Since chemical process fault is a broad concept that includes mechanical and 

process condition fault, it is hard to adopt the physical model formulation as shown 

in literature. In this study, the RUL prediction has been made based on the auto 

regressive trajectory prediction of health indicator, which has been predicted by the 

trained RNN model of the given time. At each time window, RNN model can 

predict far future using autoregressive iteration, which done by putting output of 

prediction result as a input of next prediction. Iterative point prediction has made 

for the trajectory prediction. Autoregressive behavior means that the each output 

depends on previous observations as below :  

𝑝(𝐱) = 	g𝑝(𝑥M|𝐱_M)
0

MR6

 (4-3) 
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where 𝑝(𝐱) is a density function of training samples 𝐱. Since the LSTM model 

can be described as the autoregressive model perspective [108], autoregressive 

prediction using LSTM based prediction model satisfies the innate accordance. 

 

With using the prediction model at 𝑡 = 𝑖 for prediction of point 𝑡 = 𝑖 + 1, the 

trajectory 𝜙(𝑖 + 1|𝑖) denotes the trajectory of the T2 value. RUL 𝑟(𝑖) at 𝑡 = 𝑖 

is 

𝒓(𝑖) = 𝑡 − 𝑡M 

	𝑗 = 𝐦𝐚𝐱
*
(ℎ(𝑧) ≤ 0, 𝑧 > 𝑖) 

(4-4) 

, where 𝑧 is point of failure (=End Of Life (EOL), a time instance when the 

prediction crosses the failure threshold), ℎ(𝑧)is health indicator, which in here is 

same as 𝜙(𝑧).  
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4.2.2.3. Fault diagnosis using future T2 

Based on the future T2 value, the contribution of input sequence of sensors to the 

future T2 was calculated using the SHAP technique [97]. The SHAP technique 

used in diagnosis is a model agnostic method among XAI techniques. There are 

several sub-techniques in SHAP, such as treeSHAP and deepSHAP kernelSHAP, 

and techniques are increasingly being added. Among them, the method used in this 

study is kernelSHAP, which can be used for all models with defined input/output, 

unlike treeSHAP or deepSHAP, which are greatly affected by the type of model. In 

this study, the feature extractor and predictor built above are the parts that need 

explanation through SHAP for fault diagnosis.  
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Algorithm of KernelSHAP is shown in Algorithm2. Using SHAP kernels, 

KernelSHAP removes features from the input data and linearizing the model 

influence to randomly sample coalitions.  

𝑔(𝑧a) = 	𝜙I +p𝜙`𝑧 ′
b

`R6

 (4-5) 

where 𝑔 as the explanation model of an ML model 𝑓, 𝑧 ′ as the coalition vector, 

𝑀 the maximum coalition size, and 𝜙` the feature attribution for feature 𝑗, 

𝑔(𝑧I) is the sum of bias and individual feature contributions. 

 

 

4.3. Case study 

To prove the validity and effectiveness of the proposed prognosis methodology, 

two widely used simulation cases, the Continuous Stirred-Tank Reactor (CSTR) 

process [109] and the Tennessee Eastmann (TE) process [110], were used. 
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4.3.1. Target system 

4.3.1.1. CSTR Process 

CSTR is a vessel in which reactants and solvents flow into the reactor while the 

reaction product flows which shown in Fig. 4-4. Simulation of the CSTR has been 

introduced in [109]. Simulations of normal and faulty data were generated every 

60 min for 20 h of operation under varying conditions. There are 8 process 

variables : inlet flow rate, tank volume, jacket volume, heat of reaction, heat 

transfer coefficient, pre-exponential factor to k, activation energy, fluid density, 

and fluid heat capacity. The sampling interval for all variables was 1 min. There 

were 10 incipient faults, as listed in Table 4-2. These faults were initiated from the 

200th sample.  

 

Fig. 4-4. Configuration of the CSTR simulation 

 

Table 4-1. Constant values in the CSTR model 

Parameter Description Value Units 
𝑸 Inlet flow rate 100.0 L/min 
𝑽 Tank volume 150.0 L 
𝑽𝒄 Jacket volume 10.0 L 
∆𝑯𝒓 Heat of reaction -2.0 ´ 105 cal/mol 
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𝑼𝑨 Heat transfer coefficient 7.0 ´ 105 cal/min/K 
𝒌𝟎 Pre-exponential factor to k 7.2 ´ 1010 min-1 
𝑬/𝑹 Activation energy 1.0 ´ 104 K 
𝝆, 𝝆𝒄 Fluid density 1000 g/L 
𝑪𝒑, 𝑪𝒑𝒄 Fluid heat capacity 1.0 cal/g/K 

 

Table 4-2. Incipient fault scenarios in the CSTR 

Fault ID Description Rate of fault 
progression Type 

1 𝑎	 = 	𝑎I	𝑒𝑥𝑝	(−𝛿𝑡) 0.0005 Multiplicative 
2 𝑏 = 𝑏I	𝑒𝑥𝑝	(−𝛿𝑡) 0.001 Multiplicative 
3 Simultaneous Faults 1 and 2 - Multiplicative 
4 𝐶M = 𝐶M,I + 𝛿𝑡 0.001 Additive 
5 𝑇M = 𝑇M,I + 𝛿𝑡 0.05 Additive 
6 𝑇@M = 𝑇@M,I + 𝛿𝑡 0.05 Additive 
7 𝐶 = 𝐶I + 𝛿𝑡 0.001 Additive 
8 𝑇 = 𝑇I + 𝛿𝑡 0.05 Additive 
9 𝑇@ = 𝑇@,I + 𝛿𝑡 0.05 Additive 
10 𝑄@ = 𝑄@,I + 𝛿𝑡 -0.1 Additive 

 

 

4.3.1.2. TE process 

The TE process contains five major unit operations: reactor, condenser, separator, 

compressor, and stripper. There are 52 variables, including 22 process variables 

and 19 composition variables, i.e., X1-X41, and 11 manipulated variables, i.e., 

X42-X52, as described in Table 4-3.. And the time length of the cases is 1080 

samples. The TE process contains 1 normal case and 21 fault cases, as described in 

Table 4-4. In test set A, faults have 480 samples, and in the test set, B faults had 

960 samples. And for all the fault cases, faults were initiated from the 160th 
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sample. This means that even in the fault set, samples before the 160th sample are 

under normal conditions.  

TE process has total of 8 components, 4 of which are reactants (A, C, D, E) and 2 

are products (G, H) and 1 is byproduct (F). Reactions are irreversible and 

exothermic. The reactions are shown as : 

𝐴	(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙𝑖𝑞) 

𝐴	(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙𝑖𝑞) 

𝐴	(𝑔) + 𝐸(𝑔) → 𝐹(𝑙𝑖𝑞) 

3𝐷(𝑔) → 2𝐹(𝑙𝑖𝑞) 

(4-6) 
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Fig. 4-5. Configuration of the TEP simulation 

 

Table 4-3. Process variables in TEP, including manipulated variables (XMV), 

Continuous process measurements (XMEAS (1) ~ XMEAS (22)), sampled 

process measurements (XMEAS (23) ~ XMEAS (41)) 

Variable 
number Variable name Base case 

value(%) 
Low 
limit 

High 
Limit Units 

XMV (1) D feed flow (stream 2) 63.053 0 5811 kg h-1 
XMV (2) E feed flow (stream 3) 53.980 0 8354 kg h-1 
XMV (3) A feed flow (stream 1) 24.644 0 1.017 kscmh 
XMV (4) A and C feed flow (stream 4) 61.302 0 15.25 kscmh 
XMV (5) Compressor recycle valve 22.210 0 100 % 
XMV (6) Purge valve (stream 9) 40.064 0 100 % 

XMV (7) Separator pot liquid flow 
(stream 10) 38.100 0 65.71 m3h-1 

XMV (8) Stripper liquid product flow 
(stream 11) 46.534 0 49.10 m3h-1 

XMV (9) Stripper steam valve 47.446 0 100 % 
XMV (10) Reactor cooling water flow 41.106 0 227.1 m3h-1 
XMV (11) Condenser cooling water flow 18.114 0 272.6 m3h-1 
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XMV (12) Agitator speed 50.000 150 250 rpm 
XMEAS (1) A feed (stream 1) 0.25052 - - kscmh 
XMEAS (2) D feed (stream 2) 3664.0 - - kg h-1 
XMEAS (3) E feed (stream 3) 4509.3 - - kg h-1 
XMEAS (4) A and C feed (stream 4) 9.3477 - - kscmh 
XMEAS (5) Recycle flow (stream 8) 26.902 - - kscmh 
XMEAS (6) Reactor feed rate (stream 6) 42.339 - - kscmh 

XMEAS (7) Reactor pressure 2705.0 - - kPa 
gauge 

XMEAS (8) Reactor level 75.000 - - % 
XMEAS (9) Reactor temperature 120.40 - - ℃ 
XMEAS (10) Purge rate (stream 9) 0.33712 - - kscmh 
XMEAS (11) Product separator temperature 80.109 - - ℃ 
XMEAS (12) Product separator level 50.000 - - % 

XMEAS (13) Product separator pressure 2633.7 - - kPa 
gauge 

XMEAS (14) Product separator underflow 
(stream 10) 25.160 - - m3h-1 

XMEAS (15) Stripper level 50.000 - - % 

XMEAS (16) Stripper pressure 3102.2 - - kPa 
gauge 

XMEAS (17) Stripper underflow (stream 11) 22.949 - - m3h-1 
XMEAS (18) Stripper temperature 65.731 - - ℃ 
XMEAS (19) Stripper steam flow 230.31 - - kg h-1 
XMEAS (20) Compressor work 341.43 - - kW 

XMEAS (21) Reactor cooling water outlet 
temperature 94.599 - - ℃ 

XMEAS (22) Separator cooling water outlet 
temperature 77.297 - - ℃ 

XMEAS (23) Stream 6 (reactor feed) 
component A 32.188 - -- mol% 

XMEAS (24) Stream 6 (reactor feed) 
component B 8.8933 - -- mol% 

XMEAS (25) Stream 6 (reactor feed) 
component C 26.383 - - mol% 

XMEAS (26) Stream 6 (reactor feed) 
component D 6.8820 - - mol% 

XMEAS (27) Stream 6 (reactor feed) 
component E 18.776 - - mol% 

XMEAS (28) Stream 6 (reactor feed) 
component F 1.6567 - - mol% 
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XMEAS (29) Stream 9 (purge gas) 
component A 32.958 - - mol% 

XMEAS (30) Stream 9 (purge gas) 
component B 13.823 - - mol% 

XMEAS (31) Stream 9 (purge gas) 
component C 23.978 - - mol% 

XMEAS (32) Stream 9 (purge gas) 
component D 1.2565 - - mol% 

XMEAS (33) Stream 9 (purge gas) 
component E 18.579 - - mol% 

XMEAS (34) Stream 9 (purge gas) 
component F 2.2633 - - mol% 

XMEAS (35) Stream 9 (purge gas) 
component G 4.8436 - - mol% 

XMEAS (36) Stream 9 (purge gas) 
component H 2.2986 - - mol% 

XMEAS (37) Stream 11 (product) 
component D 0.01787 - - mol% 

XMEAS (38) Stream 11 (product) 
component E 0.83570 - - mol% 

XMEAS (39) Stream 11 (product) 
component F 0.09858 - - mol% 

XMEAS (40) Stream 11 (product) 
component G 53.724 - - mol% 

XMEAS (41) Stream 11 (product) 
component H 43.828 - - mol% 

 

 

4.3.2. Results 

4.3.2.1.Feature extraction using CAE 

Using the trained CAE's encoder, sensor data of 𝑁#:K#O5 with a time step length 

of 𝐿MKQf" is reduced to 𝑁_𝑙𝑎𝑡𝑒𝑛𝑡	 with the time step length of 𝐿MKQf". Here, the 

number of features (𝑁) is reduced number of time steps (𝐿) is conserved. For 

CSTR process, 8 variables (𝑁#:K#O5) were reduced to 3 latent variables (𝑁g>":K"). 

and for TE process, 52 variables (𝑁#:K#O5) were reduced to 8 latent variables 

(𝑁g>":K"). The number of the latent vector is obtained empirically. CAE is trained 
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only with the normal data, due to the characteristic of encoder-decoder. For 

training in the CSTR process, the normal case in the training data was used and for 

the TE process, the normal case in the training data was used for training. The 

decoder was trained accordingly with the encoder for the reconstruction but did not 

use in this framework. With the obtained latent vector, the 𝑇!value of the given 

data was calculated as a prediction label. Also the fault detection threshold was set 

from the 𝑇!value.  

 

4.3.2.2. Trajectory prediction 

Trajectory prediction of multivariate time series on latent space was performed 

using various RNN models. The input of prediction is the reduced feature number 

of 𝑁g>":K" by input time step length of 𝐿MKQf" and the output of the prediction is 

the reduced feature number of 𝑁g>":K" by output time step length of 𝐿Of"Qf". 

Here, several variables (𝑁) are conserved but the number of time steps (𝐿) can be 

differed by the length desired for prediction. For the CSTR process, the normal 

case in the training data and fault case 1 to 10 in the test set A was used for model 

training, and fault case 1 to 10 in test set B was used for model testing. For the TE 

process, the normal case in the training data and fault case 1 to 21 in the test set A 

was used for model training, and fault case 1 to 21 in test set B.  
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Fig. 4-6. Autoregressive prediction on current fault for calculating RUL on 

TEP Fault 2 (B composition, A/C ratio constant (Stream 4)) 
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Fig. 4-7. Autoregressive prediction on current fault for calculating RUL on 

CSTR Fault 3 

 

Model architectures combined with various RNN cell types were used for 

prediction including LSTM, LSTM + Dense, ARLSTM, GRU, GRU + Dense, 

ARGRU.  The dense model is a simple fully-connected neural network model, 

ARLSTM is Autoregressive LSTM, and ARGRU is Autoregressive GRU. There 

were no big differences between the cell types on the prediction performance of the 

model shown in Table 4-4, but were tendencies regarding the model architectures. 

Basic models without stacking like LSTM and GRU showed faster performance 

than stacked models like RNN + Dense + Dense and RNN + RNN + Dense. As a 
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result of the comparison, an unstacked LSTM model was used as a prediction 

model for further steps. 

 

A large 𝑇! value means that there is a large deviation from the normal driving 

situation, and it means that data that is different from the data learned by the deep 

learning model under normal conditions is being input. In other words, the existing 

model refers to the problem of significantly lowering prediction performance when 

a new situation occurs, not the learned situation, that is, the extrapolation problem 

of the deep learning model, which is a data driven technique. However, in the case 

of using online learning using new incoming samples, prediction performance can 

be maintained even if a new situation appears rather than the learned situation 

through continuous updates. This is a very big advantage in the chemical process 

where it is difficult to actually generate a problem situation. 

 
 
 

4.3.2.3. Online learning after training 

Online learning was done using periodic transfer learning. when the number of 

incoming samples accumulates up to a certain value(𝑙OKgMK:), the training process 

using transfer learning is initiated using newly incoming samples as the training 

set. This method uses makes changes to the trained internal weight parameters of 

the neural network model with accumulated samples. Since the sample number 

used as update 𝑙OKgMK: is smaller than the sample number used for training the 

original model, changes would be smaller compared to the main training phase. 

Here, the number of sample interval lengths for online learning(𝑙OKgMK:) was set as 

10, 30, and 60. Also, the epoch size for the transfer learning was set as 20, 50, and 



 

 126 

100. As a result, the error was lower with the smaller interval length and the larger 

epoch size. The error was calculated as the Maximum Error Percentage Error 

(MAPE) on 𝑇! value of predicted latent vectors.  

 

Also, a visual comparison of the trend was included in finding the tendency. By 

comparing the result without online learning and with online learning, there is a 

significant accuracy increase in prediction using online learning. Also, there is a 

relatively small difference between the different combinations of sample interval 

length and epoch size. By this, using online learning is beneficial regardless of the 

sample interval or epoch size. For the TE process, faults 2, 6, 13, 17, and 18 

showed a dramatic increase in accuracy. Those faults have larger 𝑇!values than 

other cases, which means they showed a large difference from the normal operating 

behavior.  

 

 

Table 4-4. Prediction errors on TEP fault case 1~21 by different RNN models 

 Description Type Dense 
Dense 
+Dens

e 
LSTM 

LSTM 
+ 

Dense 

ARLS
TM GRU 

GRU 
+Dens

e 

ARG
RU 

Fault 1 

A/C feed ratio, B 
composition 

constant (Stream 
4) 

Step 1.900 2.136 2.570 2.364 2.086 2.846 2.146 2.737 

Fault 2 
B composition, 

A/C ratio constant 
(Stream 4) 

Step 17.130 15.187 25.078 24.517 26.338 28.471 26.154 29.172 

Fault 3 
D feed 

temperature 
(Stream 2) 

Step 1.425 1.511 1.582 1.996 1.567 1.632 1.553 1.667 

Fault 4 
Reactor cooling 

water inlet 
temperature 

Step 1.354 1.495 1.463 2.025 1.511 1.673 1.587 1.646 

Fault 5 
Condenser 

cooling water inlet 
temperature 

Step 1.509 1.685 2.153 2.132 1.917 1.584 1.778 2.173 

Fault 6 A feed loss 
(Stream 1) Step 29.805 47.048 53.703 38.968 50.047 45.359 55.656 40.554 
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Fault 7 

C header pressure 
loss-reduced 

availablity (Stream 
4) 

Step 1.870 2.177 2.618 2.652 1.926 2.021 2.200 2.057 

Fault 8 
A, B, C feed 
composition 
(Stream 4) 

Rando
m 1.643 2.018 2.798 2.671 2.504 2.612 1.998 3.681 

Fault 9 
D feed 

temperature 
(Stream 2) 

Rando
m 1.338 1.401 1.534 1.861 1.486 1.568 1.468 1.623 

Fault 10 
C feed 

temperature 
(Stream 4) 

Rando
m 1.220 1.351 1.349 1.711 1.330 1.422 1.359 1.489 

Fault 11 
Reactor cooling 

water inlet 
temperature 

Rando
m 1.233 1.344 1.408 1.753 1.368 1.469 1.461 1.469 

Fault 12 
Condenser 

cooling water inlet 
temperature 

Rando
m 2.419 2.751 3.328 3.024 3.780 3.857 4.003 3.398 

Fault 13 Reaction kinetics Slow 
Drift 3.357 5.207 10.152 8.947 8.110 5.716 5.609 8.111 

Fault 14 Reactor cooling 
water valve 

Sticki
ng 1.186 1.098 1.197 1.258 1.088 1.166 1.158 1.104 

Fault 15 
Condenser 

cooling water 
valve 

Sticki
ng 1.429 1.543 1.587 1.978 1.569 1.612 1.568 1.666 

Fault 16 Unknown Unkno
wn 1.190 1.286 1.399 1.694 1.338 1.445 1.359 1.492 

Fault 17 Unknown Unkno
wn 7.948 8.261 7.682 7.898 8.456 7.663 7.866 8.236 

Fault 18 Unknown Unkno
wn 46.854 43.085 48.241 48.115 46.030 47.073 45.818 45.309 

Fault 19 Unknown Unkno
wn 1.457 1.546 1.603 2.013 1.599 1.648 1.585 1.677 

Fault 20 Unknown Unkno
wn 1.157 1.225 1.315 1.531 1.213 1.273 1.278 1.314 

Fault 21 Unknown Unkno
wn 1.240 1.356 1.418 1.681 1.356 1.396 1.355 1.431 

 

 

Fig. 4-8. Result of prediction by RNN model (except fault 2, 6, 18) 
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Fig. 4-9. Fault propagation prediction on TEP fault case 1~21((a)~(u)) without 

and with online learning (interval 10, epoch 100) 
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Table 4-5. Prediction errors on TEP fault case 1~21 without and with online 

learning with various combinations of online learning intervals (10, 30, 60) 

and epoch sizes (100, 50, 20) 

 Description Type w/o 
OL 10/100 10/50 10/20 30/100 60/100 

Fault 1 A/C feed ratio, B composition constant Step 2.57 0.70 0.77 0.76 0.82 0.70 

Fault 2 B composition, A/C ratio constant Step 25.07 6.04 8.98 6.67 11.41 6.85 

Fault 3 D feed temperature Step 1.58 1.49 1.34 1.18 1.35 1.31 

Fault 4 Reactor cooling water inlet temperature Step 1.46 1.45 1.35 1.09 1.52 1.47 

Fault 5 Condenser cooling water inlet 
temperature Step 2.15 1.64 1.55 1.20 1.63 1.46 

Fault 6 A feed loss Step 53.70 2.28 3.53 2.43 6.79 7.25 

Fault 7 C header pressure loss-reduced 
availablity Step 2.61 2.06 1.73 1.35 1.78 1.42 

Fault 8 A, B, C feed composition Random 2.79 1.71 1.34 1.24 1.83 1.17 

Fault 9 D feed temperature Random 1.53 1.30 1.19 1.10 1.25 1.54 

Fault 10 C feed temperature Random 1.34 1.28 1.29 1.07 1.14 1.17 

Fault 11 Reactor cooling water inlet temperature Random 1.40 1.32 1.14 1.11 1.38 1.22 

Fault 12 Condenser cooling water inlet 
temperature Random 3.32 1.99 1.90 1.52 1.73 1.64 

Fault 13 Reaction kinetics Slow Drift 10.15 3.16 2.38 3.26 2.46 3.14 

Fault 14 Reactor cooling water valve Sticking 1.19 1.06 0.92 0.87 1.05 1.17 

Fault 15 Condenser cooling water valve Sticking 1.58 1.45 1.32 1.21 1.69 1.42 

Fault 16 Unknown Unknown 1.39 1.16 1.08 1.00 1.26 1.20 

Fault 17 Unknown Unknown 7.68 3.03 2.95 2.56 2.87 2.81 

Fault 18 Unknown Unknown 48.24 3.20 3.68 3.46 4.68 8.25 

Fault 19 Unknown Unknown 1.60 1.33 1.28 1.18 1.45 1.66 

Fault 20 Unknown Unknown 1.31 1.13 1.05 0.95 0.99 1.33 

Fault 21 Unknown Unknown 1.41 1.17 1.06 0.97 1.21 1.31 
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Fig. 4-10. Fault propagation prediction errors on TEP fault case 1~21 without 

and with online learning 
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Fig. 4-11. Fault propagation prediction on CSTR case fault 1~10 ((a)~(j)) 

without and with online learning 

 

Table 4-6. Fault propagation prediction on CSTR fault case 1~21 without and 

with online learning with various combinations of online learning intervals 

and epoch sizes 

 Description Type w/o 
OL 10/100 10/50 10/20 30/100 60/100 

Fault 1 Catalyst decay Multiplicative 8.96 5.02 5.25 5.31 5.50 5.49 

Fault 2 Heat transfer 
fouling Multiplicative 0.37 1.01 1.30 1.10 0.72 0.73 

Fault 3 Simultaneous 
Faults 1 and 2 Multiplicative 7.89 2.62 2.62 2.78 3.07 2.99 

Fault 4 Sensor drift on 
Ci Additive 653.75 36.10 43.62 212.71 193.17 616.50 

Fault 5 Sensor drift on 
Ti Additive 0.45 61.92 44.97 18.24 49.33 9.99 

Fault 6 Sensor drift on 
Tc i Additive 8.73 7.97 27.32 9.27 18.20 41.80 
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Fault 7 Sensor drift on 
C Additive 225.29 11.31 31.11 100.95 219.65 159.19 

Fault 8 Sensor drift on 
T Additive 0.37 17.49 13.41 9.80 32.31 2.41 

Fault 9 Sensor drift on 
Tc Additive 2.86 151.81 68.15 58.50 56.22 12.07 

Fault 10 Sensor drift Qc Additive 0.52 13.48 13.49 6.90 14.24 2.22 
 

 

 4.3.2.4. RUL Prediction 

Assuming the prediction model has a certain level of accuracy, the prediction 

result can be put as the model’s input to get a prediction result for the further 

future. This is referred to as an autoregressive prediction, which iteratively makes a 

prediction until a certain time horizon limit using its own prediction result. This is 

separate sequence with online learning, however, to better predict RUL, online 

learning is also needed for the RUL calculation phase as included in the algorithm 

Algorithm 1. Here, the End Of Life (EOL) point is defined as the first point at 

which the 𝑇!value meets the threshold. For the TE process, the threshold is 20 and 

For the CSTR process the threshold is 5. RUL is difference between the current 

time and EOL.and this can be shown in Fig. 4-12.  
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Fig. 4-12. Alpha-lambda plot of TEP Fault 2 from t = 80 to t = 173 (EOL) 

 

 

4.3.2.5. Fault Diagnosis 

Using the SHAP algorithm, the contribution score of the calculated 𝑇!value of the 

corresponding input value of size 𝑁#:K#O5 by 𝐿MKQf" was obtained. Since the 

Shapely value obtained from the SHAP is model-dependent, constantly updating 

the model using online learning affects the result of the SHAP value. This means 

that when the model updates using online learning, the calculation of the Shapley 

value for the model should be renewed. The result shown in Fig. 4-13 was re-

calculated by each sample interval length 𝑙OKgMK:. the larger the contribution score, 

the more likely the sensor is the cause of the fault. In Fig. 4-13, sensor has the 

largest contribution score which correlates with the real root cause. 
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Fig. 4-13. T2 Score of prediction result on CSTR fault cases with and without  

online learning, with SHAP value by time. (a) is fault case 3, catalyst decay 

and heat transfer learning, (b) is fault case 4, sensor drift on Ci, (c) is fault 

case 7, sensor drift on C   
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Fig. 4-14. Heatmap of SHAP values over time on CSTR fault case 1 to 10, 

which shown in (a) to (j) respectively 
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4.4. Conclusion 

In this study, novel prognosis scheme for chemical process with deep-learning 

based anomaly detection, prediction and diagnosis has been suggested. anomaly 

detection has been done with CAE, prediction was done using autoregressive RNN 

using online learning and root cause diagnosis was done with XAI method SHAP. 

With progress in each parts, this framework shows the far better results than any 

other attempts at prognosis on chemical plant. 
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Chapter 5. Concluding remarks 
 

5.1. Conclusions 

This study presented various models using machine learning for use in offshore 

systems, including an anomaly detection model based on a machine learning 

model, a hazard detection model through sensor data prediction, and a process 

predictive maintenance model. 

Firstly, a plant-wide anomaly detection algorithm using Multi-Scale 

Convolutional Recurrent Encoder-Decoder (MSCRED) has been proposed. Herein, 

anomaly detection was performed based on the interconnected side of process plant 

sensor data rather than the simple sum of single sensor data. Conv-LSTM model 

used a framework that modified the method for calculating the anomaly score 

based on the MSCRED framework for  chemical processes. Additionally, we 

established a methodology to process anomaly detection using multiple windows. 

In addition to performing anomaly detection, we analyzed the effect of the training 

data on the anomaly detection performance of the model, and the situation and 

timing of separation of each issue were obtained. 

Secondly, a novel data-driven framework to assess and predict the hydrate 

formation behavior using various deep learning models, especially the RNN 

family, was proposed. The obtained results showed the models can predict the 

transition and segregation points well. PCA on many data can cluster the points by 

before/after transition point, which indicates the sudden and rapid hydrate growth. 

Also, PCA reduces the number of features, which makes training deep learning 

models more efficient. And windowing was done on given time-series data to make 
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a real-time prediction model which gets input from the near past. Prediction using 

deep learning models (Dense, LSTM, GRU, ARLSTM) shows reasonable results 

on prediction transition and segregation points. Among the models, ARLSTM 

shows the best results. For layer number, the single-layer shows larger MAPE than 

stacked layers. The dropout rate between 0.2~0.6 showed significant improvement 

in accuracy. Lastly, using dataset for deep learning model, training under similar 

experimental conditions (training until 7th batch; only with 200rpm data) shows 

the best result. The data under different experimental conditions (training with 1~7 

and 9~16th batch; adding 600rpm data after 200rpm data) increases MAPE but the 

MAPE is decreasing as training the model with multiple batches. Enough amount 

data is used in the training, the better the prediction results become. 

Thirdly, novel prognosis scheme for chemical process with deep-learning based 

anomaly detection, prediction and diagnosis has been suggested. anomaly detection 

has been done with CAE, prediction was done using autoregressive RNN using 

online learning and root cause diagnosis was done with XAI method SHAP. With 

progress in each parts, this framework shows the far better results than any other 

attempts at prognosis on chemical plant.  

  

5.2. Further study 

Machine learning and deep learning-based methodologies have come a long way 

in about 10 years. In addition, studies that can be used in harmony with existing 

engineering techniques are also being studied a lot recently. However, there is no 

methodology established as an industry standard yet, and it will be an important 

task to develop an algorithm with accuracy and efficiency that can be established 
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as a standard while identifying various machine learning techniques that are 

continuously developing. The biggest advantage of machine learning-based 

methodology is that it can be automatically optimized based on data, and that 

automation can be performed later using this. In other words, it is necessary to 

automatically process it in the era of increasing data volume using cloud and big 

data. However, in order to use it efficiently, it is necessary to compare and review 

the methodology suitable for the system and modify it to suit the system. In this 

study, only the diagnostic field was studied, but for complete automation, it is 

thought that a full framework that applies machine learning to the control field 

should be produced. Since the control part uses methodologies such as 

reinforcement learning, additional research on how to bridge is needed. Also, 

within this study, clear definitions and classification methods for fault cases and 

thresholds are needed for predictive maintenance in many process systems. 

However, since this is different for each system, automation can be easily achieved 

only when research on a methodology that can determine this regardless of the 

system is conducted. There is also a need to more actively borrow probabilistic 

methodologies. The introduction of formula-based deep learning methodologies 

such as Physics informed neural network (PINN) is also an important part. Since 

this field is still in the stage of application, it is necessary to continuously search 

for the optimal methodology through the introduction of various methodologies 

and comparison between them. 
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Abstract in Korean 
 

최근 조선 해양 분야에서도 디지털화 (Digitalization)에 관한 관심이 

점차 증대되고 있다. 특히 그 중에서도 디지털 트윈 (Digital Twin)은 

가상의 모델에 실시간으로 실제 시스템의 데이터를 동기화 시켜서 

모니터링할 수 있도록 하는 것으로, 디지털화와 관련된 여러 다양한 

기술이 총집합된 주요 플랫폼이다. 디지털 트윈의 구성 요소는 크게 

데이터, 통신, 모델 그리고 서비스 이렇게 네 가지로 구분된다. 이 중 

데이터와 통신 부분은 사물 인터넷 (Internet of Things)과 빅데이터, 

클라우드, 그리고 5G 등의 신기술의 동시적인 발달로 인해 많은 진전이 

이루어졌으며 ISO 23247, ISO/IEC30172, 30173 등의 국제 표준까지 

정립되었다. 반면 모델 및 서비스, 특히 서비스 부분에서는 상대적으로 

발전이 더디게 일어나고 있다. 그 요인으로 기존의 시뮬레이션 모델 및 

분석 기법으로는 실시간으로 수집되고 업데이트되는 센서 데이터를 

다루고 처리할 수 있는 역량이 부족하다는 점, 또 최근 대두되고 있는 

머신 러닝 및 데이터 기반 분석 기법이 해양 시스템에 바로 사용될 수 

없어 추가적인 엔지니어링이 필요하다는 점 등을 꼽을 수 있다.  

본 연구는 머신 러닝 모델을 기반으로한 이상 감지 모델, 센서 데이터 

예측을 통한 위험 상황 감지 모델, 그리고 공정 예지 보전 모델을 해양 

시스템에서 사용할 수 있도록 수정하고 또한 검증하였다. 

첫째로, 공정 시스템에 적용할 수 있는 센서 간 연관도 기반 이상 감지 

모델을 제안하였다. 본 모델은 MSCRED 모델을 수정한 것으로, 다변수 
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시계열 데이터 (Multivariate Time Series Data)를 이용하여 각 변수간 

연관도를 계산한 2 차원 연관도 행렬을 시간에 따라 생성한 뒤  Conv-

LSTM ED (Convolutional Long-short Term Memory Encoder 

Decoder) 모델을 이용하여 reconstruction 행렬을 얻어내어 입력값과의 

차이를 통해 잔차 (residual) 행렬을 계산한다. 이렇게 계산된 잔차 

행렬을 통해 이상 점수 (Anomaly score) 를 기존 방식과 다른 방식으로 

계산하였다. 이는 해양 공정의 특성을 반영한 것으로 이상 상황이 아닐 

때에도 공정 시스템 전체의 상황을 모니터링 할 수 있도록 하였다. 

마지막으로 시계열로 된 이상 점수를 클러스터링 기법을 이용해 이상 

케이스 (fault case) 분류를 수행할 수 있도록 하여 공정 상태를 

모니터링 할 수 있도록 하였다. 제안된 이상 감지 모델을 검증하기 

위하여 파일럿 스케일의 모노에틸렌글리콜 (Mono Etylene Glycol, 

MEG) 재생 공정을 이용하였으며, 4 가지의 정상 운전 데이터를 

이용하여 모델을 학습시키고 1 가지의 운전 시작 상황, 4 가지의 이상 

상황 데이터를 이용하여 모델을 검증하였다. 여러 정상 운전 데이터를 

이용하여 학습을 진행한 결과 정확도가 높은 특정 정상 데이터를 

기반으로 시계열 합성을 수행하여 모델의 성능을 높였다. 검증 결과 

최고 88%에 가까운 정확도로 이상 탐지를 수행하였으며, 결과값으로 

나온 이상 점수를 클러스터링한 결과 이상 상황별로 클러스터링이 

이루어짐을 확인하였다.  

둘째로, 다변수 시계열 센서 데이터를 기반으로 한 하이드레이트 생성 

경향성 예측 및 transition, segregation 시점 예측을 수행하였다. 이는 
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일반적인 시계열 예측 모델인 Recurrent Neural Network를 이용하여 

예측을 수행하되 PCA 기법을 이용하여 모델의 효율성을 높이고, 모델 

간의 정확도 비교를 통해 가장 좋은 모델을 선택하였다. 본 

프레임워크에서 적용된 특성 축소 및 전이 학습을 이용한 실험 데이터 

학습을 이용함으로써, 다변수 센서 데이터를 활용한 실시간 예측이 

가능함을 보였다.  

셋째로, 이상 감지, 시계열 예측, 원인 분석 알고리즘을 조합하여 

딥러닝 모델로만 구성된 예지 보전 프레임워크를 제안하였다. 본 

연구에서는 전체 프레임워크를 딥러닝 기반의 모델로 구성함으로써 

데이터의 활용도를 높이고자 하였다. 특히 시계열 예측의 경우 전이학습 

기반의  Online Learning 을 적용하여 이상 상황이 발생하였을 때도 

실시간으로 적응하여 학습할 수 있도록 함으로써 이상 상황이 흔하지 

않은 해양 공정의 특성에 맞추어 모델을 구성하였다. 또한 

Autoregressive Prediction 을 통해 이상 상황이 감지되었을 때 언제쯤 

이상 threshold 에 도달하는지를 확인할 수 있도록 하였다. 

 

Keyword : 디지털라이제이션, 디지털트윈, 머신러닝, 기계학습, 

이상감지, 다변수시계열예측, 예지보전 
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 저에게 있어 학위 과정은 한 명의 엔지니어로 성장하기 위한 과정 

이면서, 많은 사람들의 도움에 의지했던 시간이기도 했습니다. 1 인분을 

할 수 있기 되기까지 얼마나 많은 사람들의 도움이 필요한지 자꾸 

생각하게 되었습니다. 공부는 혼자 하는 것이라고들 말하지만 서로가 

서로의 힘이 되어주는 사람들이 없었다면 저는 지금 이 자리에 없었을 

것입니다. 먼저 제가 공부하고 연구할 수 있는 환경과 기회들을 

마련해주신 서유택 교수님께 감사드립니다. 교수님 덕분에 새로운 

과제들을 다양하게 접하고, 삶에서 마주치는 여러 일들을 다루고 

견뎌내는 방법을 터득할 수 있었습니다. 바쁘신 와중에도 부족한 저를 

지도해주시고 연구적으로 많이 도움을 주신 나종걸 교수님께도 

감사드립니다. 또한 임영섭 교수님, 강상규 교수님, 우종훈 교수님께도 

감사드립니다. 항상 시간을 내어 저를 가르쳐주시고 도와주신 김현호 

박사님과 박기흠 박사님, 손영훈 박사님, 김자경 박사님께는 제가 큰 

감사를 전하고 싶습니다. 항상 모범적이고 성실하며 따뜻한 선배님들 

덕분에 연구실 생활을 열심히 해 나갈 수 있었습니다. 비슷한 시기에 

연구실에 들어와서 힘든 시간을 함께한 종연, 새로운 것들이나 자주 

알려주신 승만 오빠, 연구실 생활을 함께 할 수 있어서 정말 

즐거웠습니다. 조용하지만 누구보다 든든하고 명석한 건우, 새로운 것을 

배우기를 두려워하지 않는 진관, 육아와 학업을 병행하면서도 배움의 

즐거움을 잃지 않는 준엽 오빠 모두 고맙습니다.  
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 가족들에게도 저는 큰 빚을 지고 있습니다. 힘든 일들을 항상 도맡아 

해온 엄마, 항상 고민을 나누고 서로 든든하게 지켜준 동생 승아, 

철없는 누나와 지내느라 고생 많았던 막내 성민, 제가 길을 잃을 때마다 

저를 항상 다잡아주는 하늘에 있는 아빠에게 사랑과 감사의 인사를 

보냅니다. 힘든 시간이었지만, 모두가 있어 무너지지 않고 여기까지 올 

수 있었습니다. 항상 아껴주고 걱정해준 이모와 이모부, 유선 언니와 

유미 언니에게도 감사 드립니다. 언제나 안부를 물어봐주시고 돌봐주신 

외할아버지께도 감사드립니다. 오랜 시간동안 음악을 통해 공동체가 

되어준 밴드 친구들인 윤하, 영주, 승재, 구연에게도 고마움을 전합니다. 

대학원 생활의 힘든 순간들에 누군가와 음악을 통해 마음을 나눌 수 

있었던 것이 얼마나 큰 힘이 되었는지 모릅니다. 유정언니와 태영오빠, 

지현언니, 의훈오빠, 해찬오빠에게도 감사인사를 드립니다. 오랜 시간 

동안 옆에서 보면서 본받고 싶은 선배님들을 만나는 행운을 만나는 것은 

쉬운 일이 아니지만 저에게는 그런 행운이 있었습니다. 멋지고 성실한 

삶을 사시는 선배님들 덕에 저는 이전에는 몰랐던 새로운 세상을 많이 

볼 수 있었습니다. 삶과 학업의 고민을 여럿 해소해주신 경서 선배와 

서영 언니께도 감사합니다.  

 제가 미처 여기에 적지 못한 다른 많은 분들께도 감사 인사를 

전합니다. 보잘것없는 성취이지만, 혼자였으면 불가능했을 일이라는 

점을 시간이 갈수록 더 크게 느낍니다. 제 안에 여러분이 함께 있다는 

것을 잊지 않고 앞으로도 바르게 나아가겠습니다. 
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