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ABSTRACT

In the last decades, offshore wind energy industries have moved to deep sea 

area, since 80% of the offshore wind resources are located in deep water region 

(over 60 meters). As a result, various floating offshore wind turbine (FOWT) 

structures based on the semi-submersible, TLP or spar platforms have been 

widely proposed. However, accompanied with abundant wind resources, 

harsher environmental loads in deep sea area may also cause damage to offshore 

structures. In general, the semi-submersible platform of FOWT are mainly 

composed of large truncated circular columns which tend to generate 

significant diffraction effects under the incident waves. These diffraction 

effects are usually associated with significant rapid amplification of local free-

surface elevation surrounding these cylindrical structures. Therefore, single 

dampers with arbitrary shapes are commonly attached at the bottom of FOWT 

to improve the motion performance of the FOWT system.

The present research aims to investigate the effects of the separating distance, 

the porosity and the thickness of the damping plate on wave run-up around the 

truncated cylinder with dual dampers under the regular wave conditions. The 

target model is an offset column of OC4-DeepCWind FOWT. To evaluate the 

three-dimensional (3-D) wave run-up around the truncated cylinder with dual 

dampers in a finite water depth, a matched eigen-function expansion method 

(MEEM) based on linear potential theory was developed. In this study, fluid 

around the truncated cylinder was divided into multiple regions based on 

different boundary conditions. The velocity potential in each region is 

analytically derived by using the Helmhotz Equation and eigen-function 

expansion. Darcy’s law is applied to satisfy the boundary condition on the 

porous damping plate. The velocity and pressure of fluid across the adjacent 
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sub-regions should satisfy the continuous conditions (mass conservation) on the 

boundary. Finally, the unknown complex coefficients matrix could be derived 

and solved by using the matching conditions along the boundaries of regions.

The present MEEM solutions for the truncated cylinder with various types 

of damping plate are validated by comparing with BEM solutions. Furthermore, 

with regard to the other simple porous structures such as horizontal porous 

membrane, the complex wave number, wave run-up and hydrodynamic loads 

are also compared to previous computational results. The results of present 

study clearly indicate that compared with the impermeable damping plate, 

porous damper could significantly reduce the heave wave exciting force and 

wave run-up around the truncated cylinder. Impermeable dual damping plates 

with large separating distance could cause significant wave run-up and 

hydrodynamic loads acting on truncated cylinder due to the shallow water effect 

in the local flow. It is expected that present porous dual damping plate model 

can be applied to the offshore structures such like FOWT.

Keyword: dual damping plate (DDP), diffraction, porous heave damper, 

wave run-up, linear potential theory, truncated cylinder  

학번: 2020-26705
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1. Introduction

1.1 Research background

In the last decades, the production of offshore wind energy has increased 

rapidly, and the installed capacity of the offshore wind power industry reached 

5519MW by 2020 (Floating offshore wind energy, 2018). Approximately 80% 

of the offshore wind resources are located in deep water region (over 60 meters), 

as developers prefer to use the largest offshore wind turbine available for a 

given project which reduces balance-of-system costs on a per-kilowatt basis 

(Walter et al., 2021). In the deep water region, floating offshore wind turbines 

(FOWT) based on semi-submersible, TLP or spar platforms have been more 

widely utilized than fixed offshore wind turbines.

According to a report from InfoLink Consulting (InfoLink, 2021), the 

installed capacity as well as the amount of semi-submersible type wind farms 

have increased rapidly since 2021. In addition, the number of the semi-

submersible type wind farms is expected to exceed the number of spar type 

wind farms after 2022. This is mainly because the semi-submersible 

foundations are much easier to install and tow due to the low draught comparing 

with spar foundations.

Along with the plentiful wind resources in the deep sea, harsher 

environmental conditions may cause damage to offshore structures. Generally, 

a semi-submersible platform of FOWT consists of several vertical columns, 

which have the shape of a circular cylinder or polygonal cylinder. To improve 

the motion performance of FOWT, various types of dampers are often attached 

to the bottom of the supporting columns. The FOWT structures using dampers 
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include WindFloat (Roddier et al., 2010), OC4-DeepCWind (Robertson et al., 

2014), Tri-floater (Lefebvre et al., 2012) and Dutch Tri-floater (Huijs et al., 

2014). These cylindrical columns tend to create substantial diffraction and 

radiation effects under incident waves. These diffraction effects are usually 

associated with significant rapid amplification of local free-surface elevation 

around the cylindrical structures.

To address wave diffraction problem due to the cylinder-damper structure, it 

is necessary to understand the fundamental characteristics of wave run-up 

around a cylinder in waves. Many researchers have conducted experimental 

studies and CFD simulations about the wave diffraction problem of a circular 

cylinder. Mohapatra et al. (2020) calculated wave run-up and wave impact 

acting on a truncated cylinder by developing a new Boussinesq equations (Bes) 

model. By comparing the results with CFD and experimental data, they found 

that the trends of wave amplitude around the cylinder could be captured 

efficiently. Mohseni et al. (2018) conducted a CFD simulation by using 

OpenFOAM to examine the physics of wave scattering and wave run-up around 

a truncated cylinder with the consideration of high steep waves. Thomas et al. 

(2004) conducted a model test to discuss wave run-up on a fixed truncated 

cylinder with harmonic analysis in monochromatic progressive waves. Lee et 

al. (2021) applied the commercial CFD code STAR-CCM+ to study the 

nonlinear wave run-up around a truncated cylinder under various wave period 

and slope conditions. Cha et al. (2016) measured wave run-up height and 

depression depth around offshore cylindrical structures with various wave 

periods based on CFD simulations. Cao et al. (2015) presented a numerical 

investigation of solitary wave run-up around a circular cylinder by using a 

viscous numerical wave tank (NWT). Nam et al. (2008) carried out a 

benchmark experimental study for wave run-up around a truncated cylinder in 

a finite water depth and validated the results against both the CFD and potential 

solutions. Kim et al. (2011) applied an efficient NWT model for CFD 
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simulations based on the ALE Finite-Element method (FEM) to estimate wave 

run-up of a truncated vertical cylinder exposed to long nonlinear regular waves.

As noted, heave dampers have been widely used in conjunction with spar-

type offshore structures to reduce heave and pitch motion by increasing the 

added mass and damping thereby changing the resonance period. 

Thiagaranjan et al. (2002) investigated the possibility of adding a heave plate 

at the base of a production spar installed in West African offshore. Through 

CFD simulations and experiments, they suggested that the damper extension 

should be at least four times the typical heave amplitude to maximize the drag 

effect. Tao et al. (2004) proposed a spar with single damping plate to 

investigate the effect of damper shape on viscous damping and heave motion 

response based on CFD simulations. Sudhakar et al. (2011) conducted both 

the experiments and potential calculations on a floating spar model with a heave 

damping plate. By comparing various geometric parameters, an optimum heave 

response was achieved when the heave plate diameter was 20% to 30% larger 

than the diameter of the spar. Seebai and Sundaravadivelu (2013) performed 

a model test on a spar-type FOWT, taking into consideration both circular and 

square heave damping plates. It was observed that the circular heave damper 

was more effective in reducing the heave motion response of the FOWT. 

Subbulakshmi et al. (2016) compared the effect of a single heave plate and 

dual heave plates on the heave motion of a spar based on CFD simulations and 

model tests. They reported that the heave motion of the cylinder decreased with 

larger separating distance of dual damping plates. Rao et al. (2021) proposed 

both numerical and experimental analysis to evaluate the heave damping force 

of a classic spar with dual dampers by conducting the free decay tests in calm 

water.

Porous structures in ocean engineering have been widely applied to various 
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types of breakwaters in coastal areas, as they are capable of reducing the 

hydrodynamic loads and wave run-up. Consequently, diffraction problems due 

to porous media draw the attention of researchers, Zhao et al. (2012) conducted 

model tests to evaluate the efficiency of wave dissipation among a porous 

cylinder array. They found an optimum array by properly adjusting the number, 

spacing and draft of cylinders. Subsequent investigations of wave diffraction 

from an array of bottom-mounted porous cylinders have been conducted by 

other scholars (Williams et al., 2000; Li et al., 2004; Sankarbabu et al., 2007; 

Park et al., 2007). Feichtner et al. (2021) then applied a porous-media 

approach in CFD simulation. With the approximation of homogeneous 

pressure-drop in all directions of a porous cylinder, wave forces agreed well 

with the experimental results. Mackay et al. (2021) further employed a 

boundary element method (BEM) to measure the wave exciting forces and 

radiation forces on a cylinder with a porous sidewall. They found that the surge 

damping forces due to the dissipation of energy through the porous surface is 

significantly increased. George et al. (2022) investigated the effect of porosity 

of a heave disk on the damping force based on CFD simulations. It was reported 

that the maximum damping could be achieved with porosities of 0.049 and 0.11 

for various Keulegan-Carpenter (KC) numbers. 

The earliest works pertaining to the wave-body diffraction problem around a 

truncated cylinder in deep water was given by Havelock et al. (1940). Omer 

and Hall (1949) and MacCamy and Fuchs (1954) then extended Havelock’s 

work into shallow water and arbitrary water depth respectively. In the past 

decades, many researchers have been interested in the interaction between the 

submerged porous structure and waves by using analytical solutions. Chwang 

and Wu (1994) first proposed a benchmark study on wave run-up around a 

fixed horizontal porous disk by employing the method of matched eigen-
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function expansion based on linear potential theory. They assumed the 

thickness of the disk to be zero, and thus Darcy’s law was applied as the vertical 

boundary condition on the horizontal plate. His results implied that the wave 

elevations around the disk could be significantly reduced with the consideration 

of the porosity. Subsequently, Cho and Kim (2000) investigated the effect of 

porosity on the wave-blocking efficiency of a horizontal flexible membrane by 

utilizing a two-dimensional (2D) analytical method. They reported that the 

porous horizontal membrane could significantly increase energy dissipation 

when the submergence depth was small. Bao et al. (2009) calculated the wave 

forces and radiation forces on a porous circular cylinder with a horizontal 

porous plate fixed inside. By comparing the results between analytical solutions 

and model tests, they found that the porous damping induced by the pore was 

much larger than the potential damping. Zhao et al. (2011) investigated surge, 

heave and pitch wave exciting forces (moment) acting on a porous truncated 

cylinder analytically and significant reduction of forces was observed with the 

application of a porous sidewall. Additionally, to find the hybrid structure with 

better hydrodynamic performance, many researchers (Yu et al., 1995; Liu et 

al., 2007; Mandal et al., 2013; Park et al., 2015; Ning et al., 2017; Sarkar et 

al., 2020; Wang et al., 2021) have also conducted analytical studies to evaluate 

the attenuating effect of porous structure on wave force and wave run-up.
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1.2 Research objectives

The main objective of this study is to investigate the interaction between

water waves and a truncated circular cylinder with various types of heave 

dampers. The target model is an offset column of OC4-DeepCWind FOWT. To 

evaluate the three-dimensional (3-D) wave run-up around a truncated cylinder 

in a finite water depth, an analytical solution based on the matched eigen-

function expansion method was developed based on the Airy (linear) wave 

theory.

In this study, the fluid domain surrounding the truncated cylinder was divided 

into several regions based on different boundary conditions. The velocity 

potential in each region was analytically derived by using the Helmhotz 

Equation and eigen-function expansion. The boundary condition on the porous 

damper was defined by applying Darcy’s law under the assumption of fine 

pores and negligible wall thickness. The velocity and pressure of the fluid 

across the adjacent sub-regions satisfied the continuous conditions (mass 

conservation) at the boundary. Finally, the analytical solutions in the different 

regions were found by employing the matching conditions along the boundaries 

of the regions.

The present MEEM solutions are validated by direct comparison with 

computational results of other porous structures, such as horizontal porous 

membrane. Furthermore, wave elevations around a truncated cylinder with 

different types of impermeable heave damping plate are also compared to BEM 

solutions. 

To investigate the effect of damping plates on wave run-up around the 

truncated cylinder, a series of parametric studies have been conducted. The 

effects of various wave parameters (wave frequency) and the geometric 

parameters of the damper (separating distance, thickness and porosity) on wave 
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run-up around the truncated cylinder have been illustrated. In addition, the 

hydrodynamic loads acting on the entire cylinder have been analyzed with 

regard to the porous damping plate. 
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2. Numerical Method

2.1 Mathematical Formulation

In this study, three models of the truncated cylinder with various heave 

damping plates are considered as shown in Fig.2.1. The first two models are 

truncated cylinders with a thin and thick single damper. Regarding the truncated 

cylinder with dual damping plate in the last figure, an impermeable damping 

plate is assumed to be located at the bottom as well as a porous damping plate 

in the middle. The dimensions of the cylinder and the damper used in this study 

are given in Table 2.1, where the cylinder with thick damper is identical to the 

offset column of OC4-DeepCWind FOWT.

Fig. 2.1 Target truncated cylinder model with three types of dampers

The schematic of wave diffraction for a truncated circular cylinder with dual 

damping plates is illustrated in Fig. 2.2. Symbols a1, a2, b1, b2 and h represent the 

radius of the truncated cylinder, the radius of damping plate, the draft of upper 

porous damper, the draft of lower damper and the water depth, respectively. 

Since it is a 3D diffraction problem, a cylindrical polar coordinate system (r, �, 

z) is established with the origin located at the center of the truncated cylinder 
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on the undisturbed water level. 

Table 2.1 Main dimensions of truncated cylinder and dampers

Properties Dimension

Radius of cylinder [m] 6

Draft [m] 20

Water depth [m] 200

Radius of damper [m] 12

Thickness of damper 
[m]

6

Separating distance of 
dual damper [m]

6
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Figure 2.2 Schematic diagram of truncated cylinder with dual dampers
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By adopting linear water wave theory, the fluid can be described in terms of 

velocity potential Φ(�, �, �, �) = ����(�, �, �)������  based on the 

assumption of an incompressible and inviscid fluid with irrotational motion. 

Here �(�, �, �)  denotes the spatial velocity potential of the fluid and �

represents the angular frequency of the incident wave. Since a frequency-

domain linear analysis is performed in this study, the time-dependent term 

����� is removed from all the dynamic variables for convenience hereafter.

As illustrated in Fig. 2.2., following Yeung et al. (1981), Bhatta et al. (2003) 

and Finnegan et al. (2011), the fluid domain around the truncated cylinder is 

divided into three regions: an outer region (Region III, −ℎ ≤ � ≤ 0, � ≥ ��), 

an inner region adjacent to the cylinder (Region I, −�� ≤ � ≤ 0, �� ≥ � ≥ ��) 

and another region below the cylinder (Region II, −ℎ ≤ � ≤ ��, �� ≥ � ≥ 0). 

The velocity potential in each region (Region I, Region II and Region III) is 

represented by �� , � = 1, 2, 3 which satisfy the Laplace equation, namely

∇��� = 0 for  � = 1, 2, 3 (2.1)

The kinematic free surface boundary condition (Eq. 2.2-a) and dynamic free 

surface boundary condition (Eq. 2.2-b) can be combined into a single boundary 

condition (Eq. 2.2-c) exclusively for the velocity potential (Linton et al., 2001).

��

��
=

��

��
on  � = 0 (2.2-a)

��

��
+ �� = 0 on  � = 0 (2.2-b)

���

��
= ��� on  � = 0, � = 1, 3 (2.2-c)
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where � denotes the acceleration of gravity and � = ��/�. The velocity 

potentials in various regions also satisfy appropriate boundary conditions. In 

Region III, the velocity potential �� satisfies the linear free surface boundary 

condition (Eq. 2.3-a) and sea bed boundary condition (Eq. 2.3-b). Since Region 

III is the exterior region extending to infinity, the velocity potential in this 

region also satisfies the Sommerfeld far-field radiation condition (Eq. 2.3-c) 

(Atkinson et al., 1949; Zienkiewicz et al., 1979):

���

��
= ��� on  � = 0, � ≥ �� (2.3-a)

���

��
= 0 on  � = −ℎ, � ≥ �� (2.3-b)

lim
�→�

�√� �
���

��
− ������ = 0 on  � = −ℎ, � ≥ �� (2.3-c)

where, �  denotes the wave number. In Region II, the fluid is below the 

truncated cylinder, and the velocity potential ��  satisfies the boundary 

condition on the sea bed and cylinder bottom, namely

���

��
= 0 on  � = −ℎ,  � ≤ �� (2.4-a)

���

��
= 0 on  � = −��, � ≤ �� (2.4-b)

Region I is the inner region surrounding the truncated cylinder, for which the 

velocity potential �� in this region satisfies the linear free surface boundary 

condition (Eq. 2.5-a), the body boundary condition (Eq. 2.5-b) on the 
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impermeable lower damping plate, the porous wall boundary condition (Eq. 

2.5-c) on the permeable upper damper. In addition, the velocity potential in 

inner region also satisfies the boundary condition (Eq. 2.5-d) on the sidewall of 

the truncated cylinder in the horizontal direction.

���

��
= ��� on  � = 0,  �� ≥ � ≥ �� (2.5-a)

���

��
= 0 on  � = −��,  �� ≥ � ≥ �� (2.5-b)

���

��
� �����

� =
���

��
� �����

� = ������� �����
� − ��� �����

��

for  z=-��, �� ≥ � ≥ ��

(2.5-c)

���

��
= 0 for  0 ≥ � ≥ −��,  � = �� (2.5-d)

With respect to the porous boundary condition (Eq. 2.5-c), ��
�  and ��

�

represent the top and bottom sides of the upper damping plate, respectively, as 

illustrated in Fig. 2.2. Symbol �� denotes the porous effect parameter of the 

permeable upper damping plate, which is defined as �� = ����/� , where �

represents the density and � is the dynamic viscosity of water. �� indicates 

the porous coefficient with the dimension of a length (Chwang et al., 1983). 

�� ranges from 0 to infinity. When �� = 0, the upper damping plate is totally 

impermeable. Conversely, the upper damper vanishes as the ��  tends to 

infinity. The porous boundary condition based on Darcy’s law specifies that the 

normal fluid velocity passing through a thin porous plate is linearly 

proportional to the pressure difference between the two sides of the plate 

consistent with the linear assumption (Taylor et al., 1956; Chwang et al., 

1983).
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In addition to the boundary conditions in different regions, matching 

conditions are required for the continuity of fluid solutions in adjacent regions 

(Region I and Region III, Region II and Region III) as follows: 

�� = �� for  0 ≥ � ≥ −��,  � = �� (2.6-a)

���

��
=

���

��
for  0 ≥ � ≥ −��,  � = �� (2.6-b)

�� = �� for  −�� ≥ � ≥ −ℎ,  � = �� (2.6-c)

���

��
=

���

��
for  −�� ≥ � ≥ −ℎ,  � = �� (2.6-d)

The above matching conditions ensure the continuity of velocity (Eq. 2.6-b 

& Eq. 2.6-d) and continuity of pressure (Eq. 2.6-a & Eq. 2.6-c) across the 

boundary � = �� (Ning et al., 2017; Sarkar et al., 2020; Wang et al., 2021).
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2.2 Analytical solutions in sub-regions

By applying the Helmhotz equation, variables of velocity potential could be 

separated in each region (Linton et al., 2001), and analytical solutions for the 

wave diffraction problem are derived. The velocity potential �� for Region III 

can be written by using the eigen-function expansions like followings:

��(�, �, �) = �� + ��

= −
���

�
� ��

�

���

cos(��) �����(���)��(���)

+ � ���

�

���

���������(���)�

(2.7)

with

�� = �
1; � = 0,
2; � ≥ 1,

(2.8)

where ���   are the unknown coefficients, ��  represents the first kind of 

Bessel function of order � and � is the amplitude of the incident wave. In 

outer region, the velocity potential of the fluid consists of the incident waves 

and the diffraction waves. The velocity potential of the incident wave is written 

as the first term of Eq. 2.7 (MacCamy and Fuchs 1954). Here, wavenumber 

��  and ��   (j=1, 2, 3 …) are derived by using the following dispersion 

relations (Linton et al., 2001; Chamberlain and Porter 1999):
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�� = �
������ℎ��ℎ; � = 0,

−��������ℎ; � ≥ 1,
(2.9)

The radial eigen-functions ��(���) in Region III are given as follows:

��(���) =

⎩
⎪
⎨

⎪
⎧

�������

��������
; � = 0,

�������

��������
; � ≥ 1,

(2.10)

where ������� represents the Hankel function of first kind of order � and 

�������  is the second kind of modified Bessel function of order � . The 

vertical eigen-function ������� in Region III are defined as:

������� =

⎩
⎪
⎨

⎪
⎧

cosh[��(� + ℎ)]

cosh(��ℎ)
; � = 0,

cos[��(� + ℎ)]

cos(��ℎ)
; � ≥ 1,

(2.11)

The velocity potential �� in the bottom region (Region II) can be derived 

by satisfying the sea-bed and body boundary conditions (Eq. 2.4):

��(�, �, �) = −
���

�
� ��

�

���

cos(��) � �����

�

���

���������(���) (2.12)

where ��� are the unknown coefficients. The radial eigen-functions ��(���)

in Region II are derived with the consideration of boundedness condition, 
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namely

��(���) =

⎩
⎪
⎨

⎪
⎧ �

�

��
�

�

; � = 0,

�������

��������
; � ≥ 1,

(2.12)

where ������� denotes the Bessel function of first kind of order �. In this 

case, Eigenvalues �� can be computed from:

�� =
��

ℎ − ��
(2.13)

The vertical eigen-function ������� in Region II are given as follows:

������� = �
1; � = 0,

cos[��(� + ℎ)]; � ≥ 1,
(2.14)

The scattered velocity potential in Region I, which satisfies the linear free 

surface boundary condition, impermeable and permeable body boundary 

conditions, has the form:

��(�, �, �) = −
���

�
� ��

�

���

cos(��) � ���

�

���

������������� (2.15)

where ��� are the unknown coefficients. The radial eigen-function ��(���)

is derived by satisfying the horizontal body boundary condition on the sidewall 
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of the truncated cylinder, namely

������� =
��

� ������������� − ��
� �������������

��
� �������������� − ��

� ��������������
(2.16)

where �������  and �������  denotes the Bessel function of first kind of 

order � . ��
�   and ��

�  denote the first derivative of the first kind of Bessel 

function and Hankel function of order m, respectively.

By satisfying the appropriate boundary conditions as well as the continuity 

of the normal velocity through the porous damping plate in Region I, the 

vertical eigen-function ������ could be derived as:

������

= �
sinh���(�� − ��)� [�� cosh����� + �sinh(���)]; 0 ≥ � ≥ −��,

X(����)cosh[��(� + ��)]; �� ≥ � ≥ −��,

(2.17)

where X(���)  is defined as: X����� = � cosh����� − ��sinh(���) . The 

eigenvalues �� are the roots of:

�� X������sinh���(�� − ��)� = ���X������ (2.18)

Such eigenvalues �� yield a special dispersion relation for the evanescent 

wave by satisfying the porous boundary condition in the vertical direction. 

Different from the conventional dispersion relation for the impermeable sea bed 

and horizontal damper, the roots of this transcendental equation (Eq. 2.18) are 

complex number instead of real or pure imaginary numbers. It is worth to 
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mention about two special cases before solving Eq. 2.18 to obtain the complex 

wave number.

Figure 2.3 Schematic of dual damping plate w.r.t. different porous effect 

parameter

Firstly, when the porous effect parameter �� vanishes, the upper damping 

plate is totally impermeable without any pores as illustrated in the left of Fig. 

2.3. As a result, right hand side of Eq. 2.18 vanishes. Thus, the local fluid above 

the upper damper is under a shallow water effect of depth ��, and the equation 

of dispersion relation will change into

X������ = � cosh�κ���� − �� sinh�κ���� = 0              (2.19-a)

or

sinh���(�� − ��)� = 0                                (2.19-b)
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In this case, the local fluid between two impermeable damping plate is identical 

to the fluid in Region II, and a set of eigenvalues could be obtained as ��/(�� −

��). 

Secondly, when the porous effect parameter �� tends to infinity, the upper 

damping plate is fully permeable, as illustrated in the right of Fig. 2.3, which 

means the upper damper vanishes. As a result, the conventional dispersion 

relation of shallow water of depth �� is suitable for the local fluid in Region I. 

The roots of eigenvalues �� could be found from:

X������ = � cosh������ − �� sinh������ = 0 (2.20)

As the porous effect parameter �� changes from 0 to infinity, the roots of 

eigenvalues �� begins from the roots of Eq. 2.19, which consist of one real 

wave number (Eq. 2.19-a) and a group of pure imaginary solutions (Eq. 2.19-

b). As porosity increases, the roots of �� changes gradually toward to the roots 

of Eq. 2.20. Due to the behavior of eigenvalues mentioned above, iteration 

method is applied to compute the roots of ��.

Newton Raphson iteration method for complex roots (Muheadden et al., 

2010) is chosen in the present work to solve the roots of eigenvalues �� with 

respect to various porous effect parameters ��. The Complex Newton Raphson 

iteration method is defined as below:

���� = �� −
�(��)

��(��)
(2.21-a)
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(� + ��)��� = (� + ��)� −
�((� + ��)�)

��((� + ��)�)
(2.21-b)

���� + ����� = ��� −
�(��)

��(����)
� + � ��� −

�(��)

��(����)
� (2.21-c)

Before implementing iterations, it is necessary to find a group of appropriate 

initial guesses for each root of equation to avoid skipping solutions. Generally, 

the zero dissipation root (ZDR) is mostly used as an initial guess (Liu et al., 

1973; McIver et al., 1998; Mendez et al., 2004), which assumes that the upper 

damping plate is totally impermeable (Eq. 2.19). After obtaining the first group 

of roots, the porous effect parameter �� will be increased by a very small step 

and then the first group of roots will be used as a new set of initial guesses. By 

repeating this procedure and increasing the porous effect parameter ��

gradually to the target porosity, the final complex roots of eigenvalues ��

could be computed. Fig. 2.4 shows a case of relation between initial guess and 

final solutions.
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Figure 2.4 Behavior of roots for the porous damping pate dispersion 

relationship using Newton’s method
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2.3 Computation of unknown coefficients

The vertical eigen-functions in different sub-regions form orthogonal sets 

between their upper boundary and bottom boundary. Regarding to the vertical 

eigen-function in Region I, it leads to the following integrals:

� �������������� = 0
�

���

(� ≠ �) (2.22)

By using the matching condition for pressure continuity given by Eq.2.6-a 

for the depth 0 ≥ � ≥ −�� , along with the orthogonal property of vertical 

eigen-function ������ in Region I, we could obtain:

� ������

�

���

− ����� = −����(����)��� (2.23)

Using the matching conditions for pressure continuity given by Eq.2.6-c for 

the depth −�� ≥ � ≥ −ℎ  and the orthogonal property of vertical eigen-

function ������� in Region II, we could get:

� ������

�

���

− ���(ℎ − �) = −����(����)��� (2.24)

Regarding the velocity continuity, by using the matching conditions given by 

Eq.2.6-b,d for the depth 0 ≥ � ≥ −ℎ and the orthogonal property of vertical 

eigen-functions ������� in Region III, we could get:
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�����
� �������� − � �����

� ���������

�

���

− � �������
� ���������

�

���

= −���������
� (����)��

(2.25)

where � is the Dirac delta function, which is defined as below:

��� = �
1; � = �,
0; � ≠ �,

(2.26)

��� , �� , ���  and ��   represent the integrals of vertical eigen-function of 

variable, which are defined as:

��� = � ��������(���)
�

���

�� (2.27-a)

�� = � �(���)�(���)
�

���

�� (2.27-b)

��� = � ���������(���)
�

���

�� (2.27-c)

�� = � ��������������
�

��

�� (2.27-d)

To obtain wave run-up and wave loads acting on the truncated cylinder, it is 

necessary to truncated the infinite series (Eq.2.23-25) to finite terms. Then, 

three sets of algebraic equations could be solved by using the standard matrix 

techniques and thereby the complex coefficients ���, ��� and ��� could be 
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obtained. Finally, the velocity potentials of fluid in different regions could be 

uniquely determined.
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2.4 Computations of wave run-up and hydrodynamic 

forces

Once the formulation of velocity potentials in each region are obtained, wave 

run-up around the truncated cylinder could be calculated by using the velocity 

potentials. The relationship between velocity potential and wave elevation is 

given as:

η = −
1

g

�Φ(�, �, �, �)

��
(2.28)

where Φ(�, �, �, �) = ����(�, �, �)������. The surge and heave wave exciting 

forces acting on the truncated cylinder could be calculated by integrating the 

hydrodynamic pressure on the wetted body surface according to Eq. 2.29. Note 

that since the thickness of dual damping plate is assumed as zero, there is no 

hydrodynamic load in the x direction (surge force) acting on the damping plates.

�� = � �����

���

= ��� � � ����������
��

�

�

���

(2.29)

Regarding to the heave wave exciting force, the total loads could be separated 

into two components: ��� and ���, which represent the vertical forces acting 

on surface of upper porous damping plate (� = −��, �� < � < ��)  and 

surface of lower impermeable damping plate (� = −��, 0 < � < ��) ,

respectively. The expressions are given by:
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������ + ���                                      (2. 30-a)

��� = � �����

 

���

                                  

= −��� � � (��(�, −��
�, �) − ��(�, −��

� , �))�����
��

�

��

��

(2. 30-b)

��� = � �����

 

���

                                  

= −���[� � ��(�, −��, �)�����
��

�

��

��

− � � ��(�, −��, �)�����
��

�

��

�

(2. 30-c)

Figure 2.5 Position of wave probes on the truncated cylinder

To check the convergence of present MEEM solution, the normalized wave 

run-up around the truncated cylinder with dual thin damping plate are examined 
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with respect to different truncated numbers N. As illustrated in Fig.2.5, five 

wave probes are attached on the surface of the truncated cylinder at the calm 

water level. The wave probes are installed at 0°，45°，90°，135° and

180°  with respect to the direction of incident wave. The behavior of 

convergence for the truncated cylinder with different dual damping plate are 

given in Table 2.2, where the �� = 10	.	Here, �� = 2���/��  indicates the 

dimensionless porous effect parameter of the upper damping plate. This table 

shows that the convergence of the calculation results is very rapid. The 

truncated number of N=20 can yield three decimals accuracy with the 

consideration of porous structure. As a results, N=20 will be used throughout 

the present numerical study.

Table 2.2 Convergence study of normalized wave run-up �/� around the 

truncated cylinder with dual dampers for ka=0.2

Truncated number 

N

Dimensionless wave run-up

��

��
= 0.7,

��

ℎ
= 0.1,

��

��
= 0.5,

��

ℎ
= 0.03, �� = 10

WP1 WP2 WP3 WP4 WP5

0 1.05885 1.01668 0.96812 1.00172 1.03849

1 1.03973 1.01499 0.98503 0.99955 1.01893

5 1.04768 1.02090 0.98676 0.99987 1.01916

10 1.04506 1.01805 0.98358 0.99679 1.01625

15 1.04077 1.01423 0.98064 0.99427 1.01375

16 1.04004 1.01357 0.98009 0.99374 1.01320

17 1.03940 1.01297 0.97953 0.99314 1.01257

18 1.03889 1.01247 0.97901 0.99254 1.01192
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19 1.03858 1.01214 0.97861 0.99217 1.01136

20 1.03849 1.01201 0.97837 0.99203 1.01132
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3. Validation of Numerical Method

To validate the present MEEM solutions, a comparison of wave run-up and 

hydrodynamic loads acting on the structures with other computational results 

for other porous structures was conducted. Furthermore, the wave elevations 

around the truncated cylinder with various types of damping plates were 

compared with boundary element method (BEM) solutions. This validation 

work is divided into two sections: a truncated cylinder with an impermeable 

damping plate and a truncated cylinder with a porous damping plate.

3.1 Case I: Truncated cylinder with impermeable 

damping plate

Regarding the wave run-up around the truncated cylinder with an 

impermeable damping plate, the present MEEM solutions are compared to 

BEM solutions by using WADAM program. WADAM is a comprehensive 

hydrodynamic analysis program designed to calculate wave-structure 

interaction for both fixed and floating structures of arbitrary shape. 
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Figure 3.1 Panel model of truncated cylinder with three types of damping 

plate

The target impermeable panel models used for validation, as shown in 

Fig.3.1, are the truncated cylinder with a single thin damper, a single thick 

damper, and dual thin dampers. The dimensions of truncated cylinders and 

damping plates are given in Table 2.1. In the present MEEM method, the 

thickness of thin damper is assumed to be zero, while the thickness of thin 

damper in WADAM is set as 0.1m.

Fig 3.2 shows a comparison of wave run-up around the truncated cylinder 

with single thin damping plate between present MEEM solution and BEM 

solutions. The wave elevations are non-dimensionalized by the amplitude of the 

incident wave A. The x axis indicates the scattering parameter ka, where k and 

a represent the incident wave number and the radius of the truncated cylinder, 

respectively. It can be seen that there is a good agreement between the MEEM 

and BEM solutions. On the lee side of the truncated cylinder (WG1 & WG2), 

wave run-up increases as the scattering parameter increases until �� = 0.9 . 

Conversely, on the weather side of the cylinder (WG4 & WG5), a weakly 

decreasing trend can be found as the scattering parameter increases.
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Figure 3.2 (Continued)

Figure 3.2 Comparison of wave run-up around truncated cylinder with 

single thin damper between present MEEM & BEM solution

 

Fig.3.3 and Fig.3.4 demonstrate the comparison of wave run-up around a 

truncated cylinder with dual thin dampers and a single thick damper, as 

computed by MEEM and BEM solutions, respectively. Present MEEM 

solutions agree well with the BEM solutions. Regarding the model used for 

validation, the separating distance of dual dampers and the thickness of thick 

damper are relatively small compared to the draft of the whole cylinder. Thus, 

the increments of wave run-up are not significant compared to the wave 

elevations around the cylinder with a single thin damper,
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Figure 3.3 (Continued)

Figure 3.3 Comparison of wave run-up around truncated cylinder with dual 

thin dampers between present MEEM & BEM solution

Figure 3.4(Continued)
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Figure 3.4 Comparison of wave run-up around truncated cylinder with 

single thick damper between present MEEM & BEM solution
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3.2 Case II: Permeable structure

In this section, the present MEEM solutions for wave run-up and 

hydrodynamic loads acting on simple structures are compared with other 

computational results. As shown in Fig.3.5, three simple porous structures are 

used for validation in this work: a single horizontal porous membrane (Fig.3.5-

a) (Chwang et al., 1994, Cho et al., 2000), a porous truncated cylinder with an 

inner porous plate (Fig.3.5-b) (Bao et al., 2009) and a porous truncated cylinder 

(Fig.3.5-c) (Zhao et al., 2011), respectively.

(a)                             (b)

(c)
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Figure 3.5 Schematic figure for three simple porous structures: (a) single 

horizontal porous membrane; (b) porous truncated cylinder with inner porous 

plate; (c) porous truncated cylinder

As previously noted, it is essential to select an appropriate truncated number 

in order to ensure the convergence of the analytical solution. For the structure 

with horizontal porous wall, the accurate computation of the complex wave 

number is necessary to ensure the accuracy of the analytical solutions. Different 

from the structure with vertical porous wall, horizontal porous wall can 

significantly influence the complex wave number. The real part of the complex 

wave number corresponds to the wave dispersion, while the imaginary part is 

related to dissipation (Cho et al., 2000). Consequently, prior to examining wave 

run-up around the simple porous structure, it is imperative to first identify the 

complex wave number.
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Figure 3.6 (Continued)

(a)

(b)

Figure 3.6 Validation for the complex wave numbers for first five modes: 

(a) ��ℎ = 2.0; (b) ��ℎ = 4.0 (��: wave number)

  

To validate the present solution for the complex wave number, the 

comparisons of the first five modes between the present solution and another 

2-D analytical solution by Cho et al. (2000) are shown in Fig.3.6. Here, the 

target model is a horizontal porous membrane (Fig.3.5-a) with the geometric 

parameters ��/ℎ = 0.2, ��/ℎ = 0.5, �/��ℎ� = 0.1, where t is the wave period. 

Favorable agreement between present results and solutions of Cho et al. (2000) 

is obtained. Interestingly, for ��ℎ = 4.0, the real parts of the complex wave 

number in the higher-mode (3rd, 4th & 5th) initially increase as the normalized 

porous effect parameter ��  increases, and then decreases as ��  exceeds a 
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certain threshold. Therefore, an equivalent higher-mode complex wave number 

(real part) could be obtained with a different porosity. This phenomenon has 

also been mentioned by Craik et al. (1985) and Dalrymple et al. (1991). 

Moreover, for higher modes, the imaginary part of the complex wave number 

increases, which leads to more rapid dissipation. As the porous effect parameter 

tends to zero, the real part of the complex wave number vanishes and the 

evanescent waves stop propagating, forming standing waves.

(a)

Figure 3.7 (Continued)
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(b)

(c)

Figure 3.7 Validation for the wave elevation around a porous horizontal 

membrane: (a) Wave Probe 1 (0°); (b) Wave Probe 3 (90°); (c) Wave Probe 

5 (180°)

Fig.3.7. illustrates the comparison between wave run-up computed by the 
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present MEEM solution and another analytical solution given by Chwang et 

al. (1994). Here, the target model is a horizontal porous disk (Fig.3.5-a), which 

is similar to the model proposed by Cho et al. (2000). The following parameters 

��

�
= 0.2,

�

�
= 0.25, �� = 1.0  have been set, where �  represents the 

wavelength. The present solutions show favorable agreement with Chwang et 

al. (1994)’s work. When the wavelength is quite long, the wave elevations 

around the porous disk are hardly disturbed by the existence of structure. 

Furthermore, when the porous effect parameter ��  is very small, there is a 

wave focusing  phenomenon. As the wavelength becomes longer, there exists 

a value of 
��

�
 at which wave focusing process is most significant, which was 

also mentioned by Yu et al. (1993).

(a)

Figure 3.8 (Continued)
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(b)

Figure 3.8 Validation for the surge and heave wave exciting force acting on 

porous structure: (a) porous truncated cylinder; (b) porous truncated cylinder 

with inner porous plate

Fig.3.8 shows the comparison between the hydrodynamic loads calculated 

by the present MEEM solutions and analytical solutions by Bao et al. (2009) 

and Zhao et al. (2011). Two examples are taken, namely a porous truncated 

cylinder with an inner porous plate (Fig.3.5-b) and a porous truncated cylinder 

(Fig.3.5-c). The geometric parameters for the porous truncated cylinder with an 

inner porous plate are set as �� = 9, ��/ℎ = 0.03, ��/ℎ = 0.015 and ��/ℎ =

0.06 . The dimensions for the porous truncated cylinder are �� = 9, ��/ℎ =

0.03, ��/ℎ = 0.06. It is evident that the agreement between present evaluations 

and the results of Bao et al. (2009) and Zhao et al. (2011). As the scattering 

parameter increases, both the heave and surge wave exciting force initially 

increase, while then decline as ��  continues to increase. When ka reaches 
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around 1.8, the surge exciting force approaches zero due to the emergence of 

the sloshing phenomenon inside the porous cylinder (Zhao et al., 2011).

Consequently, the present computation of wave diffraction from truncated 

cylinder structures can be considered reliable. 
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4. Results and Discussion

To investigate the effect of damping plates on wave run-up around a 

truncated cylinder, this study considered three geometric parameters: the 

separating distance of dual damping plate, the thickness of single damping plate 

and the porosity of the upper damping plate. 

4.1 Effect of Separation Distance

In this section, the effect of the separating distance between dual damping 

plates on wave run-up and wave exciting force will be analyzed. Here, both the 

upper and lower damping plates are assumed to be impermeable. The remaining 

parameters are set to ��/�� = 0.5, ��/ℎ = 0.06, ��/ℎ = 0.1, �� = 0.001. Fig 

4.1 shows the variation of the dimensionless wave run-up around the truncated 

cylinder versus the scattering parameter (ka) under various separating distance 

(�/�)  conditions. Here d represents the separating distance between dual 

damping plates and D is the draught of the truncated cylinder. 

As shown in Fig 4.1, wave elevations on both the lee side and the weather 

sides of a truncated cylinder increase as the separating distance of dual damping 

plates increases. This is due to the fact that the vertical distance between the 

upper plate and the still water level diminishes with an increase of separation 

distance, which results in a shallow water effect in the flow above the upper 

damping plate. Consequently, the evanescent waves become significant and the 

local flow is strongly generated. 
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Figure 4.1 (Continued)

Figure 11 Comparison of wave run-up around the truncated cylinder with 

different separating distance �/� between dual dampers
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(a)

(b)

Figure 4.2 Distribution of wave amplitude around the truncated cylinder 

with impermeable dual damping plate (�/� = 0.3) with different scattering 

parameters: (a) ka=0.2; (b) ka=1
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(a)

(b)

Figure 4.3 Distribution of wave amplitude around the truncated cylinder 

with impermeable dual damping plate (�/� = 0.6) with different scattering 

parameters: (a) ka=0.2; (b) ka=1
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Fig 4.2 and Fig 4.3 demonstrate the distribution of wave amplitude around a 

truncated cylinder with the impermeable dual damping plate under different 

separating distance conditions. It is evident that when the wavelength of 

incident wave is short (ka=1), the wave elevations on the lee side are notably 

higher than those on the weather side of the truncated cylinder. Moreover, wave 

run-up of the cylinder gradually decreases from the front point (0°) to the back 

shoulder point (135°) of the cylinder. On the contrary, under the long wave 

conditions, the difference in water height between the lee side and weather side 

is not as large as the short wave cases. In addition, as the separating distance 

increases, wave run-up tends to be more symmetrically distributed on the lee 

side and weather side of the truncated cylinder. In summary, a larger separating 

distance between the impermeable dual damping plates can enhance wave run-

up around the truncated cylinder.

(a)

Figure 4.4 (Continued)
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(b)

Figure 4.4 Comparison of wave exciting forces around the truncated 

cylinder with different separating distance �/� between dual dampers: (a) 

surge exciting force; (b) heave exciting force

The variation of surge and heave wave exciting forces acting on the truncated 

cylinder system versus the scattering parameter (ka) is illustrated in Fig.4.4 for 

various separating distances (�/�) between dual damping plates. As shown in 

Fig.4.4, the surge wave exciting force increases as the incident wave becomes 

shorter. When the scattering parameter is 0.6, the surge exciting force 

approaches maximum. Conversely, the heave wave exciting force continues to 

decrease as the scattering parameter increases. The surge wave exciting force 

is not significantly affected by the separating distances, whereas the heave wave 

exciting force reduces as the position of upper damping plate is lowered. This 

can also be attributed to the shallow water effect in the local fluid above and 

below the upper damping plate.
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4.2 Effect of porosity

This section focuses on the influence of the porous effect parameter �� for 

the upper damping plate on wave run-up and wave exciting force. Again, the 

lower damping plate is assumed to be impermeable, with the remaining 

parameters ��/�� = 0.5, ��/ℎ = 0.06, ��/ℎ = 0.1 also fixed. Fig 4.5 shows 

the variation of wave run-up around the truncated cylinder versus the scattering 

parameter ka when considering different porous effect parameter ��  of the 

upper damping plate. Here the position of the upper porous damper is ��/ℎ =

0.025. The red solid line in the figures corresponds to the cases where upper 

damping plate is nearly impermeable. It is worth noting that, the normalized 

porous effect parameter of the upper damper is set to 0.001 instead of zero to 

avoid the singularity of the calculation.

As demonstrated in Fig 4.5, the porosity of the upper damping plate 

significantly affects the amplitude of wave elevations around the truncated 

cylinder. As the porosity parameter increases, the attenuating effects on wave 

run-up are strengthened, leading to a much lower wave run-up around the 

cylinder compared to the impermeable plate cases when the upper damping 

plate is highly porous. This porous effect is particularly evident under short 

wave condition. However, when the wavelength of the incident wave is very 

long, the wave elevations around the cylinder are not significantly affected by 

the porosity compared to the short waves. This is because when the wavelength 

of incident wave becomes very long (small ka), the characteristic length of the 

object is quite small compared to the incident wave, and thus the wave-body 

interaction becomes very weak.
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Figure 4.5 (Continued)

Figure 4.5 Comparison of wave run-up around the truncated cylinder with 

different �� for upper damper (��/ℎ = 0.025)
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(a)

.

(b)

Figure 4.6 Distribution of wave amplitude around the truncated cylinder 

with porous dual damping plate (�� = 0.001, ��/ℎ = 0.025) with different 

scattering parameters: (a) ka=0.2; (b) ka=1
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(a)

(b)

Figure 4.7 Distribution of wave amplitude around the truncated cylinder 

with porous dual damping plate (�� = 23, ��/ℎ = 0.025) with different 

scattering parameters: (a) ka=0.2; (b) ka=1
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Fig 4.6 and Fig 4.7 illustrate the distribution of wave amplitude around the 

truncated cylinder with dual damping plates under different porosities. It is 

evident that when the wavelength of the incident wave is very long (ka=0.2), 

the wave elevations on the lee side and the weather side of the truncated 

cylinder are almost symmetrical. Additionally, there is a consistent decreasing 

tendency of wave run-up on the surface of the truncated cylinder from the front 

point (0° ) to the rear point (90° ). When the wavelength becomes very long 

(ka=1), the magnitude of water level on the weather side of the truncated 

cylinder is much higher than that on the lee side. In this case, wave run-up 

gradually decreases from the front point (0°) to the back shoulder point (135°) 

of the truncated cylinder. Ultimately, it can be concluded that the upper 

damping plate with greater porosity could effectively reduce wave run-up 

around the truncated cylinder.

(a)

Figure 4.8 (Continued)
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(b)

Figure 4.8 Comparison of wave exciting forces around the truncated 

cylinder with different �� for upper damper (��/ℎ = 0.025): (a) surge 

exciting force; (b) heave exciting force

Regarding the porous damping plate, the hydrodynamic forces acting on the 

truncated cylinder have been investigated. Fig. 4.8 shows the variation of surge 

and heave wave exciting forces versus the scattering parameter ka for different 

porous effect parameter (��)  of the upper damping plate. The heave wave 

exciting force acting on the truncated cylinder decreases significantly due to 

the larger porosity of the upper damping plate, whereas the surge wave exciting 

force does not show significant change. As noted, in present MEEM solution, 

the thicknesses of the dual damping plate are zero, resulting in a very small 

changes on surge wave exciting force. However, with regard to the heave wave 

exciting force, the pressure gap between the two sides of the upper damping 

plate also varies substantially as the porosity changes. Thus, the heave wave 

exciting force acting on upper damping plate is quite sensitive to its porosity. 

Compared to short wave cases, the hydrodynamic loads on the truncated 
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cylinder under long wave conditions are not significantly affected by the 

porosity, which is in line with the behavior of wave run-up. 

Figure 4.9 (Continued)
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Figure 4.9 Comparison of wave run-up around the truncated cylinder with 

different �� for upper damper (��/ℎ = 0.05)

(a)

(b)

Figure 4.10 Distribution of wave amplitude around the truncated cylinder 



62

with porous dual damping plate (�� = 0.6, ��/ℎ = 0.05) with various 

porosities: (a) ��=0.001; (b) ��=23

Fig. 4.9 shows the effect of porosity of the upper damping plate on the wave 

elevations around the truncated cylinder for �� = 0.6, ��/ℎ = 0.05 . The 

position of the upper damping plate moves downward (��/ℎ = 0.05) relative 

to the case in Fig. 4.5. Compared with large separating distance (��/ℎ = 0.025), 

the decreasing effect on wave run-up due to the porosity becomes weaker under 

small separating distance. The phenomenon of wave elevation distribution with 

respect to the small separating distance ( ��/ℎ = 0.05 ) is demonstrated in 

Fig.4.10. When �� = 0.6 , the local water level adjacent to the truncated 

cylinder is not strongly affected by the porosity of upper damping plate. It can 

therefore be concluded that the attenuating effect due to the porous upper 

damping plate is quite strong when the upper damping plate is close to the still 

water level. While the influences become very weak when the position of the 

upper damping plate is relatively low.
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4.3 Effect of thickness 

In the real engineering problem, it is impossible to neglect the thickness of 

the heave damping plate. In this section, the effect of thickness for the single 

damping plate on wave run-up is investigated. To apply the present MEEM 

solution to the truncated cylinder with thick damping plate, an additional 

matching condition (Eq. 4.1) for the velocity potential in exterior region is 

needed except for the previous matching conditions (Eq. 2.6).

���

��
= 0 for  −�� ≥ � ≥ −��, � = �� (4.1)

Regarding the truncated cylinder with thick damping plate, the horizontal 

velocity of the fluid in exterior region becomes zero on the surface of thick 

damping plate. The geometric parameters are set to ��/�� = 0.5, ��/ℎ =

0.06, ��/ℎ = 0.1, �� = 0.001 without the consideration of porous effect. Fig. 

4.11 shows the variation of wave run-up around the truncated cylinder versus 

the scattering parameter (ka) for various normalized thickness (�/�). Here T

represents the thickness of single damping plate and D is the draft of the 

truncated cylinder. 
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Figure 4.11 (Continued)

Figure 4.11 Comparison of wave run-up around the truncated cylinder with 

different normalized thickness �/� of single thick damper
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Figure 4.12 Schematic of truncated cylinder with single thick damper and 

dual thin damping plates

As the thickness of single damping plates increases, the wave elevations on 

both the lee side and the weather side of truncated cylinder increase, which is 

in line with the behaviors of dual damping plate. Additionally, under different 

diffraction parameters conditions, as the single damping plate becomes thicker, 

the wave elevations increase more significantly. It implies that as the top surface 

of the thick damper gets close to the free surface, the enhancement of wave run-

up around the truncated cylinder becomes more substantial. The schematic of 

cylinders with the dual thin damping plates and the single thick damper are 

shown in Fig. 4.12. The major difference between two cylinder models is that 

in the case of the cylinder with the dual thin damping plates, there is no sidewall 

on the edge of dual damping plates compared to the cylinder with the single 

thick damper. To investigate the effect of the sidewall of the damping plate, 

wave run-up comparison results are demonstrated in Fig.4.13. Here, the 

separating distance (�/�) between dual damping plates is set to be identical to 

the thickness (�/�) of the single damping plate. Overall, the increment of wave 

run up looks similar between two cylinder models. On the weather side, wave 

run-up is almost similar between the single thick damper and the dual thin 
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dapmers. On the lee side of the truncated cylinder with the single thick damper, 

the local water level is slightly higher than dual damping plates. Which implies 

that the sidewall of the thick damping plate can not affect the wave elevation 

significantly. 

Figure 4.13 Comparison of wave run-up around truncated cylinder with 

dual damping plate and single thick damper
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5. Conclusions

This study aims to investigate the diffraction problem for a fixed truncated 

cylinder with porous dual damping plates. To solve this problem, an analytical 

solution based on the matched eigen-function expansion method (MEEM) was 

developed. Two series of validation approaches were proposed: wave 

diffraction for truncated cylinders with various impermeable damping plates 

and wave diffraction for simple porous structures. The numerical validation for 

wave run-up around the truncated cylinder with various impermeable damping 

plates was conducted by comparing with BEM solutions, which yielded good 

agreement. Furthermore, the complex wave number and hydrodynamic loads 

on simple porous structures such as horizontal porous membrane were also 

validated by comparing with previous computational results.

In this study, three different types of heave damping plates were applied to 

the truncated cylinder: a single thin damping plate, a single thick damping plate 

and dual thin damping plates. The numerical results of the truncated cylinder 

with porous dual damping plates showed that wave run-up as well as heave 

wave exciting force acting on the truncated cylinder could be significantly 

reduced by applying the porous upper damping plate. However, the surge wave 

exciting force was not sensitive to the porosity of the upper damper. Regarding 

the cylinder with impermeable dual damping plates, the heave exciting force 

and wave elevations around the cylinder increased due to the shallow water 

effect in the local flow as the separating distance increased. It was also 

confirmed that the thickness of the damping plate could affect the wave-body 

interaction for the truncated cylinder. As the damper became thicker, an 

increment of wave run-up was clearly observed, though the influence was not 

as dramatic as the porosity. In conclusion, it has been confirmed that more 
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favorable wave run-up and hydrodynamic performance of the truncated 

cylinder could be obtained by using porous dual damping plates. This type of 

damper is expected to be applied to offshore structures such as FOWT.

In the future, model tests will be conducted to validate the analytical solution. 

In addition to the diffraction problem, present MEEM model will also be 

extended to solve the radiation problem for the truncated cylinder with dual 

damping plates with the consideration of porosity. Furthermore, the effect of 

porous damping plate on added mass, damping forces acting on the cylinder 

will be investigated. 
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