

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

공학석사학위논문

A Black-Box Graph Partitioner for
Generalized Deep Neural Networks

Parallelization

심층신경망병렬화를위한블랙박스그래프분할기

년 월

서울대학교대학원

컴퓨터공학부

Jaume Mateu Cuadrat

2023 2

A Black-Box Graph Partitioner for
Generalized Deep Neural Networks

Parallelization

지도교수 Bernhard Egger

이논문을공학석사학위논문으로제출함

2022년 12월

서울대학교대학원

컴퓨터공학부

Jaume Mateu Cuadrat

Jaume Mateu Cuadrat의석사학위논문을인준함
2022년 12월

위 원 장 이재진 (인)

부위원장 Bernhard Egger (인)

위 원 김진수 (인)

ii

Abstract

Deep neural networks (DNNs) compromising larger and larger models are being

adopted in many domains. Businesses and individuals looking to create deep learn-

ing applications require purchasing expensive hardware setups or renting high-end

machines from cloud providers, both of which are significant to the customers. An

exciting alternative to avoid the high cost of machines powerful enough to run DNNs

with billions or trillions of parameters is to use a cheaper but slower set of machines

and distribute the workload. Several parallelization strategies have been proposed

to tailor the storage and computational requirements to each available device while

meeting the application’s latency requirements. However, using such setups requires

customers to have intricate knowledge of the algorithm or model to devise an efficient

plan of workload parallelization. In this thesis, I propose BBGraP, a black-box graph

partitioner that is device- and model-agnostic and produces efficient parallelization

plans for deep learning inference. The proposed method takes different types of net-

works as input and generates a workload division that satisfies each node’s memory

and computational constraints. A graph optimizer eliminates redundant operations,

data transfers, and synchronization points to reduce the amount of data transferred

while improving a workload’s latency. Then an automatic search finds the best parti-

tion possible according to the configuration given. As a proof-of-concept, I apply BB-

GraP to a cluster of distributed nodes and a multicore FPGA. The evaluation shows a

speedup up to 2-fold.

Keywords: Deep Neural Networks, Parallelization, Compiler, Automatic Searcher,

Black-Box, Graph Optimizer

Student Number: 2020-27033

iii

Contents

Abstract iii

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background and Related Works 4

3 Black-Box Graph Partitioner 6

3.1 Overview . 6

3.2 Transformer . 7

3.3 Naive Partitioner . 9

3.4 Graph Optimizer . 12

3.5 Automatic Search . 14

4 Evaluation 37

4.1 Graph Partitioning and Optimization 37

4.2 Pruning results . 37

4.3 MIDAP results . 40

4.3.1 Mobilenet Network Analysis 41

4.3.2 ResNet50 Network Analysis 44

4.3.3 Results on different networks 46

4.3.4 Comparative of using operators optimization 47

iv

4.4 AWS cluster results . 48

4.4.1 Mobilenet evaluation . 49

4.4.2 VGG16 evaluation . 52

5 Conclusion 55

6 Future Work 56

Bibliography 60

요약 61

Acknowledgements 62

v

List of Figures

3.1 Overview of BBGraP framework. 7

3.3 ShapeMap examples, where NCHW is number of batches, chan-

nels, rows, and columns respectively. 8

3.2 Network hierarchy. 8

3.4 3× 3 kernel with different dilation values. 10

3.5 Example of calculating input interval size. 11

3.6 Graph optimization methods distinguished into four different cases,

where (a) shows the initial state prior to optimization and (b)∼(e)

shows the optimization process according to the dimensions of the

output and next layer’s input. 13

3.7 Log based result of the total number of possibilities per number of

nodes and threshold pruning in the width direction of 1x3x224x224. 18

3.8 Example of how the min_idxn and max_idxn are found. 23

3.9 Example of how the middle nodes are created. 24

3.10 Example of the reduction from the threshold. 25

3.11 Graphic representation of the partitions creation. 28

3.12 Graphic representation of the partitions creation with the best result. 30

3.13 Scatter plot of each partition where the colors mean the tree of each

interval in node 0 and the red line are the best results of trees and the

black points are the actual calculated partitions after pruning. 36

3.14 Graphic representation of the partitions creation with pruned partitions. 36

vi

4.1 Naive partitioning and graph optimization example. Red arrows in-

volve data transfers between the cores for concatenation operator. . 38

4.2 Results of the pruning method . 39

4.3 Mobilenet inference profiler baseline. 41

4.4 Mobilenet size feature maps and weight maps layer by layer. . . . 43

4.5 Mobilenet layer by layer speedup. 43

4.6 Mobilenet inference profiler for 2 cores 44

4.7 ResNet inference profiler baseline. 44

4.8 ResNet size feature maps and weight maps layer by layer. 45

4.9 Mobilenet layer by layer speedup. 46

4.10 ResNet comparative with and without optimization for 2 cores. . . 49

4.11 How does the weight of the data transfer and threshold pruning value

change the data transfer . 50

4.12 Mobilenet inference without layer-by-layer offloading. 51

4.13 Mobilenet inference with layer-by-layer offloading. 51

4.14 Mobilenet best and worst case. 52

4.15 How does the weight of the data transfer and threshold pruning value

change the data transfer . 53

4.16 V GG16 inference without layer-by-layer offloading. 53

4.17 V GG16 inference with layer-by-layer offloading. 54

4.18 V GG16 best and worst ca.se . 54

vii

List of Tables

3.1 Supported BBGraP operators. 8

3.2 Table of variables used in the equations 9

3.3 Table of variables used in the equations 15

3.4 Table of variables used in the equations 18

3.5 Table of variables used in the equations 20

3.6 Example of the dictionary ′ds′ . 25

3.7 Example of the dictionary ′de′ . 26

3.8 Example of the dictionary ′link′ 26

3.9 O notation comparison of the creation and storage 27

3.10 O notation comparison of how fast is to search a partition in different

methods . 27

4.1 Results for different thresholds in the top row and different nodes

in the left column . 39

4.2 Speed up results for different networks and different numbers of cores

on MIDAP for a naive division . 48

viii

Chapter 1

Introduction

Deep neural networks (DNNs) are now ubiquitously adopted to various applica-

tions [1,3,11,20]. DNNs consist of numerous hidden layers with weights and massive

input data sets combined with DNN parameters not trivial in size, thus requiring a cer-

tain amount of memory during inference. Additionally, most layers are matrix multi-

plications of their weight and the preceding layer’s activation, thus making the whole

process computationally intensive. Such memory- and compute-intensive DNNs aim

to predict with the highest accuracy possible. Furthermore, with bigger DNNs asking

for higher prediction accuracy, the number of parameters has now reached trillions [5]

for better performances in a trade-off for much large memory and higher computing

requirements.

Meanwhile, due to the benefits of flexibility and efficiency, many users and or-

ganizations use cloud computing to either use or service various applications [4],

including applications with DNNs. The growing popularity of resource-intensive ap-

plications now demands high resource usage to accommodate their workloads, but

the cost of setting up such high-end node [2] is significant to the customers. One

alternative to using a high-end server is to set up a cluster of slower but cheaper ma-

1

chines to run resource-intensive DNN applications. This alternative requires devising

a plan for distributed inference. Distributing or parallelizing inference is one way

to decrease total computation and memory requirements. There are a few ways of

parallelizing the network, such as data parallelism [10], model parallelism [14], and

intra-layer parallelism [17]. Since these methods divide the inference scheme into

multiple nodes, they have pros and cons regarding memory and latency trade-offs.

Also, the search space for the best parallelization plan can significantly increase by

the number of nodes, the number of devices, and the network’s size [15]. Another

difficulty in hardware configurations and DNN architecture must be considered when

devising an efficient parallelization plan to configure the best possible way of dividing

the graph into multiple partitions with efforts to reduce memory accesses and fully

utilize all devices at hand. Most existing solutions split the DNN into two parts, one

running locally or at the edge and the other in the cloud. However, there should be a

device-agnostic and model-agnostic planner considering all hardware configurations

and DNN layers.

With such problems for parallelization at hand, we propose our framework BB-

GraP that can:

1. distribute a graph through different nodes and fully utilizes the devices inside

the system.

2. produce a fair distribution among all the nodes without the knowledge of the

hardware parameters.

3. optimize through operator pruning and data transfer reduction, reducing the

memory footprint inside each mode and the data transfer between different

nodes.

4. search the best partition independently from the type of devices and the hetero-

2

geneity of the devices.

The remaining sections are as follows: Sec. 2 discusses the background and other

related works, Sec. 3 explains the process of BBGraP, Sec. 4.4.1 shows how the au-

tomatic search of the best workload distribution is done. Sec. 4 shows our evaluation

of BBGraP, and Sec. 5 finally concludes this paper.

3

Chapter 2

Background and Related Works

The parallelism schemes of distributed deep learning are composed of data paral-

lelism, model parallelism, and intra-layer parallelism. Data parallelism distributes

input data set to all workers for faster inference with the price of having the full

model copied to all workers and thus increasing memory requirements. Model par-

allelism distributes the model to the workers with possible bottleneck of data trans-

fer between the worker nodes. Intra-layer parallelism divides operators between the

workers which in turn requires synchronization to maintain operator semantics.

Different types of data partition and parallelism distributed across devices have

been explored in the past. MoDNN [12] divides the network and sends the data via

Wi-Fi to different devices. Even though this model can do partition and distribution,

the model does this layer-by-layer which requires synchronization after each layer.

Another problem is the restriction on the partitions since it’s only able to do partition

across one layer and only really simple networks which usually are used only in

constrained devices.

DeepThings [21] focuses on early layers of the network where the activations are

bigger than weights and divide those height- and width-wise. However, DeepThings

4

lacks flexibility when it comes to the shapes of the partitions and complexity, which

reduces the usefulness to homogeneous devices and simple networks associated to

IoT. DeeperThings [19], on the other hand, focuses on fully-connected layers and

layers where the weights are much bigger than the input activations. This model is

restricted to weight input and output partition and also to a specific sizes. One restric-

tion that weight input and output partition has is that the maximum layers possible

for layer fusion is fixed to two since after the those two layers the devices have to

synchronize. These two frameworks improve from MoDNN since they don’t have to

explicitly synchronize after each layer, but both of them still lack flexibility since the

partition are made for homogeneous devices and simple networks, like YOLOv2 [16],

AlexNet [10], etc.

CSDF partitioner [13] performs both model and data partition. To partition, they

use weight output partition which restricts the model to synchronize after each layer,

which is similar to MoDNN. Since it is focused on throughput, not all the resources

are active at the same time and most of the network is restricted to small networks

like ResNet18 [6].

5

Chapter 3

Black-Box Graph Partitioner

3.1 Overview

Fig. 3.1 depicts the overview of BBGraP framework. Firstly, BBGraP will receive the

input model and hardware configurations for the naive partitioner (Section 3.3). Dur-

ing the naive partitioning phase, the user will require the BBGraP created previously

or the one created through the transformer.

If the user requires a particular partition in any operators, this can be defined in

the configuration file, which contains custom partitions of specific layers done by

the user. After naive partitioning, the user receive as many network partitions as the

number of the devices specified. This divided network can already be transformed

in the transformer to be sent directly to the nodes, or those networks can be further

processed and optimized in the optimizer module (Section 3.4). The networks be

checked in the optimizer module to see if any operator is unnecessary and can be

removed. If the user desires, before the transformation back, this network can be sent

to the automatic searcher, where BBGraP finds the best partition according to the

objective function used in Section 4.4.1. Finally, BBGraP is ready to be transformed

6

Figure 3.1: Overview of BBGraP framework.

back to the framework the nodes use.

3.2 Transformer

The transformation step is the starting point to get the model from an existing frame-

work. The input model is translated into the network hierarchy shown in Fig. 3.2,

where the operators are one of the supported operators in Table 3.1. It should be

noted that the arithmetic operators require two inputs, and the dimension of the out-

put should not change from the inputs. Also, operators grouped in ’Others’ are the

ones that do not require any partitioning.

7

Figure 3.3: ShapeMap examples, where NCHW is number of batches, channels,
rows, and columns respectively.

Figure 3.2: Network hier-
archy.

Group Operators

Convolutions Convolution, Group Convolution

Pools MaxPool, AvgPool, GlobalPool

Arithmetic Summation, Multiplication

Others Crop, Concatenation, Activation,

Batch Normalization, SoftMax

Table 3.1: Supported BBGraP operators.

The most important part of this step is to get the different feature maps (either

weights or inputs) and transform them into our ShapeMap, which later is used for

partitioning and optimization. Fig. 3.3 shows a few examples of our ShapeMaps de-

fined in the dimensions of NCHW , and each dimension is the directions in which

partitioning can occur. Our ShapeMap can even define intervals with multiple ranges,

as depicted in the first example of Fig. 3.3.

Finally, the type of partition and the number of devices are also assigned in this

transformation step.

8

Symbol Description
d Partitioning direction (c, h, or w)
Nd Number of devices assigned to direction d
I Original input size

pI(d,i) Input partition size, partitioned in direction d and assigned to device i
O Original output size

pO(d,i) Output partition size, partitioned in direction d and assigned to device i
Kd Kernel size in direction d
tKd True kernel size in direction d
Dd Dilation value in direction d
Sd Stride value in direction d
IVd Interval size in direction d

P(d0,d1) Padding size in direction of d0 (h or w) and d1 (left or right)

Table 3.2: Table of variables used in the equations

3.3 Naive Partitioner

Once the input model is translated to ShapeMaps, we can start with naive partitioning.

BBGraP uses the configuration file that contains partition information for a layer,

including the number of available devices and the dimensions of each feature map

for the partitions. If a configuration file is not given or not used, BBGraP divides the

workload evenly across all the devices. Table 3.2 defines the variables used across all

the equations in this section.

Naive partitioning is done from bottom to top using the output shape to reference

the input. It is easier to know the overlaps due to different stride, padding, and dilation

parameters. Following Eq. 3.1, we divide the output size by the number of devices

and floor the outcome to partition the outputs evenly to all devices. If any remain

after the division, They are distributed in a round-robin manner. For example, 8 × 8

output feature map partitioned for three nodes in the width-wise division would result

in pO(w,0), pO(w,1), and pO(w,2) to be 3× 8, 3× 8, and 2× 8 respectively.

9

(a) 3× 3 kernel with dilation
1.

(b) 3×3 kernel with dilation
2.

(c) 3× 3 kernel with dilation
3.

Figure 3.4: 3× 3 kernel with different dilation values.

pO(d,i) = floor(O/Nd) (3.1)

Once BBGraP knows the output dimensions, it creates the input division by tak-

ing into account the kernel size, dilation, stride, and padding. First, the proper kernel

size is realized with Eq. 3.2. The kernel with dilation 1 is the kernel itself, but with

a dilation value higher than 1, the kernel is spread out as shown in Fig. 3.4, thus

changing the proper kernel size.

tKd = (Kd − 1) ·Dd + 1 (3.2)

With the true kernel size found, BBGraP can now calculate the size of the interval

from the size of the output partition using Eq. 3.3.

IV(d,i) = (O − 1) · Sd + tKd (3.3)

To illustrate the procedure for calculating the interval size, we use Fig. 3.5 that

shows a simple example of deriving the interval size 9 when there are 3 output parti-

tions of 1× 1, a kernel of 3× 3 with dilation and stride of 2.

Given the input interval size, BBGraP can use Eq. 3.4 and Eq. 3.5 to determine

10

Figure 3.5: Example of calculating input interval size.

the start and end index of the input partition for device i. P(d,0) denotes the padding

size in either width-left or height-left, and P(d,1) denotes the padding size in either

width-right or height-right. For example, P(w,0) would mean padding size at the left

side of the feature map, and P(h,1) would mean padding size at the bottom side of the

feature map.

Left(d,i) =

0 if i = 0,

Sd ·
∑i−1

j=0 pO(d,j) − P(d,0) otherwise.

(3.4)

Right(d,i) =

IV(d,i) + Left(d,i) − P(d,0) if i = 0,

IV(d,i) + Left(d,i) − P(d,1) if i = Nd − 1,

IV(d,i) + Left(d,i) otherwise.

(3.5)

With the values of Left(d,i) and Right(d,i), the input partitioned in direction d for

device i can thus be defined as Eq. 3.6.

pI(d,i) = [Left(d,i),Right(d,i)] (3.6)

Once all the partitions are created, BBGraP creates the concatenation and crop

11

operators to join the outputs of the partitions to keep consistency. This step is the

naive partitioning phase; thus, all outputs are concatenated in the direction it was

partitioned. This sink creates concatenation operators after every layer. A discrepancy

between the concatenated output size and the next layer’s input size exist. Therefore,

a crop operator is created after all the concatenations for correctness.

3.4 Graph Optimizer

After the naive partitioning phase, BBGraP tries to prune operators or crop data to

reduce the number of synchronization points between devices. In order to do that,

we compare the dimension of one layer’s output to the dimension of the next layer’s

input, where the comparison results can be distinguished into four different cases,

as shown in Fig. 3.6. Fig. 3.6a shows the result of naive partitioning prior to the

optimization process, where each device has the process of having the outputs (α),

concatenating the output and dependencies from other devices (β), and cropping the

concatenated outputs, if necessary, for the next layer (γ). Notice that stage β requires

data transfers for concatenation in each device, denoted by the dotted arrow.

Input bigger than the output

If the input is bigger than the output, the necessary data present in other device(s) are

fetched and concatenated to the output as shown in Fig. 3.6b. Since BBGraP ensures

to bring only the needed data for the next layer instead of bringing the whole output

from other device(s) and also eliminate unnecessary crop operation. This optimiza-

tion, in turn, reduces the data transfer size.

12

(a) (b) (c) (d) (e)

Figure 3.6: Graph optimization methods distinguished into four different cases, where
(a) shows the initial state prior to optimization and (b)∼(e) shows the optimization
process according to the dimensions of the output and next layer’s input.

Input same as the output

When the input is the same as the output, we can delete the crop and concatenation

operators since they are unnecessary, as shown in Fig.3.6c.

Input smaller than the output

When the input is smaller than the output, the next layer may or may not need data

from other devices. Fig. 3.6d shows the case when we do not need data from other

device(s); thus, we can go ahead only with crop operation to pass on to the next

layer and eliminate unnecessary data transfers and concatenation operator. However,

as shown Fig. 3.6e, there exists a case when we need data from other device(s) and

also need to crop for the next layer. In such cases, we combine 3.6b and 3.6d,

and BBGraP eliminates unnecessary data transfers from the current device after the

concatenation.

13

3.5 Automatic Search

Once the front end (naive partitioner and optimizer, as seen in previous sections) has

been developed, the BBGraP framework is still naive. Because it divides the network

layer by layer individually, trying to give the same workload (unless a configuration is

given) to the nodes, not taking into account data transfer overhead and only checking

that the output is not overlapped. This method sometimes can lead to layer fusion

which avoids data transfer, as in the case of the same input and output size explained

in Section 3.4. This kind of optimization only using the naive partitioner is more

due to the architecture of the network or the configuration given by the user than the

framework itself. However, more is needed to find a suitable partition since the data

transfer created in the optimization part is still too big to get significant improvement

during the inference. Hence this automatic search was added to the framework to find

the best case depending on data transfer and heterogeneous speeds of the devices. In

this section, it is explained how the implementation has been done. First, the objective

function used to find the best partition of the network is described. Right after the

objective function, it is explained how the partitions are created and how and why

a previous hard pruning has been added. Finally, the last section explains how it

has effectively reduced the number of partitions that must be searched; this pruning

method, as it is explained, is lossless, so the solution is always the best.

Objective Problem

This section presents the mathematical model of the optimization problem and the

reason behind it. This model is rather simplistic and general, containing the most

general way of any architecture, and the weights have to be tuned manually with

the inference results after running the inference on the existing architecture. Due to

14

Symbol Description
l total number of layers
c total number of nodes
i node number

output_size tuple with the output tensor dimensions of each direction NCHW
crop_size tuple with the optimization crop tensor dimensions of each direction NCHW

dependency_size tuple with the dependencies tensor dimensions of each direction NCHW
n_values Number of values inside the tensor output

non_necessary Number of overlapped operations
operations_w weight value of operations value

data_w weight value of data transfer value
over_w weight value of the overlapped values

harmonic_w weight value of the harmonic mean result

Table 3.3: Table of variables used in the equations

the general nature, the model cannot represent with high accuracy the best result.

Nevertheless, as seen in the results Section 4, the improvements are up to 2-fold

in some networks. The final equation containing the optimization problem’s result

has been divided into four minor problems: Computation, Data transfer, Overlapped

operations, and Fair distribution of the workload. Table 3.3 defines all the variables

used during the optimization problem. Starting with the Computation problem in

Equation 3.7, using the already known size of each direction, it produces a product

of all the directions per each node created. For example, in the case, the operator has

an output output_size of 1× 3× 5× 5 the result for n_value would be 75.

n_valuei =
∏

(output_sizei) (3.7)

From the list of product, sizes which is the total size of the tensor, n_values cre-

ated in Equation 3.7, a maximum value has to be selected named n_operations. This

value is the bottleneck to execute the next layer in case no data transfer is involved,

which would need further synchronization. The maximum value selection is made

15

in Equation 3.8. This value is multiplied by the weight called operation_w that the

user previously defined. Finally, this value is used in the final equation to find the

total optimization problem value.

n_operations = max([n_value0, n_value1, ..., n_valuec−1]) ∗ operations_w (3.8)

A simple way to find the data transfer is to use the data dependencies created

during the optimization (Section 3.4), which is always performed before the objective

function is called. Equation 3.9 calculates the data transfer in the different nodes

and use the dependency_size, which is the output size of the dependency operator,

to find the total number of value transfers in that layer. Later this value is added

to the total optimization problem value. data_w is also a user-defined weight like

operation_w.

data_trans =
c−1∑
i=0

d∑
j=0

∏
dependency_sizei,j ∗ data_w (3.9)

Once the values of the data transfer and the total number of operations have been

found, the following key value to find is if the partition has overlapped operations,

Equation 3.10. For this, it is used the crop operations created during the optimization

(Figure 3.6d-3.6e). This crop operation indicates that some operations are already

calculated in another node, leading to a non-optimal partition.

16

non_necessary =
∑c−1

i=0 (
∏
crop_input_sizei −

∏
crop_output_sizei) ∗ over_w (3.10)

The harmonic mean is the last value to calculate before adding them all together.

This value calculated in Equation 3.11 is added to penalize the partitions with an

unbalanced workload.

harmonic =
∣∣∣∣∣n_operations− c∑c

i=1
1

n_valuei

∣∣∣∣∣ ∗ harmonic_w (3.11)

Finally, all the values calculated in the Equations 3.8 to 3.11 are added together

from all the layers in Equation 3.12. This value is used later during the pruning face

to distinguish between valid and not valid partitions in Section 3.5 that have a more

detailed explanation of the process.

value =
l∑

i=0
(harmonic+data_trans+n_operations+non_necessary) (3.12)

Partitions creation

For the creation of the partition, since we cannot create all the partitions and store

them in the memory, we must develop a method fast enough to create an indefinite

17

Symbol Description
d Partitioning direction (c, h, or w)
n total number of nodes

size_output size of the output tensor
threshold configuration value to prune the partitions

Table 3.4: Table of variables used in the equations

Figure 3.7: Log based result of the total number of possibilities per number of nodes
and threshold pruning in the width direction of 1x3x224x224.

number of partitions for scalability. As seen in Figure 3.7 the number of possibilities

are too big and they increase exponentially for every node it is added. The solution

is to create the partitions procedural. Instead of storing all the partitions, store only

the intervals and a linking dictionary of those intervals to link them later together

and make the partitions. This method allows the framework to store all the partitions,

no matter how many they are, and the execution is almost instantaneous. Table 3.4

shows the variable that is used for the equations of this section.

The first step is to get the interval sizes for each node depending on the speed of

those nodes. Following the Equation 3.13, the interval_size possible, which reflects

the size of the partition per node, are created according to the different speeds of the

nodes before using them to create the actual intervals of each node. Looking at Figure

3.10, this would be 1 for nodes 1 and 3 and 4 for node 2. The difference in the interval

values is due to the speed where node 2 is 3× faster than nodes 1 and 2.

18

interval_sizej = bsize_outputd/
n∑

i=1
speedsi ∗ speedsjc (3.13)

Once the interval_sizej is created, the minimum and maximum sizes should be

determined. These limits are affected by a hard value determined by the user named

threshold. This value is used to no search across all existing partitions since the

best solution always falls not far away from the interval_sizej . The minimum size

named start and maximum named end are created in the Equations 3.14 and 3.15.

These values would be [0, 2] for nodes 1 and 2 and [4, 5] for node 2 if the example to

find the interval_size from the previous paragraph is used, as shown in Figure 3.10.

startj = d(interval_sizej(100− threshold)/100e (3.14)

endj = d(interval_sizej(100 + threshold)/100e (3.15)

Finally, the list with all the possible interval sizes can be created after knowing the

minimum and maximum values. Starting at startj and finishing at endj increasing

the value by one. The list’s creation can be seen in Equation 3.16.

possible_sizesj = [startj , . . . , endj] (3.16)

19

Symbol Description
dscore,start intervals sorted by node and start value
decore,end intervals sorted by node and end value
link relates the partition of one node to another
nodes number of nodes in total
total total number of partitions

Table 3.5: Table of variables used in the equations

Now that the possible_sizes per node are known creating the dictionaries to

build later the partitions is explained. First, this object contains the fields listed in

Table 3.5.

To create the partitions for each node, this should be separated into 3 different

groups:

Left node

This first node is the node that contains the initial intervals of the tensor in the chosen

direction. This node is also associated to the node value of 0 for simplification.

ds0,0 = [(0, possible_size0,0), (0, possible_size0,1), . . . , (0, possible_size0,N)]

(3.17)

de0,possible_size0,i
= (0, possible_size0,i) (3.18)

In this node, the ds only contains one start index and its list since all the intervals

start at 0. The de have to create an end index for each interval and store only one

20

interval per each index since there are not repeated endings index for the starting

node because all of them start at 0. If there were a repeated end index, it would mean

a repeated interval, which would be an error. Using the example in Figure 3.10 and

the results previous obtained ([0, 1, 2]) the intervals are (0, 1) and (0, 2).

Right node

Like the previous left node, this node repeats a similar pattern on the other side,

inverting the ds and de way of creation. This inversion is because this node contains

the last interval, and the fixed index, in this case, is the ending index corresponding

to the size of the output or output_size. For simplification, this node has the value

of n corresponding to the last node or num_nodes − 1 on the Equations 3.19, 3.20

and 3.21.

diffi = output_size− possible_sizen,i (3.19)

dsn,diffi
= (diffi, output_size) (3.20)

den,output_size = [(diff0, output_size), . . . , (diffN , output_size)] (3.21)

The most remarkable difference compared to the left node creation is the Equa-

21

tion 3.19. Since the output size and the list of possible interval sizes are only known,

the left index has to be found through the difference between those variables. This

equation calculates the left index for each rightmost node partition; in our example,

this would be 6 and 7, creating the intervals (6, 8) and (7, 8).

Middle nodes

Since there is no clear reference on where to start or end in the middle nodes intervals,

it should be created with the other interval sizes from other nodes. The creation of

those references is in the Equations 3.22 and 3.23, where it adds all the smallest sizes

and all the biggest sizes and subtracts them to the size_output to create the upper

(max_idx) and lower (min_idx) limit for the starting index.

min_idxn = size_output−
num_nodes∑

i=node

possible_sizei,N (3.22)

max_idxn = size_output−
num_nodes∑

i=node

possible_sizei,0 (3.23)

To understand clearly how these intervals are created, Figure 3.8 has an example

of the previous examples. In this Figure the min_idxn is 8 − (5 + 2) = 1 and

max_idxn is 8− (4+1) = 3 where the node is 1 so only 2 nodes are added together.

Once the upper and lower limit is created, the possible starting and ending indexes

can be stored in ′ds′ and ′de′. Using the already known results from the previous

example, the list of indexes [1, 2, 3] corresponding to shift_idxn can be obtained,

which are the possible starting index of the intervals.

22

Figure 3.8: Example of how the min_idxn and max_idxn are found.

shift_idxn = [min_idxn, ...,max_idxn] (3.24)

The interval values in shift_idxn are used as start_idx for the middle nodes

and find ending_idx; the interval sizes have to be added to each start_idx. This

operation created a matrix of endings like in Equation 3.25. Furthermore, a graphic

example of the intervals constructed can be seen in Figure 3.9. One thing to remark

is that only some endings are possible neither are all the starts. The not allowed starts

and ends are the ones that correspond to 0 and the output_size, like the interval

(3, 8) shown in the graphic example. Other intervals are discarded in the linking part,

as it is explained in Section 3.5.

shift_endn,i,j =

shift_idxn,0 + possible_sizen,j . . . shift_idxn,i + possible_sizen,j

...
. . .

...

shift_idxn,0 + possible_sizen,0 . . . shift_idxn,i + possible_sizen,0

 (3.25)

23

Figure 3.9: Example of how the middle nodes are created.

Linking partitions

Linking partitions is a dictionary that, instead of storing a start_idx related to an

interval, it relates the start_idx of one interval of one node to each interval of the next

node. How this is accomplished is by checking if the next node start_idx is higher

than the start_idx of the current node interval, it is also checked it also checks if the

start_idx of the next node interval is equal (or lower in case the overlapped option is

activated) to the end_idx. Overlapped case means when the partitions are allowed to

have intervals that are already in another node. An example of an overlapped case is

in Figure 3.10, where the red color means overlapped values. Another example using

the intervals of Section 3.5 and 3.5 is using the interval (0, 2) from node 1, and with

the previous statements, a valid interval would be (1, 5), but a non-valid interval for

this previously selected interval would be (3, 6).

In Figure 3.10, there is an example showing the pruning improvement and all the

possible partitions after the creation of the dictionaries. In the example the size_output

is 8 and the speeds are [1, 3, 1] and finally the threshold is 20%. The total number

of partitions is reduced from 176 to 5, equivalent to 35.2x.

Table 3.6, 3.7, 3.8 and shows an example with a different output_size and ho-

24

Dictionary Node Index Partitions

ds

0 0 (0,2) (0,3) (0,4)

1

1 (1,3) (1,4) (1,5)
2 (2,4) (2,5) (2,6)
3 (3,5) (3,6) (3,7)
4 (4,6) (4,7) (4,8)
5 (5,7) (5,8)

2
7 (7,9)
6 (6,9)
5 (5,9)

Table 3.6: Example of the dictionary ′ds′

Figure 3.10: Example of the reduction from the threshold.

25

Dictionary Node Index Partitions

de

0
2 (0,2)
3 (0,3)
4 (0,4)

1

3 (1,3)
4 (1,4) (2,4)
5 (1,5) (2,5) (3,5)
6 (2,6) (3,6) (4,6)
7 (3,7) (4,7) (5,7)
8 (4,8) (5,8)

2 9 (5,9) (6,9) (7,9)

Table 3.7: Example of the dictionary ′de′

Dictionary Node End index Next Start

link

0
2 1,2
3 1,2,3
4 1,2,3,4

1

3
4
5 5
6 5,6
7 5,6,7
8 5,6,7

Table 3.8: Example of the dictionary ′link′

mogeneous speeds of the dictionary once it is finished. In Table 3.6 it can be seen the

points remarked from the Equations 3.17 and 3.20. Where on the node number 0, it

can be seen that there is only one index, while on the node number 2, which in this

case is the right node or last, it can be seen that there is an index for each partition.

This pattern are also found but inverted in the table 3.7. In both of these tables, it

can be seen that in the middle nodes, only some indexes have the same number of

partitions. Also, if the shift_endn,i,j is creating a none possible partition (1, 4) or

(1, 3) that as can be seen in the linking Table 3.8 is not used to link since the index 4

is not found in the node number 1.

26

Naive BBGraP
Time O(MN) O(M ×N)

Memory O(MN) min O(N), max O(M ×N)

Table 3.9: O notation comparison of the creation and storage

Naive BBGraP
Time O(1) min O(N), max O(M ×N)

Table 3.10: O notation comparison of how fast is to search a partition in different
methods

This method can also access random partitions only using an ID in O(N), where

N is the number of nodes. Nevertheless, this method is out of the scope of this the-

sis since the method, even though it has been tested, is not used during the pruning

method. Table 3.9 and 3.10 show the difference between the method previously ex-

plained and the most naive of creating and storing all the partitions where N is the

number of nodes and M is the size of the output in the direction of the partition.

As can be seen, the memory footprint and time to create the partitions have been

significantly reduced from exponential to linear. In exchange for those improvements,

the search of the partitions is no longer O(1), but it became linear. Even with this

change, the improvement in the creation and memory makes the delay in search wor-

thy since it allows the algorithm to create partitions even for large tensors and many

nodes in a short time.

Partitions pruning

Now that the process of how the partitions are created is understood. It is described

how the best partition is selected to minimize the cost of the optimization problem.

Firstly, it is explained how the partitions are ordered. Secondly, it is described how

the one better between the partitions is selected. Finally, the method used to prune

27

Figure 3.11: Graphic representation of the partitions creation.

and not try all the partitions since could take an incredible amount of time. During

this process, it only considers one partition layer for simplification.

The Algorithm 1 is used to understand how the algorithm orders the partitions.

In this algorithm, it can be seen first that it creates the current_p in Line 2 − 7,

which is used to store the intervals of each node inside. These lines also get the

links between the previous and current nodes. This recursive procedure is done to

go across the intervals inside the ′ds′ dictionary in the second loop in Line 17. Once

the list is created, the algorithm loops through the links list and store the intervals

of the current node based on the start_idx used in Line 10. Finally, if the node is

the last node possible, it calculates the optimization problem after dividing the layer

according to the tmp_partition selected and store it into results in Line 16− 18. If

the node is not the last, it recursively goes to the next node in Line 14.

In Figure 3.11 also can be seen that the tree is created using the dictionary of Table

3.6, 3.7, and 3.8. Some of the intervals have been removed to keep it more simple

and compact. The removed intervals doesn’t effect the results neither the pruning

algorithm. By the recursive algorithm, it can also be seen how the algorithm groups

the trees by start_idx and in order. This example is important later in the pruning

section.

After procedurally creating the partitions using the previously created dictionary

in Section 3.5, the algorithm should be able to find the best result in all those parti-

28

Algorithm 1 Recursive partitions evaluation

1: procedure PARTITIONSEARCH(node, current_p)
2: if current_p is None then
3: list_possible_start← [0,]
4: tmp_partition← [0,]× num_nodes
5: else
6: list_possible_start← partitions[′link′]

[node− 1][current_p[−1][−1]]
7: tmp_partition← current_p
8: end if
9: for start_idx in list_possible_start do

10: list_intervals← partitions[′ds′][node][start_idx]
11: for interval in list_intervals do
12: tmp_partition[core]← interval
13: if node 6= num_nodes− 1 then
14: results← PARTITIONSEARCH(node+ 1, tmp_partition)
15: else
16: layer ← LAYERCREATION(tmp_partition)
17: opt_value← OPTIMIZATION_PROBLEM(layer)
18: return results[tmp_partition]← opt_value
19: end if
20: end for
21: end for
22: return results
23: end procedure

29

Figure 3.12: Graphic representation of the partitions creation with the best result.

tions. Using the previous Algorithm 1 with a couple of additional lines included in

the Algorithm 2, the best result can be found.

As it can be seen from Algorithm 2, there are two types of best values one for the

trees with the same start and one for all the trees in the same node. The best value

for the tree is stored inside in best_res_tree in the Lines 24 − 29. Moreover, the

best value for the node is stored in best Lines 31 − 36, which is the value returned

to previous nodes. Doing this kind of storage, only the best values are sent to the

previous node making 100% the result always the best.

In Figure 3.12, differently from Figure 3.11, it can be seen how it keeps track of

the best value across all the nodes.

Finally, Algorithms 3, 4, and 5 show how the partitions are pruned with the help

of the previously explained algorithms. Starting with Algorithm 3 show how the bad

partitions that is not calculated again are chosen. These partitions are chosen based

on the best partition in that tree. In Lines 4 − 6, intervals from the next node have

been calculated together with the interval of the current node. In the following Lines

7 − 10, the found intervals are removed from the bad_partitions. The remaining

30

Algorithm 2 Recursive partitions evaluation to find best

1: procedure PARTITIONSEARCH(node, current_p)
2: if current_p is None then
3: list_possible_start← [0,]
4: tmp_partition← [0,]× num_nodes
5: else
6: list_possible_start← partitions[′link′]

[node− 1][current_p[−1][−1]]
7: tmp_partition← current_p
8: end if
9: best←∞

10: best_list← None
11: for start_idx in list_possible_start do
12: list_intervals← partitions[′ds′][node][start_idx]
13: best_res_tree←∞
14: best_tree_list← None
15: for interval in list_intervals do
16: tmp_partition[node]← interval
17: if node 6= num_nodes− 1 then
18: best_list_tmp, best_tmp←PARTITIONSEARCH(node+ 1,

tmp_partition)
19: else
20: layer ← LAYERCREATION(tmp_partition)
21: best_tmp← OPTIMIZATION_PROBLEM(layer)
22: return best_list_tmp[tmp_partition]← opt_value
23: end if
24: if best_tmp < best_res_tree then
25: best_res_tree← best_tmp
26: best_tree_list = best_list_tmp
27: else if best_tmp = best_res_tree then
28: best_tree_list.extend(best_list_tmp)
29: end if
30: end for
31: if best_res_tree < best then
32: best← best_res_tree
33: best_list = best_tree_list
34: else if best_res_tree = best then
35: best_list.extend(best_tree_list)
36: end if
37: end for
38: return best_list, best
39: end procedure

31

intervals and the tree coming from them is not calculated if it is found again. The

question that arises doing this is how it is possible to know in advance that those in-

tervals do not contain a better result than the optimal one. First, it must be noticed that

the trees being compared are the ones starting at the same index. Making this assump-

tion, these trees can be isolated and say that the results independent of the intervals

in previous nodes always contain the same results. For example, if there is a parti-

tion (0, 3)(2, 5)(5, 9) and a partition (0, 4)(2, 5)(5, 9) and finally (0, 2)(2, 5)(5, 9).

With these partitions and using the interval (2, 5), which would be in the tree starting

at index 2, it can be seen that the partitions (2, 5)(5, 9) consistently reproduce the

same results. These results are independent of the previous intervals (0, 2), (0, 3),

and (0, 4). So if one of these cases is worse than the previous one, it can be safely as-

sumed it has not a better result in the future, and thus it can be deleted. This example

can be seen in Figure 3.14.

In Algorithm 4, it is compared to the current interval and checks if that interval

exists in the dict_skip_intervals. If the node is previous to the current one, the

algorithm only has to check if that interval is in the dict_skip_intervals. However,

suppose the node is the same as the current one. In that case, it has to check if the

interval from the previous node is in the dict_skip_intervals and if it exists, check

if the interval of the current node is inside the list corresponding to the interval of the

previous node. If any of these conditions are right, the interval is skipped.

Finally, Algorithm 5 adds the Algorithm 4 and 3 into the previous Algorithm 2 in

Line 16 and 45. It also added a break of the loops in case the best case found is worse

than the previous one in Lines 33 and 42.

This pruning can be accomplished thanks to the recursive ordering of the parti-

tions, and the objective function explained in Section 3.5. As it can be seen in Figure

3.13, the optimization problem, since it brings the best result to the top as seen in

32

Algorithm 3 Store partitions that won’t be searched again

1: procedure STOREBADPARTITIONS(bad_partitions, partitions,
interval, best_tree_list, start_idx, node)

2: start_next← partitions[′link′][node][interval[−1]]
3: tmp_all_intervals← []
4: for start_tmp in start_next do
5: tmp_all_intervals.extend(partitions[′ds′][node+ 1][start_tmp])
6: end for
7: for best_part in best_tree_list do
8: if best_part[node+ 1] in tmp_all_intervals then
9: tmp_all_intervals.remove(best_part[node+ 1])

10: end if
11: end for
12: bad_partitions[node][start_idx][′base′] = tmp_all_intervals
13: for best_part_idx in best_list_tmp do
14: for node_tmp in [node+ 1, . . . , num_nodes− 1] do
15: start_next← partitions[′link′][node_tmp]

[best_part_idx[node_tmp][−1]]
16: tmp_all_intervals← []
17: for start_tmp in start_next do
18: tmp_all_intervals.extend(partitions[′ds′]

[node_tmp+ 1][start_tmp])
19: end for
20: for best_part in best_tree_list do
21: if best_part[node+ 1] in tmp_all_intervals then
22: tmp_all_intervals.remove(best_part[node+ 1])
23: end if
24: end for
25: bad_partitions[node][start_idx][node_tmp]

[best_part_idx[node_tmp]].extend(tmp_all_intervals)
26: end for
27: end for
28: end procedure

33

Algorithm 4 Store partitions that won’t be searched again

1: procedure SKIPPARTITION(dict_skip_intervals, node, interval, current_p)
2: skip_interval← false
3: for node_tmp, list_intervals in dict_skip_intervals do
4: if node− 1 = node_tmp then
5: if interval in list_intervals then
6: skip_interval← true
7: end if
8: else if node 6= node_tmp and
currrent_p[node− 1] in list_intervals and
interval in list_intervals[current_p[node− 1]] then

9: skip_interval← true
10: end if
11: end for
12: return skip_interval
13: end procedure

Figure 3.12, it created a convex function without local minimums only absolute max-

imums. It can be seen that this is true for any group of partitions, size of output, or

node distribution because the partitions are constantly increasing in size.

Since some sizes are too small at the beginning, the other requires to be bigger

than it should be to create a valid partition. Furthermore, while increasing the sizes,

the algorithm finds balance. After finding the one that is in balance, the value of the

objective function also gets worse due to one of the sizes being too big; usually, that

interval is the one in node 0. In the example in Figure 3.14, it can be seen that after

the partition (0, 3)(3, 6)(6, 9), none of the subsequent partitions are better than that

one neither it creates a local minimum.

34

Algorithm 5 Recursive partitions evaluation to find best

15: for interval in list_intervals do
16: if SKIPPARTITION(dict_skip_intervals,

node, interval, current_p) = true then
17: continue
18: end if
19: tmp_partition[node]← interval
20: if node 6= num_nodes− 1 then
21: best_list_tmp, best_tmp← PARTITIONSEARCH(node+ 1,

tmp_partition)
22: else
23: layer ← LAYERCREATION(tmp_partition)
24: best_tmp← OPTIMIZATION_PROBLEM(layer)
25: return best_list_tmp[tmp_partition]← opt_value
26: end if
27: if best_tmp < best_res_tree then
28: best_res_tree← best_tmp
29: best_tree_list = best_list_tmp
30: else if best_tmp = best_res_tree then
31: best_tree_list.extend(best_list_tmp)
32: else
33: break
34: end if
35: end for
36: if best_res_tree < best then
37: best← best_res_tree
38: best_list = best_tree_list
39: else if best_res_tree = best then
40: best_list.extend(best_tree_list)
41: else
42: break
43: end if
44: if node 6= num_nodes− 1 then
45: STOREBADPARTITIONS(bad_partitions, partitions, interval

, best_tree_list, start_idx, node)
46: end if

35

Figure 3.13: Scatter plot of each partition where the colors mean the tree of each
interval in node 0 and the red line are the best results of trees and the black points are
the actual calculated partitions after pruning.

Figure 3.14: Graphic representation of the partitions creation with pruned partitions.

36

Chapter 4

Evaluation

4.1 Graph Partitioning and Optimization

This section shows an example of what happens to the input model as it goes through

the graph partitioning and optimizing phase with a small example network.

Fig. 4.1 shows the whole process of BBGraP with a small network consisting

of two convolution layers, partitioning into three nodes. Fig. 4.1a shows the origi-

nal graph, and Fig. 4.1b shows that the first phase of naive partitioning has divided

the graph equally. However, the first phase created several operators with few being

redundant; thus, the graph optimization stage eliminates said redundant operators,

where in some cases, it even achieves layer fusion. The final output of the graph op-

timization stage is depicted in Fig. 4.1c. All data dependencies in the final graphs are

marked with red arrows.

4.2 Pruning results

To evaluate how the pruning method improves, a convolution operator with an output

tensor of 1 × 3 × 448 × 488 is used. To see if the pruning method is excellent and

37

(a) Original (b) After naive partitioning stage (c) After graph optimization stage

Figure 4.1: Naive partitioning and graph optimization example. Red arrows involve
data transfers between the cores for concatenation operator.

38

nodes Threshold (%) 5 10 15 20

2
Total (log10) 2.5 3.1 3.4 3.6

Pruned 26 48 70 92
Reduction (log10) 1.1 1.4 1.5 1.7

4
Total (log10) 5.7 7.4 8.2 9

Pruned 389 1355 2600 4622
Reduction (log10) 3.1 4.2 4.8 5.3

8
Total (log10) 9.8 13.3 15.5 17.2

Pruned 966 3417 7344 12747
Reduction (log10) 6.8 9.8 11.7 13.1

16
Total (log10) 17.1 21.1 26.6 28.7

Pruned 2501 5174 16528 43121
Reduction (log10) 13.7 17.4 22.4 24.1

Table 4.1: Results for different thresholds in the top row and different nodes in the
left column

(a) Original number of possibilities. (b) Reduction from the total possibilities.

Figure 4.2: Results of the pruning method

scalable, it is used up to 16 nodes, and the threshold value is also changed to ensure

it is working, changing all the parameters. The results of how these parameters affect

the improvement of the pruning can be seen in Table 4.1 and Figure 4.2.

Table 4.1 shows how it would be impossible to evaluate all the partitions since

when the nodes are increased to only 4 nodes and a threshold of 20% the number

of possibilities is already billions of them. This number only increases exponentially

with more nodes added, and the more the threshold value is increased. However,

with the method of pruning the partitions, the number of partitions calculated are

39

under 50, 000, and the most important thing is that it increases linearly with both

variable; nodes and threshold. The reduction also increases exponentially due to the

nature of the partitions tree. Since the partitions tree contains more repeated trees than

when the number of nodes and threshold value is small produces a higher pruning.

4.3 MIDAP results

In this section, we evaluate how BBGraP works with different configurations and dif-

ferent given graphs. To do this evaluation, MIDAP [8] [9], a multi-core fully pipelined

execution FPGA, has been used. In order to do the evaluation, we created a trans-

former to translate from MIDAP to BBGRAP and translate back the divided graph.

Since the operators for the synchronization are implemented in the simulator, no run-

time or compiler modification has been done. One restriction with this simulator is

that the tensor can only divide on its height direction. As shown in the results, this

has some overhead and reduces the inference’s improvements. Another limitation we

have is that the simulator for multi-core is still under development, so only a limited

of networks are available for multi-core.

First, an analysis of two popular networks will be done to know the nature of

the most common CNN used on MIDAP. After the analysis, the results of all the

working networks on MIDAP multi-core will be explained. Furthermore, an analysis

of how the optimization improves compared to the naive approach will be shown.

Unfortunately, because MIDAP is still under development, the improvement of using

the automatic search will be shown in the next section due to the inability of the

simulator to run the created network.

40

Figure 4.3: Mobilenet inference profiler baseline.

4.3.1 Mobilenet Network Analysis

Since the results have two significant groups, this Mobilenet [7] and ReseNet [6],

this has been selected to see the significant characteristics that will affect the results.

Figure 4.3 shows the profile of theMobilenet inference on MIDAP without division.

To understand the profiler, some labels of the figure should be explained before.

WMEM is referred to the memory that stores the weight values, FMEM is the fea-

ture map memories, TMEM is the write off-chip buffers, BMEM is the memories

to store the bias values, DMA busy shows when the memory bus that connects the

on-chip and off-chip memory is busy, the core idle shows in red when the cores are

not doing operations and finally LUT, Host and Write are not used. Another thing to

remember is the difference between light blue and dark blue. Light blue is the mem-

ory block waiting for another memory to finish the load. Moreover, dark blue is when

the memory is busy loading from the off-chip.

In the Mobilenet profile in Figure 4.3, it can be seen that almost the whole net-

work fits into the memory since the first feature map is the biggest one in the network.

This type of network, where the biggest feature map fits into memory, will have a re-

duced improvement during the division. Since the overhead of the off-loading and

on-loading feature maps to transfer to other cores will be more noticeable compared

41

to zero transfers of the baseline.

Other noticeable characteristics are the different types of layers that can be clas-

sified into three more general groups that can also be seen in Figure 4.4:

• Feature map bigger than weight map in the case of Mobilenet are layers

Conv1 to Conv7.

• Feature map similar to weight map in the case of Mobilenet this is layers

Conv7 to Conv13.

• Feature map smaller than weight map in the case of Mobilenet are layers

Conv13 to Linear1.

From the performance in Figure 4.4, it can be seen how these groups of layers

affect the performance during the division on the naive case. In Group 1, the layers

perform as they should, with a speedup of around 2× in all the layers. Except for the

DWConv1 that, due to a simulator error, slows it down 0.5×. For Group 2, the per-

formance is reduced due to the increased weight size; in some cases, the data transfer

between cores in the layers slows down. In the last Group 3, the performance is worse

than that of three cores due to the increase in the weight size. In this last group, there

are also two exceptions GlobalPool1 that in the baseline is not performed since it is

pipelined. And the last exception, Linear1, that being FC, is not possible to divide

by height direction.

Some of this overhead due to the groups could be solved if MIDAP allowed

channel direction division since it would have smaller weight maps. Nevertheless,

that method also has shortcomings in that it should synchronize after each layer un-

less further optimization exists. However, this shortcoming could be overlooked by

the improvement of performance obtained by the channel direction division.

42

Figure 4.4: Mobilenet size feature maps and weight maps layer by layer.

Figure 4.5: Mobilenet layer by layer speedup.

43

(a) Mobilenet inference profiler core 1. (b) Mobilenet inference profiler core 2.

Figure 4.6: Mobilenet inference profiler for 2 cores

Figure 4.7: ResNet inference profiler baseline.

Finally, a profiler of Mobilenet divided into cores can be seen in Figure 4.6.

In this profiler, it can be seen the previously mentioned error of the simulator in

the second layer. Also, it can be seen how the WMEM becomes busier and busier,

creating a bottleneck in the processor.

4.3.2 ResNet50 Network Analysis

ResNet has been chosen to contrast withMobilenet since this one does not fit all the

feature maps in the on-chip, so the division’s performance is much more outstanding.

In Figure 4.7, it can be seen that the layers at the beginning create load and store

off-chip operation creating much overhead. Even though the core idle is not affected

as much as it could seem due to the chip’s pipelining method. Another characteristic

of resenet is the shortcuts where the feature map must be flushed and loaded entirely

inside the on-chip memory.

44

Figure 4.8: ResNet size feature maps and weight maps layer by layer.

In the layer-by-layer characteristics, as it can be seen in Figure 4.8 and similar to

Mobilenet, the layers can be grouped into three big groups:

• Feature map bigger than weight map in the case of Mobilenet are layers

Conv1 to Conv25.

• Feature map similar to weight map in the case of Mobilenet this are layers

Conv25 to Conv44.

• Feature map smaller than weight map in the case of Mobilenet are layers

Conv44 to Linear1.

Because there are more layers in group 3, it will decrease some of the improve-

ment of performance attained at the beginning thanks to the reduced load and flush

into the off-chip. This previous statement can be reflected in Figure 4.9, where there

is a performance degradation the more the networks advances through the layers.

However, the improvements thanks to that all the memory fits on-chip it achieves

45

Figure 4.9: Mobilenet layer by layer speedup.

better performance on group 1 than Mobilenet

4.3.3 Results on different networks

Now with some knowledge of some networks, the following results of Table 4.2

correspond to the speed improvement of the inference time. In that table, it can

be seen interesting results ranging from an improvement of 2× faster in the case

of wide_resnet101 to a speed reduction of 0.36× in the mobilenet_v3_small −

_minimal. The optimized results could only be obtained for some of the cores due

to some simulator errors, so only naive results could be thoroughly analyzed on MI-

DAP.

The worst case is that the network size has little margin to improve the inference

time. In MIDAP, like in other architectures, the small the network, the more possi-

bilities that the whole network fits on-chip memory, and layer fusion occurs. Layer

fusion in the case of MIDAP means that the data on-chip memory is reused in the

46

next layer, and there is no need to transfer it to the off-chip memory. This layer fu-

sion case makes the BBGraP overhead due to the transference of data between the

cores.

However, the other case can also be seen that the bigger the network layer, the

overhead is less significant compared to the improvement that the division of the lay-

ers creates. Also, notice that the more layers a model has, the overhead not to be able

to divide the FC layers, as explained in the previous sections, are also diminished.

These two patterns can be seen by groups being the worst cases, themobilenet_v3

andmobilenet_v2 groups with an average of 0.55×, 0.73× and 0.91× for two, three

and four cores respectively. And the best case on the ResNet and wide_resnet

groups with and average of 1.38×, 1.64× and 1.84× for two, three and four cores

respectively. These results were obtained using the naive graph division and no op-

timization, so as will be seen in the next section, there is still much margin for im-

provement.

4.3.4 Comparative of using operators optimization

MIDAP simulator, since it is in development, only a few types of graphs are avail-

able, so the only ones that could be tested to check the performance of the operator’s

optimization are explained in Section 3.4. The graphs tested on MIDAP with op-

timization are resnet50, resnet101, and resnet152 for two cores. The results for

these graphs are shown in Figure 4.10.

The improvement is relatively significant in all the cases. Even in some cases,

these improvement is greater than three cores without optimization (Table 4.2). Since

it could not be tested for a higher number of cores, it cannot be assumed it is linear

if the number of cores is increased. However, following the previous results without

optimization should be the case since they are linear.

47

Networks Baseline 2 cores 3 cores 4 cores
resnet50 1 1.32 1.57 1.8
resnet101 1 1.28 1.53 1.72
resnet152 1 1.29 1.55 1.76
mobilenet 1 1.15 1.44 1.7
mobilenet_v2 1 0.62 0.84 1.07
mobilenet_v3_small 1 0.41 0.54 0.67
mobilenet_v3_small_0.75 1 0.45 0.59 0.73
mobilenet_v3_small_minimal 1 0.36 0.48 0.61
mobilenet_v3_large 1 0.57 0.76 0.94
mobilenet_v3_large_0.75 1 0.51 0.68 0.86
mobilenet_v3_large_minimal 1 0.53 0.72 0.91
mobilenet_v3_edgetpu 1 0.94 1.19 1.46
mobilenet_v3_edgetpu_0.75 1 0.59 0.77 0.98
wide_resnet101 1 1.55 1.83 2
wide_resnet50 1 1.47 1.73 1.93

Table 4.2: Speed up results for different networks and different numbers of cores on
MIDAP for a naive division

4.4 AWS cluster results

In this section, differently from MIDAP, we evaluate BBGraP automatic search on

different networks. To do the evaluation, an AWS cluster was used. Each cluster in-

stance uses 8vCPUs from a custom Intel Cascade Lake, 1 NVIDIA GPU, 32GiB

RAM, and a network bandwidth of up to 25Gbps. To utilize these instances, NVIDIA

cuDNN was used for the GPU, and OpenMPI was used for the data transfers. The cur-

rent underdevelopment simulator using OpenMPI leads to unexpected overheads due

to bringing required tensors from the GPU VRAM to the host’s DRAM to create the

tensor and finally send it back to the GPU. This overhead will be hidden in future

versions by overlapping it with inference computations using NVIDIA NCCL, lead-

ing to better inference time overall. Also, it is currently only able to divide by width,

so it has the same problem on the last layers as MIDAP.

For the software side, the 2 available networks will be tested: those V GG16 [18]

48

Figure 4.10: ResNet comparative with and without optimization for 2 cores.

and Mobilenet. V GG16 is a network shorter than Mobilenet, but the feature maps

are much bigger, so it should be more difficult to transfer them into the GPU. On the

other hand, we have Mobilenet, which, as we evaluated on the MIDAP results, is a

small network that, for a GPU, is not a problem to process the inference.

We used Pytorch in 1 node to compare the results to see if multiple nodes improve

performance. We did two kinds of tests offloading the data and loading the data in

every layer, and another test was not doing that.

4.4.1 Mobilenet evaluation

As discussed in Section , the current model is naive and does not have automatic feed-

back. The weights are manually selected by looking at the bottlenecks that happened

during naive inference or the already known bottlenecks, like in the data transfer case.

The overhead of the data transfer due to the OpenMPI is the biggest. The data transfer

will be the parameter to modify and analyze in our model.

49

(a) Inference 2 nodes (b) Inference 3 nodes

(c) Inference 4 nodes

Figure 4.11: How does the weight of the data transfer and threshold pruning value
change the data transfer

In Figure 4.11, it can be seen that how the weight for the data transfer has a

more significant impact than the threshold. These results are because the threshold

only increases the possibility of finding a better solution. However, the weight for the

data transfer is directly involved in the optimizing problem penalizing the higher data

transfer. From the nonoptimized divided graph, the improvement to the best case is

2.33×, 1.42×, and 1.14× fewer bytes transferred. The decrease in performance when

the number of nodes increases is because the more nodes, the more possibilities have

synchronization between them.

For Mobilenet, since all the data fits in the GPU, the results could be better. The

more batches it has, the better results, but more is needed to show an improvement to

Pytorch. In both cases, layer offloading and loading in Figure 4.12 and not doing that

in Figure 4.13. The test offloading and loading of every layer has better performance

50

Figure 4.12: Mobilenet inference without layer-by-layer offloading.

Figure 4.13: Mobilenet inference with layer-by-layer offloading.

than not using this technique, but the possible overhead of the OpenMPI eclipses

the improvement of the division. Another factor is the time it takes to create the

automatic graph for 4 nodes; It could not be tested. However, looking at the results

of three nodes, if the improvement is linear, it could have better results than Pytorch.

Finally, it will be compared to the improvement of the best graph with manually

selected weights compared to the naive approach in Figure 4.14. Even though it might

not be the best graph possible due to the optimization problem being too general, the

inference performance is better. With the best case in two nodes, an improvement of

3.58× is faster. The increase in latency with the number of nodes is due to the high

data transfer in the three nodes that, as we increase the number of batches, is hidden

51

(a) 1 batch. (b) 20 batches.

Figure 4.14: Mobilenet best and worst case.

by the number of calculations the GPU has to do.

4.4.2 VGG16 evaluation

Like the previous evaluation, we will analyze the total number of bytes transferred.

The results are similar to Mobilenet, but there is one curious case in three nodes. In

the case of three nodes with a 5% threshold and the lowest value for the data transfer

weight, the data transfer is higher than the nonoptimized case. These results could be

due to the lack of options for choosing the partitions and because the data transfer

needs to be penalized more.

In V GG16, similar to Mobilenet at the beginning, the performance is worse

due to the data transfer overhead. However, unlike in the previous case, here we can

see an improvement after 5 batches. This improvement is because the feature maps

of V GG16 are much more significant. We can see a considerable improvement on

20 batches of four nodes in Figure 4.16 with an improvement of 1.6×. In this case,

differently from the Mobilenet as it can be seen in Figure 4.17, the layer offloading

and loading method does not show better results than Python but worse than without

offloading and loading every layer.

Finally, we will analyze how the nonoptimized graph improves the automatic

search on 1 and 20 batches. From Figure 4.18, on only 1 batch, the improvement is

52

(a) Inference 2 nodes (b) Inference 3 nodes

(c) Inference 4 nodes

Figure 4.15: How does the weight of the data transfer and threshold pruning value
change the data transfer

Figure 4.16: V GG16 inference without layer-by-layer offloading.

53

Figure 4.17: V GG16 inference with layer-by-layer offloading.

(a) 1 batch. (b) 20 batches.

Figure 4.18: V GG16 best and worst ca.se

more remarkable since the overhead of the data transfer is not eclipsed by the total

number of operations as it is in the 20 batches.

54

Chapter 5

Conclusion

In this thesis, we propose BBGraP, a device- and model-agnostic framework. The

framework produces an efficient distribution plan for DNN inference and an auto-

matic search to exploit the best parallelization. We described how BBGraP parses the

input into its graph and partitions according to the hardware configurations. We have

also described optimizing BBGraP’s graph by looking at the input and the output fea-

ture maps. We explained how to create procedural partitions that can store millions

and millions of partitions and how the unlimited possibilities can be reduced in a

lossless manner. The results of the pruning method are auspicious, reducing the total

amount of possible partitions from billions and trillions to less than 100000 possi-

bilities. Currently, the automatic search for the best distribution is still under work,

reducing the number of possible partitions even more and expanding the method to

multiple directions in one network. The model representing the different architecture

should be improved to represent better the components and get more accurate results.

But even after all of those possible improvements the current divisions shows up to

2× speed up on some networks on MIDAP and 1.6× on big networks in a cluster of

instances.

55

Chapter 6

Future Work

In future work, the number of partitions done will be reduced further because even

though the results are fantastic, more is needed for a more significant number of cores

and multi-layer. Because the model is too general it should be improve in a near future

to get more accurate graph to improve the inference time. Another work that is cur-

rently done is the multi-layer search. This multi-layer search is developed but needs

better results to add them to this thesis. After the automatic search is finished, big-

ger and more advanced networks will be supported together with training networks

in the framework. Finally, a significant contribution would be creating a module for

TensorFlow or PyTorch since neither has an intra-node model distribution.

56

Bibliography

[1] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton

Fookes, and Lars Petersson. Graph-based deep learning for medical diagnosis

and analysis: past, present and future. Sensors, 21(14):4758, 2021.

[2] Amazon. Amazon ec2 p4 instances: Highest performance for ml training and

hpc applications in the cloud, 2020.

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:

Optimal speed and accuracy of object detection. arXiv preprint

arXiv:2004.10934, 2020.

[4] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and

Ivona Brandic. Cloud computing and emerging it platforms: Vision, hype, and

reality for delivering computing as the 5th utility. Future Generation computer

systems, 25(6):599–616, 2009.

[5] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling

to trillion parameter models with simple and efficient sparsity, 2021.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

57

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[8] Donghyun Kang, Jintaek Kang, Hyungdal Kwon, Hyunsik Park, and Soon-

hoi Ha. A novel convolutional neural network accelerator that enables fully-

pipelined execution of layers. In 2019 IEEE 37th International Conference on

Computer Design (ICCD), pages 698–701. IEEE, 2019.

[9] Duseok Kang, Donghyun Kang, and Soonhoi Ha. Multi-bank on-chip memory

management techniques for cnn accelerators. IEEE Transactions on Computers,

71(5):1181–1193, 2021.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25, 2012.

[11] Wookey Lee, Jessica Jiwon Seong, Busra Ozlu, Bong Sup Shim, Azizbek

Marakhimov, and Suan Lee. Biosignal sensors and deep learning-based speech

recognition: A review. Sensors, 21(4):1399, 2021.

[12] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen.

Modnn: Local distributed mobile computing system for deep neural network. In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,

pages 1396–1401. IEEE, 2017.

[13] Svetlana Minakova, Erqian Tang, and Todor Stefanov. Combining task-and

data-level parallelism for high-throughput cnn inference on embedded cpus-

58

gpus mpsocs. In International Conference on Embedded Computer Systems,

pages 18–35. Springer, 2020.

[14] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:

generalized pipeline parallelism for dnn training. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[15] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,

Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,

Julie Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model

training on gpu clusters using megatron-lm. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analy-

sis, pages 1–15, 2021.

[16] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

7263–7271, 2017.

[17] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint arXiv:1909.08053,

2019.

[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[19] Rafael Stahl, Alexander Hoffman, Daniel Mueller-Gritschneder, Andreas Ger-

stlauer, and Ulf Schlichtmann. Deeperthings: fully distributed cnn inference on

59

resource-constrained edge devices. International Journal of Parallel Program-

ming, 49(4):600–624, 2021.

[20] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng

Jiang. Bert4rec: Sequential recommendation with bidirectional encoder repre-

sentations from transformer. In Proceedings of the 28th ACM international con-

ference on information and knowledge management, pages 1441–1450, 2019.

[21] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.

Deepthings: Distributed adaptive deep learning inference on resource-

constrained iot edge clusters. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

60

요약

최근에다양한도메인에서개발및사용하는심층신경망들의크기는점점더

커지는 추세이다. 이로 인해 딥 러닝 애플리케이션을 개발하려는 기업과 개인은

고가의 하드웨어 설비를 구입하거나 클라우드 공급자로부터 하이엔드 머신을 임

대해야 하며, 이는 사용자들에게 큰 부담으로 다가온다. 수십 억 또는 수조 개의

매개 변수를 가지는 심층 신경망을 실행할 수 있는 노드들을 사용할 때 발생하는

높은비용을피하는대안중하나는더저렴하지만느린노드들을동시에사용해작

업량을분산하는것이다.작업량분산과애플리케이션의지연시간요구사항들을

동시에충족하면서각노드의메모리및계산요구사항에따라작업량을조정하기

위해여러병렬화전략들이제안됐지만,이러한방법들을사용자가직접사용하기

위해선분산화전략과심층신경망에대한상당한지식을보유해야만한다.이러한

문제점을해결하고자본논문에서는하드웨어설비및심층신경망모델에구애받

지 않고 손쉽게 딥 러닝 추론을 위한 효율적인 병렬화 계획을 생성하는 블랙박스

그래프분할기인 BBGraP를제안한다. BBGraP을통해주어진각노드의메모리및

계산제약조건에따라효율적인워크로드분할을생성하며,사용자들이원하는다

양한유형의심층신경망들을실행할수있다. BBGraP에서분할방식을고안할때

사용하는 그래프 최적화 도구는 중복 작업, 데이터 전송 및 동기화 지점을 제거

하여전송되는데이터양을줄여워크로드의지연시간을개선하고,그후에자동

검색방식이지정된설정에따라가능한최적의파티션을찾게된다.이러한방식

들을 통해 여러 노드를 포함한 클러스터와 다중 코어 FPGA에서 최고 2배의 성능

향상을보여주는걸확인할수있었다.

주요어:심층신경망,병렬화,컴파일러,자동검색기,블랙박스,그래프최적화

학번: 2020-27033

61

Acknowledgements

I want to thank all the people that have been around me these two years, helping and

supporting me. First of all, I want to dedicate this thesis to both of my beloved par-

ents that always supported me since I was born and always were there to help even in

the distance. I would like to thank my friends and the rest of my family in Spain that

helped me during these two tough years with calls, messages, or video calls since I

couldn’t go there. I want to thank my advisor Bernhard Egger for allowing me to do

my research in his lab and also for the advice through these years. Also, I’m thankful

to my lab mates for the long hours in the lab, the exchange of ideas and also help. Fi-

nally, I want to thank professor이재진 and professor김진수 for the useful feedback

for this thesis.

Gràcies per tot pare i mare per sempre estar allí i ajudar-me.

Sempre et recordaré pare.

62

	1 Introduction
	2 Background and Related Works
	3 Black-Box Graph Partitioner
	3.1 Overview
	3.2 Transformer
	3.3 Naive Partitioner
	3.4 Graph Optimizer
	3.5 Automatic Search

	4 Evaluation
	4.1 Graph Partitioning and Optimization
	4.2 Pruning results
	4.3 MIDAP results
	4.3.1Mobilenet Network Analysis
	4.3.2ResNet50 Network Analysis
	4.3.3Results on different networks
	4.3.4Comparative of using operators optimization

	4.4 AWS cluster results
	4.4.1Mobilenet evaluation
	4.4.2VGG16 evaluation

	5 Conclusion
	6 Future Work
	Bibliography
	요약
	Acknowledgements

<startpage>10
1 Introduction 1
2 Background and Related Works 4
3 Black-Box Graph Partitioner 6
 3.1 Overview 6
 3.2 Transformer 7
 3.3 Naive Partitioner 9
 3.4 Graph Optimizer 12
 3.5 Automatic Search 14
4 Evaluation 37
 4.1 Graph Partitioning and Optimization 37
 4.2 Pruning results 37
 4.3 MIDAP results 40
 4.3.1Mobilenet Network Analysis 41
 4.3.2ResNet50 Network Analysis 44
 4.3.3Results on different networks 46
 4.3.4Comparative of using operators optimization 47
 4.4 AWS cluster results 48
 4.4.1Mobilenet evaluation 49
 4.4.2VGG16 evaluation 52
5 Conclusion 55
6 Future Work 56
Bibliography 57
요약 61
Acknowledgements 62
</body>

