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Abstract

Anomaly Detection in Sensor Data in an
IoT Environment

Minji Park

Department of Computer Science and Engineering
College of Engineering

The Graduate School

Seoul National University

For safe operation of an IoT system, it is crucial to detect anomaly in sensor data, which
may be caused by various reasons such as device failure, noise, and security attack. In
this work, we present an anomaly detection technique reflecting the distinct character-
istics of abnormal behaviors in the IoT environment. It consists of two steps. First, we
detect the anomaly in each individual sensor data adopting the ARIMA model. To reduce
false alarms, we trace the min-max range of normal data in addition. The second step is
to detect the anomaly in the combination of sensor data by using a supervised learning
technique. Since abnormal combination of sensor data is rarely collected during IoT op-
eration, we devise a novel method to generate artificial outliers specialized in IoT. With
the sensor data collected from our laboratory, the proposed technique is evaluated and

comparison with the related work shows its viability.

Keywords : Internet of things, anomaly detection, outlier generation
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Chapter 1

Introduction

An IoT system determines the environmental situation based on the data collected
from the sensors and triggers the user-defined actions of smart devices without requiring
the direct involvement of human agents. There is a potential risk that wrong actions can
be performed if wrong data is entered to the system. Therefore, for the safe operation
of an IoT system, it is crucial to detect anomalies in sensor data, which may be caused
by various reasons such as device failure, noise, and security attacks. Anomaly detection
is to identify rare events caused by severe deviation from the system’s normal behavior.
How to treat anomaly data depends on the cause of the anomaly. In case it is caused by
a truly abnormal situation, proper actions should be taken to handle the situation. For
example, when a fire is detected, immediate action should be taken autonomously by the
IoT system. In case of device failure, the user is notified to replace the device, and the
sensor value needs to be ignored.

Research on anomaly detection has been conducted for a long time in various fields,
including surveillance, manufacturing, financial analysis, and statistics. While numerous
methods to detect anomalies have been proposed, they are usually specific to the applica-
tion domain and depend on the characteristics of the sensor data. The characteristics of
IoT sensor data make anomaly detection in IoT more challenging than in other fields [1].

First, it involves a wide variety of sensor devices in terms of types and ranges of sensor
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data, and the number of devices is growing. Some sensor devices, such as temperature or
humidity sensors, produce continuous values, while devices that generate discrete values,
such as motion detection sensors, exist. For the former type of sensors, abrupt value in a
short period may be considered anomalous. Anomaly detection of discrete sensor value
depends on the system status, on the other hand. Second, low-end sensor devices may
produce noisy values that can be regarded as anomalies. To reduce false alarms, it is nec-
essary to distinguish noise from an anomaly. Third, sensor devices may be vulnerable to
security attacks. An attacker may trick the system to perform harmful actions by modi-
fying the sensor value at will. We assume that only a few sensor devices can be hijacked
by an attacker simultaneously.

In this paper, we propose an anomaly detection technique, considering the aforemen-
tioned characteristics of IoT data. The proposed anomaly detection technique consists of
two steps. The first step is to detect anomaly in individual sensor data. This process
detects anomalies by time-series data analysis, adopting the ARIMA (Auto-Regressive
Integrated Moving Average) model. It is a well-known time-series analysis model to fore-
cast the future value based on the history of sensor values even though the sensor data is
non-stationary in the sense of mean. We augment the ARIMA model to trace the min-max
range of normal data to reduce false alarms. The second step is to detect anomalies in the
combination of sensor data. Anomaly in the combination of sensor data here refers to a
case where there seems no problem from the perspective of individual sensor data, but
the combination indicates that something wrong happens. Suppose that there are a mo-
tion sensor, a sound sensor, and an infrared camera in a room. While the infrared camera
does not detect a person in the room, both the motion sensor and the sound sensor send
data indicating the presence of a person. Then, with a high probability, we can conclude
that something goes wrong with the camera: the camera may be controlled by an attacker.

This step, anomaly detection based on a combination of sensor data, is similar to
previous methods that have been proposed for contextual anomaly detection or collective
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Figure 1.1: Example of different types of anomalies

anomaly detection. For instance, Hayes and Capretz [2] proposed a method for detect-
ing contextual anomalies. Similar to the proposed technique, their technique consists of
two components: the content anomaly detector and the contextual anomaly detector. The
content anomaly detector monitors the individual sensor data with a univariate Guas-
sian predictor for fast detection. Contextual anomaly detection is used to reduce the false
alarm when normal data are considered abnormal by the content anomaly detector. The
goal of their contextual anomaly detection is different from our second step, even though
multiple sensor values are used to define the context of the system. On the other hand, col-
lective anomaly detection methods share the same objective as our second step to detect
abnormal situations by considering the collection of sensor data. Deep learning-based
techniques have been extensively researched recently for collective anomaly detection
[3].

Since it is difficult to label each sensor data accurately and abnormal data is hard to
collect in reality, many approaches for collective anomaly detection are based on unsuper-
vised learning. Since our experiments show that the state-of-the-art (SOTA) unsupervised
learning techniques fail to achieve a sufficient degree of accuracy for practical use, we
propose to use a supervised learning method. To overcome the difficulty of obtaining
abnormal data for training, we devise a novel method to generate artificial outliers spe-
cialized for IoT. For evaluation of the proposed technique, we collect the normal sensor
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data for a month from the in-house IoT system. Experimental results show that the pro-
posed technique improves the classification accuracy significantly higher than the related

works, including SOTA techniques. Our key contributions can be summarized as follows:

* We propose an anomaly detection technique composed of two steps: anomaly de-
tection in individual sensor data using the ARIMA model, augmenting with min-
max trace analysis, and a collective anomaly detection method based on a super-

vised learning technique.

* For supervised learning for collective anomaly detection, we propose a novel arti-

ficial outlier generation method specialized in the IoT system of interest.

* The proposed technique is evaluated with the real-life sensor data collected from
the in-house IoT system. We could achieve above 94% F1 score, which is signifi-

cantly higher than the other methods could achieve.

The rest of this paper is organized as follows. Chapter 2 reviews the previous ap-
proaches for collective anomaly detection and related methods to generate artificial out-
liers. The proposed anomaly detection technique is explained in Chapter 3, which consists
of two steps: anomaly detection in individual sensor data and anomaly detection in the
combination of sensor data. Chapter 4 presents the dataset used for experiments and re-
ports the experiment results to verify the viability of the proposed method, comparing it

with other approaches. Finally, the paper is concluded in the last section.



Chapter 2

Related Work

Since anomaly detection techniques have been intensively studied for a long time in
various fields, the amount of related studies is very large. Since there exist several survey
papers available [1, 3], refer to them for a general overview of anomaly detection tech-
niques. In this section, we review the closely related works with the proposed collective
anomaly detection method only. In collective anomaly detection, a set of sensor values

collected from the associated sensor devices defines a data point.

2.1 Approaches to Anomaly Detection

Since it is unlikely to observe and collect abnormal data points in a real environment,
implementing a method to detect collective anomalies should only be done by utilizing
collected normal data points. Accordingly, unsupervised learning-based approaches have
been widely used for anomaly detection. As a simple unsupervised learning approach,
the nearest neighbor approach is to identify anomalies with a distance metric from a data
point to its neighbors. K-nearest neighbor (k-NN) and local outlier factor (LOF) are two
representative algorithms [4, 5] in this approach. The nearest neighbor approach requires
the number of neighbors to be given as a hyperparameter: It is not easy to tune the model.
In addition, it is not adequate to deal with a large number of heterogeneous sensor values

since the distance metric between two data points is not well defined.



The clustering approach is to group data points into clusters according to a dis-
tance or similarity metric among data points. It identifies data points as anomalous when
a group contains only a small percentage of the total data [6] or when a data point is
far from its nearest group. K-means clustering algorithm and DBSCAN are two well-
known algorithms for clustering-based anomaly detection [7]. The clustering approach
has a similar drawback as the nearest neighbor approach; it is not easy to tune the hyper-
parameters, and it is not adequate to deal with a large number of heterogeneous sensor
devices.

Several neural network-based approaches have been extensively researched recently.
Reconstruction-based detection with an auto-encoder composed of various types of neu-
ral networks is one approach in this category. An auto-encoder is trained only with normal
data points to reconstruct an output similar to input data through encoding and decoding
steps. Since the network is trained to minimize the error between input and output, the
reconstruction error is expected to be small for normal input data. If the reconstruction
error is large, the data point is considered anomalous. TranAD [8] is one of the SOTA
methods with an auto-encoder structure. It has deep transformer network-based encoders
and decoders. Generative adversarial networks (GAN)-based detection has also been em-
ployed to solve the anomaly detection problem with a similar approach as auto-encoder,
in terms of modeling normal data, but by the adversarial training process. MAD-GAN [9]
is based on a GAN constructed with a long short-term memory (LSTM) recurrent neural
network (RNN). Because these approaches use only normal data points for training, their
performance is sensitive to the characteristics of the abnormal data points used in testing.

Considering sensor data as time-series data, there exist several studies on anomaly
detection through time-series analysis. The technique using LSTM [10] is one of those
methods for detecting anomalies in time-series data. Approaches to forecast time-series
data are also frequently used. It is to predict future data using time series forecasting mod-
els, such as ARIMA [11] and Prophet [12], and to classify the data point as anomalous
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based on the degree of difference between the predicted data and the actual observation.

2.2 Atrtificial Outlier Generation

Although unsupervised learning-based approaches are predominant in anomaly de-
tection due to the scarcity of actual abnormal data, the different characteristics of data
sets impact the performance, and it is often difficult to achieve sufficient accuracy in
practice. An alternative to unsupervised learning is to use supervised learning by gen-
erating outliers somehow and using them for training. A typical solution to the scarcity
problem is data augmentation. Several techniques for time-series data augmentation have
been studied [13], considering the unique property of temporal dependency in time-series
data. Since only normal data can be collected in an IoT system during normal operation,
however, data augmentation could not be a solution to deal with the lack of abnormal
data.

In the circumstance of actual abnormal data not being obtainable, generating arti-
ficial outliers can be used for supervised learning approaches. Several studies related to
artificial outlier generation have been performed [14]. One of the representative methods
is density estimation [15]. This method is to generate outliers close to normal instances.
It estimates the density of normal data and samples outliers from the distribution. The
distribution is assumed to be a multivariate Gaussian distribution since the actual distri-
bution of normal data is unknown. The form of the outliers generated through the density
estimation method is displayed in Figure 2.1a. Since it considers values simply sampled
from the estimated distribution as outliers, the boundary between normal data and gen-
erated outliers is ambiguous. It may make the supervised learning-based model hard to
distinguish anomalies.

The Gaussian tail method [16] is to generate outliers that are highly different from
the normal data. Assuming that the distribution of normal data is a normal distribution,

this method samples outliers outside of the range defined by u 430 whqlre u is the mean
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region too far from the normal data area, it may cause false negatives, which means that
the classification model is likely to identify an anomalous data point as normal.

The min-max boundary method [17] is to generate outliers from the min-max bound-
ary of the normal data. The algorithm randomly samples some data points from the nor-
mal data set and replaces some sensor values in each sampled data point with their mini-
mum or maximum values. The example shape of outliers generated through the min-max
boundary method is as Figure 2.1c and Figure 2.2b. It generates outliers with appropri-
ate boundaries with the normal data but lacks diversity due to simple replacement with
minimum or maximum values.

A method to generate outliers in sparse regions [18] is proposed to generate outliers
more in a region where the data are rarely seen. The method is to sample data points
from the normal data set and switch some sensor values with values that infrequently
appear in the normal data set. Figure 2.1d presents the area of outliers generated from
this sparse regions method. Outliers generated from this approach also tend to be tough
to distinguish from normal data points.

As surveyed in [14], there exist other methods that have different distributions of
outliers tailored for the problem addressed in each related work. The four methods re-
viewed above are selected for comparison with the method proposed in this paper. As
explained in Chapter 1, a distinct characteristic of abnormal combinations of IoT sensor
data is that only a few sensors may send abnormal data to make the whole data point
anomalous. Thus, manipulating a few sensor values in a data point helps to generate out-
liers suitable for abnormal combinations of sensor data. But most existing algorithms
have limitations in generating outliers reflecting this characteristic. Hence we propose a
novel method to generate artificial outliers specialized for an 10T system by manipulating

a few sensor values only in the sampled normal data points.



Chapter 3

Proposed Anomaly Detection Technique

The proposed technique consists of two steps. The first is to detect anomalies in
each individual sensor data, and the second is to detect anomalies in a combination of
sensor data. The first step aims to detect the malfunction of a sensor when each individual
sensor data shows a trend that is drastically different from the previous trend. In an IoT
system, many sensors are fixed at a certain location, periodically sensing and producing
time-series data. We can apply a conventional time series analysis method to detect a
suspicious condition when a sudden trend change occurs. When an anomaly occurs in a
real IoT system, the system alerts a user or the system administrator, and the person in
charge would check and take action to restore back to a normal situation. Section 3.1 will
discuss the proposed method used in the first step in detail.

After the first step is completed, we perform the second step which is to detect
anomalies in the combination of sensor data. Anomaly in the combination of sensor data
is a case in which there seems to be no problem from the viewpoint of each individual
sensor data, but a problem is suspected when the combination is analyzed. We use a
supervised learning method in this stage with generated artificial outliers. Section 3.2
will discuss the proposed method in depth.

The overall flow of the proposed technique is shown in Figure 3.1. We monitor and

analyze sensor data in real-time to determine whether there are any anomalies through
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two steps. A univariate time-series analysis is used in the first step and a multivariate clas-
sification method in the latter step. For anomaly detection in the combination of sensor
data, artificial outliers are periodically generated from the normal data, filtered through

the former step, and the classification model is retrained for updates.

3.1 Anomaly Detection in Individual Sensor Data

In order to detect anomalies in individual sensor data, the proposed technique adopts
the ARIMA model. It is a well-known time-series forecasting algorithm with widespread
usage. Anomaly detection in individual sensor data performs univariate time-series anal-
ysis on each sensor data, which shows a trend over time. The ARIMA model can be

expressed by the following formula that has three parameters to decide:

X =cHog g+ 0px_,+ 018 1+ 0,8 g (3.1)

In Equation (3.1), ¢+ 01, + -+ Opx)_ » + & represents the autoregressive (AR)
5 ] ', 1 = ]
A = 1LH <!
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Algorithm 1 Anomaly Detection in Individual Sensor Data

Input : ARIMA parameter p, d, q, window size w, data X
Output : Abnormality A
1: " attribute data X;
2: fortew...do
30 X=X
4: Smooth values in X!~
5:  Normalize X!~
6:  Fit ARIMA(p, d, q) with X!~
7. Predict &
8: e =absolute errors of X'
9:  threshold = u(e)+3-0o(e)
10: ' = False
11:  if absolute error between &, x} > threshold then
12: a: = recon firm(x%)
13:  end if
14:  Ajt]=d
15: end for
16: return A;

model, which predicts the future from the past value. AR parameter p tells how many past
time steps would be considered to predict the future with autoregressive coefficients ¢ €
R. & is an error term at time ¢ and 01&,_; +- - - +0,&,_, + & represents the moving average
(MA) model that predicts the future with past error terms. MA parameter q is for past time
steps to take into account with moving average coefficients 8 € R. In the ARIMA model,
x', which is differenced value, is used instead of x and the order of differencing, parameter
d, indicates that the value at time ¢ would be compared with the value at time t — d.

The proposed method is depicted in Algorithm 1. Due to the necessity for online
detection in a real environment, we set the window size w and proceed with the moving
window analysis. This method performs two preprocessing procedures on the data be-
fore ARIMA analysis. One is to reduce the influence of noise, which may be added to
the sensor data during a very short period of time. Value smoothing for the data within

the window is performed through the moving average, which plays the role of low-pass
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filtering to remove short-lived noise effectively (line 4). Next, we normalize the data after
the value smoothing process (line 5). The normalization formula is shown as follows in

Equation 3.2:

Z="—" (3.2)

An ARIMA model is fitted with those normalized data, and the data point at time t
is predicted (lines 6-7). If the squared error between the predicted data &; and the actual
observation x; exceeds the threshold, x; is finally determined as anomalous through an
additional reconfirmation procedure (lines 11-12). The threshold for determining abnor-
mality here is set to u+ 3 -, which is based on the average and standard deviation of
the squared errors of the data the model is fitted to (line 9). This procedure is performed
within a time window, and the window is moved for the following analysis on new data.
The parameters of the ARIMA model from the previous time window are used rather than
cold-start with randomly initialized parameters [19] during moving window analysis.

If we apply the ARIMA model naively, false alarms may occur when there is little
i} - = =
M =T ot
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Algorithm 2 Individual Sensor Data Anomaly Reconfirmation

Input : ARIMA parameters p,d, q
1: max = maximum values up to previous time
2: min = minimum values up to previous time
3: if x} is in range [min', max'] then

a’ =False
else

Fit ARIMA(p, d, q) with max

Fit ARIMA(p, d, q) with min

eMax = absolute errors

eMin = absolute errors
10:  thresholdMax = u(eMax) + c(eMax)
11:  thresholdMin = u(eMin) + 6(eMin)
12:  if x} > max' +thresholdMax

or x} < min' —thresholdMin then

R A A

13: at =True
14:  else

15: a’ =False
16:  end if

17: end if

change in data for a certain period due to the characteristics of the sensor. When the
numerical difference of the new observation is relatively larger than that of the data with
less variance within the previous time window, although the actual degree of difference
is not critically high, false alarms occur. Figure 3.2a and Figure 3.2b display the time-
series data collected from two sensors that are used in our experiments: a dust sensor and
a CO2 sensor, respectively. Dots on the graph indicate the candidate anomalies that are
detected from the ARIMA model. As shown in the figure, the candidates contain many
false alarms.

In order to reduce such false alarms, we reconfirm the results in addition to the
primary ARIMA-based analysis on sensor values. The recon firm function in Algorithm 1
performs such procedure. The detail of recon firm function is described in Algorithm 2.
There may be a fluctuation of sensor values in a normal situation due to the non-stationary

characteristics of the sensor value, measurement error of the low-end sensor device itself,
¥ O 11 =1
. ""-"i —= [ 3 i
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or background noise. To reduce the false alarm, we define the allowable range of normal
fluctuation. Since the range itself may vary in time, we trace the minimum and maximum
values of the normal data to update the range periodically. The reconfirmation procedure
traces the minimum and maximum values of normal data. If the data point is within this
min-max range, there is a high probability that it is not abnormal (lines 3-4). Thus, data
points only exceeding the range are finally judged as abnormal. Since the minimum and
maximum values are important criteria for final determination in the reconfirm procedure,
we analyze the change of the minimum and maximum values in addition. We perform
another ARIMA analysis to find the allowable range of the minimum and maximum
values of normal data (lines 6-7). In Figure 3.2a and Figure 3.2b, the red and blue lines
represent the trend of the maximum and minimum values of the data up to the previous
time of each data point. In order to reduce the false alarms, the data points that exceed
this allowable min-max range are finally identified as anomalies among the suspected
points (lines 12-13).

In summary, the anomaly detection process in individual sensor data first performs
ARIMA analysis on the sensor values and filters out data points suspected as anomalous.
After that, if the data points do not exceed the normal min-max range, it is determined
as normal. By performing additional ARIMA analysis for the min-max range, the data

point which lies outside of the range is identified as anomalous.

3.2 Anomaly Detection in Combination of Sensor Data

To detect anomalies in the combination of sensor data, we use a supervised learning
method. Since there is no abnormal data collected from the IoT system, we generate
artificial outliers by modifying the sampled normal data points for training. A binary
classification model is trained using normal data and the generated outliers. The model
is updated by repeating this process periodically. Through the trained model, the newly

observed data will be predicted in real-time to check if it is anomalous.
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Algorithm 3 Gaussian Random Algorithm

Input : outNum, sensNum, o, normal data points X
Output : Outliers out
1: foriel,...,outNum do
2:  Randomly choose dataPt € X
3:  out; =dataPt
4:  sens = up to sensNum of sensor values chosen
5. for s € sens do
6: ming = minimum of sensor value s in X
7 maxg = maximum of sensor value s in X
8 leftBound = ming — 0.5 - |min|
9: right Bound = max;+0.5 - |max|
10: obsValue = dataPt,
11 newValue < N (us,62),
where newValue € [leftBound, right Bound|,
where newValue not in range obsValue + .- G

12: out;[s| = newValue
13:  end for
14: end for

15: return out

For supervised learning, it is critical for data to be accurately labeled. Since gen-
erated outliers affect the performance of the model significantly, we propose a novel
method to generate artificial outliers specialized in IoT, which is called Gaussian ran-
dom method. The method reflects the characteristics of the abnormal behaviors in an IoT
system; a collective anomaly condition is likely to occur when only a few sensors pro-
duce abnormal values while the other sensor values are unaffected. Algorithm 3 displays
the pseudo-code of the proposed Gaussian random algorithm.

The Gaussian random algorithm assumes the distribution of each sensor value as a
Gaussian distribution. Since We define anomaly in the combination of sensor data as a
situation in which each data is within the normal range but the combination is abnormal,
the algorithm makes outliers by replacing some sensor values with other values far from
the observed value but in the normal range.

The number of sensor values to modify is given as an input parameter sensNum
I i} -1l ="
A = L &
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observed value X

Figure 3.3: The grey area represents the region of sensor values to replace the observed
value x to make an outlier by the proposed Gaussian random method

in Algorithm 3 and the number of anomalous data points to generate is given with an
input parameter outNum. X represents the entire set of the normal data points collected
from the IoT system during a given time window. First, a data point to modify is selected
randomly from the normal data set (line 2). Then, sensor values to manipulate in the
selected data point are also randomly selected (line 4). For each selected sensor, min —
0.5 |min| and max+0.5 - |max| are set as the left and right boundaries, respectively (lines
6 to 9). This range is for selecting a new value within the normal range. The algorithm
tries to pick a new value from a region within the normal range but far from the observed
value. Therefore, the algorithm excludes the area up to o.- ¢ away from the observed
value obsValue. The o parameter allows the algorithm to control how far away from the
observed value it samples a new value. The region where the new value can be located
is displayed in Figure 3.3. The observed value, x, is replaced with a new value sampled
randomly from the grey area. The algorithm generates outliers by repeating this process
as many times as the number of outliers to generate (line 1).

After the training data set is formed including the artificially generated outliers, we
may use any supervised learning method for binary classification in anomaly detection in

the combination of sensor data phase. We use AutoGluon [20], an open-source autoML
1 €5 =
-":l'\-\._i —1- 1_.!5 o
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framework, to train classification models and compare various algorithms to choose the

best one that shows the highest accuracy.
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Chapter 4

Experiment

4.1 Dataset

For experiments, a data set is composed of the collected sensor data from our in-
house IoT system during the period between June 20th and July 23rd, 2022. As shown in
Figure 4.1, the study room (Room A) has a single sensor box and the lounge (Room B)
has two sensor boxes, a movement sensor, and a camera. Each sensor box collects envi-
ronmental information such as temperature, humidity, dust, CO2, sound, and brightness.
We may set a different sensing period for each sensor. In the current setting, the period
of CO2 sensing is 2 seconds while that of sound and brightness sensing is 5 seconds.
The dust level is sensed per 30 seconds. The other sensors send the data only when the
value is changed. In the current implementation of the proposed technique, we use a uni-
form sampling rate of 60 seconds for all sensor data to define a training set for collected
anomaly detection. In the case of sound, we choose the maximum value for 60 seconds.
For dust, CO2, and brightness, the median value is chosen as the re-sampled value. For
the other sensors, the same value is used if no update is made. In summary, a data point
consists of twenty sensor values, sampled every minute. The total number of data points
is 48,275.

During the data collection period, two sensors showed abnormal behavior as shown

in Figure 4.2. Figure 4.2a visualizes the values of the dust sensors in _lthe three sensor
Al =T1H
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Figure 4.1: Arrangement of sensors in the in-house IoT environment

Table 4.1: Train and Test Sets with Abnormal Scenarios for Anomaly Detection in Sensor
Data Combination

Normal (y=0) | Abnormal (y=1) | Abnormal Scenario
Normal train set | 45,395 (100%) - -
Test set #1 2,592 (90%) 288 (10%
Test set #2 2,592 (90%) 288 (10%
Test set #3 2,592 (90%) 288 (10%
Test set #4 2,592 (90%) 288 (10%

camera not detecting person, motion sensor detecting motion

person detected when the lighting is low, and the sound is low
temperature and humidity sensors in the same room have different trends
sound sensor detecting loud sound when the lighting is low

= |22 =

boxes. Looking at the data, the dust sensor in sensor box 3 shows abnormally high values
during a certain period, compared with the dust sensor in sensor box 2. Since two sensor
boxes are located nearby in the same room, such a difference implies an abnormal situ-
ation. Figure 4.2b shows the CO2 sensor values in the three sensor boxes. Occasionally
the CO2 level of sensor box 1 shows an abnormal level exceeding 2000 ppm, unlike the
other CO2 sensors. We aim to detect the starting point of those abnormal situations for
each sensor in the first step of the proposed technique.

All collected data except for those two sensors described above are normal data.
After the first step finds the anomalous behavior of two sensors, we form the normal data
set that is collected from the other eighteen sensors for collective abnormal detection
in the second step. We distinguish the collected data points during the last two days,
July 22nd and 23rd, as the test set, and the rest are used as the training data set when

training a classification model. An issue is how to define abnormality in a combination
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Figure 4.2: (a) displays that the dust sensor of sensor box 3 showed abnormal values
(green), and (b) displays that the CO2 sensor of sensor box 1 showed abnormal values
for a certain period (blue)

of sensor data. We manually define four abnormal scenarios as presented in Table 4.1
to evaluate collective anomaly detection in the second step. Four test sets are composed
by manipulating the data in the normal test set according to four different scenarios. For
each scenario, the number of abnormal data points in the test set is set to 10% of that of

the normal data points.

4.2 Individual Sensor Data Analysis

The proposed anomaly detection method for individual sensor data is applied to
detect the starting points of abnormal behaviors of the dust sensor in sensor box 3 and
the CO2 sensor in sensor box 1, as described in Section 4.1 with Figure 4.2. The AR
parameter p, difference d, and MA parameter q of the ARIMA model for analysis on
each sensor value are all set to 1. The ARIMA models to analyze the minimum and
maximum values of normal data are also set to 1 for each p, d, and q. The window size
for moving window analysis is set to six hours.

LT

Figure 4.3a and Figure 4.3b show the results of the final anomaly J}I\dgg}ent clonsidi
| CHIE
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1
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Figure 4.3: Anomaly detection results for two sensor data, Dust sensor3 and CO2 sensor
1 through the proposed ARIMA method augmented by min-max tracing.

ering the min-max range. By augmenting the proposed min-max analysis to the conven-

tional ARIMA model, we could remove all false alarms that are displayed in Figure3.2.

Through the experiment, we could validate the viability of the proposed anomaly de-

tection method for individual sensor data, by detecting the starting points of abnormal
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behavior of the two sensors that had problems during the data collection period.

4.3 Collective Anomaly Detection

To evaluate the proposed collective anomaly detection method in the second step,
four sets of experiments have been conducted. First, we compare the proposed method
with unsupervised learning methods. Second, the proposed outlier generation algorithm
is compared with other outlier generation algorithms for the supervised learning-based
anomaly detection in the second step. Third, we perform a sensitivity analysis of the
proposed Gaussian random algorithm to examine how the performance varies as the pa-
rameter values change in the proposed Gaussian random method. Lastly, we compare the
performance difference between various classification methods.

As a classification model for the first three experiments, we used a gradient-boosting
decision tree-based model, LightGBM [21], supported by the AutoGluon framework.
This model is chosen since it enables to us to analyze the anomaly detection results
and use them in future studies. In the Gaussian random method, we modify at most two
sensor values for outlier generation. All the experimental results are statistical results by
computing the mean value after ten experiments. F1 score is used as a performance metric
that evaluates both recall considering the false negative rate and precision considering the

false positive rate.

2 (precision - recall)

Flscore = 4.1

precision + recall

4.3.1 Comparison with Unsupervised Learning Methods

The first experiment is to compare the proposed supervised learning-based method
with four unsupervised learning-based methods that include SOTA methods. Selected

unsupervised models are LOF[5] as a representative nearest neighbor-based technique,
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Table 4.2: Performance Comparison of the Proposed Method with Unsupervised
Learning-based Methods

Methods test set #1 test set #2 test set #3 test set #4
MAD GAN [9] 0.0000 0.3733 0.9574 0.0000
TranAD [8] 0.2317 0.3120 0.7749 0.8733
Autoencoder 0.7312 0.4642 0.6063 0.8113
LOF [5] 09110 0.9240 0.8900 0.0190
Proposed method 0.9739 0.9759 0.9401 0.978

an autoencoder that consists of fully-connected neural layers, MAD-GAN [9] based on a
GAN composed of LSTM networks, and TranAD [8] that uses an attention mechanism.
These unsupervised learning-based models were trained using the normal training data
only. For supervised learning of the proposed method, we generated artificial outliers
through the Gaussian random method from the normal train data and include them to
train the LightGBM model.

The comparison results are shown in Table 4.2 which reports the F1 score for four
test sets shown in Table 4.1. The highlighted F1 scores on the table are the highest for
each test set. The proposed method achieves the highest F1 score over 97% on all test sets
except for test set #3. Even though it shows the second highest performance on test set
#3, the F1 score is more than 94% and the difference from the highest is marginal. It is
noteworthy that all unsupervised learning methods result in a large variance of F1 score
over the test sets. Even though MAD-GAN gives the best F1 score of about 95.7% on test
set #3, it performs worse on all other test sets. LOF shows remarkable performance on
three test sets but fails to detect anomaly on test set #4. On the other hand, the proposed
method shows little deviation of F1 score on all test sets, while achieving quite high F1
scores. This experiment confirms the superiority of the proposed method to SOTA unsu-
pervised learning methods for collective anomaly detection of 10T sensor data. Note that
the performance of supervised learning depends on the training set. The performance gain
of the proposed method over unsupervised learning methods is attributed to the proposed

method to generate artificial outliers, which will be proven by the next e_?(periment.
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Figure 4.4: Performance comparison of the proposed Gaussian random algorithm with
other outlier generation methods in terms of the achieved F1 score by the LightGBM
model

4.3.2 Performance of the Proposed Outlier Generation Algorithm

The second experiment is to evaluate the performance of the Gaussian random
method that generates artificial outliers. Comparison is made with four outlier generation
methods reviewed in Section 2.2, denoted by density-estimation, Guassian tail, sparse-
region, and min-max. Artificial outliers are generated from the normal train data by each
method. The LightGBM model is used for supervised learning and it is trained with the
train data set that includes both the normal data and the generated outliers.

Figure 4.4 shows the comparison results in terms of the F1 score on four test sets.
The figure shows that the LightGBM model achieves higher F1 score when the training
set includes the artificial outliers generated by the proposed Gaussian random method
than other outlier generation methods on all test sets. In contrast, other outlier generation
methods result in poor F1 score or high variance of performance. In case the model
is trained with outliers generated by the density estimation method, we observe high

variance of F1 score. It induces high F1 score of 95.7% and 97% for teqt seé_t\#l and tes{
; =T H B
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set #2, respectively. But the performance on test set #3 and test set #4 is very poor: F1
score is less than 10%. With the Gaussian tail method that generates abnormal data points
far from the normal data points, no meaningful detection result is obtained on all test sets.
It is because almost all abnormal data points in the test set are classified as normal. It tells
that how to generate outliers affects the F1 score significantly. The sparse region method
also performs poorly with F1 score of less than 50% on all test sets. Since the generated
outliers are placed close to the normal data points, it is hard to find the classification
boundary for anomaly detection.

The min-max boundary method shows a smaller deviation in performance than the
other previous methods. For test set #1 and #2, it achieves F1 scores higher than 80%.
However, performance on test set #4 is below 50%, which is not adequate for practical
use. When the model is trained with the outliers generated by the Gaussian random algo-
rithm, we could achieve high F1 scores from 94.5% on test set #3 to 97.9% on test set #4.
It is because the outlier generation mechanism of the Gaussian random method is similar
to how the anomalous test set is designed. As explained in Section 4.1 with Table 4.1, an
anomalous data point is designed by modifying a few sensor values in a sampled normal
data point. It confirms the need for new outlier generation methods for an IoT system,

reflecting the characteristics of the IoT data.

4.3.3 Varying the Parameters of Gaussian Random Algorithm

In the third experiment, we examine how the parameters of the Gaussian random
method affect the performance. In the Gaussian random algorithm, the parameter o is a
key to control how far away from the original normal data the new value will be sampled,
which will replace the original value. The effect of parameter o on the performance is
explored by varying its value from 1 to 4. Another parameter is the number of outliers
to generate. We investigate how many outliers should be generated and used to train the

classification model. The percentage of outlier data points is varied to be 5%, 10%, 25%,
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the normal data points.
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50%, and 100% of the normal data points, respectively. Figure 4.5 reports the experimen-
tal results on each test set. The x-axis of each chart represents the percentage of outliers
compared to the normal data points. Each graph represents the F1 score of the trained
model with a given o value. Four different o values from 1 to 4 are distinguished by
colors.

Looking into the figure, we observe that the performance increases monotonically
as the a value increases regardless of the number of outliers generated for all test sets.
When « is set to 4 rather than 1, which indicates replacing an observed value with a new
value from the farther area, the performance gets higher. It means that it is better to place
anomaly data points sufficiently far from the normal data points, but definitely closer than
the Gaussian tail method. Note that the incremental performance gap decreases as the o
value increases.

Figure 4.5 also shows how the performance changes according to the amount of
generated outliers. We could obtain the highest F1 score when the number of outliers is
5% to 10% of the normal data. The performance decreases as more outliers are generated.
We conjecture that too many artificial outliers tend to misguide the classification model
to classify normal data points as abnormal. This experiment tells that it is important to

control the number of generated outliers in the Gaussian random method.

4.3.4 Performance Difference According to Binary Classifica-
tion Methods

The fourth experiment is to find out whether a binary classification method affects
the performance of the proposed method. We evaluate the performance after training
different binary classification models after generating outliers by five outlier generation
methods used in the second experiment. The following four models are compared as
binary classification models: LightGBM, CatBoost model, another decision tree-based

model, and two neural net-based models provided by AutoGluon framework. They are

28



F1 score

F1 score

Test set #1

1

0.8

0.6

0.4

0.2

o NN B W A
density Gaussian sparse min-max Gaussian
estimation  tail region random

W LightGBM M CatBoost EINN pytorch 1NN Fastai

(a) Test set #1
Test set #3
1
0.8
0.6
0.4
0.2
0 = —_— = = Lo
density Gaussian sparse min-max Gaussian
estimation  tail region random

M LightGBM M CatBoost H NN pytorch [INN Fastai

(c) Test set #3

F1 score

F1 score

Test set #2

1

0.8

0.6

0.4

0.2
| . B

o
min-max Gaussian
random

density Gaussian
estimation  tail

sparse
region

MW LightGBM M CatBoost NN pytorch 1NN Fastai

(b) Test set #2

Test set #4

0.8
06
0.4
0.2
0 - - L_|

min-max Gaussian
random

density Gaussian
estimation  tail

sparse
region

M LightGBM M CatBoost EINN pytorch [INN Fastai

(d) Test set #4
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selected since they are SOTA models that gave better F1 scores than the other models
included in the AutoGluon framework in our preliminary experiments.

The results are displayed in Figure 4.6. Each outlier generation algorithm shows dif-
ferent results depending on the test set and the classification method. The density estima-
tion method gives quite high F1 scores for test sets #1 and #2 when the LightGBM method
is applied while very low F1 scores are obtained for test sets #3 and #4. Figure 4.6¢ and
Figure 4.6d show that the performance of the density estimation method is improved on
test sets #3 and #4 when a neural net-based classification method is used. The Gauss-tail
method fails to classify abnormal data points in all test sets with the LightGBM method
as observed above in the second experiment. But if we change the classification method
to use neural net-based methods, we could improve the performance significantly except
for test set #4. Nonetheless, the obtained F1 score is too low to use in practice.

The sparse region method performs poorly on all test sets regardless of which classi-
fication method is used. The min-max boundary method performs well with two decision
tree-based models, LightGBM and CatBoost, for test sets #1 and #2 similar to the density
estimation method. The performance variation over the test sets and over the classification
method is much smaller than the case of the density estimation method. It also performs
well with neural net-based methods. The performance of the second neural net-based
method on test sets from #1 to #3 could be improved up to F1 score of 95%. It achieves
a relatively good F1 score over 85% on test set #4. The min-max method performs best
when it is used with the second neural net-based method. Through the above observa-
tions, we find that there is a different match between the outlier generation method and
the classification method.

Unlike the other outlier generation methods, the proposed Gaussian random method
for outlier generation performs consistently well over all test sets and classification meth-
ods. We could obtain more than 90% F1 score on all experiments. Even though the differ-
ence is not significant, tree-based methods perform slightly better than neural net-based

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

30



models. Hence we use the LightGBM method in other experiments.
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Chapter 5

Conclusion

In this paper, we propose an anomaly detection technique consisting of two steps,
considering the characteristics of IoT data. The first step is to analyze univariate time-
series data using the ARIMA model to detect anomalies in each individual sensor data.
To reduce false alarms, we augment the ARIMA model by tracing the min-max range of
the normal data. The second step is to perform collective anomaly detection by analyz-
ing the combination of sensor data. To this end, we use multivariate classification using
an existing supervised learning technique since SOTA unsupervised learning techniques
fail to achieve sufficient performance for practical use. To cope with the difficulty of ob-
taining abnormal data for training, we devise a novel method, called Gaussian random
method, to generate artificial outliers, taking into account the characteristics of the IoT
data.

The proposed technique is evaluated with real-life sensor data collected from the
in-house IoT system. In the first step, we could successfully detect the starting points of
abnormal behavior of two sensors, which occurred during the collection period. To eval-
uate the proposed collective anomaly detection methods in the second step, we designed
four test sets of anomaly situations manually. Through extensive experimental results,
the following observations could be made. First, the proposed technique performs signif-

icantly better than SOTA unsupervised learning techniques on all test sets. Second, the
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proposed Gaussian random method for outlier generation performs better than the other
outlier generation methods. Third, it is necessary to explore the parameter values of the
Gaussian random method to get the highest F1 score. Last, we may use any existing clas-
sification method in the second step since the generated outliers reflect the characteristics
of the real abnormal behaviors. We plan to release our collected sensor dataset used in

our experiments.
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