

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Auturi: An AUTomatic and Unified
Framework for Searching Parallelization
Configurations in Deep Reinforcement

Learning

딥강화학습의데이터수집부병렬화최적화를위한
프레임워크개발

February 2023

Graduate School of Engineering
Seoul National University

Department of Computer Science and Engineering
JEONG CHAE HYUN

M.S. THESIS

Auturi: An AUTomatic and Unified
Framework for Searching Parallelization
Configurations in Deep Reinforcement

Learning

딥강화학습의데이터수집부병렬화최적화를위한
프레임워크개발

February 2023

Graduate School of Engineering
Seoul National University

Department of Computer Science and Engineering
JEONG CHAE HYUN

Auturi: An AUTomatic and Unified
Framework for Searching Parallelization
Configurations in Deep Reinforcement

Learning

딥강화학습의데이터수집부병렬화최적화를위한
프레임워크개발

지도교수전병곤

이논문을공학석사학위논문으로제출함

2022년 11월

서울대학교대학원

컴퓨터공학부

정채현

정채현의공학석사학위논문을인준함

2023년 1월

위 원 장: 염헌영 (인)
부위원장: 전병곤 (인)
위 원: 엄현상 (인)

Abstract

Deep reinforcement learning (DRL) has effectively been used in a wide range of

challenging tasks. Despite its growing popularity, RL practitioners frequently experi-

ence excessively long training time.

One of the major bottlenecks for this inefficiency in training is that RL must col-

lect training dataset by itself during training iterations. To solve the bottleneck, many

researchers proposed various strategies, parallelizing each component of DRL.

However, the best parallelization technique varies significantly, depending on the

different tasks and given hardware circumstances. Each strategy shows difference in

terms of synchronization and data copy overhead due to its distinctive structure, and

the effect of such overhead differs by task. Thus, choosing the best strategy is a heavy

burden for users.

In this paper, we propose Auturi, a system that automatically generates the optimal

configuration based on an efficient and unified code base to run hybrid parallelization.

Auturi takes an online exploration approach testing each strategy one by one. Our

evaluation shows that Auturi chooses an optimal configuration to maximize the speed

of the experience collection loop.

Keyword: Deep Reinforcment Learning, Parallel System

Student Number: 2021-22902

i

Contents

Contents

List of Tables ii

List of Figures iii

1 Introduction 1

2 Background 4

2.1 Workflow of Reinforcement Learning 4

2.2 Bottleneck in DRL training . 6

3 Related Works 7

3.1 Existing Approaches . 7

3.1.1 Environment Parallelism . 8

3.1.2 Actor Parallelism . 8

3.1.3 Policy Parallelism . 10

3.2 Parallelization Strategy Comparison 10

4 Search Space 12

5 System Design 15

5.1 System Overview . 15

5.2 Components Hierarchy . 16

5.3 User API . 18

6 Implementation 20

7 Evaluation 22

7.1 Evaluation Setup . 22

7.1.1 Environment . 22

7.1.2 Workloads . 22

7.2 End-to-end Training . 23

7.3 Scaling Overhead . 23

8 Conclusion 26

Abstract (In Korean) 32

i

List of Tables

4.1 Expression of related works by Auturi configuration 14

5.1 User exposed APIs to plug Auturi on other frameworks. 18

ii

List of Figures

2.1 Two phases of General Deep Reinforcement Learning 5

3.1 Parallelization strategies in previous works 9

5.1 Overall architecture of Auturi System 16

5.2 Auturi’s hierarchical component design. Purple section is replaceable

to external multiple environment wrapper implementations. Users should

implement yellow components according to given interface. 17

6.1 Environment-Policy interaction implementation in SubprocVecEnv and

Auturi . 21

7.1 E2E training time comparison with Stable-baseline3 and Auturi. . . . 23

7.2 Scaling overhead of environment parallelism on HalfCheetah-v3 task. 24

7.3 Scaling overhead of actor parallelism on Pong-v4 task. 24

iii

Chapter 1

Introduction

Deep reinforcement learning (DRL) has evolved successfully in a wide range of

challenging tasks, such as data management controls, video games, robotics, and other

domains. Despite its growing interest, RL practitioners often suffer from its exces-

sively long training time. AlphagoZero [18], for example, reported consuming 40 days

to train, while OpenAI Five [13] trained for ten months to defeat the Dota 2 world

champions.

One of the major reasons for this RL training inefficiency is known to be training

dataset collection during training iterations. [4, 5, 21] While supervised learning typi-

cally trains from a fixed dataset that has already been prepared, RL algorithms generate

training data instance by instance by utilizing their neural networks. Even worse, on-

policy algorithms, which discard all previously generated data after parameter updates,

suffer more from a long training data collection phase.

Experience tuples, corresponding to a training dataset in RL, are generated by in-

teractions between two components: environment and policy. The interaction employs

a repetitive structure where each component feeds the output of another component,

processes it, and then the processed output is used as the other’s input again. A naive

implementation allows only one component to be active at any given time, causing a

1

significant bottleneck during the experience collection phase.

To accelerate the experience collection loop, many researchers explored various

parallelization strategies by creating multiple replicas of the environments and poli-

cies. Those approaches can be classified into three categories according to which com-

ponents can be parallelized. Environment parellelism [16, 21] overlaps only environ-

ment components along the time axis, while policy parellelism [11, 14] parallelizes as

well as policy components. Actor parallelism [7, 10] replicates the loop itself while

dividing the number of tuples to generate.

However, choosing the best strategy is challenging; the optimal parallelism strate-

gies vary widely for different tasks and given hardware circumstances. Furthermore,

adjusting a single knob within the same strategy leads to a significant throughput dif-

ference. The hardware specification also limits the number of components that can be

added.

To the best of our knowledge, there is no unified code base that executes three kinds

of parallelism seamlessly. Current DRL frameworks [10, 19] support only a subset of

parallelization strategies and assume the configuration to be static: the configuration is

chosen before training commences and does not change until the end of training.

In this paper, we introduce Auturi, AUTomatic and Unified framework searching

for the optimal configuration for parallelizing the experience collection loop in deep

ReInforcment learning. We first propose seven configuration knobs that describe the

parallelization strategies. Auturi takes an online exploration approach with configu-

ration described via those knobs. Modular and hierarchical design of Auturi system

makes it easy to replace Auturi’s submodules with other existing implementations and

to adopt other existing frameworks.

Our evaluation shows that Auturi automatically chooses an optimal configuration

to maximize the throughput of the experience collection phase. With widely-used deep

reinforcement learning workloads on top of [16], we demonstrate that the configuration

2

found by Auturi accelerates the collection loop by x2.4 and ultimately reduces the total

training time up to 1.51 times.

Our contributions are as follows:

• Classification and systemic analysis of existing collection loop parallelization

approaches.

• Proposal for primitive knobs to be used to configure existing parallelization

strategies strategies.

• System that automatically generates optimal configuration.

• Unified and efficient code base to run hybrid parallelization.

3

Chapter 2

Background

In this section, we demonstrate the simplified scenario of Deep reinforcement

learning. We also introduce the basic terminologies used throughout the paper, then

showcase common workflow of DRL.

2.1 Workflow of Reinforcement Learning

The ultimate goal of reinforcement learning is to obtain optimal policy - the com-

ponent that yields the optimal action when given specific observations. In the example

of CartPole game, which aims to hold the pole atop the cart as long as possible, the

observation is the description of current state, such as cart’s position and how tilted

the pole is. Choosing whether to push the cart left or right becomes the action of the

CartPole game.

For deep reinforcement learning where policy is constructed as a neural network,

its training workflow is similar with that of modern deep learning. A general work-

flow of RL is composed of two phases: experience collection(Fig 2.(a)) that generates

training dataset and policy update (Fig 2.(b)) that actually updates the parameter in-

side policy network, consuming data collected in previous experience collection phase.

4

…
..

Generate Action

Environment

state

Buffer

action

…
..

Environment

Buffer

Update Parameters

(a) Experience Collection Loop (b) Policy Update Loop

Figure 2.1: Two phases of General Deep Reinforcement Learning

The training dataset in DRL is called experience tuple, which is comprised of previous

observation, action taken in previous step, current observation, and extra information.

Inside experience collection phase, environment and policy interacts with each

other repetitively in order to generate experience tuple. Environment is usually a sim-

ulator mimicing real world, which feeds action and yields next observation. For exam-

ple, environments in the CartPole game take boolean value indicating whether to push

the cart left or right, then yields observation depicting current state such as coordina-

tion or velocity of a cart. On the contrary, policy takes observation from environment as

an input then generates action by executing DNN, feeding into environment iteratively.

The size of policy network can be varied from small MLP to large-scale LSTM [12].

The approaches how to update policy inside policy update loop differs by DRL

algorithms. For example, PPO(Proximal Policy Optimization) [17] partitions stacked

experience into mini-batches and incrementally update parameters of policy model,

similar to mini-batch training in modern DL.

5

According to the policy version requirement in experience collection phase, RL

algorithms can be further divided into on-policy and off-policy. On-policy algorithms

(e.g., A2C, PPO [17]) require any experiences for updating the policy network to have

been generated using the same policy, whereas off-policy algorithms (e.g., DDPG,

SAC) does not. The absence of such requirement allows off-policy algorithms to re-use

experience when forming training dataset. On the other hand, whenever policy network

is modified by on-policy algorithms, all previously gathered experience tuples should

be discarded and fresh experience should be generated from the scratch. Hence, the on-

policy algorithm spends a greater proportion of their total training time in experience

collection phase in than off-policy algorithms.

2.2 Bottleneck in DRL training

A common bottleneck unique in RL training is the interaction between the envi-

ronments and the policy model. Unlike the typical setup in supervised learning using

fixed dataset, RL algorithms generates data instance one by one inside collection loop.

Even worse, on-policy algorithms constraints forces two phases not be overlapped,

exacerbating such bottleneck. Existing works [4, 21] reported that data collection loop

takes up to 80% time of total training.

6

Chapter 3

Related Works

3.1 Existing Approaches

A common approach to accelerating experience collection loop is to manage mul-

tiple environment instances N rather than just a single one. 3.1(b)–(h) illustrates alter-

native ways for implementing N = 4 while 3.1(a) is a counterpart for N = 1.

Note that env(x,y) refers to the y-th simulation of x-th environment out of

N = 4 and policy denotes action generation using input observations from environ-

ments. It is obvious that data dependencies in the sequence of env(x,y), policy, and

env(x,y+1) must be properly hold.

The naive approach exploiting 4 environments is demonstrated in 3.1(b). After ex-

ecuting environments in serial fashion, it generates action by batching N observations.

Compared to 3.1(a) which exploits a single environment, it brings higher throughput

since it reduces the number of policy call from N to 1.

However this serial method is impractical with large N as the time required for

each iteration increases proportional to N . Instead, RL practitioners investigated var-

ious methods to parallelize the interactino between environments and policy compo-

nent inside the collection loop. According to which components can be parallelize,

7

those approaches can be classified into three categories: environment, actor and policy

parallelism.

3.1.1 Environment Parallelism

Environment parallelism is a strategy to execute multiple environments in paral-

lel. SubProcVecEnv [16], for example, executes each environment as a separate pro-

cess from the master process, as shown in 3.1(c). EnvPool [21], on the other hand,

parallelizes environments up to the number of available threads. EnvPool returns the

batched observations to the policy as soon as the fastest K(user-defined knob) envi-

ronments finish. 3.1(c) illustrates the example of EnvPool with 4 available threads and

K = 2.

Environment parallelism is a widely used technique since it is easy to substitute

existing code with this implementation. Because environment parallelism does not take

into account policy components at all, its implementation is typically used as a wrapper

providing an interface to handle multiple environments as a single one. However, as

the policy should wait until every environment completes, this approach is ineffective

for tasks with high variance in environment working time.

3.1.2 Actor Parallelism

Actor parallelism divides the number of experiences tuples by replicating collec-

tion loop itself as an abstraction known as an actor. This is a common strategy used

by popular distributed RL frameworks such as [10, 7, 6]. In most cases, actors are

uniform and includes only one policy. For an instance, when there are K actors, each

actor handles N/K environments and contributes to collecting 1/K portion of total

experience tuples. Users can configure the number of actors. 3.1(e) and 3.1(f) depict

actor parallelism with four and two actors, respectively. Since actors do not need to

interact with each other, this strategy loosens synchronization and reduce the volume

8

Env(0,0) Policy Env(
0,1) Env(0,2) Env(0,3)Policy Policy Policy

Env(0,0) PolicyEnv(1,0) Env(2,0) Env(3,0) Env(0,1) Env(1,1) Env(2,1) Env(3,1) Policy

Env(0,0)

Policy

Env(1,0)

Env(2,0)

Env(3,0)

Env(0,1)

Env(1,1)

Env(2,1)

Env(3,1)

Policy

Env(0,0)

Policy

Env(1,0)

Env(2,0)

Env(3,0)

Env
(0,1)

Env(1,1)

Env(2,1)

Env(3,1)

PolicyPolicy

Env(0,0) Policy

Env(1,0)

Env(2,0)

Env(3,0)

Env
(0,1)

Env(1,1)

Env(2,1)

Env(3,1)

Policy

Policy

Policy

Policy

Policy

Policy Policy

Env(0,0) Policy Env
(0,1) PolicyEnv(1,0) Env(1,1)

Env(2,0) Env(2,1)Policy PolicyEnv(3,0) Env(3,1)

Env(0,0)

Policy

Env(1,0) Env(2,0) Env(3,0) Env
(0,1) Env(1,1) Env(2,1) Env(3,1)

PolicyPolicy

Policy

Policy

Policy

Policy

Policy

Env(0,0)

Policy

Env(1,0)

Env(2,0)

Env(3,0)

Env
(0,1)

Env(1,1)

Env(2,1)

Env(3,1)

Policy

Policy

(a)

(b)

(d)

(c)

(g)

(e)

(f)

(h)
Env(x,y) x env’s y-th step

Policy policy action generation

Proces boundary

Figure 3.1: Parallelization strategies in previous works

9

of data communication compared to the environment parallelism.

3.1.3 Policy Parallelism

Policy parallelism parallelizes policy networks, whereas environment parallelism

parallelizes environment components. Multiple replicas of the policy network can

compute actions concurrently, as shown in 3.1(g), allowing environment and policy

to overlap. This strategy improves resource utility in situations where the environment

and policy use different accelerators.

HTS-RL [11], a concrete example using both environment and policy parallelism,

executes each environment and policy as a separate process. The policy process polls

the state of environments and computes actions whenever there are one or more avail-

able observations. 3.1(h) illustrates HTS-RL strategy with four environments and two

policies. As the first step, the first policy process processes the observation from Env(2,0)

while the second policy process consumes the results of Env(0,0), Env(1,0),

Env(3,0).

3.2 Parallelization Strategy Comparison

While many researchers proposed different parallelization strategies to accelerate

environment-policy interaction in the experience collection loop, there is no single

dominant strategy. Rather, the optimal structure varies depending on the task and the

available hardware.

For example, actor parallelism shows the best throughput for tasks with large ob-

servation data sizes. It is optimal to take an approach that minimizes data communica-

tion between policy and environment for such a condition, which fits actor parallelism.

Furthermore, due to the improved accessibility of the environment, strategies em-

ploying policy parallelism are best suited for tasks with high environment step vari-

ance. While a policy has accessibility to the environments of the same actor in actor

10

parallelism, entire environments are visible to policies in policy parallelism.

As we have seen so far, parallelization strategy has advantages and disadvantages

in terms of data copy overhead or synchronization overhead. The processing time of

each component or the size of exchanging data is distinct for each task and affects it

differently for each configuration. The hardware specification also limits the number

of components that can be added. Thus, selecting the optimal configuration for a given

task is an imposing burden on users.

11

Chapter 4

Search Space

In this section, we introduce configuration knobs used as Auturi’s primitives.

We assume that two requirements are specified by users: the number of total ex-

perience tuples and the range of number of environments to use. We ensure the lower

limit of the number of sequential experience tuples generated by a single environment

by receiving the maximum number of environments as user input for final prediction

quality.

Auturi exploits actor parallelism by creating num actors actors. Note that num actors

is the only globally defined knob, and all other following knobs are defined by ac-

tor. An actor generates num experience tuples during a single collection loop.

num policy policies placed on policy device (CPU or GPU) and num env en-

vironments are managed inside an actor. env parallel degree indicates the de-

gree of parallelism among environments within an actor. Thus num envs/env parallel degree

environments are sequentially executed in an individual process.

Finally, policy batch size refers the size of batched observations that pol-

icy consumes at once. This knob controls the granularity of the interaction between

the environment and policy. When the total number of tuples to be collected is fixed,

it is obvious that a smaller policy batch size value incurs more frequent data

12

exchange.

With our newly defined knobs, tab:rel-works describes the parallelization strate-

gies mentioned in section:rel-works.

13

Ta
bl

e
4.

1:
E

xp
re

ss
io

n
of

re
la

te
d

w
or

ks
by

A
ut

ur
ic

on
fig

ur
at

io
n

Pa
ra

lle
liz

at
io

n

St
ra

te
gi

es
#

ac
to

rs
#

en
vi

ro
nm

en
t

pe
ra

ct
or

#
po

lic
ie

s

pe
ra

ct
or

E
nv

ir
on

m
en

tp
ar

al
le

lis
m

de
gr

ee
pe

ra
ct

or
Po

lic
y

ba
tc

h
si

ze

D
um

m
yV

ec
E

nv

[1
6]

-
1

N
1

1
N

Su
bP

ro
cV

ec
E

nv

[1
6]

E
1

N
1

N
N

E
nv

Po
ol

[2
1]

E
1

N
1

us
er

kn
ob

(a
va

ila
bl

e
th

re
ad

s)
us

er
kn

ob

R
L

L
ib

[1
0]

,

A
cm

e
[7

]
A

,E
us

er
kn

ob
,M

N
/M

1
M

os
tly

1
N

/M

H
T

S-
R

L
[1

1]
E

,P
1

N
us

er
kn

ob
N

>
=1

Sa
m

pl
e

Fa
ct

or
y

[1
4]

E
,P

1
N

us
er

kn
ob

1
N

/2

14

Chapter 5

System Design

In this section, we explain how we design Auturi system and user API.

5.1 System Overview

At a high-level, Auturi takes an online exploration approach with interaction be-

tween two main components, Tuner and Executor as depicted in fig:system-overview.

Tuner aims to find best configuration as soon as possible. It provides Executor with

the next configuration to use while proceeding its own search algorithm or now, Tuner

is implemented with a naive grid search algorithm, finding the best configuration by

testing one by one.

Executor runs the collection loop with the configuration specified by Tuner until

it observes stable throughput and passes it on to Tuner. Executor spawns one or mul-

tiple actors as separate process. Each actor writes its products(experience tuples) to

Rollout Buffer which resides in shared memory, after running a single collection loop.

Each actor has VectorPolicy and VectorEnvironment which manage multiple policy and

environment worker processes, respectively. These two components communicate via

shared memory, exchanging state and action data with each other.

15

AuturiExecutor

Auturi
Optimizer

Send metrics

Rollout
Bufffer

Process

SHM Buffer

Actor 0

Actor 1

Actor 2

VectorPolic
y

Policy Policy

VectorEnv

SerialEnv

Env Env

SerialEnv

Env Env

Comm
Buffer

(s, a, r, s’)

(s, a, r, s’)

(s, a, r, s’)

(s, a, r, s’)

Reconfigure

Figure 5.1: Overall architecture of Auturi System

The overall philosophy of Auturi design is as follows.

• Pluggability It should be easy to replace Auturi’s submodules in other existing

implementations.

• Usability Users do not have to rewrite code in other languages such as C++ or

XLA. Also, Auturi is able to be ported to any other RL framework with minimal

code modifications.

• Efficiency Auturi should provide an efficient code base that can execute the

same configuration at least not slower than other implementations.

5.2 Components Hierarchy

In order to support hybrid parallelization mentioned in chapter:search-space, Au-

turi Executor is implemented with hierarchical and modular design to fully express

tuner-given configuration knobs.

16

Executor is in charge of handling num actors actors. VectorEnvironment and

VectorPolicy inside an actor manages num envs environment and num policies

policy components respectively. VectorEnvironment spawns environment parallelism

degree processes which is the minimum parallel unit of environment steps. The

parent-child relationship in Executor-Actor, VectorPolicy-Policy, VectorEnv-SerialEnv

is controlled with primitives provided by Python multiprocessing library.

Thanks to this modular design, it is easy to plug-in external libraries Auturi’s

submodules. For instance, VectorEnvironment module can be entirely replaced by

existing environment wrapper implementations [1, 21, 5] (purple section in system-

hierarchy) Users can take advantage of faster simulators written in other languages

such as C++ [21] or XLA [5]) without any additional code changes.

Env

VectorEnv

Actor

Env Policy

VectorPolicy

Policy

Executor

Env

Serial
Env

Serial
Env

Figure 5.2: Auturi’s hierarchical component design. Purple section is replaceable to

external multiple environment wrapper implementations. Users should implement yel-

low components according to given interface.

17

[HTML] Class Interface Description

step(action) Simulate with given action and yield state
Environment

aggregate() Return locally stored experience tuples

compute actions(state) Inference policy network with given state
Policy

load model(device) Load internal policy network to given device

Table 5.1: User exposed APIs to plug Auturi on other frameworks.

5.3 User API

Users can easily adopt Auturi system atop many popular DRL frameworks [10, 7,

16] by simply rewriting environment and policy components according to the interface

in table:api. The example code snippet following table:api is represented at code:api-

example.

step(action) and compute actions(state) defines environment-policy

interaction interface. The input and output data formats of these functions should be a

single numpy array. For example, CustomEnv wraps the general gym.Env instance,

returning only obswhile storing other byproducts such as rewards, in local buffer

dictionary when step(action) is called. This is necessary since the data shape for

environment-policy communication should be known in advance to be allocated in

shared memory.

At the end of the collection loop, the locally stored experience tuples are aggre-

gated to be written to Executor’s Rollout Buffer by calling aggregate().

1 class CustomEnv(AuturiEnv):

2 def __init__(self, gym_env):

3 self.env = gym_env

4 self.local_buffer = dict()

5

6 def step(self, action):

18

7 obs, reward, done, info = self.env.step(action)

8 self.local_buffer["obs"].append(obs)

9 self.local_buffer["reward"].append(reward)

10 return obs

11

12 def aggregate(self):

13 return self.local_buffer

14

15 class CustomPolicy(AuturiPolicy):

16 def compute_actions(self, state):

17 actions = self.policy(state)

18 return actions.cpu().to_numpy()

19

20 def load_model(policy, device):

21 self.policy = policy.to(device)

Listing 5.1: API usage example label

19

Chapter 6

Implementation

The interaction of the environment and policy is a unique workload that exchanges

small amounts of data in short time intervals. In most cases, the size of observation

and action data is under 1MB and the environment steps and action computations

are millisecond-level. A naive implementation of the interaction would impose high

synchronization and data copy overhead. In this section, we investigate the other im-

plementations [16, 10]. By comparing those approaches, we explain how we imple-

mented Auturi system in detail.

RLlib [10] implemented environment-policy interaction via Ray backend [9]. In

RLLib, each environment is handled as a remote Ray process and each env.step()

call is an individual ray object managed by centralized master.

With Ray’s clean RPC API to control child processes (Ray actors), RLLib is free

from implementing additional control logic to send command and receive output from

children. However, as [20] pointed out, the master process gets burdened with record-

ing metadata updates and internal scheduling as the number of remote calls increases.

Thus, it is inefficient to use Ray for tasks controlling many components and requiring

to collect many experience tuple.

SubprocVecEnv [16] is a popularly used implementation based on environment

20

Env

master
Env

Env

(a) SubProcEnv

Policy

action

action

action

SHM (state)

Env

Env

Env

SHM (state) SHM (action)

Policy

(b) Auturi

Figure 6.1: Environment-Policy interaction implementation in SubprocVecEnv and

Auturi

parallelism. Since SubprocVecEnv does not rely on external RPC backend, it cre-

ated its own control logic to communicate with its children processes. SubprocVecEnv

sends actions via pipe and reads observations and other byproduct from shared mem-

ory, as illustrated in Fig 6.1(a). This implementation lets SubprocVecEnv be free from

metadata management, leading to a performance gain compared to RLLib. When the

number of environments increases, however, serially executing action sending phase

becomes bottleneck.

Auturi improved the scalability by creating additional shared memory for actions

atop SubprocVecEnv. While the policy writes actions to the action buffer, each envi-

ronment process polls its own section in the action buffer, waiting for the next action

to complete (Fig 6.1(b)).

21

Chapter 7

Evaluation

7.1 Evaluation Setup

7.1.1 Environment

We evaluated our system on a machine equipped with two Intel Xeon CPU E5-

2695 @ 2.10 GHz processors, 256GB DRAM, and a NVIDIA Titan Xp GPU. We

used PyTorch 1.10.0, Ubuntu 18.04, and CUDA 11.1 for all of our experiments

7.1.2 Workloads

We evaluated Auturi’s performance for PyBullet [3], Atari [2] and Google Foot-

ball [8] tasks. We followed [15] to set the training hyperparameters, policy network

configuration and the post-processing of raw environment output for Pybullet and

Atari. In case of Football, we matched those configurations to implementations from

[11]. All E2E experiments were done based on [16] framework.

22

7.2 End-to-end Training

7.1 shows e2e training time using Auturi. The training iteration on [16] is nor-

malized to 1. Since Auturi does not target for policy update phase, using Auturi does

not reduce policy network update time. Auturi does not show breakthrough gain for

Pong-v4 and academy 3 vs 1 with keeper tasks, as the optimal configuration falls in

environment parallelism category. For MinitaurBulletEnv-v0 task, Auturi accelerates

the collection loop by x2.4 and ultimately reduces the total training time up to 1.51

times.

Figure 7.1: E2E training time comparison with Stable-baseline3 and Auturi.

7.3 Scaling Overhead

In this section, we compare Auturi with other implementations by fixing spe-

cific configuration. To measure performance on environment-parallel configuration,

we compared our code base with SubprocVecEnv and custom code implemented with

Ray backend. For actor-parallel configuration, we chose RLlib as a baseline.

7.2 shows the scaling overhead of environment-policy interaction by increasing

23

Figure 7.2: Scaling overhead of environment parallelism on HalfCheetah-v3 task.

Figure 7.3: Scaling overhead of actor parallelism on Pong-v4 task.

24

number of environments, N . We fixed actions to constant values and configuration to

environment parallelism configuration with parallelism degree equals to N . Ray back-

end shows large overhead even with a single environment. This results corresponds

to the analysis in Section 6 that master process is burdened proportional to the num-

ber of remote calls. SubprocVecEnv and Auturi shows similar performance with small

N . While serialized pipe communication of SubprocVecEnv hinders scalability from

N >= 16, Auturi shows almost constant throughput even with N = 64. Since Auturi

implemented entire control plane with shared memory, communication with children

processes becomes O(1).

7.3 demonstrates the scaling overhead of executing actor-parallel strategy on Au-

turi by increasing number of actors, K. Actor parallelism does not need inter-actor

communication, and the processes are synchronized only two times: the beginning

and the end of the collection loop. Such small communication burden leads almost

linear scaling of both Auturi and RLlib shows compared to 7.2.

However, Auturi shows slight performance gain compared to RLlib. This is be-

cause Auturi actor writes rollout data to shared memory bypassing master process at

the end of the collection loop.

25

Chapter 8

Conclusion

In this paper, we categorized the existing approaches to accelerate the collection

loop and suggested primitive knobs to describe them. We configured existing strate-

gies with combination of those knob, and pointed out that different tasks and hardware

configurations require quite diverse parallelism methods. Based on those findings, we

proposed Auturi. Auturi is the system that automatically generates the optimal config-

uration for the experience collection loop in the DRL based on an efficient and unified

code base to run hybrid parallelization.

Though the evaluation in this paper is limited to only PPO algorithms, the syn-

chronous on-policy algorithm is not the only RL algorithm that Auturi can apply. Since

Auturi supports general structure of environment-policy interaction, asynchronous RL

algorithms or multi-agent algorithms can be accelerated by Auturi. The evaluation of

such diverse workloads is reserved for future work.

Finally, future research should be devoted to the development of search algorithms.

Auturi currently exhaustively searches for the best configuration, adjusting knobs one

by one. Although it always guarantees to find the global optima, adopting such an

exhaustive mechanism for a task with a large search space is infeasible. By focusing

on the repetitive property of how policies and environments exchange data alternately,

26

it will be able to develop a faster search algorithm.

27

Bibliography

[1] Openai gym.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279, jun 2013.

[3] Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-

gym, 2018–2019.

[4] James Gleeson, Srivatsan Krishnan, Moshe Gabel, Vijay Janapa Reddi, Eyal

de Lara, and Gennady Pekhimenko. Rl-scope: Cross-stack profiling for deep

reinforcement learning workloads, 2021.

[5] James Gleeson, Daniel Snider, Yvonne Yang, Moshe Gabel, Eyal de Lara, and

Gennady Pekhimenko. Optimizing data collection in deep reinforcement learn-

ing, 2022.

[6] Danijar Hafner, James Davidson, and Vincent Vanhoucke. Tensorflow agents:

Efficient batched reinforcement learning in tensorflow. CoRR, abs/1709.02878,

2017.

[7] Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron,

Nikola Momchev, Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton

28

Raichuk, Damien Vincent, Léonard Hussenot, Robert Dadashi, Gabriel Dulac-

Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed Kam-

yar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,

Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli,

Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Col-

menarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan,

Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research

framework for distributed reinforcement learning, 2022.

[8] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem,

Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier

Bousquet, and Sylvain Gelly. Google research football: A novel reinforcement

learning environment, 2019.

[9] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-

berg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions

for distributed reinforcement learning, 2017.

[10] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions

for distributed reinforcement learning. In International Conference on Machine

Learning, pages 3053–3062. PMLR, 2018.

[11] Iou-Jen Liu, Raymond Yeh, and Alexander Schwing. High-throughput syn-

chronous deep rl. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,

pages 17070–17080. Curran Associates, Inc., 2020.

[12] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim

Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade

Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer,

29

Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. A

graph placement methodology for fast chip design. Nature, 594(7862):207–212,

2021.

[13] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[14] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen

Koltun. Sample factory: Egocentric 3d control from pixels at 100000 fps with

asynchronous reinforcement learning. In International Conference on Machine

Learning, pages 7652–7662. PMLR, 2020.

[15] Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-

zoo, 2020.

[16] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-

tus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning im-

plementations. Journal of Machine Learning Research, 22(268):1–8, 2021.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms, 2017.

[18] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. nature,

550(7676):354–359, 2017.

[19] Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforce-

ment learning in pytorch, 2019.

[20] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei Luan,

Audrey Cheng, and Ion Stoica. Ownership: A distributed futures system for Fine-

Grained tasks. In 18th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21), pages 671–686. USENIX Association, April 2021.

30

[21] Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor

Makoviychuk, Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu,

and Shuicheng YAN. Envpool: A highly parallel reinforcement learning envi-

ronment execution engine. In Thirty-sixth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track, 2022.

31

Abstract

딥 강화학습(Deep Reinforcement Learning)은 로보틱스, 게임, 컴파일러 등 다

양한 분야에서 도전적인 과제를 학습하는데 큰 성공을 거두어왔다. DRL의 인기가

높아졌음에도 불구하고, DRL은 종종 학습에 지나치게 긴 시간이 들었는데, 그 주

요 병목 현상 중 하나는 RL이 훈련 과정 내에 자체적으로 훈련을 위한 데이터셋을

스스로만들어야한다는점이다.

이러한 병목 지점을 해결하기 위해, 많은 연구자들은 DRL을 구성하는 요소인

환경(Environment),정책네트워크(Policy network)등을병렬화하는등의다양한전

략을제시했다.그러나주어진하드웨어환경,수행하고자하는과제에따라최적의

병렬화전략이달라진다.병렬화전략마다고유한구조로인한동기화및데이터복

사 오버헤드가 크게 차이가 나는데, 각 과제(task)마다 이에 미치는 영향이 다르기

때문이다.

본 논문에서는 자동으로 최적의 병렬화 전략을 찾아주는 시스템인 Auturi를 소

개한다.하이브리드병렬화전략을효율적이고유연하게실행할수있는코드를기

반으로, Auturi는 각 전략을 하나씩 테스트하는 온라인 탐색 방식을 취한다. 논문

에서는 널리 쓰이는 DRL 벤치마크에서 실험함으로써, Auturi가 DRL 훈련시간을

효과적으로줄일수있음을보인다.

주요어: Deep Reinforcement Learning, Parallel System

학번: 2021-22902

32

	1 Introduction
	2 Background
	2.1 Workflow of Reinforcement Learning
	2.2 Bottleneck in DRL training

	3 Related Works
	3.1 Existing Approaches
	3.1.1 Environment Parallelism
	3.1.2 Actor Parallelism
	3.1.3 Policy Parallelism

	3.2 Parallelization Strategy Comparison

	4 Search Space
	5 System Design
	5.1 System Overview
	5.2 Components Hierarchy
	5.3 User API

	6 Implementation
	7 Evaluation
	7.1 Evaluation Setup
	7.1.1 Environment
	7.1.2 Workloads

	7.2 End-to-end Training
	7.3 Scaling Overhead

	8 Conclusion
	Abstract (In Korean)

<startpage>1
1 Introduction 1
2 Background 4
 2.1 Workflow of Reinforcement Learning 4
 2.2 Bottleneck in DRL training 6
3 Related Works 7
 3.1 Existing Approaches 7
 3.1.1 Environment Parallelism 8
 3.1.2 Actor Parallelism 8
 3.1.3 Policy Parallelism 10
 3.2 Parallelization Strategy Comparison 10
4 Search Space 12
5 System Design 15
 5.1 System Overview 15
 5.2 Components Hierarchy 16
 5.3 User API 18
6 Implementation 20
7 Evaluation 22
 7.1 Evaluation Setup 22
 7.1.1 Environment 22
 7.1.2 Workloads 22
 7.2 End-to-end Training 23
 7.3 Scaling Overhead 23
8 Conclusion 26
Abstract (In Korean) 32
</body>

