

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Efficient and Scalable Hashing Scheme for

Persistent Memory

영구 메모리를 위한 효율적이고 확장 가능한 해싱 체계

February 2023

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Dereje Regassa

Ph.D. DISSERTATION

Efficient and Scalable Hashing Scheme for

Persistent Memory

영구 메모리를 위한 효율적이고 확장 가능한 해싱 체계

February 2023

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Dereje Regassa

Efficient and Scalable Hashing Scheme for Persistent

Memory

영구 메모리를 위한 효율적이고 확장 가능한 해싱 체계

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2022 년 11 월

서울대학교 대학원

컴퓨터 공학부

에데싸 데레제 레가사

에데싸 데레제 레가사의 공학박사 학위논문을 인준함

2022 년 12 월

위 원 장 엄 현 상 (인)

부위원장 염 헌 영 (인)

위 원 유 승 주 (인)

위 원 이 재 욱 (인)

위 원 손 용 석 (인)

Abstract

The new advances in memory have brought many potential innovations in the

data structure. The byte-addressable Persistent Memory(PM) with high capac-

ity and low latency accelerated the shift of most existing hashing-based indexes

to exploit these benefits. Hence, many new hashing schemes have been pro-

posed using emulators which are found to be sub-optimal and also not scalable

on the real device. Few hash table designs addressed important properties like

load factor, scalability, efficient memory utilization, and recovery. One of the

challenges in redesigning data structures for an effective hashing scheme in PM

is to reduce the overheads of dynamic hashing operations in the hash table. In

this paper, we present an Efficient and Scalable hashing scheme called ESH that

improves memory efficiency, scalability, and performance on PM. ESH enables

us to efficiently use the available spaces in the hash table and delays the full

table rehashing to improve performance. This makes ESH achieve maximum

load factor with efficient allocated memory space utilization. We evaluate our

scheme and compare it with the widely used state-of-the-art dynamic hashing

schemes that apply similar hashing techniques on Intel Optane® DC Persistent

Memory (DCPMM). The experiment result shows ESH improves data insertion

performance by 30% and 4% compared to CCEH and Dash respectively. It also

improves the lookup operation by nearly 10% compared to Dash and achieves

up to 91% load factor which is higher compared to the other competitors.

Keywords: Persistent memory, Dynamic hashing, Scalable hashing, In-memory

systems, Extendible hashing

i

Student Number: 2018-31651

ii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Motivation . 4

1.2 Contribution . 4

1.3 Outline . 5

Chapter 2 Background 7

2.1 Optane Persistent Memory . 7

2.2 Optane Architecture and Instructions support 8

2.3 Dynamic Hashing . 9

2.4 Effect of NUMA access . 12

2.5 Inter-thread interference . 14

2.6 Locking . 15

iii

2.7 Impact of frequent key resizing 16

Chapter 3 Adaptive Cache-Conscious Extendable Hashing 17

3.1 Motivation . 17

3.2 Related Work . 19

3.3 Design and Implementation . 21

3.3.1 Design . 22

3.3.2 Implementation . 24

3.3.3 Concurrency . 26

3.3.4 Recovery . 27

3.4 Evaluation . 28

3.4.1 Experimental setup . 28

3.4.2 Performance results . 30

3.4.3 Experimental analysis . 31

3.5 Summary . 37

Chapter 4 Efficient and Salable Hashing Scheme for PMs 38

4.1 Motivation . 38

4.2 Related Work . 41

4.3 Design and Implementation . 44

4.3.1 High level Design . 44

4.3.2 Bucket layout . 46

4.3.3 Operations . 49

4.3.4 Metadata and hash table operation 54

4.3.5 Implementation . 56

4.3.6 Concurrency . 58

4.3.7 Recovery . 59

4.4 Evaluation . 60

iv

4.4.1 Experimental setup . 60

4.4.2 Comparative Performance for varying data sizes 62

4.4.3 Performance on a varying number of threads 63

4.4.4 Benefits of Metadata . 69

4.4.5 Concurrency . 69

4.4.6 Scalability . 70

4.4.7 Load Factor . 70

4.4.8 Recovery . 72

4.5 Summary . 73

Chapter 5 Conclusion 74

요약 84

v

List of Figures

Figure 2.1 Optane Architecture (a) Overview of Optane DIMMs

and (b) Optane DIMMs interleaving strategies 9

Figure 2.2 Extendible hashing and directory doubling (a) is before

directory doubling and (b) shows directory entry and the

local depth of each bucket increased after doubling (G:

global depth, L: local depth) 11

Figure 2.3 The NUMA effect on record insertion performance . . . 14

Figure 3.1 Cache conscious extendible hashing 21

Figure 3.2 Record insertion strategies to a bucket 22

Figure 3.3 Record search/deletion strategies from a bucket 25

Figure 3.4 Recovery operations: Recovery operation starts from the

last saved split state as seen in the steps and moves to the

older states until a consistent state is found (S: segment

state) . 27

Figure 3.5 Average segment split time 32

Figure 3.6 Number of splittings happened before directory doubling

happens for large insertions 33

vi

Figure 3.7 Comparison of Key-Value Entries 33

Figure 3.8 Record insertion performance on uniform data distribution 34

Figure 3.9 Record insertion performance on skewed data distribution 35

Figure 3.10 Comparison of running time memory consumption . . . 36

Figure 4.1 Overall architecture of Scalable hashing scheme and bucket

structure . 46

Figure 4.2 Segmented Extendible hashing with cache conscious fea-

ture . 51

Figure 4.3 Metadata and hash table operations in ESH (R1: record

1, R2: record 2, OFRB: neighboring bucket address, OB:

overflow bit, MC: member count, OC: overflow count) . . 57

Figure 4.4 Single thread data insertion performance comparison un-

der a fixed key length . 64

Figure 4.5 YCSB Evaluation for different workloads 65

Figure 4.6 Multiple thread performance comparison 66

Figure 4.7 Throughput Comparison for varying number of threads . 68

Figure 4.8 Load factor with respect to the number of items inserted

into the hash table . 71

vii

List of Tables

Table 4.1 Recovery time in (ms) comparison with respect to data

size. 72

viii

Chapter 1

Introduction

The fast growth of data centers is frequently pushing hardware utilization to

its limits. This development is forcing innovations to redefine the existing hard-

ware. The recent emergence of persistent memory devices like Intel Optane DC

Persistent Memory Module(DCPMM) that delivers the persistence fast speed

and high capacity that solves the limits in data access speed and storage capac-

ity [1,2]. They provide large storage capacity and offer a competing performance

between DRAM and flash and are resilient to crashes. The access latency close

to DRAM, durability, and byte addressability of this new hardware makes it

suitable for latency-critical transactions on storage systems.

Moreover, the new features of this device brought changes in the way data

can be persisted through direct accesses by load and store instructions. There is

good progress on single-level persistent-based applications that directly operate

and store data on PM without the involvement of the storage stack in OLTP

[3,4]. However, the data consistency and hardware limitations are challenges for

prior applications that use indexing techniques as they are originally designed

1

for DRAM environments. Hence, different persistent indexing techniques are

designed and chosen to efficiently store data in persistence memory.

Relatively there are a significant number of researches to improve Tree based

indexing structures for persistence memory compared to the attempts for hash-

based indexing structures. However, the existing indexes cannot provide the

same advantages on PMs as it suffers from asymmetric read/write performance

and crash consistency problems. Using the existing indexing structures to run

on PM without modification to fit the new architecture would not help to

gain the expected performance. Thus, we need to redesign index structures for

PM. High-performance and scalable indexing structures are crucial for storage

systems to achieve fast queries.

Hashing-based indexing structures are widely used in different applications

using key-value stores [5,6]. Several PM indexes such as FAST & FAIR [7], NV-

Tree [8], WORT [9] and CCEH [10] are designed to provide low overhead, and

cost-efficient indexing operations ensuring the indexes recover correctly in the

event of failure or crash. Additionally, numerous proposals for index redesigning

[3, 4, 11–13] adopted different indexing structures for persistent memory which

mainly uses emulators.

With the arrival of persistence memory, a variety of tree-based techniques

are designed to optimize indexing for tree variants and hashing. These results

are mostly designed using B+ tree-based indexes [7, 13] and [10, 14] mainly

uses hash-based indexes. There are also significant research results for hash

tables to provide faster operations in in-memory systems indexing structures.

The efficient lookup time for mapping values with a particular key in hash-

based indexes needs to achieve faster access respective of the size of the data.

In this hashing scheme, the allocation of sufficient bucket size for the hash

function plays a significant role in determining the buffer cache for the hash

2

table. In applications like a key-value store, the sizes of records can not be

predicted as it involves the dynamic insertion or deletion of items. Therefore,

a dynamic hashing scheme that involves dynamic resizing is the best choice

to adjust the table size to fit records to the scheme. PM’s read/write latency

during searching a record in a large portion of storage can introduce cache

misses [14] and PM accesses. Concurrency controlling during these operations

needs careful attention as it introduces additional read/writes for locking that

ends up in further bandwidth consumption. As the data insertion increases,

the load factor of the hash table becomes high forcing the growth of the hash

table. To accommodate that, the hash table will be rehashed and the data will

be relocated to the newly created buckets. Rehashing is an expensive operation

that involves doubling the buckets as it is an incremental operation and hence

the new index at which the values have to be mapped to a new location. Moving

the existing records to a new bucket location degrades the throughput halting

the access of the indexes during rehashing. On top of the read/write latency of

PM, it increases the total query latency.

In this dissertation, we design a scalable hashing scheme that efficiently

stores key values on persistent memory. It employs the mechanisms that effec-

tively utilize the hash table by tuning the directory entries and the segment to

accommodate more records to available space in the existing buckets by exten-

sively utilizing the segment before initiating the expensive full table rehashing.

We introduce an Efficient and Salable Hashing Scheme called ESH that has the

following properties. (i) efficiently use the available space in the hash table by

moving the overflow records from a bucket to the neighboring buckets in the

segment. (ii) reduce or delay the full table rehashing to gain better performance

during insertion. (iii) increase the load factor and PM/Memory utilization effi-

ciency without significant performance loss for varying data size and the number

3

of threads. (iv) present a scalable hashing scheme that reduces unnecessary PM

read and write operations that saves the PM bandwidth and scales well in a

multi-threaded environment. We evaluate our scheme and compare it with the

widely used state-of-the-art dynamic hashing schemes that apply similar hash-

ing techniques on Optane persistent memory with different configurations. The

experiment result shows ESH improves the data insertion performance by 30%

compared to CCEH and by 4% compared to Dash. It also improves the search

operation by nearly 10% compared to Dash. It also achieves up to 91% load

factor which is higher compared to the other competitors.

1.1 Motivation

From the recent trends, the rapid development of PM technologies has sig-

nificantly affected the design of today’s storage systems and also shaped the

future of storage technologies [15–17]. Designing high-performance and scalable

indexing structures that fit this development and achieve fast queries are also

becoming crucial for storage systems. However, existing legacy indexes designed

for DRAM or disk cannot fully provide their benefit on PM as it suffers from

asymmetric read/write performance and crash consistency issues as witnessed

in recent research [10, 14, 18]. Hence, it is time to think about designing an ef-

ficient and scalable dynamic hashing scheme for persistent memory. Thus, this

work is motivated to improve extendible hashing and increase space utilization

of this scheme on emerging persistent memories.

1.2 Contribution

The contributions are summarized as follows:

4

• We present a hashing scheme that improve hashing for emerging persistent

memories to efficiently store a key-value pairs on persistent memory. This

mainly improves hashing performance and increase space utilization. In

our scheme, we delay expensive full table rehashing operations by using

the free space in other buckets.

• To do that we introduce an approach that, when the existing bucket is

full and requires a rehashing operation, ESH searches the free space in

the neighboring buckets in the same segment and allocates the space for

the requested record.

• Store a metadata of the bucket to manage the moving records in other

buckets so that it can find out the moving records faster. By doing so, it

allows to delaying the expensive full table reshaping operation during the

insertion operation.

• We implement and evaluate our schemes on a real Intel Optane Persistent

memory based system. The evaluation result shows that our proposed

scheme can efficiently store key-values pairs efficiently while saving space

and also improves the load factor on the real device. We evaluated with

various configurations and the results show that ESH can improve the

insert and search performance compared with the state-of-the-art hashing

schemes.

1.3 Outline

This dissertation is structured as follows:

• Chapter 2 covers the background about persistent memory, Optane ar-

chitectures and Instruction supports, Dynamic hashing schemes, effects of

5

NUMA awareness, inter-thread interference, and the impacts of locking

and frequent key resizing on performances.

• Chapter 3 introduces Adaptive Cache-Conscious extendible hashing, our

cache-conscious scheme that increases the efficiency of memory utilization

for persistent memory. We first explain the problems of existing persistent

memory-based extendible hashing schemes which are cache oriented. Then

we describe the details of the design and implementation of our proposed

new scheme and evaluate it on the real Optane persistent memory with

YCSB benchmark and real-world workload and compare it with available

state-of-the-art schemes.

• Chapter 4 introduces ESH, our Efficient and Scalable hashing scheme

that extends the memory-efficient scheme that scales well as the number of

threads increases. We start by explaining the effects of sub-optimal space

utilization of the existing schemes. Then we propose the details of our

scheme. Then we propose the details of our scheme. Finally, we evaluate

our scheme on a real Optane Persistent memory against the state-of-the-

art schemes.

• Chapter 5 summarizes and concludes the dissertation. It also points out

the directions for future work.

6

Chapter 2

Background

Many hashing schemes have been proposed for DRAM-based applications. Those

schemes will not fit persistent memory as PM has different architectures. Some

schemes are designed using emulators which are found to be sub-optimal and

others are not scalable on the real device. Few hash table designs addressed the

important properties of hashing schemes for PM like load factor, scalability,

efficient memory utilization, and recovery. One of the challenges in redesigning

data structures for an effective hashing scheme in PM is to reduce the overheads

of dynamic hashing operations in the hash table.

2.1 Optane Persistent Memory

Today, Persistent Memory is used in different applications like databases, stor-

age, cloud computing/IoT, and artificial intelligence as it enabled fundamental

change in computing architecture. In this regard, Intel’s DC Persistent Mem-

ory (PM) redefines the traditional memory architecture offering a much higher

7

capacity that is larger than DRAM at an affordable price. It provides salient

features of large capacity, low latency, and real-time crash recovery for storage

while directly populated and accessed through the existing memory bus. As it

also uses the CPU load and stores instructions thus avoiding the high overheads

of conventional interfaces. The increased capacity and enhanced security with

hardware-level encryption also solve the greatest business challenges. Persistent

memory (PM) also provides both high performance and capacity by utilizing

non-volatile memory [19]. Since the volatile memory capacity is exhausted, the

non-volatile persistent memory became an alternative to DRAM [20]. As tradi-

tional hashing techniques designed for DRAM are inefficient in persistent mem-

ory, we designed an efficient hashing scheme that uses the features of persistent

memory.

2.2 Optane Architecture and Instructions support

To ensure persistence, the integrated memory controller(iMC) sits within the

asynchronous DRAM refresh (ADR) domain, Intel’s ADR feature ensures that

CPU stores that reach the ADR domain will survive a power failure [21]. The

iMC maintains read and write pending queues (RPQs and WPQs) for each of

the Optane DIMMs as seen in (Figure 2.1a) thus, once data reaches the WPQs,

the ADR ensures that it will survive power loss and the actual access to the

storage media happens after the address translation. The Optane controller

translates a smaller request into 256 bytes access of the Optane block that

causes the write amplification. Applications and file systems modify the Optane

DIMMs contents using the store instructions that eventually make applications

persistent. Intel ISA provides the clflush and clflushopt instructions to flush

cache lines back to memory, and clwb can write back the cache lines. To write

8

instructions with no cache, applications also use the ntstore to write directly to

memory. Thus, applications must issue sfence to ensure flushing that persisting

data.

iMC
Queues

WPQ:

From CPU

Controller

Buffer

DDR-T Cacheline:64B

DRAM
AIT Cache

3D-Xpoint Media AIT

ADR Domain

XPLine: 256B

Optane DIMM #0

Core Core

LLC Cache

iMC iMC

Optane DIMM #1

Optane DIMM #2

Optane DIMM #3
Optane DIMM #4

Optane DIMM #5

CPU

PhyAddr Offset: 0

Interleaving

DIMM Addr:

#DIMM

4KB

Stripe Size 24KB

#2
0

#3
0

#1
0

#5
0

#0
0

#4
0

#2
4K

#3
4K

(a) (b)

Figure 2.1 Optane Architecture (a) Overview of Optane DIMMs and (b) Optane

DIMMs interleaving strategies

Building much faster data structures for persistent memory requires changes

in programming that make it complicated and prone to error [22]. However,

data should be consistently stored in the order of the store. Typical standard

approaches are followed to store data consistently. Therefore, a write-optimized

and scalable hash table designed for persistent memory constitutes these fea-

tures to gain the expected performance.

2.3 Dynamic Hashing

Hashing has been used in data storage in memory for a long. Dynamic hashing

is usually used to shorten the string characters. This scheme works by growing,

shrinking, and reorganizing the characters to fit the way data is being accessed

making it faster and easier for data storage.

9

Extendible Hashing – a dynamic hashing that does rehash operation in-

crementally to help applications less affected by hash table growth compared to

the standard full-table rehashing. As the in-memory data size increases, rehash-

ing the traditional hash tables incurs higher latency requiring better rehashing

techniques for persistent memory. To ease the overhead during rehashing, linear

probing, separate chaining, cuckoo hashing, CCEH [10] and Dash [14] are a few

of the techniques used. CCEH - the variant of extendible hashing designed to

optimize access of hash table buckets to cache-line access that significantly min-

imizes the number of cache-line accesses. It also reduced the overhead directory

operations as it groups a number of buckets into intermediate sizes called seg-

ments. This approach helps to reduce the size of the directory to cache-line-sized

buckets and also reduces rehashing management during failure recovery.

A dynamic hashing scheme called extendible hashing utilizes a bucket ad-

dress table called a directory where indexes are used to locate exact matching

queries to find a record with a given key. The hashing function is flexible and

dynamically changed to effectively manage directories and buckets to hash data.

Buckets that store records are pointed to by the global directory which stores

the bits that determines the directory entry. Directory entries are shown in bi-

nary of the hash value and point to buckets as shown in Figure 2.2 and a bucket

stores key-value stores.

In extendible hashing schemes, the maximum number of buckets is denoted

as 2G where G is global depth. Look up and update operations following the

corresponding directory entry pointer to get to the buckets. Accordingly, a

hash table can have at most 2G directory entries to the buckets. Buckets are

also traced using the local depth (L) and when a bucket is full and it helps to

compare and initiate the bucket splitting or directory doubling.

As shown in Figure 2.2-(a), if a record (i.e., 63) is inserted into the hash

10

00 01 10 11

12

64

44

57

93

5

10

18

3

15

31

7

64 12

44

10

18

3 15

31

7

63

57

93

5

000 001 010 011 100 101 110 111Directory
G=2

L=2

Directory
G=3

L=2 L=2 L=2 L=2 L=2 L=2 L=3 L=2 L=3
(b)(a)

Figure 2.2 Extendible hashing and directory doubling (a) is before directory

doubling and (b) shows directory entry and the local depth of each bucket

increased after doubling (G: global depth, L: local depth)

table and if there is no space in the last bucket in the hash table, directory

doubling is initiated as the local depth is equal to the global depth (L=G). In

Figure 2.2-(b), the directory entry is doubled, the local depth of the overflown

bucket is increased and the records are rehashed and inserted into the new hash

table.

If multiple directory entries point to a bucket and the local depth is less

than the global depth, it indicates the overflow. If the bucket overflow happens,

bucket splitting will be initiated and buckets will be split into two. This opera-

tion depends on whether the local depth of the overflown bucket is equal to the

global depth before the split. This process may or may not involve directory

doubling.

During splitting, the local depth for the resulting buckets will be incre-

mented, if it is equal to the global depth, overflow happens resulting in the

directory doubling. Directory doubling occurs when G bits are not enough to

distinguish the search value of the overflow bucket.

11

Extendible Hashing on PM – There are prior works that used extendible

hashing to be adapted to work on PM [10, 14]. Many efforts are done in these

works to reduce the PM access as a function of speeding up the hashing scheme.

Grouping buckets together in a segment to use a single directory entry to these

buckets helped to slow down the directory growth in [10]. Dash [14] attempted

to reduce unnecessary read and write operations to conserve bandwidth and

alleviate the impact of high end-to-end read latency.

2.4 Effect of NUMA access

Main memories today are composed of DRAM chips packaged in dual inline

memory modules (DIMMs), with several DIMMs making up the total main

memory of the system. The ever-growing level of parallelism within the multi-

core and multi-processor nodes in clusters leads to the generalization of dis-

tributed memory banks and busses with nonuniform access costs.

Non-uniform access (NUMA) allocates separate memory banks to each pro-

cessor by splitting memory and CPUs across different nodes. This avoids perfor-

mance hits when several processors/cores attempt to address the same memory.

processors on the same nodes access their own local memory and remote mem-

ories on the other nodes. Accessing the local memory faster than accessing the

remote ones contributes to the increase of overall performance.

Most high-performance servers today are NUMA machines that have com-

plex memory hierarchies. Computer Architects adopted NUMA to accommo-

date many cores in a single computer where these cores are clustered into nodes

and each node shares the last level cache(LLC) and memory. Traditional as-

sumptions on memory such as access time, and memory stall can not hold as

12

these machines have longer memory stalls and inaccurate data structures to

design that help to gain good performance [23].

Hence, to get high performance we have to design indexing structures that

help to gain the expected benefit from NUMA. These designs should take into

consideration that they should be efficient for time complexity, less synchro-

nization overhead, and cache efficient memory access pattern. The latency and

bandwidth of NUMA depend on the node accessing the data and the node

where the data is stored. NUMA optimizations have been explored extensively

and focus on adjusting the thread and data placement across the nodes to min-

imize latency and maximize bandwidth [24–28]. Hardware and software design

that uses the memory system architecture affects the performance. The cores in

the multi-core processors share on-chip memory systems resources like memory

controllers, last-level caches, or pre-fetcher units. If there is a contention on

using these resources, it leads to performance degradation [29,30].

Operating system scheduler is in a good position to reduce the shared last-

level cache contention. Data locality-related problems are also addressed either

by profile-based or dynamic memory migration [29]. Poor performance in access-

ing non-local memory (NUMA effects) can significantly impact non-volatile file

system performance. Introducing NUMA-aware interfaces to the non-volatile

memory module file systems can relieve this problem [31]. There are many ac-

tive types of research on increasing NUMA locality. some propose the redesign

of data structures with NUMA awareness that help to fully exploit the struc-

ture’s internal features [32–35].

Efficient allocation of memory in NUMA systems is critical to maximizing

the performance of the system. Additionally, choosing efficient NUMA-aware file

systems affects overall performance [36]. With the release of Optane DIMMs,

many researchers are working on redesigning storage systems to gain full of

13

their potential [12, 37]. As seen in Figure 2.3, the design of the NUMA-aware

approach improves the performance. From the figure, if data is freely stored on

either near or far PM memory, it will be affected by the data locality problem. If

data is stored in the local PM by all nodes, the performance is improved. As seen

in the figure, we can observe the contribution of NUMA even though the gain

is not significant. For a 30GB data insertion, we can observe the performance

contribution of NUMA up to 29sec. Hence, we consider NUMA aware approach

for ESH.

90.067287 427.361584 738.225871
1228.995435

2892.513461

91.07

447.36

755.72

1246.10

2921.51

0

500

1000

1500

2000

2500

3000

3500

1 5 10 20 30

D
at

a
in

se
rt

io
n

 t
im

e
 in

 s
ec

o
n

d
s

Data size in GB

ESH ESH_NUMA_Disabled

Figure 2.3 The NUMA effect on record insertion performance

2.5 Inter-thread interference

Multi-threaded concurrency is considered one of the key features that many

researchers are working on to gain high performance out of multi-core in main-

memory database systems. To efficiently gain concurrency at its maximum on

modern CPUs, the implementation of latch-free(lock-free) indexing structures

that avoid bottlenecks is used. Applications like MemSQL uses lock-free skip-

lists [38] whereas others like Microsoft’s Hekaton main-memory OLTP engine

14

use B+Tree lock-free [39] applications.

The design of lock-free algorithms index designs are often complex as they

rely on atomic CPU hardware primitives such as compare-and-swap (CAS) to

atomically modify the index state. These atomic instructions are single-word

instructions whereas extendible hashing schemes usually require multiple-word

updates during directory doubling and segment splitting as these are critical

operations and multiple steps which are broken into multiple steps that expose

the operations to other threads. This problem is even more complicated in

multicore systems and may result in race conditions if intermediate states are

exposed to other threads.

2.6 Locking

Crash consistency and write optimizations are mainly considered for optimiza-

tion of the existing hashing-based indexes for PM where there are fewer efforts

on the effect of blocking during hashing [10–12]. Locking an entire hash table in

which the thread holding the lock will prevent any other threads from accessing

the hash table is not a good idea for time-sensitive applications. Therefore, a

carefully designed fine-grained locking scheme that protects limited buckets or

single buckets is preferable.

Hence, ESH uses optimistic locking that employs locks at the bucket level.

This minimizes the number of table blocks that will be blocked from other

insert processes. The lookup operations in this scheme are lock-free and multiple

processes can access the same record in the bucket.

15

2.7 Impact of frequent key resizing

A hash table is commonly used to store key values that associate keys with

values to implement dictionaries or to test if a key is part of a set of keys

to implement set operations. Hash table resizing is inevitably triggered when

the initial capacity of the hash table is less than the total size of items to

be inserted. Thus, the resizing overhead has an impact on inert throughput.

Performing these operations at the lowest cost determines the efficiency of the

hash tables.

If we have a small bucket size, the hash table is filled and therefore, the

hash function is forced to initiate the rehashing operation that affects the per-

formance. Allocating a relatively larger hash table will be advantageous as it

helps to delay the resizing operation. In our scheme, an intermediate resizing

during segment split to expand space before a full table rehashing happens.

Segment splitting incurs much less PM access compared to the whole table

rehashing.

Accordingly, ESH uses 256bytes for a bucket that can store more records

once the hash function creates the hash table. Once this bucket is full, the seg-

ment rehashing will redistribute the key value to the buckets after the segment

splits. This feature and having a larger bucket size helps to reduce the frequency

of key resizing contributing to get better performance.

16

Chapter 3

Adaptive Cache-Conscious
Extendable Hashing

3.1 Motivation

A non-volatile persistent memory (NVM) provides low latency close to DRAM,

durability, and byte addressability [11, 17, 40]. These new features brought

changes to the way data can be persisted via direct accesses using load and

store instructions [41]. Thus, to maximize the benefits, data structures need to

be re-designed to efficiently store data in persistent memory. Hence, We design

and implement a new scheme that increases the memory utilization in hash

tables for the cache-conscious extendible scheme.

A faster and easier way of finding the records in a hash table needs effi-

cient indexing structures. Dynamic hashing is preferred over static one as it

helps to expand and shrink the size of the table based on the data size. Per-

sistent memory-based dynamic hashing structures that address failure atomic

constraints while achieving efficient dynamic hashing are the hot research areas.

17

Extendible hashing is a dynamic hashing scheme that utilizes a bucket ad-

dress table called a directory where indexes are used to locate exact match-

ing queries to find a record with a given key. The hashing function is flexible

and dynamically changed to effectively manage directories and buckets to hash

data. Thus, it is more suitable for time-sensitive applications. Buckets that

store records are pointed to by the global directory which stores the bits that

determines the directory entry.

A directory can be the form 2G where G is a global depth of the directory

and to locate a key k, the hashing function h(k) uses the last G bits to choose

directory entry. Multiple directory entries can point to the same bucket when

the bucket fills up. And, it initiates the split which requires more directory

entries where every bucket has a local depth L which indicates the length of

the commonly used hash key of the bucket.

The difference between local depth and global depth will be used to control

bucket overflow indicating. If multiple directory entries point to a bucket and

the local depth is less than the global depth, it indicates the overflow. If the

bucket overflow happens, bucket splitting will be initiated and buckets will

be split into two. This operation depends on whether the local depth of the

overflown bucket is equal to the global depth before the split. This process may

or may not involve directory doubling. During splitting, the local depth for the

resulting buckets will be incremented. And, if it is equal to the global depth,

overflow happens resulting in the directory doubling. Directory doubling occurs

when G bits are not enough to distinguish the search value of the overflow

bucket.

In this section, we present an Adaptive Cache Conscious Extendable Hash-

ing (ACCEH) to increase the utilization of persistent memory. Thus, to maxi-

mize the benefits, data structures need to be re-designed to efficiently store data

18

in persistent memory. Hence, we extend the Cache-Conscious Extendible Hash-

ing (CCEH) scheme that carefully manages the buckets, stores records, and

delays directory operations in the hash table to increase memory utilization.

In this section, we designed a scheme that achieves a cache-conscious approach

to accommodate more records to the existing buckets by fully utilizing the free

spaces of the buckets in a segment. Additionally, it can delay the directory

doubling operation during record insertion so that the overheads of directory

doubling can be reduced.

The implementation and evaluation of ACCEH are conducted on a 32-core

machine with Intel Optane DCPMM and compare ACCEH with a state-of-

the-art scheme (i.e., CCEH). Hence, this scheme (i.e., ACCEH) improves the

performance compared with a state-of-the-art scheme in uniform and skewed

data distributions.

3.2 Related Work

To fully utilize the data structures in persistent memory, there are many studies

proposed to present new data structures for persistent memory. From many, we

can see FAST & FAIR [7], NV-Tree [8], WOART [9], and CCEH [10] which

presented efficient data structures to fully exploit the performance of persistent

memory. Additionally, other studies [3,4,11–13] also designed indexing schemes

for persistent memory. CCEH [10] stands out as a cache-conscious extendible

hashing scheme that optimizes a hash table that significantly minimizes the

number of cache line accesses. It reduces the overhead of directory operations

by grouping several buckets into intermediate sizes called segments.

Different hashing schemes are designed to work for persistent memory to

solve some challenges related to consistency issues. A cuckoo-based hashing

19

scheme called PFHT [42] designed for phase-change memory (PCM) uses a stash

that stores any overflow entries for full-table rehashing and gains performance

on load factor. Even though this approach improves the insertion performance,

it is not a cache-friendly structure and takes a long time during searching for

a key in a bucket leading to higher lookup costs. Similarly, path hashing [43]

which is a cost-efficient write-friendly hashing scheme using an inverted binary

tree reduces the lookup cost. Other hashing schemes that perform a full table

rehashing level by level are designed to enable constant scale operations [44].

But this scheme is not efficient in controlling the hash table size which will

make the displaced records be more than one cache line during bucket updates.

Guaranteeing failure atomic write or update with a reduced number of cache

line access has shown good performance [10]. It is considered to write optimal,

as it uses a cache line size bucket even though one cache line cannot hold more

than four key-value pairs. In order to control the growth of directory size, it

is considered that increasing the bucket size is not a good idea as the size of

the bucket cannot be more than the cache line. Additionally, there is a trade-

off between the large bucket size and lookup performance as it suffers from

access to buckets across multiple cache lines. To balance the directory size and

access performance, it uses an intermediate layer called a segment between the

directory and buckets.

Segments group the buckets and an 8-byte directory entry is used to point

to them for accessing the buckets. This reduces the number of directory entries

required for buckets as a single directory entry points to a group of buckets

in the segments. Each directory entry points to segments containing a fixed

number of buckets. As shown in Figure 4.2, a segment stores a fixed number

of buckets, and each directory entry points to segments containing buckets.

Hence, the directory entry 002 indicates the global directory depth G and the

20

002 012 102 112

Bucket0

Segment 0 Segment 1 Segment 2 Segment 3

Bucket1

Bucket3

00…00000
00…00001
00…00010
00…00011
00…00101

Free
…
…

00…01011
Free
Free
Free

01…00000
00…00001
00…00010

Free
01…00001
01…00010

Free
…

Free
Free
Free
Free

10…00000
10…00001

Free
Free

10…00001
Free
Free
…

10…01010
Free
Free
Free

11…00000
11…00001

Free
Free

11…00001
11…00010

Free
…

11…10010
11…00101
11…00101
11…00101

…

Directory
G=2

L=1 L=1L=1 L=1

Figure 3.1 Cache conscious extendible hashing

local depth of the segments L in the hashing scheme.

The directory can become significantly smaller as few bits are needed to

address segments which makes it cache-conscious and helps to reduce the access

to the persistent memory. Under this situation, for better use of persistent

memory and increasing memory utilization, this paper complements CCEH.

For example, we design a strategy that exhausts the buckets in the segments

before the split of segments and/or directory doubling happens.

3.3 Design and Implementation

We present an adaptive cache-conscious extendable hashing (ACCEH) to in-

crease the utilization of persistent memory. To do this, our scheme is designed

to store more records in the existing buckets by fully utilizing the free spaces

of the buckets in a segment. Accordingly, directory doubling will be initiated

when there is no available space in all neighboring buckets in that segment. In

summary, exhaustively utilizing the buckets in the segment will contribute to

21

(1) increasing memory utilization by efficiently filling up the buckets in each

segment, and (2) reducing the expensive operation (directory doubling) for the

large table rehashing.

00...0101

Bucket 0

Bucket 1

Bucket 2

Insert

Full

Full
Insert a
record
here

Segment 0Segment 0Segment 0

Insert a new record to
bucket 0

1 If bucket 0 is full,
move to next

bucket

If bucket 1 is full,
move to next

bucket

2 3 4

Operation timeline

00...0101

Bucket 0

Bucket 1

Bucket 2

Search/Delete

Full

Full
Retrive if
search or
Free up if

delete

Segment 0Segment 0Segment 0

Search the record
in bucket 0

1 If failed, search the
record in bucket 1

Delete the record and free
the space in the bucket 2

2 4

Operation timeline

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

1
2

3
4

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

1
2

3 4

If failed, search the
record in Bucket 2

3

Insert the record to
available space in the

bucket in same segment

Figure 3.2 Record insertion strategies to a bucket

3.3.1 Design

To get better performance, the segment size and the number of buckets per

segment need to be designed carefully. This design option considers the sensi-

tivity of the design options to other operations like insertion, read and search.

If the size of the segment is large, it highly hurts the search performance. If we

consider the number of buckets in a segment to be 8 or more, we need to have a

segment with a larger memory size of up to 2 MB or more. This means, to load

one segment, we need to read up to 32 cache lines. This is not cache-friendly

and also not aligned with the read block of Optane persistent memory.

ESH uses probing techniques to go through the records in the buckets and

22

move to the other buckets during overflow. When the number of buckets in-

creases in the segment, the total number of buckets will also increase. This

leads to an increase in the number of records in the whole segment. In this

situation, a search operation is highly affected as it has to go through all el-

ements to search for the records in a segment. If we consider less number of

buckets like 2 in a segment, we store fewer elements in a segment. It will be

filled up frequently during insertion operation and cannot help to gain the in-

tended optimal performance. Once it is full, we initiate the full table rehashing

more frequently than we are expecting to do that. Hence, it will not be ideal

to use the option. In order to strike a balance between the Optane persistent

memory read block and cache line reads, it is ideal to set the number of buckets

in a segment to four. Most of the other research like Level hashing used four

buckets design to get the benefits of small-sized buckets to get better probing.

For these reasons, we choose to use the four buckets in one segment design.

Hence, for a hash table that has four buckets stored in a segment and each

bucket, has a space that accommodates four records, when a record insertion

attempt fails in one bucket, it continues searching for space in other buckets

until the last bucket in the segment and then insert a record to one of them.

Data is stored in the bucket as arrays of records.

A bucket store records from hashing function and records moved from the

neighboring buckets. During the insertion of records, if the bucket or the neigh-

boring buckets has more space, we move the record to these neighboring buckets

to delay the doubling operation. This can be used when a given bucket had not

had enough space to store a record and there are other neighboring buckets free

or have space to accommodate the records.

If there is a bucket with fewer records, we loop in the buckets within the same

segment to find the right location to insert the record in neighboring buckets.

23

This traversal to insert a record cannot go out of the segment as it complicates

the lookup. This approach is mainly to effectively utilize the available buckets

which are partially filled or not filled at all. For every insertion, it hashes to

the right bucket and if it is already full we move to the next buckets with fewer

elements and insert using probing.

For the concurrency control, the initial scheme that maintains the lock is

used as it shows reasonable performance for extendible hashing and a flag that

helps to check if the used bucket is cleaned. When records are inserted into

the buckets, if there is no space available for the newly inserted record to any

buckets in the same segment, we check for available space to store in neighboring

buckets. This can be achieved in a similar way to the state-of-the-art schemes

that use the tracker for the global and local depth during splitting and directory

doubling.

3.3.2 Implementation

As shown in Figure 3.2 for insertion operation, 1○ indicates insertion attempt

to already full bucket. Here as there is no space in the bucket, as in 2○ shows a

failure of insertion that initiate the bucket split or directory doubling depending

on the depth of the segment will proceed. As then the bucket is full, 3○ moves to

the neighboring bucket in search of available space. If not successful, it advances

searching space to the other buckets in the same segment as seen in 4○. Once a

space is found in one of the buckets, insertion succeeds. The directory doubling

happens when the scheme exhausts the space in the segment. The records in

the buckets are accessed as arrays and there is a fixed number of elements in

each bucket to ease the search operation.

Searching for a value that is moved to another bucket can be accessed by

looping through records that belong to the same segment with minimal overhead

24

00...0101

Bucket 0

Bucket 1

Bucket 2

Insert

Full

Full
Insert a
record
here

Segment 0Segment 0Segment 0

Insert a new record to
bucket 0

1 If bucket 0 is full,
move to next

bucket

If bucket 1 is full,
move to next

bucket

2 3 4

Operation timeline

00...0101

Bucket 0

Bucket 1

Bucket 2

Search/Delete

Full

Full
Retrive if
search or
Free up if

delete

Segment 0Segment 0Segment 0

Search the record
in bucket 0

1 If failed, search the
record in bucket 1

Delete the record and free
the space in the bucket 2

2 4

Operation timeline

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

1
2

3
4

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

00...0000
00...0001
00...0010
00...0011
00...0111
00...1000
00...1010
00...1011
00...1111

Free
Free
Free

1
2

3 4

If failed, search the
record in Bucket 2

3

Insert the record to
available space in the

bucket in same segment

Figure 3.3 Record search/deletion strategies from a bucket

compared to the doubling operations. Figure 3.3 shows this operation procedure

where the search always starts from the correct hash value as seen on 1○. If

searching for the record is not successful in the designated hash location, 2○

extends the search to the other buckets in the segment and 3○ scans all buckets.

It retrieves the data if existed or replays it as not existing after this procedure

completes scanning the elements in the consecutive buckets. If the operation is

to delete the record, based on the operations at 4○ it nullifies the record and

successfully frees the space in the bucket. The freed space is collected through

the garbage collection scheme and later on other records can be assigned based

on the hashing operation.

Hashing of records in this approach is relatively similar to hashing of records

to a bucket in CCEH to store records. However, when there is a request to insert

a record to an already filled bucket while the neighboring buckets have free

space, the scheme checks if insertion requires segment splitting. It performs

25

balanced and exhausted insertion to all buckets in the same segment before

rehashing is triggered. If there are neighboring buckets that are either empty

or semi-filled, it is less expensive to store records in these buckets than trigger

directory doubling. This can be done as records are stored in the buckets and

accessed as arrays. Directory doubling and rehashing of records will be initiated

when there is no space in all buckets in the same segment.

Deletion of records is done by overwriting during insertion as designed by

the initial scheme where invalid values during hashing can be overwritten by

replacing them with valid ones. When the record is stored in another bucket as

per this scheme, the deletion operation will nullify the record in the bucket and

this space is counted as free. Accordingly, if a given record is hashed to bucket

b0 but moved to bucket b3 because it is already full in this scheme, deletion will

look up the record in b0 and if not found, it continues to b3 looping through

the records in the buckets. Once the record is found in the intermediate buckets

or b3, it nullifies the record and thus makes the record invalid.

If certain records are deleted from an already filled bucket, the system will

move the record from another bucket back to its original hashing bucket to

ease the lookup for the next operation if data access is not fast. This operation

has less priority as the size of the bucket is the size of the cache line and once

all buckets are exhausted, segment split will rehash all records to their proper

buckets.

3.3.3 Concurrency

Designing a hashing scheme that scales well on multi-core machines that run

on persistent memory is still challenging. ESH aims to tackle this challenge and

contribute to a scalable and efficient hashing scheme for persistent memory that

guarantees persistence without incurring significant overhead.

26

level2 level3level1level0

root

S1

S2

S5

S4

S6

S3

S3

S3, L=3
S3, L=3
S3, L=3

S4, L=3
S4, L=3
S2, L=2

S5, L=2

S2, L=2

S6, L=3

Split levels Last saved
segment state

Move one level up to search for a
consistent split state using the given steps

� visit directory entries to access split
status after the crash.

‚if global depth(G)>local depth(L), use
the same segment

„ Check steps ‚ and ƒ for all levels
until a consistent state found

ƒif equal, they point to different segments
S4

S2

S3

Last segment state Intermediate segment state

Depth

Figure 3.4 Recovery operations: Recovery operation starts from the last saved

split state as seen in the steps and moves to the older states until a consistent

state is found (S: segment state)

3.3.4 Recovery

Recovery is another fundamental requirement that ensures data consistency

(recoverability and correctness) for highly available applications. When a system

failure occurs, data in a volatile CPU cache and RAMwill be lost but incomplete

data modifications may still exist in non-volatile memory like persistent memory

that causes inconsistency. Hence, to guarantee data consistency, it is essential

to make writes durable in the desired order [9, 13,45].

The order in which data are stored is valued and then their keys as inspired by

the predecessor calling themfence and clflush instructions to assure durability.

When a system crash happens and recovery is initiated, we traverse the

directory entries to check their consistency using the global and local depth

indications in a similar approach as the predecessor to access the last consistent

state of the hash table. Accordingly, we trace how many times the segment

appears contiguously in the directory using the buddy tree. We visit the parent

27

node after checking the local depth and decrease the local depth by one and

again check for consistency at that level. The split history is used as a tracking

tool from the current state to the older states and is managed by the directory

entries. Insertion and deletion operations that do not incur bucket splits are

failure-atomic. To complete recovery, as seen in the figure, directory entries

are used for the reconstruction of the table after failure. 1○ get the last saved

directory entry to access the split status to get the consistent state if the failure

has happened while segment splits. In 2○ and 3○, we check the values of G and

L to know if they point to the same level pointing into the same segment or

different segments. These steps as seen in step 4○ will be done by moving one

level up in the directory tree until a consistent state is found.

3.4 Evaluation

This section evaluates the ACCEH scheme for the delaying of the expensive

operation affecting the performance of the dynamic hashing scheme to perform

operations at the cache-line level guaranteeing failure atomicity.

3.4.1 Experimental setup

We run the experiments on a server with Intel Xeon® Gold 5218 CPU®

2.30GHz processor with 32 cores (64 hyper threads), 32KB each for data and in-

struction cache, 1024KB L2 and 22528KB L3 caches, 256GB of Optane DCPMM

(2x128GB) DIMMs in Memory Mode and 32GB of DDR4 DRAM. The server

is installed with Ubuntu Server 18.04.4 LTS with the kernel 5.4.9-47-generic

and PMDK 1.8 for Persistent Memory development and all of the codes are

compiled using GCC 9.0.

The initial hash table size is used to be 2048 records for a fair comparison

28

with the cache line conscious extendible hashing. Records are also randomly in-

serted into the hash table in the size of 8 bytes as well. Performance evaluation

is done on a uniform and skewed distribution data with different record sizes.

Experimental Parameters: as the experiment runs in a multicore envi-

ronment, threads are also pinned to their physical cores to reduce data issues.

Prior works like CCEH [10] and Dash [14] use dynamic hashing on PM. Accord-

ingly, for a fair comparison, the authors used a similar setup with these works

to get a fair result as all use extendible hashing schemes. Other prior works

which use hashing schemes like level hashing [11] are not used in this scheme as

they did not use the PM physical device for their evaluation and also concluded

in CCEH [10] as it outperformed them on DRAM implementation.

In order to evaluate the new mechanism, the number of records in a single

bucket is set to four and a bucket can store 64 bytes of records that can be

accessed as one cache line. As the data size grows, the number of segments will

grow up, while each segment contains 4 buckets to minimize the read and write

overhead when probing through the records. This makes our scheme a cache-

friendly hash table that restricts the size of the bucket to the cache line (64

bytes), and 256KB segment size. In order to effectively utilize the buckets in

the segment, we loop in the buckets to get free space and store the new record

in relatively less populated buckets with key-value stores.

During the insertion operation, the segment is checked if it can accommodate

the newly inserted value. If there is no space, this mechanism will normally

perform the bucket splitting until the segment size fills up. When the target

bucket is already full and the other buckets are not yet exhausted, we need to

move to another neighboring bucket having more space within the same segment

to search for space. Hence, we move the new value to these buckets and store

29

the record within the segment. This helps to effectively utilize all the buckets

in the segment before we trigger the directory doubling.

This approach helps to insert records in a balancing bucket and is effective

in the utilization of all buckets in a segment before the expensive job of full table

rehashing happens. This operation involves the rehashing and redistribution of

all records to buckets called directory doubling. During the search for a record,

it follows the lookup operation where the search will start from the target bucket

and continue to the neighboring buckets in the same segment. Searching for a

record will be unsuccessful when the item is not found in the initially hashed

bucket and the neighboring buckets which belong to the same segment.

3.4.2 Performance results

During the experiment, as records are also stored in neighboring buckets in the

segments, splitting time performance is relatively competitive with the state-of-

the-art scheme [10] as seen in Figure 3.5. With varying records size, the average

segment split time variation is negligible and hence our approach did not add

additional overhead. This shows, storing records into neighboring buckets can

positively contribute to the delay of directory doubling. This option can reduce

considerable overheads during directory doubling to rehash all buckets to the

newly created buckets.

The average directory doubling time of the new scheme is compared with [10]

and has shown comparable benefits as per the initial plan. The directory dou-

bling time comparison for the two schemes shows that our scheme is comparably

faster in hashing a record to a bucket and finding free space in the neighboring

buckets. As data size increases, ACCEH has been shown to store more records

before initializing the segment split and directory doubling for dynamic work-

loads as seen in Figure 3.7. In this way, we can exhaustively store records to the

30

existing buckets that eventually delay rehashing operation and also efficiently

utilize the allocated memory. Figure 3.8 shows, the performance of our scheme

for a uniform data distribution. As seen in the figures, compared to CCEH, the

time this scheme required to finish the insertion of the same data size is less.

This shows ACCEH is more efficient to insert data using a uniform distribu-

tion. Additionally, when we test the schemes for skewed data distribution as

seen in Figure 3.9, a similar performance gain is observed. From these results,

we can conclude that ACCEH exhibited better performance in record insertion

for both uniform and skewed distributions over ranges of data size.

3.4.3 Experimental analysis

Insertion operations: As insertion and lookup operations on records are done

in buckets in the same segment, our scheme optimally hashes the records to

buckets utilizing the space from neighboring semi-filled buckets. Accordingly,

the insertion success guarantee is higher on the initial bucket or consecutive

buckets having fewer load factors of the available buckets in the segment. As

seen in Figure 3.7, our scheme outperformed the existing cache-conscious hash-

ing. It has shown an overall improvement by 17% to accommodate more records

compared with CCEH during the insertion of one million records.

As shown in Figure 3.6, our scheme has shown that there is a delay in

directory doubling as there are records stored in the neighboring buckets after

the initial bucket fills up. In the experiment, the delay becomes visible after

segment splitting and directory doubling happened in the first 7 rounds. From

the result, we can observe more records are inserted before directory doubling

happens from that roundup. It is more visible as the record size increase.

For large data sizes, the overhead of full table rehashing is significantly

higher but in this mechanism, we managed to delay and add more records to

31

0

0.01

0.02

0.03

0.04

0.05

1KB 8KB 10KB 16KB 32KB 64KB 100KB

A
v
e
ra

g
e
 t
im

e
 (

m
s
)

Key size

CCEH ACCEH

Figure 3.5 Average segment split time

the already created buckets. This is because rehashing is faster as the number

of buckets are few and not advantageous to store in other buckets than the

designated buckets.

As records are coming from the client, it continues inserting them into the

buckets as far as there is free space in the segment. It means our approach

started to effectively store at least one record in the neighboring bucket before

it calls the segment split and or directory doubling operation. This advantage

continues to grow as the data size grows by delaying the spit as shown in Figure

3.6 that also eventually contributes to the delay of directory doubling.

The strategy of postponing directory doubling operation has shown sig-

nificant improvement in memory space utilization while retaining the original

performance in [10]. This approach can even contribute to optimal performance

as the data size increases and reduce rehashing as time goes on for large data

insertion.

The experimental results show that the average time taken to split the

filled segments is smooth and there is no significant overhead introduced in our

scheme as data size grows as shown in Figure 3.5. For the uniformly distributed

32

0

500

1000

1500

2000

2500

7 8 9 10 11 12

N
u
m

b
e
r

o
f
s
p
lit

s
 b

e
fo

re

d
o
u
b
lin

g

Directory doubling count

CCEH ACCEH

Figure 3.6 Number of splittings happened before directory doubling happens

for large insertions

0

50

100

150

200

1 2 3 4 5 6 7 8

T
o
ta

l
re

c
o
rd

 c
o
u
n
t

in

th
o
u
s
a
n
d
s

Directory doublings

CCEH ACCEH

Figure 3.7 Comparison of Key-Value Entries

data, the proposed scheme improves the throughput by 1.9%, 1.7%, 6%, and

8% for 1K, 10K, 100K, and 1000K record sizes respectively gaining overall

throughput of 9% during insertion of one million records. Skewed data also

shows an average improvement of -10%, 3.5%, 2.3%, and 6.4% for the same data

size with uniform distribution and an average of 9% performance improvement.

For small data sizes, our scheme performs less than the state-of-the-art

scheme. This happens because the cost of searching an empty space in the hash

table is as expensive as a directory-doubling operation for small records. This

33

is shown in the results and the performance for the 1K data is negative and the

state-of-the-art scheme is better. But, as the data size increases, it showed an

increased number of records on each round of directory doubling before calling

for the next operation as the number of records increase.

During our experiment, we observed an increase in the number of records on

each round of directory doubling before calling for the next doubling operations

as the number of records increased. Hence, there is an increase in the number of

records to be added by 14% after the directory is doubled for 8th round as seen

from Figure 3.6. This increases as the data size increases. Hence, as the data

size increases, there is a chance of storing more records in once-created buckets

which tells us that the insertion of a record in one segment is comparably

cheaper than rehashing all records as it is in the predecessor.

0

20

40

60

80

100

120

1K 10K 100K 500K 1000KIn
s
e

rt
io

n
 t

im
e

(s
e
c
o

n
d

s
)

Records in thousands

CCEH ACCEH

Figure 3.8 Record insertion performance on uniform data distribution

Delete operations: as inspired from [10], deletion of a record from a split

segment is achieved by directory entry update and moving the move-out records

to their new hash location. The migrated keys are considered invalid by the sub-

sequent transactions like reading and over-written by the insertion operations

and operations that do not incur bucket split are failure atomic [10].

Memory gain: when physical memory capacity is exhausted by running

34

0

20

40

60

80

100

120

1K 10K 100K 500K 1000KIn
s
e

rt
io

n
 t

im
e

(s
e

c
o

n
d

s
)

Records in thousands

CCEH ACCEH

Figure 3.9 Record insertion performance on skewed data distribution

processes, the performance of actual running tasks will become in-responsive.

In this regard, our scheme’s memory utilization result as seen in Figure 3.10

shows that we can save memory up to 7.53% for 1M records compared to the

state-of-the-art scheme. From Figure 3.10 (a), we can see the record insertion

progresses that shows the memory consumption of the two schemes as time

goes by. We see that ACCEH saves memory during run time and Figure 3.10

(b) shows the total memory consumed to insert 1M records. From this, we can

project that for the insertion of larger data size, even more memory can be

saved during the execution. This memory can be used by other applications or

can be used by the same application to store more records. We observe from

this result that ACCEH is memory friendly. Hence, this scheme managed to

store records effectively in less memory space compared to CCEH the system

can use the saved memory for other operations.

Recovery: failures may happen when a record is not fully written to the

hash table. Power failures, system crashes and others may contribute to the

failure if it happens while the hash table modification is in process. It is desirable

to have a system that recovers from failure in a reasonable time and brings back

the system to service. Records are stored as soon as received, and keys follow.

35

Partially written records will be ignored if the valid key values are not stored

in the valid segment. Reconstruction of the hash directory during start-up is

normally done as per the extendible hashing schemes but it is required to recover

the directory and the local depth by loading the record to memory. In order

to test and compare the recovery performance with the predecessor scheme, we

run the hashing scheme for insertion. After it started to load records and killed

the process as inspired from [14]. After the scheme is restarted, measure the

time it takes to accept any request for different data sizes. From the result, we

witnessed that our scheme has shown competitive performance. Accordingly,

the recovery time required for our scheme for 1 million records is 103ms while

it takes 101.7ms for CCEH. Even this result is meaningful for smaller data sizes

as the recovery time is almost comparable compared to the other schemes.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

1 4 7 10131619222528313437404346495255

M
em

or
y

us
ed

 in
 b

yt
es

Execution time(instructions execution
time)

CCEH ACCEH

0

200000

400000

600000

800000

1000000

Memory Saved at each stages before rehashing
happens

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

 CCEH ACCEH

M
em

or
y

in
 b

yt
es

Schemes

Memory used to insert 1M records

(a) Memory footprint of the schemes (b) Memory used by the schemes to store 1M records

Figure 3.10 Comparison of running time memory consumption

36

3.5 Summary

ACCEH presented a different dimension that adds the use of available free space

in the neighboring buckets to store records. Delaying unnecessary directory

doubling operations is achieved by exhaustively utilizing the existing spaces in

the neighboring nodes. This can help to effectively utilize the persistent memory

space. The performance of the scheme is also better compared with the state-of-

the-art scheme for uniform and skewed data distribution. Therefore, our scheme

can be an alternative approach that enhances the CCEH by reducing the split

management overhead that eventually postpones the expensive operation of

directory doubling in the system that uses an extendible hashing scheme on

persistent memory.

37

Chapter 4

Efficient and Salable Hashing
Scheme for PMs

4.1 Motivation

Hash-based indexing is widely used in file systems such as ZFS [46], GPFS [47],

and GFS/GFS2 [48, 49] as they provide constant lookup time for metadata

operation. However, hashing also requires the applications to have predictable

data size, fixed entry size, and preallocation of hash buckets. Thus, if applica-

tions have unpredictable data sizes, hashing can suffer from hash collisions and

underutilization. To resolve this issue, the rehashing operation which creates

and moves the entries to a larger hash table is necessary. However, this rehash-

ing operation is expensive as it blocks index access operations and moves many

entries. This can negatively impact the overall performance of the file system

and lowers the latency.

To address the issue, with the emerging persistent memory (PM), the per-

sistent nature of this device is used to improve the performance of hash-based

38

indexing. Emerging persistent memory (PM) devices such as Intel Optane DC

Persistent Memory Module (DCPMM) provide persistence, high storage capac-

ity, and high performance [1, 2]. As they have access latency close to DRAM,

durability, and byte addressability, they are widely adapted to handle latency-

critical transactions on storage systems [3, 4]. In particular to hash-based in-

dexing, PM can be used to

However, the characteristics of PM need to be carefully considered to fully

exploit the performance of PM. First, while PM has higher performance com-

pared with the existing persistent devices, it still has lower performance com-

pared with DRAMs. Thus, the effect of I/O operation on the performance can

be greater in PM than in DRAMs. Second, since PM has a reduced bandwidth

compared to DRAM, parallel access to PM by too many processes can cause sig-

nificant performance degradation. Hashing scheme should involve careful design

as using more threads, leads to congestion and a gradual decrease in bandwidth.

Third, as PM is byte addressable, it is also vital to reduce PM access that is

synchronized with the device level access behavior as the PM read mostly hits

the media due to the hash table’s inherent random access patterns. Fourth,

is the issue of locking as it highly affects the performance by increasing PM

bandwidth. When bucket level locking is used, there is a frequent acquiring and

releasing of lock, which requires a design that balances the PM read size with

the bucket size.

Relatively, there is much research to improve Tree based indexing struc-

tures for persistent memory compared to the attempts for hash-based indexing

structures. However, the existing indexes cannot provide the same advantages

to PMs as it suffers from asymmetric read/write performance and crash consis-

tency problems. Additionally, the existing schemes expose the PM to excessive

accesses that saturate its bandwidth and become a performance bottleneck in-

39

troducing additional latency. Using the existing indexing structures to run on

PM without modification to fit the new architecture would not help to gain

the expected performance. Thus, it needs to redesign index structures for PM.

High-performance and scalable indexing structures are crucial for storage sys-

tems to achieve fast queries.

With the arrival of persistence memory, a variety of indexes based on trees

are designed to optimize indexing for tree variants and hashing. There are

significant research results for hash tables to provide faster operations in in-

memory systems indexing structures. The efficient lookup time for mapping

values with a particular key in hash-based indexes needs to achieve faster access

irrespective of the size of the data. Hashing-based indexing structures are widely

used in different applications using key-value stores [5, 6].

In applications like the key-value store, sizes of records can not be predicted

as it involves the dynamic insertion or deletion of items. Therefore, a dynamic

hashing scheme that involves dynamic resizing is the best choice to adjust the

table size to fit records to the scheme. PM’s read/write latency during searching

a record in a large portion of storage can introduce cache misses [14] and PM

accesses. Concurrency controlling during these operations needs careful atten-

tion as it introduces additional read/writes for locking that ends up in further

bandwidth consumption. As the data insertion increases, the load factor of the

hash table becomes high forcing the growth of the hash table. To accommodate

that, the hash table will be rehashed and the data will be relocated to the newly

created buckets. Rehashing is an expensive operation that involves doubling the

buckets as it is an incremental operation and hence the new index at which the

values have to be mapped to a new location. Moving the existing records to a

new bucket location degrades the throughput halting the access of the indexes

during rehashing. On top of the read/write latency of PM, it increases the total

40

query latency.

In this paper, we propose an Efficient and Salable Hashing Scheme called

ESH to improve hashing for emerging persistent memories. ESH addresses the

existing performance challenges that are not addressed by combining efficient

utilization of PM read blocks and storing a bucket effectively into it and con-

suming the allocated PM space and bandwidth. When the existing bucket is

full of records and requires an expensive rehashing operation, ESH checks the

available space in the neighboring buckets in the same segment and utilizes the

free space if it exists. When the existing bucket is full of records and requires an

expensive rehashing operation, ESH checks the available space in the neighbor-

ing buckets and utilizes the free space if it exists. This allows ESH to delay the

expensive full table reshaping operation during the insertion operation, improv-

ing the load factor and the overall utilization of the persistent memory. It used

a bucket size that fits the one-read block of PM to gain reduced PM access

and uses bucket level locking to scale well in a multi-threaded environment.

We evaluate our scheme using Intel Optane persistent memory with various

configurations. Our evaluation results show that ESH can improve the inertion

performance by up to 30%, and search performance by up to 10% compared to

the state-of-the-art dynamic hashing schemes. In addition, it can improve the

load factor by up to 91% compared with the existing schemes.

4.2 Related Work

The durability, byte-addressable, and access latency close to DRAM benefits of

Persistent memory make the promising candidate for building applications that

use extensive memory systems. However, the change in memory architectures

makes the traditional data indexing inefficient for data consistency [9]. Exist-

41

ing works have improved tree-based indexing structures for persistent memory

with reasonable lookup time and better recovery [3, 7, 9, 13, 45]. As the in-

memory data size increases, rehashing the traditional hash tables incurs higher

latency requiring better rehashing techniques for persistent memory. To ease

the overhead during rehashing, linear probing, separate chaining, cuckoo hash-

ing, CCEH [10] and Dash [14] are a few of the techniques used. CCEH - the

variant of extendible hashing designed to optimize access of hash table buck-

ets to cache-line access that significantly minimizes the number of cache-line

accesses. It also reduced the overhead directory operations as it groups a num-

ber of buckets into intermediate sizes called segments. This approaches helps

to reduce the size of the directory to cache-line-sized buckets and also reduces

rehashing management during failure recovery [50–52].

Extendible hashing was developed for time-sensitive applications that use a

trie for bucket lookup. It uses re-hashing which is an incremental hierarchical

operation to fill the hash table. Therefore, it needs to be as effective as possible

during the full table rehashing. The dynamic allocation of buckets and their

pointers need to be tracked for getting records in the hash table. Different re-

search results contributed to making the rehashing efficient.

As time-sensitive applications are more affected by hash table rehashing than

the growth of tables, more researchers have focused on optimizing the rehashing

schemes. The growth of table size also has a significant performance factor on

record look-ups. As it uses a directory to index buckets that are dynamically

added or removed during the run time, it involves splitting new buckets with

rearranged values. This will expand the directory to get more storage for point-

ers to the new buckets. This can be done linearly by organizing buckets using a

directory entry pointing to individual buckets. Designing a proper splitting and

rehashing strategy for different workloads is a key approach to getting optimal

42

in-memory systems [53] [54].

A cuckoo-based hashing [42] reduces write to the PCMs with higher memory

efficiency by displacing randomly selected records to alternative buckets [42].

Records are inserted into one of the buckets using independent hash functions

is designed but the performance is still slower than the linear probing and

Cuckoo hashing [45, 55, 56]. Reducing the lookup cost to log scale is achieved

using binary tree [43] and is further divided into two level hashes [11].

Most of the research focuses on reducing the cost of full table rehashing and

improving the load factor. There are also other proposals that design additional

levels [42] that store records that are maintained on memory and then stored in

the hashing table. Cacheline level indexing with failure atomic structure that

dynamically manages hash expansion [10] on PM guaranteeing constant hash

table lookup time gain popularity as it effectively sets the size of a bucket to a

cache line that minimizes the number of cache line access reducing the overhead

of data access of multiple cache line.

Another approach that uses PM tree structure to avoid unnecessary reads

during record probing [14] uses fingerprinting used in PM tree and designed a

lightweight one-byte hash that helps to detect if there are keys that save PM

read/write bandwidth. It includes a strategy that postpones segment split that

helps to improve space utilization and is implemented for PM using the PMDK

libraries [57].

As the data set increases, rehashing the entire records is one of the challenges

and resource-consuming operations. Extendible hashing, therefore, is designed

to be used by applications that are more time-sensitive as the rehashing oper-

ations are done incrementally as data size increases or bucket overflows.

During rehashing, in order to place all records to their correct buckets for

a given hash key, the directory entry pointers double as the depth increases as

43

seen in Figure 2.2. The bucket address pointer called directory points to hash

buckets [10] and is updated like the above scheme with the size increases.

Building a dynamic and scalable hash table for the new architecture of per-

sistent memory hardware that can run in high load factors and instant recovery

is critical [11,14,42,44]. Additionally designing hashing schemes that reduce the

overhead of dynamic memory management with better hash table lookup time

and other related operations is equally important and this work will contribute

to these efforts.

4.3 Design and Implementation

Similar to other approaches [10,14], ESH is designed based on the segmentation

of buckets into two layers segments and buckets in it. In this paper, we present

an efficient and scalable hashing scheme that effectively stores a key value on

persistent memory. It stores more records in the buckets by exhaustively uti-

lizing the free spaces in the buckets in the same segment to increase memory

utilization by efficiently filling up the buckets in each segment.

4.3.1 High level Design

The proposed scheme is designed to leverage performance characteristics of

Optane persistent memory using hashing techniques that improve performance

and scalability addressing problems in hashing index structures. Thus, this work

focuses on some design principles as follows:

(a) Avoid both unnecessary reads and writes – Write operation us-

ing hashing scheme usually requires frequent access to media. This has a

big impact on the performance of the scheme. All operations like read-

ing, writing, and other operations will be affected by the cumulative of

44

these drawbacks. On top of this, for a device with less speed compared

to DRAM, frequent read and write operations has a more severe perfor-

mance overhead. Therefore, ESH reduces these unnecessary PM reads and

writes to gain high end-to-end performance.

(b) Bucket level locking to allow multi-threading – A good locking

strategy generally results in fewer requests to lock and unlock data for

sequential access and manipulation, which translates to reduced CPU

cost. To provide better concurrency, ESH uses a better lock granularity

as the cost of each lock and unlock consumes CPU time. Therefore, a

write thread locks only the bucket under operation that reduce the lock

contention and the other buckets can be visible for other threads. Other

operations are lock-free to permit more concurrency. Readers can access

buckets but segment splitting and directory doubling operations are not

lock-free to prevent data inconsistency. The active Writer thread is re-

sponsible for creating and locking during segment splitting or doubling

the directory as access of the segment or directory under modification by

one thread will be inconsistent if accessed by other threads. So, ESH is de-

signed with the concept of a lock with as minimal data block as possible.

i.e, a bucket.

(c) Optimistic scaling on multicore machines – To take the advantage

of parallel CPU resources, ESH is designed with optimistic scaling. Previ-

ous research mainly focused on reducing cache line flushes and using PM

writes to get scalable performance. This actually has scalability issues

when they are deployed on the actual PM devices. As PM has limited

bandwidth, ESH reduces unnecessary PM reads and lightweight concur-

rency control to further reduce PM writes to guarantee persistency and

45

less overhead. Hence, in ESH a bucket is accessed as one block of PM

which will reduce the PM access overhead.

Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011...
...

...000

...001

...010

...101
....

...111

key
value

H(Key) =
Key%2G

Directory
(G=3)

Insert key
and value

Segment 0

...

Depth (L=2)

Metadata Records(Key-value pairs)

Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011

Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011

Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011...
Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011

Lock State OFRB OB MC OC 00...0000 00...0001 00...0010 00...0011

Bucket 0

Segment N

Bucket 1

Bucket N

Bucket 0

Bucket 1

Bucket N

32bytes 224bytes

1bit each 8bytes 1bit 8bytes each

...

...

Figure 4.1 Overall architecture of Scalable hashing scheme and bucket structure

4.3.2 Bucket layout

In this section, we will describe the overall architecture of ESH and bucket

structure as shown in Figure 4.1. The bucket has two sections - the metadata

and the records. The first section of the bucket - the metadata stores infor-

mation about the bucket to speed up access and keep consistency in storing

actual records. contains vital information about the bucket status, lock, and

overflow bucket for fast access during operations including those listed below.

They account for 32 bytes of the total bucket size for the implementation to

run the experiment.

The second section is the record section. It is used to store the actual records

(key-value stores). As each directory entry points to a segment that contains

a fixed number of normal buckets, the metadata information helps operations

like locking, state information and overflow records from neighboring buckets

that do have not enough space for the insertion.

46

For any operations on the buckets, the scheme checks if the bucket is at

a consistent state using the state flag in the metadata. If any operation has

left the buckets at an inconsistent state before it persists as a result of crush

or power failure, it avoids any operation during the accident and the data as

invalid. To avoid the expensive logging of all operations insertion is successful

only after the metadata is persisted otherwise the record is discarded.

Locking (lock) – ensures the correct access to a bucket when there are mul-

tiple threads in execution. To support this mutual exclusion as shown in Figure

4.1, ESH provides a lock indicator to enforce a limit to access the bucket to

guarantee exclusion. It consists 1bit of metadata to store the locking informa-

tion for the writer threads. For example, a writer thread must hold the lock

bit by changing it to 1 to write the records to the bucket. Then, it returns to

0 for other threads which try to get access to the same bucket again after the

lock-holding thread releases the lock. As a result, it maintains consistency and

supports bucket-level locking. Writer threads must hold the lock bit changing to

1 while writing to the bucket to maintain consistency and other writer threads

should wait until the lock value changes.

State – is a Boolean that checks whether the system was shut down cleanly.

If there is a power/system failure or other unexpected events, ESH can be

inconsistent. To solve that, once a thread finishes an operation on a bucket

correctly, it changes the state to 0 which indicates a correct flag so that the

following thread can access the bucket. There are many situations where the

system is closed without appropriately closing the hashing scheme because of

power failure or other unpredicted cases leaving the system in an inconsistent

state. Hence, to maintain better consistency, once a thread finishes operation

on a bucket correctly, a 1-bit flag shall trace the state of the bucket so that the

following threads can access the bucket. If the state indicates 1, it means that

47

the bucket was not correctly closed by the previous thread. So, the result of the

operation is discarded and the recovery procedure is initiated.

Overflow Bit(OB) – It consists of one bit that indicates the status of the

bucket whether it is full or not during insertion. When a thread tries to insert

a record, the thread accesses this metadata. If the value of OB is 0, it indicates

there is available space in the bucket, Thus, the thread inserts the record in

the bucket. Once insertion is done, the membership count increases the value

to trace the available space left. Its value will be changed to 1 by the insertion

threads when the insertion is succeed. If the value of OB is 1, it indicated the

bucket has no more space, so move to the next buckets for insertion. This speeds

up checking the status of the bucket for insertion and search operations.

Overflow Records Address Byte(OFRB) – In ESH, records are stored

in their hashed buckets in a segment until the bucket is full. Once a bucket

is full, ESH does not immediately trigger segment split or directory doubling.

Instead, ESH checks whether there is a neighboring bucket that has available

space in the same segment. If so, it stores the coming records in the bucket.

When the record is moved to the neighboring bucket, the OFRB holds the

address of the bucket to which the record is moved. By doing so, when ESH

searches the record stored in a neighboring bucket, ESH can search the record

easier and faster by referring to OFRB. We note that this OFRB size is variable

size and configurable according to the maximum number of the neighboring

bucket and architecture. For example, there are three neighboring buckets. If

we made three OFRB fields, we can directly point to three neighboring buckets.

It enables searching for the moved records faster while the record size is reduced.

If we made only one OFRB field, we continue to search for the moving record

in the next neighboring buckets until we search for the record. It can induce

the search for the record in all the neighboring buckets in the worst case while

48

the record size can be increased.

Membership Count – it is an 8bytes and counts the total records stored or

pushed to each bucket as their hashed bucket is already full. It is incremented

by insertion threads when the insertion is succeeded. ESH uses this MC to

identify how many records are inserted or moved to each bucket. Thus, ESH

knows the available number of records in the bucket for upcoming records and

ease of searching.

Overflow Count(OC) – OC indicates the number of moving records from

the original bucket to the neighboring buckets because of overflow. As records

can be stored in the neighboring buckets, differentiating records that are hashed

to their original bucket and those moved from the neighboring buckets may con-

fuse other operations during searching. Thus, ESH increases OC whenever it

stores a record in a neighboring bucket due to an overflow of the original bucket.

It also decreases OC whenever it deletes a record in a neighboring bucket. Dur-

ing the search operation, to continue the search to the neighboring buckets,

the overflow counter(OC) tells that there are more records in the neighboring

buckets because of overflow. Then, the search will continue to read the OFBR

address to continue the search operation in the other buckets in the same seg-

ment.

4.3.3 Operations

Any operation in this scheme has to check if the intended bucket is in a consis-

tent state. A running process that intends to write or update the bucket reads

the metadata and gets the lock and checks the overflow bit to know if it is full.

As shown in Algorithm 4.1, when a thread inserts a record to a bucket, it per-

forms a hash operation via a key and gets a hash value (i.e., hashval) as seen in

line 2, Algorithm 4.1. Then, it gets the original bucket i.e., original bucket to

49

which the hash value is going to be stored and the target buckets in case there

is overflow (target bucket) as indicated in lines 4-5, Algorithm 4.1. Then,

first, the threads have to check the state information of the bucket. Hence, the

thread gets the state and lock variable from the target bucket as seen in lines

7-8, Algorithm 4.1.

From this information, if the state of the target bucket is not consistent, the

insert operation returns an error and performs a recovery operation to get a

consistent bucket. If there is no problem, the thread continues to perform the in-

sertion operation to the original bucket as seen in line 9, Algorithm 4.1. To check

if that bucket is full, the thread checks if overflow bit of the target bucket is

set or not as seen in line 10, Algorithm 4.1. If it is set, then the thread updates

the target bucket’s neighboring bucket address (i.e., neigh bucket add) that

traces the neighboring bucket by the next bucket of the target bucket as seen

in line 11, Algorithm 4.1. This means that there is no free space to insert in

the target bucket. To move to the next bucket to search for a free space, the

thread updates the target bucket by the next bucket of the target bucket since

the thread retries the insertion operation using the next bucket as seen in lines

12-13, Algorithm 4.1.

If the bucket has free space, the thread locks the target bucket and performs

insertion. This is known by the threads if overflow bit of the target bucket

is not set in line 14, Algorithm 4.1, this means that the target bucket has free

space. Thus, the thread first holds a lock and it inserts the key, value, and

hash value into the target bucket as seen in line 16, Algorithm 4.1. Then, it

updates overflow count of the original bucket and member count of the target

bucket by 1 as seen in lines 17-18 and if member count is full by this update,

overflow bit of the target bucket is set as seen in lines 19-20, Algorithm 4.1.

After this insert operation, the thread releases the lock and returns the result

50

(success) of this insert operation.

Generally, if there is a bucket with fewer records, we loop in the buckets of

the same segment to find the right location to insert the record in neighboring

buckets. This traversal to insert a record can not go out of the segment as

it complicates the lookup. This approach is mainly to effectively utilize the

available buckets which are partially filled or not filled at all. For every insertion,

it hashes to the right bucket, and if it is already full move it to other buckets

with fewer elements and insert using probing. It inserts the records into the

available space in the segment which holds four buckets as indicated in the

architecture in Figure 4.1.

002 012 102 112

Bucket0

Segment 0 Segment 1 Segment 2 Segment 3

Bucket1

Bucket3

00…00000
00…00001
00…00010
00…00011
00…00101

Free
…
…

00…01011
Free
Free
Free

01…00000
00…00001
00…00010

Free
01…00001
01…00010

Free
…

Free
Free
Free
Free

10…00000
10…00001

Free
Free

10…00001
Free
Free
…

10…01010
Free
Free
Free

11…00000
11…00001

Free
Free

11…00001
11…00010

Free
…

11…10010
11…00101
11…00101
11…00101

…

Directory
G=2

L=1 L=1L=1 L=1

Figure 4.2 Segmented Extendible hashing with cache conscious feature

In ESH, segment stores a fixed number of buckets of metadata of 32 bytes

and 224 bytes of key-value pairs and each directory entry points to these seg-

ments containing buckets and data are stored in the bucket as arrays of records

as seen in Figure 4.2. A bucket stores records from hashing function and records

moved from the neighboring buckets. During the insertion of records, if the

bucket has more space and the neighboring bucket has, we move it to these

51

Algorithm 4.1: Simplified insert algorithm in EHS
1: def EHS insert(key,value):

2: hashval = hash(key);

3: /* check state and get the lock from the targeted bucket */

4: original bucket = get segment.bucket(hashval)

5: target bucket = original bucket

6: retry:

7: state = target bucket.state

8: lock = target bucket.lock

9: if state == 0 /* check if the bucket is consistent */ then

10: if target bucket.overflow bit == 1 then

11: target bucket.neigh bucket addr = target bucket.next

12: target bucket = target bucket.next

13: goto retry:

14: else

15: lock target bucket /* if the bucket is not full */

16: target bucket.insert(key, value, hashval)

17: update original bucket.overflow count

18: update target bucket.member count

19: if target bucket.member count == full then

20: target bucket.overflow bit = 1

21: end if

22: unlock target bucket

23: end if

24: end if

25: return insert result

52

neighboring buckets to delay doubling. This can be used when a given bucket

has not had enough space for insert and there are other neighboring buckets

free or have space to accommodate the records.

For the concurrency control, the initial CCEH scheme that maintains the

lock is used as it has witnessed showing reasonable performance for extendible

hashing and a flag that helps to check if the used bucket is cleaned. When

records are inserted into the buckets, if there is no space available for the newly

inserted record to any buckets in the same segment, we check for available

space for insertion in neighboring buckets. This can be achieved in a similar

way the CCEH uses a tracker for the global and local depth during splitting

and directory doubling.

If there is a bucket with fewer records, we loop in the buckets of the same

segment to find the right location to insert the record in neighboring buckets.

This traversal to insert a record can not go out of the segment as it complicates

the lookup. This approach is mainly to effectively utilize the available buckets

which are partially filled or not filled at all. For every insertion, it hashes to

the right bucket and if it is already full we track the other buckets with fewer

elements and insert using probing.

The records in the buckets are accessed as arrays. As there is a fixed number

of elements in each bucket, it is easy for the search operation to go through the

buckets as seen in Algorithm 4.2. Searching for a value is done starting by

hashing the key and looking it up in the buckets as other schemes did. For the

normal search operation, items are accessed by hashing from the first hashing

location. But, when searching for a value that is moved to another bucket,

the search item can be accessed by looping through records that belong to the

same segment. Search also performs a hash operation via a key and gets a hash

value like the insert operation as seen in line 2, Algorithm 4.2. Then, the search

53

thread gets the target bucket and reads the overflow bit flag and state from

the target bucket as seen in lines 4 and 6-7, Algorithm 4.2. And then, like the

insert operation, the search operation can be performed only if the state of

the target bucket is consistent as seen in line 8, Algorithm 4.2. If the state

is consistent, the thread checks whether the overflow bit is set or not refer

to line 9, Algorithm 4.2. If overflow bit is not set, it means that the target

bucket is not full now. Thus, the thread can find the value of the key via the

search operation in the target bucket as seen in line 10, Algorithm 4.2.

If the overflow bit is set as seen in line 11, Algorithm 4.2, the thread tries

to find the key in the target bucket as seen in lines 12-13, Algorithm 4.2. Even

if the target bucket is full now, the requested key could be already inserted

in the target bucket. If the target bucket has no key, the thread updates the

target bucket by the neighboring bucket and retries to search for the key in the

changed target bucket as seen in lines 15-16, Algorithm 4.2. Finally, the thread

returns the value of the key as in line 19, Algorithm 4.2.

4.3.4 Metadata and hash table operation

Figure 4.3 depicts the more detailed metadata and hash table operations (i.e.,

two insert and one delete operations) to show how the metadata is updated or

used with our hash table operations. As shown in the figure, when a thread

tries to insert a record (R1) whose original bucket is bucket 0, it checks the

state of bucket 0 if it is consistent or not (we assumed that all the buckets are

consistent) 1○. If the state is consistent, the thread checks the overflow bit (OB)

if bucket 0 is already full i.e., have the overflow or not.

In this case, the original bucket is full. Thus, the thread gets the neighboring

bucket, bucket 1 in this case in the same segment. It updates the OFBR of

bucket 0 by bucket 1’s address and searches for the free space in the bucket

54

Algorithm 4.2: Simplified search algorithm in EHS
1: def EHS search(key):

2: hashval = hash(key);

3: /* get target bucket from the target segment */

4: target bucket = get segment.bucket(hash)

5: retry:

6: overflow bit = target bucket.overflow bit

7: state = target bucket.state

8: if state == 0 /* check if the bucket is consistent */ then

9: if target bucket.overflow bit == 0 then

10: value = target bucket.search(key)

11: else

12: if if key is in the target bucket then

13: value = target bucket.search(key)

14: else

15: target bucket = target bucket.neigh bucket addr

16: goto retry

17: end if

18: end if

19: return value

20: end if

55

2○. In this case, there is free space in bucket 1 so that the thread can insert

the record in bucket 1. Thus, the thread increases bucket 0’s overflow count

(OC) by 1 and bucket 1’s member count (MC) by 1. In this case, the member

count of bucket 1 is full which denotes bucket 1 is full so that the overflow bit

is updated by 1.

Consider another insertion operation that continues to add a record to the

same bucket. Then, the thread tries to insert another record (R2) whose original

bucket is bucket 0 as seen in 3○. In this case, the original bucket and bucket 1 are

already full 4○. Thus, the thread searches for free space in bucket 2 by getting

the neighboring bucket (bucket 2). Additionally, it adds bucket 2’s address to

OFBR of bucket 0 to sustain the later tracing 5○. Since bucket 2 has free space,

the thread can now insert R2 into bucket 2. Then, the thread increases the

overflow count of bucket 0 by 1 and the member count of bucket 2 by 1.

After these two insertion operations, another thread tries to delete R1 which

is stored in bucket 1 6○. First, the thread searches for the record in its original

bucket (bucket 0). In this case, there is no R1 in the original bucket. Thus, the

thread tries to search for the record in the next neighboring bucket (bucket 1).

Since bucket 1 has R1, the thread deletes R1, decreases the member count of

bucket 1, and updates the overflow bit of bucket 1 by 0. Finally, the thread

removes bucket 1 as a neighboring bucket.

4.3.5 Implementation

From the aforementioned properties of persistent memory and the hashing tech-

niques, we implemented our mechanism to minimize the performance impact

and optimize memory utilization by reducing frequent full table rehashing that

contributes to tail latency.

Hashing of records in this approach is relatively similar to hashing of records

56

00...0000

Bucket 0

Bucket 1

Bucket 2

Insert R1

Segment 0

00...0000
00...0001
00...0010
00...0011

00...0111
00...1000
00...1010

Free

00...1111
Free
Free
Free

1

R1 is inserted
in Bucket 1

Try to insert R1 to Bucket 0.
Bucket 0 is full.

1 2 Bucket 0 adds Bucket 1 (B1) in OFRB as a neighboring
bucket.
R1 is inserted in Bucket 1 which has free space.
Bucket 0's OC increases by 1.
Bucket 1's MC increases by 1 and OB is updated 1.

OB MC OC

0 3 0
OB MC OC

0 1 0
OB MC OC

2

00...0001

Insert R23

Bucket 0

Bucket 1

Bucket 2

Segment 0

00...0000
00...0001
00...0010
00...0011

00...0111
00...1000
00...1010
00...0000

00...1111
Free
Free
Free

Bucket 0

Bucket 1

Bucket 2

Segment 0

00...0000
00...0001
00...0010
00...0011

00...0111
00...1000
00...1010
00...0000

00...1111
00...0001

Free
Free

R2 is inserted
in Bucket 2

4
Bucket 1 is

full

5

Bucket 0

Bucket 1

Bucket 2

Segment 0

00...0000
00...0001
00...0010
00...0011

00...0111
00...1000
00...1010

Free

00...1111
00...0001

Free
Free

00...0000

Delete R1
6OFRB

OFRB

OFRB
0 1 0

OB MC OCOFRB
0 2 0

OB MC OCOFRB
0 2 0

OB MC OCOFRB

1 4 0
OB MC OCOFRB

1 4 0
OB MC OCOFRB

0 3 0
OB MC OCOFRB

1 4 1B11 4 0 1 4 2B1/B2
OB MC OCOFRB OB MC OCOFRB

1 4 1B2
OB MC OCOFRB

3 Try insert R2 to Bucket 0.

Bucket 1 is full.

5

4

Bucket 0 adds Bucket 2 (B2) in OFRB as
another neighboring bucket.
R2 is inserted in Bucket 2.
Bucket 0's OC increases by 1.
Bucket 2's MC increases by 1.

6 Try to delete R1.
Get Bucket 1 from Bucket 0's OFRB and delete R1.
Bucket 1's MC decreases by 1.
Bucket 1's OB is updated by 0.
Bucket 1 is removed in Bucket 0's OFRB

Figure 4.3 Metadata and hash table operations in ESH (R1: record 1, R2: record

2, OFRB: neighboring bucket address, OB: overflow bit, MC: member count,

OC: overflow count)

to a bucket in CCEH to store records. When there is a request to insert a

record to an already filled bucket while the neighboring buckets have free space,

the scheme checks if insertion requires segment splitting. It performs balanced

and exhausted insertion to all buckets in the same segment before rehashing

is triggered. If there are neighboring buckets that are either empty or semi-

filled, it is less expensive to store records in these buckets than trigger directory

doubling. This can be done as records are stored in the buckets and accessed

as arrays. Directory doubling and rehashing of records will be initiated when

there is no space in all buckets in the same segment. and This insertion can be

pointed to by the pointer that helps other operations and is also a signal that

shows some records are shifted to other buckets in the segment.

57

Deletion of records uses the insertion overwrite as designed by the initial

scheme where invalid values during hashing can be overwritten by replacing

them with valid ones. When the record is stored in another bucket as per this

scheme, the deletion operation will nullify the record in the bucket and this

space is counted as free. Accordingly, if a given record is hashed to bucket b0

but moved to bucket b3 because it is already full using our scheme, deletion will

lookup the record in b0 and if not found it continues to b3 looping through the

records in the buckets. Once the record is found in the intermediate buckets or

b3, it nullifies the record and thus makes the record invalid. If certain records

are deleted from an already filled bucket the system will move the record from

another bucket back to its original hashing bucket to ease the lookup for the

next operation if data access is not fast. This operation has less priority as the

size of the bucket is the size of the cache line and once all buckets are exhausted,

segment split will rehash all records to their proper buckets.

4.3.6 Concurrency

In a multi-threaded environment, performing multiple queries is challenging

as multiple threads are going to access a hash table. There is a possibility of

collision as they may run off the same object in the table. Especially, expensive

operations like full table rehashing require exclusive access to the entire hash

table that could block other subsequent operations resulting in to increase in

response time.

This becomes critical when the size of the hashing table increases. There-

fore, we evaluated the latency of concurrent operations like insertion and search

operations. As we run a large number of insertions in a multi-threaded environ-

ment, the insertion throughput of all schemes under comparison increased and

both Dash and ESH showed better overall performance. From the comparison

58

result, ESH has shown better performance as the lock contention is reduced

to a single bucket level, and also all operations are aided by the metadata

information.

4.3.7 Recovery

Recovery: failures may happen when a record is not fully written to the hash

table. Power failures, system crashes and others may contribute to the failure if

it happens while the hash table modification is in progress. For time-sensitive

applications, it is desirable to have a system that recovers from failure in a rea-

sonable time and is ready for services. Records are stored as soon as received,

and keys follow. Partially written records will be ignored if the valid key val-

ues are not stored in the valid segment. Reconstruction of the hash directory

during start-up is normally done as per the extendible hashing schemes but it

is required to recover the directory and the local depth by loading the record

to memory. In order to test and compare the recovery performance with the

predecessor scheme, we run the hashing scheme for insertion. After it started

to load records and killed the process as inspired from [14]. After the scheme

is restarted, measure the time it takes to accept any request for different data

sizes. From the result, we witnessed that our scheme has shown competitive per-

formance. Accordingly, the recovery time required for our scheme for 1 million

records is 103ms while it takes 101.7ms for CCEH. Even this result is meaning-

ful for smaller data sizes as the recovery time is almost comparable compared

to the other schemes.

59

4.4 Evaluation

In this section, we set up the experiment for our scheme and compare it with

state-of-the-art schemes designed on the same dynamic hashing on persistent

memory. In this evaluation, we chose to compare our scheme with CCEH [10]

and Dash [14] as these use extendible hashing schemes where CCEH mainly

focused on cache consciousness and Dash aimed to reduce read and write on a

256byes of bucket size.

Experiment result shows that our scheme:

• Efficiently utilizes segment level space as there is no space left empty

in the segment before a segment split operation is triggered or directory

doubling happens.

• In a multi-core environment, the performance of our scheme scales up

well compared to the state-of-the-art hashing that uses similar hashing

schemes.

• Competitively achieves high load factor without compromising perfor-

mance and recovery with minimal cost.

4.4.1 Experimental setup

We run the experiments on a server with Intel Xeon® Gold 5218 CPU®

2.30GHz processor with 16 cores (32 hyper threads), 32KB each for data and in-

struction cache, 1024KB L2 and 22528KB L3 caches, 256GB of Optane DCPMM

(2x128GB) DIMMs in Memory Mode and 32GB of DDR4 DRAM. The server

is installed with Ubuntu Server 18.04.4 LTS with the kernel 5.4.9-47-generic

and PMDK 1.8 for Persistent Memory development and all of the codes are

compiled using GCC 9.0.

60

Experiment parameters – as the experiment is run on a multicore envi-

ronment, threads are also pinned to their physical cores to reduce data issues.

Prior works like CCEH [10] and Dash [14] use dynamic hashing on PM. Ac-

cordingly, for a fair comparison, we used a similar setup with these works to get

a fair result as all use extendible hashing schemes. As other prior works which

use hashing schemes like level hashing [11] are not used in this scheme as they

did not use the PM physical device for their evaluation and also concluded in

CCEH [10] as it outperformed them on DRAM implementation. Accordingly,

setting parameters and initial data size to set up an experiment. CCEH uses a

16KB segment size and the bucket size is limited to 64 bytes and four probing

lengths whereas Dash uses 256 bytes(four cache lines) bucket size and also 16KB

segment size. Hence, we planned to compare ESH with these hashing schemes,

we use 256 bytes for bucket size and a 16KB segment size with 4 probing dis-

tances. In the prior work in CCEH, the increase in performance is recorded as

the segment size increases. This is because, the larger the segment size is, the

more the scheme stores data in memory and performs probing less frequently.

In ESH, a bucket stores 28 key-value pairs of 8 bytes each totaling 224 bytes

and 32 bytes of metadata, and a single segment stores 4 buckets. We choose this

to efficiently use the advantage of Optane persistent memory buffer that issues

a 256bytes write block [58]. Even though the previous scheme in CCEH [10]

used a 64byte size to utilize one cache line for a bucket, that is chocked by

the PMEM write block. Extending the size of a bucket to a 256-byte block of

PMEM will be a balancing point where we use the two blocks efficiently. As

the data size increases, the size of the hashing table increases resulting in to in-

crease in directory entries and the number of segments following the extendible

hashing technique.

Benchmarks – to test how the hashing scheme runs under a particular

61

load to find the performance and tune collecting diagnostic information needed

to eliminate bottlenecks. Testing hashing operations using benchmarking tools

that represent realistic workloads are used and results are compared with the

other schemes. Insertion, search and update operations of the scheme are eval-

uated and get a competitive performance.

To run the experiment, the initial data load of 10 million records is pre-

loaded using the GCC file that defines Hash bytes, a primitive used for defining

hash functions based on the public domain from MurmurHashUnaligned [59]

to get fast and high-quality hashes and get a fair comparison result with Dash

as this was used as hashing index. To stress-test our hashing scheme, we use

both uniform and skewed /Zipfian distributions with varying sizes. The exper-

iment result shows our scheme achieved better performance benefiting from

cross-bucket record storage that reduced the frequency of directory doubling

– the expensive operation in hashing operations and fewer contentions as the

metadata helps to minimize unnecessary operations. For the experiment, we

used a fixed size key-value of 8 bytes of integers, and the variable length key

experiment is used from the pre-generated variable keys by Dash [14] by the

benchmark.

4.4.2 Comparative Performance for varying data sizes

To understand the basic performance gain of the design, we measured the in-

sertion performance of ESH and compared the performance with CCEH and

Dash on varying data sizes for a single thread. This helps to show the perfor-

mance improvement of the schemes regardless of the data size. Later we extend

this evaluation to varying numbers of threads to show the total improvement.

Hence, as reading uses the underlying performance bound, we compared the

performance of data insertion operations as the data size increased. Figure 4.4

62

shows the insert performance when the data size is 1, 5, 10, 20, and 30 GB. As

shown in the figure, ESH outperformed CCEH hashing schemes by 31.83% and

Dash hashing scheme by 3.94% when inserting 30GB of data.

This performance gain comes because ESH efficiently utilizes the empty

spaces in the same segment, delaying the expensive rehashing operation. Thus,

while other schemes perform the rehashing operations, EHS can continue to

perform the insert operation, leading to improve insert performance. Another

contribution to this gain comes from the NUMA efficient design used by ESH.

As remote PM access always suffers from low performance, most or all tasks’

memory/PM in this design are assigned to their local NUMA node. This opti-

mizes memory/PM-processor locality by binding to their local nodes.

The difference in performance between CCEH and EHS is greater than that

between Dash and EHS. It is because CCEH uses 64 bytes for a bucket size

that does not match the read block of the persistent memory while EHS and

Dash use 256 bytes for a bucket size that exactly matches one read block of the

persistent memory. Thus, this small bucket size of CCEH forces more frequent

rehashing and flush operations compared with the other two schemes.

As the size of key-value stores increases, both Dash and ESH achieved rel-

atively similar performance but better than CCEH by up to 3X as both used

metadata and fingerprints respectively. Although CCEH has shown better per-

formance on small data, it loosed its performance as the data size grows. This is

because it uses cache line-sized data and flushes it faster than the other hashing

scheme to complete hashing in a shorter time.

4.4.3 Performance on a varying number of threads

Insert: Figure 4.6 shows the throughput of CCEH, Dash, and EHS during the

insert operation while a varying number of threads. As shown in the figure, EHS

63

0
500
1000
1500
2000
2500
3000
3500
4000
4500

1 5 10 20 30

In
se

rt
io

n
tim

e(
se

c)

Data Size in GB

CCEH Dash ESH

Figure 4.4 Single thread data insertion performance comparison under a fixed

key length

outperforms CCEH and Dash by up to 53% and 14%, respectively, when the

number of threads is 36. More specially, when the number of threads is small, the

performance of EHS and Dash is similar. However, when the number of threads

is more than 8, the performance of EHS increases more. It demonstrates that

utilizing available spaces in the buckets in a segment can improve performance

and scalability.

In the other schemes, once a given bucket is full, there is no mechanism to

check the neighboring buckets for available space even if all of them are empty.

This leads to triggering full-table rehashing assuming that the hash table is full

while it is actually semi-empty. In ESH, we effectively used the hash table as

we move records to the neighboring bucket in the same segment thus it delays

the rehashing operation.

64

Additionally, to evaluate the performance of the scheme, testing using the

YCSB benchmark is performed. The evaluation is done using 30GB of data

generated by the schemes under a similar evaluation setup for a fair comparison.

As we see from Figure 4.5, the schemes are evaluated by four YCSB workloads

and the evaluation result shows ESH has shown better performance as the

number of threads varies. Figure 4.5(a) is an update-heavy operation, (b) shows

performance results for reading-heavy workloads, (c) is a result of mainly read

operation, and the last shows evaluation result of the latest read operations. For

all operations, ESH shows comparably better than other schemes even though

the performance improvement is not too high.

(a) Update heavy workload (50%read,

50% update)

(b) Read heavy workload (90%read,

10% update)

(c) Read-only workload (100% read) (d) Read the latest workload (95%read,

5% insert)

Note: The workloads are Workload A is a 50/50 read and update operation. Workload B is 90% read and 10% update whereas workload C is a read-only operation. Workload

D is a read of the latest operation. Other workloads like E is a range scanning that doe not apply in a hashtable. Hence I used to see the behavior of our schemes using the four

workloads that will help to describe the insert, read, and update properties of each scheme.

From the results, the performance of Dash and ESH are close to each other as they are designed on the same data block sizes as PM. So, they load the same amount of data

every time they read but the small performance difference comes from the way they store the data once they access the data. In all the tests ESH shows better performance

even though it is not too much.

0

5

10

15

20

1 2 4 8 16 24 36

Th
ro
ug
hp

ut
(M

op
s/
Se
c)

Threads

Throughput of
Workload A (50/50)

Dash ESH CCEH

0
5
10
15
20
25
30
35
40
45

1 2 4 8 16 24 36

Th
ro
ug
hp

ut
(M

op
s/
Se
c)

Threads

Throughput of
Workload B(90/10)

Dash ESH CCEH

0

10

20

30

40

50

60

1 2 4 8 16 24 36

Th
ro
ug
hp

ut
(M

op
s/
se
c)

Threads

Throughput of Workload
C(Read only)

Dash ESH CCEH

0
2
4
6
8
10
12
14
16

1 2 4 8 16 24 36

Th
ro
ug
hp

ut
s(
M
op

s/
se
c)

Threads

Throughput of Workload
D (Read Latest)
Dash ESH CCEH

Figure 4.5 YCSB Evaluation for different workloads

As we increased the size of a bucket, more records can be inserted into the

hash table. In this design, we used the advantage of Persistent memory write

block to store one bucket that helps to insert more records into buckets. This

also helps to delay the full table rehashing and reduce unnecessary directory

doubling which is expensive and affects the total performance of the hashing

scheme.

For insertion to be successful, the hashing function checks to access the

segments using the directory entry that points to the segments. As a segment

65

consists of 4 buckets in this design, we can access them using the entry pointer to

the segment. Insertion operation, therefore, checks the segment if the buckets

in it can accommodate the newly inserted value. If there is no space in the

bucket in the segment, then it will perform the bucket splitting and insert the

new value to a designated location.

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 24 36

Th
ro

u
gh

p
u

ts
(M

o
p

s/
se

c)

Number of threads

CCEH Dash ESH

Figure 4.6 Multiple thread performance comparison

This operation will continue until all the buckets in the segment fill up.

When the target bucket is already full and the other buckets are not yet ex-

hausted, we check the metadata of each neighboring bucket that could have

space to accommodate the record within the same segment. Hence, we move

the new value to these buckets, modify the original bucket’s OB and the OFRB

pointer for later access and store the record within the segment. This helps to

effectively utilize all the spaces in the buckets and fill up the segment before we

trigger the directory doubling.

Our scheme, therefore, insert records into all bucket in the same segment

66

and effectively utilize the hash table before it initiates the expensive job of full

table rehashing. To do that, we look into the header information of each bucket

to get free space and store the new record in the buckets with few key-value

stores in them.

This operation involves the rehashing and redistribution of all records to

buckets called directory doubling. During the search operation, it starts from

the target bucket. If the search key is not matching with the header information,

there is no need of looping through the elements in the bucket, it moves to the

next neighboring bucket. Moving to the next bucket will be initiated only if

the OB flag shows that the bucket has overflowed elements that are moved to

the neighboring bucket. Otherwise, the search will end looping in the segment

and return the result as no element. But, if there is an overflow indicator OC

for a given bucket, the search operation will move to the neighboring bucket

and check the header or metadata of each if their search key matches with any

elements in the bucket that are identified as moved from another bucket. These

elements are identified by the Membership count in the metadata. Searching

for a record will be unsuccessful when the item is not found in the initially

hashed bucket and the neighboring buckets which belong to the same segment.

Search: Figure 4.7(a) shows the throughput of CCEH, Dash, and EHS during

the search operation while varying the number of threads. As shown in the

figure, EHS improves the search by 8.3% and 2x compared with Dash and

CCEH, respectively, in the case of 36 threads. This improvement comes from

the early metadata information about each record in the buckets. Additionally,

it is because utilizing free space in all the buckets in a segment helps to reduce

the number of buckets to be searched. Also, EHS first checks the overflow bit

per bucket to perform the search operations.

It helps to search the moving record even if the record is stored in the

67

neighboring buckets. Thus, it demonstrates that delaying rehashing in EHS can

also improve the search operation by reducing the number of buckets. Once the

search starts from one bucket, it checks the header of the bucket if the value

exists. If the value is not in the bucket and if there is no overflow OFRB indi-

cator, it will reply from the same bucket, otherwise, it will continue searching

from the location at the pointer address of OFRB in the same segment. The

experiment result shows our mechanism uses these headers at the bucket level

paid off.

Delete: Figure 4.7(b) shows the throughput of CCEH, Dash, and EHS during

the delete operation on a varying number of threads. As shown in the figure,

EHS outperforms CCEH and Dash by 10% and 3.2%, respectively. This result

is similar to that in the search operation since the delete operation accompanies

the search operation. Thus, it demonstrates that the search operation in EHS

can accelerate the delete operation.

16 24 36 122.9595 69.36607 30.63393

21.22516 23.84322 24.87258 162.535 91.69211 8.307886

28.86856 31.14238 32.54818 177.2617 100

31.7801 33.8922 35.849

16 24 36

30.89299 33.58313 35.26581

60.84938 68.02355 72.03255

68.14938 74.02355 78.53255

40

Delete

0

20

40

60

80

100

1 2 4 8 16 24 36

T
h

ro
u

g
h

p
u

t(
M

 o
p

s
/s

)

Number of Threads

CCEH Dash

0

10

20

30

40

1 2 4 8 16 24 36

Number of Threads

ESH

(a) Search Operation (b) Delete Operation

Figure 4.7 Throughput Comparison for varying number of threads

68

4.4.4 Benefits of Metadata

The performance gain and scalability of ESH come from the effective utilization

of metadata or header at the entry of the bucket that greatly helped to reduce

data access. This is shown by comparison with other state-of-the-art schemes

that use similar hashing schemes on a range of data sizes by varying numbers

of threads. The improved throughput in section 4.4.5 for insertion, search, and

delete operations with varying threads shows the use of metadata helped to

stop searching operations as information about the bucket is accessed from the

metadata. This reduces the PM access and unnecessary time spent searching

records in the bucket. Insertion operation checks the OB and OFRB meta-

data elements to the information about the status of the bucket and deletes

operations also check the OC before going into the records in the bucket which

reduces the response time.

4.4.5 Concurrency

In a multi-threaded environment, performing multiple queries is challenging as

multiple threads are going to access a hash table. Especially, expensive opera-

tions like full table rehashing require exclusive access to the entire hash table

that could block other subsequent operations resulting in to increase in response

time. This becomes critical when the size of the hashing table increases. There-

fore, we evaluated the latency of concurrent operations like insertion and search

operations. As we run a large number of insertions in a multi-threaded environ-

ment, the insertion throughput of all schemes under comparison increased and

both Dash and ESh showed better overall performance. ESH has shown better

performance as the lock contention is reduced to a single bucket level whereas

Dash locks a segment for operations.

69

4.4.6 Scalability

From Figure 4.6, we see the scalability of the insertion operation of hashing

schemes under a varying number of threads. When the size of hashing key

increases, ESH shows better scaling compared to the other schemes. Hence, ESH

is more scalable than CCEH by 34% and Dash by 12% for insertion operations.

The scalability of Dash and ESH was not significant until the threads are more

than four. But it shows better scalability when the threads increase to almost

the same as the number of cores in the system and there is no big change after

that. For search operations, Dash and ESH show near-linear performance but

CCEH falls behind because the locking and cache line level hashing is affected

by the size of the hash table that requires many PM writes. All three schemes

use similar extendible hashing but the difference in lock strips [60] makes locking

fit into the CPU cache. The effect of the building blocks of PM on log writing

and block flushing [61] also affects the write bandwidth. ESH showed higher

insertion, search, and delete performance and scaled with varying threads that

come as the result of the modifications that delayed the full table rehashing by

exhaustively utilizing the allocated hash table. Additionally, optimistic locking

at the bucket level helps give access to other threads to access other buckets

which contributed to reducing the response time for each thread.

4.4.7 Load Factor

Limiting the number of bucket in a single segment to four helps to minimize the

number of total buckets in a single segment. This helps to achieve a better load

factor as the ratio of the number of elements stored in each bucket to the total

number of positions available in the segment will be minimal. The hash table

with the best memory efficiency is therefore the one with the highest load factor.

70

As operations like insertion and search are done at the segment level when one

of the buckets is full, having an increased number of buckets in a segment is

not advantageous. Having a limited number of buckets in a segment help to get

a better linear probing result. To exhaustively store records in the hash table,

ESH uses a balanced insertion of records by moving to the neighboring buckets

that improve the load factor. In contrast, when the segment size or bucket size

increases, it reduces the directory size with the expense of a reduced load factor.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200 220 240

L
o

a
d

 F
a

c
to

r

Number of records (K)

CCEH Dash ESH

Figure 4.8 Load factor with respect to the number of items inserted into the

hash table

Figure 4.8 shows the load factor changes for a varying number of insertion

and measure the load factor as different numbers of records are added to the

hash tables. CCEH shows a relatively stable result as it performs a split of a

segment after four cache line probing. This is also witnessed [14], long probing

lengths increase load factor at the cost of performance, yet short probing lengths

lead to premature splits. The load factor of Dash and ESH is higher as the

change in design paid off. We can see a better load factor on ESH compared to

Dash because we delayed the segment split and directory doubling operation

71

by storing records to all spaces in the neighboring buckets before triggering the

split or directory doubling operation. On the Experiment result, we see there

is ”valley” like shapes that happens because that is where the segment split or

directory doubling resulting in rehashing happens. As a result, we observed ESH

achieved up to 91% load factor which is higher compared to the state-of-the-art

schemes.

4.4.8 Recovery

Recovery is considered one of the features of a system that help to get the

data to its normal state when failure happens. A system may fail because of

many reasons. A persistent hash table also crashes due to power failure or other

unknown causes that result in service unavailability or slowdown. We used a

similar testing method that Dash deployed for a fair comparison. This is done

by loading some records for some time and then killing the process that runs

the loading operation then, measure the time required for the scheme to accept

another incoming request. The result in Table 4.1 shows that both ESH and

Table 4.1 Recovery time in (ms) comparison with respect to data size.

Hashing Schemes
Record size in GB

1 5 10 20 30

CCEH 50 121 256 503 1082

Dash 62 63 65 65 65

ESH 62 65 66 66 67

Dash took less than a second time even for large data sizes where CCEH took

more time compared to the other competitors and also scales up as the data

size increases. This result is achieved because Dash used a clean marker and

72

ESH used a ”state” marker that checks whether the system was shut down

clearly in a prior operation. Accordingly, a recovery operation always involves

reading this flag and recovering to the consistent state stored on PM before.

We observed that ESH has shown, it needs more time to recover compared to

Dash which is negligible even for large records. This happened because ESH

works per bucket while the other considers a segment as one recovery block.

The other consistency issues during multi-threaded operation are maintained

by the ”lock” signal included in the metadata.

4.5 Summary

In this work, we presented a scheme that uses available free space in the neigh-

boring buckets to store records. Delaying unnecessary directory doubling oper-

ations is achieved by exhaustively utilizing the existing spaces in the neighbor-

ing nodes. This can help to effectively utilize the persistent memory space. The

performance of the scheme is also better compared with the state-of-the-art

scheme for uniform and skewed data distribution. Therefore, our scheme can be

an alternative approach that improves the extendible hashing by reducing the

split management overhead that eventually postpones the expensive operation

of directory doubling in the system that uses an extendible hashing scheme on

persistent memory.

73

Chapter 5

Conclusion

Efficient utilization of memory is critical in all applications. In specially, on

memory-intensive applications, effective utilization of memory is a matter of no

choice. As the memory development trend is changing, the storage systems need

to also change to fit the new architectures. In this dissertation, we presented a

scheme that effectively uses available free slots in the buckets to store records.

This mechanism helped to reduce PM access and maximized bandwidth con-

sumption. The scalability test also witnessed that this scheme scales well in

multi-threaded environments.

In chapter 3, we proposed and designed a scheme that delays unnecessary

directory doubling operations by exhaustively utilizing the existing spaces from

neighboring nodes. By doing so, we can effectively utilize the persistent mem-

ory space. To get better performances, we proposed a minimal locking ap-

proach where a bucket is locked while writing a request allowing other pro-

cesses to access/read the buckets in the segments. This allows multiple access

to achieve more scalability in a multi-threaded environment. The performance

74

of the scheme is also better compared with the other scheme for uniform and

skewed data distribution.

in Chapter 4, we extended our scheme to again fit the characteristics of

Optane Persistent memory for its read block size. Applying the improved per-

formances in chapter 3, we redesigned the bucket layout to store more records in

a single bucket and minimize unnecessary PM access. We extended the bucket

size to 256B to fit the PM read block. This is advantageous in minimizing the

number of reads and effectively using the block of PM. To effectively manage

the records in the bucket, we designed the metadata that stores information

about the buckets. This metadata information is used to access records faster

as the size increases.

The performance of this scheme is also better compared with the state-

of-the-art scheme for uniform and skewed data distribution. The evaluation

results show that our scheme can be used as one of the schemes that enhanced

the extendible hashing schemes for in-memory applications.

In future work, we will evaluate the scheme for a range of applications and

different workloads for real scenarios to enrich the mechanism. Based on the

results, we also have a plan to add more tests and peer evaluations that help

to get a general framework that can handle hashing for a range of applications.

75

Bibliography

[1] Intel, “Intel® optane™ dc persistent memory,” 2021.

[2] I. Corporation, “Intel® optane™ dc persistent memory,” 2022.

[3] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree: A high-

performance latch-free range index for non-volatile memory,” Proceedings

of the VLDB Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[4] S. Chen, P. B. Gibbons, S. Nath, et al., “Rethinking database algorithms

for phase change memory.,” in Cidr, vol. 11, pp. 9–12, 2011.

[5] Redis, “Redis is an open source (bsd licensed), in-memory data structure

store,” 2021.

[6] Memcached, “Memcached, free open source, high-performance, distributed

memory object caching system,” 2021.

[7] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient in-

consistency in byte-addressable persistent b+-tree,” in 16th {USENIX}

Conference on File and Storage Technologies ({FAST} 18), pp. 187–200,

2018.

76

[8] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:

Reducing consistency cost for nvm-based single level systems,” in 13th

{USENIX} Conference on File and Storage Technologies ({FAST} 15),

pp. 167–181, 2015.

[9] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “{WORT}:

Write optimal radix tree for persistent memory storage systems,” in 15th

{USENIX} Conference on File and Storage Technologies ({FAST} 17),

pp. 257–270, 2017.

[10] M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam, “Write-optimized

dynamic hashing for persistent memory,” in 17th {USENIX} Conference

on File and Storage Technologies ({FAST} 19), pp. 31–44, 2019.

[11] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hash-

ing index scheme for persistent memory,” in 13th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 18), pp. 461–

476, 2018.

[12] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:

Converting concurrent dram indexes to persistent-memory indexes,” in

Proceedings of the 27th ACM Symposium on Operating Systems Princi-

ples, pp. 462–477, 2019.

[13] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”

Proceedings of the VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[14] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: Scalable hashing on persistent

memory,” arXiv preprint arXiv:2003.07302, 2020.

77

[15] F. Xia, D. Jiang, J. Xiong, and N. Sun, “{HiKV}: A hybrid index {Key-

Value} store for {DRAM-NVM} memory systems,” in 2017 USENIX An-

nual Technical Conference (USENIX ATC 17), pp. 349–362, 2017.

[16] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent

memory,” ACM SIGARCH Computer Architecture News, vol. 39, no. 1,

pp. 91–104, 2011.

[17] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,

R. Sankaran, and J. Jackson, “System software for persistent memory,”

in Proceedings of the Ninth European Conference on Computer Systems,

pp. 1–15, 2014.

[18] D. Hu, Z. Chen, W. Che, J. Sun, and H. Chen, “Halo: A hybrid pmem-

dram persistent hash index with fast recovery,” in Proceedings of the 2022

International Conference on Management of Data, pp. 1049–1063, 2022.

[19] W. Zhang, X. Zhao, S. Jiang, and H. Jiang, “Chameleondb: a key-value

store for optane persistent memory,” in Proceedings of the Sixteenth Euro-

pean Conference on Computer Systems, pp. 194–209, 2021.

[20] Intel, “Intel and micron produce breakthrough memory technology,” 2021.

[21] I. Corporation, “Enabling persistent memory programming,” 2022.

[22] J. Ren, Q. Hu, S. Khan, and T. Moscibroda, “Programming for non-volatile

main memory is hard,” in Proceedings of the 8th Asia-Pacific Workshop

on Systems, pp. 1–8, 2017.

[23] N. Shavit, “Data structures in the multicore age,” Communications of the

ACM, vol. 54, no. 3, pp. 76–84, 2011.

78

[24] I. Sánchez Barrera, D. Black-Schaffer, M. Casas, M. Moretó, A. Stupnikova,

and M. Popov, “Modeling and optimizing numa effects and prefetching

with machine learning,” in Proceedings of the 34th ACM International

Conference on Supercomputing, pp. 1–13, 2020.

[25] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,

V. Quema, and M. Roth, “Traffic management: a holistic approach to

memory placement on numa systems,” ACM SIGPLAN Notices, vol. 48,

no. 4, pp. 381–394, 2013.

[26] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and H.-U. Heiß, “kmaf:

Automatic kernel-level management of thread and data affinity,” in Pro-

ceedings of the 23rd international conference on Parallel architectures and

compilation, pp. 277–288, 2014.

[27] M. Diener, E. H. Cruz, L. L. Pilla, F. Dupros, and P. O. Navaux, “Charac-

terizing communication and page usage of parallel applications for thread

and data mapping,” Performance Evaluation, vol. 88, pp. 18–36, 2015.

[28] P. Memarzia, S. Ray, and V. C. Bhavsar, “Toward efficient in-memory data

analytics on numa systems,” arXiv preprint arXiv:1908.01860, 2019.

[29] Z. Majo and T. R. Gross, “Memory management in numa multicore

systems: trapped between cache contention and interconnect overhead,”

in Proceedings of the international symposium on Memory management,

pp. 11–20, 2011.

[30] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware schedul-

ing on multicore systems,” ACM Transactions on Computer Systems

(TOCS), vol. 28, no. 4, pp. 1–45, 2010.

79

[31] J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing perfor-

mance pathologies in persistent memory software stacks,” in Proceedings

of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, pp. 427–439, 2019.

[32] S. Thomas, R. Hayne, J. Pulaj, and H. Mendes, “Using skip graphs for

increased numa locality,” in 2020 IEEE 32nd International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD),

pp. 157–166, IEEE, 2020.

[33] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek, “Cphash: A cache-

partitioned hash table,” ACM SIGPLAN Notices, vol. 47, no. 8, pp. 319–

320, 2012.

[34] I. Calciu, J. Gottschlich, and M. Herlihy, “Using elimination and delegation

to implement a scalable numa-friendly stack,” in 5th {USENIX} Workshop

on Hot Topics in Parallelism (HotPar 13), 2013.

[35] H. Daly, A. Hassan, M. F. Spear, and R. Palmieri, “Numask: high perfor-

mance scalable skip list for numa,” in 32nd International Symposium on

Distributed Computing (DISC 2018), Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2018.

[36] M. Dong, Q. Yu, X. Zhou, Y. Hong, H. Chen, and B. Zang, “Rethinking

benchmarking for nvm-based file systems,” in Proceedings of the 7th ACM

SIGOPS Asia-Pacific Workshop on Systems, pp. 1–7, 2016.

[37] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and Y. Wu, “{ROART}:

Range-query optimized persistent {ART},” in 19th {USENIX} Conference

on File and Storage Technologies ({FAST} 21), pp. 1–16, 2021.

80

[38] A. Prout, “The story behind memsql’s skiplist indexes,” Published on: Jan,

vol. 20, p. 7, 2014.

[39] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-

pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-optimized

oltp engine,” in Proceedings of the 2013 ACM SIGMOD International Con-

ference on Management of Data, pp. 1243–1254, 2013.

[40] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An

analysis of persistent memory use with whisper,” ACM SIGPLAN Notices,

vol. 52, no. 4, pp. 135–148, 2017.

[41] J. Xu and S. Swanson, “{NOVA}: A log-structured file system for hybrid

volatile/non-volatile main memories,” pp. 323–338, 2016.

[42] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu,

“Revisiting hash table design for phase change memory,” ACM SIGOPS

Operating Systems Review, vol. 49, no. 2, pp. 18–26, 2016.

[43] P. Zuo and Y. Hua, “A write-friendly and cache-optimized hashing scheme

for non-volatile memory systems,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 29, no. 5, pp. 985–998, 2017.

[44] P. Zuo, Y. Hua, and J. Wu, “Level hashing: A high-performance and

flexible-resizing persistent hashing index structure,” ACM Transactions

on Storage (TOS), vol. 15, no. 2, pp. 1–30, 2019.

[45] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree: A hy-

brid scm-dram persistent and concurrent b-tree for storage class memory,”

pp. 371–386, 2016.

81

[46] S. ORACLE, “Architectural overview of the oracle zfs storage appliance,”

2018.

[47] S. Patil and G. Gibson, “Scale and concurrency of {GIGA+}: File system

directories with millions of files,” in 9th USENIX Conference on File and

Storage Technologies (FAST 11), 2011.

[48] S. R. Soltis, T. M. Ruwart, and M. T. O’keefe, “The global file system,”

in NASA Conference Publication, pp. 319–342, 1996.

[49] S. Whitehouse, “The gfs2 filesystem,” in Proceedings of the Linux Sympo-

sium, pp. 253–259, Citeseer, 2007.

[50] S. Imamura, M. Sato, and E. Yoshida, “Evaluating a trade-off between

dram and persistent memory for persistent-data placement on hybrid main

memory,”

[51] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible

hashing—a fast access method for dynamic files,” ACM Transactions on

Database Systems (TODS), vol. 4, no. 3, pp. 315–344, 1979.

[52] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data structures

for near-memory computing,” pp. 235–245, 2017.

[53] Intel, “ Intel Threading Building Blocks Developer Reference, https://

software.intel.com/en-us/tbb-reference-manual/,” 2021.

[54] W.-H. Kim, J. Seo, J. Kim, and B. Nam, “clfb-tree: Cacheline friendly

persistent b-tree for nvram,” ACM Transactions on Storage (TOS), vol. 14,

no. 1, pp. 1–17, 2018.

[55] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,

vol. 51, no. 2, pp. 122–144, 2004.

82

[56] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,

and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with

next-generation, non-volatile memories,” ACM SIGARCH Computer Ar-

chitecture News, vol. 39, no. 1, pp. 105–118, 2011.

[57] Intel, “ Intel® Persistent Memory Development Kit, https://pmem.io/

pmdk/libpmem/,” 2021.

[58] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An

empirical guide to the behavior and use of scalable persistent memory,”

in 18th USENIX Conference on File and Storage Technologies (FAST 20),

pp. 169–182, 2020.

[59] A. Appleby, “Murmurhash - murmurhashunaligned,” 2022.

[60] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear, The art of multipro-

cessor programming. Newnes, 2020.

[61] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper, “Building

blocks for persistent memory,” The VLDB Journal, vol. 29, no. 6, pp. 1223–

1241, 2020.

83

요약

메모리의 발전은 자료 구조에서의 잠재적인 혁신을 가져왔다. 대용량이고 낮은

지연시간을 보이며 바이트 단위 접근이 가능한 영구 메모리(PM)는 그 이점을 활

용하여 대부분의 기존 해시 기반 인덱스들의 변화를 가속시켰다. 이로 인해 많은

새로운 해시 기법들이 에뮬레이터를 통해 제시되어왔지만 최적의 설계를 가지지

못 했고 실제 장치에서의 확장성(Scalable)을 갖추지 못 하였다. 일부 해시 테이블

설계만이 load factor나 확장성(Scalability), 메모리 효율성, 복구 등의 중요한 속

성을 다루었다. PM에서 효과적인 해시 기법을 다시 설계하는 것에 어려운 점 중

하나는 해시 테이블에서의 동적 해싱 연산 비용을 줄이는 것이다. 본 논문에서는

PM에서 메모리 효율성, 확장성(Scalable), 성능을 개선하는 효율적이고 확장성

가능한(Scalable) 해시 기법을 제시하며 그것을 ESH라고 부른다. ESH는 해시 테

이블의 공간을 효율적으로 사용할 수 있게 해주며 성능을 향상시키기 위해 전체

테이블의 재해시(rehashing)를 늦춘다. 이는 ESH가 할당된 메모리 공간을 효율

적으로 사용하게 하여 최대 load factor를 낼 수 있게 한다. 우리는 Intel Optane

DC Persistent Memory(DCPMM)을사용하여우리의기법을평가하고최신동적

해싱 기법들과 비교한다. 실험 결과는 ESH가 삽입 연산에 대해 CCEH보다 30%,

Dash보다 4% 성능을 개선했음을 보인다. 또한 검색 연산에 대해 Dash에 비해

약 10% 성능을 개선하였고 다른 경쟁 기법들에 비해 최대 91%의 load factor를

달성하였다.

주요어: 영구 메모리, 동적 해싱, Scalable 해싱, In-memory 시스템, Extendible

해싱

학번: 2018-31651

84

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	Chapter 2 Background
	2.1 Optane Persistent Memory
	2.2 Optane Architecture and Instructions support
	2.3 Dynamic Hashing
	2.4 Effect of NUMA access
	2.5 Inter-thread interference
	2.6 Locking
	2.7 Impact of frequent key resizing

	Chapter 3 Adaptive Cache-Conscious Extendable Hashing
	3.1 Motivation
	3.2 Related Work
	3.3 Design and Implementation
	3.3.1 Design
	3.3.2 Implementation
	3.3.3 Concurrency
	3.3.4 Recovery

	3.4 Evaluation
	3.4.1 Experimental setup
	3.4.2 Performance results
	3.4.3 Experimental analysis

	3.5 Summary

	Chapter 4 Efficient and Salable Hashing Scheme for PMs
	4.1 Motivation
	4.2 Related Work
	4.3 Design and Implementation
	4.3.1 High level Design
	4.3.2 Bucket layout
	4.3.3 Operations
	4.3.4 Metadata and hash table operation
	4.3.5 Implementation
	4.3.6 Concurrency
	4.3.7 Recovery

	4.4 Evaluation
	4.4.1 Experimental setup
	4.4.2 Comparative Performance for varying data sizes
	4.4.3 Performance on a varying number of threads
	4.4.4 Benefits of Metadata
	4.4.5 Concurrency
	4.4.6 Scalability
	4.4.7 Load Factor
	4.4.8 Recovery

	4.5 Summary

	Chapter 5 Conclusion

<startpage>13
Chapter 1 Introduction 1
 1.1 Motivation 4
 1.2 Contribution 4
 1.3 Outline 5
Chapter 2 Background 7
 2.1 Optane Persistent Memory 7
 2.2 Optane Architecture and Instructions support 8
 2.3 Dynamic Hashing 9
 2.4 Effect of NUMA access 12
 2.5 Inter-thread interference 14
 2.6 Locking 15
 2.7 Impact of frequent key resizing 16
Chapter 3 Adaptive Cache-Conscious Extendable Hashing 17
 3.1 Motivation 17
 3.2 Related Work 19
 3.3 Design and Implementation 21
 3.3.1 Design 22
 3.3.2 Implementation 24
 3.3.3 Concurrency 26
 3.3.4 Recovery 27
 3.4 Evaluation 28
 3.4.1 Experimental setup 28
 3.4.2 Performance results 30
 3.4.3 Experimental analysis 31
 3.5 Summary 37
Chapter 4 Efficient and Salable Hashing Scheme for PMs 38
 4.1 Motivation 38
 4.2 Related Work 41
 4.3 Design and Implementation 44
 4.3.1 High level Design 44
 4.3.2 Bucket layout 46
 4.3.3 Operations 49
 4.3.4 Metadata and hash table operation 54
 4.3.5 Implementation 56
 4.3.6 Concurrency 58
 4.3.7 Recovery 59
 4.4 Evaluation 60
 4.4.1 Experimental setup 60
 4.4.2 Comparative Performance for varying data sizes 62
 4.4.3 Performance on a varying number of threads 63
 4.4.4 Benefits of Metadata 69
 4.4.5 Concurrency 69
 4.4.6 Scalability 70
 4.4.7 Load Factor 70
 4.4.8 Recovery 72
 4.5 Summary 73
Chapter 5 Conclusion 74
</body>

