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Abstract

As the memory footprint of modern software continues to grow, efficient memory

management is essential. Accordingly, studies on memory management policies

are being actively conducted. To verify the policies and find the upper-bound

performance of them, most studies use optimal replacement algorithm (OPT).

Unfortunately, the existing well-known scheme of simulating OPT takes a lot

of time, especially, when the trace size is large. Thus, it cannot calculate the

hit ratio of the huge traces in a reasonable time.

In this paper, we propose high-performance OPT simulation techniques to

reduce the time complexity and execution time of large-scale trace-driven sim-

ulation. To do this, first, we devised a data structure consists of an array and

queues called AccessMap which reads the trace and stores the reference times

per page in ascending order. It allows calculating the reference time of the ac-

cessed page in a constant time. Second, we applied a min-max heap to organize

a cache based on min-max reference times. The min-max heap enables search-

ing for the page and selecting an eviction target page optimally in a constant

time. Finally, we leverage a Link-Tree for simulating multiple cache sizes on a

single run as the previous study can do. Our evaluation demonstrates that the

proposed scheme reduces the simulation time by up to 5.4x in single-size cache

simulation and up to 4.4x in multiple-size cache simulation than the existing

stack algorithm based scheme.

Keywords: optimal replacement, OPT, stack algorithm, page replacement

Student Number: 2021-22208
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Chapter 1

Introduction

The hardware requirements of modern software are growing as diverse services

generally apply heavy tasks such as machine learning (ML) and big data pro-

cessing [1, 10, 45, 53]. Today, however, hardware vendors are focusing on improv-

ing power efficiency and consolidation rather than improving the performance

of hardware due to physical limitations [41, 44]. Studies to utilize hardware

with better software techniques have logically followed as a result of this trend,

which has persisted over the past few years [26, 30, 33, 34, 39, 40, 47, 50, 51].

In particular, in the case of the memory management algorithms or techniques,

they are commonly compared with the optimal replacement algorithm (OPT

and MIN) [5], which represents the upper bound hit ratio, to determine the

performance of the techniques [7, 23, 29, 33, 34].

OPT is an offline algorithm, which evicts the farthest referenced entry in

the cache [5]. In general, we do not know which memory address the process

will access in the future, so OPT cannot be used in practical but simulated.

While selecting a victim, OPT gets the next reference time of each entry in
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the cache by traversing the access trace. This procedure has a time complexity

of O(C ∗N), C and N denote the block count of cache and total access count

of trace. The linear time complexity for getting the next reference time makes

OPT simulation takes a lot of time in big caches and huge access traces, which

is common in modern software.

For simulating OPT efficiently, Mattson et al. [32] showed that OPT can be

simulated by the stack processing. By adopting the stack processing, calculating

the hit ratio for the whole cache size is available with a single run of the stack

simulation. But this technique still suffers from the linear complexity of getting

the next reference time of the block and updating the stack.

Sugumar and Abraham [42] proposed techniques for OPT stack simulation

that preprocess the next reference of the entries in the limited time window

and fix the errors that occur by the unknown next reference time blocks, to

avoid traversing the trace each time the block enters the top of the stack. Also,

they addressed the overhead of linear searching and updating the stack by

grouping technique. However, even if the stack update procedure is optimized,

the preprocess procedure still has a linear complexity to the window size.

In this paper, we propose LT-OPT, a high-performance OPT simulator for

large-scale traces. We apply two novel techniques for LT-OPT’s efficient OPT

simulation. First, we apply a new data structure for OPT, AccessMap, which

is a data structure consisted of an array and queues. Each element in the hash

table corresponds to a page, one by one, and has a queue containing the access

times to that address in ascending order. This helps to improve calculating the

next reference time of a block to a constant time.

In addition, we devise ”Link-tree”, breaking away from the format using the

existing stack algorithm. Link-tree is consist of several partition trees, which are

implemented in min-max heap [2], and the size of each partition tree is decided
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to target cache sizes entered by the user. This enables simulating multiple cache

sizes efficiently.

We implement the simulator from scratch with C++ for equivalent compar-

isons with the existing technique and other comparators. Our scheme outper-

forms Sugumar’s scheme by up to 5.4x and showed faster simulation time with

widely-used online algorithms such as CLOCK and ARC.

The contributions of our work are as follows:

• We investigate the performance bottleneck of a well-known OPT simula-

tor.

• We propose a high-performance OPT simulator for large-scale traces called

LT-OPT. It can reduce the simulation time while providing the correct

hit ratio.

• We demonstrate that LT-OPT shows better performance by up to 5.4x.

The existing technique is explained in Chapter 2, and our scheme is de-

scribed in Chapter 3. Chapter 4 explains how we implemented LT-OPT. Chap-

ter 5 evaluates our scheme with others using large-scale traces from real-world

workloads. Chapter 6 and 7 describes related works and conclusion, respec-

tively.

3



Chapter 2

Background

2.1 Optimal Replacement Algorithm

The optimal replacement algorithm, as known as OPT [32] or MIN [5], minimizes

the fault by evicting the block which is referenced in the farthest future. Because

the algorithm evicts the block that will not be referenced sooner than all other

blocks in the cache, OPT is the logically optimal solution for the given size of

the cache.

OPT requires future access information. We normally can’t know which

address will be referenced in the future, so it is an offline algorithm that can’t be

run in practice. Even though OPT is not able to use in real-world applications,

lots of memory management studies [23, 33, 7, 29, 34] use OPT for evaluations

to compare with the maximum performance. Also, some of the studies such

as [20], attempted to achieve better performance through a routine that works

similarly to OPT.
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Algorithm 1 OPT stack update

Require: M ▷ Total distinct data block count

Require: S[1 . . .M ] ▷ The algorithm’s stack

1: function stack update(address, priority)

2: i← 2

3: cur block ← S[1]

4: S[1]← (address, priority)

5: while cur block.address ̸= address and i ≤M do

6: if cur block.priority > S[i] then

7: swap(cur block, S[i])

8: end if

9: i← i+ 1

10: end while

11: S[i]← cur block

12: return i

13: end function

2.2 OPT Simulation with Stack Algorithm

Stack algorithm is introduced by Mattson et al. [32] for efficient hit ratio sim-

ulation. In the stack algorithm, the stack’s behavior is quite different from the

stack that we normally know–the Last-In-First-Out(LIFO) behavior. We briefly

describe the mechanism of the stack algorithm in the cache simulation.

Algorithm 1 shows how the OPT stack simulation processes. When the

address is referenced, it starts to check whether the data block of the address

exists from the top of the stack. If found the block in the stack, its hit depth

is the distance from the top of the stack. Else, the hit depth is infinite. The
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algorithm replaces the top of the stack with the block of the address and keeps

the previous block (line 3). Here, we call the block has been replaced as B.

Then, it checks the priority of the next block under the replaced block, and

if the block’s priority is lower than B’s priority, swaps B and the block. If the

block’s priority is greater than B’s, continue to the next block under the current

block (line 5-10). This procedure continues until the current position reaches

the hit depth. When reached hit depth, put B into the hit depth of the stack

and return (line 11-12). If the hit depth is infinite, the procedure ends at the

end of the stack. As Sugumar et al. [42] did, we refer to this procedure as a

”stack update” in this paper.

During the stack simulation runs, it saves the hit depth each time the stack

update is called. A sequence of hit depths can be obtained after the simulation is

finished. Then, a hit ratio of any cache size can be calculated with this sequence.

Suppose the given cache size is N. If the hit depth is smaller or equal to N, the

access is a cache hit, or else, a cache miss.

The stack algorithm can only be applied to the policies that are free from

Belady’s anomaly [6]. A phenomenon in which the hit ratio decreases even

though the cache size is increased is called Belady’s anomaly. Free from Belady’s

anomaly means that the blocks which are hit in cache size N must be hit in

cache size N+1. In other words, the priority of the block is not associated with

the page frame number of the block. We refer to this property as ’Belady-

free’, and the policy that is Belady-free as ’Belady-free policy’. OPT and LRU are

representative of Belady-free policies. In the stack simulation of OPT, priority

is bigger when the next reference time is sooner.
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2.3 Optimizing Techniques for OPT Stack Simulation

Sugumar and Abraham [42] pointed out that OPT simulation using stack al-

gorithm is too slow because it has reverse passes to the trace data for getting

the time of the next reference during execution. As Sugumar et al. did, we

refer to the block’s next reference time as the block’s TNR (Time Next Ref-

erence). For addressing this problem, they proposed ”lookahead” technique. In

their scheme, a communication buffer, which is a tuple array of (address, TNR),

is maintained during the simulation. Before processing the stack algorithm, it

first reads certain amount of accesses from traces and pushes pairs of (address,

unknown) into the communication buffer. Each time it pushes a pair into the

buffer, it updates the previous pair’s priority which value is according to the

current time.

Because the lookahead procedure’s read size is limited, the inserted block’s

priority may be still not decided even until pushed into the stack. To resolve

this problem, the lookahead procedure assigns dummy priorities for unknowns

to make them able to repair when true priority is available. Dummy priorities

have lower priority than any other known priority blocks, and in the stack,

early-entered unknown blocks have higher priority than all other later-entered

unknown blocks. When the unknown block’s true priority becomes known, the

stack repair procedure is called. Let B be pair of (known address, true priority),

D be a temporal variable that can store a pair, U be dummy priority before it

became known and T be the position that the address block exists in the stack.

From the top of the stack, the routine first finds the first unknown block that

has a lower priority than U. It swaps B and that block, and stores the evicted

block into D. Then, until T, all entries which have lower dummy priorities than

D are swapped. When it reaches T, it inserts D into the stack’s T-th position.

7



T, 59 A, 27 U, 29 P, 72 G, 40 R, 55 C, 31 K, 38 W, 84

C, 107 A, 27 U, 29 T, 59 G, 40 R, 55 P, 72 K, 38 W, 84

stack_update(C, 107)GroupTop entry

Figure 2.1 Stack simulation with grouping technique

By this procedure, the errors between the unknown block may be fixed.

With dummy priority, whenever the lookahead procedure pushes the pair,

it checks whether the previous pair that has the unknown priority exists in the

buffer. If exists, it updates the previous pair’s TNR to the current time. If not

exists, it means it’s already pushed into the stack, so it calls the stack repair

procedure with its true priority.

They also pointed out that searching the block in the stack is a significant

overhead during the stack simulation. The grouping technique is their solution

to this problem. They defined a group as a contiguous section of the stack that

is sorted in descending order. According to this definition, since the block to

be referenced earlier in the future exists at the top of the group, the hit always

occurs only at the top of the group. Using this property, they improved the

searching block operation to the linear time of the group. In addition, the stack

update procedure which has to compare all blocks in the group is optimized in

logarithmic time of the stack size by configuring each group as a tree.
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2.4 Time Complexity and Space Overhead

The OPT simulation under the stack algorithm has a linear time complexity

of N and H for getting the TNR of the entering block and the stack update

respectively, where N and H denote the trace’s access count and the hit depth.

It is far better than Belady’s OPT because the stack simulation can compute

the hit ratio for any cache size in a single run. But, it still takes too much time

to simulate huge traces where N and H are over the millions.

Sugumar and Abraham optimized the stack update procedure by the group-

ing technique, where the time complexity is the product of the number of groups

and the number of blocks in the group. However, for updating the previous

pair’s TNR during the lookahead procedure, it has to traverse the communica-

tion buffer in sequential. Also, the effectiveness of the grouping technique may

be reduced close to linear in the number of groups if the stack is divided into

too many groups.
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Algorithm 2 OPT stack processing

Require: N ▷ Total size of the trace

Require: T [1 . . . N ] ▷ The access records

Require: S[1 . . .M ] ▷ The algorithm’s stack

Ensure: H[1 . . . N ] ▷ Hit depth sequence

1: function main

2: for i← 1 . . . N do

3: address← T [i]

4: next access← 0

5: for j ← i . . . N do

6: if T [j] = address then

7: next access← j

8: break

9: end if

10: end for

11: priority ← INT MAX − next access

12: if S[1].address = address then

13: H[i]← 1

14: S[1].priority ← priority

15: else

16: H[i]← stack update(address, priority)

17: end if

18: end for

19: end function
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Chapter 3

Design

The hit ratio of any cache size can be determined via OPT simulation using

the stack algorithm in a single run. On the opposite, it means that even if you

only need a hit ratio for a small single cache size, you must perform the entire

stack processing. Most studies only need the hit ratio of about ten cache sizes,

so the whole stack processing can be inefficient.

Therefore, we got out of the stack algorithm and rethought it from the

beginning. Basically, the OPT simulation proceeds in three phases for each

reference of the trace: (1) getting the TNR of the referenced block, (2) searching

the corresponding entry of the referenced block in the cache, and (3) if not

found and eviction is needed, replace the cache entry of the biggest TNR with

the entry of referenced block.

We propose LT-OPT, a high-performance OPT simulator for large-scale

traces using Link-Tree. Figure 3.1 shows LT-OPT’s overall structure and work-

flow. When LT-OPT processes the reference, it first gets the current time of

simulation and the TNR of the referenced block. Then it processes the Link-Tree
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Figure 3.1 Overall structure of LT-OPT

operation with these values.

In chapter 3, we describe our optimization techniques applied in LT-OPT.

Optimizing methods for each phase of OPT are discussed in sections 3.1 and

3.2 with an emphasis on a fast single run. We explain ”Link-Tree” in section

3.3, which enables simulating multiple cache sizes on a single run.

The followings are the contributions of this paper:

• We optimized the normal operations of OPT simulation – searching whether

the data block exists in the cache and getting the TNR of the block – to

constant time complexity.

• We proposed techniques using Link-Tree, which can efficiently simulate
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multiple cache sizes.

• Our scheme has lower space overhead than the existing technique.

3.1 AccessMap

As previously mentioned, the existing technique uses lookahead to decide the

block’s TNR before the stack processing, and it has a linear time complexity of

the size of the communication buffer. To address the linear search of lookahead,

we designed a new data structure named ”AccessMap”.

Figure 3.2 shows how AccessMap works. AccessMap consists of an array and

queues. Each entry of the array is mapped to blocks one by one and has a single

queue. Before the simulation starts, our simulator first initializes AccessMap by

traversing the given trace once. It pushes the reference time of the block into

the corresponding queue for each record of the trace. When the traversing trace

is finished, lastly it pushes an infinite value to each queue. At the end of the

initialization, as depicted in Figure 3.2-(a), each queue contains the access times

of the block in ascending order.

After initializing AccessMap, the actual simulation starts from the beginning

of the trace. Very first for each access, the simulator pulls the first entry from

the queue corresponding to the referenced block. In Figure 3.2’s case, block

#A’s queue is popped. Then, the value obtained when popping the queue is

the current time during which the simulation is in progress, and the head of the

queue is the TNR of the block. Next, the simulator searches the cache whether

the corresponding cache entry to the reference block exists. If the cache entry

exists, it updates the entry’s TNR. Else, it replaces the entry of the biggest

TNR from the cache with an entry of the referenced block.

The simulator gets the current time by popping the head, and the TNR of

13
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the block by looking in front of the corresponding queue. If the queue’s head

is infinite, it means the block will not be referenced anymore. The queue’s

dequeue() and peek() operation takes O(1) time, so getting the TNR opera-

tion can be optimized to constant from linear by applying the AccessMap. It

also has a smaller space overhead with the communication buffer of Sugumar’s

lookahead, because queues only contain access times of blocks.

3.2 Fast One-Size Cache Simulation

For optimizing the search operation, we used a useful property of OPT simula-

tion.

Theorem 1. If the entry of the referenced block exists in the cache, it has the

smallest TNR among all other entries in the cache.

Proof. Let T be the current time. TNR is the entry’s time of the next reference,

so it can’t be smaller than T. Therefore, before processing the T-th reference,

the entries in the cache have TNR at least T.

In accordance with the theorem 1, the simulator may determine if the cur-

rent reference is a cache hit or cache miss by examining whether the minimum

TNR of all items in the cache equals the current time. Additionally, this re-

moves the requirement for the simulator’s cache to maintain data indicating

which cache item belongs to which block. All the simulator has to do in search-

ing is check whether the entry of the current time exists in the cache.

We designed the cache of OPT simulator with a min-max heap [2] to best

take advantage of theorem 1. Min-max heap has O(1) time complexity for ob-

taining minimum or maximum values in the heap. By adopting a min-max heap,

the searching and the eviction target selection can be performed by getting min-

imum and maximum values, which are constant time complexity operations.
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Also, the min-max heap’s insertion and deletion take logarithmic time to the

heap size, so replace operation takes O(log N) time.

Self-balancing trees such as the Red-Black tree [3] and AVL tree [16] can

perform the same things and have equal time complexity to the min-max heap,

but the min-max heap has advantages in performance and space overhead.

Self-balancing trees perform pointer references, which can be random mem-

ory accesses, during tree operations such as balancing. Also, the nodes of self-

balancing trees have to keep the pointer value of their child nodes. The min-max

heap can find out the location of the children of a node with simple pointer

arithmetic, so it has performance advantages by minimizing random memory

access and also reducing space overhead.

Overall, for each reference, using the min-max heap size of N has O(log N)

time complexity, whereas Sugumar et al.’s scheme has O(GlogN
G ), N and G

denote the size of the cache and the number of groups respectively.

3.3 Multiple Cache Size Simulation

Only improving single-size cache simulation is not enough, because most stud-

ies need tens of cache sizes for evaluating their caching scheme. LT-OPT also

supports simulating multiple cache sizes on a single run, as the stack algorithm

did. Our novel data structure, Link-Tree, can be used to simulate multiple cache

sizes efficiently using the Belady-free property.

3.3.1 Link-Tree

For calculating the hit ratio in multiple cache sizes in a single run, like the

stack algorithm, we introduce Link-Tree. We gave it this name since the tree

operations are performed with the result of the previous tree.
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Definition

The grouping technique proposed by Sugumar et al. inspired the basis for Link-

Tree. Link-Tree is a collection of partition trees, and partition trees are imple-

mented in min-max heaps. Link-Tree requires the array of cache size sorted in

ascending order (hereinafter referred to as arr) and P as a parameter, where P

indicates the number of partition trees. In the rest of our paper, we denote the

minimum/maximum cache size in the input array as Cmin, Cmax and the count

of distinct data blocks as M.

Each partition tree is assigned to one of levels 1 through P. In this paper, we

define TN to the partition tree of level N. Let SN be a set of entries that exist

in arr[N−1] cache size. TN contains entries excluding the entries exist in SN−1

among the entries exist in SN at a specific time. That is, there are no duplicated

entries among all partition trees, and the combination of all partition trees is

a cache of size Cmax. The Belady-free property makes this structure possible

since it ensures that SN is a subset of SN+1.

Operation

Link-Tree works under 4 rules.

1. If TN is full and has to insert an entry, it must pass an entry of max TNR

to TN+1.

2. If a block is referenced, it enters to T1 regardless of its TNR. This is

similar to how the stack algorithm always puts the just-referenced entry

at the top entry.

3. For all partition trees except T1, if the entry tries to enter the TN and

which has a bigger TNR than the max TNR of TN , then TN can just pass

17



the entry to TN+1 without insertion.

4. If the entry is crowded out from TP , the entry is discarded.

Algorithm 3 shows the partition tree operation. Link-Tree performs parti-

tion tree operation from T1 to TP , sequentially and recursively. Partition tree

operation requires the current time and E, which is the entry trying to insert,

as parameters. It proceeds in three phases: Searching phase, updating phase,

and calling phase. In the searching phase, compares the minimum TNR with

the current time. If the minimum TNR equals the current time, the reference

is a cache hit (line 2).

Then it continues to updating phase with the result of the searching phase.

If it was a hit, increase the cache hit counter and update the cache entry of

minimum TNR with E (line 3-5). The reference is missed in the current level

if they are not equal. It means we need to look up whether the entry with the

current time exists at the partition tree of the next level. In updating phase of

miss, creates temporary space to keep the entry, and compares the maximum

TNR of the partition tree with E. If the TNR of E is smaller than the maximum

TNR, store the maximum TNR entry in the temporary space and swap the

maximum TNR entry and E. Else, by rule 3, store E in the temporary space

(line 7-13).

The calling phase is proceed only in case of a cache miss. In the calling phase,

if a miss occurs in the partition tree that is not TP , call the tree operation of

the partition tree of the next level while passing parameters–the current time

and the entry stored in the temporary space (line 14-15). Else, the current

processing tree is TP and it was a miss, then it is a cache miss in cache size

Cmax, so increase the miss counter (line 16-17).
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Figure 3.3 Example of multiple cache size simulation

3.3.2 Simulating with Link-Tree

For the multiple cache size simulation, LT-OPT takes an array of cache sizes

sorted in ascending order to simulate as an input. Based on the input, LT-OPT

determines the size of each partition tree and assigns a level to each tree. The

first partition tree T1 is created with the smallest cache size entered by the

user(Cmin == arr[0]). The rest of the partition trees are set to the size of

arr[N-2] - arr[N-1]. For example, if the user entered {5, 10, 20} as an input, T1

becomes size of 5 and T2 and T3 become size of 5 and 10 respectively.

LT-OPT maintains P hit/miss counters mapped to each partition tree. If

a cache hit occurs in TN , it is a cache hit in the bigger cache size of arr[N-1]

by the Belady-free property. Therefore, by increasing all hit counters from TN

to TP , the rest of the partition tree operation can be skipped. We refer to this

tree operation skipping as ’hit propagation’.

Figure 3.3 shows how the Link-Tree process for multiple cache size simula-
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tion. Link-Tree always starts at T1 when processing references. (1) It searches

for the entry of A in T1 but it does not exist. So it increases the miss counter

of T1 swap the entry of maximum TNR and the entry of A. Then call the

process part tree() function to search on the partition tree of the next level.

(2) LT-OPT also searches for entry A in T2 but there is no such entry. At this

time, it compares the TNR of the entry crowded out from T1 (entry D) with

the maximum TNR entry of T2 (entry G). If the latter has a bigger TNR, swap

them and call the process part tree() with the swapped-out entry (the case of

figure 3.3). Else, just call the next-level tree function with D without swapping

with the maximum TNR entry of T2. (3) LT-OPT searches in T3 and found

the entry of A. It increases the hit counter of T3 and swaps entry A with the

passed entry (G). (4) If there are more partition trees after the tree that hit

occurred, skip all remaining tree operations because the increment in the hit

tree represents it is all hit in all lower-level trees (hit propagation). In the case

of figure 3.3, the hit counter of T4 is incremented.
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Algorithm 3 Partiton tree operation

Require: T1 . . . TP ▷ Partition trees

Require: HIT,MISS ▷ Hit/miss counter

1: function process part tree(TN , CUR TIME,E)

2: if TN .get min() == CUR TIME then

3: HIT ← HIT + 1

4: TN .pop min()

5: TN .push(E)

6: else

7: max← TN .get max()

8: temp← E

9: if E < max then

10: temp← max

11: TN .pop max()

12: TN .push(E)

13: end if

14: if TN ̸= TP then

15: process part tree(TN+1, CUR TIME, temp)

16: else

17: MISS ←MISS + 1

18: end if

19: end if

20: end function
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Chapter 4

Implementation

We implemented LT-OPT and the cache simulators for other schemes or policies

with C++ from scratch. We used gcc compiler whose version is 8.4.0 which uses

c++14 in default. The optimization parameter is given to -O3 for compiling the

simulator.

We implemented the compare group including the stack algorithm applying

the scheme of Sugumar et al., OSL [29], and online algorithms – LFU, CLOCK

[11], LIRS [23], and ARC [33]. The simulator of Sugumar et al. is implemented

in two versions. The difference is whether the group constituting the stack is

implemented as a red-black tree or a min-max heap. Because AccessMap clearly

optimizes TNR calculation than the lookahead process, it is applied to both

versions of Sugumar.

We used a min-max heap implementation by itsjohncs [19]. We checked

the correctness of the implementation by comparing the simulation results of

several traces with the results of the Sugumar et al simulator.
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Chapter 5

Evaluation

In this chapter, we present performance evaluations of LT-OPT. The goals

of our evaluation are to show that LT-OPT has better performance than the

scheme of Sugumar et al. and is even comparable to online algorithms having

low overhead. We used 4-socket Intel Xeon Gold 6140 (2.3GHz, 18 cores per

CPU) NUMA machine with 304 GB of total DRAM for evaluation. NUMA 0

node has 256 GB of DRAM and the other nodes have 16 GB each. We evaluated

the performance by the execution time of the simulation. All simulators set their

CPU affinity to the NUMA 0 node’s first physical thread.

Table 5.1 describes the count of total references and distinct data blocks

of traces used in the evaluation. Twitter algorithm traces are extraction of

block I/O operation of FlashX [54], a graph processing engine for large-scale

graphs. We ran several algorithms(weakly connected components, diameter,

pagerank2, cycle triangle, and localscan) with the Twitter Social Graph 2009

[27] on modified FlashX which saves data block reference requests in the log

file. We also used traces from Microsoft MSR Cambridge block I/O trace [35]
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Trace name Total ref. count # of distinct data blocks

twitter wcc 9,439,516 6,096,612

twitter diam 41,981,522 6,096,612

twitter pr2 98,634,165 3,048,307

twitter tc 1,432,095,672 6,096,612

twitter ls 4,359,196,005 6,096,612

msr proj 660,813,222 325,442,262

msr prxy 576,411,570 3,824,259

msr src1 818,690,304 63,853,879

msr usr 745,221,453 272,785,468

Table 5.1 Trace information

for our evaluation. We chose proj, prxy, src1, and usr traces which have a

large reference count.

5.1 Fast Cache Simulation

For showing the efficiency of our scheme, we evaluated LT-OPT for several

situations in 5.1. First, we evaluated LT-OPT in the case of simulating one

cache size, comparing it with Sugumar et al’s technique. Next, we compare

the performance of LT-OPT when simulated simultaneously for multiple cache

sizes.

5.1.1 Single-Size Cache Simulation

We first evaluate our LT-OPT with the previous scheme. Figure 5.1 shows

the runtime of single-size OPT simulations, normalized by the runtime of the

simulator of Sugumar et al. Execution time of singe-size cache simulation time
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Figure 5.1 Single-size cache simulation throughput comparison

normalized to the scheme of Sugumar et al. LT-OPT/N% indicates when P=1

and the maximum cache size is set to 100%, 50%, and 20% of the trace’s memory

footprint. Sugumar-MM is implementing the scheme of Sugumar et al. using a

min-max heap. The N of LT-OPT/N% means the target cache size is N% of

the total memory usage of the workload.

For all traces, LT-OPT always outperforms Sugumar and showed better per-

formance up to 5.46x in the bigger reference count. We can also observe that

limiting the maximum size of the cache has extra performance improvement in

Twitter workloads. In contrast, MSR workloads showed minimal performance

improvement with small cache sizes, and proj even showed degradation of per-

formance.

The lower degree of performance improvement by smaller cache size is due

to two factors. First, reference to data blocks that are not referenced before

– we refer to this as ’cold reference’ – dominates the trace. At the cold refer-

ence, if the cache is not full, LT-OPT does not need to evict entries from the

cache; it only needs to perform an insert operation. However, if the cache is

full, cache eviction is required to store the block just referenced, and at this

time, delete and insert operations must be performed together. That is, some

25



0

0.2

0.4

0.6

0.8

1

wcc diam pr2 tc ls proj prxy src1 usr

# of Single Ref./# of Total Block # of Single Ref./Total Ref.

Figure 5.2 The ratio of the number of single-referenced blocks

of the references that only needed an insert operation in the 100% size cache

additionally require a delete operation in the 50% size cache. Therefore, the

performance can be degraded when the overhead due to the additional eviction

is greater than the performance gain due to the smaller operation. The yellow,

hatch bar of figure 5.2 depicts the ratio of the number of blocks referenced only

one time (single-referenced blocks) to the number of total distinct data blocks.

wcc, proj, and usr are cold-reference-dominated traces, and we can see per-

formance degradation in proj. But wcc showed performance improvement in

LT-OPT/20%, because the gain of the smaller operation becomes greater than

the additional insert operation overhead.

Second, even if the cold references do not occupy a large part of the trace, it

is difficult to see a significant effect on performance if cold blocks are referenced

relatively slowly. The effect of limiting the cache size comes from making the

overhead of insert/delete operations as large as log(cache size). However, if the
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Figure 5.3 Multiple-size cache simulation throughput comparison

cache is not full, the operations take as much time as the log of the number of

entries being used in the cache. It is for this reason that MSR traces show overall

lower performance than Twitter traces. Since Twitter is a graph algorithm

workload, it references a lot of data relatively more quickly than MSR, which

recorded block I/O requests of users on the cluster for a week.

Also, we can see that the min-max heap has performance benefits by com-

paring Sugumar and Sugumar-MM on twitter wcc and twitter tc. This is be-

cause the min-max heap minimizes random memory accesses during the simu-

lation.

5.1.2 Multiple-Size Cache Simulation

Next, we evaluate the multiple-size cache simulation performance of LT-OPT.

We set the maximum/minimum size of the target cache size to 100%/10%,

50%/30%, 20%/10% and denote each to LT-OPT/100%, LT-OPT/50%, and

LT-OPT/20%. Each LT-OPT set its number of partition trees to 10 (P=10),

so each of them simulates the hit ratio for 10 intervals between the minimum

and maximum cache size.

Figure 5.3 shows the throughput normalized to Sugumar. LT-OPT showed
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Figure 5.4 The difference in the number of processed operations between the

partition trees of LT-OPT/100% and LT-OPT/50%

at least a similar performance to Sugumar, and outperformed up to 4.45x for

traces that have large reference counts (tc, ls). We could determine LT-OPT

will show more significant performance improvement in larger traces.

In detail, there is performance degradation between LT-OPT/100% and LT-

OPT/50% for proj and usr. This happens because simulating a smaller cache

will result in more insert operations; the performance benefit of the smaller

cache size was offset by the insert overhead. For example, suppose there is a

cache that can store a total of 10 entries. Then inserting 10 entries into this cache

takes 10 operations. But if this is done with 2 partition trees, operations must be

performed 10 times in the first partition tree and 5 times in the second partition
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tree, for a total of 15 operations. As a result, the effect of maintaining a small

cache is mitigated by the increase in the overall number of operations carried

out. A cold miss that impacts all partition trees with entries at the moment of

occurrence highlights the issue this causes. In other words, the ”domination of

cold reference” indicated in single-size cache simulation makes the performance

even worse in multi-size cache simulation. LT-OPT gains efficiency by keeping

the partition tree as small as possible and reducing operations on the partition

tree through hit propagation. However, because it has no impact, performance

in proj and usr declines to a level comparable to Sugumar.

We can observe this problem in figure 5.4. It shows how many more op-

erations were processed into the partition trees in LT-OPT/50% than LT-

OPT/100%. In proj and usr, partition trees of LT-OPT/50% processed fewer

operations up to T4, and starts to process more operations below T5. The re-

duction in processed operations up to T4 is because the first partition tree at

LT-OPT/50% manages 30% of the distinct data blocks alone, while at LT-

OPT/100% it manages splits from T1 to T3. But on average, each partition

tree except T1 handled 5% and 4% more operations, so taken together, the to-

tal number of processed operations increased by 41.8% and 36.6% of the total

reference count of the trace. That is, as can be seen from figure 6, all refer-

ences except for cold misses are hits, but the increase in the total number of

operations due to cold misses degrades the performance.

Meanwhile, src1 has a higher increase rate of operations than proj and

usr but showed performance improvement. This is because the increment of

processed operations due to cold misses does not take many portions of total

operations. Since most references of src1 is not cold reference, operations occur

in many groups in Sugumar as well. Therefore, the performance improvement

in src1 is the result of showing the structural efficiency of LT-OPT.
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Figure 5.5 Runtime analysis of OSL and LT-OPT

5.2 Evaluate with Other Algorithms

In this section, we compare runtime with OSL [29] and some online algorithms

that are widely used–CLOCK, LFU, LIRS, and ARC. For all comparisons,

LT-OPT determined the runtime as the sum of AccessMap initialization time

and actual simulation time. The runtime of OSL is determined by the sum of

the histogram/PPUC initialization and PPUC allocation time plus the actual

simulation time using SEAL. Lastly, for all online algorithms, the runtime is

calculated as the sum of the simulation time for determining all of the target

cache sizes of LT-OPT/100%.

30



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

wcc diam pr2 tc ls proj prxy src1 usr

T
h

ro
u

g
h

p
u

t 
N

o
rm

a
li

ze
d

 t
o

 L
T

-O
P

T

CLOCK LFU LIRS ARC

Figure 5.6 Throughput of online algorithms normalized to the throughput of

LT-OPT/100%

5.2.1 vs. OSL

To compare LT-OPT with OSL, we set OSL’s target average cache size set equal

to LT-OPT/20%. In addition, OSL’s lease assignment has been implemented

with optimization applied to reuse the PPUC allocation of the previous cache

size. Lastly, we set the timeout to 24 hours to run OSL. Figure 5.5 shows detailed

runtime of both OSL and LT-OPT. Due to the significant runtime difference,

only up to 1000% is indicated in the graph. The PPUC initialization process is

contained in the histogram init. The value written inside the bar graph is the

value normalized from the runtime of the relevant part to the entire runtime of

LT-OPT. The bolded label at the top of the OSL bar indicates the OSL runtime

versus LT-OPT. Only the three traces that finished within the timeout period,

wcc, diam, and pr2 were compared.

As a result, LT-OPT outperformed OSL by at least 13x. OSL exceeded

the execution time of LT-OPT only by generating histogram and calculating

PPUC even for relatively small traces such as diam. In addition, OSL’s SEAL

applied optimization by managing leases in buckets, but was greatly affected

by deallocation overhead for entries in the bucket of L=1 for every reference.
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On the other hand, LT-OPT can initialize the necessary data structures

simply by reading the trace once, and can perform efficient simulation through

caches only with the required size. Through comparison of the results with OSL,

it can be seen that LT-OPT makes OPT simulation efficient compared to offline

algorithms.

5.2.2 vs. Online Algorithms

Finally, we evaluate our LT-OPT with online algorithms. Figure 5.6 shows the

performance comparison with LT-OPT and online algorithms. A higher value

indicates higher throughput. For all traces, LT-OPT outperforms all online

algorithms by at least 3.4x. list [12] of C++ STL was used as buffers for

CLOCK, ARC, and LIRS, and data blocks and iterators were mapped using

STL map [13] to determine whether they existed in the cache and used for search.

LFU is implemented using set [14] of C++ STL, and it tracks the reference

count of the entries currently present in the cache. Overall, the algorithm that

took the longest to simulate is LFU, because it uses logarithm time to increase

the block counter for every reference. As a result, LT-OPT can simulate faster

than the algorithm actually used online by effectively optimizing the searching

and tree operation.
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Chapter 6

Related Works

6.1 Cache Management Policies

For the past decades, lots of caching policies are proposed for efficient cache use

to reduce the performance penalty of cache misses. Minimizing such penalties

leads to smaller reference time of applications, so adopting an efficient cache

management policy is critical for higher performance in both computer archi-

tecture and operating systems.

There are basically two kinds of reference locality: temporal locality and

spatial locality. Temporal locality means that specific data is referenced again

within a short period of time, and spatial locality is the tendency of data in the

vicinity of the referenced data to be referenced. Based on this, it is possible to

estimate whether data will be referenced in the future through past reference

trends. Least-Frequently Used (LFU) reflects these localities by evicting the

least referenced data by storing the number of times the data is referenced. In

addition, Least-Recently Used(LRU) assumes that the recently referenced data
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will be needed in the future, and the most recently referenced data evict the

oldest data. CLOCK [11] is an approximation version of LRU, and instead of

all pages having a referenced time, a second chance is given through a reference

bit to keep the recently referenced page.

Because CLOCK performed well in the portion of workloads, a variant of

CLOCK was applied in many OSes including Linux andWindows [17]. However,

LRU-based policies such as CLOCK show serious performance degradation in

reference patterns where the assumptions of LRU do not fit. For example, when

a reference pattern such as a memory scan occurs, CLOCK loses useful infor-

mation it previously had. This is because the LRU only considers data recency

and not data frequency.

To address this problem, recent studies have suggested a method of adap-

tively managing the cache according to the progress of workloads. LRFU [28]

combines LRU and LFU and chooses to give more weight based on history.

LRU-K [36] supplemented LRU’s lack of data frequency by approximating LFU

based on recent K references. 2Q [24] is the same as LRU-2, but highly avail-

able in practice with constant time complexity. LIRS [23] manages the cache

by dividing it into Low Inter-reference Recency (LIR) and High Inter-reference

Recency (HIR) partitions based on the reuse distance suggested by Mattson et

al. CLOCK-Pro [22] is an approximation of LIRS, and the Linux buffer cache

replacement implementation uses a combination of LRU and CLOCK-Pro [31].

ARC [33] manages the cache with hot/cold LRU buffers and adjusts the size of

each buffer based on the metadata of recently evicted pages to operate adap-

tively to the workload. In particular, ARC is adopted by many systems as a

”golden standard” for storage caching [48]. In addition to the studies mentioned

so far, studies for improving cache performance are being actively conducted

[8, 21, 25, 37, 46, 52]. By quickly calculating the baseline of performance, our
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work is beneficial for further research on cache management policies.

6.2 Variable-size Cache

While fixed-size cache limits the maximum size of the cache, variable-size cache

limits the average usage of the cache. They have a different mechanism for

managing their buffer. The fixed-size cache ”reactively” manages its space–it

makes free space by eviction when the cache is full. In contrast, the variable-size

cache is ”prescriptive”, which means that it manages its space by allocation.

The concept of the variable-size cache is discovered by Denning [15]. Denning

defined the working set model, which tracks the recent reference behavior of a

process. The variable-size cache adapts its size when the working set of the

program is changed. Even though the working set theory is proposed about a

half-century ago, it is still positioned as one of the foundations of the memory

management system of modern operating systems.

The optimal for the variable-size cache, VMIN, is given by Prieve and Fabry

[38]. Li et al. proposed OSL(Optimal Steady-state Lease)[29], which tried to

mimic VMIN with statistical clairvoyance and variable-size cache. They used

the cache lease concept for allocating cache blocks, which is initially used in the

distributed file caching system [18].

Because fixed-size and variable-size caches have different constraints and

criteria, comparison between them is generally not appropriate. But as Li et al.

did, we can still use OPT as a baseline of performance to determine whether

the scheme based on variable size cache successfully adapts to the working set.
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6.3 Miss Ratio Curves(MRCs)

Cache allocation needs to be improved in order to maximize cache performance.

MRCs are a tool used to determine the dynamic memory demand of workload,

and are useful in both software cache and hardware cache. MRCs are the curves

of miss rate per memory size, and the result obtained by OPT simulation for

a range of specific memory sizes is the same as the MRC. Using this fact,

studies such as Hawkeye [20] and Pacman [9] adopted the scheme of OPT for

optimizing cache performance. Hawkeye learned and used a model that mimics

OPT’s decision based on past information. Pacman used OPT’s stack distance

to optimize caching in loop-based code.

There are studies, though, that do not employ the OPT scheme. RapidMRC

[43] improves L2 cache performance through hardware support in the form

of Performance Monitoring Units (PMUs). SHARDS [49] approximated MRC

through spatial sampling at representative locations. Talus [4] mitigated the

MRC cliff with LRU cache partitioning to make the performance improvement

according to the cache size consistent. SLIDE [48] obtained transparent cliff

removal effect through scaled-down simulation.

As a result, OPT is not practical because it requires future reference in-

formation, but it can be used as a baseline in research to improve cache per-

formance using MRC. Additionally, our scheme will be advantageous to future

studies that use the scheme of OPT for cache optimization.
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Chapter 7

Conclusion

This paper has proposed LT-OPT, the high-performance OPT simulator for

large-scale traces. LT-OPT optimized searching the block and eviction target

selection operations in constant time complexity by adopting AccessMap and

min-max heap. LT-OPT also minimized memory overhead by advancing the

useful fact that OPT simulation can be processed with only TNR. We also

presented a Link-Tree capable of simulating multiple cache sizes concurrently,

which enables more efficient simulation than stack processing simulation. Link-

tree creates several partition trees and its structure reduces unnecessary mem-

ory usage according to the settings provided by the user. It addresses the prob-

lem of Sugumar et al’s grouping technique in which there may be too many

groups by fixing the number of partition trees. In comparison to the scheme

of Sugumar et al., LT-OPT achieved up to 5.4x higher performance in single-

size cache simulation and up to 4.4x higher performance in multiple-size cache

simulation. We observed that LT-OPT has a more significant performance im-

provement on the bigger traces.
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초록

현대 소프트웨어의 메모리 요구량이 점점 늘어남에 따라, 효율적인 메모리 관리를

위한 연구들이 활발히 이루어지고 있다. 최적 페이지 교체 알고리즘(이하 OPT)

는 가장 나중에 참조되는 페이지를 교체하는 오프라인 알고리즘으로, 페이지 교체

정책에대한연구에서상한성능으로써사용된다.하지만기존의 OPT시뮬레이션

기법은 현대 소프트웨어의 대용량 메모리 트레이스를 합리적인 시간 안에 시뮬레

이션하지 못하고 있다.

본논문에서는대용량트레이스를효율적으로처리할수있는새로운시뮬레이

션 기법을 제안한다. 기존 기법의 다음 참조 시간 계산의 시간 복잡도를 개선하기

위해, 배열과 큐로 구성된 AccessMap을 새롭게 적용한다. AccessMap의 각 큐에

는 해당하는 페이지가 접근하는 시간이 오름차순으로 정리되어 다음 참조 시간을

상수 시간에 계산할 수 있도록 했다. 또한 최댓값과 최소값을 상수 시간에 수행할

수 있는 Min-Max 힙을 적용해, 페이지 검색과 교체할 페이지 선정에 걸리는 시

간을 최적화한다. 마지막으로, 여러 캐시 크기에서의 적중률을 한 번의 실행으로

효율적으로 계산할 수 있는 Link-Tree를 새롭게 고안해 적용한다.

실험 결과, 제안한 기법은 기존 기법 대비 단일 크기의 캐시 시뮬레이션에서는

최대 약 5.4배 높은 처리량을 보였으며, 여러 크기의 캐시를 동시에 시뮬레이션 할

때는 최대 약 4.4배 높은 처리량을 보였다. 또한 트레이스의 크기가 커짐에 따라

더 높은 성능 향상을 확인할 수 있었다.

주요어: 최적 페이지 교체, OPT, 스택 알고리즘, 메모리 관리

학번: 2021-22208
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