

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Efficient Execution of Machine Learning

Workloads on GPUs

GPU 환경에서 머신러닝 워크로드의 효율적인 실행

FEBRUARY 2023

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Gyeong-In Yu

Efficient Execution of Machine Learning Workloads on

GPUs

GPU 환경에서 머신러닝 워크로드의 효율적인 실행

지도교수 전 병 곤

이 논문을 공학박사 학위논문으로 제출함

2022 년 11 월

서울대학교 대학원

컴퓨터 공학부

유 경 인

유경인의 공학박사 학위논문을 인준함

2022 년 12 월

위 원 장 유 승 주 (인)

부위원장 전 병 곤 (인)

위 원 이 재 욱 (인)

위 원 이 영 기 (인)

위 원 이 윤 성 (인)

Abstract

Machine learning (ML) workloads are becoming increasingly important in many

types of real-world applications. We attribute this trend to the development of

software systems for ML, which have facilitated the widespread adoption of

heterogeneous accelerators such as GPUs. Today’s ML software stack has made

great improvements in terms of efficiency, however, not all use cases are well

supported. In this dissertation, we study how to improve execution efficiency

of ML workloads on GPUs from a software system perspective. We identify

workloads where current systems for ML have inefficiencies in utilizing GPUs

and devise new system techniques that handle those workloads efficiently.

We first present Nimble, a ML execution engine equipped with carefully

optimized GPU scheduling. The proposed scheduling techniques can be used to

improve execution efficiency by up to 22.34×. Second, we propose Orca, an

inference serving system specialized for Transformer-based generative models.

By incorporating new scheduling and batching techniques, Orca significantly

outperforms state-of-the-art systems – 36.9× throughput improvement at the

same level of latency. The last topic of this dissertation is WindTunnel, a

framework that translates classical ML pipelines into neural networks, provid-

ing GPU training capabilities for classical ML workloads. WindTunnel also

allows joint training of pipeline components via backpropagation, resulting in

improved accuracy over the original pipeline and neural network baselines.

Keywords: machine learning, deep learning, scheduling, inference serving, gen-

erative models, Transformer, joint training

Student Number: 2017-28658

i

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Dissertation Overview . 2

1.3 Previous Publications . 4

1.4 Roadmap . 5

Chapter 2 Background 6

2.1 ML Workloads . 6

2.2 The GPU Execution Model . 7

2.3 GPU Scheduling in ML Frameworks 8

2.4 Engine Scheduling in Inference Servers 10

2.5 Inference Procedure of Generative Models 11

Chapter 3 Nimble: Lightweight and Parallel GPU Task Schedul-

ing for Deep Learning 17

3.1 Introduction . 17

3.2 Motivation . 21

ii

3.3 System Design . 24

3.3.1 Ahead-of-time (AoT) Scheduling 25

3.3.2 Stream Assignment Algorithm 28

3.4 Evaluation . 32

3.4.1 Inference Latency . 36

3.4.2 Impact of Multi-stream Execution 36

3.4.3 Training Throughput . 37

3.5 Summary . 38

Chapter 4 Orca: A Distributed Serving System for Transformer-

Based Generative Models 40

4.1 Introduction . 40

4.2 Challenges and Proposed Solutions 44

4.3 Orca System Design . 51

4.3.1 Distributed Architecture 51

4.3.2 Scheduling Algorithm . 54

4.4 Implementation . 60

4.5 Evaluation . 61

4.5.1 Engine Microbenchmark 63

4.5.2 End-to-end Performance 66

4.6 Summary . 71

Chapter 5 WindTunnel: Towards Differentiable ML Pipelines

Beyond a Single Model 72

5.1 Introduction . 72

5.2 Pipeline Translation . 78

5.2.1 Translating Arithmetic Operators 80

5.2.2 Translating Algorithmic Operators: GBDT 81

iii

5.2.3 Translating Algorithmic Operators for Categorical Features 85

5.2.4 Fine-Tuning . 87

5.3 Implementation . 87

5.4 Experiments . 88

5.4.1 Experimental Setup . 89

5.4.2 Overall Performance . 94

5.4.3 Ablation Study . 95

5.5 Summary . 98

Chapter 6 Related Work 99

Chapter 7 Conclusion 105

Bibliography 107

Appendix A Appendix: Nimble 131

A.1 Proofs on the Stream Assignment Algorithm of Nimble 131

A.1.1 Proof of Theorem 1 . 132

A.1.2 Proof of Theorem 2 . 134

A.1.3 Proof of Theorem 3 . 135

A.1.4 Time Complexity Analysis 137

A.2 Evaluation Results on Various GPUs 139

A.3 Evaluation Results on Different Training Batch Sizes 139

초록 141

iv

List of Figures

Figure 2.1 GPU task scheduling in ML frameworks that build a

computation graph for ML execution. 9

Figure 2.2 A computation graph representing an inference proce-

dure using a GPT model. The graph does not depict

layers other than Transformer layers (e.g., embedding)

for simplicity. 12

Figure 2.3 A Transformer layer used in GPT. 13

Figure 2.4 Internal state usage of Transformer. h, k, v, and c refer

to layer input/output, Attention key, Attention value,

and LSTM internal memory, respectively. l denotes layer

index and t denotes token index. 14

Figure 2.5 Overall workflow of serving a generative language model

with existing serving systems. 16

Figure 3.1 Ratio of GPU active time to the overall running time on

DL inference. 21

Figure 3.2 Inference latencies of PyTorch and its scheduling-minimized

version. 23

v

Figure 3.3 Ratio of critical path time to the GPU active time on

DL inference. 24

Figure 3.4 High scheduling overhead inhibits efficient use of multi-

ple GPU streams. 24

Figure 3.5 System overview of Nimble. 25

Figure 3.6 AoT GPU task scheduler and Runtime of Nimble. Dashed

arrows represent the interception of GPU tasks and mem-

ory requests by the AoT scheduler. 27

Figure 3.7 Example walk-through of Algorithm 1. Bold lines indi-

cate edges in maximum matching M 30

Figure 3.8 Relative inference speedup of Nimble and other systems

(batch size 1). We use various neural networks [55, 125,

137, 138, 160], all trained on ImageNet [124]. 35

Figure 3.9 Relative training speedup of Nimble and TorchScript.

All neural networks [43, 55, 125, 138] are trained with

batch size 32. 38

Figure 4.1 An illustration for a case where the requests have the

same input length but some requests finish earlier than

others. Shaded tokens represent input tokens. “-” de-

notes inputs and outputs of extra computation imposed

by the scheduling. 44

vi

Figure 4.2 System overview of Orca. Interactions between compo-

nents represented as dotted lines indicate that the in-

teraction takes place at every iteration of the execution

engine. xij is the j-th token of the i-th request. Shaded

tokens represent input tokens received from the clients,

while unshaded tokens are generated by Orca. For ex-

ample, request x1 initially arrived with two input tokens

(x11, x12) and have run two iterations so far, where the

first and second iterations generated x13 and x14, respec-

tively. On the other hand, request x3 only contains input

tokens (x31, x32) because it has not run any iterations

yet. 46

Figure 4.3 An illustration of Orca execution engine running a Trans-

former layer on a batch of requests with selective batch-

ing. We only depict the QKV Linear, Attention, and

Attention Out Linear operations for simplicity. 49

Figure 4.4 An example of intra- and inter- layer parallelism. A verti-

cal dotted line indicates partitioning between layers and

a horizontal line indicates partitioning within a layer. . 52

Figure 4.5 An illustration of the distributed architecture of Orca’s

execution engine using the parallelization configuration

shown in Figure 4.4. For example, the first inter-layer

partition (Layer1 and Layer2) in Figure 4.4 is assigned

to Worker1, while the second partition is assigned to

Worker2. 53

vii

Figure 4.6 Comparison of the use of pipeline parallelism in Orca

and FasterTransformer where Xi is the i-th iteration of

request X. 58

Figure 4.7 Execution time of a batch of requests using FasterTrans-

former and the Orca engine without the scheduling

component. Label “ft(n)” represents results from Faster-

Transformer processing requests with n input tokens.

Configurations that incurs out of memory error are rep-

resented as missing entries (e.g., ft(32) for the 101B

model with a batch size of 16). 64

Figure 4.8 Median end-to-end latency normalized by the number of

generated tokens and throughput. Label “orca(max bs)”

represents results from Orca with a max batch size of

max bs. Label “ft(max bs, mbs)” represents results from

FasterTransformer with a max batch size of max bs and

a microbatch size of mbs. 67

Figure 4.9 Median end-to-end latency and throughput, using the

175B model with traces composed of homogeneous re-

quests. We do not normalize the latency since all re-

quests have the same characteristic. 70

Figure 5.1 An illustration of WindTunnel. The input to Wind-

Tunnel is a ML pipeline and the output is its (partially)

differentiable counterpart. 73

Figure 5.2 Translating a decision tree into a multi-layer perceptron. 82

Figure 5.3 Translating one-hot encoder and hash encoder into em-

bedding lookup modules. 85

viii

Figure A.1 Relative inference speedup of Nimble and other systems

(batch size 1). 138

Figure A.2 Relative training speedup of Nimble and TorchScript. . . 140

ix

List of Tables

Table 3.1 Impact of the multi-stream execution of Nimble on DL

inference, compared to its single-stream counterpart. Deg.

stands for maximum degree of logical concurrency of each

architecture. 36

Table 4.1 Configurations of models used in the experiments. 61

Table 5.1 WindTunnel’s currently supported ML operators. 78

Table 5.2 Statistics of datasets used in experiments. #Rec is the

number of data records, #Num is the number of numer-

ical features, #Cat is the number of categorical features,

#Unq is the number of unique categories that appear in

the training split (i.e. the sum of cardinalities of cate-

gorical features), and Positive ratio is the percentage of

records with positive label. 89

x

Table 5.3 Overall performance comparision. We report AUC on test

split following the previous work [73]. ML is the origi-

nal ML pipeline, while W.T. is for WindTunnel. PreX

means different preprocessing schemes, and PipeX de-

notes different ML pipelines. The best result is marked

bold. 93

Table 5.4 AUC of the Criteo dataset using different translation scopes.

. 96

Table 5.5 AUC of the Criteo dataset using different parameter ini-

tialization regimes. 96

Table 5.6 AUC of the Criteo dataset using different GBDT parametriza-

tion levels and dataset sizes (1%, 10%, 100%). 97

xi

Chapter 1

Introduction

1.1 Motivation

In the recent decade, Machine Learning (ML) has led advances in many differ-

ent applications [55, 138, 146, 43, 27, 22, 28, 119, 51, 66]. This success does not

come for free; breakthroughs are often achieved by leveraging more computa-

tion [27, 37, 71], hence machine learning models are becoming larger and more

computationally intensive than ever. Such trend has facilitated rapid adoption

of heterogeneous processors, including GPUs, FPGAs, and custom ASICs like

TPUs, along with advances in software systems for controlling those processors.

Since building an efficient software for the processors like GPUs from scratch

requires a high degree of expertise in the hardware, these software systems have

been playing a crucial role of providing optimized runtime for machine learning

workloads.

Today’s ML software stack has made significant strides in terms of execution

efficiency, but not all use cases are well supported. This is because ML workloads

1

have highly diverse characteristics, depending on the types of tasks (e.g., vision,

language, or advertisement), problem complexity (e.g., ranging from small de-

cision trees to terabyte-scale Transformer models), and whether to train new

models or serve already trained models. Each of these workloads also requires

different performance optimizations for different hardware architectures. For

example, existing systems cannot efficiently handle serving workloads on GPUs

that run Transformer-based [146] generative models, even considering special-

ized systems for Transformer models [7, 5, 3].

1.2 Dissertation Overview

In this dissertation, we introduce ideas to improve execution efficiency of ML

workloads on GPUs from a software system perspective. We by no means pro-

vide a complete, automated methodology that outperforms state-of-the-art sys-

tems for a variety of workloads. Instead, our primary focus is on identifying

overlooked cases and designing efficient systems for those cases.

We hypothesize that careful scheduling optimization and graph transforma-

tion can make ML workloads on GPUs more efficient. To demonstrate this, we

examine three ML workloads where current ML systems cannot utilize GPUs

efficiently, devise novel system techniques for optimizing those workloads, and

implement systems by incorporating the techniques.

Lightweight and Parallel GPU Scheduling We investigate how general-

purpose ML frameworks (e.g., PyTorch [104] and TensorFlow [17]) schedule

computations on GPUs. We point out two problems in current scheduling that

can significantly inhibit efficient use of GPUs: large scheduling overhead and

unnecessary serial execution of GPU computations. While these problems can

be hidden when each computation is sufficiently large enough, we argue that

2

this is not true in many workloads such as training of relatively small models

or inference serving. To this end, we propose Nimble, a ML execution engine

that employs two new techniques – ahead-of-time scheduling and automatic

multi-stream execution. Ahead-of-time scheduling removes most of the schedul-

ing overhead during run time by reusing the work done for scheduling. Multi-

stream execution analyzes target model’s computation graph, finds an optimal

operator-to-stream mapping, and embeds the mapping in the graph by graph

rewriting. Experiments show that Nimble speeds up inference and training by

up to 22.34× and 3.61× compared to PyTorch, respectively. Since Nimble is im-

plemented on top of PyTorch, its shares the same GPU kernel implementation

with PyTorch; that is, the speedup comes from the advancements in schedul-

ing mechanisms. Nimble even outperforms state-of-the-art inference systems,

TensorRT [9] and TVM [33], by up to 2.81× and 1.70×, respectively.

Serving System for Transformer-Based Generative Models Next, we

dive into a more specific, but important workload: inference serving of Transformer-

based generative models like GPT-3 [27]. In this workload, to serve a single

inference request from a client, one should run the model as many times as the

number of tokens to generate. Such multi-iteration characteristic, which does

not appear in other types of tasks like image recognition or text classification,

calls into question current serving systems’ [11, 101] design: they schedule the

execution of engine at the granularity of batch of requests. This can greatly

limit the execution efficiency because a request finished earlier than others in

a batch have to wait for processing of the current batch before returning to its

client. Similarly, a request arrived after dispatching a batch also have to wait

for the batch before being processed. In this work, we propose iteration-level

scheduling where the serving system schedules a single iteration of the model at

3

a time. To maintain the batching functionality – which is crucial for efficiency

– while using the proposed scheduling, we suggest to apply batching to a se-

lected set of operators that comprise Transformer. Based on these techniques,

we implement a distributed serving system named Orca, which can scale to

models with hundreds of billions of parameters. Orca outperforms NVIDIA

FasterTransformer [7] by a significant margin: 36.9× throughput improvement

at the same level of latency.

Neural Translation of Classical ML Pipelines Many real-world ML work-

loads including click prediction [51] and recommendation [28] often use non-

DNN models, which we call classical ML models. These workloads compose

pipelines of data transformations and models to express the entire logic of fea-

ture extraction and learning. We observe that systems for classical ML (e.g.,

scikit-learn [106] and ML.NET [21]) mostly focus on CPU environment except

for very few cases [2]. In this work, we enable GPU execution of classical ML

training by translating classical ML pipelines into neural networks. That is, we

can leverage existing software stack mainly developed for neural networks to

train classical models on GPUs. More importantly, our translation approach

unlocks gradient backpropagation capability for classical ML pipelines. To this

end, we propose WindTunnel, a framework that jointly optimizes components

of classical ML pipelines by neural translation and backpropagation. We sug-

gest translation methods for two most popular non-differentiable operators –

gradient boosting trees and categorical feature encoders. Our experiments show

that we can achieve better accuracy by joint training, thereby closing the gap

between classical ML and neural networks.

4

1.3 Previous Publications

This dissertation contains material from the following previous publications:

• Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning,

NeurIPS 2020. [84]

• Orca: A Distributed Serving System for Transformer-Based Generative Mod-

els, OSDI 2022. [156]

• WindTunnel: Towards Differentiable ML Pipelines beyond a Single Model,

VLDB 2022. [155]

• Making Classical Machine Learning Pipelines Differentiable: A Neural Trans-

lation Approach, Workshop on Systems for ML at NeurIPS 2018. [154]

1.4 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 gives back-

ground on ML workloads and system stack for ML. Chapter 3 presents Nimble,

a deep learning execution engine that improves efficiency by optimizing GPU

scheduling. In Chapter 4, we introduce Orca, a distributed serving system for

Transformer-based generative models. Chapter 5 explains WindTunnel and

how it realizes end-to-end training of classical ML pipelines on GPUs. Chap-

ter 6 discuss related work of proposed systems and Chapter 7 concludes this

dissertation.

5

Chapter 2

Background

In this chapter, we provide background on machine learning workloads and how

existing ML systems handle the workloads.

2.1 ML Workloads

Machine learning is a paradigm of artificial intelligence that leverages data to

automatically improve the performance of computer programs. Broadly speak-

ing, the life cycle of machine learning can be divided into two stages: training

and inference. During the training, ML developers feed a training dataset to

their model and let the model “learn” to solve a given task, e.g., identify whether

a given image is a cat or a dog. In particular, a training process incorporates

an iterative procedure that fits the model for a given training dataset. Such

iterative procedure is determined by the training objective and algorithm. This

process is often very computationally intensive; training models like GPT-3 [27]

can take several months even with a thousand of GPUs.

6

After the training process, we deploy the trained model and use it to solve

certain tasks – we call this phase inference (or inference serving). There are some

characteristics that distinguish inference from training. First, unlike training,

inference does not require complex training algorithms as it does not make

changes on the model. Second, inference is often in the critical path of user-

facing interface. For example, an email service provider filters spam in real-time

by taking inference results from a trained model. Moreover, while we use a fi-

nite, carefully curated dataset as input of a training process, inference work-

loads should handle random client requests arriving in real-time to the deployed

environment. In Section 2.4, we provide more details on the system stack for

inference serving.

In addition to the training and inference, in practice, machine learning life

cycle includes other steps such as data collection, model testing, and monitoring.

We do not discuss these steps as they are outside the scope of this dissertation.

2.2 The GPU Execution Model

GPUs provide high throughput for ML computation due to their capability

to run thousands of threads in parallel. Such high degree of parallelism comes

from tens of parallel computation units called Streaming Multiprocessor (SM),

which comprises hundreds of cores.1 When a program (which runs on a CPU)

submits a GPU computation named kernel, which is a grid of multiple blocks,

GPU driver dispatches the blocks to SMs that have enough hardware resource

(e.g., number of vacant registers) to run the block. A single SM can run multiple

blocks concurrently, while a block is the minimum unit of work that can be

dispatched to a SM thus cannot be distributed across multiple SMs. A SM

1Without losing generality, we use NVIDIA terminology throughout this dissertation for
ease of understanding.

7

subdivides each assigned block into groups of parallel threads called a warp,

and selects one (or multiple) warp eligible to issue its next instruction at every

cycle. Unlike CPUs, the context (e.g., registers) of all warps on a SM is kept

on exclusively dedicated hardware resource – SMs can switch from one warp to

another at no cost. Therefore, to fully utilize the computation power of a SM,

it requires enough number of assigned warps so that at every cycle there exists

at least one warp ready to execute its next instruction.

One way to achieve this is to submit a large GPU kernel that has enough

intra-kernel parallelism (i.e., number of threads and blocks). Unfortunately,

this is not always possible because the number of threads (or blocks) is often

limited by various factors, including the implementation of the kernel and the

size of the data (i.e., tensor) being processed. Another way to enhance the

GPU utilization is to schedule multiple GPU kernels to run in parallel using

multiple GPU streams. A GPU stream is a queue of GPU kernels where the

kernels are scheduled sequentially in FIFO order. While kernels on the same

stream cannot be executed concurrently, kernels on different streams can run in

parallel, occupying different parts of the GPU resources. The execution order

between kernels on different streams is not guaranteed unless explicitly specified

by stream synchronization primitives [1].

2.3 GPU Scheduling in ML Frameworks

Machine learning systems handle GPU intricacies such as copying neural net-

work weights to GPUs and launching ML operators on GPUs. Operators indi-

cate numerical computations, such as matrix multiplication, convolution, soft-

max and layer normalization, and consist of one or more GPU tasks, including

not only GPU kernels but also GPU memory operations (e.g., memcpy).

The GPU task scheduling mechanisms of existing general-purpose ML frame-

8

Computation

Graph

Run-Time GPU Task Scheduler

Worker Thread

Tensor

Shape Check

Calculate

Output Shape

GPU Kernel

Dispatching

GPU Memory

Allocation

Prepare Kernel

Function Args.

GPU Kernel

Submission

Operator Emitter

Ready Queue

Enqueue Ready Op

Worker

Thread Pool

1 2

3 4 5

67

Figure 2.1: GPU task scheduling in ML frameworks that build a computation
graph for ML execution.

works are largely divided into two categories.2 First, ML frameworks including

TensorFlow [17], Caffe2 [64] and TorchScript [16] express a ML model as a

computation graph where each node represents a ML operator and each edge

indicates a dependency between two operators. The runtime stack of such a

ML framework consists of two major system components (written in C++):

the operator emitter and the workers. The operator emitter maintains a queue

of operators whose dependencies are met and emits the operator at the front

of the queue to a worker thread. The worker takes the emitted operator and

performs a series of preparation steps and finally submits GPU kernels for each

operator. As such, ML frameworks in this category schedule the GPU tasks at

run time through the interplay of the operator emitter and the workers.

Second, ML frameworks including PyTorch [104] and TensorFlow Eager [20]

describe a ML model as an imperative Python program. In such ML frameworks,

there is no explicit computation graph of the model nor operator emitter in the

runtime stack. That is, the operators are emitted by the Python interpreter as

the program is executed line by line. The emitted operators are then processed

by the worker in a similar manner to the ML frameworks in the first category.

As such, ML frameworks in the second category also perform the run-time

2Here we do not take frameworks without GPU support into account (e.g., scikit-
learn [106].)

9

scheduling of GPU tasks, through the Python interpreter and the worker.

Figure 2.1 illustrates in detail how ML frameworks such as TensorFlow and

Caffe2 carry out run-time scheduling. To submit a GPU task, the run-time

scheduler must go through the following process: ❶ select an operator from the

ready queue; ❷ emit the operator to a vacant worker thread; ❸ check the types

and shapes of input tensors; ❹ calculate the types and shapes of output tensors;

❺ dispatch appropriate GPU kernels for the operator based on tensor types

and shapes; ❻ allocate GPU memory for the output tensors and workspace

for the kernels, typically by retrieving memory blocks from the cached pool

of GPU memory; and ❼ prepare function arguments required for submitting

the kernels. While specific steps may differ across ML frameworks, the overall

process remains the same.

Regarding the GPU streams, existing ML frameworks are primarily designed

and optimized to submit GPU kernels to a single GPU stream. For example,

TensorFlow uses a single compute stream per GPU for running its kernels.

2.4 Engine Scheduling in Inference Servers

Growing demands for ML-driven applications have made ML inference serving

a critical workload in modern datacenters. Users (either the end-user or internal

microservices of the application) submit requests to an inference service, and

the service gives replies on the requests based on a pre-defined ML model using

its provisioned resource, typically equipped with specialized accelerators such

as GPUs and TPUs. In particular, the service runs a ML model with input

data to generate output for the request. Just like other services operating on

datacenters, a well-managed inference service should provide low latency and

high throughput within a reasonable amount of cost.

To meet such constraints, service operators often use ML inference servers

10

such as Triton Inference Server [11] and TensorFlow Serving [101]. These sys-

tems can be seen as an abstraction sitting atop underlying model execution

engines such as TensorRT [9], TVM [33], TensorFlow [17], and many oth-

ers [104, 106], being agnostic to various kinds of ML models, execution engines,

and computing hardware. While delegating the role of driving the main math-

ematical operations to the engines, inference servers are in charge of exposing

endpoints that receive inference requests, scheduling executions of the engine,

and sending responses to the requests. Accordingly, these systems focus on as-

pects such as batching the executions [38, 11, 101, 130, 85], selecting an appro-

priate model from multiple model variants [38, 70, 59, 131], deploying multiple

models (each for different inference services) on the same device [130, 85, 65, 11],

and so on.

Among the features and optimizations provided by ML serving systems,

batching is a key to achieve high accelerator utilization when using accelerators

like GPUs. When we run the execution engine with batching enabled, the input

tensors from multiple requests coalesce into a single, large input tensor before

being fed to the first operation of the model. Since the accelerators prefer large

input tensors over small ones to better exploit the vast amount of parallel

computation units, the engine’s throughput is highly dependent on the batch

size, i.e., the number of inference requests the engine processes together. Reusing

the model parameters loaded from off-chip memory is another merit in batched

execution, especially when the model involves memory-intensive operations.

2.5 Inference Procedure of Generative Models

We provide background on the inference procedure of GPT [113, 27], a represen-

tative example of Transformer-based generative models that we use throughout

this dissertation. GPT is an autoregressive language model based on one of

11

I think this

1 4 7

5 8

is great

6 9

is great <EOS>

2

iter 1 iter 2 iter 3

3

Figure 2.2: A computation graph representing an inference procedure using a
GPT model. The graph does not depict layers other than Transformer layers
(e.g., embedding) for simplicity.

architectural variants of Transformer [146]. It takes text as input and produces

new text as output. In particular, the model receives a sequence of input tokens

and then completes the sequence by generating subsequent output tokens. Fig-

ure 2.2 illustrates a simplified computation graph that represents this procedure

with a three-layer GPT model, where nodes and edges indicate Transformer lay-

ers and dependencies between the layers, respectively. The Transformer layers

are executed in the order denoted by the numbers on the nodes, and the nodes

that use the same set of model parameters (i.e., nodes representing the same

layer) are filled with the same color.

The generated output token is fed back into the model to generate the

next output token, imposing a sequential, one-by-one inference procedure. This

autoregressive procedure of generating a single token is done by running all the

12

MLP

LayerNorm

QKV Linear

Attention

Query ValueKey

Attn Out Linear

Add

Input

LayerNorm

Linear

GeLU

Linear

Add

Output

Figure 2.3: A Transformer layer used in GPT.

layers of the model with the input, which is either a sequence of input tokens

that came from the client or a previously generated output token. We define the

run of all layers as an iteration of the model. In the example shown in Figure 2.2,

the inference procedure comprises three iterations. The first iteration (“iter 1”)

takes all the input tokens (“I think this”) at once and generates the next token

(“is”). This iteration composes an initiation phase, a procedure responsible for

processing the input tokens and generating the first output token. The next two

iterations (“iter 2” and “iter 3”), which compose an increment phase, take the

output token of the preceding iteration and generate the next token. In this

13

kl,1:t−1

vl,1:t−1

kl,1:t−1

vl,1:t−1

Transformer
layer

Transformer
layer

LSTM
layer

LSTM
layer

kl,1:t
vl,1:t

kl,1:t
vl,1:t

kl,1:t+1

vl,1:t+1

kl,1:t+1

vl,1:t+1

cl,t−1

hl,t−1

cl,t−1

hl,t−1

cl,t
hl,t

cl,t
hl,t

cl,t+1

hl,t+1

cl,t+1

hl,t+1

hl−1,thl−1,t

hl,thl,t

hl−1,t+1hl−1,t+1

hl,t+1hl,t+1

hl−1,thl−1,t

hl,thl,t hl,t+1hl,t+1

hl−1,t+1hl−1,t+1

Figure 2.4: Internal state usage of Transformer. h, k, v, and c refer to layer
input/output, Attention key, Attention value, and LSTM internal memory, re-
spectively. l denotes layer index and t denotes token index.

case, “iter 3” is the last iteration because it produces “<EOS>”, a special

end-of-sequence token that terminates output generation. Note that while the

increment phase comprises multiple iterations because each iteration is only

able to process a single token, the initiation phase is typically implemented as

a single iteration by processing all the input tokens in parallel.

The original Transformer [146] employs two stacks of Transformer layers,

while GPT’s architecture consists of a single layer stack, namely decoder. Fig-

ure 2.3 shows a Transformer layer used in GPT. Among the operations that

compose the Transformer layer, Attention is the essence that distinguishes

Transformer from other architectures. At a high level, the Attention opera-

tion computes a weighted average of the tokens of interest so that each token in

the sequence is aware of the other. It takes three inputs, query, key, and value,

14

computes dot products of the query (for the current token) with all keys (for

the tokens of interest), applies Softmax on the dot products to get weights, and

conducts weighted average of all values associated with the weights.

Since the Attention requires keys and values of all preceding tokens,3 we

consider the keys and values as internal states that should be maintained across

multiple iterations. A näıve, state-less inference procedure would take all tokens

in the sequence (including both the client-provided input tokens and the output

tokens generated so far) to recompute all the keys and values at every iteration.

To avoid such recomputation, fairseq [103] suggests incremental decoding, which

saves the keys and values for reuse in successive iterations. Other ML systems

specialized for Transformer such as FasterTransformer [7] and Megatron-LM [5]

also do the same.

Figure 2.4 illustrates the state usage pattern of Transformer, along with

LSTM [57] that also maintains internal states. The main difference is that

the size of the states (k for Attention key and v for value) in Transformer

increases with iteration, whereas the size of the states (c for LSTM internal

memory and h for LSTM layer’s input/output) in LSTM remains constant.

When processing the token at index t, the Attention operation takes all previous

Attention keys kl,1:t−1 and values vl,1:t−1 along with the current key kl,t and

value vl,t.
4 Therefore, the Attention operation should perform computation on

tensors of different shapes depending on the number of tokens already processed.

Prior to the Attention operation, there are the layer normalization operation

(LayerNorm) and the QKV Linear (linear and split operations to get the query,

key and value). Operations performed after Attention are, in order, a linear

3Language models like GPT use causal masking, which means all preceding tokens are of
interest and participate in the Attention operation.

4kl,1:t−1 represents Attention keys of the l-th layer for tokens at indices 1 to t−1 while kl,t
is for the Attention key of the l-th layer for the token at index t. Same for vl,1:t−1 and vl,t.

15

request

response

Inference Server

E
n
d
p
o
in

t
Scheduler

E
x
ec

u
ti

o
n

E
n
g
in

e

Request Queue

!

" #

$

x1x1: I think
x2x2: I love

x1x1: this is great
x2x2: you

Figure 2.5: Overall workflow of serving a generative language model with exist-
ing serving systems.

operation (Attn Out Linear), an add operation for residual connection (Add),

layer normalization operation (LayerNorm), the multi-layer perceptron (MLP)

operations, and the other residual connection operation (Add).

Figure 2.5 shows an overall workflow of serving a generative language model

with existing inference serving systems. As discussed in Section 2.4, an inference

serving system comprise an inference server and an execution engine. The main

component of the inference server (e.g., Triton [11]) is the scheduler, which

is responsible for ➀ creating a batch of requests by retrieving requests from

a queue and ➁ scheduling the execution engine (e.g., FasterTransformer [7])

to process the batch. The execution engine ➂ processes the received batch

by running multiple iterations of the model being served and ➃ returns the

generated text back to the inference server. In Figure 2.5, the server schedules

the engine to process two requests (x1: “I think”, x2: “I love”) in a batch and the

engine generates “this is great” and “you” for requests x1 and x2, respectively.

16

Chapter 3

Nimble: Lightweight and Parallel
GPU Task Scheduling for Deep
Learning

3.1 Introduction

In recent years, growing demands for deep learning (DL) have facilitated the

advance of DL frameworks such as Caffe2 [64], MXNet [32], PyTorch [104],

and TensorFlow [17]. These frameworks provide implementations of GPU-based

neural network computations along with high-level APIs, with which users

can express the semantics of neural networks as usual Python programs. Fur-

thermore, such frameworks allow users to describe the training and inference

procedure of their networks without the need to control GPUs directly. DL

frameworks then automatically handle GPU intricacies such as copying neural

network weights to GPUs and launching DL operators on GPUs. Operators in-

dicate numerical computations, like convolution and batch normalization, and

consist of one or more GPU tasks (i.e., GPU kernels and GPU memory opera-

17

tions).

Before a GPU processes a task, DL frameworks must first go through a

series of preparation steps (GPU task scheduling), and then submit the task to

the GPU (GPU task submission). We note that current DL frameworks conduct

GPU task scheduling during run time. For instance, TensorFlow, Caffe2, and

MXNet represent a neural network as a computation graph of DL operators,

and schedule the GPU tasks of an operator at run time once the operator’s

dependencies are met. Meanwhile, for PyTorch and TensorFlow Eager [20],

GPU tasks are scheduled at run time as Python code is interpreted line by line.

While under ideal circumstances the running time of neural networks mostly

depends on the amount of computation assigned to GPUs, in reality we find

otherwise. We point out two important problems in run-time task scheduling

that may significantly limit framework performance. First, the time spent on

scheduling, which we call scheduling overhead, can take a substantial portion of

the overall running time. Although the scheduling overhead is negligible when

the running time of a GPU task is sufficiently long enough to hide the over-

head, we find that this does not hold in many cases, especially when inference

and training of a neural network consist of small and short GPU tasks. Mod-

ern GPUs [6, 10] have thousands of computation units along with specialized

processors like Tensor Core [13], and use high bandwidth memory [36] to avoid

bottlenecks from memory bandwidth. While the time spent on running GPU

tasks can dramatically be reduced by such GPUs, we observe that the schedul-

ing overhead is constantly imposed by every GPU task, and often dominates

the running time of DL inference and training.

Another problem DL frameworks face is that serial execution of GPU tasks

misses the opportunity to further improve performance by parallelizing task

execution. Recent neural networks exhibit inter-operator level parallelism. For

18

example, topologies of the neural networks obtained by neural architecture

search (NAS) [29, 30, 90, 109, 118, 160] are directed acyclic graphs (DAGs)

with multiple branches rather than linear chains. In addition, recent works

have proposed new types of layers that consist of smaller operators arranged

in parallel, such as MixConv [139] and Split-Attention [157] blocks. Leveraging

inter-operator parallelism can lead to performance improvements in executing

such neural networks, especially in the case of inference. However, existing DL

frameworks [17, 32, 104] are designed and optimized to schedule GPU tasks to

be executed one at a time, and thus hardly exploit inter-operator parallelism.

To address the above limitations, we present Nimble, a new DL execution

engine that schedules GPU tasks to run in parallel with minimal scheduling

overhead. The key observation that drives the design of Nimble is that for

static neural networks the behavior of a network is predetermined by its archi-

tecture. For both inference and training, DL frameworks run the exact same

computation graph with the same shapes of inputs over and over again. Thus,

we can leverage detailed information about the computation graph and the

input shape to optimize the scheduling of GPU tasks.

To avoid the scheduling overhead, Nimble introduces a novel ahead-of-time

(AoT) scheduling technique. Nimble schedules GPU tasks for a given neural

network execution ahead of time; later when Nimble is given an input, Nimble

skips scheduling and proceeds immediately to task submission. Since the prepa-

ration steps of GPU tasks are invariant to each neural network execution (i.e.,

independent of the input values), we only need to perform task scheduling once.

While Nimble’s AoT scheduler performs GPU task scheduling, it records a trace

of GPU tasks and GPU memory requests, and generates a task schedule. The

task schedule contains all information and resources (i.e., result of the schedul-

ing) required for the execution of the neural network, including the submission

19

order between GPU tasks, function arguments for the GPU tasks, and how to

run GPU tasks in parallel. At run time, Nimble substitutes the high-overhead

scheduling procedure by the raw submission of GPU tasks based on the task

schedule, dramatically reducing the scheduling overhead.

To execute multiple GPU tasks in parallel on a GPU, Nimble employs auto-

matic multi-stream execution. Although the CUDA programming interface pro-

vides Stream API for concurrent kernel execution [1], assigning neural network

operators to appropriate streams is a difficult task for users. Nimble automates

the stream assignment and synchronization process. Before AoT scheduling,

Nimble analyzes dependency relationships between operators and finds an op-

timal stream assignment that guarantees the smallest number of synchroniza-

tions across streams while parallelizing as many operators as possible. Given

the operator-to-stream mapping, Nimble rewrites the computation graph of the

given neural network to run the GPU tasks of the operators on their correspond-

ing streams with proper synchronizations. The modified graph is then used as

an input to the AoT scheduler, which in turn embeds the information about

the stream mapping and synchronization in the task schedule.

Nimble is built on top of PyTorch and supports both inference and train-

ing of neural networks. Users can seamlessly apply Nimble to their PyTorch

programs by wrapping DL model instances in Nimble objects. Our evaluation

on a variety of deep neural networks shows that Nimble improves the speed

of inference and training by up to 22.34× and 3.61× compared to PyTorch,

respectively. Moreover, Nimble outperforms state-of-the-art inference systems,

TensorRT [9] and TVM [33], by up to 2.81× and 1.70×, respectively. Nimble

is publicly available at https://github.com/snuspl/nimble. While we imple-

ment and evaluate Nimble only for NVIDIA’s server-class GPUs, Nimble’s main

idea can also be adopted to other hardware such as mobile devices.

20

https://github.com/snuspl/nimble

ResNet-50 Inception-v3NASNet-A
(mobile)

EffNet-B0
0

20

40

60

80

100

G
P

U
A

ct
iv

e
T

im
e

R
a
ti

o
(%

)

TensorFlow

PyTorch

Figure 3.1: Ratio of GPU active time to the overall running time on DL infer-
ence.

3.2 Motivation

In this section we present experiments describing the problems in GPU task

scheduling of current DL frameworks. The experiments are conducted on Ten-

sorFlow [17] and PyTorch [104], the two most popular DL frameworks. The

experiment setting is the same as that of the evaluation in Section 3.4.

High Scheduling Overhead Makes GPUs Idle We experimentally demon-

strate that the run-time scheduling often incurs prohibitive amount of schedul-

ing overhead such that GPU idle time dominates overall running time of DL

execution. Figure 3.1 shows the ratios of the GPU active time, sum of the time

intervals during which GPU is not idle, to the overall running time spent on

the inference of the neural networks [55, 137, 138, 160] with batch size 1. In the

result, both TensorFlow and PyTorch leave their GPUs idle for a substantial

portion of the running time, up to 71% and 91%, respectively. To be specific, the

scheduling overhead of submitting one GPU task in PyTorch ranges from tens

of microseconds to one or two hundreds of microseconds, while the time spent

21

for running the submitted GPU task can be less than ten microseconds in infer-

ence workloads. While the inefficiency in PyTorch can be partially attributed

to the slowness of Python interpreter, the high overhead in TensorFlow implies

that the major source of the performance bottleneck lies in the core runtime

stack of the framework, and that the overhead remains significant even if the

runtime is written in low-overhead language such as C++.

To further support our idea, we measure the performance of a DL frame-

work when its scheduling procedure is minimized. For the experiment, we write

a C++ program that can only perform the inference of the specific neural net-

works [55, 137] with a fixed input shape and uses the same GPU kernels and

memory operations as PyTorch. From the assumptions that the given neural

network is static and the shape of its input tensor is fixed, we prune away any

redundant routines that can be done ahead of the run time. For example, shape

check is omitted and the shapes of the output tensors are hardcoded in the

program since every shape information can be inferred ahead of time based

on the neural network architecture and the predetermined input shape. In this

way, the program directly submits the GPU kernels at run time without go-

ing through the PyTorch’s runtime stack for dispatching them. Likewise, GPU

memory allocation is skipped and the tasks reuse fixed, pre-allocated memory

regions for every iteration whose addresses are also hardcoded in the program.

Figure 3.2 shows the impact of such optimizations on the scheduling proce-

dure. Despite the fact that exactly the same set of GPU kernels are computed,

PyTorch and its scheduling-minimized version present remarkably different in-

ference latencies: 2.37× speedup is obtained in ResNet-50 by the simple mini-

mization of the scheduling procedure. The result confirms that the main source

of the GPU idle time is the overhead of the scheduling procedure described

in Section 2.3. Greater performance gain is expected in those neural networks

22

ResNet-50 Inception-v3
0

5

10

15

E
x
ec

u
ti

on
T

im
e

(m
s)

2.37×

2.02×

PyTorch

Sched. Minimized

Figure 3.2: Inference latencies of PyTorch and its scheduling-minimized version.

with lower GPU active time ratio (e.g., EfficientNet-B0).

Non-Parallel GPU Task Execution Framework performance can be fur-

ther improved by parallelizing GPU tasks. Figure 3.3 shows the ratios of crit-

ical path time to the GPU active time in the inference of the neural net-

works [90, 118, 137, 160] with batch size 1. The critical path time is sum of

the GPU active times spent on the operators in the longest path (in terms of

time) of the computation graph. The result implies that inference latency can

be reduced by up to 3× when the GPU tasks are fully parallelized and executed

on a sufficiently powerful GPU (i.e., a GPU that can compute every concurrent

kernel simultaneously).

In spite of the potential performance gain, existing DL frameworks do not

effectively support the use of multiple GPU streams. One major obstacle we

found is that the high scheduling overhead significantly decreases the chance

that GPU tasks on different streams are computed in parallel. For example,

Figure 3.4 illustrates the timeline where GPU tasks A and B are scheduled in

different streams. Contrary to the expectation that the two tasks are processed

23

Inception-v3 NASNet-A
(mobile)

AmoebaNet DARTS
0

20

40

60

80

100

C
ri

ti
ca

l
P

a
th

T
im

e
R

at
io

(%
)

PyTorch

Figure 3.3: Ratio of critical path time to the GPU active time on DL inference.

CPU

GPU
Stream 1
Stream 2

Schedule
Task B

Schedule
Task C

Task A

∙∙∙

Task B

Task C

Schedule
Task A

Submit Task to GPU

Figure 3.4: High scheduling overhead inhibits efficient use of multiple GPU
streams.

at the same time, the scheduling overhead creates a gap between the start time

of the two tasks, which is longer than the duration of GPU task A. As a result,

the GPU ends up executing the tasks one at a time.

3.3 System Design

Motivated by the observations in Section 3.2, we present Nimble, a DL execution

engine to automatically avoid the scheduling overhead of DL frameworks and

parallelize GPU tasks using multiple GPU streams. Nimble takes a DL frame-

work as its base system, and resolves the inefficiencies in GPU task scheduling

without redesigning the framework runtime. In the current implementation,

24

Graph Rewriter
Computation

Graph Stream
Assignment

AoT Scheduler
Memory

Pre-allocation
GPU Trace
Collection

Task Schedule

Figure 3.5: System overview of Nimble.

Nimble is built on top of PyTorch, but the system design is applicable to other

DL frameworks.

Figure 3.5 summarizes execution steps in Nimble. The system consists of

Graph Rewriter and AoT Scheduler. Nimble first takes as input a computa-

tion graph of a neural network. The computation graph is represented as a

TorchScript [16] graph in PyTorch. The graph rewriter analyzes the compu-

tation graph and constructs an operator-to-stream mapping by the algorithm

we present in Section 3.3.2. It marks each operator with the stream that the

operator will be issued on and embeds synchronization routines to the graph by

using custom nodes we add. The AoT scheduler of Nimble then goes through

a series of preparation steps for the execution of the GPU tasks ahead of time.

During the process, the scheduler collects a GPU execution trace and reserves

GPU memory used in executing the GPU tasks. Finally, Nimble packs the GPU

trace and the reserved memory into a task schedule. At run time, the recorded

GPU tasks are replayed on the basis of the task schedule for every DL execution.

3.3.1 Ahead-of-time (AoT) Scheduling

The AoT scheduler aims to generate a task schedule, finishing the scheduling

procedure required for submitting GPU tasks ahead of time. Our observation

is that we can move the GPU task scheduling outside the run time execution

loop without changing the semantics of neural network execution, similar to

the loop-invariant code motion in compilers. In other words, while the existing

frameworks repeat the scheduling procedure at every neural network execution,

25

Nimble’s AoT scheduler finishes the scheduling once ahead of time, providing

a significant speedup in executing the neural network. This is possible because

Nimble assumes a static neural network that performs the same set of computa-

tions for different runs, which means we can reuse the work done for scheduling

after it is done once. However, this AoT scheduling raises two challenges: (a)

how to distinguish the scheduling procedure that can be safely removed from

the run time execution; and (b) how to move the scheduling procedure out of

the run time execution.

We solve these challenges by approaching the problem from a direction

different from typical performance bottleneck optimization. Instead of differ-

entiating and removing the scheduling procedure from the run time execution,

Nimble identifies non-scheduling work, i.e., the GPU tasks. That is, Nimble

takes advantage of the fact that the computation of a given static neural net-

work is fully described by a fixed set of GPU tasks, and that the scheduling

procedure of DL frameworks becomes redundant once the set of the GPU tasks

are determined. During the AoT scheduling, Nimble pre-runs the given neural

network once according to the generated stream mapping, and records all the

GPU tasks as an execution trace. The pre-run process is a single iteration of

inference/training execution of the given neural network using the base frame-

work of Nimble. During the pre-run process, while the scheduling procedure of

the base framework is done as usual, the GPU tasks submitted from the frame-

work are intercepted and recorded. The generated execution trace contains all

the essential information resulted from the scheduling: dispatched GPU kernels,

function arguments of the kernels, task submission order, task-to-stream assign-

ment, etc. Once the pre-run process is done, Nimble can leverage the execution

trace for submitting the tasks to the GPU, skipping the scheduling procedure.

To execute the collected GPU tasks, GPU memory should be allocated for

26

Pre-run (base framework)

GPU Kernel
Dispatching

GPU Memory
Request

Computation
Graph

Prepare Kernel
Function Args.

GPU Task
Submission

Task Schedule
AoT GPU Task Scheduler

Load Inputs to GPU Memory
Runtime

Replay Recorded Tasks

…

…

Execution Trace
Reserved Memory GPU task A

GPU task B
GPU task C
…

Input Tensors

Figure 3.6: AoT GPU task scheduler and Runtime of Nimble. Dashed arrows
represent the interception of GPU tasks and memory requests by the AoT
scheduler.

inputs and outputs of the tasks. Since a static neural network makes the same

sequence of memory requests for different runs, we can pre-allocate the exact

amount of GPU memory required for its execution. For this purpose, during the

process of pre-run, Nimble also intercepts memory allocate/free requests from

the base framework and reserves the GPU memory allocated for the pre-run.

The reserved memory is then used for the run time execution of Nimble.

At the end of the AoT scheduling, Nimble packs the execution trace and

the reserved memory into a task schedule. At run time, Nimble conducts in-

ference/training of the given neural network by directly submitting the GPU

tasks recorded in the task schedule with the addresses of the reserved memory

regions. In this manner, the GPU tasks can be executed independently of the

base DL framework, without being tied up with the runtime and the memory

allocation procedure of the base framework.

Figure 3.6 gives more details about the AoT scheduling technique. Accord-

ing to the stream assignment result, the AoT scheduler pre-runs the neural

network once with a dummy input tensor. During the pre-run process, the

scheduler intercepts invocations of GPU tasks and allocations of GPU memory,

27

and constructs a task schedule. To be concrete, we use CUDA Stream Capture

APIs for capturing information of GPU tasks issued on CUDA Streams, at the

beginning and end of the pre-run. Then we instantiate a CUDA Graph [52], a

feature introduced in CUDA 10, (i.e., execution trace representation in Nim-

ble) from the captured information. At run time, when there is a request with a

new input tensor, Nimble executes the neural network by replaying the recorded

GPU tasks on the basis of the task schedule, avoiding the scheduling overhead.

We execute the neural network by using CUDA Graph Launch APIs, which

submit GPU tasks based on the information in the CUDA Graph.

3.3.2 Stream Assignment Algorithm

Nimble schedules GPU tasks to run in parallel by submitting them to multiple

GPU streams in a single GPU. In this section, we describe an efficient algorithm

for assigning GPU tasks to streams.

Stream Synchronization Allowing concurrency requires proper synchro-

nizations across streams. For example, assume that two independent GPU tasks

A and B are given, and that another GPU task C consumes both outputs of A

and B. If the three GPU tasks are submitted to a single stream (with the order

of either A→B→C or B→A→C), no synchronization is needed. In contrast, if

the three GPU tasks are submitted to three different streams, we should guar-

antee that GPU task C begins executing only after both GPU tasks A and B

are completed. In CUDA, such dependencies across different streams can be en-

forced by using events, a special type of GPU tasks that can act as barriers. In

the example, a desirable way to guarantee the execution order is to create and

submit an event for each stream where GPU task A or B has been launched.

We then call cudaStreamWaitEvent for each event to block the stream of GPU

28

task C until both events are processed, which means that the execution of GPU

tasks A and B have finished. We refer to issuing an event on the stream of task

X and blocking the stream of task Y as a synchronization on the edge (X,

Y). We count the number of synchronizations as the number of edges where

synchronizations occur.

A few DL frameworks [104, 144] have high-level APIs through which pro-

grammers can create, switch, and block the streams where GPU tasks run.

Nevertheless, as we pointed out in Section 3.2, leveraging multiple streams on

these frameworks rarely yields performance enhancement due to their GPU

task scheduling overheads. Additionally, even when the framework users are

able to take advantage of the multi-stream execution, it remains as a signifi-

cant burden for the users to assign and synchronize the streams in a safe and

an efficient manner. Nimble resolves these difficulties by automatically paral-

lelizing the GPU tasks. The process of parallelization and synchronization is

transparent to users but it gives speedup when running neural networks with

parallelizable structures.

Goal of the Algorithm Given a computation graph, which is a DAG of DL

operators, Nimble finds a stream assignment, a mapping from the node set of

the computation graph to a stream set of the GPU. Nimble’s stream assignment

algorithm meets the following two goals:

• Maximum logical concurrency. Given a neural network G = (V,E) and

a set of streams S = {s1, s2, ..., sn}, find a mapping f : V → S such that if

x, y ∈ V and there is no dependency between x and y (i.e., no established

order exists between the two), then f(x) ̸= f(y) (i.e., the two nodes are

assigned to different streams).

• Minimum number of synchronizations. Among such functions, find f

29

Algorithm 1: Nimble’s stream assignment algorithm.

Input A DAG G = (V,E) where V = {v1, v2, ..., vn}.
Output A stream assignment f : V → S.

Step 1 Obtain the minimum equivalent graph of G.
We call this graph G′ = (V,E′).

Step 2 Define a bipartite graph B = (V1, V2, EB) where V1 = {x1, x2, ..., xn},
V2 = {y1, y2, ..., yn}, and EB = {(xi, yj) | (vi, vj) ∈ E′}.

Step 3 Find a maximum matching M of the bipartite graph B.

Step 4 Make a collection of sets {{v1}, {v2}, ..., {vn}}. For each (xi, yj) ∈M ,
combine the two sets that vi and vj are in. The result is a partition of V .

Step 5 Construct f : V → S in such a way that f(vi) = f(vj)
if and only if vi and vj are included in the same set.

𝒗𝟏

Stream0

Stream1

Stream Mapping 𝐟𝑮′ (MEG of 𝑮)

𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔

𝒗𝟕

𝒗𝟏

𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔

𝒗𝟕

Step 1 Step 2, 3

Maximum Matching 𝑴
of Bipartite Graph𝑩

𝒗𝟏

𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔

𝒗𝟕

𝒗𝟏

𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔

𝒗𝟕

Stream2

Computation

Graph 𝑮
Partition of Nodes

Step 4 Step 5

Sync

𝒙𝟏 𝒙𝟔 𝒙𝟕

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔 𝒚𝟕

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

Figure 3.7: Example walk-through of Algorithm 1. Bold lines indicate edges in
maximum matching M .

that incurs the smallest number of synchronizations across streams.

Maximum logical concurrency is an optimization strategy that generalizes a

common practice. To increase the chance that GPU resources are fully utilized,

maximizing the concurrency is desirable. In addition, the algorithm factors in

the number of synchronizations needed for safe concurrent execution. Since

synchronizations hamper the fast launching of tasks, the algorithm is designed

to incur the theoretically smallest number of synchronizations while maintaining

maximum concurrency.

30

Algorithm Description The stream assignment algorithm of Nimble is de-

scribed in Algorithm 1. Figure 3.7 illustrates how the algorithm is applied to

a computation graph G. At Step 1, we compute the minimum equivalent graph

(MEG) G′, which is a subgraph of the computation graph G with the same

set of the nodes and the smallest subset of the edges that maintains the same

reachability relation as G. Note that the MEG of a finite DAG is unique and

can be constructed in polynomial time [60]. At Step 2 and Step 3, we define a

bipartite graph B from G′ and then find a maximum matching of B, a matching

that includes the largest number of edges. A maximum matching of a bipartite

graph can be computed by Ford-Fulkerson algorithm [49]. At Step 4, we first

create a collection of node sets where each node in the graph G′ is a separate

set. Then for each edge (xi, yj) in M , we combine the two node sets that vi and

vj are in. At Step 5, nodes belonging to the same set are mapped to the same

stream, and nodes belonging to different sets are mapped to different streams.

We now demonstrate that the stream assignment constructed from Algo-

rithm 1 meets the two goals by using the following theorems. Detailed proofs

on the theorems are presented in Appendix A.1.

Theorem 1. A stream assignment f satisfies maximum logical concurrency on
G if and only if f satisfies maximum logical concurrency on G′. Also, for any
stream assignment f that satisfies maximum logical concurrency, the minimum
number of synchronizations required for f on G is equal to the minimum number
of synchronizations required for f on G′.

Theorem 2. There exists one-to-one correspondence Φ from the set of the
matchings of the bipartite graph B to the set of the stream assignments that
satisfy maximum logical concurrency on G′. In fact, Φ is constructed by Step 4
and Step 5 of Algorithm 1.

Theorem 3. For any matching m of the bipartite graph B, the minimum num-
ber of synchronizations required for the corresponding stream assignment Φ(m)
is |E′| − |m|.

31

Theorem 4. For a maximum matching M of the bipartite graph B, Φ(M) is
a stream assignment that satisfies maximum logical concurrency and requires
minimum number of synchronizations among the stream assignments satisfying
maximum logical concurrency.

Proof of Theorem 4. Based on Theorem 1, the algorithm derives the desired
stream assignment from G′ instead of G. From Theorem 2, it follows that Φ(M)
is a stream assignment with maximum logical concurrency. Now, suppose that
there exists a stream assignment g : V → S that satisfies maximum logical
concurrency with strictly less number of synchronizations than that of Φ(M).
By Theorem 2 and Theorem 3, g corresponds to some matching Φ−1(g) of
B such that |M | < |Φ−1(g)|. The inequality, however, is contradictory to the
definition of M since M is a maximum matching of the bipartite graph B. Thus,
Theorem 4 follows.

3.4 Evaluation

Experimental Setup We implement Nimble on PyTorch v1.4 with CUDA

10.2 and cuDNN 8.0.2. For evaluation, we use an NVIDIA V100 GPU along

with 2.10GHz Intel Xeon CPU E5-2695 v4.

To evaluate DL inference, we compare Nimble with popular DL frameworks,

PyTorch, TorchScript and Caffe2, as well as state-of-the-art inference systems,

TensorRT (v7.1) [9] and TVM (v0.6.1) [33]. To evaluate DL training, Nimble

is compared with PyTorch and TorchScript. Note that TensorRT and TVM

employ graph optimizations (e.g., aggressive operator fusion) and kernel selec-

tion/tuning, which are orthogonol to our idea. In Nimble, we also implement

the operator fusion (a subset of TensorRT’s) and basic kernel selection, which

chooses the faster implementation of convolution operators between cuDNN [35]

and PyTorch’s native implementation.

We use the implementations of the neural networks from various open-source

repositories. We summarize the information below.

32

• torchvision repository1

– ResNet-50, ResNet-101, Inception-v3, MobileNetV2

• Pretrained models for PyTorch repository2

– NASNet-A (mobile), NASNet-A (large)

• PyTorch Image Models repository3

– EfficientNet-B0, EfficientNet-B5

• Differentiable Architecture Search repository4

– AmoebaNet, DARTS

• NVIDIA Deep Learning Examples repository5

– BERT

Throughout the evaluation, TorchScript modules are created through Py-

Torch’s tracing API. For Caffe2, TensorRT and TVM, PyTorch models are

first converted into ONNX [12] models and then parsed by the respective

parsers of the systems. For the evaluation on inference latency, we use syn-

thetic 224 × 224 RGB images as inputs, except for Inception-v3, NASNet-A

(large), and EfficientNet-B5. For these neural networks, the inputs are larger

size images - 299× 299 for Inception-v3, 331× 331 for NASNet-A (large), and

456 × 456 for EfficientNet-B5 - following the description in the original liter-

ature [137, 160, 138]. For the evaluation on training, we use 224 × 224 RGB

1https://github.com/pytorch/vision
2https://github.com/Cadene/pretrained-models.pytorch
3https://github.com/rwightman/pytorch-image-models
4https://github.com/quark0/darts
5https://github.com/NVIDIA/DeepLearningExamples

33

https://github.com/pytorch/vision
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/rwightman/pytorch-image-models
https://github.com/quark0/darts
https://github.com/NVIDIA/DeepLearningExamples

images for the ImageNet dataset, and 32 × 32 RGB images for the CIFAR-

10 dataset. We use a sequence length of 128 in the experiments with BERT,

following the setting used for pretraining in the original literature [43].

34

ResNet-50 ResNet-101 Inception-v3 NASNet-A
(mobile)

NASNet-A
(large)

MobileNetV2 EfficientNet
B0

EfficientNet
B5

0

5

10

15

20

R
el

at
iv

e
Sp

ee
du

p

4.32 4.59 5.16

22.34

5.49

9.99 9.03

3.82

PyTorch
TorchScript
Caffe2

TensorRT
TVM
Nimble

Figure 3.8: Relative inference speedup of Nimble and other systems (batch size 1). We use various neural net-
works [55, 125, 137, 138, 160], all trained on ImageNet [124].

3
5

Table 3.1: Impact of the multi-stream execution of Nimble on DL inference,
compared to its single-stream counterpart. Deg. stands for maximum degree of
logical concurrency of each architecture.

Architecture Speedup Deg. #MACs

Inception-v3 1.09× 6 5.7B
DARTS 1.37× 7 0.5B
AmoebaNet 1.45× 11 0.5B
NASNet-A (M) 1.88× 12 0.6B
NASNet-A (L) 1.31× 15 23.9B

3.4.1 Inference Latency

Figure 3.8 presents the relative inference speed of Nimble and the other sys-

tems. We set PyTorch as the baseline. The result shows that Nimble outper-

forms PyTorch, TorchScript and Caffe2 significantly. The primary reason for

this performance gap is the substantial scheduling overhead, which makes GPU

idle for most of the time. In addition, since the DL frameworks hardly utilize

parallelism among operators in a neural network, the performance gap widens

in the neural networks with parallelizable structures like NASNet-A (mobile)

(up to 22.34×). Nimble also shows higher performance than TensorRT on all

of the tested neural networks, by up to 2.81× (NASNet-A (mobile)). More-

over, Nimble surpasses performance of TVM in most cases, by up to 1.70×
(EfficientNet-B5). The only exception is MobileNetV2 [125]. TVM spends two

days in kernel tuning (1500 trials for each convolution), and finds much faster

GPU kernels for MobileNetV2 than those of cuDNN and PyTorch. Results on

different GPUs are provided in Appendix A.2.

3.4.2 Impact of Multi-stream Execution

We select a set of deep neural networks with parallelizable structures and in-

vestigate the impact of the multi-stream execution of Nimble on the inference

36

latency of such neural networks. Table 3.1 shows the relative speedup of the

multi-stream execution compared to the single-stream execution of Nimble. The

result indicates that multi-stream execution of Nimble can accelerate DL infer-

ence by up to 1.88× compared to the single-stream execution, and that Nimble

exploits logical concurrency to the degree (15) that programmers cannot effec-

tively assign and synchronize the streams manually.

In addition, we observe that the acceleration rates considerably differ across

the neural networks. Neural networks with a higher degree of logical concurrency

tend to benefit more from the multi-stream execution. For example, the neural

network with the lowest degree of logical concurrency (Inception-v3) gains the

smallest speedups. Also, we can see the trend that neural networks with less

amount of computation are more likely to be accelerated by the multi-stream

execution. For instance, although NASNet-A (large) exhibits higher degree of

logical concurrency than NASNet-A (mobile), the former gets limited speedup

compared to the latter because the former consists of kernels with a large num-

ber of multiply-and-accumulate (MAC) operations, each of which occupies most

of the GPU resources. The comparison between Inception-v3 and DARTS re-

ports the same tendency.

3.4.3 Training Throughput

Figure 3.9 shows the performance of Nimble on neural network training. Since

training of a neural network is commonly conducted with large batch sizes, GPU

scheduling overhead imposed during training is less pronounced, and the impact

of multi-stream execution is also limited. Accordingly, in the results of ResNet

on the ImageNet dataset and BERT [43], Nimble shows marginal performance

improvement. However, Nimble still brings up substantial speedup when neural

networks are trained with small-size inputs (e.g., low-resolution images). For

37

MobileNetV2
CIFAR-10

EffNet-B0
CIFAR-10

ResNet-50
CIFAR-10

MobileNetV2
ImageNet

EffNet-B0
ImageNet

ResNet-50
ImageNet

BERT
0

1

2

3

4
R

el
at

iv
e

Sp
ee

du
p

3.61
3.32

1.90

1.05 1.01 1.02 1.03

PyTorch
TorchScript
Nimble

Figure 3.9: Relative training speedup of Nimble and TorchScript. All neural
networks [43, 55, 125, 138] are trained with batch size 32.

example, in the field of computer vision, the CIFAR-10 [82] dataset is widely

used among researchers and many neural networks are trained on the dataset.

Figure 3.9 shows Nimble’s performance when neural networks [55, 125, 138]

are trained on CIFAR-10. The result implies that the scheduling overhead can

still be a major performance bottleneck even in training. Nimble eliminates

such inefficiency and increases training throughputs by up to 3.61×. Results on

different batch sizes are presented in Appendix A.3.

3.5 Summary

We introduce Nimble, a high-speed DL execution engine for static neural net-

works. We first show two problems of the run-time scheduling of GPU tasks:

scheduling overhead and serial execution. Nimble minimizes the scheduling over-

head by finishing the scheduling procedure ahead of time before executing the

GPU tasks at run time. Moreover, Nimble schedules independent GPU tasks

to be executed in parallel, further boosting its performance. Our evaluation

on various neural networks shows that Nimble outperforms popular DL frame-

38

works and state-of-the-art inference systems. Nimble is publicly available at

https://github.com/snuspl/nimble.

39

https://github.com/snuspl/nimble

Chapter 4

Orca: A Distributed Serving
System for Transformer-Based
Generative Models

4.1 Introduction

Language generation tasks are becoming increasingly paramount to many types

of applications, such as chatbot [122, 18], summarization [105, 127, 98], code

generation [31], and caption generation [151, 153]. Moreover, recent works pub-

lished by AI21 Labs [87], DeepMind [114, 58], Google [46, 149, 37], Meta Plat-

forms [23, 158], Microsoft [116], Microsoft & NVIDIA [133], and OpenAI [27]

have reported that every language processing task, including translation [26, 42],

classification [126, 45], question-answering [83, 95, 74] and more, can be cast

as a language generation problem and have shown great improvements along

this direction. The rise of generative models is not limited to the language

domain; the AI community has also given growing interest to generation prob-

lems in other domains such as image, video, speech, or a mixture of multiple

40

domains [117, 148, 44, 89]. At the heart of generative models lies the Trans-

former architecture [146] and its variants [113, 115, 114, 37]. By relying on the

attention mechanism [146], Transformer models can learn better representa-

tions where each element of the sequence may have a direct connection with

every other element, which was not possible in recurrent models [57].

To use generative models in real-world applications, we often delegate the

inference procedure to a separate service responsible for ML inference serving.

The growing demands for this service, which should provide inference results

for client requests at low latency and high throughput, have facilitated the

development of inference servers such as Triton Inference Server [11] and Ten-

sorFlow Serving [101]. As discussed in Section 2.4, these systems can use a

separately-developed ML execution engine to perform the actual tensor oper-

ations. For example, we can deploy a service for language generation tasks by

using a combination of Triton and FasterTransformer [7], an execution engine

optimized for the inference of Transformer-based models. In this case, Triton

is mainly responsible for grouping multiple client requests into a batch, while

FasterTransformer receives the batch from Triton and conducts the inference

procedure in the batched manner.

Unfortunately, we notice that the existing serving systems, including both

the inference server layer and the execution engine layer, have limitations in

handling requests for Transformer-based generative models. Since these models

are trained to generate a next token in an autoregressive manner, one should

run the model as many times as the number of tokens to generate, while for

other models like ResNet [55] and BERT [43] a request can be processed by

running the model once. That is, in order to process a request to the generative

model, we have to run multiple iterations of the model; each iteration generates

a single output token, which is used as an input in the following iteration. Such

41

multi-iteration characteristic calls into question the current design of serving

systems, where the inference server schedules the execution of the engine at the

granularity of request. Under this design, when the server dispatches a batch

of requests to the engine, the engine returns inference results for the entire

batch at once after processing all requests within the batch. As different client

requests may require different numbers of iterations for processing, requests

that have finished earlier than others in the batch cannot return to the client,

resulting in an increased latency. Requests arrived after dispatching the batch

also should wait for processing the batch, which can significantly increase the

requests’ queueing time.

In this work, we propose to schedule the execution of the engine at the

granularity of iteration instead of request. In particular, the server invokes the

engine to run only a single iteration of the model on the batch. As a result, a

newly arrived request can be considered for processing after waiting for only

a single iteration of the model. The inference server checks whether a request

has finished processing after every return from the engine – hence the finished

requests can also be returned to the clients immediately.

Nevertheless, a noticeable challenge arises when we attempt to apply batch-

ing and the iteration-level scheduling at the same time. Unlike the canonical

request-level scheduling, the proposed scheduling can issue a batch of requests

where each request has so far processed a different number of tokens. In such a

case, the requests to the Transformer model cannot be processed in the batched

manner because the attention mechanism calls for non-batchable tensor oper-

ations whose input tensors have variable shapes depending on the number of

processed tokens.

To address this challenge, we suggest to apply batching only to a selected

set of operations, which we call selective batching. By taking different char-

42

acteristics of operations into account, selective batching splits the batch and

processes each request individually for the Attention1 operation while applying

batching to other operations of the Transformer model. We observe that the

decision not to batch the executions of the Attention operation has only a small

impact on efficiency. Since the Attention operation is not associated with any

model parameters, applying batching to Attention has no benefit of reducing

the amount of GPU memory reads by reusing the loaded parameters across

multiple requests.

Based on these techniques, we design and implement Orca, a distributed

serving system for Transformer-based generative models. In order to handle

large-scale models, Orca adopts parallelization strategies including intra-layer

and inter-layer model parallelism, which were originally developed by training

systems [132, 129] for Transformer models. We also devise a new scheduling

algorithm for the proposed iteration-level scheduling, with additional consider-

ations for memory management and pipelined execution across workers.

We evaluate Orca using OpenAI GPT-3 [27] models with various con-

figurations, scaling up to 341B of parameters. The results show that Orca

significantly outperforms FasterTransformer [7], showing 36.9× throughput im-

provement at the same level of latency. While we use a language model as a

driving example and conduct experiments only on language models, generative

models in other domains can benefit from our approach as long as the models

are based on the Transformer architecture and use the autoregressive generation

procedure [117, 148, 44, 89].

1In some literature the Attention operation has an extended definition that includes linear
layers (QKV Linear and Attn Out Linear; Figure 2.3). On the other hand, we use a narrow
definition as described in Figure 2.3.

43

iter 1

x1x1

x2x2

iter 2

I think

I love

this

you

this

you

iter 3

is

-

is

<EOS>

great

-

iter 4

great

-

<EOS>

-

Figure 4.1: An illustration for a case where the requests have the same input
length but some requests finish earlier than others. Shaded tokens represent
input tokens. “-” denotes inputs and outputs of extra computation imposed by
the scheduling.

4.2 Challenges and Proposed Solutions

In this section, we describe challenges in serving Transformer-based genera-

tive models and propose two techniques: iteration-level scheduling and selective

batching.

C1: Early-finished and late-joining requests. One major limitation of

existing systems is that the inference server and the execution engine interact

with each other only when (1) the server schedules the next batch on an idle

engine; or (2) the engine finishes processing the current batch. In other words,

these systems are designed to schedule executions at request granularity; the

engine maintains a batch of requests fixed until all requests in the batch finish.

This can be problematic in the serving of generative models, since each request

in a batch may require different number of iterations, resulting in certain re-

quests finishing earlier than the others. In the example shown in Figure 4.1,

although request x2 finishes earlier than request x1, the engine performs com-

putation for both “active” and “inactive” requests throughout all iterations.

44

Such extra computation for inactive requests (x2 at iter 3 and 4) limits the

efficiency of batched execution.

What makes it even worse is that this behavior prevents an early return of

the finished request to the client, imposing a substantial amount of extra la-

tency. This is because the engine only returns the execution results to the server

when it finishes processing all requests in the batch. Similarly, when a new re-

quest arrives in the middle of the current batch’s execution, the aforementioned

scheduling mechanism makes the newly arrived request wait until all requests

in the current batch have finished. We argue that the current request-level

scheduling mechanism cannot efficiently handle workloads with multi-iteration

characteristic. Note that this problem of early-finished and late-joining requests

does not occur in the training of language models; the training procedure fin-

ishes processing the whole batch in a single iteration by using the teacher forcing

technique [150].

S1: Iteration-level scheduling. To address the above limitations, we pro-

pose to schedule executions at the granularity of iteration. At high level, the

scheduler repeats the following procedure: (1) selects requests to run next; (2)

invokes the engine to execute one iteration for the selected requests; and (3) re-

ceives execution results for the scheduled iteration. Since the scheduler receives

a return on every iteration, it can detect the completion of a request and im-

mediately return its generated tokens to the client. For a newly arrived request,

the request gets a chance to start processing (i.e., the scheduler may select the

new request to run next) after execution of the currently scheduled iteration,

significantly reducing the queueing delay. With iteration-level scheduling, the

scheduler has a full control on how many and which requests are processed in

each iteration.

45

response

Inference Server

E
n

d
p

o
in

trequest

Scheduler

Request Pool E
x

ec
u

ti
o

n
E

n
g

in
e

!

"

#

x1x1 x11x11 x12x12 x13x13 x14x14

x2x2 x21x21 x22x22

x3x3 x31x31 x32x32

x4x4 x41x41 x42x42 x43x43

x1, x2, x3, x4x1, x2, x3, x4

· · ·· · ·

x15, x23, x33, x44x15, x23, x33, x44$

Figure 4.2: System overview of Orca. Interactions between components repre-
sented as dotted lines indicate that the interaction takes place at every iteration
of the execution engine. xij is the j-th token of the i-th request. Shaded tokens
represent input tokens received from the clients, while unshaded tokens are
generated by Orca. For example, request x1 initially arrived with two input
tokens (x11, x12) and have run two iterations so far, where the first and second
iterations generated x13 and x14, respectively. On the other hand, request x3
only contains input tokens (x31, x32) because it has not run any iterations yet.

Figure 4.2 depicts the system architecture and the overall workflow of Orca

using the iteration-level scheduling. Orca exposes an endpoint (e.g., HTTPS

or gRPC) where inference requests arrive at the server and responses to the

requests are sent out. The endpoint puts newly arrived requests in the request

pool, a component that manages all requests in the server during their lifetime.

The pool is monitored by the scheduler, which is responsible for: selecting a set

of requests from the pool, scheduling the execution engine to run an iteration

of the model on the set, receiving execution results (i.e., output tokens) from

the engine, and updating the pool by appending each output token to the

corresponding request. The engine is an abstraction for executing the actual

tensor operations, which can be parallelized across multiple GPUs spread across

multiple machines. In the example shown in Figure 4.2, the scheduler ➀ interacts

46

with the request pool to decide which requests to run next and ➁ invokes the

engine to run four selected requests: (x1, x2, x3, x4). The scheduler provides the

engine with input tokens of the requests scheduled for the first time. In this case,

x3 and x4 have not run any iterations yet, so the scheduler hands over (x31, x32)

for x3 and (x41, x42, x43) for x4. The engine ➂ runs an iteration of the model

on the four requests and ➃ returns generated output tokens (x15, x23, x33, x44),

one for each scheduled request. Once a request has finished processing, the

request pool removes the finished request and notifies the endpoint to send

a response. Unlike the method shown in Figure 2.5 that should run multiple

iterations on a scheduled batch until finish of all requests within the batch,

Orca’s scheduler can change which requests are going to be processed at every

iteration. We describe the detailed algorithm about how to select the requests

at every iteration in Section 4.3.2.

C2: Batching an arbitrary set of requests. When we try to use the

iteration-level scheduling in practice, one major challenge that we are going

to face is batching. To achieve high efficiency, the execution engine should be

able to process any selected set of requests in the batched manner. Without

batching, one would have to process each selected request one by one, losing

out on the massively parallel computation capabilities of GPUs.

Unfortunately, there is no guarantee that even for a pair of requests (xi, xj),

for the next iteration, their executions can be merged and replaced with a

batched version. There are three cases for a pair of requests where the next it-

eration cannot be batched together: (1) both requests are in the initiation phase

and each has different number of input tokens (e.g., x3 and x4 in Figure 4.2);

(2) both are in the increment phase and each is processing a token at different

index from each other (x1 and x2); or (3) each request is in the different phase:

47

initiation or increment (x1 and x3). Recall that in order to batch the execution

of multiple requests, the execution of each request must consist of identical op-

erations, each consuming identically-shaped input tensors. In the first case, the

two requests cannot be processed in a batch because the “length” dimension

of their input tensors, which is the number of input tokens, are not equal. The

requests in the second case have difference in the tensor shape of Attention

keys and values because each processes token at different index, as shown in

Figure 2.4. For the third case, we cannot batch the iterations of different phases

because they take different number of tokens as input; an iteration of the ini-

tiation phase processes all input tokens in parallel for efficiency, while in the

increment phase each iteration takes a single token as its input (we assume the

use of fairseq-style incremental decoding [103]).

Batching is only applicable when the two selected requests are in the same

phase, with the same number of input tokens (in case of the initiation phase)

or with the same token index (in case of the increment phase). This restriction

significantly reduces the likelihood of batching in real-world workloads, because

the scheduler should make a wish for the presence of two requests eligible for

batching at the same time. The likelihood further decreases exponentially as

the batch size increases, making it impractical to use a large batch size that

can pull out better throughput without compromising latency.

S2: Selective batching. We propose selective batching, a technique for batched

execution that allows high flexibility in composing requests as a batch. Instead

of processing a batch of requests by “batchifying” all tensor operations com-

posing the model, this technique selectively apply batching only to a handful

of operations.

The main problem regarding batching described above is that the three

48

QKV Linear

Split

Attention K/V Manager

Attn x4x4

Attn x3x3

Attn x2x2

Attn x1x1

Layer Input

Key

Value

x1 : (x11, x12, x13)x1 : (x11, x12, x13) x2 : (x21)x2 : (x21)

Merge

Attn Out
Linear

[7, H][7, H]

· · ·· · ·

[7, H][7, H]

[2, 3H][2, 3H]

[3, 3H][3, 3H]

[1, 3H][1, 3H]

[1, 3H][1, 3H]

[7, 3H][7, 3H]

[7, H][7, H]

x32x32

x41x41 x42x42 x43x43

x14x14

x22x22

x31x31

[2, H][2, H]

[3, H][3, H]

[1, H][1, H]

[1, H][1, H]

Figure 4.3: An illustration of Orca execution engine running a Transformer
layer on a batch of requests with selective batching. We only depict the QKV
Linear, Attention, and Attention Out Linear operations for simplicity.

aforementioned cases2 correspond to irregularly shaped input (or state) ten-

sors, which cannot be coalesced into a single large tensor and fed into a batch

operation. In the canonical batching mechanism, at each iteration, a Trans-

former layer takes a 3-dimensional input tensor of shape [B,L,H] generated

by concatenating multiple [L,H] input tensors of requests in a batch, where

B is the batch size, L is the number of tokens processed together, and H is

the hidden size of the model. For example, in Figure 4.1, “iter 1” (initiation

phase) takes an input tensor of shape [2, 2, H] and “iter 2” (increment phase)

takes a tensor of shape [2, 1, H]. However, when the scheduler decides to run an

iteration on batch (x1, x2, x3, x4) in Figure 4.2, the inputs for requests in the

initiation phase (x3 : [2, H] and x4 : [3, H]) cannot coalesce into a single tensor

2We use the first case as a driving example, but the argument can be similarly applied to
the other two cases.

49

of shape [B,L,H] because x3 and x4 have different number of input tokens, 2

and 3.

Interestingly, not all operations are incompatible with such irregularly shaped

tensors. Operations such as non-Attention matrix multiplication and layer nor-

malization can be made to work with irregularly shaped tensors by flattening

the tensors. For instance, the aforementioned input tensors for x3 and x4 can

compose a 2-dimensional tensor of shape [
∑

L,H] = [5, H] without an explicit

batch dimension. This tensor can be fed into all non-Attention operations in-

cluding Linear, LayerNorm, Add, and GeLU operations because they do not

need to distinguish tensor elements of different requests. On the other hand,

the Attention operation requires a notion of requests (i.e., requires the batch

dimension) to compute attention only between the tokens of the same request,

typically done by applying cuBLAS routines for batch matrix multiplication.

Selective batching is aware of the different characteristics of each operation;

it splits the batch and processes each request individually for the Attention

operation while applying token-wise (instead of request-wise) batching to other

operations without the notion of requests. Figure 4.3 presents the selective

batching mechanism processing a batch of requests (x1, x2, x3, x4) described in

Figure 4.2. This batch has 7 input tokens to process, so we make the input

tensor have a shape of [7, H] and apply the non-Attention operations. Before

the Attention operation, we insert a Split operation and run the Attention op-

eration separately on the split tensor for each request. The outputs of Attention

operations are merged back into a tensor of shape [7, H] by a Merge operation,

bringing back the batching functionality to the rest of operations.

To make the requests in the increment phase can use the Attention keys

and values for the tokens processed in previous iterations, Orca maintains

the generated keys and values in the Attention K/V manager. The manager

50

maintains these keys and values separately for each request until the scheduler

explicitly asks to remove certain request’s keys and values, i.e., when the request

has finished processing. The Attention operation for request in the increment

phase (x1 and x2) takes keys and values of previous tokens (x11, x12, x13 for x1;

x21 for x2) from the manager, along with the current token’s query, key, and

value from the Split operation to compute attention between the current token

and the previous ones.

4.3 Orca System Design

Based on the above techniques, we design and implement Orca: a distributed

serving system for Transformer-based generative models. We have already dis-

cussed the system components and the overall execution model of Orca while

describing Figure 4.2. In this section, we answer the remaining issues about

how to build an efficient system that can scale to large-scale models with hun-

dreds of billions of parameters. We also describe the scheduling algorithm for

iteration-level scheduling, i.e., how to select a batch of requests from the request

pool at every iteration.

4.3.1 Distributed Architecture

Recent works [71, 27] have shown that scaling language models can dramatically

improve the quality of models. Hence, system support for serving such large

language models is getting more importance, especially when the model does

not fit in a single GPU. In such a case, one should split the model parameters

along with the corresponding computation and distribute them across multiple

GPUs and machines.

Orca composes known parallelization techniques for Transformer models:

intra-layer parallelism and inter-layer parallelism. These two model parallelism

51

Layer1 Layer2 Layer3 Layer4

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

Figure 4.4: An example of intra- and inter- layer parallelism. A vertical dotted
line indicates partitioning between layers and a horizontal line indicates parti-
tioning within a layer.

strategies, which are also used by FasterTransformer [7], have been originally

developed for distributed training. Intra-layer parallelism [129, 132] splits ma-

trix multiplications (i.e., Linear and Attention operations) and their associated

parameters over multiple GPUs. We omit the detail about how this strategy

partitions each matrix multiplication. On the other hand, inter-layer parallelism

splits Transformer layers over multiple GPUs. Orca assigns the same number

of Transformer layers to each GPU. Figure 4.4 illustrates an example applica-

tion of intra- and inter- layer parallelism to a 4-layer GPT model. The 4 layers

are split into 2 inter-layer partitions, and the layers in the partition are subdi-

vided into 3 intra-layer partitions. We assign each partition to a GPU, using a

total of 6 GPUs.

The Orca execution engine supports distributed execution using the tech-

niques described above. Figure 4.5 depicts the architecture of an Orca engine.

Each worker process is responsible for an inter-layer partition of the model and

can be placed on a different machine from each other. In particular, each worker

manages one or more CPU threads each dedicated for controlling a GPU, the

number of which depends on the degree of intra-layer parallelism.

The execution procedure of the Orca execution engine is as follows. Once

52

Execution Engine
In

fe
re

n
ce

 S
er

v
er

Controller

Control Plane

Data Plane

Worker 1

GPU

GPU

GPU

E
n

g
in

e
M

as
te

rschedule

tokens

Controller

Worker 2

GPU

GPU

GPU

tokens

control
message

control
message

tokens

Figure 4.5: An illustration of the distributed architecture of Orca’s execution
engine using the parallelization configuration shown in Figure 4.4. For example,
the first inter-layer partition (Layer1 and Layer2) in Figure 4.4 is assigned to
Worker1, while the second partition is assigned to Worker2.

the engine is scheduled to run an iteration of the model for a batch of requests,

the engine master forwards the received information about the scheduled batch

to the first worker process (Worker1). The information includes tokens for the

current iteration and a control message, which is composed of ids of requests

within the batch, current token index (for requests in the increment phase), and

number of input tokens (for requests in the initiation phase). The controller of

Worker1 hands over the information received from the engine master to the

GPU-controlling threads, where each thread parses the information and issues

proper GPU kernels to its associated GPU. For example, the kernel for the

Attention operation uses the request id and the current token index to get the

GPU memory address of previous keys and values kept by the Attention K/V

manager. In the meantime, the controller also forwards the control message to

53

the controller of the next worker (Worker2), without waiting for the completion

of the kernels issued on the GPUs of Worker1. Unlike Worker1, the controller

of the last worker (Worker2) waits for (i.e., synchronize with) the completion

of the issued GPU kernels, in order to fetch the output token for each request

and send the tokens back to the engine master.

To keep GPUs busy as much as possible, we design the Orca engine to min-

imize synchronization between the CPU and GPUs. We observe that current

systems for distributed inference (e.g., FasterTransformer [7] and Megatron-

LM [5]) have CPU-GPU synchronization whenever each process receives con-

trol messages3 because they exchange the messages through a GPU-to-GPU

communication channel – NCCL [8]. The exchange of these control messages

occurs at every iteration, imposing a non-negligible performance overhead. On

the other hand, Orca separates the communication channels for control mes-

sages (plus tokens) and tensor data transfer, avoiding the use of NCCL for data

used by CPUs. Figure 4.5 shows that the Orca engine uses NCCL exclusively

for exchanging intermediate tensor data (represented by dashed arrows) as this

data is produced and consumed by GPUs. Control messages, which is used by

the CPU threads for issuing GPU kernels, sent between the engine master and

worker controllers by a separate communication channel that does not involve

GPU such as gRPC [4].

4.3.2 Scheduling Algorithm

The Orca scheduler makes decisions on which requests should be selected and

processed at every iteration. The scheduler has high flexibility in selecting a

set of requests to compose a batch, because of the selective batching technique

that allows the engine to run any set of requests in the batched manner. Now

3This includes various metadata such as batch size, sequence length, and whether a request
within the batch has finished processing.

54

the main question left is how to select the requests at every iteration.

We design the Orca scheduler to use a simple algorithm that does not

change the processing order of client requests; early-arrived requests are pro-

cessed earlier. That is, we ensure iteration-level first-come-first-served (FCFS)

property. We define the iteration-level FCFS property for workloads with multi-

iteration characteristics as follows: for any pair of requests (xi, xj) in the request

pool, if xi has arrived earlier than xj , xi should have run the same or more it-

erations than xj . Note that some late-arrived requests may return earlier to

clients if the late request requires a smaller number of iterations to finish.

Still, the scheduler needs to take into account additional factors: diminishing

returns to increasing the batch size and GPU memory constraint. Increasing

the batch size trades off increased throughput for increased latency, but as the

batch size becomes larger, the amount of return (i.e., increase in throughput)

diminishes. Therefore, just like other serving systems [38, 11], Orca also has

a notion of a max batch size: the largest possible number of requests within a

batch. The Orca system operator can tune this knob to maximize throughput

while satisfying one’s latency budget. We will discuss this in more details with

experiment results in Section 4.5.2.

Another factor is the GPU memory constraint. Optimizing memory us-

age by reusing buffers for intermediate results across multiple operations is a

well-known technique used by various systems [9, 7], and Orca also adopts

this technique. However, unlike the buffers for intermediate results that can

be reused immediately, buffers used by the Attention K/V manager for storing

the keys and values cannot be reclaimed until the Orca scheduler notifies that

the corresponding request has finished processing. A näıve implementation can

make the scheduler fall into a deadlock when the scheduler cannot issue an

iteration for any requests in the pool because there is no space left for storing a

55

Algorithm 2: Orca scheduling algorithm

Params: n workers: number of workers, max bs: max batch size,
n slots: number of K/V slots

1 n scheduled← 0
2 n rsrv ← 0
3 while true do
4 batch, n rsrv ← Select(request pool, n rsrv)
5 schedule engine to run one iteration of the model for the

batch

6 foreach req in batch do
7 req.state← RUNNING
8 n scheduled← n scheduled + 1
9 if n scheduled = n workers then

10 wait for return of a scheduled batch

11 foreach req in the returned batch do
12 req.state← INCREMENT
13 if finished(req) then
14 n rsrv ← n rsrv − req.max tokens

15 n scheduled← n scheduled− 1

16

17 def Select(pool, n rsrv):
18 batch← {}
19 pool← {req ∈ pool|req.state ̸= RUNNING}
20 SortByArrivalT ime(pool)
21 foreach req in pool do
22 if batch.size() = max bs then break
23 if req.state = INITIATION then
24 new n rsrv ← n rsrv + req.max tokens
25 if new n rsrv ¿ n slots then break
26 n rsrv ← new n rsrv

27 batch← batch
⋃{req}

28 return batch, n rsrv

56

new Attention key and value for the next token. This requires the Orca sched-

uler to be aware of the remaining size of pre-allocated memory regions for the

manager.

The Orca scheduler takes all these factors into account: it selects at most

“max batch size” requests based on the arrival time, while reserving enough

space for storing keys and values to a request when the request is scheduled for

the first time. We describe the scheduling process in Algorithm 2. The algorithm

selects a batch of requests from the request pool (line 4) and schedules the batch

(line 5). The Select function (line 17) selects at most max bs requests from the

pool based on the arrival time of the request (lines 20-22). Algorithm 2 does not

depict the procedure of request arrival and return; one may think of it as there

exist concurrent threads inserting newly arrived requests into request pool and

removing finished requests from request pool.

When the scheduler considers a request in the initiation phase, meaning

that the request has never been scheduled yet, the scheduler uses the request’s

max tokens4 attribute to reserve max tokens slots of GPU memory for storing

the keys and values in advance (lines 23-26). The scheduler determines whether

the reservation is possible (line 25) based on n rsrv, the number of currently

reserved slots, where a slot is defined by the amount of memory required for

storing an Attention key and value for a single token. Here, n slots is a param-

eter tuned by the Orca system operator indicating the size of memory region

(in terms of slots) allocated to the Attention K/V manager. Since the number

of tokens in a request cannot exceed max tokens, if the reservation is possible,

it is guaranteed that the manager can allocate buffers for the newly generated

keys and values until the request finishes.

4The max tokens attribute is a per-request option, meaning the maximum number of
tokens that a request can have after processing.

57

Worker1

Worker2

Worker3

Time

A
1
B
1

A
1
B
1

A
1
B
1

C
1
D
1

C
1
D
1

C
1
D
1

E
1
F
1

E
1
F
1

E
1
F
1

A
2
B
2

A
2
B
2

A
2
B
2

C
2
D
2

C
2
D
2

E
2
F
2

(a) Orca execution pipeline.

Partition1

Partition2

Partition3

A
1

Time

B
1

A
1

B
1

A
1

B
1

A
2

B
2

A
2

B
2

A
2

B
2

A
3

(b) FasterTransformer execution pipeline.

Figure 4.6: Comparison of the use of pipeline parallelism in Orca and Faster-
Transformer where Xi is the i-th iteration of request X.

Unlike the tuning of max bs that requires quantifying the trade-off between

latency and throughput, the Orca system operator can easily configure n slots

without any experiments. Given a model specification (e.g., hidden size, number

of layers, etc.) and degrees of intra- and inter- layer parallelism, Orca’s GPU

memory usage mostly depends on n slots. That is, the operator can simply use

the largest possible n slots under the memory constraint.

Pipeline parallelism. Orca’s scheduler makes the execution of workers in

the engine to be pipelined across multiple batches. The scheduler does not wait

for the return of a scheduled batch until n scheduled, the number of currently

58

scheduled batches, reaches n workers (line 9-10 of Algorithm 2). By doing so,

the scheduler keeps the number of concurrently running batches in the engine

to be n workers, which means that every worker in the engine is processing

one of the batches without being idle.

Figure 4.6a depicts the execution pipeline of 3 Orca workers, using a max

batch size of 2. We assume that the request A arrives before B, which arrives

before C, and so on. At first, the scheduler selects requests A and B based on

the arrival time and schedules the engine to process a batch of requests A and

B (we call this batch AB), where Worker1, Worker2, and Worker3 process the

batch in turn. The scheduler waits for the return of the batch AB only after the

scheduler injects two more batches: CD and EF. Once the batch AB returns,

requests A and B get selected and scheduled once again, because they are the

earliest arrived requests among the requests in the pool.

In contrast, the interface between current inference servers and execution

engines (e.g., a combination of Triton [11] and FasterTransformer [7]) does not

allow injecting another batch before the finish of the current running batch, due

to the request-level scheduling. That is, Triton cannot inject the next request C

to FasterTransformer until the current batch AB finishes. To enable pipelined

execution of multiple inter-layer partitions under such constraint, FasterTrans-

former splits a batch of requests into multiple microbatches [61] and pipelines

the executions of partitions across the microbatches. In Figure 4.6b, Faster-

Transformer splits the batch AB into two microbatches, A and B. Since each

partition processes a microbatch (which is smaller than the original batch) in

the batched manner, the performance gain from batching can become smaller.

Moreover, this method may insert bubbles into the pipeline when the microbatch

size is too large, making the number of microbatches smaller than the number of

partitions. While FasterTransformer needs to trade batching efficiency (larger

59

microbatch size) for pipelining efficiency (fewer pipeline bubbles), Orca is free

of such a tradeoff – thanks to iteration-level scheduling – and can easily pipeline

requests without dividing a batch into microbatches.

4.4 Implementation

We have implemented Orca with 13K lines of C++, based on the CUDA

ecosystem. We use gRPC [4] for the communication in the control plane of the

Orca engine, while NCCL [8] is used in the data plane, for both inter-layer

and intra-layer communication. Since we design Orca to focus on Transformer-

based generative models, Orca provides popular Transformer layers as a build-

ing block of models including the original encoder-decoder Transformer [146],

GPT [113], and other variants discussed in Raffel et al. [115]. Supporting more

complex neural network architecture like Mixture of Experts [48] is future work.

We have also implemented fused kernels for LayerNorm, Attention, and

GeLU operators, just like other systems for training or inference of Transformer

models [132, 3, 7]. For example, the procedure of computing dot products be-

tween Attention query and keys, Softmax on the dot products, and weighted

average of Attention values are fused into a single CUDA kernel for the Atten-

tion operator. In addition, we go one step further and fuse the kernels of the split

Attention operators by simply concatenating all thread blocks of the kernels for

different requests. Although this fusion makes the thread blocks within a ker-

nel have different characteristics and lifetimes (which is often discouraged by

CUDA programming practice) because they process tensors of different shapes,

we find this fusion to be beneficial by improving GPU utilization and reducing

the kernel launch overhead [91, 84].

60

Params # Layers
Hidden

size
Inter-

partitions
Intra-

partitions

13B 40 5120 1 1
101B 80 10240 1 8
175B 96 12288 2 8
341B 120 15360 4 8

Table 4.1: Configurations of models used in the experiments.

Scheduling overhead and prefetching As we make the Orca scheduler

interact with the Orca engine at every iteration, Orca inserts an extra schedul-

ing overhead compared to the baseline systems. Per our experiment, we observe

that such extra overhead leads to a small gap between the two consecutive iter-

ations where the GPUs are left idle. While in most cases this does not incur any

negative performance impact, it can be problematic for relatively small models

with less than 100M parameters. In such a case, one can consider changing the

condition in line 9 of Algorithm 2 to n scheduled = n workers + 1. By doing

so, the Orca engine prefetches one more control message for the next iteration,

hiding the extra scheduling overhead inserted by the iteration-level scheduling.

4.5 Evaluation

In this section, we present evaluation results to show the efficiency of Orca.

Environment. We run our evaluation on Azure ND96asr A100 v4 VMs, each

equipped with 8 NVIDIA 40-GB A100 GPUs connected over NVLink. We use

at most four VMs depending on the size of the model being tested. Each VM

has 8 Mellanox 200Gbps HDR Infiniband adapters, providing an 1.6Tb/s of

interconnect bandwidth between VMs.

61

Models. Throughout the experiments, we use GPT [27] as a representative

example of Transformer-based generative models. We use GPT models with

various configurations, which is listed in Table 4.1. The configurations for 13B

and 175B models come from the GPT-3 paper [27]. Based on these two models,

we change the number of layers and hidden size to make configurations for

101B and 341B models. All models have a maximum sequence length of 2048,

following the setting of the original literature [27]. We use fp16-formatted model

parameters and intermediate activations for the experiments. We also apply

inter- and intra- layer parallelism strategies described in Section 4.3.1, except

for the 13B model that can fit in a GPU. For example, the 175B model is

partitioned over a total of 16 GPUs by using 2 inter-layer partitions subdivided

into 8 intra-layer partitions, where the 8 GPUs in the same VM belongs to the

same inter-layer partition.

Baseline system. We compare with FasterTransformer [7], an inference en-

gine that supports large scale Transformer models via distributed execution.

While there exist other systems with the support for distributed execution such

as Megatron-LM [5] and DeepSpeed [3], these systems are primarily designed

and optimized for training workloads, which makes them show relatively lower

performance compared to the inference-optimized systems.

Scenarios. We use two different scenarios to drive our evaluation. First, we

design a microbenchmark to solely assess the performance of the Orca engine

without being affected by the iteration-level scheduling. In particular, we do not

run the Orca server in this scenario. Instead, given a batch of requests, the

testing script repeats injecting the same batch into the Orca engine until all

requests in the batch finishes, mimicking the behavior of the canonical request-

62

level scheduling. We also assume that all requests in the batch have the same

number of input tokens and generate the same number of output tokens. We

report the time taken for processing the batch (not individual requests) and

compare the result with FasterTransformer [7].

The second scenario tests the end-to-end performance of Orca by emu-

lating a workload. We synthesize a trace of client requests because there is no

publicly-available request trace for generative language models. Each request in

the synthesized trace is randomly generated by sampling the number of input

tokens and a max gen tokens attribute, where the number of input tokens plus

max gen tokens equals to the max tokens attribute described in Section 4.3.2.

We assume that all requests continue generation until the number of generated

tokens reaches max gen tokens. In other words, we make the model never emit

the “<EOS>” token. This is because we have neither the actual model check-

point nor the actual input text so we do not have any information to guess the

right timing of the “<EOS>” token generation. Once the requests are gener-

ated, we synthesize the trace by setting the request arrival time based on the

Poisson process. To assess Orca’s behavior under varying load, we change the

Poisson parameter (i.e., arrival rate) and adjust the request arrival time accord-

ingly. We report latency and throughput using multiple traces generated from

different distributions for better comparison and understanding of the behavior

of Orca and FasterTransformer.

4.5.1 Engine Microbenchmark

We first compare the performance of FasterTransformer and the Orca engine

using the first scenario. We set all requests in the batch to have the same

number of input tokens (32 or 128) and generate 32 tokens. That is, in this set

of experiments, all requests within the batch start and finish processing at the

63

1 2 4 8 16 32
Batch Size

0

500

1000

1500

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(a) 13B model, 1 GPU.

1 2 4 8 16 32
Batch Size

0

1000

2000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(b) 101B model, 8 GPUs.

1 2 4 8 16 32
Batch Size

0

1000

2000

3000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(c) 175B model, 16 GPUs.

Figure 4.7: Execution time of a batch of requests using FasterTransformer and
the Orca engine without the scheduling component. Label “ft(n)” represents
results from FasterTransformer processing requests with n input tokens. Con-
figurations that incurs out of memory error are represented as missing entries
(e.g., ft(32) for the 101B model with a batch size of 16).

64

same time. We conduct experiments using three different models: 13B, 101B,

and 175B. For each model, we use the corresponding parallelization strategy

shown in Table 4.1.

Figure 4.7 shows the performance of FasterTransformer and the Orca en-

gine for processing a batch composed of the same requests. In Figure 4.7a,

the Orca engine shows a similar (or slightly worse) performance compared to

FasterTransformer across all configurations. This is because Orca does not ap-

ply batching to the Attention operations, while FasterTransformer apply batch-

ing to all operations. Still, the performance difference is relatively small. Despite

not batching the Attention operation, the absence of model parameters in At-

tention makes this decision has little impact on efficiency as there is no benefit

of reusing model parameters across multiple requests.

Figure 4.7b presents similar results for the 101B model that uses all of

the 8 GPUs in a single VM. From these results, we can say that the Orca

engine and FasterTransformer have comparable efficiencies in the implementa-

tions of CUDA kernels and the communication between intra-layer partitions.

Note that FasterTransformer cannot use a batch size of 8 or larger with the

13B model (16 or larger with the 101B model) because of the fixed amount

of memory pre-allocation for each request’s Attention keys and values, which

grows in proportion to the max sequence length of the model (2048 for this

case). In contrast, Orca avoids redundant memory allocation by setting the

size of buffers for the keys and values separately for each request based on the

max tokens attribute.

Next, we go one step further and experiment with the 175B model, which

splits the layers into two inter-layer partitions. In this case, for better com-

parison, we disable pipelined execution of the inter-layer partitions for both

systems. For FasterTransformer, we set the size of a microbatch to be equal to

65

the batch size to disable pipelining. As shown in Figure 4.7c, the Orca engine

outperforms FasterTransformer by up to 47%. We attribute this performance

improvement to the control-data plane separation described in Section 4.3.1.

We omit the 341B model as it has similar results compared to the 175B model.

4.5.2 End-to-end Performance

Now we assess the end-to-end performance of Orca by measuring the la-

tency and throughput with the synthesized request trace under varying load.

When synthesizing the trace, we sample each request’s number of input tokens

from U(32, 512), a uniform distribution ranging from 32 to 512 (inclusive). The

max gen tokens attributed is sampled from U(1, 128), which means that the

least and the most time-consuming requests require 1 and 128 iterations of the

model for processing, respectively.

Unlike the microbenchmark shown in Section 4.5.1, to measure the end-to-

end performance, we test the entire Orca software stack including the Orca

server. Client requests arrive to the Orca server following the synthesized trace

described above. We report results from various max batch size configurations.

For FasterTransformer that does not have its own inference server, we imple-

ment a custom server that receives client requests, creates batches, and injects

the batches to an instance of FasterTransformer. We make the custom server

create batches dynamically by taking at most max batch size requests from

the request queue, which is the most common scheduling algorithm used by

existing inference servers like Triton [11] and TensorFlow Serving [101]. Again,

we report results from various max batch size configurations, along with vary-

ing microbatch sizes, an additional knob in FasterTransformer that governs the

pipelining behavior (see Section 4.3.2).

Figure 4.8 shows median end-to-end latency and throughput. Since each

66

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) 101B model, 8 GPU.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) 175B model, 16 GPUs.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(c) 341B model, 32 GPUs.

Figure 4.8: Median end-to-end latency normalized by the number of generated
tokens and throughput. Label “orca(max bs)” represents results from Orca
with a max batch size of max bs. Label “ft(max bs, mbs)” represents results
from FasterTransformer with a max batch size of max bs and a microbatch size
of mbs.

67

request in the trace requires different processing time, which is (roughly) in

proportion to the number of generated tokens, we report median latency nor-

malized by the number of generated tokens of each request. From the figure,

we can see that Orca provides significantly higher throughput and lower la-

tency than FasterTransformer. The only exception is the 101B model under low

load (Figure 4.8a). In this case, both Orca and FasterTransformer do not have

enough number of requests to process in a batch. That is, the latency will mostly

depend on the engine’s performance, which is shown in Figure 4.7b. As the load

becomes heavier, Orca provides higher throughput with a relatively small in-

crease in latency, because the Orca scheduler makes late-arrived requests hitch

a ride with the current ongoing batch. In contrast, FasterTransformer fails to

efficiently handle multiple requests that (1) arrive at different times; (2) require

different number of iterations to finish; or (3) start with different number of

input tokens, resulting in a peak throughput of 0.49 req/s and much higher

latency. If we use the 175B or 341B model (Figures 4.8b and 4.8c) that employs

more than one inter-layer partitions, Orca outperforms FasterTransformer un-

der every level of load in terms of both latency and throughput, resulting in

an order of magnitude higher throughput when we compare results at a similar

level of latency. For example, to match a median normalized latency of 190ms

for the 175B model, which is a double of the normalized execution time (by

the number of generated tokens) of “orca(128)” shown in Figure 4.7c, Faster-

Transformer provides a throughput of 0.185 req/s whereas Orca provides a

throughput of 6.81 req/s, which is a 36.9× speedup.

Varying batch size configurations. Figure 4.8 shows that the increase of

the max batch size of Orca results in a higher throughput without affecting

the latency. This is because the iteration-level scheduling of Orca resolves the

68

problem of early-finished and late-joining requests. Nevertheless, there is no

guarantee that increasing the batch size will not negatively affect the latency,

for arbitrary hardware settings, models, and workloads. As mentioned in Sec-

tion 4.3.2, the max batch size must be set carefully by considering both the

required latency and throughput requirements.

Interestingly, larger max batch size in FasterTransformer does not neces-

sarily help improving throughput. By testing all possible combinations of max

batch size (max bs) and microbatch size (mbs) on all models under varying load,

we find that (max bs, mbs) = (1, 1) or (8, 8) are the best options. Per our dis-

cussion in Section 4.3.1, FasterTransformer’s microbatch-based pipelining can

be less efficient because the engine is going to process at most mbs number of

requests in the batched manner, which explains why the configurations with the

maximum possible mbs (which is the same as max bs) have better performance

than others. In addition, while increasing max bs can improve performance due

to the increased batch size, at the same time, this also increases the likelihood

of batching requests with large difference in the number of input tokens or the

number of generated tokens. In such cases, FasterTransformer cannot efficiently

handle the batch because (1) for the first iteration of the batch, FasterTrans-

former processes requests as if they all had the same input length as the shortest

one; and (2) early-finished requests cannot immediately return to the clients.

Trace of homogeneous requests. We test the behavior of Orca and Faster-

Transformer when using a trace of homogeneous requests, i.e., all requests in

a trace have the same number of input tokens and the same max gen tokens

attribute. Since all requests require the same number of iterations to finish

processing, the problem of early-leaving requests does not occur for this trace.

As a result, now the increase of the max bs has a noticeable positive impact

69

0 5 10 15 20
Throughput (req/s)

103

104

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) (# in, # gen) = (32, 32)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Throughput (req/s)

104

105

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) (# in, # gen) = (256, 256)

Figure 4.9: Median end-to-end latency and throughput, using the 175B model
with traces composed of homogeneous requests. We do not normalize the latency
since all requests have the same characteristic.

70

on the performance of FasterTransformer, as shown in Figure 4.9. Still, Orca

outperforms FasterTransformer (max bs=8) except for the case using a max

batch size of 1, where Orca degenerates into a simple pipeline of the Orca

workers that does not perform batching.

4.6 Summary

We present iteration-level scheduling with selective batching, a novel approach

that achieves low latency and high throughput for serving Transformer-based

generative models. Iteration-level scheduling makes the scheduler interact with

the execution engine at the granularity of iteration instead of request, while se-

lective batching enables batching arbitrary requests processing tokens at differ-

ent positions, which is crucial for applying batching with iteration-level schedul-

ing. Based on these techniques, we have designed and implemented a distributed

serving system named Orca. Experiments show the effectiveness of our ap-

proach: Orca provides an order of magnitude higher throughput than current

state-of-the-art systems at the same level of latency.

71

Chapter 5

WindTunnel: Towards
Differentiable ML Pipelines
Beyond a Single Model

5.1 Introduction

The recent decade has witnessed two distinct trends in Machine Learning (ML).

On one hand, the success of Deep Neural Networks (DNNs) has been the driving

force of many recent advances in ML, pushing the limits of various tasks that

use unstructured data such as image recognition [55, 138, 124], machine trans-

lation [43, 146, 54], and speech recognition [22, 56]. One of the key factors of

this success was the power of backpropagation, which allows the DNNs to learn

and extract important higher-level features for the given task. DNNs comprise

multiple layers, which can be seen as multiple cascaded operators. These layers

are trained simultaneously using backpropagation by which parameters can be

globally estimated end-to-end to reach better minima.

On the other hand, many real-world ML applications including recommen-

72

Imputation OneHot
Encoding Scaler PCA LightGBM Linear

Imputation NN
Layer1

NN
Layer2

NN
Layer3

NN
Layer4

NN
Layer5

WINDTUNNEL

Isolated ML operators

End-to-end differentiable pipeline,
trainable with backpropogation,

often with a higher accuracy

Figure 5.1: An illustration of WindTunnel. The input to WindTunnel is a
ML pipeline and the output is its (partially) differentiable counterpart.

dation [19, 28, 119, 120], click prediction [67, 51, 68], and malware predic-

tion [78, 100, 66] use structured data, which is often represented in a tab-

ular form within RDBMSs. These applications often use classical 1 machine

learning pipelines composed of multiple data transformations and ML mod-

els [21, 107, 140, 134] rather than a single model. Such pipelines are Directed

Acyclic Graphs (DAGs) of operators and are enriched by domain knowledge

from practitioners and domain experts via feature engineering and model selec-

tion. However, these pipelines are trained sequentially by following the topologi-

cal order specified in the DAG. They are not end-to-end differentiable, thus can-

not take advantage of backpropagation in jointly optimizing the whole pipeline

beyond a single model.

Inspired by these observations, in this work we ask: Can we combine the

strength of backpropagation and ML pipelines? To answer this question, we

propose WindTunnel, a framework that translates operators of a given ML

pipeline into differentiable Neural Network (NN) modules. The translated NN

1The term “classical” is generally used to diversify this type of ML from DNN-based
approaches.

73

modules are wired together to form a WindTunnel pipeline (Figure 5.1), hence

enabling end-to-end training via backpropagation. This allows us to bypass the

greedy one-operator-at-a-time training scheme and boost the accuracy of the

pipeline. During the translation phase, we can retain the information already

acquired by training the original ML pipeline and provide a useful parame-

ter initialization for the translated NN modules, making further training of

WindTunnel pipeline more accurate and faster. Neural translation also en-

ables GPU-acceleration over ML pipelines without reinventing the wheel (i.e.,

support for hardware acceleration) for classical ML frameworks.

To demonstrate the benefits brought by WindTunnel, we conduct exper-

iments on three large-scale real-world datasets with three ML pipelines made

up of multiple operators. The results show that we can arrive at better accu-

racy by jointly training these operators. Furthermore, we find that WindTun-

nel provides informative knowledge transfer from pre-trained pipelines, along

with efficient neural architecture that performs better than previous work [73].

WindTunnel currently supports several among data transforms and ML mod-

els (the full list is contained in Table 5.1).

Comparison with the state of the art approaches. WindTunnel has

the following benefits compared to other approaches.

1. Compared with the original ML pipeline that cannot optimize multiple oper-

ators in an end-to-end fashion, a WindTunnel pipeline has higher accuracy

because of its ability to jointly fine-tune the pipeline with backpropagation.

While jointly optimizing multiple operators, WindTunnel is also able to

maintain the knowledge encoded in the structure of the original pipeline by

experts, such as how input features are wired to operators and hyperpa-

rameters of the operators (how many trees in a Gradient Boosting Decision

74

Tree (GBDT) model, the number of principal components for PCA, etc.).

2. Compared with DNNs, WindTunnel leads to a higher accuracy because

ML pipelines are often better than DNNs for handling tabular data, and

WindTunnel successfully leverages such advantage in the translation. For

example, Ke et al. [73] compared the performance of ML pipelines with vari-

ous DNNs developed for tabular data including Wide&Deep [34], DeepFM [53],

and PNN [112], and showed that the ML pipeline with LightGBM [72] out-

performs all the DNNs for every dataset. Rendle et al. [121] also showed that

Matrix Factorization [80] can outperform recent DNN-based approaches.

One can try to manually design a DNN that matches the neural architecture

of the WindTunnel pipeline, however, the DNN should be trained from

scratch while WindTunnel provides an informative initialization point by

transferring weights from the original ML pipeline.

Multi-operator pipeline vs. Single model. At this point, the readers

might wonder: What’s the difference between composing a ML pipeline with

multiple operators and a single model? Can’t we just replace the multi-operator

pipeline with a single model? We have evidence that this is not the current trend

in data science. For instance, in [111] we crawled 6 million python notebooks on

GitHub and joined this information with telemetry data on the internal usage

within Microsoft of ml.net [21]. The analysis suggested that the majority of

Scikit-learn [107] pipelines used in public notebooks contain 2 or more operators

(with a max length of 43), whereas in ml.net telemetry the distribution is even

more tail-skewed, with few pipelines having even up to hundreds of operators.

This evidence suggests that multi-operator pipelines are widely used in practice

both in the open-source domain and in industry. We attribute such trend to the

additional information encoded by experts in the structure of the pipeline, in-

75

cluding how to featurize the input data and how to wire the connection between

operators.

Challenges of translating non-differentiable operators. Nevertheless,

noticeable challenges arise when the pipeline involves operators that are in-

trinsically non-differentiable, such as decision trees or word tokenization. This

requires us to develop new methods in translating non-differentiable operators

into differentiable NN modules. To address this challenge, we develop transla-

tion methods for a selected set of non-differentiable operators. First, we propose

a translation method that translates tree ensemble (e.g., GBDT) into a batch

of Multi-Layer Perceptrons (MLPs), where each MLP corresponds to a tree

in the ensemble. The translated NN module (i.e., batch of MLPs) directly in-

herits the decision procedure of the original tree ensemble, thus the learning

capacity of the NN module varies according to hyperparameters of the ensem-

ble like number of trees. Leveraging this additional knowledge infused by the

ML experts relieves the burden of laborious neural architecture tuning. We also

suggest multiple parametrization levels when optimizing the translated module

to balance good fit and inductive bias.

For categorical features, we translate categorical feature encoders (e.g., one-

hot encoding) into embedding lookup modules. By doing so, WindTunnel

learns the dense representations of sparse categorical features by exploiting the

information propagated from the final loss function. The translated embedding

module inherits the data transformation procedure of the original encoder, fol-

lowing the same principle as GBDT translation. Conversely, the original ML

pipeline uses a fixed encoding logic regardless of the final prediction result. To

the best of our knowledge, this is the first work that proposes joint optimiza-

tion of categorical encoders and downstream operators (e.g., GBDT) in ML

76

pipelines. Although the embedding technique itself is well-recognized in ML

community especially in the context of deep learning [108], combining classical

ML models with the embedding technique were not possible without explicit

use of models with latent parameters [119]. This is because the ML models did

not allow backpropagating gradients to upstream operators, while the neural

translation unlocks this capability.

Practical impact. WindTunnel will be open sourced as part of Humming-

bird [97, 81]: a tool recently released [141] by Microsoft enabling inference of

classical ML pipelines over hardware accelerators (e.g., GPUs). Hummingbird

converts ML pipelines into non-differentiable tensor computations and thus

can directly leverage the capabilities of DNN runtimes [104, 33]. Humming-

bird is part of the PyTorch ecosystem [143], and is integrated with ONNXML-

Tools [142]. WindTunnel extends Hummingbird by enabling conversion of

pipelines into differentiable modules, and therefore allowing the fine-tuning of

pipelines along with fast inference. Enabling training of ML pipelines over DNN

runtimes and hardware accelerators has been suggested as one of the impor-

tant extension to Hummingbird both from the open-source community2 and

internal conversations with product partners within Microsoft.

Limitations. As one of the first systems that focus on the differentiable trans-

lation of ML pipelines, WindTunnel by no means provides a complete solu-

tion to this challenging problem. One major limitation is that there are some

operators that we cannot translate into a differentiable format yet. Word tok-

enization, data cleansing, and imputation are such examples. These operators

require sophisticated algorithms that are too difficult to parametrize.

2https://github.com/microsoft/hummingbird/issues/165

77

https://github.com/microsoft/hummingbird/issues/165

Table 5.1: WindTunnel’s currently supported ML operators.

Supported Operators

linear models normalizers categorical encoders
SVM PCA LDA KMeans

naive bayes random forest gradient boosting trees
matrix factorization factorization machine

Since we currently do not handle these operators, WindTunnel does not

translate them and keep them as they are. Nevertheless, in all the cases we stud-

ied, these non-translatable operators are placed at the beginning of the pipeline

and do not affect backpropagation through the rest of the translated pipeline.

Hence, we can still compute gradients and jointly optimize the downstream

operators, which are the more essential parts of the ML pipeline.

Another notable limitation is that WindTunnel requires more training

time than classical ML pipelines. In particular, the fine-tuning stage is more

than an order of magnitude slower than the training of the original ML pipeline.

This is due to the large amount of computation required for optimizing the NN

modules. One can consider using recent hardware that enables faster GEMM [136]

or applying distributed training techniques for sparse parameters [76] to miti-

gate this problem. We leave these directions as a future work.

5.2 Pipeline Translation

A classical machine learning pipeline is defined as a DAG of data-processing

operators, and these operators are mainly divided into two categories: (1) the

arithmetic operators and (2) the algorithmic operators. Arithmetic operators

are typically described by a single mathematical formula. These operators are,

in turn, divided into two sub-categories of parametric and non-parametric oper-

ators. Non-parametric operators define a fixed arithmetic operation on their in-

78

puts; for example, the logistic sigmoid function can be seen as a non-parametric

arithmetic operator. In contrast, parametric operators involve numerical pa-

rameters on the top of their inputs in calculating the operators’ outputs. For

example, an affine transform is a parametric arithmetic operator where the

parameters consist of the affine weights and biases. The parameters of these

operators can be potentially tuned via some training procedure.

The algorithmic operators, on the other hand, are those whose operation

is not described by a single mathematical formula but rather by an algorithm.

For instance, the one-hot encoder that converts categorical features into one-

hot vectors is an algorithmic operator that mainly implements the look-up

operation. Given a DAG of arithmetic and algorithmic operators, we propose

the following procedure for translating it into a differentiable format:

1. For an arithmetic operator, translate the mathematical formula into a neural

network (NN) module. In the case of parametric operator, copy the values

of the operator’s parameters into the resulting NN module.

2. For an algorithmic operator, translate the operator by rewriting the algo-

rithm as a differentiable operation.

3. Compose all the resulting modules into a WindTunnel pipeline by follow-

ing the dependencies in the original pipeline.

The final output of the above translation process is a pipeline of NNs that

provides the same prediction results (unless the translation includes approxi-

mation described in Section 5.2.2) as the original pipeline. Note that Step 1

and 2 in the above procedure are where the actual translation happen, and will

be described in details next.

79

5.2.1 Translating Arithmetic Operators

Arithmetic operators comprise non-parametric and parametric operators, and it

is straightforward to translate the former into a NN module: the mathematical

function of the operator can in fact be directly rewritten using the math API

provided by a DL framework like PyTorch [104]. On the other hand, parametric

operators are often implicitly derived from ML models3, which are not straight-

forward to translate. ML models typically consist of three key components: (1)

the prediction function, (2) the loss function, and (3) the learning algorithm.

While the prediction function defines the functional form of the model, the

learning algorithm and the loss function define how it is trained toward what

objective, respectively. Take the popular linear Support Vector Machine (SVM)

as an example: the prediction function is a linear combination of input features;

the loss function is the Hinge loss, and the learning algorithm is gradient descent

in the dual space.

A crucial observation is that once the training is complete, the data-processing

logic of any ML model can be completely defined by the prediction function re-

gardless of the loss function and the learning algorithm. Hence, we can translate

a parametric operator derived from a ML model by applying the translation

method for non-parametric operators to the model’s prediction function and

properly initializing the parameters. For example, a linear SVM can be trans-

lated into a linear NN module of one output unit having the weights trans-

ferred from the trained SVM. It is worth noting that the translation of a ML

pipeline into a pipeline of NN modules is uniquely done starting from the data-

processing logic (i.e., prediction function in case of parametric operator derived

3Some parametric operators are not derived from ML models (e.g., normalizer). Still, these
operators can be translated using the same mechanism for parametric operators derived from
ML models.

80

from ML model), independently on how different parts of the ML pipeline have

been trained. This enables us to translate different operators of a pipeline using

the same formalism even though they might have been obtained via different

learning algorithms or objectives.

5.2.2 Translating Algorithmic Operators: GBDT

While most ML models correspond to arithmetic operators that can be directly

translated, some do not. One prominent example is GBDT whose prediction

function is not differentiable. Instead, each prediction of a GBDT model is made

by executing a sequence of if-else statements for each tree and computing

the mean over the trees. In that respect, GBDT’s prediction function is an

algorithmic operator rather that an arithmetic one, which means we cannot

use backpropagation. In order to jointly optimize GBDT with other operators,

we should rewrite its prediction function as a differentiable function of tunable

parameters. We use GBDT as a running example here because they are widely

used in practical data science [111]. Naturally, the same approach applies over

any tree-based model (e.g., decision trees, random forests, etc.).

We introduce parameters that fully determine GBDT’s prediction function,

and smooth the non-differentiable points of the function so that it can be dif-

ferentiated. At a given internal node n of a binary decision tree of GBDT,

the prediction function evaluates a boolean-valued function n(x) = xi(n) > θn,

where x is a vector representing the input of the tree, i(n) is the index of the

feature examined at node n, and θn is the decision threshold at node n. We

smooth this non-differentiable function by making the function output a real

number, ñ(x) = tanh(1τ (xT ei(n)− θn)), where ei(n) is the canonical basis vector

along the i(n)-th dimension of the feature space and τ is a temperature pa-

rameter. If n(x) is true, ñ(x) is close to 1, otherwise ñ(x) is close to −1. We

81

𝑥" > 5.1

𝑥 ∈ ℝ)

F

𝑥" > 2.410

𝑥- > 1.8 𝑥/ > 0.4

20 30

5040

T
𝑛-

𝑛2 𝑛3

𝑛"𝑙-

𝑙2 𝑙"

𝑙3 𝑙/

(a) An example decision tree.

𝑛!

𝑛"

𝑛" +𝑛! = 1
1

𝑛! ∧ 𝑛" → tanh(𝑛)!+𝑛)" −1)

true

false
1

(1,1)(−1, 1)

(−1,−1) (1,−1)

(b) Logical cunjunction.

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑛#!

𝑛#"

𝑛##

𝑛#$

𝑙%!

𝑙%"

𝑙%#

𝑙%$

𝑙%%

𝑇"

(c) A MLP translated from the decision
tree of Figure 5.2a.

Figure 5.2: Translating a decision tree into a multi-layer perceptron.

82

set τ as 1 throughout this work. As we employ smaller τ , the differentiable ap-

proximation becomes steeper and degenerates into the original boolean-valued

function.

Next, we note that the value of a leaf node is outputted as the final value of a

tree if and only if the path from the root node to that leaf node is traversed. For

example, in Figure 5.2a, the tree will output 30 (i.e. the value of leaf l3) iff n1(x)

is false, n2(x) is true, and n3(x) is true. As such, we denote the leaf activation

function of l3 as a conjunction of l3’s ancestors: l3(x) = ¬n1(x)∧n2(x)∧n3(x).

To get a differentiable approximation of the logical conjunction, we write l̃3(x) =

tanh

(
1
τ

(
− ñ1(x) + ñ2(x) + ñ3(x) − Cl3 + 1

))
, where Cl is the total number

of literals in the conjunction (the path length from the root to the leaf node

l; e.g., Cl3 = 3). Figure 5.2b visualizes this approximation for 2 inputs. The

equation n1 + n2 = 1 is a maximum-margin hyperplane between true and

false evaluations of n1 ∧n2. In the case of no approximation (i.e., τ → 0), one

and only one of the leaf activation functions l̃(x) evaluates to 1 for any given

input x, while the rest are −1.

Having translated the function of internal and leaf nodes into the smooth

functions described above, any decision tree T (x) can be translated into a MLP

T̃ (x) with two hidden layers. Figure 5.2c shows an example of this transla-

tion procedure. The first hidden layer implements a hidden unit n(x) per each

internal node. The second hidden layer allocates a hidden unit l(x) for each

leaf node. Finally, the output layer is defined as a linear layer with one unit,

T̃ (x) =
∑

li∈L
νi
2 (1+ l̃i(x)), where L is the set of all leaf nodes and νi is the value

of the leaf node li. Translation of GBDT or Random Forest follows directly by

computing the average of T̃ (x) over the trees. We batch the computation of

multiple MLPs using variants of gemm such as baddbmm and addbmm. Since each

MLP only has tens (or one to two hundred) of hidden units, we cannot fully

83

utilize the computation power of modern GPUs without batching them.

Note that when smoothing boolean-valued functions, we map false eval-

uation of n(x) and l(x) to a real number close to −1, not 0. Suppose we map

false to a value close to 0 and use dropout [135] when training the translated

module. In this case, dropping a true neuron by zeroing its output can be seen

as flipping the evaluation from true to false, introducing unintended bias.

Instead of using the logistic sigmoid function to map false to a number close

to 0, we use tanh for smoothing the boolean functions to make the dropped

neurons unbiased, meaning neither true nor false.

Once the translation is complete, the question is which of the parameters

should be declared as trainable. We suggest four levels of parametrization to

balance good fit and inductive bias:

L1: The weights and biases for computing the output layer T̃ , initialized using

leaf node values ν, are declared as trainable.

L2: In addition to L1, the biases for computing the first hidden layer ñ, ini-

tialized using the decision threshold values θ’s at the internal nodes, are

declared as trainable.

L3: In addition to L2, the weights for computing the first hidden layer ñ, ini-

tialized using the canonical basis vectors ei(n) in the equation of ñ(x), are

declared as trainable.

L4: In addition to L3, the weights (including the non-existing zero weights) and

biases for computing the second hidden layer l̃ are declared as trainable.

As level number increases, we declare more parameters as trainable and

as such increase the capacity of the MLP to fit to data better. While L1 and

L2 can only change the leaf and the decision threshold values in the tree, L3

can additionally lead to examining a linear combination of features at each

84

1
12

1
19

One-Hot Encoding

Embedding Dimension
C

ardinalityInputs

Hash Encoding

⋯
⋯

1 ⋯

Embedding Dimension

1
1

1
1

Figure 5.3: Translating one-hot encoder and hash encoder into embedding
lookup modules.

internal node rather than a single feature. Up to L4, the decision structure

that determines whether or not to activate a leaf node by examining internal

nodes on the path from the root to the leaf is preserved; whereas, at L4, we

let this decision structure change. That is, L4 gives us a fully-connected and

fully-trainable MLP initialized by a decision tree. This level can be disabled if,

for example due to some governance constraints, the decision structure must

be maintained for explainability.

5.2.3 Translating Algorithmic Operators for Categorical Fea-
tures

Classical ML pipelines often convert categorical features into numerical values

using non-differentiable, algorithmic operators. The simplest yet most popular

technique is one-hot encoding [94], which generates sparse one-hot vectors out

of categorical inputs. This operator is intrinsically non-differentiable since its

inputs lie on discrete spaces such as integer or string.

85

Our observation is that one-hot encoding consumes raw categorical inputs,

which means that we do not have to backpropagate further through its discrete

inputs due to the absence of upstream operators. We adopt the embedding

technique that has been studied intensively by the machine learning commu-

nity. As shown in Figure 5.3, one-hot encoding can be seen as an embedding

vector lookup operation with the embedding dimension matching the cardinal-

ity of categories. We can declare this embedding matrix as trainable in order

to replace sparse one-hot vectors with dense representations and learn relation-

ship between different categorical features, which is not possible with one-hot

encoding. The same statement holds for hash encoding [93], except that data

scientists can control the size of embedding dimension explicitly. Although in

the original hash encoding we may have collisions between different categories,

we have one row in the embedding matrix for each input category after transla-

tion. This means that even if the resulting vectors are equivalent, the “collision

information” is actually stored into the embedding matrix. For example, the

hash encoder in Figure 5.3 initially maps the first and fourth category to equiv-

alent one-hot vectors, but they are in two different rows of the embedding

matrix, and therefore they will be eventually trained differently.

By translating categorical encoders into embedding modules, we can use

the well-recognized embedding technique along with arbitrary ML operators,

which was not possible before. There indeed exist ML algorithms such as Ma-

trix Factorization [80] and Factorization Machine [119, 68] that learn latent

factors, which are conceptually equivalent to embedding parameters. Yet, the

adoption of latent factors using these algorithms requires the ML operator to

use a specific form of prediction function that explicitly models two-way inter-

action between features [119], which may not be desirable for certain type of

tasks. In contrast, WindTunnel can combine embedding modules with arbi-

86

trary ML models, allowing data scientists to use any prediction function they

want without restriction.

5.2.4 Fine-Tuning

After translating the operators into NN modules, one can jointly optimize the

trainable parameters of the translated pipeline via backpropagation. We refer

to this training process as fine-tuning. There are many scenarios for which this

fine-tuning step can be useful. First, by fine-tuning the resulting pipeline on

the original training data, we can potentially improve the generalization of the

model since we are now jointly optimizing all the operators of the pipeline

toward the final loss function. We empirically demonstrate this in Section 5.4.

Second, as we discussed in Section 5.2.1, the translation process does not depend

on the loss functions that different operators have been trained toward before.

This means that once the translation is complete, the resulting pipeline can be

fine-tuned toward a completely different objective that is more suitable for a

given application. Third, fine-tuning can be used to adapt the model to new data

that were not available before, which is not straightforward without re-training

the original ML pipeline with the old and new data [73]. It is worth noting that

other methods for fine-tuning such as boosting may increase the model size and

complexity, while WindTunnel does not. Also, the ensemble model obtained

by boosting can be seen as a pipeline containing multiple models that were not

jointly optimized, so it can also benefit from our translation approach.

5.3 Implementation

Based on the translation mechanism described in Section 5.2, we have imple-

mented prototypes of WindTunnel on different classical ML libraries (i.e.,

scikit-learn and ml.net). WindTunnel design is in fact simple, flexible, and

87

easy to extend. The main component of WindTunnel is a pre-defined map-

ping table between the supported operators (listed in Table 5.1) and neural

network modules implemented in PyTorch [104]. On top of the mapping ta-

ble, WindTunnel provides a set of converters for extracting information from

the trained ML operator and materialize the information into parameters of the

corresponding NN module. We have different converters based on the ML frame-

work the input pipeline was authored in. For the experiments in Section 5.4,

we use scikit-learn [107] and PyTorch [104] for implementing ML pipelines.

During the translation process, WindTunnel refers to the proper convert-

ers and mapping table entries, and replaces the operator in the original pipeline

with its differentiable counterpart. For the operators that we do not support, we

either (1) cache the operators’ outputs and reuse them in the fine-tuning stage;

or (2) if streaming execution is provided by the ML framework, we stream data

into the untouched operators and redirect their outputs to the WindTunnel

pipeline. Caching is in general possible because the unsupported operators are

often placed at the beginning of the pipeline thus their outputs do not change.

We can consider this as a separate data pre-processing step, which is typically

done before actual training.

We are currently working on adding the pre-defined mapping table contain-

ing the PyTorch implementations to Hummingbird4.

5.4 Experiments

In this section, we empirically evaluate the performance of WindTunnel. The

main goal of the experiments is to show that we can improve the performance

of ML pipelines by joint optimization instead of training each operator individ-

ually. We carry our experiments on binary classification tasks for three tabular

4https://github.com/microsoft/hummingbird/tree/mainterl/fine-tune-trees.

88

https://github.com/microsoft/hummingbird/tree/mainterl/fine-tune-trees

Table 5.2: Statistics of datasets used in experiments. #Rec is the number of
data records, #Num is the number of numerical features, #Cat is the number
of categorical features, #Unq is the number of unique categories that appear
in the training split (i.e. the sum of cardinalities of categorical features), and
Positive ratio is the percentage of records with positive label.

Dataset #Rec #Num #Cat #Unq Positive ratio

Flight 21.6M 2 6 694 20.4%
Avazu 40.4M 0 23 8.93M 17.0%
Criteo 45.8M 13 26 30.8M 25.6%

datasets. We start with details about experimental setup, such as dataset de-

scription, pipeline composition, and training configurations.

5.4.1 Experimental Setup

Datasets. We conduct experiments on real-world datasets listed in Table 5.2.

The Flight [102] dataset is used for predicting whether a scheduled flight will

be delayed more than 15 minutes inclusive. We use records from the year of

2006 and 2007 as training set (about 14M records), while the records from the

year of 2008 are divided into two splits and used as validation set (Jan to Jun)

and test set (Jul to Dec). The Avazu [24] and Criteo [39] datasets are from

Kaggle competitions that call for click-through rate prediction models. We use

the first 90% of the Criteo dataset as training set, while the next 5% and the

last 5% is used as validation and test set, respectively. For the Avazu dataset,

we use the same ratio for splitting the dataset after a random shuffling step,

to ensure that the distribution of “day of week” feature is consistent between

train-validation-test splits.

Data pre-processing. We experiment with three different data pre-processing

schemes to show both the general applicability of WindTunnel, as well as the

89

impact of different pre-processing operations over the embedding dimensions

and final accuracy. The first pre-processing scheme (Pre1) drops categories that

appear less than 25 times in the training set to reduce noise, followed by a bi-

nary encoder for handling categorical features. In the second pre-processing

scheme (Pre2), we replace the binary encoder with a two-hot encoder, while

the rest are left the same as the first scheme (Pre1). Two-hot encoder is sim-

ilar to the well-known one-hot encoder [94], except that there are two “hot”

elements (value of 1) in the resulting vector. Switching the pre-processing step

from Pre1 to Pre2 allows us to test how accuracy changes when increasing the

embedding dimensions. The last, most complex scheme (Pre3) is composed as

follows: (1) drop the lower 1% categories by frequency; (2) drop categories that

appear less than 10 times in the training set; (3) add additional categorical fea-

tures by bucketizing numeric features using 32 bins; (4) apply two-hot encoding

and target encoding [110]. We take inspiration from previous literature [73] for

designing Pre3.

ML pipelines. We evaluate the performance improvements using three ML

pipelines. Each pipeline not only serves as the source pipeline for WindTunnel

translation, but also serves as a baseline for comparison. In the first pipeline

(Pipe1), we use a logistic regression model following the pre-processing scheme.

After translation, WindTunnel jointly optimizes the embedding modules trans-

lated from categorical encoders and the logistic regression module. The second

pipeline (Pipe2) employs a GBDT model trained by LightGBM [72] after the

pre-processing scheme. The third pipeline (Pipe3) is composed as follows: (1)

process the data using the described pre-processing scheme; (2) train a Light-

GBM model with the processed data and label; (3) for each tree in the trained

LightGBM model, create a one-hot vector that marks the index of the acti-

90

vated leaf as 1 and keeps others 0 using the leaf activation function l(x) (see

Section 5.2.2); (4) train a Factorization Machine [119] model with the output

from (3) and label. We take inspiration from the winning solution of Kaggle

competition [67] for designing Pipe3. These pipelines cover the most common

ML algorithms (linear models and decision-tree variants) used in practice [69].

DNN baseline. In addition to the three ML pipelines described above, we

compare DeepGBM [73], a state-of-the-art neural network that takes advan-

tage of classical ML by distilling knowledge from gradient boosting machine.

We do not compare with other DNN-based models because Ke et al. [73] already

demonstrated that DeepGBM is consistently better than Wide&Deep [34],

DeepFM [53] and PNN [112]. We also do not report results from ML pipelines

using a single operator because they fall far behind other models.

Configurations. We set the LightGBM to create 64 leaves for each tree, and

we construct 100 trees for all experiments that use LightGBM. The Factoriza-

tion Machine (FM) model uses a latent dimension of 20 for all experiments. We

set learning rate to 0.25 and 10−3 for training LightGBM and FM, respectively.

Regarding the training of WindTunnel pipelines, we use the parametrization

level L4 for GBDT-translated modules unless otherwise noted. Dropout [135] is

applied to each NN layer of WindTunnel pipeline, with a zeroing probability

of 0.1. We use the Adam [77] optimizer with a batch size of 4096 and weight

decay of 10−6 for all experiments. Learning rate is set to 10−4 for the Flight and

Avazu dataset, and 10−5 for the Criteo dataset. We select these rates by sweep-

ing a grid of {10−2, 10−3, · · · , 10−6} for learning rate and {10−5, 10−6, 10−7} for

weight decay. We let the training process run until convergence. Regarding the

experiments using DeepGBM, we use an open-source implementation. For the

91

Flight and Criteo dataset, we use the hyperparameter setting described in the

original literature. Since the literature did not use the Avazu dataset, we set

the hyperparameters same as Criteo’s.

92

Table 5.3: Overall performance comparision. We report AUC on test split following the previous work [73]. ML is
the original ML pipeline, while W.T. is for WindTunnel. PreX means different preprocessing schemes, and PipeX
denotes different ML pipelines. The best result is marked bold.

Model
Flight Avazu Criteo

Pre1 Pre2 Pre3 Pre1 Pre2 Pre3 Pre1 Pre2 Pre3

ML (Pipe1) 0.6783 0.6847 0.7126 0.6896 0.7264 0.7553 0.7167 0.7442 0.7769
ML (Pipe2) 0.7358 0.7427 0.7507 0.7521 0.7550 0.7718 0.7739 0.7781 0.7925
ML (Pipe3) 0.7519 0.7547 0.7467 0.7597 0.7616 0.7728 0.7838 0.7884 0.7954
DeepGBM 0.7793 0.7695 0.7726 0.7682 0.7680 0.7760 0.7965 0.7918 0.7972

W.T. (Pipe1) 0.6913 0.6910 0.7244 0.7588 0.7589 0.7637 0.7750 0.7804 0.7903
W.T. (Pipe2) 0.7790 0.7897 0.7960 0.7753 0.7742 0.7763 0.8006 0.8053 0.8041
W.T. (Pipe3) 0.7829 0.7906 0.7989 0.7746 0.7718 0.7753 0.8014 0.8058 0.8048

9
3

5.4.2 Overall Performance

We first evaluate the overall performance of WindTunnel. The comparison

results can be found in Table 5.3. As we can see, WindTunnel greatly improves

AUC of the original pipeline by jointly optimizing the ML operators which

were trained separately, providing up to 10.0% higher AUC. This demonstrates

the power of end-to-end training and WindTunnel’s ability to leverage such

advantage. WindTunnel also surpasses DeepGBM by a significant margin (up

to 3.4%) for all cases, except the Avazu dataset using Pre3 pre-processing where

the margin is small (0.7760 vs. 0.7763). We credit the AUC gap to joint training

of embedding modules (translated from categorical encoders) and downstream

modules (translated from GBDT and FM), which is not possible in DeepGBM.

Impact of data pre-processing. We study the impact of using different

pre-processing schemes, and find that it can largely affect the AUC of both the

original pipeline and WindTunnel pipeline. First of all, the use of one-hot

encoder [94] is not suitable for large-scale dataset because it requires too much

host and GPU memory and computation power. The number of embedding

dimension grows linearly with the number of unique categories (denoted as C),

which makes training of both the original pipeline and WindTunnel pipeline

extremely difficult. On the other hand, for the binary encoder [92] and two-hot

encoder, the minimum required size of embedding dimension is roughly log2C

and
√
C, respectively.

Second, Pre2 shows better AUC on all cases using ML pipelines compared to

Pre1. Similarly, WindTunnel pipelines tends to work better with Pre2 than

Pre1. This means that both ML and WindTunnel pipelines prefer two-hot

encoding to binary encoding. We attribute this trend to the high separability

of two-hot vectors compared to binary vectors at the cost of larger embedding

94

dimension. Note that DeepGBM prefers Pre1 to Pre2 because it explicitly se-

lects top-N elements of the input vector based on the amount of information

computed by LightGBM and use only them for training the GBDT-distilled

neural network. Due to this feature selection policy, when we use two-hot en-

coder that produces larger encoded vector, some elements of the vector with

meaningful information are dropped, thus resulting in worse AUC compared to

binary encoder.

If we go one step further and compare Pre2 and Pre3, Pre3 shows better

AUC in most cases. This means that if we carefully design the pre-processing

scheme and adopt more sophisticated feature engineering, we can achieve better

results compared to using simple, less-optimized pre-processing scheme.

Discussion. From this experiment, we notice the importance of getting a

proper pre-processing scheme. We deem developing neural translation of the

pre-processing operators a promising direction able to improve the perfor-

mance. This also aligns with recent trends in computer vision domain that

learns to augment input images by parametrizing and tuning the pre-processing

scheme [40, 88, 75]. Developing new types of pre-processing operators that are

naturally tunable (e.g., embedding) could also be an alternative solution.

5.4.3 Ablation Study

Next, we evaluate the performance of WindTunnel with varying configura-

tions. As a representative for the datasets we study, we select the largest one

(i.e, Criteo) and conduct experiments on it. We also focus on the settings with

Pre2 & Pre3 schemes and Pipe2 & Pipe3 pipelines, because we produce top

results with these settings.

95

Table 5.4: AUC of the Criteo dataset using different translation scopes.

Model Pre2 Pre3

ML (Pipe2) 0.7781 0.7925
GBDT2NN (Pipe2) 0.7962 0.7998

W.T. (Pipe2) 0.8053 0.8041

Table 5.5: AUC of the Criteo dataset using different parameter initialization
regimes.

Model
Pre2 Pre3

Cold Warm Cold Warm

W.T. (Pipe2) 0.7983 0.8053 0.7990 0.8041
W.T. (Pipe3) 0.7966 0.8058 0.7975 0.8048

Joint optimization. We study the impact of joint optimization in more de-

tails. Table 5.4 reports additional results by translating only the GBDT model of

Pipe2, not categorical encoders (denoted by “GBDT2NN”). Note that a GBDT

model is already an ensemble of multiple trees, so translating only the GBDT

model (GBDT2NN) also employs joint optimization of multiple MLP modules.

From the results, we can observe a clear pattern that as the scope of translation

gets wider, the AUC increases (ML < GBDT2NN < WindTunnel). This fur-

ther supports the claim that joint optimization is a promising technique able

to improve the performance. In particular, the gap between GBDT2NN and

WindTunnel suggests that the neural translation of pre-processing operators

(categorical encoder) is indeed effective in improving the accuracy.

Parameter initialization and architecture. In this set of experiments,

we show that the translation of trained ML operators provides informative

initialization of WindTunnel pipelines. We experiment with two regimes of

initialization for the parameters of WindTunnel pipeline: (1) in the cold start

96

Table 5.6: AUC of the Criteo dataset using different GBDT parametrization
levels and dataset sizes (1%, 10%, 100%).

Model 100% 10% 1%

ML (Pipe2) 0.7781 0.7777 0.7657
W.T. (Pipe2, L2) 0.7924 0.7874 0.7685
W.T. (Pipe2, L3) 0.8051 0.7912 0.7699
W.T. (Pipe2, L4) 0.8053 0.7906 0.7691

regime the parameters are randomly initialized (denoted by “Cold”); and (2)

in the warm start regime the parameters are carried over from the original ML

pipeline (denoted by “Warm”, used as default setting for other WindTunnel

experiments).

Table 5.5 shows that the warm start outperforms the cold start, which

means that the parameters extracted from the original ML pipeline provide an

informative initialization for WindTunnel. Interestingly, the cold start regime

performs better than DeepGBM. This shows that WindTunnel not only de-

livers meaningful information by parameter initialization, but also provides a

good neural architecture that can achieve better results than the baseline.

GBDT parametrization level and dataset size. As described in Sec-

tion 5.2.2, the proposed translation of GBDT increases the capacity of the

model if we adopt higher parametrization levels (L3 or L4). We evaluate the

effect of the parametrization level in Table 5.6, using the combination of Pre2

and Pipe2. From the results, we can observe the significant gap between L2 and

L3, verifying that the extra capacity helps improving the performance. Yet, L2

still outperforms the original ML pipeline, due to WindTunnel’s ability to

jointly optimize the categorical encoders and GBDT. We also evaluate trade-

offs between flexibility and inductive bias come from different levels. For this,

97

we use subsets of the training split with various sampling ratios (1%, 10%,

100%). As the subset size decreases, the gap between L2 and the other two

level closes. This trend shows overfitting of L3 and L4 in small data experi-

ments and how it is avoided by L2 that has much smaller capacity. In other

words, lower levels provide a natural regularization mechanism in small data

experiments. The results also show that the gap between the original pipeline

(ML) and WindTunnel gets wider as the subset size increases. This suggests

that WindTunnel has better scalability (in terms of accuracy) than the orig-

inal pipeline by exploiting the extra model capacity that comes from the joint

optimization.

5.5 Summary

Inspired by the existing gap between classical ML pipelines and neural net-

works, we propose WindTunnel, a framework for translating pipelines of ML

operators into neural networks and further jointly fine-tuning them. As part of

the translation procedure, we also propose techniques for translating popular

non-differentiable operators including GBDT and categorical encoders. The ex-

perimental results show that the translation with knowledge transfer followed

by the fine-tuning leads to significant accuracy improvements over the origi-

nal pipeline and state-of-the-art NNs. Furthermore, we see that our translation

mechanism can be seen as an approach for designing neural network architec-

tures for a given task that is inspired by the classical ML pipeline structure for

that task. We deem this work as a step towards filling the gap between classical

ML pipelines and neural networks over tabular data.

98

Chapter 6

Related Work

Optimizations for GPU task scheduling. The core ideas of Nimble can

be compared with some previous works. First, in an attempt to reduce the

scheduling overhead, TensorFlow recently introduced a new runtime [15] that

has a thin operator dispatch routine. While redesigning a runtime stack costs

tremendous engineering efforts, the AoT scheduling of Nimble provides an au-

tomated way to avoid the scheduling overhead. Second, although the pre-run

process of Nimble is similar to the tracing of TorchScript, they differ in the

purpose and the target of tracing process. In the tracing of TorchScript, DL

operator calls are recorded to construct a computation graph, which is used

for serialization and graph-level optimization. Meanwhile, Nimble records GPU

tasks during the pre-run process to perform the scheduling procedure once.

Lastly, in comparison to HiveMind [99] that has a parallel runtime for multi-

model workloads, the multi-stream execution of Nimble parallelizes operators

in a single model, using a more sophisticated algorithm.

99

Fine-grained batching for recurrent models. We would like to highlight

BatchMaker [50] as one of the most relevant previous works of Orca. Batch-

Maker is a serving system for RNNs that performs scheduling and batching at

the granularity of RNN cells, motivated by the unique RNN characteristic of

repeating the same computation. Once a request arrives, BatchMaker breaks

the dataflow graph for processing the request into RNN cells, schedules ex-

ecution at the granularity of cells (instead of the entire graph), and batches

the execution of identical cells (if any). Since each RNN cell always performs

the exact same computation, BatchMaker can execute multiple RNN cells in

a batched manner regardless of the position (i.e., token index) of the cell. By

doing so, BatchMaker allows a newly arrived request for RNN to join (or a

finished request to leave) the current executing batch without waiting for the

batch to completely finish.

However, BatchMaker cannot make batches of cells for Transformer models

because there are too many distinct cells (a subgraph that encapsulates the

computation for processing a token; Figure 2.4) in the graph. Each cell at a

different token index t must use a different set of Attention Keys/Values. As

the cell for each t is different, the graph comprises L different cells (L denotes

the number of input and generated tokens), significantly lowering the likelihood

of cells of the same computation being present at a given moment (e.g., in

Figure 4.8, L ranges from 33 = 32 + 1 to 640 = 512 + 128). Thus execution of

the cells will be mostly serialized, making BatchMaker fall back to non-batched

execution. BatchMaker also lacks support for large models that require model

and pipeline parallelism.

While BatchMaker is geared towards detecting and aligning batch-able RNN

cells, our key principle in designing Orca is to perform as much computation as

possible per each round of model parameter read. This is based on the insight

100

that reading parameters from GPU global memory is a major bottleneck in

terms of end-to-end execution time, for large-scale models. Adhering to this

principle, we apply iteration-level scheduling and selective batching to process

all “ready” tokens in a single round of parameter read, regardless of whether

the processing of tokens can be batched (non-Attention ops) or not (Attention

ops).

DL compilers. There have been a body of works on the system-level op-

timization of DL inference and training. For example, DL compilers [14, 33,

41, 123, 145, 159] have been proposed to generate optimized codes for target

hardware. These works take different approach from Nimble in that they aim

to reduce the time spent on GPU tasks whereas Nimble tackles the inefficien-

cies in the scheduling of GPU tasks. DL compilers are also orthogonal to the

contributions of Orca. In fact, Nimble and Orca also employ kernel fusion

and kernel selection techinques, which are commonly used by DL compilers, as

discussed in Section 3.4 and Section 4.4.

Specialized execution engines for Transformer models. The outstand-

ing performance of Transformer-based models encourages the development of

inference systems specialized for them. FasterTransformer [7], LightSeq [147],

TurboTransformers [47] and EET [86] are such examples. Each of these systems

behave as an backend execution engine of existing inference server systems like

Triton Inference Server [11] and TensorFlow Serving [101]. That is, these sys-

tems delegate the role of scheduling to the inference server layer, adhering to

the canonical request-level scheduling. Instead, Orca suggests to schedule ex-

ecutions at a finer granularity, which is not possible in current systems without

changing the mechanism for coordination between the server and the execution

101

engine. Note that among these systems, FasterTransformer is the only one with

the support for distributed execution. While systems like Megatron-LM [5] and

DeepSpeed [3] can also be used for distributed execution, these systems are

primarily optimized for large-scale training rather than inference serving.

Interface between inference servers and execution engines. Current

general-purpose inference servers such as Triton Inference Server [11] and Clip-

per [38] serve as an abstraction for handling client requests and scheduling

executions of the underlying execution engines. This approach is found to be

beneficial by separating the design and implementation of the server layer and

the engine layer. However, we find that the prevalent interface between the two

layers is too restricted for handling models like GPT [27], which has the multi-

iteration characteristic. Instead, we design Orca to tightly integrate the server

and the engine, simplifying the application of the two proposed techniques:

iteration-level scheduling and selective batching. While in this work we do not

study a general interface design that supports the two techniques without los-

ing the separation of abstractions, it can be an interesting topic to explore such

possibility; we leave this issue to future work.

End-to-end training of ML pipelines. Milutinovic et al. [96] proposes

the end-to-end training of ML pipelines via propagating gradients across mul-

tiple differentiable operators. This work however has no discussion about non-

differentiable operators, while in WindTunnel we attempt to backpropagate

through non-differentiable (e.g., GBDT) and non-trainable operators (e.g., cat-

egorical encoding). Additionally, this work requires users to manually write

“backward” code for operators from non-NN libraries (e.g., scikit-learn [106]),

while WindTunnel exploits the automatic differentiation capabilities of DL

102

libraries by neural translation.

Tree-based models and neural networks. There have been early works [128,

25, 63] that initialize parameters of a MLP by using a trained decision tree.

However, these works have several limitations: (1) the resulting MLP cannot

back-propagate gradients to upstream (or downstream) operators because the

input and output layers are not designed with end-to-end training in mind; and

(2) the MLP is not well-suited for adopting dropout [135] due to the use of

logistic sigmoid activation that introduces bias. They also did not demonstrate

generalizability on tree ensemble models like GBDT or Random Forest, and

only experimented with a single decision tree that is unlikely used in practice.

DJINN [62] initializes a MLP in a different way, where the depth of the

decision tree is used to decide the number of layers. Weights are randomly

initialized, while the information on the tree is retained only for sparsely con-

necting the neurons. WindTunnel instead extracts more information from a

GBDT model including tree structure and decision thresholds to initialize the

parameters. DNDT [152] suggests to build tree-like neural networks for inter-

pretability. This is different from our approach of handling trees because: (1)

it builds a tree-like neural network using random weight initialization, while

in WindTunnel we retain the behavior of trained trees by neural translation;

and (2) WindTunnel’s translated pipeline learns to use all features for making

decision at each internal node (L3 and L4), while this work uses a single feature

at each neuron and requires a wider network whose number of neurons grows

exponentially as the number of features grows. dNDF [79] combines neural net-

works (CNNs) and decision tree classifiers by enabling backpropagation, with

a focus on computer vision tasks. Similar to DNDT, dNDF also starts with a

random initialization of tree parameters.

103

Finally, DeepGBM [73] distills trees into neural networks by transferring

the knowledge of tree outputs and feature importance learned by GBDT. Given

this distilled neural network, DeepGBM incorporates an additional embedding-

based neural network called CatNN for handling categorical features only. For

this, DeepGBM requires several hyperparameters such as the number of layers

and hidden units (for both the distilled NN and CatNN), weights for controlling

the strength between knowledge distillation and final loss, the number of fea-

tures used for training the distilled NN, how to group trees for distillation, and

so on. Instead, WindTunnel directly translates a ML pipeline so the structure

of resulting pipeline solely depends on the structure of the original one.

Neural translation for fast inference. While in WindTunnel we focus

on translating ML operators into differentiable modules for fine-tuning, in the

Hummingbird project [97] we translate ML operators (including unsupported

ones in WindTunnel) into tensor operations without requiring the operations

to be differentiable. This allow us to run inference of end-to-end pipelines (1)

completely on DL frameworks without any additional data conversion overhead;

and (2) on hardware accelerators specialized for tensor operations.

104

Chapter 7

Conclusion

In this dissertation, we introduce recipes for efficient execution of ML workloads

on GPU environment.

We first present Nimble, a high-speed DL execution engine for static neu-

ral networks. We show two problems of the run-time scheduling of GPU tasks:

scheduling overhead and serial execution. Nimble minimizes the scheduling over-

head by finishing the scheduling procedure ahead of time before executing the

GPU tasks at run time. Moreover, Nimble schedules independent GPU tasks to

be executed in parallel, further boosting its performance. Our evaluation on var-

ious neural networks shows that Nimble outperforms popular DL frameworks

(e.g., PyTorch [104]) and state-of-the-art inference systems (e.g., TensorRT [9]

and TVM [33]).

Next, we propose Orca, a distributed serving system that achieves low

latency and high throughput for serving Transformer-based generative mod-

els. Orca incorporates two techniques: iteration-level scheduling and selective

batching. Iteration-level scheduling makes the inference server interact with the

105

execution engine at the granularity of iteration instead of request, while selec-

tive batching enables batching arbitrary requests processing tokens at different

positions, which is crucial for applying batching with iteration-level scheduling.

Experiments show the effectiveness of our approach: Orca provides an order

of magnitude higher throughput than current state-of-the-art systems (e.g.,

FasterTransformer [7]) at the same level of latency.

Lastly, we present WindTunnel, a framework for translating pipelines of

classical ML operators into neural networks and further jointly fine-tuning

them. As part of the translation procedure, we also propose techniques for

translating popular non-differentiable operators including GBDT and categori-

cal encoders. The experimental results show that the translation with knowledge

transfer followed by the fine-tuning leads to significant accuracy improvements

over the original pipeline and state-of-the-art NNs. Furthermore, by translating

classical ML pipelines into neural networks, we can leverage existing systems

(e.g., PyTorch [104]) primarily developed for DL workloads and train classical

ML pipelines on GPUs. We deem this work as a step towards filling the gap

between classical ML pipelines and neural networks.

106

Bibliography

[1] CUDA C++ programming guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide.

[2] cuML - GPU Machine Learning Algorithms. Retrieved Nov 10, 2022 from

https://github.com/rapidsai/cuml.

[3] DeepSpeed. Retrieved Dec 13, 2021 from https://github.com/

microsoft/DeepSpeed.

[4] gRPC. Retrieved Dec 13, 2021 from https://grpc.io.

[5] Megatron-LM. Retrieved Dec 13, 2021 from https://github.com/

NVIDIA/Megatron-LM.

[6] NVIDIA A100 Tensor Core GPU architecture. https:

//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

nvidia-ampere-architecture-whitepaper.pdf.

[7] NVIDIA FasterTransformer. Retrieved Dec 13, 2021 from https://

github.com/NVIDIA/FasterTransformer.

[8] NVIDIA NCCL. Retrieved Dec 13, 2021 from https://github.com/

NVIDIA/nccl.

107

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://github.com/rapidsai/cuml
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://grpc.io
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl

[9] NVIDIA TensorRT. Retrieved Dec 13, 2021 from https://developer.

nvidia.com/tensorrt.

[10] NVIDIA Tesla V100 GPU architecture. https://

images.nvidia.com/content/volta-architecture/pdf/

volta-architecture-whitepaper.pdf.

[11] NVIDIA Triton Inference Server. Retrieved Dec 13, 2021 from https:

//developer.nvidia.com/nvidia-triton-inference-server.

[12] ONNX: Open neural network exchange. https://github.com/onnx/

onnx.

[13] Tensor Cores. https://developer.nvidia.com/tensor-cores.

[14] TensorFlow XLA. Retrieved Dec 13, 2021 from www.tensorflow.org/

xla.

[15] TFRT: A new TensorFlow runtime. https://github.com/tensorflow/

runtime.

[16] TorchScript. https://pytorch.org/docs/stable/jit.html.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,

S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,

M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System for Large-Scale

Machine Learning. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation, pages 265–283, 2016.

[18] D. Adiwardana, M.-T. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan,

Z. Yang, A. Kulshreshtha, G. Nemade, Y. Lu, et al. Towards a Human-like

Open-Domain Chatbot. arXiv preprint arXiv:2001.09977, 2020.

108

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://developer.nvidia.com/tensor-cores
www.tensorflow.org/xla
www.tensorflow.org/xla
https://github.com/tensorflow/runtime
https://github.com/tensorflow/runtime
https://pytorch.org/docs/stable/jit.html

[19] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by

incorporating user behavior information. In Proceedings of the 29th An-

nual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 19–26, 2006.

[20] A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A. Shankar,

I. Ganichev, J. Levenberg, M. Hong, R. Monga, and S. Cai. TensorFlow

Eager: A multi-stage, python-embedded DSL for machine learning. In

MLSys, 2019.

[21] Z. Ahmed, S. Amizadeh, M. Bilenko, R. Carr, W. Chin, Y. Dekel,

X. Dupré, V. Eksarevskiy, S. Filipi, T. Finley, A. Goswami, M. Hoover,

S. Inglis, M. Interlandi, N. Kazmi, G. Krivosheev, P. Luferenko, I. Matant-

sev, S. Matusevych, S. Moradi, G. Nazirov, J. Ormont, G. Oshri,

A. Pagnoni, J. Parmar, P. Roy, M. Z. Siddiqui, M. Weimer, S. Zahirazami,

and Y. Zhu. Machine learning at microsoft with ml. net. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Dis-

covery & Data Mining, pages 2448–2458, 2019.

[22] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,

C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech

2 : End-to-end speech recognition in english and mandarin. In Proceedings

of the 33rd International Conference on Machine Learning, pages 173–

182, 2016.

[23] M. Artetxe, S. Bhosale, N. Goyal, T. Mihaylov, M. Ott, S. Shleifer, X. V.

Lin, J. Du, S. Iyer, R. Pasunuru, G. Anantharaman, X. Li, S. Chen,

H. Akin, M. Baines, L. Martin, X. Zhou, P. S. Koura, B. O’Horo, J. Wang,

L. Zettlemoyer, M. Diab, Z. Kozareva, and V. Stoyanov. Efficient Large

109

Scale Language Modeling with Mixtures of Experts. arXiv preprint

arXiv:2112.10684, 2021.

[24] Avazu. Avazu click-through rate prediction dataset, 2021.

[25] A. Banerjee. Initializing neural networks using decision trees. Computa-

tional Learning Theory and Natural Learning Systems, 4:3–15, 1997.

[26] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D.

Lafferty, R. L. Mercer, and P. S. Roossin. A Statistical Approach to

Machine Translation. Computational Linguistics, 16(2):79–85, 1990.

[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-

Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and

D. Amodei. Language Models are Few-Shot Learners. Advances in Neural

Information Processing Systems, 2020.

[28] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview.

Technical Report MSR-TR-2010-82, June 2010.

[29] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu. Path-level network

transformation for efficient architecture search. In ICML, 2018.

[30] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture

search on target task and hardware. In ICLR, 2019.

[31] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-

plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,

G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,

110

S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Win-

ter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,

E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,

J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N.

Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,

M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,

S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating Large Lan-

guage Models Trained on Code. arXiv preprint arXiv:2107.03374, 2021.

[32] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine

learning library for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274, 2015.

[33] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,

L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In Pro-

ceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation, pages 579–594, 2018.

[34] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,

G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,

V. Jain, X. Liu, and H. Shah. Wide & deep learning for recommender

systems. In Proceedings of the 1st Workshop on Deep Learning for Rec-

ommender Systems, pages 7–10, 2016.

[35] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv

preprint arXiv:1410.0759, 2014.

111

[36] J.-H. Cho, J. Kim, W. Lee, D.-U. Lee, T. K. Kim, H. B. Park, C. Jeong,

M.-J. Park, S. G. Baek, S. Choi, B. K. Yoon, Y. J. Choi, K. Y. Lee,

D. Shim, J. Oh, J. Kim, and S.-H. Lee. A 1.2V 64Gb 341GB/S HBM2

stacked DRAM with spiral point-to-point TSV structure and improved

bank group data control. In ISSCC, 2018.

[37] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,

S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,

V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,

J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-

mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fe-

dus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,

R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pil-

lai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,

Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei,

K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. PaLM: Scal-

ing Language Modeling with Pathways. arXiv preprint arXiv:2204.02311,

2022.

[38] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica. Clipper: A Low-Latency Online Prediction Serving System.

In Proceedings of the 14th USENIX Symposium on Networked Systems

Design and Implementation, pages 613–627, 2017.

[39] CriteoLabs. Kaggle display advertising challenge dataset, 2021.

[40] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaug-

ment: Learning augmentation strategies from data. In Proceedings of

112

the 2019 IEEE Conference on Computer Vision and Pattern Recognition,

pages 113–123, 2019.

[41] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,

A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi, R. Kim-

ball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao, C. R. Lishka, J. Menon,

J. Myers, S. A. Narayana, A. Procter, and T. J. Webb. Intel nGraph: An

intermediate representation, compiler, and executor for deep learning.

arXiv preprint arXiv:1801.08058, 2018.

[42] R. Dabre, C. Chu, and A. Kunchukuttan. A Survey of Multilingual Neural

Machine Translation. ACM Computing Surveys, 53(5), 2020.

[43] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[44] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou,

Z. Shao, H. Yang, and J. Tang. CogView: Mastering Text-to-Image Gen-

eration via Transformers. Advances in Neural Information Processing

Systems, 2021.

[45] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman. Measuring and

Mitigating Unintended Bias in Text Classification. In Proceedings of the

2018 AAAI/ACM Conference on AI, Ethics, and Society, pages 67–73,

2018.

[46] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,

Y. Zhou, A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou,

113

T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson, K. Meier-

Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and

C. Cui. GLaM: Efficient Scaling of Language Models with Mixture-of-

Experts. arXiv preprint arXiv:2112.06905, 2021.

[47] J. Fang, Y. Yu, C. Zhao, and J. Zhou. TurboTransformers: An Efficient

GPU Serving System for Transformer Models. In Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 389–402, 2021.

[48] W. Fedus, B. Zoph, and N. Shazeer. Switch Transformers: Scaling to

Trillion Parameter Models with Simple and Efficient Sparsity. Journal of

Machine Learning Research, 23(120):1–39, 2022.

[49] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-

dian Journal of Mathematics, 8:399–404, 1956.

[50] P. Gao, L. Yu, Y. Wu, and J. Li. Low Latency RNN Inference with

Cellular Batching. In Proceedings of the Thirteenth EuroSys Conference,

2018.

[51] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale

bayesian click-through rate prediction for sponsored search advertising in

microsoft’s bing search engine. In Proceedings of the 27th International

Conference on Machine Learning, pages 13–20, 2010.

[52] A. Gray. Getting started with CUDA Graphs. NVIDIA Developer Blog,

2019. https://devblogs.nvidia.com/cuda-graphs/.

[53] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A factorization-

machine based neural network for ctr prediction. In Proceedings of the

114

https://devblogs.nvidia.com/cuda-graphs/

26th International Joint Conference on Artificial Intelligence, pages 1725–

1731, 2017.

[54] H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann,

X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li, S. Liu, T.-Y. Liu,

R. Luo, A. Menezes, T. Qin, F. Seide, X. Tan, F. Tian, L. Wu, S. Wu,

Y. Xia, D. Zhang, Z. Zhang, and M. Zhou. Achieving human parity on

automatic chinese to english news translation, 2018.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image

Recognition. In Proceedings of the 2016 IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

[56] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Se-

nior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep

neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal processing magazine, 29(6):82–

97, 2012.

[57] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, 1997.

[58] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Ruther-

ford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Henni-

gan, E. Noland, K. Millican, G. v. d. Driessche, B. Damoc, A. Guy,

S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre.

Training Compute-Optimal Large Language Models. arXiv preprint

arXiv:2203.15556, 2022.

[59] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,

M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying Large Video

115

Datasets with Low Latency and Low Cost. In Proceedings of the 13th

USENIX Symposium on Operating Systems Design and Implementation,

pages 269–286, 2018.

[60] H. T. Hsu. An algorithm for finding a minimal equivalent graph of a

digraph. Journal of the ACM, 22(1):11–16, 1975.

[61] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,

J. Ngiam, Q. V. Le, Y. Wu, et al. GPipe: Efficient Training of Giant Neu-

ral Networks Using Pipeline Parallelism. Advances in Neural Information

Processing Systems, 2019.

[62] K. D. Humbird, J. L. Peterson, and R. G. McClarren. Deep neural network

initialization with decision trees. IEEE Transactions on Neural Networks

and Learning Systems, 30(5):1286–1295, 2018.

[63] I. Ivanova and M. Kubat. Initialization of neural networks by means of

decision trees. Knowledge-Based Systems, 8(6):333–344, 1995.

[64] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[65] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,

M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger. Mainstream:

Dynamic Stem-Sharing for Multi-Tenant Video Processing. In Proceedings

of the 2018 USENIX Annual Technical Conference, pages 29–42, 2018.

[66] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,

and L. Cavallaro. Transcend: Detecting concept drift in malware classifi-

116

cation models. In Proceedings of the 26th USENIX Security Symposium,

pages 625–642, 2017.

[67] Y. Juan, W.-S. Chin, and Y. Zhuang. 3 idiots’ approach for display

advertising challenge, 2014.

[68] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization

machines for ctr prediction. In Proceedings of the 10th ACM Conference

on Recommender Systems, pages 43–50, 2016.

[69] Kaggle. State of data science and machine learning 2020, 2020.

[70] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. NoScope:

Optimizing Neural Network Queries over Video at Scale. Proceedings of

the VLDB Endowment, 10(11):1586–1597, 2017.

[71] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,

S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling Laws for Neural

Language Models. arXiv preprint arXiv:2001.08361, 2020.

[72] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-

Y. Liu. Lightgbm: A highly efficient gradient boosting decision tree. In

Proceedings of the 31st International Conference on Neural Information

Processing Systems, pages 3149–3157, 2017.

[73] G. Ke, Z. Xu, J. Zhang, J. Bian, and T.-Y. Liu. Deepgbm: A deep learn-

ing framework distilled by gbdt for online prediction tasks. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Dis-

covery & Data Mining, pages 384–394, 2019.

[74] D. Khashabi, S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and

H. Hajishirzi. UNIFIEDQA: Crossing Format Boundaries with a Single

117

QA System. In Findings of the Association for Computational Linguistics:

EMNLP 2020, pages 1896–1907, 2020.

[75] J.-H. Kim, W. Choo, and H. O. Song. Puzzle mix: Exploiting saliency and

local statistics for optimal mixup. In Proceedings of the 37th International

Conference on Machine Learning, pages 5275–5285, 2020.

[76] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J. S. Jeong,

and B.-G. Chun. Parallax: Sparsity-aware data parallel training of deep

neural networks. In Proceedings of the 14th EuroSys Conference, pages

1–15, 2019.

[77] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimiza-

tion. In Proceedings of the 3rd International Conference for Learning

Representations, 2015.

[78] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious

executables in the wild. Journal of Machine Learning Research, 7:2721–

2744, 2006.

[79] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulò. Deep neural

decision forests. In Proceedings of the 25th International Joint Conference

on Artificial Intelligence, pages 4190–4194, 2016.

[80] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30–37, 2009.

[81] D. Koutsoukos, S. Nakandala, K. Karanasos, K. Saur, G. Alonso, and

M. Interlandi. Tensors: An abstraction for general data processing. Pro-

ceedings of the VLDB Endowment, 14(10):1797–1804, 2021.

118

[82] A. Krizhevsky. Learning multiple layers of features from tiny images.

Technical report, 2009.

[83] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Al-

berti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, et al. Natural Ques-

tions: a Benchmark for Question Answering Research. Transactions of

the Association for Computational Linguistics, 7:452–466, 2019.

[84] W. Kwon, G.-I. Yu, E. Jeong, and B.-G. Chun. Nimble: Lightweight and

Parallel GPU Task Scheduling for Deep Learning. Advances in Neural

Information Processing Systems, 2020.

[85] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and

M. Interlandi. PRETZEL: Opening the Black Box of Machine Learning

Prediction Serving Systems. In Proceedings of the 13th USENIX Sympo-

sium on Operating Systems Design and Implementation, pages 611–626,

2018.

[86] G. Li, Y. Xi, J. Ding, D. Wang, B. Liu, C. Fan, X. Mao, and Z. Zhao.

Easy and Efficient Transformer: Scalable Inference Solution For large NLP

model. arXiv preprint arXiv:2104.12470, 2021.

[87] O. Lieber, O. Sharir, B. Lenz, and Y. Shoham. Jurassic-1: Technical

details and evaluation. 2021.

[88] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. In

Proceedings of the 33rd International Conference on Neural Information

Processing Systems, pages 6665–6675, 2019.

[89] X. Lin, G. Bertasius, J. Wang, S.-F. Chang, D. Parikh, and L. Torresani.

Vx2text: End-to-end learning of video-based text generation from multi-

119

modal inputs. In Proceedings of the 2021 IEEE Conference on Computer

Vision and Pattern Recognition, pages 7005–7015, 2021.

[90] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture

search. In ICLR, 2019.

[91] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,

L. Zhang, and L. Zhou. Rammer: Enabling Holistic Deep Learning Com-

piler Optimizations with rTasks, pages 881–897. 2020.

[92] W. McGinnis. Binary encoder for categorical variables, 2016.

[93] W. McGinnis. Hashing encoder for categorical variables, 2016.

[94] W. McGinnis. One-hot encoder for categorical variables, 2016.

[95] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a Suit of Armor

Conduct Electricity? A New Dataset for Open Book Question Answering.

In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 2381–2391, 2018.

[96] M. Milutinovic, A. G. Baydin, R. Zinkov, W. Harvey, D. Song, F. Wood,

and W. Shen. End-to-end training of differentiable pipelines across ma-

chine learning frameworks. NIPS AutoDiff workshop, 2017.

[97] S. Nakandala, K. Saur, G.-I. Yu, K. Karanasos, C. Curino, M. Weimer,

and M. Interlandi. A tensor compiler for unified machine learning predic-

tion serving. In Proceedings of the 14th USENIX Symposium on Operating

Systems Design and Implementation, pages 899–917, 2020.

[98] R. Nallapati, B. Zhou, C. N. dos Santos, Ç. Gülçehre, and B. Xiang.

Abstractive Text Summarization using Sequence-to-sequence RNNs and

120

Beyond. In Proceedings of the 20th SIGNLL Conference on Computational

Natural Language Learning, pages 280–290, 2016.

[99] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia. Accel-

erating deep learning workloads through efficient multi-model execution.

In NeurIPS Workshop on Systems for Machine Learning, 2018.

[100] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. Malware

images: Visualization and automatic classification. In Proceedings of the

8th International Symposium on Visualization for Cyber Security, pages

1–7, 2011.

[101] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-

jashekhar, S. Ramesh, and J. Soyke. TensorFlow-Serving: Flexible, High-

Performance ML Serving. Workshop on Machine Learning Systems at

NIPS 2017, 2017.

[102] A. S. on Statistical Computing. Data expo 2009 - airline on-time perfor-

mance, 2021.

[103] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,

and M. Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling.

In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics (Demonstrations), pages

48–53, 2019.

[104] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-

121

Performance Deep Learning Library. Advances in Neural Information

Processing Systems, 2019.

[105] R. Paulus, C. Xiong, and R. Socher. A Deep Reinforced Model for Ab-

stractive Summarization. In Proceedings of the 6th International Confer-

ence on Learning Representations, 2018.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-Learn: Machine Learning in Python. Journal of Machine

Learning Research, 12(85):2825–2830, 2011.

[107] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard

Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, 12(85):2825–2830, 2011.

[108] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer. Deep contextualized word representations. In Proceedings

of the 16th Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 2227–2237, 2018.

[109] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural archi-

tecture search via parameters sharing. In ICML, 2018.

[110] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin.

Catboost: unbiased boosting with categorical features. In Proceedings

122

of the 32nd International Conference on Neural Information Processing

Systems, pages 6639–6649, 2018.

[111] F. Psallidas, Y. Zhu, B. Karlas, M. Interlandi, A. Floratou, K. Karanasos,

W. Wu, C. Zhang, S. Krishnan, C. Curino, and M. Weimer. Data science

through the looking glass and what we found there, 2019.

[112] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang. Product-

based neural networks for user response prediction. In Proceedings of the

16th IEEE International Conference on Data Mining, pages 1149–1154,

2016.

[113] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.

Language Models are Unsupervised Multitask Learners. 2019.

[114] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song,

J. Aslanides, S. Henderson, R. Ring, S. Young, E. Rutherford, T. Henni-

gan, J. Menick, A. Cassirer, R. Powell, G. v. d. Driessche, L. A. Hendricks,

M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang, J. Ue-

sato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen,

S. Jayakumar, E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan,

M. Paganini, L. Sifre, L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh,

E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch, J.-B. Lespiau,

M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas,

T. Pohlen, Z. Gong, D. Toyama, C. d. M. d’Autume, Y. Li, T. Terzi,

V. Mikulik, I. Babuschkin, A. Clark, D. d. L. Casas, A. Guy, C. Jones,

J. Bradbury, M. Johnson, B. Hechtman, L. Weidinger, I. Gabriel,

W. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ay-

oub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving.

123

Scaling Language Models: Methods, Analysis & Insights from Training

Gopher. arXiv preprint arXiv:2112.11446, 2021.

[115] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu. Exploring the Limits of Transfer Learning with a Uni-

fied Text-to-Text Transformer. Journal of Machine Learning Research,

21(140):1–67, 2020.

[116] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan,

J. Rasley, and Y. He. DeepSpeed-MoE: Advancing Mixture-of-Experts

Inference and Training to Power Next-Generation AI Scale. arXiv preprint

arXiv:2201.05596, 2022.

[117] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,

and I. Sutskever. Zero-Shot Text-to-Image Generation. In Proceedings

of the 38th International Conference on Machine Learning, pages 8821–

8831, 2021.

[118] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for

image classifier architecture search. In AAAI, 2019.

[119] S. Rendle. Factorization machines. In Proceedings of the 10th IEEE

International Conference on Data Mining, pages 995–1000, 2010.

[120] S. Rendle. Scaling factorization machines to relational data. Proceedings

of the VLDB Endowment, 6(5):337–348, 2013.

[121] S. Rendle, W. Krichene, L. Zhang, and J. Anderson. Neural collaborative

filtering vs. matrix factorization revisited. In Proceedings of the 14th ACM

Conference on Recommender Systems, pages 240–248, 2020.

124

[122] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu,

M. Ott, E. M. Smith, Y.-L. Boureau, and J. Weston. Recipes for Building

an Open-Domain Chatbot. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics: Main

Volume, pages 300–325, 2021.

[123] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,

N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery, B. Ma-

her, S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy, and

M. Wang. Glow: Graph lowering compiler techniques for neural networks.

arXiv preprint arXiv:1805.00907, 2019.

[124] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Im-

agenet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[125] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-

bileNetV2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[126] T. Schick and H. Schütze. Exploiting Cloze-Questions for Few-Shot Text

Classification and Natural Language Inference. In Proceedings of the 16th

Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, pages 255–269, 2021.

[127] A. See, P. J. Liu, and C. D. Manning. Get To The Point: Summariza-

tion with Pointer-Generator Networks. In Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1073–1083, 2017.

125

[128] I. K. Sethi. Entropy nets: From decision trees to neural networks. Pro-

ceedings of the IEEE, 78(10):1605–1613, 1990.

[129] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,

P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. Hechtman.

Mesh-TensorFlow: Deep Learning for Supercomputers. Advances in Neu-

ral Information Processing Systems, 2018.

[130] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-

murthy, and R. Sundaram. Nexus: A GPU Cluster Engine for Accelerating

DNN-Based Video Analysis. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, pages 322–337, 2019.

[131] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast Video Clas-

sification via Adaptive Cascading of Deep Models. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition,

pages 3646–3654, 2017.

[132] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-

zaro. Megatron-LM: Training Multi-Billion Parameter Language Models

Using Model Parallelism. arXiv preprint arXiv:1909.08053, 2019.

[133] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper,

Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child,

R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston,

S. Tiwary, and B. Catanzaro. Using DeepSpeed and Megatron to Train

Megatron-Turing NLG 530B, A Large-Scale Generative Language Model.

arXiv preprint arXiv:2201.11990, 2022.

[134] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht.

Keystoneml: Optimizing pipelines for large-scale advanced analytics. In

126

Proceedings of the 33rd IEEE International Conference on Data Engi-

neering, pages 535–546, 2017.

[135] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[136] D. Stosic. Training neural networks with tensor core, 2020.

[137] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the inception architecture for computer vision. In CVPR, 2016.

[138] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolu-

tional neural networks. In Proceedings of the 36th International Confer-

ence on Machine Learning, pages 6105–6114, 2019.

[139] M. Tan and Q. V. Le. MixConv: Mixed depthwise convolutional kernels.

In BMVC, 2019.

[140] H. team. H2o, 2021.

[141] H. team. Hummingbird, 2021.

[142] O. team. Onnxmltools, 2021.

[143] P. team. Pytorch ecosystem, 2021.

[144] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,

K. Uenishi, B. Vogel, and H. Yamazaki Vincent. Chainer: A deep learning

framework for accelerating the research cycle. In KDD, 2019.

[145] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.

Moses, S. Verdoolaege, A. Adams, and A. Cohen. Tensor Comprehen-

127

sions: Framework-agnostic high-performance machine learning abstrac-

tions. arXiv preprint arXiv:1802.04730, 2018.

[146] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is All you Need. Advances in

Neural Information Processing Systems, 2017.

[147] X. Wang, Y. Xiong, Y. Wei, M. Wang, and L. Li. LightSeq: A High Per-

formance Inference Library for Transformers. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies: Industry Papers,

pages 113–120, 2021.

[148] Z. Wang, W. Liu, Q. He, X. Wu, and Z. Yi. Clip-gen: Language-

free training of a text-to-image generator with clip. arXiv preprint

arXiv:2203.00386, 2022.

[149] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.

Dai, and Q. V. Le. Finetuned Language Models are Zero-Shot Learners.

In Proceedings of the 10th International Conference on Learning Repre-

sentations, 2022.

[150] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Run-

ning Fully Recurrent Neural Networks. Neural Computation, 1(2):270–

280, 1989.

[151] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

and Y. Bengio. Show, Attend and Tell: Neural Image Caption Gener-

ation with Visual Attention. In Proceedings of the 32nd International

Conference on Machine Learning, pages 2048–2057, 2015.

128

[152] Y. Yang, I. G. Morillo, and T. M. Hospedales. Deep neural decision trees,

2018.

[153] Z. Yang, Y. Yuan, Y. Wu, W. W. Cohen, and R. R. Salakhutdinov. Re-

view Networks for Caption Generation. Advances in Neural Information

Processing Systems, 2016.

[154] G.-I. Yu, S. Amizadeh, B.-G. Chun, M. Weimer, and M. Interlandi. Mak-

ing Classical Machine Learning Pipelines Differentiable: A Neural Trans-

lation Approach. In Proceedings of the Workshop on Systems for ML at

NeurIPS, 2018.

[155] G.-I. Yu, S. Amizadeh, S. Kim, A. Pagnoni, C. Zhang, B.-G. Chun,

M. Weimer, and M. Interlandi. WindTunnel: Towards Differentiable ML

Pipelines beyond a Single Model. Proceedings of the VLDB Endowment,

15(1):11–20, 2022.

[156] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun. Orca: A

Distributed Serving System for Transformer-Based Generative Models.

In Proceedings of the 16th USENIX Symposium on Operating Systems

Design and Implementation, pages 521–538, 2022.

[157] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,

J. Mueller, R. Manmatha, M. Li, and A. Smola. ResNeSt: Split-attention

networks. arXiv preprint arXiv:2004.08955, 2020.

[158] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,

M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shus-

ter, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer.

OPT: Open Pre-trained Transformer Language Models. arXiv preprint

arXiv:2205.01068, 2022.

129

[159] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,

D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica. Ansor: Generating High-

Performance tensor programs for deep learning. In Proceedings of the 14th

USENIX Symposium on Operating Systems Design and Implementation,

pages 863–879, 2020.

[160] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable

architectures for scalable image recognition. In CVPR, 2018.

130

Appendix A

Appendix: Nimble

A.1 Proofs on the Stream Assignment Algorithm of
Nimble

In this chapter, we provide detailed proofs on the theorems presented in Sec-

tion 3.3.2.

Problem Setting We assume that the computation graph of a neural net-

work is given. The computation graph is represented as a finite DAG G =

(V,E). Also, we are given a set of GPU streams S = {s1, s2, · · · , s|V |}. Algo-

rithm 1 must find a stream assignment f : V → S, which satisfies the following

conditions:

• Maximum logical concurrency. If u, v ∈ V and there exists no path be-

tween u and v in G, then f(u) ̸= f(v).

• Minimum number of synchronizations. Among such functions, f incurs

the smallest number of synchronizations across streams.

131

Here we define important concepts and terminologies used in the following

proofs.

Definition 1. For a graph G = (V,E), a synchronization plan Λ ⊆ E is a
set of edges on which synchronizations are planned to be performed (regardless
of stream assignments).

Definition 2. For a stream assignment f on G = (V,E), a synchronization
plan Λ ⊆ E is safe if it satisfies the following condition.

For any (u, v) ∈ E, f(u) = f(v) or there exists a path P ⊆ E from u to v
such that P ∩ Λ ̸= ∅.

In other words, the plan Λ is safe when the execution order between every pair
of adjacent nodes u and v is guaranteed: either by assigning them to the same
streams or by performing a synchronization somewhere after u and before v.

Notation. We denote by minsync(G, f) the minimum number of synchroniza-
tions required when applying f to the graph G. That is,

minsync(G, f) = min{|Λ| ∈ Z≥0 | Λ ⊆ E is safe for f on G}

A.1.1 Proof of Theorem 1

Theorem 1 includes two statements, which are presented here as Theorem 1-1

and Theorem 1-2, respectively.

Theorem 1-1. A stream assignment f satisfies maximum logical concurrency
on a computation graph G if and only if f satisfies maximum logical concurrency
on the minimum equivalent graph G′.

Proof of Theorem 1-1. By definition of MEG, G′ has the same reachability
relation as G. Thus, if no path exists between a pair of nodes in G, then there
is no path between the same pair of nodes in G′, and vice versa.

Prior to the proof of Theorem 1-2, we describe and prove Lemma 1 and

Lemma 2.

Lemma 1. For a minimum equivalent graph G′ = (V,E′) of G, if (u, v) ∈ E′,
then {(u, v)} is the only path in G from u to v.

132

Proof of Lemma 1. We will prove by contradiction. Suppose there is another
path P ⊆ E from u to v that goes through w ∈ V . By the definition of MEG,
G′ must preserve reachability from u to w and w to v. Consequently, removing
the edge (u, v) from E′ does not change the reachability relation. This is contra-
dictory to the definition of MEG, because we can construct another subgraph
G∗ = (V,E′ \ {(u, v)}), where the number of edges of G∗ is smaller than that
of G′ while preserving the reachability relation.

Lemma 2. A synchronization plan Λ ⊆ E is safe for a stream assignment f
on G if and only if Λ is safe for f on G′.

Proof of Lemma 2. We first show that if Λ is safe for f on G, then Λ is safe
for f on G′. We will prove by contradiction. Suppose Λ is safe for f on G but
not safe for f on G′. Then there is an edge (u, v) ∈ E′ such that f(u) ̸= f(v)
and (u, v) /∈ Λ. Since G′ is the MEG of G and (u, v) ∈ E′, {(u, v)} is the only
path in G from u to v by Lemma 1. Consequently, (u, v) ∈ E is an edge that
f(u) ̸= f(v) and every path in G from u to v does not include any edge in Λ,
which is contradictory to the assumption that Λ is safe for f on G.

Next, we show that if Λ is safe for f on G′, then Λ is safe for f on G. We
will prove by contradiction. Suppose Λ is safe for f on G′ but not safe for f
on G. Then there is an edge (u, v) ∈ E \ E′ such that f(u) ̸= f(v) and every
path from u to v in G does not include any edge in Λ. Since (u, v) /∈ E′ and G′

preserves the same reachability relation as G, there must exist a node w1 ∈ V
such that (u,w1) ∈ E′ and a path from w1 to v exists in G′. As every path
from u to v in G does not include any edge in Λ, f(u) = f(w1) must hold to
meet the assumption that Λ is safe for f on G′. Then, we have two vertices
w1 and v such that f(w1) ̸= f(v) and every path from w1 to v in G does not
include any edge in Λ. Since G is a finite DAG, if we repeat this process, we
end up with two vertices wn and v with the following conditions: (wn, v) ∈ E′,
f(wn) ̸= f(v), and (wn, v) /∈ Λ, which contradicts the assumption that Λ is safe
for f on G′.

Theorem 1-2. For any stream assignment f that satisfies maximum logical
concurrency on G, the following equation holds.

minsync(G, f) = minsync(G
′, f).

That is, the minimum number of synchronizations required for f on G is equal
to the minimum number of synchronizations required for f on G′.

Proof of Theorem 1-2. This directly follows from Lemma 2.

133

A.1.2 Proof of Theorem 2

Prior to the proof of Theorem 2, we clarify the meaning of the set of the stream

assignments. Let F = {f | f : V → S}. We can define an equivalence relation

∼ on F as follows.

For stream assignments g, h ∈ F , g ∼ h if and only if g = σ ◦ h for some

permutation σ over S.

Note that any permutation on S does not affect the degree of logical concur-

rency and the number of synchronizations of a stream assignment. In other

words, for stream assignments g, h ∈ F such that g ∼ h, it directly follows

that 1) g meets maximum logical concurrency if and only if h meets maximum

logical concurrency, and 2) minsync(G
′, g) = minsync(G

′, h). Therefore, if two

stream assignments can be converted to one another by some permutation on

S, we do not differentiate the two stream assignments. Furthermore, we do not

differentiate a stream assignment f ∈ F from its equivalence class [f], because

we only consider which nodes are mapped to the same streams, but do not

consider the exact value of f . From now on, we identify [f], the equivalence

class of f , as f .

Remark. The set of the stream assignments F is as follows.

F = {[f] | f : V → S}

Now we can reinterpret Theorem 2 using the definition of the set of the

stream assignments.

Theorem 2. Let M be the set of the matchings of the bipartite graph B obtained
from G′, and Fmax be the set of the stream assignments that satisfy maximum
logical concurrency on G′. Then one-to-one correspondence Φ : M → Fmax

exists.

Proof of Theorem 2. We construct Φ according to Step 4 and Step 5 of
Algorithm 1.

134

First, we show that Φ(m) ∈ Fmax, i.e., Φ(m) meets maximum logical con-
currency, for any matching m ∈M. We prove this by contradiction. Choose an
arbitrary matching m ∈ M and suppose that Φ(m) does not satisfy maximum
logical concurrency. In other words, suppose that a pair of nodes vi, vj ∈ V
exists such that there is no path from vi to vj in G′ but Φ(m)(vi) = Φ(m)(vj).
Since vi and vj are mapped to the same stream, it follows from Step 4 that
there exists a sequence of edges {(xi, yk1), (xk1 , yk2), · · · , (xkl , yj)} ⊆ m. This,
in turn, means that there exists a path {(vi, vk1), (vk1 , vk2), · · · , (vkl , vj)} ⊆ E′,
which is contradictory to the assumption. Therefore, for any m ∈ M, Φ(m)
meets maximum logical concurrency.

Secondly, we show that Φ is injective. Again, we will prove by contra-
diction. Suppose that Φ(m1) = Φ(m2) for some matchings m1 ̸= m2. Since
m1 ̸= m2, there exists an edge (xi, yj) ∈ EB that is included in either of the
two matchings. Without loss of generality, assume (xi, yj) ∈ m1. Then the
equation Φ(m1)(vi) = Φ(m1)(vj) holds, and so does the equation Φ(m2)(vi) =
Φ(m2)(vj). The latter equation implies that there exists a sequence of edges
{(xi, yk1), (xk1 , yk2), · · · , (xkl , yj)} ⊆ m2. This, in turn, means that a path from
vi to vj other than than edge (vi, vj) exists in E′, which is contradictory to the
assumption that G′ is the MEG of the graph G by Lemma 1.

Lastly, we demonstrate that Φ is surjective. Assume that an arbitrary stream
assignment f ∈ Fmax is given. We construct mf ⊆ EB in such a way that
(xi, yj) ∈ mf if and only if f(vi) = f(vj) and (vi, vj) ∈ E′. Then Φ(mf) = f
follows by definition of Φ.

A.1.3 Proof of Theorem 3

Definition 3. For a stream assignment f on G′, we define Q(f) ⊆ V as follows.

Q(f) = {v ∈ V | ∃p ∈ V s.t. (p, v) ∈ E′ and f(p) = f(v)}

That is, a node v ∈ V is included in Q(f) if and only if it has at least one
parent node which is mapped to the same stream as v by f .

Definition 4. For a stream assignment f that satisfies maximum logical con-
currency on G′, we define a function Rf (v) : Q(f)→ V as follows.

Rf : v 7→ p s.t.(p, v) ∈ E′ and f(p) = f(v)

Lemma 3. The function Rf is well-defined.

Proof of Lemma 3. By definition of Q(f), Rf (v) exists for any v ∈ Q(f).
What we have to show is the uniqueness of such p for each v. Suppose ∃p1, p2 ∈

135

V such that (p1, v), (p2, v) ∈ E′ and f(p1) = f(p2). Since f satisfies maxi-
mum logical concurrency, there is a path between p1 and p2. Without loss of
generality, assume that there is a path from p1 to p2. Then (p1, v) ∈ E′ can
be removed from the MEG of G, which contradicts the assumption that G′ is
MEG of G.

Lemma 4. For a stream assignment f that satisfies maximum logical concur-
rency on G′,

minsync(G
′, f) = |E′| − |Q(f)|.

Proof of Lemma 4. We first show that minsync(G
′, f) ≤ |E′| − |Q(f)|. For

any node v ∈ Q(f), there exists an edge (Rf (v), v) ∈ E′. Observe that synchro-
nization on the edge (Rf (v), v) is redundant because f(Rf (v)) = f(v). Thus,
among all of the edges in E′, we can guarantee that at least |Q(f)| edges do
not require synchronizations.

Conversely, we show that minsync(G
′, f) ≥ |E′| − |Q(f)|. Let Λ ∈ E′ be a

safe synchronization plan for f on G′ such that |Λ| = minsync(G
′, f). Select an

arbitrary node v ∈ V and let Iv ⊆ E′ be the set of the incoming edges to v in G′.
If v /∈ Q(f), for any edge e = (p, v) ∈ Iv, e ∈ Λ. This is because, by Lemma 1,
{e} is the only path between p and v, and, therefore, any safe synchronization
plan must include the edge e. If v ∈ Q(f), any edge e ∈ Iv other than (Rf (v), v)
must be included in Λ. Thus, the following inequality holds.

minsync ≥
∑

v/∈Q(f)

|Iv|+
∑

v∈Q(f)

(|Iv| − 1)

Clearly, the righthand side is equal to |E′| − |Q(f)|.

Theorem 3. For any matching m ∈M, the following equation holds.

minsync(G
′,Φ(m)) = |E′| − |m|.

Proof of Theorem 3. Let m ∈ M be a matching of the bipartite graph B.
By Theorem 2 and Lemma 4, it suffices to show |Q(Φ(m))| = |m|. For this
purpose, we define a function Ψm : Q(Φ(m))→ m and demonstrate that Ψm is
a bijection.

We first define a function H : E′ → EB as H : (vi, vj) 7→ (xi, yj). Since we
construct the bipartite graph B in the same manner as H, it is trivial that the
function H is bijective. Now we define Ψm as

Ψm(v) = H(RΦ(m)(v), v), ∀v ∈ Q(Φ(m))

136

We can easily confirm that Ψm is injective. Since H is bijective, if Ψm(u) =
Ψm(v) then (RΦ(m)(u), u) = (RΦ(m)(v), v). Thus, u = v follows.

Next, we show that Ψm is surjective. Select an arbitrary edge (xi, yj) ∈ m.
Since (xi, yj) ∈ EB, (vi, vj) ∈ E′. Also, by definition of Φ, Φ(m)(vi) = Φ(m)(vj).
Thus, it follows that vj ∈ Q(Φ(m)) and RΦ(m)(vj) = vi. That is, the first
coordinate of Ψm(vj) is xi. In addition, from the definition of Ψm and H, it
is clear that the second coordinate of Ψm(vj) is yj . To sum up, it follows that
Ψm(vj) = (xi, yj), i.e., Ψm is surjective.

Since Ψm is a bijection between Q(Φ(m)) and m, cardinality of the two sets
are equal.

A.1.4 Time Complexity Analysis

Since the computation graph G = (V,E) is a finite DAG, its minimum equiva-

lent graph can be obtained in O(V 3) time [60]. To convert G′ into the bipartite

graph B, Nimble computes the transitive closure of G′, which again takes O(V 3)

time. Additionally, in calculating a maximum matching of the bipartite graph

B, Nimble uses Ford-Fulkerson method [49] which costs O(V E) time. To sum

up, the stream assignment algorithm of Nimble takes O(V 3) time in total. Note

that Nimble computes the stream assignment once before the AoT scheduling,

so the time spent on Algorithm 1 is amortized over iterations. Therefore, the

time spent on the stream assignment algorithm can be considered negligible.

137

ResNet-50 ResNet-101 Inception-v3 NASNet-A
(mobile)

NASNet-A
(large)

MobileNetV2 EfficientNet
B0

EfficientNet
B5

0

5

10

15

20

25

30
R

el
at

iv
e

Sp
ee

du
p

5.93 4.90
6.90

30.00

5.84

11.20
13.45

3.88

PyTorch
TorchScript
Caffe2

TensorRT
Nimble

(a) Results on an NVIDIA Titan RTX GPU.

ResNet-50 ResNet-101 Inception-v3 NASNet-A
(mobile)

NASNet-A
(large)

MobileNetV2 EfficientNet
B0

EfficientNet
B5

0

5

10

15

20

R
el

at
iv

e
Sp

ee
du

p

3.64 3.90 4.82

21.42

3.34

7.95 8.51

1.98

PyTorch
TorchScript
Caffe2

TensorRT
Nimble

(b) Results on an NVIDIA Titan Xp GPU.

Figure A.1: Relative inference speedup of Nimble and other systems (batch size 1).

13
8

A.2 Evaluation Results on Various GPUs

In addition to the evaluation results described in Section 5, we attach results

on the different types of GPUs: NVIDIA Titan RTX and NVIDIA Titan Xp.

We keep the other experimental settings the same. Note that we exclude TVM

from this set of experiments because TVM needs to tune the kernels separately

for each type of GPU for a long time. Figure A.1 shows that Nimble achieves

significant speedup across various GPU architectures ranging from Pascal to

Turing.

A.3 Evaluation Results on Different Training Batch
Sizes

We also present results on the performance of Nimble when training the neural

networks with varying batch sizes. We use an NVIDIA V100 GPU, following

the setting described in Section 5. Figure A.2 shows that Nimble can achieve

performance improvement in the training of the neural networks on the CIFAR-

10 dataset even when the batch size is sufficiently large.

139

MobileNetV2
CIFAR-10

EffNet-B0
CIFAR-10

ResNet-50
CIFAR-10

0

1

2

3

4

Sp
ee

du
p

3.10
2.72

1.54

PyTorch
TorchScript
Nimble

(a) Training with batch size 64.

MobileNetV2
CIFAR-10

EffNet-B0
CIFAR-10

ResNet-50
CIFAR-10

0

1

2

3

4

Sp
ee

du
p

2.28
1.88

1.33

PyTorch
TorchScript
Nimble

(b) Training with batch size 128.

MobileNetV2
CIFAR-10

EffNet-B0
CIFAR-10

ResNet-50
CIFAR-10

0

1

2

3

4

Sp
ee

du
p

1.66
1.45

1.11

PyTorch
TorchScript
Nimble

(c) Training with batch size 256.

Figure A.2: Relative training speedup of Nimble and TorchScript.

140

초록

최근경향을보면다양한종류의애플리케이션에서머신러닝(ML)워크로드가점

점더중요하게활용되고있다.이는ML용시스템소프트웨어의개발을통해 GPU

와 같은 이기종 가속기의 광범위한 활용이 가능해졌기 때문이다. 많은 연구자들의

관심 덕에 ML용 시스템 소프트웨어 스택은 분명 하루가 다르게 개선되고 있지만,

여전히 모든 사례에서 높은 효율성을 보여주지는 못한다. 이 학위논문에서는 시스

템 소프트웨어 관점에서 GPU 환경에서 ML 워크로드의 실행 효율성을 개선하는

방법을 연구한다. 구체적으로는 오늘날의 ML용 시스템이 GPU를 효율적으로 사

용하지 못하는 워크로드를 규명하고 더 나아가서 해당 워크로드를 효율적으로

처리할 수 있는 시스템 기술을 고안하는 것을 목표로 한다.

본 논문에서는 먼저 최적화된 GPU 스케줄링을 갖춘 ML 실행 엔진인 Nimble

을 소개한다. 새 스케줄링 기법을 통해 Nimble은 기존 대비 GPU 실행 효율성

을 최대 22.34배까지 향상시킬 수 있다. 둘째로 Transformer 기반의 생성 모델에

특화된 추론 서비스 시스템 Orca를 제안한다. 새로운 스케줄링 및 batching 기

술에 힘입어, Orca는 동일한 수준의 지연 시간을 기준으로 했을 때 기존 시스템

대비 36.9배 향상된 처리량을 보인다. 마지막으로 신경망을 사용하지 않는 고전

ML 파이프라인을 신경망으로 변환하는 프레임워크 WindTunnel을 소개한다. 이

를 통해 고전 ML 파이프라인 학습을 GPU를 사용해 진행할 수 있게 된다. 또한

WindTunnel은 gradient backpropagation을 통해 파이프라인의 여러 요소를 한

번에 공동으로 학습 할 수 있으며, 이를 통해 파이프라인의 정확도를 더 향상시킬

수 있음을 확인하였다.

주요어: 머신러닝, 딥러닝, 스케줄링, 추론 서빙, 생성 모델, 트랜스포머, 공동 학습

학번: 2017-28658

141

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Dissertation Overview
	1.3 Previous Publications
	1.4 Roadmap

	Chapter 2 Background
	2.1 ML Workloads
	2.2 The GPU Execution Model
	2.3 GPU Scheduling in ML Frameworks
	2.4 Engine Scheduling in Inference Servers
	2.5 Inference Procedure of Generative Models

	Chapter 3 Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning
	3.1 Introduction
	3.2 Motivation
	3.3 System Design
	3.3.1 Ahead-of-time (AoT) Scheduling
	3.3.2 Stream Assignment Algorithm

	3.4 Evaluation
	3.4.1 Inference Latency
	3.4.2 Impact of Multi-stream Execution
	3.4.3 Training Throughput

	3.5 Summary

	Chapter 4 Orca: A Distributed Serving System for Transformer-Based Generative Models
	4.1 Introduction
	4.2 Challenges and Proposed Solutions
	4.3 Orca System Design
	4.3.1 Distributed Architecture
	4.3.2 Scheduling Algorithm

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Engine Microbenchmark
	4.5.2 End-to-end Performance

	4.6 Summary

	Chapter 5 WindTunnel: Towards Differentiable ML Pipelines Beyond a Single Model
	5.1 Introduction
	5.2 Pipeline Translation
	5.2.1 Translating Arithmetic Operators
	5.2.2 Translating Algorithmic Operators: GBDT
	5.2.3 Translating Algorithmic Operators for Categorical Features
	5.2.4 Fine-Tuning

	5.3 Implementation
	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Overall Performance
	5.4.3 Ablation Study

	5.5 Summary

	Chapter 6 Related Work
	Chapter 7 Conclusion
	Bibliography
	Appendix A Appendix: Nimble
	A.1 Proofs on the Stream Assignment Algorithm of Nimble
	A.1.1 Proof of Theorem 1
	A.1.2 Proof of Theorem 2
	A.1.3 Proof of Theorem 3
	A.1.4 Time Complexity Analysis

	A.2 Evaluation Results on Various GPUs
	A.3 Evaluation Results on Different Training Batch Sizes

<startpage>15
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Dissertation Overview 2
 1.3 Previous Publications 4
 1.4 Roadmap 5
Chapter 2 Background 6
 2.1 ML Workloads 6
 2.2 The GPU Execution Model 7
 2.3 GPU Scheduling in ML Frameworks 8
 2.4 Engine Scheduling in Inference Servers 10
 2.5 Inference Procedure of Generative Models 11
Chapter 3 Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning 17
 3.1 Introduction 17
 3.2 Motivation 21
 3.3 System Design 24
 3.3.1 Ahead-of-time (AoT) Scheduling 25
 3.3.2 Stream Assignment Algorithm 28
 3.4 Evaluation 32
 3.4.1 Inference Latency 36
 3.4.2 Impact of Multi-stream Execution 36
 3.4.3 Training Throughput 37
 3.5 Summary 38
Chapter 4 Orca: A Distributed Serving System for Transformer-Based Generative Models 40
 4.1 Introduction 40
 4.2 Challenges and Proposed Solutions 44
 4.3 Orca System Design 51
 4.3.1 Distributed Architecture 51
 4.3.2 Scheduling Algorithm 54
 4.4 Implementation 60
 4.5 Evaluation 61
 4.5.1 Engine Microbenchmark 63
 4.5.2 End-to-end Performance 66
 4.6 Summary 71
Chapter 5 WindTunnel: Towards Differentiable ML Pipelines Beyond a Single Model 72
 5.1 Introduction 72
 5.2 Pipeline Translation 78
 5.2.1 Translating Arithmetic Operators 80
 5.2.2 Translating Algorithmic Operators: GBDT 81
 5.2.3 Translating Algorithmic Operators for Categorical Features 85
 5.2.4 Fine-Tuning 87
 5.3 Implementation 87
 5.4 Experiments 88
 5.4.1 Experimental Setup 89
 5.4.2 Overall Performance 94
 5.4.3 Ablation Study 95
 5.5 Summary 98
Chapter 6 Related Work 99
Chapter 7 Conclusion 105
Bibliography 107
Appendix A Appendix: Nimble 131
 A.1 Proofs on the Stream Assignment Algorithm of Nimble 131
 A.1.1 Proof of Theorem 1 132
 A.1.2 Proof of Theorem 2 134
 A.1.3 Proof of Theorem 3 135
 A.1.4 Time Complexity Analysis 137
 A.2 Evaluation Results on Various GPUs 139
 A.3 Evaluation Results on Different Training Batch Sizes 139
</body>

