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Abstract 

 
This thesis presents FlexPatch, a novel mobile system to enable 

accurate and real-time object detection over high-resolution video 

streams. A widely used approach for real-time video analysis is 

detection-based tracking (DBT), i.e., running the heavy-but-accurate 

detector every few frames and applying a lightweight tracker for in-

between frames. However, the approach is limited for real-time 

processing of high-resolution videos in that i) a lightweight tracker 

fails to handle occlusion, object appearance changes, and occurrences 

of new objects, and ii) the detection results do not effectively offset 

tracking errors due to the high detection latency. This thesis proposes 

tracking-aware patching technique to address such limitations of the 

DBT frameworks. It effectively identifies a set of subareas where the 

tracker likely fails and tightly packs them into a small-sized 

rectangular area where the detection can be efficiently performed at 

low latency. This prevents the accumulation of tracking errors and 

offsets the tracking errors with frequent fresh detection results. Our 

extensive evaluation shows that FlexPatch not only enables real-time 

and power-efficient analysis of high-resolution frames on mobile 

devices but also improves the overall accuracy by 146% compared to 

baseline DBT frameworks. 

Keyword : Object detection, Object tracking, On-device AI, Live video 

analytics 
Student Number : 2021-22122 
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Chapter 1. Introduction 
 

 

On-device live video analytics enables various useful services, 

including AR person identification [1], visual support for the blind 

[2], and drone surveillance [3]. Especially, it becomes increasingly 

crucial to accurately track distant small objects from high-resolution 

videos (e.g., 1080p). For instance, an augmented reality application 

for pedestrian safety should accurately detect and track high-speed 

vehicles from a long distance and raise alerts in advance. On-device 

object tracking systems are compelling over cloud-aided systems, 

considering the large data size of high-resolution videos and 

bandwidth fluctuation in outdoor use cases, along with privacy 

concerns.  

The key challenge for on-device high-resolution video analytics 

lies in the high object detection latency. For example, it takes 

≈1,029ms to process a 1080p frame with Tiny YOLOv4 [4], a 

widely-used lightweight object detector, on a high-end smartphone 

(i.e., LG V50 with Qualcomm Adreno 640 GPU). Such high latency 

makes the detection results stale and inaccurate, especially when 

objects are small and move fast (example shown in Fig. 3). To 

overcome the challenge, recent works [5]–[8] adopt the Detection-

Based-Tracking (DBT) approach. They periodically run detectors 

every N frames while processing in-between frames using a 

lightweight object tracker (based on optical flow or motion vectors). 

Despite its effectiveness, we identify that prior techniques are still 

critically limited for high-resolution videos (e.g., 1080p) with distant 

objects. The primary sources of errors are two folds: i) object 

tracker frequently fails due to occlusion, appearance changes, or new 

appearance of target objects and ii) tracking error quickly 

accumulates due to the long detection latency (Chapter 2).  

This paper proposes FlexPatch, a fast and accurate on-device 

object detection and tracking technique for high-resolution live video 

analytics. Our key idea is tracking-aware patching to combine 
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detection and tracking in a highly synergistic way. In particular, it 

identifies small subareas, i.e., patches, where lightweight tracking is 

likely to fail and creates a patch cluster, a small-sized rectangle 

(e.g., 360p) by carefully arranging variable-sized patches. Then, it 

runs the detector over the patch cluster to quickly offset the tracking 

errors. The detection latency over a patch cluster is small (e.g., 

139ms for 360p), providing an opportunity to amend tracking errors 

with fresh detection outcomes while preventing the long 

accumulation of tracking errors.  

Our approach is significantly advantageous over prior DBT 

frameworks performing tracking-agnostic detection [5]–[8]. Unlike 

our approach, they execute a detector on full high-resolution frames, 

resulting in high detection latency (e.g., >1 sec). Such high latency 

makes it difficult to fix tracking errors since objects may have moved 

to different positions (See Chapter 2). Also, our approach is 

distinguished from prior RoI (Region-of-Interest)-based detection 

methods (e.g., removing background regions [1], regions where 

object motion is not significant [9], or running high resolution 

detection only on regions proposed by a separate DNN [10]) in that 

i) we actively reduce RoIs for detection by focusing on the tracking-

failing subareas, and ii) we aggregate them into a single patch cluster 

to minimize the detection overhead, whereas prior works separately 

run the detection over multiple RoIs.  

There are multiple challenges and design considerations in 

realizing our tracking-aware patching approach. First, we need a 

clear understanding of the failure cases of trackers and should 

efficiently identify the patches where the trackers have a high 

probability of failing. It is essential to identify these patches 

accurately with minimal overhead for resource-constrained mobile 

devices. Second, it is vital to form a small patch cluster based on 

variable-sized patches to run the detector with low latency. The 

large cluster size would increase the detection latency, making it 

challenging to offset tracking errors. Also, running the detector on 

each patch is inefficient since the latency gain gets smaller at a 

certain input size due to the under-utilization of the processor.  
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We develop a suite of techniques to address the challenges. We 

first develop a fast and accurate Patch Recommender that effectively 

finds patches with i) objects suffering from low tracking accuracy 

and ii) newly appeared objects that are neither detected nor tracked 

yet. To identify the objects with low tracking accuracy, we first 

identify a set of useful features (see Chapter 4.2 for details) to 

estimate such failures and train a machine learning classifier that 

flags the priority (i.e., high, medium, low). Then, we generate 

candidate patches that can include those objects individually. To find 

newly appearing objects from regions outside the tracked patches, 

we divide the frame into small-sized cells and allocate the priority 

based on the two following factors: i) edge intensity and ii) refresh 

interval, which indicates how long it has been since its last detection. 

Then, we generate candidate patches by grouping neighboring cells 

that have high priority.  

Second, we develop a highly efficient Patch Aggregator. We model 

the patch aggregation problem as the two-dimensional bin packing 

problem (i.e., packing the variable-sized candidate patches into a 

rectangular region). Then, we employ the Guillotine algorithm [11] to 

efficiently obtain a good approximate solution since bin packing is a 

well-known NP-hard problem [12]. We also thoroughly study the 

tradeoffs of the approximation algorithm and design various 

aggregation policies (e.g., cluster sizes, weights on the new object 

detection) that can be adapted to various datasets.  

Our contributions can be summarized as follows:  

• We develop FlexPatch, a novel technique that enables on-device 

real-time object detection for live high-resolution videos.  

• We propose the tracking-aware patching approach that 

synergistically integrates detection and tracking capabilities. It 

significantly enhances the prior DBT frameworks that alternate 

detection and tracking in a simple manner.  

• We devise a suite of techniques, i.e., Patch Recommender and 

Patch Aggregator. They efficiently identify the patches where the 

tracking likely fails and offset the tracking errors by quickly running 

the detection on a small cluster of multiple patches.  
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• We implement FlexPatch on two commodity smartphones (LG 

V50 and Samsung Galaxy S20) and evaluate its performance on 

object tracking benchmark datasets. FlexPatch achieves up to 146% 

accuracy gain in terms of AP compared to the state-of-the-art DBT 

baseline [6]. Also, it consumes only 37% power compared to the 

DBT baseline. 
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Chapter 2. Motivational Studies 
 

 

To motivate FlexPatch, we first analyze the limitations of prior 

DBT frameworks for high-resolution videos. Fig. 1 depicts the 

operation. The object detector results arrive at every t-th frame due 

to its inference latency. The lightweight object tracker runs on every 

frame to track the detected objects, where tracking is done by 

calculating the optical flow between extracted feature points. The 

tracker performs one of the following two tasks: i) Detection 

Propagation: when the fresh detection result becomes available (e.g., 

the result of 0-th frame arrives at t-th frame), track the bounding 

boxes onto the current frame with optical flow between the frame 

that the detector processed and the current frame (e.g., between 0-

th and t-th), and ii) Successive Propagation: while detection is 

running, track the bounding boxes of the previous frame onto the 

current frame (e.g., between t-th and t+1-th). As a reference, we 

implement the object detector (Tiny YOLO-v4 [4]) and the object 

tracker (ORB feature point extractor [14] + Lucas-Kanade optical 

flow estimator [15]) on LG V50 smartphone, where the object 

detection and tracking latency on a 1080p frame is 1,029 and 10ms, 

respectively.  

Fig. 2 shows the accuracy of the aforementioned DBT framework 

in terms of mean IoU over a 4-second window (120 frames) on the 

Okutama-Action dataset [16]. We observe that the ideal detection 

accuracy (i.e., accuracy on the frame that the detector processed) is 

sufficiently high (0.62 on average). However, the actual tracking 

accuracy is much lower (0.28 on average). In particular, the accuracy 

continuously decreases between consecutive detection result arrivals 

(1,029ms apart) due to accumulated tracking errors from successive 

propagation. Also, the detection results periodically offset the 

tracking errors, but the tracking accuracy does not fully recover to 

the ideal accuracy since long detection latency makes the detection 

result stale and incurs high detection propagation error.  
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Figure 1. Real-time Detection-Based-Tracking framework. 

 
Figure 2. Tracking accuracy of Detection-Based-Tracking framework over 

time. 

 

Through an in-depth analysis, we identified two root causes of the 

low accuracy:  

• Object Tracking Failure. We observe that the tracker is more 

prone to failure on high-resolution urban scenes with distant and 

fast-moving objects than prior works focusing on tracking large 

objects in close vicinity (e.g., tracking a face or person right in front 

of the camera [5], [7]). Specifically, we categorize the three main 

cases of tracking failure: i) inaccurate feature point extraction (e.g., 

point in the background is extracted as a feature), ii) inaccurate 

optical flow estimation due to object occlusion (Fig. 6), and iii) optical 

flow estimation error due to the appearance change (e.g., rotation) of 

the object (Fig. 7b). Also, it is an inherent limitation that the tracker 

will never see newly appearing objects.  

• High Object Detection Latency. Due to the high inference latency 

of the object detector (i.e., 1,029ms), the detection result is already  
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Tracked
results

(rendered)
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Figure 3. Example of object tracking error due to detection 

latency. Ideal detection result (left) and 1s delayed rendering result 

(right). 

 

stale when it is rendered as shown in Fig. 3; this is especially 

problematic for distant, small objects, as the detected bounding box 

on the previous frame can have no overlap with the object in the 

current frame. Even if we apply detection propagation, the problem is 

not fully solved. The objects are too far and different in the current 

frame for the tracker to be accurate. Furthermore, the successive 

propagation needs to run over a long period (≈30 frames), whose 

tracking accuracy inherently drops over time. 
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Chapter 3. System Overview 
 

 

3.1. Our Approach: Tracking-Aware Patching 
 

The DBT frameworks effectively enable real-time continuous 

object tracking by combining accurate-but-slow detector and fast-

but-less-accurate tracker. However, it is not trivial to fuse them 

over high-resolution videos as the detection latency increases 

significantly, making it difficult to offset the accumulated tracking 

errors.  

We propose tracking-aware patching to address this core 

challenge of the DBT frameworks. It effectively identifies the 

flexible-sized patches where the tracking has failed and tightly packs 

them into a small-sized patch cluster to minimize the detection 

latency. This prevents the long accumulation of tracking errors and 

offsets the tracking errors with frequent fresh detection results. 

Thus, it revives the original intention of the DBT frameworks to 

combine the unique advantages of detectors and trackers 

synergistically.  

There are other plausible approaches to reducing the detection 

latency, but they are mostly unsuitable for high-resolution videos. 

The simplest method is to down-sample the input frame. However, 

this significantly degrades the accuracy for complex scenes with 

several distant and small objects. A more sophisticated method is to 

run the detector on the Regions of Interests (RoIs). It selects sub-

areas of the high-resolution frame by training a DNN model to 

estimate important regions or dividing the frame into fixed-size grids 

and removing unnecessary regions. This method, however, still 

suffers from two following challenges. First, using RoIs that are 

tracking-agnostic is inefficient: existing solutions are limited to 

removing backgrounds [1] or objects with no significant motion [9], 

which still waste computation on regions where the tracking can 

work well. Another approach uses a separate DNN trained to output  
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Figure 4. System architecture of FlexPatch. 

 

RoI [10], [17], but incurs an additional overhead making it 

unsuitable for mobile devices. Second, using a content-agnostic 

fixed-size grid is inefficient: setting the grid size too large would 

result in unnecessary computation caused by the detector running on 

background regions, whereas setting it too small makes it hard to 

detect large objects.  

FlexPatch overcomes such problems by i) aggressively reducing 

the RoI by leveraging the tracking results and ii) using flexible-sized 

patches for dynamically changing content while tightly packing them 

to a single rectangular cluster to enable highly efficient detection. 

 

3.2. System Architecture 
 

Fig. 4 shows the overall system architecture and the operational 

flow of FlexPatch to realize our approach. First, the Object Tracker 

calculates the optical flow for every video source frame and tracks 

the result of the latest detected objects to the current input frame. 

Since the results of the tracker can be erroneous, the Patch 

Recommender analyzes the current frame to generate two types of 

candidate patches: i) tracking-failure patch, where objects are 

already detected and tracked but might have failed, and ii) new-

object patch, where new objects likely appeared. When the Patch 

Recommender generates a list of patches with different sizes and 

priorities, the Patch Aggregator tightly packs high priority patches 

into a patch cluster, which is much smaller than the original frame 
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size. Finally, the Patched Object Detector runs the detection on this 

patch cluster with low latency. 
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Chapter 4. Operation Pipeline 
 

 

In this chapter, we provide the technical details of FlexPatch in the 

order of the operational flow shown in Fig. 5. 

 

4.1. Continuous Object Tracking 
 

Following the conventional DBT framework in Chapter 2, the 

object tracker runs on every frame to calculate the optical flow and 

update the previously detected bounding boxes of the objects. We 

employ two optimizations to enhance performance for high-

resolution video processing further. First, we adopt Incremental 

Detection Propagation (IDP), which propagates the detection result 

incrementally to the current frame by running the tracker on 

intermittent frames cached until the current frame [5]. Second, we 

utilize an association technique proposed in [18] to prevent 

flickering effects of the detected objects. Some objects that were 

detected a few frames ago may fail to be detected even under minor 

changes such as the lighting condition. To reduce these false 

negatives, we first associate the previous bounding boxes with new 

detection results based on the IoU. The boxes that were associated 

successfully are replaced with the corresponding new detection 

result. The boxes that failed to be associated are not removed 

immediately, but their age is increased. Boxes are removed only 

when the age becomes larger than a predefined threshold. 

 

4.2. Patch Recommender 
 

Now, we provide the details of our novel Patch Recommender, 

which analyzes the results of the Object Tracker to generate a list of 

patches with different priorities (i.e., high, medium, low).  

The Patch Recommender conducts lightweight analysis to extract 

patches where the Object Tracker failed or new objects that are not  
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Figure 5. Operation pipeline of FlexPatch's tracking-aware 

patching. 

 

tracked by the Object Tracker exist and hence should be included 

in the input for new detection. Since the patch cluster has limited 

space, it should determine the priority of the patches and the optimal 

size for the individual patches.  

Two types of patches are extracted based on the results of the 

Object Tracker: i) tracking-failure patch, where objects are already 

detected and tracked but with severe errors, and ii) new-object 

patch, where new objects likely appeared. We develop different 

techniques for each patch type.  

 

4.2.1. Tracking-Failure Patch Recommendation 

 

For tracking-failure patches, we aim to find the bounding boxes 

with severe tracking error and assign them high priority.  

Patch Priority Estimation. The tracking errors mainly come from 

the inaccuracy of the optical flow calculation. However, it is 

challenging to figure out whether the estimated optical flow is 

accurate or not. There are existing features that indicate the optical 

flow's confidence, such as the eigenvalue of the spatial gradient 

matrix. However, the confidence value itself is often inaccurate due 

to its simplicity. Therefore, through an in-depth analysis of the fail 

cases, we identify three main causes: i) bad feature points (e.g., in 

the background) are extracted, ii) the appearance of the object 

changes, and iii) occlusion takes place. We estimate the occurrence  
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Figure 6. Tracking failure due to occlusion leads to large 

acceleration. 

 

  

Figure 7. Tracking failure due to appearance change or bad feature 

points can be captured by inconsistent optical flow vectors (high 

standard deviation). 

 

of these events. 

Based on this observation, we choose multiple features that should 

be highly correlated to these error cases as follows:  

• Minimum eigenvalue of spatial gradient matrix: Obtained during 

the calculation process of the Lucas-Kanade method, this feature 

indicates the quality of the feature points.  

• Normalized Cross Correlation (NCC): NCC between the pixel 

values of the original bounding box and that of the currently tracked 

bounding box indicates the extent of appearance change and 

occlusion.  

• Bounding Box Acceleration: When the object gets occluded by 

obstacles or other objects, the velocity tends to change abruptly as 

illustrated in Fig. 6, because no corresponding feature point is found, 

or the box gets associated with the wrong object. 

• Standard deviation of optical flow vectors: When the appearance 

Time

Previous Location Current Location

Abrupt Velocity 
Change
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of the object changes (e.g., rotating on its axis), the standard 

deviation of optical flow vectors is likely to be large as in Fig. 7b. 

Also, bad feature points in the background area lead to high standard 

deviation since these points do not move along with the object.  

• Confidence score of the detector: This feature measures the 

failure of the detector. A low confidence score may indicate that the 

box may be a false positive, in which case there is no point in further 

tracking the box.  

Our custom decision tree classifier then uses these features to 

determine the priority of each patch. The decision tree model is 

trained to estimate the IoU (Intersection over Union) between the 

currently tracked object's bounding box and the ground truth object. 

Specifically, the IoU values of the boxes are divided into three 

classes: 0 (high priority), 0 to 0.5 (medium priority), and higher than 

0.5 (low priority). The classifier estimates the class of each box, 

which will be its final priority. Among the boxes with the same 

priority class, we sort the order by the detector confidence score. In 

addition, in case some high priority boxes are misclassified as low 

priority, the priority of the box is increased after a predefined 

amount of time has passed after its last inclusion in patch cluster for 

detection.  

Patch Extraction. To extract the final patches, we add padding for 

each bounding box since it may not fully cover the object due to the 

tracking error. In our current version, we add padding size equal to 

the height and width of the box for simplicity. However, the padding 

size can be optimized based on the estimated priority (e.g., larger 

padding for high priority box as it indicates that the tracking is failing 

significantly, and vice versa).  

 

4.2.2. New Object Patch Recommendation 

 

To detect newly appearing objects, we analyze and extract the 

new-object patches that are likely to contain new objects and assign 

them high priorities.  

Patch Priority Estimation. Since there are no prior hints for new 
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objects from the Object Tracker, we first divide the frame into 

equal-sized cells (e.g., 8x8 pixels). Then, we assign the priority for 

each cell based on the following two criteria: i) Edge Intensity: the 

number of edge pixels in a given cell detected by edge detection 

(e.g., Canny [19]), which is normally high for cells that contain 

objects [1], and ii) Refresh Interval: the time (in number of frames) 

since the cell was last included in the patch cluster and provided as 

input to the detector (larger refresh interval indicates that the cell 

has not been processed for a long time).  

By aggregating the two values, the final priority of the cell is 

calculated as follows:  

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦	 = 	𝑚𝑖𝑛	(50, 𝑅𝐼) 	+ 	𝑊	 ×	𝟏!"#$ 
where RI and EI are refresh interval and edge intensity, respectively, 

T is the threshold for edge intensity, and W is the weight to balance 

the two features. Refresh interval is clipped to have a maximum 

value of 50, since all the cells would need a new detection similarly 

after a long time. The priority values of the cells within the existing 

bounding boxes are set to 0 since the tracking-failure patch 

recommender handles them.  

Patch Extraction. Treating the individual cells as separate patches 

will not work well since objects are usually larger than a single cell. 

Therefore m × n cells (total size of 8m × 8n pixels) are treated as a 

single patch. We allocate high priority to the patches where the 

included cells have the largest priority value in summation. The size 

of the patch (determined by the values of m, n) is set empirically 

depending on the size of the objects in the dataset. For example, we 

choose 20x22 cells for the two representative datasets we used, 

Okutama-Action and MTA dataset. Then 4x2=8 new-object patches 

will compose a 640x360 sized patch cluster.  

However, the fixed patch size might not fully cover some bigger-

sized objects. In that case, it can be recovered by the tracking-

failure patch recommender. Fig. 8 shows an example of the recovery 

process: when the new-object patch at Frame t partially covers the 

object and results in inaccurate bounding box, the padding of 

tracking-failure patch at Frame t+n enables the tracking-failure  
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Figure 8. Example operation of tracking-failure patch extraction with 

padding. 

 

patch to include the whole object, and thus the full bounding box can 

be recovered in the subsequent detection. 

 

4.3. Patch Aggregator 
 

Once the tracking-failure patches, new-object patches and their 

corresponding priorities have been analyzed by the Patch 

Recommender, the Patch Aggregator selects the patches starting 

from the ones with high priority and packs them into a single patch 

cluster to be processed by the Patched Object Detector. Specific 

aggregation policy and packing algorithm are detailed as follows:  

 

4.3.1. Patch Aggregation Policy 

 

The aggregation policy is determined by the size of the patch 

cluster and how frequently the two types of patches are aggregated 

into the patch cluster.  

Patch Cluster Size. The patch cluster size is determined by 

considering the trade-off between the detection latency and the 

number of high-priority patches that can fit in the patch cluster. 

Small patch cluster size means that the low detection latency allows 

more frequent detection updates, but only a few high-priority  

Patch Cluster

Patch Cluster

add 
padding …

…
New-Object Patch

Frame t

Frame t + n

Tracking-Failure Patch

Object 
partially covered

Object fully covered
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Input Size 320x240 480x270 640x360 720x480 1920x1080 

Latency 

(ms) 
70.16 91.91 139.48 206.64 1029.45 

Table 1. Detector latency for various input sizes measured in LG 

V50. 

 

patches can be included. If the patch cluster size is bigger, more 

patches can be included, but the detection latency increases. As 

shown in Table 1, the latency gain gets smaller at a certain input size 

due to the under-utilization issue of the processors, so we can 

choose the optimal patch cluster size. By default, for a 1080p full-

frame, we set the patch cluster size as 360p. However, the optimal 

patch cluster size can differ depending on the characteristic of the 

data.  

Aggregation Frequency Ratio of Patch Types. Next, the proportion 

of the two types of patches that are packed into the patch cluster 

should also be determined. It is inevitable for this policy to adapt to 

different datasets. If tracking the existing objects accurately is more 

important, we can set the proportion of the tracking-failure patches 

higher. If detecting new objects quickly is more important, new-

object patches can be included in the patch cluster more frequently.  

We set the default setting to alternate between the two types of 

patches with adequate frequency ratio for simplicity. In other words, 

since only a single patch cluster can be executed at once by the 

Patched Object Detector, when the detector becomes available the 

Patch Aggregator alternates between creating the following two 

types of patch cluster: i) tracking-failure patch cluster, which 

consists of all the high to medium-priority tracking-failure patches 

and additional new-object patches if the patch cluster has unfilled 

spaces, and ii) new-object patch cluster, which consists of high-

priority new-object patches (see Patch Aggregator of Fig. 5).  

 

4.3.2. Patch Aggregation Algorithm 

 

Based on the parameters from the aggregation policy, the Patch  
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Figure 9. Patch aggregation algorithm. 

 

Aggregator has to concatenate prioritized patches to generate a 

single patch cluster. The challenge here is to pack as many patches 

as possible into a fixed-size rectangular space, starting with high-

priority ones. Also, the fact that the sizes of the patches are irregular 

complicates the problem. On top of that, to run this algorithm for 

every patch aggregation, we need an effective and lightweight 

algorithm.  

Filling a two-dimensional patch cluster with the given patches and 

priority can be formulated as a Two-dimensional Bin Packing 

problem with the number of bins limited to 1. The objective is to 

pack the high-priority patches compactly. Since two-dimensional bin 

packing is a well-known NP-hard problem [12], we adopt a simple 

Guillotine algorithm [11] that is effective enough with minimal 

overhead on the system. The algorithm (Fig. 9) works as follows. 

Every iteration keeps a list of free rectangles F, which is at the 

beginning comprised of a single rectangle with the size of a patch 

cluster (line 3). Then, starting from the patches with higher priority, 

it finds a free rectangle large enough to fit the patch (line 6). After 

packing the patch into the chosen free rectangle, it splits the 

remaining space into two new free rectangles (line 10) and updates 

the list (line 11). The splitting is done horizontally if the height of the 

original free rectangle was larger than the width and vertically 
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otherwise. The final output is the matched pairs of patch and free 

rectangle, which indicates the location of each patch in the patch 

cluster.  

In order to pack even more patches, if the width or height of the 

tracking-failure patch is larger than a certain size, the patch is 

down-sampled. The down-sampling here has little impact on 

accuracy compared to down-sampling the entire frame because a 

large tracking-failure patch indicates a large object, and a large 

object will be correctly detected even if it is down-sampled. This 

guarantees that at least a minimum number of patches will be packed 

into the patch cluster. At the same time, it ensures that even objects 

larger than the patch cluster can fit into the patch cluster.  

 

4.4. Patched Object Detector and Renderer 
 

At the final stage, the patch cluster is fed to the object detector. 

Since the size of the patch cluster is smaller than the full-frame, the 

latency of the patched object detection is also smaller (e.g., 1,029ms 

for full-frame, 139ms for 360p patch cluster). The detection results 

are fed to the tracker and the renderer to be displayed on the screen 

output. 
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Chapter 5. Evaluation 
 

 

5.1. Experiment Setup 
 

5.1.1. Implementation 

 

We implement FlexPatch on two commodity smartphones: LG V50 

(Qualcomm Snapdragon 855 SoC and Adreno 640 GPU) and Samsung 

Galaxy S20 (Snapdragon 865 and Adreno 650 GPU). Unless 

specified, the evaluation result on LG V50 is reported. We use the 

Tiny YOLO-v4 [4] for the object detector, which is implemented and 

trained with Darknet framework and converted to TensorFlow-Lite 

for mobile inference. We implement the optical flow based object 

tracker and other image processing functions using JavaCV Android 

1.5.4. Note that any detectors and trackers can be plug-and-played 

into our system. The decision tree model for priority estimation of 

tracking-failure patches is implemented and trained with Python 

Scikit-Learn library.  

 

5.1.2. Evaluation Datasets 

 

We use two benchmark video datasets composed of urban scenes 

with pedestrians for repeatable evaluation: the Okutama-Action 

dataset [16] and the MTA dataset [20]. All the videos are re-

encoded to be 1920x1080@30fps and fed to the application to 

emulate the live video stream. The average number of objects in the 

Okutama-Action and MTA dataset are 5 and 24, respectively, with 

sizes less than 25 to 380 pixels in height.  

 

5.1.3. Baselines 

 

We compare FlexPatch against the following baselines.  

• Detection-Only runs the detector continuously without the object 

tracker. For the frames in between the detections, it renders the  
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Figure 10. Overall tracking accuracy of FlexPatch and baselines. 

Okutama-Action dataset (top) and MTA dataset (bottom). 

 

most recent detection result.  

• MARLIN [6] is a state-of-the-art DBT framework that runs the 

detector only when there is a significant change in the scene to 

optimize energy consumption. For fair comparison with FlexPatch, 

we implemented MARLIN to run the detector continuously to 

maximize the accuracy.  

• MARLIN + IDP is an enhanced version of MARLIN that employs 

Incremental Detection Propagation (Chapter 4.1).  

 

5.1.4. Evaluation Metrics 

 

We evaluate the tracking accuracy in terms of Average Precision 

(AP@0.5, determining that the object is detected when the IoU is 

higher than 0.5) and mean Intersection over Union (mIoU) to measure 

the detection accuracy [21]. Both metrics are calculated per each 

frame and averaged over the entire video.  

 

5.2. Performance Overview 
 

We first compare the end-to-end performance of FlexPatch with 

the baselines. Fig. 10 shows the results. FlexPatch significantly 
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Figure 11. Visual example of MARLIN+IDP (top) and FlexPatch's 

(bottom) tracking accuracy. 

 

outperforms MARLIN by up to 146% (from 0.24 to 0.59 in terms of  

AP on the Okutama-Action dataset) by frequently providing new 

detection results and re-calibrating the bounding boxes. Fig. 11 and 

Fig. 3 show the visual example comparison of the tracking results of 

FlexPatch and baselines, clearly showing the superior tracking 

accuracy gain. Detection-Only shows a poor tracking accuracy as 

high detection latency (≈ 1 s) leads to stale detection results (i.e., the 

object locations significantly change from the frame processed by the 

object detector). MARLIN boosts the accuracy by incorporating the 

object tracker but still suffers low performance as the tracking 

accuracy degrades significantly due to large detection latency. 

MARLIN+IDP alleviates this error to some extent but also suffers 

from the tracking error accumulation over time, especially when the  
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Figure 12. Confusion matrix of the tracking-failure patch priority 

estimator. Okutama-Action dataset (left) and MTA dataset (right). 

 

objects move fast. FlexPatch can achieve significant accuracy gain 

even compared to the enhanced version of MARLIN due to small 

detector latency (139ms for 640x360 patch cluster).  

 

5.3. Performance of Patch Recommender 
 

5.3.1. Tracking-Failure Patch Extraction 

 

Priority Estimation Accuracy. Fig. 12 shows the confusion matrix 

of the decision tree-based patch priority classifier. The overall 

classification accuracy is 0.68 and 0.70 for the Okutama-Action and 

MTA dataset, respectively. Note that the misclassifications mainly 

occur between the medium and the high-priority; this is not critical 

as the Patch Aggregator can effectively pack all the medium and 

high-priority patches in most cases. Even for cases where the 

priority of a patch is misclassified as low, the error is quickly 

recovered as the estimator increases the priority proportional to the 

time elapsed since it has been included in the patch cluster for 

detection.  

Effectiveness of Patch Extraction. We also show how the 

percentage of patches included in the patch cluster is distributed for 

different IoU values in Figure 13. Among the boxes with IoU lower 

than 0.5 (i.e., high and medium-priority), 85% and 90% are included 

in the patch cluster for Okutama-Action and MTA datasets,  
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Figure 13. IoU distribution of the tracked bounding boxes. 

Okutama-Action dataset (left) and MTA dataset (right). 

 

 

Figure 14. CDF of refresh interval of the cells within/outside New- 

Objects (N-O) (O: Okutama-Action, M: MTA). 

 

respectively. For boxes with IoU higher than 0.5 (i.e., low priority), 

the percentage is 53% and 52%. The result indicates that the priority 

estimator successfully assigns high priority to the bounding boxes 

with high error.  

 

5.3.2. New Object Patch Extraction 

 

Priority Estimation Accuracy. Fig. 14 shows how well the priorities 

of new-object patches are estimated. We observe that the average 

refresh interval is lower for the cells within new objects than those 

outside new objects (by 0.88 and 0.44 s for Okutama-Action and 

MTA dataset, respectively), indicating that the new objects are more  



 

 25 

 

Figure 15. New object detection delay. 

 

frequently included in the patch cluster than the background 

regions without any objects. The difference was lower for the MTA 

dataset because the scenes contain many background edges (e.g., 

trees, cars).  

New Object Detection Delay. Next, we evaluate the effectiveness 

of the new-object patch extraction by showing the time elapsed 

between when the new object appears in the video and when it is 

successfully detected (i.e., IoU > 0.5 with the ground truth). Fig. 15 

shows that FlexPatch achieves the lowest average delay (3.11 s) 

compared to MARLIN (3.97 s) and MARLIN+IDP (4.04 s). The delay 

is mainly due to the high object detection latency (≈1 s) for the 

baselines, which bounds the delay and incurs large tracking error. 

FlexPatch significantly alleviates the issue by running detection on 

small-sized 360p patch cluster (which takes 139ms on average) and 

effectively extracting the new-object patches.  

 

5.4. Patch Aggregator 
 

5.4.1. Aggregation Latency and Efficiency 

 

The Guillotine packing algorithm runs on average 2ms for the 

evaluation datasets, indicating its high computational efficiency. For 

the Okutama dataset, on average 3.11 medium and high-priority 

tracking-failure patches (out of the entire 5.40 objects) were 

compactly packed in the 640×360 patch cluster, occupying 21% of  
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Figure 16. Performance of different aggregation policies. Patch 

cluster size (left) and frequency ratio of patch types (right). 

 

the space, leaving sufficient room for the new-object patches to be 

packed in. Similarly, for the MTA dataset, on average 9.68 out of 

15.74 were packed while occupying 35% of the area.  

 

5.4.2. Performance for Various Aggregation Policies 

 

We evaluate how different aggregation policies affect the overall 

performance on the Okutama-Action dataset. Fig. 16a shows that 

while the performance is consistently high for various patch cluster 

sizes, 640×360 achieves the best accuracy. When the cluster size 

gets smaller, the detection result for high-priority patches of both 

types can be delivered to the tracker faster, increasing the accuracy. 

However, if the size gets too small to pack most of the high-priority 

patches, the accuracy decreases. Our result indicates that a cluster 

size of 640×360 is the minimum size that can pack most high-

priority patches. This can be extended to other datasets by 

considering the number of objects and their sizes.  

Next, Fig. 16b shows that the patching frequency ratio of 3:1 

achieves the best accuracy. This is because the tracking failure is 

frequently occurring, thus requiring more frequent detection for 

accurate tracking. However, if the ratio is too high (e.g., 4:1), the 

new object detection delay also increases, offsetting the benefit. 

Thus, the appropriate frequency ratio should be chosen by comparing 

the importance of tracking the existing boxes accurately and 

detecting new objects quickly.  

For the MTA dataset, we found that the best aggregation policy  
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Idle Read video & Rendering DBT FlexPatch 

0.46 W 2.20 W 4.16 W 2.79 W 

Table 2. Energy consumption of DBT framework and FlexPatch. 

 

 

Figure 17. Overall tracking accuracy on Samsung Galaxy S20. 

 

uses the same 640×360 patch cluster, but with 2:1 patching 

frequency ratio; This is because the MTA dataset has smaller but a 

greater number of objects, and they are relatively slow moving, 

resulting in less tracking failure.  

 

5.5. Energy Consumption 
 

We evaluate the energy consumption of FlexPatch in Table 2. We 

decompose the energy consumption of FlexPatch from the baseline 

app power (i.e., video decoding and rendering). FlexPatch consumes 

37% power compared to naive DBT framework. The main source for 

the energy consumption is running the object detector continuously 

on the GPU. We conjecture that FlexPatch's energy consumption gain 

mainly comes from running the detector on smaller-sized input (e.g., 

360p vs. 1080p), resulting in smaller GPU utilization.  

 

5.6. Performance Scalability on Other Mobile Devices 
 

Finally, we evaluate the performance of FlexPatch on Samsung 

Galaxy S20, where the average detector latency on 1080p and 360p 

images are 824ms and 126ms, respectively. Due to space limit, we 

only show the end-to-end performance for Okutama-Action dataset. 

Fig. 17 shows that FlexPatch achieves similar performance gain over 
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the baselines (e.g., 21% accuracy gain compared to MARLIN+IDP), 

validating FlexPatch's scalability on various mobile devices.  
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Chapter 6. Discussion 
 

 

6.1. Extensions 
 

Scaling to Multi-stream Multi-edge Systems. FlexPatch can be 

scaled to process multiple camera streams with multiple edge 

devices, which is common in drone and surveillance systems. While 

FlexPatch can apply the patch recommendation similarly to each 

stream, the system also needs to aggregate and schedule the patches 

to edge devices considering the resource availability. We expect 

considerable performance gain, as FlexPatch can not only reduce the 

input regions to process but also assign them to the devices with fine 

granularity. 

Extension to Offloading Systems. While FlexPatch currently 

assumes full on-device processing, it can also be easily extended to 

offloading systems for live video analytics [5], [7], [22]. Our 

tracking-aware patching approach can be used to identify the 

patches of the frame to offload, significantly reducing the network 

bandwidth consumption and transmission latency, especially in 

outdoor environments with constrained and fluctuating network 

bandwidths. 

 

6.2. Limitations and Future Work 
 

6.2.1. Optimizing Patch Resizing Policy  

 

FlexPatch currently down-samples the patches larger than the 

predefined size by a predefined ratio. This heuristic effectively 

increases the patch cluster space efficiency while maintaining 

accuracy since large objects are robust to down-sampling. 

The resizing policy can be further optimized by applying different 

down-sampling ratios for each patch. We observed that each object's 

sensitivity to down-sampling varies depending on features such as 

object size and lighting condition. By resizing each patch as small as 
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possible, more patches will be able to fit into the patch cluster. This 

will increase the accuracy and allow FlexPatch to handle higher-

resolution video with more objects. 

 

6.2.2. Automatic Parameter Adaptation 

 

In this work, we identified the parameters for our patching 

technique individually for each dataset. A system that can 

automatically adjust the parameters depending on the characteristics 

of the current data remains as our future work. Based on our 

observation, the following characteristics of the input data can be 

considered:  

Target Object Size. If some objects are much larger than the 

predefined new-object patch size, our patching method would not be 

able to catch those objects. With an additional technique that can 

identify these failures in run-time, we can enlarge the patch size 

adaptively.  

Extent of Tracking Failure. Depending on how much the object 

tracker is failing and the cause of the failure (i.e., actual tracking 

failure on the detected objects or failure on new objects), the patch 

aggregation policy (i.e., the patch cluster size and the aggregation 

frequency ratio of patch types) can be dynamically adjusted. 
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Chapter 7. Related Works 
 

 

7.1. Live Video Analytics Systems 
 

Live video analytic systems have been actively studied in recent 

years for various applications, such as face recognition [1], 

pedestrian detection [23], or vehicle detection [24]. Most systems, 

however, are focused on object detection [2], [3], [25]. Despite 

active research in this area, there are no systems that can meet the 

requirement for high-resolution videos on mobile devices.  

 

7.2. Lightweight Object Detection Models 
 

With the recent advancements in deep learning, several high 

accuracy object detection models have been proposed (e.g., Faster-

RCNN [26], R-FCN [27], and Cascade-RCNN [28]). However, such 

models are often computationally heavy for mobile inference. 

Recently, several lightweight object detectors have also been 

proposed; YOLO [13], [29]–[31], SSD [32] and RetinaNet [33] are 

some of the most popular detectors that are highly efficient with 

decent accuracy. FlexPatch takes a complementary approach to 

optimize the object detection latency on high-resolution videos.  

 

7.3. On-device Deep Learning Systems 
 

There has been a streamline of works on on-device deep learning 

systems for real-time object detection on mobile devices. One 

approach is to adjust the input frame size and the deep learning 

model adaptively depending on the video content and resource 

contention [34]–[37]. Some works apply caching on partial results of 

DNN layers to reduce repetitive computation [9], [38]. However, 

these works only consider features in frame scale and therefore may 

not benefit much if each region of the frames has different 
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characteristics and priorities.  

 

7.4. ROI-based Object Detection 
 

There have been prior attempts to extract region-of-interest (RoI) 

to reduce the computational load by running inference only on the 

partial area. Several works remove background regions with edge 

detector [1]. Others apply encoding techniques to compress the 

background regions heavily [7], [22]. However, RoI extraction in 

these works are tracking-agnostic, incurring computational waste. 

There are more advanced approaches to narrow down RoIs. Some 

works run a DNN on down-sampled images to select difficult regions 

[10], [39]. Another prior work employs reinforcement learning to 

select RoIs [17]. However, the region selection processes in these 

works are not only tracking-agnostic but also compute-intensive to 

run in real-time on mobile device. FlexPatch utilizes a lightweight 

estimator to predict tracking failure and optimize the detection 

latency efficiently. 
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Chapter 8. Conclusion 
 

 

In this thesis, we presented FlexPatch that enables high-resolution 

live video analytics on resource-constrained mobile devices. We 

designed a novel tracking-aware patching technique which extracts 

dynamically-sized patches where tracking is likely to fail and runs 

the detection only on these patches by aggregating them into a single 

small-sized rectangular patch cluster. Our results showed that 

FlexPatch achieved up to 146% accuracy gain in terms of AP 

compared to the state-of-the-art DBT baselines while consuming 

only 37% power. 
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초록 

  

본 학위논문에서는 고화질 비디오 스트림에 대해 정확한 실시간 객체 검

출을 수행하기 위한 모바일 시스템인 FlexPatch를 제시한다. 

Detection-based Tracking (DBT)는 수 프레임마다 정확하지만 고연산

을 요하는 객체 검출기를 실행하고 그 사이의 프레임들에 대해서는 경량

화된 객체 트래커를 실행하는 기법으로, 실시간 비디오 분석에 널리 쓰

인다. 하지만 DBT는 고화질 비디오의 실시간 분석에 대해 다음과 같은 

한계를 가진다: i) 객체 트래커는 가림, 물체 외양 변화, 새로운 물체의 

등장 등을 처리하지 못하여 에러가 점차 누적되며 ii) 객체 탐지의 높은 

지연 시간으로 인해 객체 탐지 결과가 트래킹 에러를 회복시키지 못한다. 

본 학위논문에서는 DBT의 한계를 극복하기 위해 tracking-aware 

patching 기술을 제시한다. 본 기술은 트래커가 실패하는 영역들을 탐지

해내고 이들을 작은 직사각형 영역에 합쳐 객체 검출기에 인풋으로 제공

함으로써 객체 검출 지연시간을 최소화한다. 이를 통해 트래킹 에러의 

누적을 막고, 새로운 객체 검출 결과로 트래킹 에러를 더욱 자주 회복시

킬 수 있다. 실험 결과 FlexPatch는 기존의 DBT 시스템에 비해 146%

의 정확도 향상을 달성하며 모바일 기기에서 실시간 고화질 비디오 분석

을 가능케 함을 확인하였다. 

 

주요어 : 객체 검출, 객체 트래킹, 온디바이스 AI, 실시간 비디오 분석 
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