

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

FlexPatch: Fast and Accurate

Object Detection for

On-device High-Resolution

Live Video Analytics

온디바이스 고화질 비디오 실시간 분석을 위한

저지연 고성능 객체 검출 기법

2023 년 2 월

서울대학교 대학원

컴퓨터공학부

양 기 창

FlexPatch: Fast and Accurate

Object Detection for

On-device High-Resolution

Live Video Analytics

지도 교수 이 영 기

이 논문을 공학석사 학위논문으로 제출함

2022 년 11 월

서울대학교 대학원

컴퓨터공학부

양 기 창

양기창의 공학석사 학위논문을 인준함

 2023 년 1 월

위 원 장 신 영 길 (인)

부위원장 이 영 기 (인)

위 원 서 진 욱 (인)

 i

Abstract

This thesis presents FlexPatch, a novel mobile system to enable

accurate and real-time object detection over high-resolution video

streams. A widely used approach for real-time video analysis is

detection-based tracking (DBT), i.e., running the heavy-but-accurate

detector every few frames and applying a lightweight tracker for in-

between frames. However, the approach is limited for real-time

processing of high-resolution videos in that i) a lightweight tracker

fails to handle occlusion, object appearance changes, and occurrences

of new objects, and ii) the detection results do not effectively offset

tracking errors due to the high detection latency. This thesis proposes

tracking-aware patching technique to address such limitations of the

DBT frameworks. It effectively identifies a set of subareas where the

tracker likely fails and tightly packs them into a small-sized

rectangular area where the detection can be efficiently performed at

low latency. This prevents the accumulation of tracking errors and

offsets the tracking errors with frequent fresh detection results. Our

extensive evaluation shows that FlexPatch not only enables real-time

and power-efficient analysis of high-resolution frames on mobile

devices but also improves the overall accuracy by 146% compared to

baseline DBT frameworks.

Keyword : Object detection, Object tracking, On-device AI, Live video

analytics
Student Number : 2021-22122

 ii

Table of Contents

Chapter 1. Introduction .. 1

Chapter 2. Motivational Studies .. 5

Chapter 3. System Overview .. 8

3.1. Our Approach: Tracking-Aware Patching Overview 8

3.2. System Architecture .. 9

Chapter 4. Operation Pipeline ... 11

4.1. Continuous Object Tracking .. 11

4.2. Patch Recommender .. 11

4.2.1. Tracking-Failure Patch Recommendation 12

4.2.2. New Object Patch Recommendation 14

4.3. Patch Aggregator .. 16

4.3.1. Patch Aggregation Policy ... 16

4.3.2. Patch Aggregation Algorithm ... 17

4.4. Patched Object Detector and Renderer .. 19

Chapter 5. Evaluation .. 20

5.1. Experiment Setup .. 20

5.1.1. Implementation ... 20

5.1.2. Evaluation Datasets .. 20

5.1.3. Baselines .. 20

5.1.4. Evaluation Metrics .. 21

5.2. Performance Overview .. 21

 iii

5.3. Performance of Patch Recommender ... 23

5.3.1. Tracking-Failure Patch Extraction 23

5.3.2. New Object Patch Extraction ... 24

5.4. Patch Aggregator .. 25

5.4.1. Aggregation Latency and Efficiency 25

5.4.2. Performance of Various Aggregation Policies 26

5.5. Energy Consumption ... 27

5.6. Performance Scalability on Other Mobile Devices 27

Chapter 6. Discussion .. 29

6.1. Extensions ... 29

6.2. Limitations and Future Work ... 29

6.2.1. Optimal Patch Resizing Policy ... 29

6.2.2. Automatic Parameter Adaptation 30

Chapter 7. Related Works ... 31

7.1. Live Video Analytics Systems .. 31

7.2. Lightweight Object Detection Models ... 31

7.3. On-device Deep Learning Systems .. 31

7.4. ROI-based Object Detection ... 32

Chapter 8. Conclusion ... 33

Bibliography ... 34

Abstract in Korean .. 39

 1

Chapter 1. Introduction

On-device live video analytics enables various useful services,

including AR person identification [1], visual support for the blind

[2], and drone surveillance [3]. Especially, it becomes increasingly

crucial to accurately track distant small objects from high-resolution

videos (e.g., 1080p). For instance, an augmented reality application

for pedestrian safety should accurately detect and track high-speed

vehicles from a long distance and raise alerts in advance. On-device

object tracking systems are compelling over cloud-aided systems,

considering the large data size of high-resolution videos and

bandwidth fluctuation in outdoor use cases, along with privacy

concerns.

The key challenge for on-device high-resolution video analytics

lies in the high object detection latency. For example, it takes

≈1,029ms to process a 1080p frame with Tiny YOLOv4 [4], a

widely-used lightweight object detector, on a high-end smartphone

(i.e., LG V50 with Qualcomm Adreno 640 GPU). Such high latency

makes the detection results stale and inaccurate, especially when

objects are small and move fast (example shown in Fig. 3). To

overcome the challenge, recent works [5]–[8] adopt the Detection-

Based-Tracking (DBT) approach. They periodically run detectors

every N frames while processing in-between frames using a

lightweight object tracker (based on optical flow or motion vectors).

Despite its effectiveness, we identify that prior techniques are still

critically limited for high-resolution videos (e.g., 1080p) with distant

objects. The primary sources of errors are two folds: i) object

tracker frequently fails due to occlusion, appearance changes, or new

appearance of target objects and ii) tracking error quickly

accumulates due to the long detection latency (Chapter 2).

This paper proposes FlexPatch, a fast and accurate on-device

object detection and tracking technique for high-resolution live video

analytics. Our key idea is tracking-aware patching to combine

 2

detection and tracking in a highly synergistic way. In particular, it

identifies small subareas, i.e., patches, where lightweight tracking is

likely to fail and creates a patch cluster, a small-sized rectangle

(e.g., 360p) by carefully arranging variable-sized patches. Then, it

runs the detector over the patch cluster to quickly offset the tracking

errors. The detection latency over a patch cluster is small (e.g.,

139ms for 360p), providing an opportunity to amend tracking errors

with fresh detection outcomes while preventing the long

accumulation of tracking errors.

Our approach is significantly advantageous over prior DBT

frameworks performing tracking-agnostic detection [5]–[8]. Unlike

our approach, they execute a detector on full high-resolution frames,

resulting in high detection latency (e.g., >1 sec). Such high latency

makes it difficult to fix tracking errors since objects may have moved

to different positions (See Chapter 2). Also, our approach is

distinguished from prior RoI (Region-of-Interest)-based detection

methods (e.g., removing background regions [1], regions where

object motion is not significant [9], or running high resolution

detection only on regions proposed by a separate DNN [10]) in that

i) we actively reduce RoIs for detection by focusing on the tracking-

failing subareas, and ii) we aggregate them into a single patch cluster

to minimize the detection overhead, whereas prior works separately

run the detection over multiple RoIs.

There are multiple challenges and design considerations in

realizing our tracking-aware patching approach. First, we need a

clear understanding of the failure cases of trackers and should

efficiently identify the patches where the trackers have a high

probability of failing. It is essential to identify these patches

accurately with minimal overhead for resource-constrained mobile

devices. Second, it is vital to form a small patch cluster based on

variable-sized patches to run the detector with low latency. The

large cluster size would increase the detection latency, making it

challenging to offset tracking errors. Also, running the detector on

each patch is inefficient since the latency gain gets smaller at a

certain input size due to the under-utilization of the processor.

 3

We develop a suite of techniques to address the challenges. We

first develop a fast and accurate Patch Recommender that effectively

finds patches with i) objects suffering from low tracking accuracy

and ii) newly appeared objects that are neither detected nor tracked

yet. To identify the objects with low tracking accuracy, we first

identify a set of useful features (see Chapter 4.2 for details) to

estimate such failures and train a machine learning classifier that

flags the priority (i.e., high, medium, low). Then, we generate

candidate patches that can include those objects individually. To find

newly appearing objects from regions outside the tracked patches,

we divide the frame into small-sized cells and allocate the priority

based on the two following factors: i) edge intensity and ii) refresh

interval, which indicates how long it has been since its last detection.

Then, we generate candidate patches by grouping neighboring cells

that have high priority.

Second, we develop a highly efficient Patch Aggregator. We model

the patch aggregation problem as the two-dimensional bin packing

problem (i.e., packing the variable-sized candidate patches into a

rectangular region). Then, we employ the Guillotine algorithm [11] to

efficiently obtain a good approximate solution since bin packing is a

well-known NP-hard problem [12]. We also thoroughly study the

tradeoffs of the approximation algorithm and design various

aggregation policies (e.g., cluster sizes, weights on the new object

detection) that can be adapted to various datasets.

Our contributions can be summarized as follows:

• We develop FlexPatch, a novel technique that enables on-device

real-time object detection for live high-resolution videos.

• We propose the tracking-aware patching approach that

synergistically integrates detection and tracking capabilities. It

significantly enhances the prior DBT frameworks that alternate

detection and tracking in a simple manner.

• We devise a suite of techniques, i.e., Patch Recommender and

Patch Aggregator. They efficiently identify the patches where the

tracking likely fails and offset the tracking errors by quickly running

the detection on a small cluster of multiple patches.

 4

• We implement FlexPatch on two commodity smartphones (LG

V50 and Samsung Galaxy S20) and evaluate its performance on

object tracking benchmark datasets. FlexPatch achieves up to 146%

accuracy gain in terms of AP compared to the state-of-the-art DBT

baseline [6]. Also, it consumes only 37% power compared to the

DBT baseline.

 5

Chapter 2. Motivational Studies

To motivate FlexPatch, we first analyze the limitations of prior

DBT frameworks for high-resolution videos. Fig. 1 depicts the

operation. The object detector results arrive at every t-th frame due

to its inference latency. The lightweight object tracker runs on every

frame to track the detected objects, where tracking is done by

calculating the optical flow between extracted feature points. The

tracker performs one of the following two tasks: i) Detection

Propagation: when the fresh detection result becomes available (e.g.,

the result of 0-th frame arrives at t-th frame), track the bounding

boxes onto the current frame with optical flow between the frame

that the detector processed and the current frame (e.g., between 0-

th and t-th), and ii) Successive Propagation: while detection is

running, track the bounding boxes of the previous frame onto the

current frame (e.g., between t-th and t+1-th). As a reference, we

implement the object detector (Tiny YOLO-v4 [4]) and the object

tracker (ORB feature point extractor [14] + Lucas-Kanade optical

flow estimator [15]) on LG V50 smartphone, where the object

detection and tracking latency on a 1080p frame is 1,029 and 10ms,

respectively.

Fig. 2 shows the accuracy of the aforementioned DBT framework

in terms of mean IoU over a 4-second window (120 frames) on the

Okutama-Action dataset [16]. We observe that the ideal detection

accuracy (i.e., accuracy on the frame that the detector processed) is

sufficiently high (0.62 on average). However, the actual tracking

accuracy is much lower (0.28 on average). In particular, the accuracy

continuously decreases between consecutive detection result arrivals

(1,029ms apart) due to accumulated tracking errors from successive

propagation. Also, the detection results periodically offset the

tracking errors, but the tracking accuracy does not fully recover to

the ideal accuracy since long detection latency makes the detection

result stale and incurs high detection propagation error.

 6

Figure 1. Real-time Detection-Based-Tracking framework.

Figure 2. Tracking accuracy of Detection-Based-Tracking framework over

time.

Through an in-depth analysis, we identified two root causes of the

low accuracy:

• Object Tracking Failure. We observe that the tracker is more

prone to failure on high-resolution urban scenes with distant and

fast-moving objects than prior works focusing on tracking large

objects in close vicinity (e.g., tracking a face or person right in front

of the camera [5], [7]). Specifically, we categorize the three main

cases of tracking failure: i) inaccurate feature point extraction (e.g.,

point in the background is extracted as a feature), ii) inaccurate

optical flow estimation due to object occlusion (Fig. 6), and iii) optical

flow estimation error due to the appearance change (e.g., rotation) of

the object (Fig. 7b). Also, it is an inherent limitation that the tracker

will never see newly appearing objects.

• High Object Detection Latency. Due to the high inference latency

of the object detector (i.e., 1,029ms), the detection result is already

Detection 1 Detection 2 Detection 3

Frame0 t 2t

Tracked
results

(rendered)

Detection
results

Detection
Propagation

Successive
Propagation

High
Accuracy

Low

 7

Figure 3. Example of object tracking error due to detection

latency. Ideal detection result (left) and 1s delayed rendering result

(right).

stale when it is rendered as shown in Fig. 3; this is especially

problematic for distant, small objects, as the detected bounding box

on the previous frame can have no overlap with the object in the

current frame. Even if we apply detection propagation, the problem is

not fully solved. The objects are too far and different in the current

frame for the tracker to be accurate. Furthermore, the successive

propagation needs to run over a long period (≈30 frames), whose

tracking accuracy inherently drops over time.

 8

Chapter 3. System Overview

3.1. Our Approach: Tracking-Aware Patching

The DBT frameworks effectively enable real-time continuous

object tracking by combining accurate-but-slow detector and fast-

but-less-accurate tracker. However, it is not trivial to fuse them

over high-resolution videos as the detection latency increases

significantly, making it difficult to offset the accumulated tracking

errors.

We propose tracking-aware patching to address this core

challenge of the DBT frameworks. It effectively identifies the

flexible-sized patches where the tracking has failed and tightly packs

them into a small-sized patch cluster to minimize the detection

latency. This prevents the long accumulation of tracking errors and

offsets the tracking errors with frequent fresh detection results.

Thus, it revives the original intention of the DBT frameworks to

combine the unique advantages of detectors and trackers

synergistically.

There are other plausible approaches to reducing the detection

latency, but they are mostly unsuitable for high-resolution videos.

The simplest method is to down-sample the input frame. However,

this significantly degrades the accuracy for complex scenes with

several distant and small objects. A more sophisticated method is to

run the detector on the Regions of Interests (RoIs). It selects sub-

areas of the high-resolution frame by training a DNN model to

estimate important regions or dividing the frame into fixed-size grids

and removing unnecessary regions. This method, however, still

suffers from two following challenges. First, using RoIs that are

tracking-agnostic is inefficient: existing solutions are limited to

removing backgrounds [1] or objects with no significant motion [9],

which still waste computation on regions where the tracking can

work well. Another approach uses a separate DNN trained to output

 9

Figure 4. System architecture of FlexPatch.

RoI [10], [17], but incurs an additional overhead making it

unsuitable for mobile devices. Second, using a content-agnostic

fixed-size grid is inefficient: setting the grid size too large would

result in unnecessary computation caused by the detector running on

background regions, whereas setting it too small makes it hard to

detect large objects.

FlexPatch overcomes such problems by i) aggressively reducing

the RoI by leveraging the tracking results and ii) using flexible-sized

patches for dynamically changing content while tightly packing them

to a single rectangular cluster to enable highly efficient detection.

3.2. System Architecture

Fig. 4 shows the overall system architecture and the operational

flow of FlexPatch to realize our approach. First, the Object Tracker

calculates the optical flow for every video source frame and tracks

the result of the latest detected objects to the current input frame.

Since the results of the tracker can be erroneous, the Patch

Recommender analyzes the current frame to generate two types of

candidate patches: i) tracking-failure patch, where objects are

already detected and tracked but might have failed, and ii) new-

object patch, where new objects likely appeared. When the Patch

Recommender generates a list of patches with different sizes and

priorities, the Patch Aggregator tightly packs high priority patches

into a patch cluster, which is much smaller than the original frame

Object Tracker

Patch Recommender

New-Object
Patch Recommender

Patch
Aggregator

Patched
Object Detector

Renderer

Tracking-Failure
Patch Recommender

Video
Source

Tracking
Features

Frame 0,1,…t, …

Frame 0, t, …

Tracked
Objects

Tracked
Objects

Updated
Objects

Patch
Cluster

List of
(Patch, Priority)

 10

size. Finally, the Patched Object Detector runs the detection on this

patch cluster with low latency.

 11

Chapter 4. Operation Pipeline

In this chapter, we provide the technical details of FlexPatch in the

order of the operational flow shown in Fig. 5.

4.1. Continuous Object Tracking

Following the conventional DBT framework in Chapter 2, the

object tracker runs on every frame to calculate the optical flow and

update the previously detected bounding boxes of the objects. We

employ two optimizations to enhance performance for high-

resolution video processing further. First, we adopt Incremental

Detection Propagation (IDP), which propagates the detection result

incrementally to the current frame by running the tracker on

intermittent frames cached until the current frame [5]. Second, we

utilize an association technique proposed in [18] to prevent

flickering effects of the detected objects. Some objects that were

detected a few frames ago may fail to be detected even under minor

changes such as the lighting condition. To reduce these false

negatives, we first associate the previous bounding boxes with new

detection results based on the IoU. The boxes that were associated

successfully are replaced with the corresponding new detection

result. The boxes that failed to be associated are not removed

immediately, but their age is increased. Boxes are removed only

when the age becomes larger than a predefined threshold.

4.2. Patch Recommender

Now, we provide the details of our novel Patch Recommender,

which analyzes the results of the Object Tracker to generate a list of

patches with different priorities (i.e., high, medium, low).

The Patch Recommender conducts lightweight analysis to extract

patches where the Object Tracker failed or new objects that are not

 12

Figure 5. Operation pipeline of FlexPatch's tracking-aware

patching.

tracked by the Object Tracker exist and hence should be included

in the input for new detection. Since the patch cluster has limited

space, it should determine the priority of the patches and the optimal

size for the individual patches.

Two types of patches are extracted based on the results of the

Object Tracker: i) tracking-failure patch, where objects are already

detected and tracked but with severe errors, and ii) new-object

patch, where new objects likely appeared. We develop different

techniques for each patch type.

4.2.1. Tracking-Failure Patch Recommendation

For tracking-failure patches, we aim to find the bounding boxes

with severe tracking error and assign them high priority.

Patch Priority Estimation. The tracking errors mainly come from

the inaccuracy of the optical flow calculation. However, it is

challenging to figure out whether the estimated optical flow is

accurate or not. There are existing features that indicate the optical

flow's confidence, such as the eigenvalue of the spatial gradient

matrix. However, the confidence value itself is often inaccurate due

to its simplicity. Therefore, through an in-depth analysis of the fail

cases, we identify three main causes: i) bad feature points (e.g., in

the background) are extracted, ii) the appearance of the object

changes, and iii) occlusion takes place. We estimate the occurrence

 13

Figure 6. Tracking failure due to occlusion leads to large

acceleration.

Figure 7. Tracking failure due to appearance change or bad feature

points can be captured by inconsistent optical flow vectors (high

standard deviation).

of these events.

Based on this observation, we choose multiple features that should

be highly correlated to these error cases as follows:

• Minimum eigenvalue of spatial gradient matrix: Obtained during

the calculation process of the Lucas-Kanade method, this feature

indicates the quality of the feature points.

• Normalized Cross Correlation (NCC): NCC between the pixel

values of the original bounding box and that of the currently tracked

bounding box indicates the extent of appearance change and

occlusion.

• Bounding Box Acceleration: When the object gets occluded by

obstacles or other objects, the velocity tends to change abruptly as

illustrated in Fig. 6, because no corresponding feature point is found,

or the box gets associated with the wrong object.

• Standard deviation of optical flow vectors: When the appearance

Time

Previous Location Current Location

Abrupt Velocity
Change

 14

of the object changes (e.g., rotating on its axis), the standard

deviation of optical flow vectors is likely to be large as in Fig. 7b.

Also, bad feature points in the background area lead to high standard

deviation since these points do not move along with the object.

• Confidence score of the detector: This feature measures the

failure of the detector. A low confidence score may indicate that the

box may be a false positive, in which case there is no point in further

tracking the box.

Our custom decision tree classifier then uses these features to

determine the priority of each patch. The decision tree model is

trained to estimate the IoU (Intersection over Union) between the

currently tracked object's bounding box and the ground truth object.

Specifically, the IoU values of the boxes are divided into three

classes: 0 (high priority), 0 to 0.5 (medium priority), and higher than

0.5 (low priority). The classifier estimates the class of each box,

which will be its final priority. Among the boxes with the same

priority class, we sort the order by the detector confidence score. In

addition, in case some high priority boxes are misclassified as low

priority, the priority of the box is increased after a predefined

amount of time has passed after its last inclusion in patch cluster for

detection.

Patch Extraction. To extract the final patches, we add padding for

each bounding box since it may not fully cover the object due to the

tracking error. In our current version, we add padding size equal to

the height and width of the box for simplicity. However, the padding

size can be optimized based on the estimated priority (e.g., larger

padding for high priority box as it indicates that the tracking is failing

significantly, and vice versa).

4.2.2. New Object Patch Recommendation

To detect newly appearing objects, we analyze and extract the

new-object patches that are likely to contain new objects and assign

them high priorities.

Patch Priority Estimation. Since there are no prior hints for new

 15

objects from the Object Tracker, we first divide the frame into

equal-sized cells (e.g., 8x8 pixels). Then, we assign the priority for

each cell based on the following two criteria: i) Edge Intensity: the

number of edge pixels in a given cell detected by edge detection

(e.g., Canny [19]), which is normally high for cells that contain

objects [1], and ii) Refresh Interval: the time (in number of frames)

since the cell was last included in the patch cluster and provided as

input to the detector (larger refresh interval indicates that the cell

has not been processed for a long time).

By aggregating the two values, the final priority of the cell is

calculated as follows:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦	 = 	𝑚𝑖𝑛	(50, 𝑅𝐼) 	+ 	𝑊	 ×	𝟏!"#$
where RI and EI are refresh interval and edge intensity, respectively,

T is the threshold for edge intensity, and W is the weight to balance

the two features. Refresh interval is clipped to have a maximum

value of 50, since all the cells would need a new detection similarly

after a long time. The priority values of the cells within the existing

bounding boxes are set to 0 since the tracking-failure patch

recommender handles them.

Patch Extraction. Treating the individual cells as separate patches

will not work well since objects are usually larger than a single cell.

Therefore m × n cells (total size of 8m × 8n pixels) are treated as a

single patch. We allocate high priority to the patches where the

included cells have the largest priority value in summation. The size

of the patch (determined by the values of m, n) is set empirically

depending on the size of the objects in the dataset. For example, we

choose 20x22 cells for the two representative datasets we used,

Okutama-Action and MTA dataset. Then 4x2=8 new-object patches

will compose a 640x360 sized patch cluster.

However, the fixed patch size might not fully cover some bigger-

sized objects. In that case, it can be recovered by the tracking-

failure patch recommender. Fig. 8 shows an example of the recovery

process: when the new-object patch at Frame t partially covers the

object and results in inaccurate bounding box, the padding of

tracking-failure patch at Frame t+n enables the tracking-failure

 16

Figure 8. Example operation of tracking-failure patch extraction with

padding.

patch to include the whole object, and thus the full bounding box can

be recovered in the subsequent detection.

4.3. Patch Aggregator

Once the tracking-failure patches, new-object patches and their

corresponding priorities have been analyzed by the Patch

Recommender, the Patch Aggregator selects the patches starting

from the ones with high priority and packs them into a single patch

cluster to be processed by the Patched Object Detector. Specific

aggregation policy and packing algorithm are detailed as follows:

4.3.1. Patch Aggregation Policy

The aggregation policy is determined by the size of the patch

cluster and how frequently the two types of patches are aggregated

into the patch cluster.

Patch Cluster Size. The patch cluster size is determined by

considering the trade-off between the detection latency and the

number of high-priority patches that can fit in the patch cluster.

Small patch cluster size means that the low detection latency allows

more frequent detection updates, but only a few high-priority

Patch Cluster

Patch Cluster

add
padding …

…
New-Object Patch

Frame t

Frame t + n

Tracking-Failure Patch

Object
partially covered

Object fully covered

 17

Input Size 320x240 480x270 640x360 720x480 1920x1080

Latency

(ms)
70.16 91.91 139.48 206.64 1029.45

Table 1. Detector latency for various input sizes measured in LG

V50.

patches can be included. If the patch cluster size is bigger, more

patches can be included, but the detection latency increases. As

shown in Table 1, the latency gain gets smaller at a certain input size

due to the under-utilization issue of the processors, so we can

choose the optimal patch cluster size. By default, for a 1080p full-

frame, we set the patch cluster size as 360p. However, the optimal

patch cluster size can differ depending on the characteristic of the

data.

Aggregation Frequency Ratio of Patch Types. Next, the proportion

of the two types of patches that are packed into the patch cluster

should also be determined. It is inevitable for this policy to adapt to

different datasets. If tracking the existing objects accurately is more

important, we can set the proportion of the tracking-failure patches

higher. If detecting new objects quickly is more important, new-

object patches can be included in the patch cluster more frequently.

We set the default setting to alternate between the two types of

patches with adequate frequency ratio for simplicity. In other words,

since only a single patch cluster can be executed at once by the

Patched Object Detector, when the detector becomes available the

Patch Aggregator alternates between creating the following two

types of patch cluster: i) tracking-failure patch cluster, which

consists of all the high to medium-priority tracking-failure patches

and additional new-object patches if the patch cluster has unfilled

spaces, and ii) new-object patch cluster, which consists of high-

priority new-object patches (see Patch Aggregator of Fig. 5).

4.3.2. Patch Aggregation Algorithm

Based on the parameters from the aggregation policy, the Patch

 18

Figure 9. Patch aggregation algorithm.

Aggregator has to concatenate prioritized patches to generate a

single patch cluster. The challenge here is to pack as many patches

as possible into a fixed-size rectangular space, starting with high-

priority ones. Also, the fact that the sizes of the patches are irregular

complicates the problem. On top of that, to run this algorithm for

every patch aggregation, we need an effective and lightweight

algorithm.

Filling a two-dimensional patch cluster with the given patches and

priority can be formulated as a Two-dimensional Bin Packing

problem with the number of bins limited to 1. The objective is to

pack the high-priority patches compactly. Since two-dimensional bin

packing is a well-known NP-hard problem [12], we adopt a simple

Guillotine algorithm [11] that is effective enough with minimal

overhead on the system. The algorithm (Fig. 9) works as follows.

Every iteration keeps a list of free rectangles F, which is at the

beginning comprised of a single rectangle with the size of a patch

cluster (line 3). Then, starting from the patches with higher priority,

it finds a free rectangle large enough to fit the patch (line 6). After

packing the patch into the chosen free rectangle, it splits the

remaining space into two new free rectangles (line 10) and updates

the list (line 11). The splitting is done horizontally if the height of the

original free rectangle was larger than the width and vertically

 19

otherwise. The final output is the matched pairs of patch and free

rectangle, which indicates the location of each patch in the patch

cluster.

In order to pack even more patches, if the width or height of the

tracking-failure patch is larger than a certain size, the patch is

down-sampled. The down-sampling here has little impact on

accuracy compared to down-sampling the entire frame because a

large tracking-failure patch indicates a large object, and a large

object will be correctly detected even if it is down-sampled. This

guarantees that at least a minimum number of patches will be packed

into the patch cluster. At the same time, it ensures that even objects

larger than the patch cluster can fit into the patch cluster.

4.4. Patched Object Detector and Renderer

At the final stage, the patch cluster is fed to the object detector.

Since the size of the patch cluster is smaller than the full-frame, the

latency of the patched object detection is also smaller (e.g., 1,029ms

for full-frame, 139ms for 360p patch cluster). The detection results

are fed to the tracker and the renderer to be displayed on the screen

output.

 20

Chapter 5. Evaluation

5.1. Experiment Setup

5.1.1. Implementation

We implement FlexPatch on two commodity smartphones: LG V50

(Qualcomm Snapdragon 855 SoC and Adreno 640 GPU) and Samsung

Galaxy S20 (Snapdragon 865 and Adreno 650 GPU). Unless

specified, the evaluation result on LG V50 is reported. We use the

Tiny YOLO-v4 [4] for the object detector, which is implemented and

trained with Darknet framework and converted to TensorFlow-Lite

for mobile inference. We implement the optical flow based object

tracker and other image processing functions using JavaCV Android

1.5.4. Note that any detectors and trackers can be plug-and-played

into our system. The decision tree model for priority estimation of

tracking-failure patches is implemented and trained with Python

Scikit-Learn library.

5.1.2. Evaluation Datasets

We use two benchmark video datasets composed of urban scenes

with pedestrians for repeatable evaluation: the Okutama-Action

dataset [16] and the MTA dataset [20]. All the videos are re-

encoded to be 1920x1080@30fps and fed to the application to

emulate the live video stream. The average number of objects in the

Okutama-Action and MTA dataset are 5 and 24, respectively, with

sizes less than 25 to 380 pixels in height.

5.1.3. Baselines

We compare FlexPatch against the following baselines.

• Detection-Only runs the detector continuously without the object

tracker. For the frames in between the detections, it renders the

 21

Figure 10. Overall tracking accuracy of FlexPatch and baselines.

Okutama-Action dataset (top) and MTA dataset (bottom).

most recent detection result.

• MARLIN [6] is a state-of-the-art DBT framework that runs the

detector only when there is a significant change in the scene to

optimize energy consumption. For fair comparison with FlexPatch,

we implemented MARLIN to run the detector continuously to

maximize the accuracy.

• MARLIN + IDP is an enhanced version of MARLIN that employs

Incremental Detection Propagation (Chapter 4.1).

5.1.4. Evaluation Metrics

We evaluate the tracking accuracy in terms of Average Precision

(AP@0.5, determining that the object is detected when the IoU is

higher than 0.5) and mean Intersection over Union (mIoU) to measure

the detection accuracy [21]. Both metrics are calculated per each

frame and averaged over the entire video.

5.2. Performance Overview

We first compare the end-to-end performance of FlexPatch with

the baselines. Fig. 10 shows the results. FlexPatch significantly

 22

Figure 11. Visual example of MARLIN+IDP (top) and FlexPatch's

(bottom) tracking accuracy.

outperforms MARLIN by up to 146% (from 0.24 to 0.59 in terms of

AP on the Okutama-Action dataset) by frequently providing new

detection results and re-calibrating the bounding boxes. Fig. 11 and

Fig. 3 show the visual example comparison of the tracking results of

FlexPatch and baselines, clearly showing the superior tracking

accuracy gain. Detection-Only shows a poor tracking accuracy as

high detection latency (≈ 1 s) leads to stale detection results (i.e., the

object locations significantly change from the frame processed by the

object detector). MARLIN boosts the accuracy by incorporating the

object tracker but still suffers low performance as the tracking

accuracy degrades significantly due to large detection latency.

MARLIN+IDP alleviates this error to some extent but also suffers

from the tracking error accumulation over time, especially when the

 23

Figure 12. Confusion matrix of the tracking-failure patch priority

estimator. Okutama-Action dataset (left) and MTA dataset (right).

objects move fast. FlexPatch can achieve significant accuracy gain

even compared to the enhanced version of MARLIN due to small

detector latency (139ms for 640x360 patch cluster).

5.3. Performance of Patch Recommender

5.3.1. Tracking-Failure Patch Extraction

Priority Estimation Accuracy. Fig. 12 shows the confusion matrix

of the decision tree-based patch priority classifier. The overall

classification accuracy is 0.68 and 0.70 for the Okutama-Action and

MTA dataset, respectively. Note that the misclassifications mainly

occur between the medium and the high-priority; this is not critical

as the Patch Aggregator can effectively pack all the medium and

high-priority patches in most cases. Even for cases where the

priority of a patch is misclassified as low, the error is quickly

recovered as the estimator increases the priority proportional to the

time elapsed since it has been included in the patch cluster for

detection.

Effectiveness of Patch Extraction. We also show how the

percentage of patches included in the patch cluster is distributed for

different IoU values in Figure 13. Among the boxes with IoU lower

than 0.5 (i.e., high and medium-priority), 85% and 90% are included

in the patch cluster for Okutama-Action and MTA datasets,

 24

Figure 13. IoU distribution of the tracked bounding boxes.

Okutama-Action dataset (left) and MTA dataset (right).

Figure 14. CDF of refresh interval of the cells within/outside New-

Objects (N-O) (O: Okutama-Action, M: MTA).

respectively. For boxes with IoU higher than 0.5 (i.e., low priority),

the percentage is 53% and 52%. The result indicates that the priority

estimator successfully assigns high priority to the bounding boxes

with high error.

5.3.2. New Object Patch Extraction

Priority Estimation Accuracy. Fig. 14 shows how well the priorities

of new-object patches are estimated. We observe that the average

refresh interval is lower for the cells within new objects than those

outside new objects (by 0.88 and 0.44 s for Okutama-Action and

MTA dataset, respectively), indicating that the new objects are more

 25

Figure 15. New object detection delay.

frequently included in the patch cluster than the background

regions without any objects. The difference was lower for the MTA

dataset because the scenes contain many background edges (e.g.,

trees, cars).

New Object Detection Delay. Next, we evaluate the effectiveness

of the new-object patch extraction by showing the time elapsed

between when the new object appears in the video and when it is

successfully detected (i.e., IoU > 0.5 with the ground truth). Fig. 15

shows that FlexPatch achieves the lowest average delay (3.11 s)

compared to MARLIN (3.97 s) and MARLIN+IDP (4.04 s). The delay

is mainly due to the high object detection latency (≈1 s) for the

baselines, which bounds the delay and incurs large tracking error.

FlexPatch significantly alleviates the issue by running detection on

small-sized 360p patch cluster (which takes 139ms on average) and

effectively extracting the new-object patches.

5.4. Patch Aggregator

5.4.1. Aggregation Latency and Efficiency

The Guillotine packing algorithm runs on average 2ms for the

evaluation datasets, indicating its high computational efficiency. For

the Okutama dataset, on average 3.11 medium and high-priority

tracking-failure patches (out of the entire 5.40 objects) were

compactly packed in the 640×360 patch cluster, occupying 21% of

 26

Figure 16. Performance of different aggregation policies. Patch

cluster size (left) and frequency ratio of patch types (right).

the space, leaving sufficient room for the new-object patches to be

packed in. Similarly, for the MTA dataset, on average 9.68 out of

15.74 were packed while occupying 35% of the area.

5.4.2. Performance for Various Aggregation Policies

We evaluate how different aggregation policies affect the overall

performance on the Okutama-Action dataset. Fig. 16a shows that

while the performance is consistently high for various patch cluster

sizes, 640×360 achieves the best accuracy. When the cluster size

gets smaller, the detection result for high-priority patches of both

types can be delivered to the tracker faster, increasing the accuracy.

However, if the size gets too small to pack most of the high-priority

patches, the accuracy decreases. Our result indicates that a cluster

size of 640×360 is the minimum size that can pack most high-

priority patches. This can be extended to other datasets by

considering the number of objects and their sizes.

Next, Fig. 16b shows that the patching frequency ratio of 3:1

achieves the best accuracy. This is because the tracking failure is

frequently occurring, thus requiring more frequent detection for

accurate tracking. However, if the ratio is too high (e.g., 4:1), the

new object detection delay also increases, offsetting the benefit.

Thus, the appropriate frequency ratio should be chosen by comparing

the importance of tracking the existing boxes accurately and

detecting new objects quickly.

For the MTA dataset, we found that the best aggregation policy

 27

Idle Read video & Rendering DBT FlexPatch

0.46 W 2.20 W 4.16 W 2.79 W

Table 2. Energy consumption of DBT framework and FlexPatch.

Figure 17. Overall tracking accuracy on Samsung Galaxy S20.

uses the same 640×360 patch cluster, but with 2:1 patching

frequency ratio; This is because the MTA dataset has smaller but a

greater number of objects, and they are relatively slow moving,

resulting in less tracking failure.

5.5. Energy Consumption

We evaluate the energy consumption of FlexPatch in Table 2. We

decompose the energy consumption of FlexPatch from the baseline

app power (i.e., video decoding and rendering). FlexPatch consumes

37% power compared to naive DBT framework. The main source for

the energy consumption is running the object detector continuously

on the GPU. We conjecture that FlexPatch's energy consumption gain

mainly comes from running the detector on smaller-sized input (e.g.,

360p vs. 1080p), resulting in smaller GPU utilization.

5.6. Performance Scalability on Other Mobile Devices

Finally, we evaluate the performance of FlexPatch on Samsung

Galaxy S20, where the average detector latency on 1080p and 360p

images are 824ms and 126ms, respectively. Due to space limit, we

only show the end-to-end performance for Okutama-Action dataset.

Fig. 17 shows that FlexPatch achieves similar performance gain over

 28

the baselines (e.g., 21% accuracy gain compared to MARLIN+IDP),

validating FlexPatch's scalability on various mobile devices.

 29

Chapter 6. Discussion

6.1. Extensions

Scaling to Multi-stream Multi-edge Systems. FlexPatch can be

scaled to process multiple camera streams with multiple edge

devices, which is common in drone and surveillance systems. While

FlexPatch can apply the patch recommendation similarly to each

stream, the system also needs to aggregate and schedule the patches

to edge devices considering the resource availability. We expect

considerable performance gain, as FlexPatch can not only reduce the

input regions to process but also assign them to the devices with fine

granularity.

Extension to Offloading Systems. While FlexPatch currently

assumes full on-device processing, it can also be easily extended to

offloading systems for live video analytics [5], [7], [22]. Our

tracking-aware patching approach can be used to identify the

patches of the frame to offload, significantly reducing the network

bandwidth consumption and transmission latency, especially in

outdoor environments with constrained and fluctuating network

bandwidths.

6.2. Limitations and Future Work

6.2.1. Optimizing Patch Resizing Policy

FlexPatch currently down-samples the patches larger than the

predefined size by a predefined ratio. This heuristic effectively

increases the patch cluster space efficiency while maintaining

accuracy since large objects are robust to down-sampling.

The resizing policy can be further optimized by applying different

down-sampling ratios for each patch. We observed that each object's

sensitivity to down-sampling varies depending on features such as

object size and lighting condition. By resizing each patch as small as

 30

possible, more patches will be able to fit into the patch cluster. This

will increase the accuracy and allow FlexPatch to handle higher-

resolution video with more objects.

6.2.2. Automatic Parameter Adaptation

In this work, we identified the parameters for our patching

technique individually for each dataset. A system that can

automatically adjust the parameters depending on the characteristics

of the current data remains as our future work. Based on our

observation, the following characteristics of the input data can be

considered:

Target Object Size. If some objects are much larger than the

predefined new-object patch size, our patching method would not be

able to catch those objects. With an additional technique that can

identify these failures in run-time, we can enlarge the patch size

adaptively.

Extent of Tracking Failure. Depending on how much the object

tracker is failing and the cause of the failure (i.e., actual tracking

failure on the detected objects or failure on new objects), the patch

aggregation policy (i.e., the patch cluster size and the aggregation

frequency ratio of patch types) can be dynamically adjusted.

 31

Chapter 7. Related Works

7.1. Live Video Analytics Systems

Live video analytic systems have been actively studied in recent

years for various applications, such as face recognition [1],

pedestrian detection [23], or vehicle detection [24]. Most systems,

however, are focused on object detection [2], [3], [25]. Despite

active research in this area, there are no systems that can meet the

requirement for high-resolution videos on mobile devices.

7.2. Lightweight Object Detection Models

With the recent advancements in deep learning, several high

accuracy object detection models have been proposed (e.g., Faster-

RCNN [26], R-FCN [27], and Cascade-RCNN [28]). However, such

models are often computationally heavy for mobile inference.

Recently, several lightweight object detectors have also been

proposed; YOLO [13], [29]–[31], SSD [32] and RetinaNet [33] are

some of the most popular detectors that are highly efficient with

decent accuracy. FlexPatch takes a complementary approach to

optimize the object detection latency on high-resolution videos.

7.3. On-device Deep Learning Systems

There has been a streamline of works on on-device deep learning

systems for real-time object detection on mobile devices. One

approach is to adjust the input frame size and the deep learning

model adaptively depending on the video content and resource

contention [34]–[37]. Some works apply caching on partial results of

DNN layers to reduce repetitive computation [9], [38]. However,

these works only consider features in frame scale and therefore may

not benefit much if each region of the frames has different

 32

characteristics and priorities.

7.4. ROI-based Object Detection

There have been prior attempts to extract region-of-interest (RoI)

to reduce the computational load by running inference only on the

partial area. Several works remove background regions with edge

detector [1]. Others apply encoding techniques to compress the

background regions heavily [7], [22]. However, RoI extraction in

these works are tracking-agnostic, incurring computational waste.

There are more advanced approaches to narrow down RoIs. Some

works run a DNN on down-sampled images to select difficult regions

[10], [39]. Another prior work employs reinforcement learning to

select RoIs [17]. However, the region selection processes in these

works are not only tracking-agnostic but also compute-intensive to

run in real-time on mobile device. FlexPatch utilizes a lightweight

estimator to predict tracking failure and optimize the detection

latency efficiently.

 33

Chapter 8. Conclusion

In this thesis, we presented FlexPatch that enables high-resolution

live video analytics on resource-constrained mobile devices. We

designed a novel tracking-aware patching technique which extracts

dynamically-sized patches where tracking is likely to fail and runs

the detection only on these patches by aggregating them into a single

small-sized rectangular patch cluster. Our results showed that

FlexPatch achieved up to 146% accuracy gain in terms of AP

compared to the state-of-the-art DBT baselines while consuming

only 37% power.

 34

Bibliography

[1] J. Yi, S. Choi, and Y. Lee, “Eagleeye: Wearable camera-based

person identification in crowded urban spaces,” in Proceedings of the

26th Annual International Conference on Mobile Computing and

Networking, 2020, pp. 1–14.

[2] J. K. Mahendran, D. T. Barry, A. K. Nivedha, and S. M.

Bhandarkar, “Computer vision-based assistance system for the

visually impaired using mobile edge artificial intelligence,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, June 2021, pp. 2418–2427.

[3] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W.

Yang, and M. Satyanarayanan, “Bandwidth-efficient live video

analytics for drones via edge computing,” in 2018 IEEE/ACM

Symposium on Edge Computing (SEC), 2018, pp. 159–173.

[4] Z. Jiang, L. Zhao, S. Li, and Y. Jia, “Real-time object detection

method based on improved yolov4-tiny,” arXiv preprint

arXiv:2011.04244, 2020.

[5] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H.

Balakrishnan, “Glimpse: Continuous, real-time object recognition on

mobile devices,” in Proceedings of the 13th ACM Conference on

Embedded Networked Sensor Systems, 2015, pp. 155–168.

[6] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A.

K. Roy-Chowdhury, “Frugal following: Power thrifty object detection

and tracking for mobile augmented reality,” in Proceedings of the

17th Conference on Embedded Networked Sensor Systems, 2019, pp.

96–109.

[7] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object

detection for mobile augmented reality,” in The 25th Annual

International Conference on Mobile Computing and Networking,

2019, pp. 1–16.

[8] M. Liu, X. Ding, and W. Du, “Continuous, real-time object

detection on mobile devices without offloading,” in 2020 IEEE 40th

International Conference on Distributed Computing Systems (ICDCS).

 35

IEEE, 2020, pp. 976–986.

[9] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile

gpubased deep learning framework for continuous vision

applications,” in Proceedings of the 15th Annual International

Conference on Mobile Systems, Applications, and Services, 2017, pp.

82–95.

[10] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Dynamic

zoom-in network for fast object detection in large images,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 6926–6935.

[11] J. Jyl¨anki, “A thousand ways to pack the bin-a practical

approach to two-dimensional rectangle bin packing,” retrived from

http://clb. demon. fi/files/RectangleBinPack. pdf, 2010.

[12] J. Hartmanis, “Computers and intractability: a guide to the

theory of np-completeness (michael r. garey and david s. johnson),”
Siam Review, vol. 24, no. 1, p. 90, 1982.

[13] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4:

Optimal speed and accuracy of object detection,” arXiv preprint

arXiv:2004.10934, 2020.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An

efficient alternative to sift or surf,” in 2011 International conference

on computer vision. Ieee, 2011, pp. 2564–2571.

[15] B. D. Lucas, T. Kanade et al., “An iterative image registration

technique with an application to stereo vision.” Vancouver, British

Columbia, 1981.

[16] M. Barekatain, M. Mart´ı, H.-F. Shih, S. Murray, K. Nakayama,

Y. Matsuo, and H. Prendinger, “Okutama-action: An aerial view video

dataset for concurrent human action detection,” in Proceedings of the

IEEE conference on computer vision and pattern recognition

workshops, 2017, pp. 28–35.

[17] Y. Chai, “Patchwork: A patch-wise attention network for

efficient object detection and segmentation in video streams,” in

Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 3415–3424.

[18] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime

 36

tracking with a deep association metric,” in 2017 IEEE international

conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[19] J. Canny, “A computational approach to edge detection,” IEEE

Transactions on pattern analysis and machine intelligence, no. 6, pp.

679–698, 1986.

[20] P. Kohl, A. Specker, A. Schumann, and J. Beyerer, “The mta

dataset for multi-target multi-camera pedestrian tracking by

weighted distance aggregation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops,

2020, pp. 1042–1043.

[21] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A.

Zisserman, “The pascal visual object classes (voc) challenge,”
International journal of computer vision, vol. 88, no. 2, pp. 303–338,

2010.

[22] X. Wang, Z. Yang, J. Wu, Y. Zhao, and Z. Zhou, “Edgeduet: Tiling

small object detection for edge assisted autonomous mobile vision,”
in IEEE INFOCOM 2020-IEEE Conference on Computer

Communications. IEEE, 2021.

[23] J. Li and W. Gong, “Real time pedestrian tracking using thermal

infrared imagery.” J. Comput., vol. 5, no. 10, pp. 1606–1613, 2010.

[24] A. Gomaa, M. M. Abdelwahab, and M. Abo-Zahhad, “Efficient

vehicle detection and tracking strategy in aerial videos by employing

morphological operations and feature points motion analysis,”
Multimedia Tools and Applications, vol. 79, no. 35, pp. 26 023–26

043, 2020.

[25] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “Marvel:

Enabling mobile augmented reality with low energy and low latency,”
in Proceedings of the 16th ACM Conference on Embedded

Networked Sensor Systems, 2018, pp. 292–304.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards

real-time object detection with region proposal networks,” Advances

in neural information processing systems, vol. 28, pp. 91–99, 2015.

[27] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via

regionbased fully convolutional networks,” in Advances in neural

information processing systems, 2016, pp. 379–387.

 37

[28] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high

quality object detection,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 6154–6162.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only

look once: Unified, real-time object detection,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016,

pp. 779– 788.

[30] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 7263–7271.

[31] ——, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,

and A. C. Berg, “Ssd: Single shot multibox detector,” in European

conference on computer vision. Springer, 2016, pp. 21–37.

[33] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll´ar, “Focal

loss for dense object detection,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 2980–2988.

[34] R. Xu, C.-l. Zhang, P. Wang, J. Lee, S. Mitra, S. Chaterji, Y. Li,

and S. Bagchi, “Approxdet: content and contention-aware

approximate object detection for mobiles,” in Proceedings of the 18th

Conference on Embedded Networked Sensor Systems, 2020, pp.

449–462.

[35] R. Xu, R. Kumar, P. Wang, P. Bai, G. Meghanath, S. Chaterji, S.

Mitra, and S. Bagchi, “Approxnet: Content and contention-aware

video object classification system for embedded clients,” ACM

Transactions on Sensor Networks (TOSN), 2021.

[36] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale: Towards

realtime video object detection using adaptive scaling,” arXiv

preprint arXiv:1902.02910, 2019.

[37] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware

multitenant on-device deep learning for continuous mobile vision,” in

Proceedings of the 24th Annual International Conference on Mobile

Computing and Networking, 2018, pp. 115–127.

[38] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache:

 38

Principled cache for mobile deep vision,” in Proceedings of the 24th

Annual International Conference on Mobile Computing and

Networking, 2018, pp. 129–144.

[39] Y. Zeng, P. Zhang, J. Zhang, Z. Lin, and H. Lu, “Towards high-

resolution salient object detection,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019, pp. 7234–7243.

 39

초록

본 학위논문에서는 고화질 비디오 스트림에 대해 정확한 실시간 객체 검

출을 수행하기 위한 모바일 시스템인 FlexPatch를 제시한다.

Detection-based Tracking (DBT)는 수 프레임마다 정확하지만 고연산

을 요하는 객체 검출기를 실행하고 그 사이의 프레임들에 대해서는 경량

화된 객체 트래커를 실행하는 기법으로, 실시간 비디오 분석에 널리 쓰

인다. 하지만 DBT는 고화질 비디오의 실시간 분석에 대해 다음과 같은

한계를 가진다: i) 객체 트래커는 가림, 물체 외양 변화, 새로운 물체의

등장 등을 처리하지 못하여 에러가 점차 누적되며 ii) 객체 탐지의 높은

지연 시간으로 인해 객체 탐지 결과가 트래킹 에러를 회복시키지 못한다.

본 학위논문에서는 DBT의 한계를 극복하기 위해 tracking-aware

patching 기술을 제시한다. 본 기술은 트래커가 실패하는 영역들을 탐지

해내고 이들을 작은 직사각형 영역에 합쳐 객체 검출기에 인풋으로 제공

함으로써 객체 검출 지연시간을 최소화한다. 이를 통해 트래킹 에러의

누적을 막고, 새로운 객체 검출 결과로 트래킹 에러를 더욱 자주 회복시

킬 수 있다. 실험 결과 FlexPatch는 기존의 DBT 시스템에 비해 146%

의 정확도 향상을 달성하며 모바일 기기에서 실시간 고화질 비디오 분석

을 가능케 함을 확인하였다.

주요어 : 객체 검출, 객체 트래킹, 온디바이스 AI, 실시간 비디오 분석

학번 : 2021-22122

	Chapter 1. Introduction
	Chapter 2. Motivational Studies
	Chapter 3. System Overview
	3.1. Our Approach: Tracking-Aware Patching Overview
	3.2. System Architecture

	Chapter 4. Operation Pipeline
	4.1. Continuous Object Tracking
	4.2. Patch Recommender
	4.2.1. Tracking-Failure Patch Recommendation
	4.2.2. New Object Patch Recommendation

	4.3. Patch Aggregator
	4.3.1. Patch Aggregation Policy
	4.3.2. Patch Aggregation Algorithm

	4.4. Patched Object Detector and Renderer

	Chapter 5. Evaluation
	5.1. Experiment Setup
	5.1.1. Implementation
	5.1.2. Evaluation Datasets
	5.1.3. Baselines
	5.1.4. Evaluation Metrics

	5.2. Performance Overview
	5.3. Performance of Patch Recommender
	5.3.1. Tracking-Failure Patch Extraction
	5.3.2. New Object Patch Extraction

	5.4. Patch Aggregator
	5.4.1. Aggregation Latency and Efficiency
	5.4.2. Performance of Various Aggregation Policies

	5.5. Energy Consumption
	5.6. Performance Scalability on Other Mobile Devices

	Chapter 6. Discussion
	6.1. Extensions
	6.2. Limitations and Future Work
	6.2.1. Optimal Patch Resizing Policy
	6.2.2. Automatic Parameter Adaptation

	Chapter 7. Related Works
	7.1. Live Video Analytics Systems
	7.2. Lightweight Object Detection Models
	7.3. On-device Deep Learning Systems
	7.4. ROI-based Object Detection

	Chapter 8. Conclusion
	Bibliography
	Abstract in Korean

<startpage>7
Chapter 1. Introduction 1
Chapter 2. Motivational Studies 5
Chapter 3. System Overview 8
 3.1. Our Approach: Tracking-Aware Patching Overview 8
 3.2. System Architecture 9
Chapter 4. Operation Pipeline 11
 4.1. Continuous Object Tracking 11
 4.2. Patch Recommender 11
 4.2.1. Tracking-Failure Patch Recommendation 12
 4.2.2. New Object Patch Recommendation 14
 4.3. Patch Aggregator 16
 4.3.1. Patch Aggregation Policy 16
 4.3.2. Patch Aggregation Algorithm 17
 4.4. Patched Object Detector and Renderer 19
Chapter 5. Evaluation 20
 5.1. Experiment Setup 20
 5.1.1. Implementation 20
 5.1.2. Evaluation Datasets 20
 5.1.3. Baselines 20
 5.1.4. Evaluation Metrics 21
 5.2. Performance Overview 21
 5.3. Performance of Patch Recommender 23
 5.3.1. Tracking-Failure Patch Extraction 23
 5.3.2. New Object Patch Extraction 24
 5.4. Patch Aggregator 25
 5.4.1. Aggregation Latency and Efficiency 25
 5.4.2. Performance of Various Aggregation Policies 26
 5.5. Energy Consumption 27
 5.6. Performance Scalability on Other Mobile Devices 27
Chapter 6. Discussion 29
 6.1. Extensions 29
 6.2. Limitations and Future Work 29
 6.2.1. Optimal Patch Resizing Policy 29
 6.2.2. Automatic Parameter Adaptation 30
Chapter 7. Related Works 31
 7.1. Live Video Analytics Systems 31
 7.2. Lightweight Object Detection Models 31
 7.3. On-device Deep Learning Systems 31
 7.4. ROI-based Object Detection 32
Chapter 8. Conclusion 33
Bibliography 34
Abstract in Korean 39
</body>

