

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Ginex++: Acceleration Techniques for
Training Billion-scale Graph Neural

Networks on a Single Machine

Ginex++:단일머신에서수십억규모의그래프신경망
학습을가속화하기위한기법

February 2023

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

Sunhong Min

Master’s Thesis of Engineering

Ginex++: Acceleration Techniques for
Training Billion-scale Graph Neural

Networks on a Single Machine

Ginex++:단일머신에서수십억규모의그래프신경망
학습을가속화하기위한기법

February 2023

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

Sunhong Min

Ginex++: Acceleration Techniques for
Training Billion-scale Graph Neural

Networks on a Single Machine

Advisor Jae W. Lee

Submitting a master’s thesis of Engineering

November 2022

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

Sunhong Min

Confirming the master’s thesis written by
Sunhong Min

January 2023

Chair Byung-Ro Moon (Seal)
Vice Chair Jae W. Lee (Seal)
Examiner Gunhee Kim (Seal)

Abstract

Recently, lots of efforts have been made to seek meaningful inspirations from graph

structured datasets using Graph Neural Networks (GNNs). The size of real-world graph

datasets grows over time, and there appear cases where the dataset is too big to fit in a

single machine’s main memory. Lately, several approaches have been made to leverage

high-performance storage devices such as NVMe SSDs to scale-up a single machine for

GNN training. As opposed to distributed training systems, which scale-out multiple machines

for GNN training, disk-based GNN training systems promise equivalent training quality in

a more cost-effective manner with an endurable training time increase. Ginex [35] is the

state-of-the-art SSD-based GNN training system targeted on billion-scale graph datasets on

a single machine. Ginex restructures the conventional GNN training pipeline by separating

sample and gather steps, and thereby realizes a provably optimal cache policy known as

Belady’s algorithm. Although it does a decent job by minimizing the latency arose from

gather, the newly introduced overhead called inspect becomes non-negligible. We apply

two acceleration techniques directly purposed to decrease inspect overhead on top of Ginex,

and name it Ginex++. Two techniques are called neighbor cache compression and k-hop

approximation for changeset precomputation. By evaluating these techniques on four billion-

scale graph datasets, Ginex++ achieves 1.28× higher training throughput on average (1.51×

at maximum) than Ginex.

Keyword: Graph Neural Network Training, Neighbor Cache Compression, k-hop Approxi-

mation

Student Number: 2021-29333

i

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 Introduction 1

2 Background 4

2.1 Graph Neural Networks . 4

2.1.1 GNN Training . 4

2.1.2 Neighborhood Sampling . 5

2.2 Disk-based GNN Training . 6

2.2.1 Merits . 6

2.2.2 Challenges and Solutions . 7

2.3 Ginex . 8

2.3.1 Overview . 8

2.3.2 Inspector-Executor Execution Model 9

2.4 Newly Introduced Overhead: Inspect . 9

2.4.1 Superbatch-level Pipeline . 9

2.4.2 Neighbor Cache Construction . 10

2.4.3 Superbatch Sample . 10

2.4.4 Changeset Precomputation . 11

2.4.5 Inspect Overhead . 11

ii

3 Neighbor Cache Compression 14

3.1 Analysis on Ginex Neighbor Cache . 14

3.2 Compression Schemes . 15

3.2.1 FastPFOR . 15

3.2.2 LZ4 . 16

3.2.3 ZSTD . 17

3.3 New Neighbor Cache Structure . 17

4 k-hop Approximation for Changeset Precomputation 20

4.1 Analysis on Ginex Changeset Precomputation 20

4.2 Detailed Explanation on the Approach . 21

4.3 Impact on Quality of Feature Cache . 23

5 Evaluation 25

5.1 Methodology . 25

5.1.1 System Configurations . 25

5.1.2 Model and Dataset . 25

5.1.3 Comparison Baseline . 26

5.2 Impact of Two Techniques . 27

5.2.1 Impact of Neighbor Cache Compression 27

5.2.2 Impact of k-hop Approximation for Changeset Precomputation . . . 28

5.3 Overall Performance . 28

5.4 Sensitivity Study . 30

5.4.1 Impact of Superbatch size . 30

5.4.2 Impact of Feature Dimension . 31

5.4.3 Impact of Batch Size . 32

6 Related Works 34

7 Conclusion 36

iii

Bibliography 37

국문초록 45

Acknowledgement 46

iv

List of Tables

5.1 System configurations . 25

5.2 Graph datasets . 26

5.3 Comparison of neighbor cache hit ratio and superbatch sample time with or

without compression. The size of the neighbor cache saved in the SSD is

equally 45GB. 27

v

List of Figures

2.1 2-layer GNN training on Node A (reproduced from [35]) 4

2.2 Sampling for a 2-layer GNN (sampling size = (4,2), batch size = 1) (repro-

duced from [35]) . 5

2.3 Ginex training pipeline overview (reproduced from [35]) 8

2.4 Superbatch-level pipeline of Ginex (adopted from [35]) 9

2.5 Inspect ratio over training time for varying sampling sizes and batch sizes . 12

3.1 Ginex neighbor cache structure . 14

3.2 Ginex++ neighbor cache structure . 18

3.3 Pseudocode for retrieving neighbor nodes using compressed neighbor cache 19

4.1 Ginex changeset precomputation . 20

4.2 Ginex++ changeset precomputation (when k = 2) 21

4.3 Feature cache hit ratios of the approach with various ks 23

5.1 Speed-up of Ginex+k-hop over Ginex with varying ks 28

5.2 Normalized training time breakdown of Ginex, Ginex+NCC, Ginex+k-hop,

and Ginex++. Smaller is better. 29

5.3 Training time of Ginex++ normalized to the default superbatch size on

varying superbatch sizes . 31

5.4 Speed-up of Ginex++ over Ginex with varying feature dimensions 31

5.5 Speed-up of Ginex++ over Ginex, and inspect overhead of Ginex++ and

Ginex with varying batch sizes . 33

vi

Chapter 1

Introduction

While conventional application fields of Deep Neural Network (DNN) include images

and texts, it has recently extended its application range to graphs as well. Graph Neural

Network (GNN), a new class of DNN, is well known as a powerful tool [41, 48, 54] in lots

of inference tasks on graph-structured datasets. Examples include node classification [21],

recommendation [34, 44], and link prediction [47]. GNN effectively captures plenty of

relational information that are embedded in input nodes, and exploits them to retrieve

valuable information that are not explicitly exposed.

The primary difference of GNN and conventional DNNs is that nodes (i.e., data samples)

in a graph are closely related to each other; data samples are independent in conventional

DNNs. Therefore, in order to handle one mini-batch in GNN training, not only the feature

vectors of the nodes in the mini-batch but also those of the neighbor nodes of the nodes

in the mini-batch are needed [13, 21]. Here comes the two most fundamental steps in the

GNN training process: sample and gather. During sample step, nodes themselves in

the mini-batch and their neighbor nodes must be retrieved by traversing through the graph

dataset. Then during gather step, feature vectors of those nodes, that are usually sparsely

scattered, must be collected into a contiguous buffer to be prepared for subsequent DNN

processes, such as forward and backward passing. These two steps intrinsically require huge

number of data accesses.

Existing GNN frameworks [14, 40] thus choose to keep the entire graph dataset in the

main memory to avoid excessive overhead from lots of data accesses. For performance

grounds, disk-based GNN training has seldom been studied [23]. However, as the size of the

1

real-world graph datasets grows rapidly, the need to scale-up or scale-out the GNN training

system has been steadily emphasized. The size may reach hundreds of GBs or even a few

TBs, and may exceed the main memory capacity [43, 45]. Several approaches share common

ideas of utilizing more than one machine to address this scalability issue of conventional

in-memory GNN training [15, 45, 49, 51, 53, 55]. Nonetheless, it is difficult to say that above

approaches are the best choices, since they scale the whole hardware components by the

same factor, despite the fact that some of them are certainly underutilized.

Ginex [35], as an alternative, takes advantage of high-performance storage devices such

as NVMe SSDs to present a more cost-effective method. It effectively reduces the amount

of I/O requests, which successfully overcomes serious issues related to NVME SSDs such

as low bandwidth compared to DRAM and lack of byte-addressability. Specifically, Ginex

realizes the optimal cache policy to create the feature cache in the main memory. This is

possible due to the reogranized GNN training pipeline, which consists of sample step

followed by gather step. In traditional GNN training pipeline, sample and gather are

performed in parallel. However, Ginex boldly gives up this parallelism and suggests a new

serialized training pipeline. The first phase, which is called inspect in Ginex, performs

sample for multiple batches, or a superbatch. The second phase performs gather of

feature vectors of the previously sampled nodes, by dynamically managing the feature cache

according to the optimal policy precomputed during the first phase.

Serialization of above two steps enables the realization of the optimal cache policy.

Nonetheless, it is also true that a new overhead is introduced in Ginex due to the solitary

execution of inspect stage. This stage consists of a parallel execution of superbatch

sampling and changeset precomputation, and its time is dependent on the one that takes more

time. According to various settings, such as types of datasets, sampling sizes, and batch

sizes, inspect overhead may increase greatly, threatening the benefit earned from Ginex’s

original training pipeline. It is therefore a reasonable and necessary attempt to lessen the

overhead of inspect. Two possible acceleration techniques for inspect include neighbor

cache compression and k-hop approximation for changeset precomputation. Chapter 3 and

2

Chapter 4 each elaborates on above techniques in detail, respectively.

We evaluate our new techniques, named Ginex++, compared to Ginex on a server with

an 8-core Intel Xeon CPU with 64GB memory and an NVIDIA V100 GPU with 16GB

memory. We use four billion-scale graph datasets whose total size ranges from 373GB to

569GB. According to the evaluation results, Ginex++ reduces the training time by 1.28×

on average (1.51× at maximum) compared to Ginex. The followings summarize our major

contributions:

• We profile Ginex according to various sampling sizes, batch sizes, and datasets, and

show their impact on inspect overhead.

• We introduce two acceleration techniques, neighbor cache compression and k-hop

approximation for changeset precomputation, to reduce inspect overhead in Ginex.

• We implement above techniques on top of Ginex and call it Ginex++, and show the

effectiveness of it by evaluating on four billion-scale datasets that do not fit in memory.

3

Chapter 2

Background

2.1 Graph Neural Networks

A

B D

B D

C

A D

B C

GNN Layer 2:

GNN Layer 1:

: Aggregate : Combine

B

Figure 2.1: 2-layer GNN training on Node A (reproduced from [35])

2.1.1 GNN Training

In a graph-structured dataset, the nodes are connected to each other and these connections

are called the edges. Also, each node has its unique feature vector, representing various infor-

mation about the node. GNNs operate on these graph-structured datasets and their purpose is

to create a new embedding for each node. When GNNs operate well, this new embedding

wisely captures rich relational information of the node. As a result, these embeddings can be

used for various downstream tasks such as node classification and link prediction. On top

of retrieving feature vectors of the target node, or the seed node, GNNs must also retrieve

vectors from the target node’s k-hop in-neighbors as inputs. Some node’s in-neighbors are

nodes that point to that node, while out-neighbors are nodes that are pointed by that node.

4

Each layer in GNN synthesizes the information of the nodes at each hop. Therefore, it is said

that k-layer GNN can reflect up to k-hop in-neighbors [13, 21].

There are two major steps in each layer of GNN: Aggregate and Combine. We

denote hiv as the embedding of node v after the ith layer. The computation is done as follows:

hiv = Combine(Aggregate(
{
hi−1
u | u ∈ N(v)

}
)) (2.1)

N(v) represents the set of neighbor nodes of node v. The features of the incoming nodes

are aggregated into a single vector in Aggregate step. Lots of functions including mean,

max, and sum, can be used for aggregate functions. More complex options are also frequently

used in recent works [38]. In Combine step, the aggregated feature passes a fully connected

layer with a non-linear function. Figure 2.1 shows this whole process with an example of a

2-layer GNN training on Node A.

A

Figure 2.2: Sampling for a 2-layer GNN (sampling size = (4,2), batch size = 1) (reproduced

from [35])

2.1.2 Neighborhood Sampling

The major difference of GNN compared to conventional DNN training is that data samples

in training dataset are closely connected to each other. As a result, even when the batch size

is small, k-hop in-neighbors of the nodes in the batch must be also collected, leading to a

high training cost. Neighborhood sampling comes for rescue to manage the above-mentioned

neighborhood explosion problem. The gist is that only a subset of k-hop in-neighbors of

the seed nodes are sampled, instead of whole of them. GraphSAGE [16], one of the famous

5

works that takes advantage of this approach, randomly samples only a given number of

in-neighbors during each aggregation step. Figure 2.2 is an example of a 2-hop (i.e., 2-layer)

GNN sampling on Node A. Note that the sampling size is given as (4, 2). It means that

the model chooses (at most) four among the neighbor nodes directly connected to the seed

node (i.e., Node A) and (at most) two neighbor nodes are chosen for each of the previously

chosen nodes. There are lots of variants of the approach, which mainly differ in the design

of sampling function such as its sampling size or the method of choosing among multiple

candidates [5, 6, 10, 44]. No more than three layers are chosen in practice. Specifically,

popular options for the sampling size for GraphSAGE are (25, 10), (10, 10, 10), and (15, 10,

5) [31].

2.2 Disk-based GNN Training

2.2.1 Merits

Real-world graph datasets increase by their size over time, easily exceeding over billions of

nodes and tens of billions of edges [43, 45]. The size of a graph dataset is determined by the

summation of the size of node feature vectors and the adjacency matrix. It often exceeds the

main memory capacity of a single machine, reaching up to several hundreds of GBs or even

a few TBs. Scaling-out approach, or distributed training, partitions the dataset into several

portions and allocates them to multiple machines in the cluster. While this is indeed a popular

solution, it is hard to avoid the criticism that the approach is too cost-intensive [50]. Disk-

based GNN training, on the other hand, can wisely exploit high-performance storage devices

like NVMe SSDs as memory extensions to provide a much cost-effective solution [23].

NVMe SSDs are known for their plentiful capacity enough to hold the entire dataset, as well

as much faster read performance than previously released commodities.

6

2.2.2 Challenges and Solutions

Still, there exist several challenges when performing GNN training based on SSD. SSD is

basically a block device where data is transferred in a 4KB chunk. However, sample and

gather steps in GNN training mostly involve fine-grained random accesses of only tens to

hundreds of bytes. Naturally, a naïve usage of SSD on GNN training inevitably results in a

huge I/O penalty due to coarse access granularity and low bandwidth (compared to DRAM).

This fact introduces two major challenges. First, OS page cache, which simply keeps

recently accessed pages, is an inferior choice for such fine-grained random data accesses.

Several approaches instead utilize application-specific in-memory cache as an alternative.

PaGraph [28] statically caches features vectors of nodes with the criteria of descending

order of out-neighbors’ counts. Ginex [35] manages the feature cache dynamically, thereby

successfully achieving the optimal cache policy known as Belady’s cache replacement

algorithm [3]. The algorithm is proven to be optimal by always evicting the data that are not

to be needed for the longest time in the future steps.

The second challenge is that the conventional GNN training pipeline is sub-optimal. The

two data preparation operations of GNN, i.e., sample and gather, run in parallel in the

conventional GNN training system. However, since they are both I/O intensive operations,

the parallel execution results in a resource contention. This is the reason why the time

spent on data preparation is even longer than the lengthy one among sample and gather.

Ginex resolutely discards this parallelism and adopts serial execution. In order to lessen the

overhead of this new design, Ginex samples multiple batches, or a superbatch, at a time, and

designs the optimal feature cache using the information obtained from previously sampled

superbatch. Detailed explanation on Ginex’s design follows in Section 2.3.

7

RuntimePreprocessing

Neighbor
Cache

Construction

Main Loop

Feature
Cache

Initialization

Cache UpdateGather Transfer Compute

Inspect

Changeset
Precomputation

Superbatch
Sample

Figure 2.3: Ginex training pipeline overview (reproduced from [35])

2.3 Ginex

2.3.1 Overview

Figure 2.3 illustrates an overview of Ginex training pipeline. First, during the offline

preprocessing, neighbor cache is constructed with a predefined size. Then, Ginex en-

ters the runtime and starts training by iterating the following three stages: inspect,

feature cache initialization, and main loop. inspect stage consists of two

steps: superbatch sample and changeset precomputation. In superbatch

sample, Ginex samples multiple number of batches, called a superbatch, at once. These

sampled results are used to set up the feature cache policy for the subsequent gather step.

Changeset is merely a sequence of cache updates, i.e., what to evict from and insert into

the cache for each iteration, and during changeset precomputation, changesets for

all iterations are computed beforehand. During the step, it also determines which feature

vectors to prefetch into the feature cache at initialization, which is in turn used in the next

stage called feature cache initialization. Finally, in main loop, Ginex per-

forms i) gather of designated feature vectors, ii) cache update for next iteration, iii)

transfer of gathered feature vectors to GPU, and iv) compute on GPU.

8

2.3.2 Inspector-Executor Execution Model

The core idea of Ginex can be said in short as the application of the inspector-executor

execution model [32, 37]. Fundamentally, the inspector procedure runs at the beginning,

preparing necessary information for the subsequent executor procedure to properly oper-

ate. Ginex adapts the idea of the inspector-executor execution model to enable efficient

application-specific in-memory caching for GNN training. To be specific, inspect stage

corresponds to the inspector, and main loop stage corresponds to the executor. By per-

forming superbatch sample beforehand in inspect stage, Ginex is able to collect

necessary information about the nodes that are to be accessed later in the gather step. This

separation is the key to meet the optimality of the feature cache.

2.4 Newly Introduced Overhead: Inspect

superbatch
sample 0

Host
CPU

GPU changeset
precomp 0

feature
$ init 0

main
loop 0

superbatch
sample 1

feature
$ init 1

main
loop 1

superbatch
sample 2

…
changeset
precomp 1

time

Figure 2.4: Superbatch-level pipeline of Ginex (adopted from [35])

2.4.1 Superbatch-level Pipeline

As shown in Figure 2.3, Ginex reorganizes the conventional GNN training pipeline to realize

the optimal feature cache policy. That is, Ginex separates sample from gather and serial-

izes them, which introduces a new overhead called inspect that consists of superbatch

sample and changeset precomputation. superbatch sample utilizes the pre-

constructed neighbor cache, and it runs in parallel with changeset precomputation.

This superbatch-level pipeline of Ginex is depicted in Figure 2.4. Of course, the runtime

9

stages for the same superbatch should be run in sequence, but they can be pipelined for differ-

ent superbatches. Thus in Ginex, changeset precomputation of the ith superbatch

runs in parallel with the next (the (i+ 1)th) superbatch sample. Since changeset

precomputation mainly runs on GPU and superbatch sample on CPU, they are

suitable candidates for such parallel execution.

2.4.2 Neighbor Cache Construction

As can be seen in Figure 2.3, Ginex constructs a static neighbor cache before the runtime

training process begins. Specifically, Ginex creates and saves the neighbor cache in the SSD

during the preprocessing procedure. Ginex has a criterion for the importance of each node

and attempts to put as many in-neighbors of important nodes as possible in the neighbor

cache. To sort nodes by their importance, Ginex refers to a metric introduced in Aligraph [43]

that assesses the trade-off between the cost and the benefit of caching neighbors of each

node. The metric, to be specific, is defined as the ratio between the number of out-neighbors

and in-neighbors. The grounds are that access frequency (benefit) can be assumed to be

proportional to the number of out-neighbors, and that the cache space overhead (cost) can

be assumed to be proportional to the number of in-neighbors. The neighbor cache, which is

saved in the SSD after creation, is loaded at the beginning of inspect stage, providing aid

for superbatch sample. Note that almost all the memory space excluding the working

buffer for sampling processes in superbatch sample can be used to hold the neighbor

cache.

2.4.3 Superbatch Sample

At the beginning of this step, Ginex loads the preconstructed neighbor cache from the

SSD. Next, multiple sub-processes are launched and they perform sampling for as many

batches as the superbatch size, S. During the sampling process, information about the target

node’s neighbor nodes must be collected. In order to collect them, Ginex first looks up the

neighbor cache and retrieves necessary information from it. It only retrieves the information

10

from the SSD when the desired information does not exist in the cache. The results of

superbatch sampling are saved in the SSD. They consist of two types of data, ids and adj.

ids is an 1-D array of the sampled nodes’ IDs. adj contains the connectivity information

about the sampled nodes. These two types of data are saved in the SSD as separate files

annotated with the corresponding batch index. That is, in total 2× S files (ids_0, ids_1, ...

, ids_(S−1), adj_0, adj_1, ... , adj_(S−1)) are saved. The size of each file varies according

to the characteristics of the dataset, the sampling size, and the batch size, but typically ranges

from several hundred KBs to just a few MBs.

2.4.4 Changeset Precomputation

Changeset is merely a set of cache update information about which feature vectors to insert

into and which to evict from the feature cache. This can be computed every time when

gather is performed, but Ginex chooses to precompute all the changesets beforehand. This

can be done by utilizing the previously saved ids files. The merit of the precomputation is

that the computation can be speedily done in batch on GPU. Each ids file is first loaded on

the CPU memory, and is then streamed to GPU when needed. After necessary computations

done on GPU, the results of the changeset precomputation are sent back to CPU and are

stored in the SSD. The reason for such streaming process is because the total size of ids files

may exceed the GPU memory capacity. Along with changesets, the information (i.e., which

features to keep) about the initial cache state is also derived at this step. As a result, (S + 1)

files are created and saved in the SSD, namely one file for the cache initialization (init)

and S files for the cache update information for every iterations (update_0, update_1, ...

, update_(S − 1)).

2.4.5 Inspect Overhead

The portion of inspect time out of the entire training time may vary according to various

settings: types of datasets, sampling sizes, batch sizes, and so forth. Since we seek to reduce

the time spent on inspect stage, there is more room for improvement when the inspect

11

0.32 0.23 0.20 0.21

0.35 0.24 0.25 0.25

0.50 0.39 0.33 0.28

0.55 0.44 0.37 0.33

0.49 0.40 0.35 0.32

0.51 0.41 0.36 0.32

0.60 0.52 0.45 0.40

0.66 0.57 0.51 0.46

250 500 750 1000 250 500 750 1000

(10, 10, 10)

(15, 10, 5)

(50, 10)

(25, 10)

Batch size

Sa
m

pl
in

g
si

ze
papers Twitter

Inspect ratio
is high

Inspect ratio
is high

Inspect ratio
is low

Changeset
precomputation

is bottleneck

Superbatch
sample

is bottleneck

Figure 2.5: Inspect ratio over training time for varying sampling sizes and batch sizes

ratio is high. We profile the inspect ratio over training time for sampling sizes of (10,

10, 10), (15, 10, 5), (50, 10), and (25, 10), and for batch sizes of 250, 500, 750, 1000. We

use two billion-scale datasets, extended from the existing datasets, ogbn-papers100M [17]

(papers) and twitter-2010 [27] (Twitter). Details on how the extension is made are described

in Section 5.1.

First of all, we can observe that the inspect ratio gets higher as the batch size gets

smaller. In Figure 2.5, within each row, it tends to show thicker color as it goes from right

to left. Generally, smaller batch sizes take more time for training than larger batch sizes,

but there is a lower chance of overfitting than larger batch sizes [18]. Therefore users may

choose adequate batch size according to their needs. In many works [28,39,55], various batch

sizes of few tens to few thousands are used for GNN training. Since there exist computation

and memory requirements barriers when increasing the batch size in GNN training [11],

considerations on small batch sizes must also be made.

Secondly, it can be seen that the inspect ratio becomes higher as the total product of

the sampling size becomes smaller. By multiplying the size in each layer of the sampling

size, we can estimate the approximate overhead of the sampling size. For example, since the

sampling size of (10, 10, 10) means that 3-layers are used and at most ten nodes are sampled

in each layer, we can conjecture that at most 10×10×10=1000 nodes will be sampled per

each target node in such setting. Various sampling sizes such as (10, 10, 10) and (15, 10,

12

5) are used in many GNN works [31, 35], and especially, the sampling size of (25, 10) is

recommended for GraphSAGE [16]. Likewise, it is important to cover various sampling sizes

in GNN training.

Lastly, according to various settings, either changeset precomputation or superbatch

sample can be the bottleneck. Specifically, there is a tendency that superbatch sample

becomes the bottleneck when the total product of the sampling size and the batch size gets

bigger. Conversely, changeset precomputation tends to become the bottleneck when

the total product of the sampling size and the batch size gets smaller. It is obvious that GNN

training can be done on various settings, as users’ needs may vary. Therefore, it is necessary

to aim to reduce both changeset precomputation time and superbatch sample

time in order to effectively reduce the inspect overhead of the system.

13

Chapter 3

Neighbor Cache Compression

3.1 Analysis on Ginex Neighbor Cache

0 1 2 3 4 5 6 7 8
-1 3 -1 0 -1 10 -1 -1 15

2 0 4 6 0 2 4 8 3 1 4 7 3 6 1 2 7 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ginex neighbor cache

of nodes
Ginex neighbor cache table

Figure 3.1: Ginex neighbor cache structure

Figure 3.1 shows the structure of Ginex’s neighbor cache table and neighbor cache, and

how they interact. The two major roles of the cache table and the cache are to i) tell if the

given node’s neighbors are present in the cache or not, and to ii) correctly return the list

of the given node’s neighbor nodes if they exist in the cache. To do so, Ginex uses direct

addressing method. The neighbor cache table is an 1-D array having as many elements as

the number of nodes. Each element of the table represents the index to refer to in the cache

if its value is larger than -1. If its value is equal to -1, it indicates that the corresponding

node’s neighbor nodes are not present in the cache, and must be retrieved from the SSD. In

Figure 3.1, the value at the 0th, 2nd, 4th, 6th, and 7th element of the cache table is -1. This

indicates that the neighbor nodes of Node 0, 2, 4, 6, and 7 are not retrievable from the cache

and must be retrieved from the SSD. This successfully accomplishes the first role.

For the cache table element whose value is larger than -1, it is treated as the index to

14

refer to within the cache. The elements of the cache pointed by the cache table involve the

number of neighbors for the corresponding node, and the IDs of the neighbors listed from

the next element. For example, in Figure 3.1, the value at the 5th element of the cache table

is 10, which means that the information about the neighbor nodes of Node 5 starts from the

10th element of the cache. Since the value of the 10th index of the neighbor cache is 4, it

means that the number of neighbors of Node 5 is four. Therefore, we can assume that the

actual IDs of the neighbors are listed in the next four consecutive entries, i.e., from the 11th

index to the 14th index of the cache. This is how Ginex performs its second role.

It is obvious that when there is a cache miss, the system suffers from a massive I/O

penalty by traveling down to the SSD. The cost of such cache miss is severe, so it is

effective to pack as many information about the neighbor nodes as possible in the cache.

We profile Ginex’s neighbor cache hit ratio on four billion-scale datasets, extended from

the existing datasets, ogbn-papers100M [17] (papers), ogbn-products [17] (products), com-

friendster [27] (Friendster), and twitter-2010 [27] (Twitter). Detailed explanations on the

datasets are presented in Section 5.1. As a result, Ginex’s neighbor cache hit ratio records

0.73, 0.43, 0.80, and 0.89 on papers, products, Friendster, and Twitter datasets, respectively.

It can be seen that especially for particularly dense (i.e., having relatively lots of edges

per node) datasets like products, the neighbor cache hit ratio is quite low. One simple yet

powerful way to pack as many information in the limited size of the cache is to compress its

contents. We therefore explore several candidates for the compression scheme.

3.2 Compression Schemes

3.2.1 FastPFOR

FastPFOR [25] is a famous C++ library for integer compression schemes. The library

finds chances to utilize SIMD instructions whenever possible. Also, it can decompress at a

rate of 15GB/s, which is considerably faster than generic compression schemes. However,

FastPFOR’s application is limited to the compression of arrays of 32-bit integers, and is

15

specially designed for the case where most integers are small. This is not the case for Ginex,

where the elements of the neighbor cache table and the neighbor cache are 64-bit integers

whose values may be arbitrarily big.

First of all, it is essential to use 64-bit integers for the elements in the neighbor cache

table. The maximum possible value of the elements of the cache table is the number of

entries of the cache (minus one to be precise). Since we set the size of the neighbor cache as

big as several tens of GBs to handle billion-scale datasets, the number of entries of the cache

easily exceeds the maximum value that can be represented by a 32-bit integer (i.e., 231-1).

Secondly, the maximum possible value of the elements of the cache is the larger one

among the two: the number of the nodes, and the largest of the number of neighbors of

each node. In practical settings, it is nearly impossible for the latter to exceed the maximum

value that can be represented by a 32-bit integer. The problem is the former, since we target

billion-scale datasets whose total size may easily exceed hundreds of GBs or even a few

TBs. Although the largest number of nodes among the datasets we use to evaluate is about

444.24M, it is unsafe to claim that this is always the case. When the size of the dataset gets

bigger, the number of the nodes may exceed the maximum value that can be represented by a

32-bit integer. For these reasons, we conclude that FastPFOR is not appropriate for our case.

3.2.2 LZ4

LZ4 [7] is a generic compression algorithm that is scalable with multi-core CPU. It is known

for its extremely fast decompression speed of multiple GB/s per core. Specifically, according

to the benchmark test introduced in [9], LZ4 (v1.9.3) records a compression ratio of 2.10, a

compression speed of 740MB/s, and a decompression speed of 4500MB/s. At first, we regard

this scheme appropriate for our case since two important features were high compression

ratio and fast decompression speed. The compression speed is not critical for our case as the

neighbor cache construction is done before the runtime training process begins. However,

when we apply this scheme on products dataset, the compression ratio on the neighbor

cache records 1.30 (the neighbor cache of 59GB compresses to 45GB). This discrepancy

16

in compression ratio stems from the fact that the scheme is a generic approach, which does

not take into consideration that the target bytes are actually a sequence of integers. The solo

superbatch sample time records 1.11× improvement after the compression scheme is applied.

We regard such speed-up quite deficient, and seek for other compression schemes with higher

compression ratio.

3.2.3 ZSTD

ZSTD [9], a short for Zstandard, is a fast lossless compression algorithm created by Meta

(former Facebook). It is known to be supported by a fast entropy stage introduced in Huff0

and FSE library [8]. One outstanding aspect of the scheme is a notably high compression ratio.

According to the benchmark test introduced in [9], ZSTD (v1.5.1) records a compression

ratio of 2.89, a compression speed of 530MB/s, and a decompression speed of 1700MB/s.

Note that the test was done on the same benchmark of LZ4 (v1.9.3) introduced above.

Compared to LZ4, its compression speed and decompression speed are bit slower, but the

compression ratio is much better. We consider ZSTD as a decent candidate for our case for

its high compression ratio. The decompression speed is inferior than that of LZ4, but we plan

to decompress multiple byte-blocks in parallel by taking advantage of multi-processing. As a

result, when we apply the scheme on the same products dataset, the compression ratio on

the neighbor cache records 1.92 (the neighbor cache of 86GB compresses to 45GB). As in

LZ4, it shows an inferior compression ratio than that of the benchmark, since ZSTD is also

not specifically targeted for compressing integers. Yet, we believe that ZSTD approach is

more competitive than other aforementioned approaches. The superbatch sample time alone

records 1.65× improvement after the compression scheme is applied.

3.3 New Neighbor Cache Structure

Figure 3.2 shows Ginex++’s neighbor cache table and the compressed neighbor cache, and

how they successfully deliver the two major roles. As a reminder, the two roles of the cache

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
-1 X 2 3 -1 X 0 2 -1 X 5 2 -1 X -1 X 7 2

80 23 92 27 12 43 56 34 53
0 1 2 3 4 5 6 7 8

Compressed neighbor cache

of nodes X 2
Ginex++ neighbor cache table

Node 2Node 0 Node 1 …

Figure 3.2: Ginex++ neighbor cache structure

table and the cache are to i) notify if the target node’s neighbors exist in the cache or not,

and to ii) precisely return the list of the target node’s neighbor nodes if they are present in

the cache. We determine to apply the compression scheme per single list of neighbor nodes

in the neighbor cache. Ginex’s neighbor cache is nothing but a sequence of information

about corresponding nodes’ neighbor nodes. The information consists of the number of

the neighbor nodes, and the actual IDs of the neighbor nodes. We apply the compression

scheme for each sequence of information. After applying the scheme multiple times, we

simply concatenate the compressed results into an 1-D array. We call this concatenation of

the compressed results the compressed neighbor cache.

We propose a novel neighbor cache table structure, whose size doubled compared to

Ginex’s cache table. In Figure 3.2, there are two entries per each node in the cache table. The

first entry among them indicates the index to refer to in the cache if its value is larger than -1.

If its value is -1, it means that the target node’s neighbor nodes are not present in the cache,

and should be found from the SSD. The role of the first entry is same as Ginex’s neighbor

cache table. The second entry, which is newly added, indicates the compressed size of the

corresponding node’s neighbor nodes within the compressed neighbor cache. If the target

node’s neighbor nodes are not present in the cache, this newly added entry may contain any

value, i.e., a don’t care value. For example, Node 1’s neighbor nodes’ information starts

from the 2nd index within the compressed neighbor cache, and the length of the compressed

18

1 # Below for loop runs on multi−process using num_workers of workers in PyTorch DataLoader

2 n_id_to_neighbor_nodes = {}

3 for n_id in batch:

4 start_offset = neighbor_cache_tbl[n_id * 2]

5 if start_offset != −1: # indicates cache hit

6 compressed_size_in_bytes = neighbor_cache_tbl[n_id * 2 + 1]

7 decompressed_neighbor_nodes = ZSTD_decompress(neighbor_cache + start_offset, compressed_size_in_bytes)

8 n_id_to_neighbor_nodes[n_id] = decompressed_neighbor_nodes

9 else: # indicates cache miss

10 neighbor_nodes = Read_from_SSD(n_id)

11 n_id_to_neighbor_nodes[n_id] = neighbor_nodes

Figure 3.3: Pseudocode for retrieving neighbor nodes using compressed neighbor cache

information is 3-bytes. We can know that Node 2’s neighbor nodes’ information is not present

in the cache, since the value of the cache table at the 4th index is -1. In this case, the next

element (i.e., the value at the 5th index) may contain any value. This successfully delivers

the first role.

To discuss how Ginex++ fulfills the second role, please refer to Figure 3.3. It shows how

the information about the target node’s neighbor nodes are correctly retrieved. For example,

for Node 5 in Figure 3.2, since the start_offset is 5, we know that there is a cache hit.

Then, we retrieve the compressed size of the information of the neighbor nodes by reading

the next entry in the cache table, which is 2 (at the 11th index). Therefore, we read two

consecutive bytes beginning from the 5th index of the compressed neighbor cache, i.e., the

5th and 6th index. Then, as presented in line 7 of Figure 3.3, decompression method of the

chosen scheme is used to return a list of the neighbor nodes. Note that the previously earned

compressed size is used as an argument. This is how Ginex++ performs the second role.

19

Chapter 4

k-hop Approximation for Changeset Precomputation

4.1 Analysis on Ginex Changeset Precomputation

0 1 2 3 4 5
(3, 4) (4, 2) (0, 3) (0, 4) (3, 1) (1, 3)

evict 3
insert 2

[3, 4] [2, 4] [0, 4] [0, 4] [0, 1] [3, 1]
2 2 1 2 1 2
0 0 1 0 1 0# of misses:

cache update:

cache state:
of hits:

n_ids:
iteration:

evict 2
insert 0 do nothing evict 4

insert 1
evict 0
insert 3

Figure 4.1: Ginex changeset precomputation

Along with superbatch sample, changeset precomputation is also an important step

that takes part in inspect stage. The purpose of this step is to calculate the cache update

information for future iterations, and save them in the SSD. Ginex accomplishes the optimal

cache policy when calculating the changeset, since it knows which node IDs, or n_ids, are

accessed in which iterations in advance. As can be seen in Figure 2.4, such information is

available in advance, since Ginex constructs the training pipeline to guarantee that the ith

superbatch sample is completed before the ith changeset precomputation begins. Therefore,

at the point of changeset precomputation, information about the previously sampled nodes

for S batches is ready.

Figure 4.1 shows the inputs and the results of Ginex’s changeset precomputation. The

inputs are given as n_ids for each iteration. The results are the cache update information

and the initial cache state information. Detailed algorithm about how Ginex successfully

20

outputs such optimal cache update information is introduced in the original paper [35]. Also,

our new approach does not alter the original algorithm, so we don’t spare space for the

explanation on it.

In Figure 4.1, we assume that the superbatch size, or S, is equal to 6, and at most one

entry can be evicted from and inserted into the cache at each iteration. Also, we assume

that the cache has two entries. Ginex successfully delivers the provably optimal Belady’s

algorithm [3] by evicting the data that will not be used for the longest distance, and filling

them with the data that are accessed in earlier iterations within the current superbatch. As a

result, Ginex records ten cache hits and two cache misses in the example, which is a cache

hit ratio of 0.83. Ginex computes the changesets by simulating the cache state (i.e., which

node IDs are present in the cache) of every iteration; it compares the difference between

the two consecutive cache states. This guarantees that the optimal cache policy is met, but

involves quite a lot of computations. Although Ginex successfully solves this problem in

O(S) complexity using its unique approach, it still requires three passes over the S access

traces. This computation overhead could be severe when S becomes bigger.

4.2 Detailed Explanation on the Approach

0 1 2 3 4 5
(3, 4) (4, 2) (0, 3) (0, 4) (3, 1) (1, 3)

(3, 4, 2) (0, 3, 4) (3, 1)

[3, 4] [3, 4] [3, 1]
2 1 1 1 2 2
0 1 1 1 0 0# of misses:

do nothing
evict 4
insert 1cache update:

cache state:

k-consecutive
n_ids:

of hits:

n_ids:
iteration:

Figure 4.2: Ginex++ changeset precomputation (when k = 2)

As mentioned above, Ginex realizes the optimal cache policy by comparing the two

consecutive cache states. This approach guarantees to realize the optimal cache policy, but it

21

takes lots of time for the computation. We thus propose to approximate the calculation of the

changeset to alleviate the computation overhead. To be specific, we combine k consecutive

n_idss, and use them to simulate the cache state instead. As we combine more n_idss

(i.e., increase the value of k), it means that the cache update information will be calculated

more sparsely, thereby gradually reducing the time needed for the calculation. However, the

quality of the cache will be negatively affected more as k increases, so there is a trade-off

between the two. We seek to come up with an adequate k, that effectively reduces the time

spent on changeset precomputation, while not much harming the feature cache quality. We

denote this approach by k-hop approximation for changeset precomputation.

Figure 4.2 shows an example of how Ginex++ works with k=2, when receiving the same

n_idss as inputs as in Figure 4.1. First, k consecutive n_idss are combined to create ⌈S/k⌉

new n_idss. Then, we simply treat these new n_idss as if they are original n_idss, and

perform further steps identically. Specifically, we use Ginex’s original algorithm to return the

cache update information in three passes of the access traces. Now, however, the length of

the access traces becomes ⌈S/k⌉ instead of S, so the calculation overhead is approximately

reduced by 1/k. Ginex++ records nine cache hits and three cache misses, which is a cache

hit ratio of 0.75. Previously when Ginex calculates the optimal cache update information

in Figure 4.1, the cache hit ratio records 0.83. Likewise, by setting k bigger than 1, there

may be some negative impact on the cache quality. Note that Ginex’s original approach is

identical to Ginex++ with k equal to 1. The negative impact on the feature cache may lead

to some delay in the future gather step, which uses the feature cache to retrieve feature

vectors of the demanded nodes. In order to take full advantage of the new approach, we must

attempt to i) increase k to reduce the time spent for the computation and at the same time, ii)

keep k small enough to promise decent feature cache quality.

22

0.2

0.4

0.6

0.8

1
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

Fe
at

ur
e

C
ac

he
 H

it
R

at
io

 fo
r

pa
pe
rs

D
at

as
et

Iteration

0.2

0.4

0.6

0.8

1

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

Fe
at

ur
e

C
ac

he
 H

it
R

at
io

 fo
r

Fr
ie
nd
st
er

D
at

as
et

Iteration

k=1 k=128 k=256

Figure 4.3: Feature cache hit ratios of the approach with various ks

4.3 Impact on Quality of Feature Cache

We measure the feature cache hit ratio on papers and Friendster dataset with various ks.

Figure 4.3 shows the feature cache hit ratio over iterations for various ks. For the clearness

of the figure, we only depict the results of k with value of 1, 128, and 256. When k is set to 1,

the feature cache is updated every iteration, following the optimal cache policy. Thus, its

feature cache hit ratio can be regarded as the highest possible hit ratio reachable. As k gets

bigger, the interval between each cache update is also elongated. Therefore, the cache quality

becomes sub-optimal to some degree. As can be seen in Figure 4.3, as k grows, the feature

cache hit ratio expresses a stair-like tendency. Its update cycle is prolonged, and the cache

shows slightly more cache misses during the prolonged periods.

However, the absolute cache hit ratio degradation itself is not that severe, as can be seen

23

in the figure; even for the result when k is as big as 256, the hit ratio curve is not that far away

from that of when k is equal to 1. Rather, some other practical conditions such as memory

capacity are more crucial than the cache hit ratio when determining the adequate value of k.

As k increases, Ginex++ must make unions of more n_idss, and keep the unioned results on

GPU memory to perform changeset precomputation. Also, Ginex++ must keep k consecutive

batch inputs in CPU memory for each cache update (which happens every k iterations) to be

made. Therefore, it is impossible to keep increasing k due to such GPU and CPU memory

capacity limitations. In addition, keeping many batch inputs in CPU memory can result in

excessive use of swap space, which causes severe and negative impact on the performance.

Hence, in order to take all the above into considerations, running a short profiling for one

small superbatch for various ks may be helpful. Details on how an adequate k can be selected

are discussed in Section 5.2.2.

24

Chapter 5

Evaluation

5.1 Methodology

Table 5.1: System configurations
CPU Intel Xeon Gold 6244 CPU 8-core @ 3.60 GHz

GPU NVIDIA Tesla V100 16GB PCIe

Memory Samsung DDR4-2666 64GB (32GB × 2)

Storage Samsung PM1725b 8TB PCIe Gen3 8-lane

S/W Ubuntu 18.04.5 & CUDA 11.4 & Python 3.6.9 & PyTorch 1.9

5.1.1 System Configurations

Table 5.1 summarizes the system configurations. We evaluate Ginex and the new techniques

on a Gigabyte R281-3C2 server with an 8-core CPU (16 logical cores with hyper-threading),

an NVIDIA V100 GPU, and a Samsung PM1725B NVMe SSD.

5.1.2 Model and Dataset

We adopt a widely used 2-layer GraphSAGE [16] for the evaluation. Specifically, the sampling

size is set to (25,10) and the model has a hidden dimension of 256. The batch size is by

default set to 1000. We extend the following four real-world datasets for the evaluation: ogbn-

papers100M (papers) [17], ogbn-products (products) [17], com-friendster (Friendster) [27],

and twitter-2010 (Twitter) [27]. We follow the methodology in [23] to extend the datasets.

To be specific, we use a graph expansion technique [4] which applies Kronecker graph

25

Table 5.2: Graph datasets

Original Extended

Dataset nodes edges nodes edges size

ogbn-papers100M 111.06M 1.62B 444.24M 14.24B 569GB

ogbn-products 2.45M 61.86M 220.41M 20.24B 388GB

com-friendster 65.61M 1.81B 262.43M 15.48B 393GB

twitter-2010 41.65M 1.47B 249.91M 14.63B 373GB

theory [26] to preserve the intrinsic characteristics of the original graph. Table 5.2 shows

the details about the original and the extended datasets. For the training set, we randomly

choose 10% of the nodes. The working set, however, may involve the entire feature vectors

since in GNN training, the feature vectors of not only the target nodes in the training set but

also those of their k-hop neighbors are needed. The feature dimension of all datasets is set

to 256 by default. Also, the entire datasets are stored in the SSD during the training, except

the pointer array in a CSC-formatted adjacency matrix, which is kept in the main memory.

The size of the pointer array is only about a few GBs and at the same time is very frequently

accessed, so we choose to follow the common design.

5.1.3 Comparison Baseline

We choose Ginex [35] as our baseline. Ginex is compared to Ginex+NCC (Ginex+Neighbor

Cache Compression), Ginex+k-hop (Ginex+k-hop Approximation for Changeset Precompu-

tation), and Ginex++. Ginex+NCC is Ginex equipped with the neighbor cache compression

technique described in Chapter 3. Ginex+k-hop represents Ginex equipped with the k-hop

approximation for changeset precomputation, as described in Chapter 4. Finally, Ginex++

is the mixture of above two techniques, the neighbor cache compression and the k-hop

approximation for changeset precomputation, on top of Ginex. We show the effect of each

technique by comparing all four of them in Section 5.3. After that, we directly compare

Ginex with Ginex++ in the rest of the evaluations to demonstrate the effect of the mixture

26

of the two acceleration techniques introduced in this work. We follow Ginex’s guideline to

decide the superbatch size: guaranteeing that the total size of runtime files falls within 3% of

the target size (100GB). Specifically, the superbatch size is set to 16000, 8800, 15600, and

21600 for papers, products, Friendster, and Twitter, respectively.

5.2 Impact of Two Techniques

We first evaluate each of the two techniques to quantify their impact. Especially for Ginex+k-

hop, we provide grounds for choosing an adequate k for practical usages.

5.2.1 Impact of Neighbor Cache Compression

Table 5.3: Comparison of neighbor cache hit ratio and superbatch sample time with or

without compression. The size of the neighbor cache saved in the SSD is equally 45GB.
Dataset papers products Friendster Twitter

Non-compressed
Neighbor cache hit ratio 0.73 0.43 0.80 0.89

Superbatch sample time (s) 331.93 690.51 250.06 251.18

ZSTD-compressed
Neighbor cache hit ratio 0.81 0.67 0.93 0.97

Superbatch sample time (s) 267.44 419.21 216.69 248.61

In order to confirm the effect of the neighbor cache compression, we measure neighbor

cache hit ratio and solo superbatch sample time with and without compression. The results

are organized in Table 5.3. We only run a single superbatch to report the time. For all the four

datasets, superbatch sample time reduces after the compression scheme is applied. Especially

for products dataset, the speed-up of superbatch sample time records the highest (1.65×).

The reason is because neighbor cache hit ratio improves the most, from 0.43 to 0.67. products

dataset has the biggest edges-per-node value among the four datasets, meaning that it is

relatively more difficult for the neighbor cache to hold lots of information about target nodes’

neighbor nodes. For this reason, its neighbor cache hit ratio is quite low before compression.

27

5.2.2 Impact of k-hop Approximation for Changeset Precomputation

0.9
1.0
1.1
1.2
1.3

1 2 4 8 16

Sp
ee

d-
up

ov

er
 G

in
ex

0.9

1.0

1.1

1 2 4 8 16

0.9
1.0
1.1
1.2
1.3

1 2 4 8 16

Sp
ee

d-
up

ov

er
 G

in
ex

papers products
k

0.8
1.0
1.2
1.4
1.6

1 2 4 8 16

Friendster Twitter
k

Figure 5.1: Speed-up of Ginex+k-hop over Ginex with varying ks

We evaluate our second technique by varying the value of k, and further provide a

guideline for choosing an adequate k. Figure 5.1 shows speed-up of Ginex+k-hop over Ginex

with ks varying from 1, 2, 4, 8, and 16. Note that Ginex+k-hop with k equal to 1 is same as the

original Ginex. There is a gain in speed-up as k increases up to some point. For Ginex+k-hop

and Ginex++, it is essential to choose proper k for applying k-hop approximation technique

for changeset precomputation. We suggest to pick k as 8, since the gain from increasing k

quickly diminishes after such point. Therefore we use k as 8 for Ginex+k-hop and Ginex++

in all of the following experiments.

5.3 Overall Performance

We first provide normalized training time breakdown of Ginex, Ginex+NCC, Ginex+k-

hop, and Ginex++ for the four datasets. Figure 5.2 demonstrates the results. There are

six components in the training time: inspect, switch, data preparation, cache, transfer, and

compute. Inspect time is the time spent for the parallel execution of superbatch sample

and changeset precomputation. Switch time is the time corresponding to the feature cache

28

0
0.2
0.4
0.6
0.8

1

G
in

ex

G
in

ex
+N

C
C

G
in

ex
+k

-h
op

G
in

ex
++

G
in

ex

G
in

ex
+N

C
C

G
in

ex
+k

-h
op

G
in

ex
++

G
in

ex

G
in

ex
+N

C
C

G
in

ex
+k

-h
op

G
in

ex
++

G
in

ex

G
in

ex
+N

C
C

G
in

ex
+k

-h
op

G
in

ex
++

N
or

m
al

iz
ed

 tr
ai

ni
ng

 tim
e

inspect switch data prep cache transfer compute

papers products Friendster Twitter

Figure 5.2: Normalized training time breakdown of Ginex, Ginex+NCC, Ginex+k-hop, and

Ginex++. Smaller is better.

initialization. Data preparation time is the time for gather step and runtime file loading. Cache

time refers to the time needed for cache update, and transfer time is the time needed for data

communication between CPU and GPU. Lastly, compute time refers to the conventional

GNN training computation for forward pass and backward pass.

For all the four datasets, Ginex++ shows superior performance. Ginex++ records the

speed-ups of 1.29×, 1.11×, 1.25×, and 1.51× over Ginex for papers, products, Friendster,

and Twitter, respectively. These performance gains stem from two techniques, neighbor

cache compression and k-hop approximation for changeset precomputation.

For papers, Friendster, and Twitter datasets, major portions of the performance gains

come from k-hop approximation. The reason for this is because changeset precomputation

step is the bottleneck in inspect stage; it takes more time than superbatch sample. Therefore,

by effectively shortening the time spent for changeset precomputation via k-hop approxima-

tion, inspect time is greatly reduced. To be specific, Ginex+k-hop shows 2.60×, 2.77×, and

4.14× speed-up in inspect time for papers, Friendster, and Twitter datasets, respectively. As

a result, the portions of inspect time of the entire training time decrease from 0.33, 0.32, and

0.45 to 0.15, 0.15, and 0.17, for papers, Friendster, and Twitter datasets, respectively.

29

For products dataset, on the other hand, most of the performance gains come from

neighbor cache compression. For this case, superbatch sample is the bottleneck in inspect

stage. Thus, by applying neighbor cache compression, Ginex+NCC makes inspect faster

than Ginex by 1.50×. This reduces the portion of inspect time of the entire training time

from 0.31 to 0.24.

It is not clearly shown in the figure, but a synergetic effect can exist between two

techniques. If one technique shortens one part of inspect, and if the other part becomes

the bottleneck in consequence, then applying the other technique can further improve the

performance. For instance, when superbatch sample is the bottleneck, applying neighbor

cache construction can alleviate the time spent on it. As a result of such application, it is

fully possible that changeset precomputation becomes the new bottleneck. Then, applying

k-hop approximation will very likely reduce the time spent on changeset precomputation,

eventually resulting in further reduction in inspect time. For such scenarios, applying both

techniques will result in synergetic effect.

5.4 Sensitivity Study

We perform several sensitivity studies on following three parameters that can significantly

affect the performance: superbatch size, feature dimension, and batch size.

5.4.1 Impact of Superbatch size

We evaluate Ginex++ with different superbatch sizes in Figure 5.3. Specifically, we make

adjustments to change the target runtime file size from 25GB to 100GB with the gap of 25GB.

The training time is normalized to that of the default setting (i.e., when the target runtime

file size is 100GB). Overall, it shows a consistent trend that larger superbatch size leads to

better performance. The main reason for this is, as mentioned in the original paper [35],

because the switch time, which is constant, is amortized. Nonetheless, it can also be seen

that increasing the superbatch size leads to diminishing returns at certain point. This trend is

30

0.9
1.0
1.1
1.2

25 50 75 100N
or

m
al

iz
ed

tra

in
in

g
tim

e

0.9
1.0
1.1
1.2

25 50 75 100

papers products
Target runtime file size (GB)

0.9
1.0
1.1
1.2

25 50 75 100N
or

m
al

iz
ed

tra

in
in

g
tim

e

0.9
1.0
1.1
1.2

25 50 75 100

Friendster Twitter
Target runtime file size (GB)

Figure 5.3: Training time of Ginex++ normalized to the default superbatch size on varying

superbatch sizes

also similar to that of Ginex, and therefore is safe to use the same default setting as in Ginex.

5.4.2 Impact of Feature Dimension

1.0
1.4
1.8

64 128 256 512

Sp
ee

d-
up

ov

er
 G

in
ex

1.0
1.2
1.4
1.6

64 128 256 512

1.0
1.4
1.8
2.2

64 128 256 512

Sp
ee

d-
up

ov

er
 G

in
ex

papers products
Feature dimension

1.2
1.6
2.0
2.4

64 128 256 512

Friendster Twitter
Feature dimension

Figure 5.4: Speed-up of Ginex++ over Ginex with varying feature dimensions

Figure 5.4 shows the speed-up of Ginex++ over Ginex with varying feature dimensions.

We run experiments by varying feature dimensions to ×1/4, ×1/2 and ×2 of the default

31

setting (256). For all the four datasets, Ginex++ ourperforms Ginex. There is also a common

trend, that the speed-up gets greater as the feature dimension becomes smaller. This can

be explained by the inspect ratio over the entire training time. As the feature dimension

becomes bigger, the time consumed for gathering feature vectors is increased almost linearly.

On the other hand, the time spent on inspect is shortened as the feature dimension becomes

bigger; superbatch sample time is not affected by the feature dimension, but changeset

precomputation time is reduced. This is because there is lesser chance for the feature cache

to hold more feature vectors as the feature dimension grows. For example, when the feature

dimension is 512, only about 5% of the whole feature data can be kept in Ginex’s feature

cache [35]. Thus, the overhead of changeset precomputation is alleviated as the feature

dimension gets bigger. Combined with the increase of gather time and the decrease of

changeset precomputation time, the effect of making the insepct ratio small is magnified as

the feature dimension lessens. As mentioned throughout the work, if the inspect ratio is high,

there is more chance for Ginex++ to reduce the training time using its two techniques. This

is why Ginex++ shows even better performance for the cases where the feature dimensions

are smaller.

5.4.3 Impact of Batch Size

Figure 5.5 demonstrates the impact of batch size. Ginex++ is faster than Ginex in all the

cases. Not only that, it shows a trend that for smaller batch sizes, Ginex++ records much

better performance. The major reason for this is because of the high inspect ratio when the

batch size is small. As stated in the original paper [35], as the batch size decreases, changeset

precomputation overhead can be the new bottleneck. The time for changeset precomputation

reduces way slower than other stages, that scale down almost proportionally. Therefore,

k-hop approximation is very effective for such case. For example, when batch size is 250,

the inspect overhead ratio is reduced by 2.05×, 1.76×, 2.15×, and 2.17× in Ginex++ than

Ginex for papers, products, Friendster, and Twitter datasets, respectively.

32

1.2
1.4
1.6
1.8
2.0

250 500 750 1000

Sp
ee

d-
up

ov

er
 G

in
ex

1.0

1.2

1.4

250 500 750 1000

1.2
1.4
1.6
1.8
2.0

250 500 750 1000

Sp
ee

d-
up

ov

er
 G

in
ex

1.4

1.6

1.8

250 500 750 1000

Batch size

Batch size

papers products

Friendster Twitter

0
20
40
60
80

250 500 750 1000

In
sp

ec
t

ov
er

he
ad

 (%
)

0
20
40
60

250 500 750 1000

0
20
40
60
80

250 500 750 1000

In
sp

ec
t

ov
er

he
ad

 (%
)

0
20
40
60

250 500 750 1000

Ginex (inspect overhead) Ginex++ (inspect overhead)Ginex++ (speed-up)

Figure 5.5: Speed-up of Ginex++ over Ginex, and inspect overhead of Ginex++ and Ginex

with varying batch sizes

33

Chapter 6

Related Works

Scaling-up of Other Graph Workloads. Lots of proposals have been made to target the

disk-based graph processing on a single machine on large datasets [19, 22, 29, 33, 36, 52, 56].

GraphChi [22] utilizes a technique called parallel sliding windows to enable graph workloads

operate on a PC. X-stream [36] achieves to reduce the number of disk accesses by using an

edge-centric method. FlashGraph [52] and MOSAIC [29] introduce their own graph data

structure. Marius [33] targets graph embedding learning by partition caching and buffer-

aware data orderings. These approaches take advantage of storage devices to substitute

cluster-based approach. However, their focus is not on GNN workloads, rather on other graph

processing workloads.

Scaling DNN Training with SSD. There have been proposals to exploit SSD to scale

large-scale DNN training, but not GNN [2, 20, 30]. Dragon [30] and FlashNeuron [2] treat

direct storage access as a secondary support for GPU memory. Behemoth [20] replaces

HBM DRAM with flash memory and thereby proposes a DNN training accelerator. These

works attempt to overcome GPU memory capacity wall in large-scale DNN training. This

work, however, focuses on CPU memory capacity wall in GNN training for large-scale graph

datasets.

Integer Compression Schemes. There are many compression schemes for integers, intro-

duced to alleviate the storage cost [1, 12, 42, 57]. Binary packing [24] first calculates the

minimum number of bits needed to represent the largest value in a block. Then, it is used to

represent all the remaining values in the block. VariableByte [12] uses multiples of 7 bits to

represent the actual value itself, and one bit for every 7 bits to indicate the end of every integer.

34

PForDelta [57] finds the smallest possible bits to represent the majority (e.g., 80%) of a block

of multiple deltas (gaps). Simple16 [46] and Simple8b [1] both try to store as many integers

as possible inside a given size of the array. They each uses an unique table of combinations

of the values when storing the integers. Although Ginex++ uses the state-of-the-art generic

compression scheme for neighbor cache compression, further performance enhancement can

be made if a compression scheme specially targeted for integers is applied. Yet, since above

schemes are designed for 32-bit integers, some modifications must be made to handle 64-bit

integers. We leave this as a future work.

35

Chapter 7

Conclusion

Real-world graph datasets can scale up to several hundreds of GBs or even a few TBs, easily

exceeding the main memory capacity. Ginex proposes a state-of-the-art SSD-enabled GNN

training system on a single machine, in contrast with popular yet costly distributed training

system. However, Ginex inevitably introduces a new overhead called inspect, in order

to achieve the optimal in-memory feature caching. This overhead can be a potential and

significant burden to the system according to various sampling sizes, batch sizes, types of

datasets, and so forth. We thus propose Ginex++, which applies two acceleration techniques

on top of Ginex. The two techniques are neighbor cache compression and k-hop approxi-

mation for changeset precomputation, directly targeted to reduce inspect overhead. As a

result, Ginex++ successfully achieves 1.28× higher training throughput on average (1.51×

at maximum) than Ginex, without any change in the training quality.

36

Bibliography

[1] V. N. Anh and A. Moffat, “Index compression using 64-bit words,” Software: Practice

and Experience, 2010.

[2] J. Bae, J. Lee, Y. Jin, S. Son, S. Kim, H. Jang, T. J. Ham, and J. W.

Lee, “Flashneuron: Ssd-enabled large-batch training of very deep neural

networks,” in 19th USENIX Conference on File and Storage Technologies

(FAST 21). USENIX Association, Feb. 2021, pp. 387–401. [Online]. Available:

https://www.usenix.org/conference/fast21/presentation/bae

[3] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM

Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[4] F. Belletti, K. Lakshmanan, W. Krichene, Y.-F. Chen, and J. Anderson, “Scal-

able realistic recommendation datasets through fractal expansions,” arXiv preprint

arXiv:1901.08910, 2019.

[5] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional networks

with variance reduction,” in International Conference on Machine Learning, 2018, pp.

941–949.

[6] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph convolutional net-

works via importance sampling,” in International Conference on Learning Representa-

tions, 2018.

[7] Y. Collet, “Lz4 - extremely fast compression,” 2011.

[8] Y. Collet, “New generation entropy coders,” 2013.

[9] Y. Collet, “Zstandard-fast real-time compression algorithm,” 2018.

37

[10] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, “Minimal variance sampling

with provable guarantees for fast training of graph neural networks,” in Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2020, pp. 1393–1403.

[11] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, “Minimal variance sampling

with provable guarantees for fast training of graph neural networks,” in Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2020, pp. 1393–1403.

[12] D. Cutting and J. Pedersen, “Optimizations for dynamic inverted index maintenance,”

in Proceedings of the 13th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, 1989.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16. Red Hook, NY,

USA: Curran Associates Inc., 2016, p. 3844–3852.

[14] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,”

in ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[15] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at scale,” in Proceedings

of the 15th USENIX Symposium on Operating Systems Design and Implementation.

USENIX Association, Jul. 2021, pp. 551–568.

[16] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Advances in Neural Information Processing Systems, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,

2017.

38

[17] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec, “Open

graph benchmark: Datasets for machine learning on graphs,” 2021.

[18] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the

convolutional neural networks on a histopathology dataset,” ICT express, vol. 6, no. 4,

pp. 312–315, 2020.

[19] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “Gts: A fast and scalable graph

processing method based on streaming topology to gpus,” in Proceedings of the 2016

International Conference on Management of Data. Association for Computing

Machinery, 2016, p. 447–461.

[20] S. Kim, Y. Jin, G. Sohn, J. Bae, T. J. Ham, and J. W. Lee, “Behemoth: A flash-centric

training accelerator for extreme-scale DNNs,” in 19th USENIX Conference on File and

Storage Technologies (FAST 21). USENIX Association, Feb. 2021, pp. 371–385.

[Online]. Available: https://www.usenix.org/conference/fast21/presentation/kim

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in International Conference on Learning Representations (ICLR), 2017.

[22] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph computation

on just a PC,” in Proceedings of the 10th USENIX Symposium on Operating Systems

Design and Implementation. USENIX Association, Oct. 2012, pp. 31–46.

[23] Y. Lee, Y. Kwon, and M. Rhu, “Understanding the implication of non-volatile memory

for large-scale graph neural network training,” IEEE Computer Architecture Letters,

vol. 20, no. 2, pp. 118–121, 2021.

[24] D. Lemire and L. Boytsov, “Decoding billions of integers per second through vectoriza-

tion,” Software: Practice and Experience, 2015.

39

[25] D. Lemire, L. Boytsov, O. Kaser, M. Caron, L. Dionne, M. Lemay, E. Kruus, A. Bedini,

M. Petri, R. B. Araujo et al., “The fastpfor c++ library: Fast integer compression,”

2019.

[26] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker

graphs: an approach to modeling networks.” Journal of Machine Learning Research,

vol. 11, no. 2, 2010.

[27] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset collection,”

2014.

[28] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn training on large

graphs via computation-aware caching,” in Proceedings of the 11th ACM Symposium

on Cloud Computing, ser. SoCC ’20, 2020.

[29] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, “Mosaic: Processing

a trillion-edge graph on a single machine,” in Proceedings of the Twelfth European

Conference on Computer Systems. Association for Computing Machinery, 2017, p.

527–543.

[30] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka, “Dragon: Breaking

gpu memory capacity limits with direct nvm access,” in SC18: International Conference

for High Performance Computing, Networking, Storage and Analysis, 2018, pp. 414–

426.

[31] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi, D. Chen, and

W.-m. Hwu, “Large graph convolutional network training with gpu-oriented data

communication architecture,” Proc. VLDB Endow., 2021.

[32] R. Mirchandaney, J. Saltz, and R. Crowley, “Run-time parallelization and scheduling

of loops,” IEEE Transactions on Computers, vol. 40, no. 05, pp. 603–612, may 1991.

40

[33] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman, “Marius: Learning

massive graph embeddings on a single machine,” in Proceedings of the 15th USENIX

Symposium on Operating Systems Design and Implementation. USENIX Association,

Jul. 2021, pp. 533–549.

[34] A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, and J. Leskovec,

PinnerSage: Multi-Modal User Embedding Framework for Recommendations at

Pinterest. New York, NY, USA: Association for Computing Machinery, 2020, p.

2311–2320. [Online]. Available: https://doi.org/10.1145/3394486.3403280

[35] Y. Park, S. Min, and J. W. Lee, “Ginex: Ssd-enabled billion-scale graph neural network

training on a single machine via provably optimal in-memory caching,” arXiv preprint

arXiv:2208.09151, 2022.

[36] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph

processing using streaming partitions,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, ser. SOSP ’13. New York, NY,

USA: Association for Computing Machinery, 2013, p. 472–488. [Online]. Available:

https://doi.org/10.1145/2517349.2522740

[37] M. M. Strout, M. Hall, and C. Olschanowsky, “The sparse polyhedral framework:

Composing compiler-generated inspector-executor code,” Proceedings of the IEEE, vol.

106, no. 11, pp. 1921–1934, 2018.

[38] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks,” International Conference on Learning Representations, 2018.

[39] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai

et al., “Deep graph library: A graph-centric, highly-performant package for graph

neural networks,” arXiv preprint arXiv:1909.01315, 2019.

41

[40] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu,

Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A

graph-centric, highly-performant package for graph neural networks,” arXiv preprint

arXiv:1909.01315, 2019.

[41] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on

graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 32, no. 1, p. 4–24, Jan 2021.

[42] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query processing with

optimized document ordering,” in Proceedings of the 18th International Conference on

World Wide Web, 2009.

[43] H. Yang, “Aligraph: A comprehensive graph neural network platform,” in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, ser. KDD ’19. New York, NY, USA: Association for Computing Machinery,

2019. [Online]. Available: https://doi.org/10.1145/3292500.3340404

[44] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

convolutional neural networks for web-scale recommender systems,” in Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, ser. KDD ’18, 2018.

[45] D. Zhang, X. Huang, Z. Liu, J. Zhou, Z. Hu, X. Song, Z. Ge, L. Wang, Z. Zhang, and

Y. Qi, “Agl: A scalable system for industrial-purpose graph machine learning,” Proc.

VLDB Endow., 2020.

[46] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted list caching in

search engines,” in Proceedings of the 17th international conference on World Wide

Web, 2008.

42

[47] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” in Proceed-

ings of the 32nd International Conference on Neural Information Processing Systems,

ser. NIPS’18, 2018.

[48] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Transactions

on Knowledge & Data Engineering, vol. 34, no. 01, pp. 249–270, jan 2022.

[49] G. Zhao, T. Zhou, and L. Gao, “Cm-gcn: A distributed framework for graph convolu-

tional networks using cohesive mini-batches,” in 2021 IEEE International Conference

on Big Data (Big Data), 2021, pp. 153–163.

[50] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie, and P. Faraboschi,

“Buri: Scaling big-memory computing with hardware-based memory expansion,”

ACM Trans. Archit. Code Optim., vol. 12, no. 3, oct 2015. [Online]. Available:

https://doi.org/10.1145/2808233

[51] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G. Karypis,

“Distdgl: Distributed graph neural network training for billion-scale graphs,” 2021.

[52] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay,

“FlashGraph: Processing billion-node graphs on an array of commodity SSDs,” in Pro-

ceedings of the 13th USENIX Conference on File and Storage Technologies. USENIX

Association, Feb. 2015, pp. 45–58.

[53] D. Zheng, X. Song, C. Yang, Q. Su, M. Wang, C. Ma, and G. Karypis, “Distributed

hybrid cpu and gpu training for graph neural networks on billion-scale graphs,” 2022.

[54] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph

neural networks: A review of methods and applications,” 2021.

[55] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou, “AliGraph: A

comprehensive graph neural network platform,” Proc. VLDB Endow., vol. 12, no. 12, p.

2094–2105, aug 2019.

43

[56] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph processing on a single

machine using 2-level hierarchical partitioning,” in Proceedings of the 2015 USENIX

Annual Technical Conference. USENIX Association, Jul. 2015, pp. 375–386.

[57] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar ram-cpu cache com-

pression,” in Proceedings of the 22nd International Conference on Data Engineering,

2006.

44

초록

최근그래프신경망(GNN)을사용하여그래프로구조화된데이터에서의미있는영감을

찾으려는 많은 노력이 이루어지고있다. 현실의 그래프 데이터는 시간이 지남에 따라 그

크기가커지고,이에따라단일머신의메모리에맞지않는경우를쉽게찾을수있다.이

에따라최근 NVMe SSD와같은고성능저장장치를활용하여, GNN학습을위해단일

머신을 확장하는 여러 접근 방식이 제안되었다. GNN 학습을 위해 여러 머신을 동시에

사용하는 분산 시스템과 달리, 단일 머신에서 디스크를 기반으로 한 GNN 학습은 약간

의학습시간증가가있긴하지만동등한학습품질을보장하면서도비용측면에서더욱

효율적인대안을제공한다.그중하나인 Ginex [35]는단일머신에서수십억규모의그

래프데이터를대상으로 GNN을학습시키는 SSD기반의최첨단학습시스템이다. Ginex

는 sample단계와 gather 단계를분리하는방식으로기존 GNN학습파이프라인을재구

성함으로써 Belady’s algorithm으로알려진최적의캐시정책을실현한다.이렇게 Ginex

는 gather단계에서걸리는시간을최소화하하는데성공하였지만,이때문에새로도입된

inspect라는오버헤드는무시할수없게되었다.이에본논문에서는 inspect 오버헤드를

줄이기위한두가지가속화기법을 Ginex에적용하고이를 Ginex++라고명명한다.두

기법은 이웃 캐시 압축과 changeset의 사전 계산을 위한 k-hop 근사이다. 네 개의 수십

억규모의그래프데이터에이러한기법을적용하여평가한결과, Ginex++은 Ginex보다

평균적으로 1.28× (최대 1.51×)더높은학습처리량을달성한다.

주요어:그래프신경망학습,이웃캐시압축, k-hop근사

학번: 2021-29333

45

Acknowledgement

지난 2년은 제 인생에서 가장 많은 변화를 겪게 된 기간이라 해도 과언이 아닙니다. 팬

데믹으로 인해 전반적인 생활 패턴이 바뀐 것은 물론이고, 연구라는 낯선 무언가를 본

격적으로 접하게 된 기간이기 때문입니다. 2020년 여름, 두 달 동안 집중적으로 논문을

작성하는팀에들어가연구실인턴십을성공적으로마쳤을때는,몸은힘들었지만뿌듯한

감정과더연구를경험해보고싶다는막연한호기심이생겼습니다.그러면서본격적으로

대학원진학에대한고민을시작했습니다.

‘어떤연구실의대학원생이자신의지도교수님에대해좋게얘기한다면,그연구실은

믿고들어가도된다’는우스갯소리가있습니다.제가대학원지원과연구실선정을고민

할때, 2020년봄학기에논리설계과목학부생조교를하면서친분을쌓게된성훈이와

샘이가지도교수님의칭찬을자주했던것이큰영향을미쳤습니다.그리고그로부터약

2년이지난지금,저는당시에내릴수있는최고의결정을내렸다고자부합니다.

첫 번째 이유는 교수님입니다. 이재욱 교수님은 따뜻할 땐 따뜻하게, 냉철할 땐 냉

철하게 학생들을 지도해주시는 참된 지도자이십니다. 학생이 스스로 연구를 해나갈 수

있게 자율성을 존중해주시면서도 올바른 방향으로 나아갈 수 있게 적절한 조언을 해주

십니다.이런점들을볼때교수님은중용(中庸)의대가이신것같습니다.학생들도이런

점들을 잘 알기에 교수님을 전적으로 신뢰하고, 교수님의 요구사항에 대해 신속하고 적

절한피드백을내놓습니다.이런든든한연구실문화를만들어내신존경하는교수님께서

저와MBTI가 ISFJ로같다는것을알았을때내심기분이좋았습니다.

두 번째 이유는 연구실 동료들입니다. 저는 일을 할 때 주변 사람들이 제게 미치는

영향이 정말 중요하다고 생각하는 사람입니다. 그렇기 때문에 실력으로나 인격으로나

훌륭한 연구실 동료들이 주변에 많이 있어서 참 감사하다는 생각을 많이 했습니다. 제

졸업을 책임져 주고 해외 학회를 함께한 연홍이, 팀으로서 같이 일할 기회를 얻게 되어

진심으로감사했던준이형,예진누나,현지,승렬이,불멸의서버관리자성훈이,현승이

형,상우,박사후연구원으로서날카로운지도를해주셨던함박사님과종현이형,아쉽

게도같이일을하지는못했지만항상응원하는문경누나,성준이형,종성이형,훈이형,

46

동욱이형,수성이,봉근이형,리해,원석이형,동현이,근수,용상이형,그리고마지막으

로궂은일을도맡아해주시는연구실최고의분위기메이커미림선생님.다시한번깊은

감사의말씀올립니다.

세번째이유는풍족한연구환경입니다.교수님께서는연구를위한것이라면지원을

아끼지않으셨습니다.덕분에최신사양의서버와클라우드를사용할수있었고,논문집

중기간에는맛있는음식을먹으며연구에집중할수있었습니다.주변에저희연구실의

풍족함을자랑하면다들많이부러워했습니다.

이 외에 크고 작은 이유들을 더 나열하자면 지면이 부족할 것입니다. 연구실에 와서

후회를하고좋지않은기억을가진채나가는사람들도많은데,이렇게행복한마무리를

할 수 있는 저는 분명히 큰 복을 받았다고 할 수 있겠습니다. 연구를 할수록 아이러니하

게도 ‘이를이용해서현업에서는어떤일에적용할수있을까’라는궁금증이더욱커지게

되어 스타트업에 취업을 하게 되었지만, 연구에 대한 호기심과 욕심은 지금도 마음 한

구석에자리해있습니다.미래에또어떤결정을내리게될지아직은모르지만,그결정에

있어연구실에서의경험은더없이귀중한기제가될것이라믿어의심치않습니다.

연구실구성원들모두가각자의자리에서순항하시길,그리고이후에도꼭다시만나

뵐수있기를진심으로기원합니다.모두에게정말감사합니다.

2023년 1월,

민선홍올림.

47

	1 Introduction
	2 Background
	2.1 Graph Neural Networks
	2.1.1 GNN Training
	2.1.2 Neighborhood Sampling

	2.2 Disk-based GNN Training
	2.2.1 Merits
	2.2.2 Challenges and Solutions

	2.3 Ginex
	2.3.1 Overview
	2.3.2 Inspector-Executor Execution Model

	2.4 Newly Introduced Overhead: Inspect
	2.4.1 Superbatch-level Pipeline
	2.4.2 Neighbor Cache Construction
	2.4.3 Superbatch Sample
	2.4.4 Changeset Precomputation
	2.4.5 Inspect Overhead

	3 Neighbor Cache Compression
	3.1 Analysis on Ginex Neighbor Cache
	3.2 Compression Schemes
	3.2.1 FastPFOR
	3.2.2 LZ4
	3.2.3 ZSTD

	3.3 New Neighbor Cache Structure

	4 k-hop Approximation for Changeset Precomputation
	4.1 Analysis on Ginex Changeset Precomputation
	4.2 Detailed Explanation on the Approach
	4.3 Impact on Quality of Feature Cache

	5 Evaluation
	5.1 Methodology
	5.1.1 System Configurations
	5.1.2 Model and Dataset
	5.1.3 Comparison Baseline

	5.2 Impact of Two Techniques
	5.2.1 Impact of Neighbor Cache Compression
	5.2.2 Impact of k-hop Approximation for Changeset Precomputation

	5.3 Overall Performance
	5.4 Sensitivity Study
	5.4.1 Impact of Superbatch size
	5.4.2 Impact of Feature Dimension
	5.4.3 Impact of Batch Size

	6 RelatedWorks
	7 Conclusion
	Bibliography
	국문 초록
	Acknowledgement

<startpage>11
1 Introduction 1
2 Background 4
 2.1 Graph Neural Networks 4
 2.1.1 GNN Training 4
 2.1.2 Neighborhood Sampling 5
 2.2 Disk-based GNN Training 6
 2.2.1 Merits 6
 2.2.2 Challenges and Solutions 7
 2.3 Ginex 8
 2.3.1 Overview 8
 2.3.2 Inspector-Executor Execution Model 9
 2.4 Newly Introduced Overhead: Inspect 9
 2.4.1 Superbatch-level Pipeline 9
 2.4.2 Neighbor Cache Construction 10
 2.4.3 Superbatch Sample 10
 2.4.4 Changeset Precomputation 11
 2.4.5 Inspect Overhead 11
3 Neighbor Cache Compression 14
 3.1 Analysis on Ginex Neighbor Cache 14
 3.2 Compression Schemes 15
 3.2.1 FastPFOR 15
 3.2.2 LZ4 16
 3.2.3 ZSTD 17
 3.3 New Neighbor Cache Structure 17
4 k-hop Approximation for Changeset Precomputation 20
 4.1 Analysis on Ginex Changeset Precomputation 20
 4.2 Detailed Explanation on the Approach 21
 4.3 Impact on Quality of Feature Cache 23
5 Evaluation 25
 5.1 Methodology 25
 5.1.1 System Configurations 25
 5.1.2 Model and Dataset 25
 5.1.3 Comparison Baseline 26
 5.2 Impact of Two Techniques 27
 5.2.1 Impact of Neighbor Cache Compression 27
 5.2.2 Impact of k-hop Approximation for Changeset Precomputation 28
 5.3 Overall Performance 28
 5.4 Sensitivity Study 30
 5.4.1 Impact of Superbatch size 30
 5.4.2 Impact of Feature Dimension 31
 5.4.3 Impact of Batch Size 32
6 RelatedWorks 34
7 Conclusion 36
Bibliography 37
국문 초록 45
Acknowledgement 46
</body>

