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Abstract

Area reduction 1s one of the most critical objectives iIn
semiconductor design since it 1mproves profitability due to
increasing net die per wafer. Although there exist various
commercial tools, memory design requires the full custom design
flow to reduce the area because the place and route (P&R)
functionality in the tools are not effective in the dram design flow.
Furthermore, one—dimensional (1D) layout is indispensable due to
the presence of peripheral regions. Inspired by the above, we
propose a new framework to minimize the wire length in the
standard cell’ s 1D layout. The framework consists of the heuristic
algorithm, which efficiently places standard cells to minimize the
overall wire length of a 1D unit block composed of multiple standard
cells and a Clustering algorithm. Through the cooperation of three
algorithms, it obtains the 26.6% improved total wire length on 502
units consisting of 3 to 98 standard cells designed by human

experts.

Keyword: 1D placement, permutation, wire length, optimization,
clustering
Student Number: 2021—-27781
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Chapter 1. Introduction

In general, the area utilization of ASIC chips is difficult to
exceed 70%, but the memory chip is more than 90%. In ASIC
design flow, the standard cell placement process is performed by
commercial tools that use force—directed methods to alleviate the
probability of design rule constraints (DRC) violations, such as
maximum fanout and maximum transition time, and to prevent
routing congestion. However, the gap between cells induced by the
force—directed method aggravates the chip area’s utilization. On the
other hand, in the memory design process, all cells, including
standard cells and customized cells, are placed by human experts
who use know—how based on their experience. They usually abut
standard cells in a 1D manner according to the functions and stack
them to generate 2D designs. The reasons for the difference
between the two design flows come from that the production cost of
relatively high—selling memory 1s more important than the
production cost of ASIC chips and the clock frequency of memory is
several times slower than that of ASIC chips.

Abutment of standard cells looks like a straightforward and
efficient strategy to reduce the area of chips but reducing cell
distance increases the possibility of routing congestion. The
congestion may result in undesirable phenomena such as timing
violation due to longer wire lengths to avoid congestion and
crosstalk. To address the issue, efficient cell placement is
necessary to reduce the semiconductor wire’s length. The
optimized wire length can improve SI (Signal Integrity) and PI
(Power Integrity) characteristics, ease of routing, maximum
transition time reduction, and higher frequency.

And as mentioned in [3] and [9], the placement for wire length
minimization 1s a well—known NP—hard problem and a kind of
combinatorial optimization problem. Various algorithms, such as
genetic algorithms and simulation annealing (SA, [3]), are widely

used to solve this problem by combining with the heuristic search



algorithms. However, heuristic algorithms used in SA to search
local optima in commercial tools have yet to be disclosed. Although
[1] and [4] are one of the most powerful heuristic search
algorithms to search local optima in Max—Cut problem and
Traveling Salesman Problem (TSP), respectively, they cannot be
applied directly to the 1D placement problem due to the difference
of problems.

In this paper, we first introduce the 1D placement problem and
propose three novel algorithms, a heuristic optimization algorithm
and a Clustering algorithm, which efficiently place standard cells to
minimize the total wire length of a 1D unit block consisting of

multiple standard cells.



Chapter 2. Related Work

2D placement of macro cells such as SRAM, and analog blocks
has been studied for a long time. In [8], the sequence pair
representation and min—cost flow are used to minimize total wire
length. But there is no information of the processing time for many
cells and just focusing on optimizing the wire lengths in the post—
floorplanning phase. The reinforcement learning (RL) algorithm is
used for placement in [6]. However, they also focused only on the
floor planning level and only used force direction methods to place
standard cells.

In [7], the author introduces a new Clustering method using
connectivity and distance—based cell grouping to place standard
cells efficiently. Limiting the number of cells in the cluster to 2k or
4k is a decision that does not consider the design, so it is difficult to
obtain optimal results, and it is hard to produce good results in a
short time due to a large number of cells.

As mentioned in the previous section, the placement problem is
an NP—hard problem. 6 NP—hard problems, including
TSP (Traveling Salesman Problem), are introduced in [5] and
various reinforcement learning methods were used to attempt to
solve the problem. However, as seen in the paper, the most
powerful algorithm known to solve the TSP problem is the
LKH (Lin-Kernighan-Helsgaun) introduced in [2]. Therefore, it can
be seen that designing an efficient heuristic algorithm is valuable in

solving 1D placement problems



Chapter 3. Contributions

To the best of our knowledge, this is the first work to solve 1D
circuit placement problems with the following contributions:
® A new heuristic algorithm, Greedy—K, solves 1D
placement problems quickly and efficiently compared to
the genetic algorithm.
® A flexible Clustering algorithm for 1D placement
problems achieves better results in the units with a
large number of cells.
® We identified that Cel/ Flipping and DFS&BFS
Initialization is effective in 1D placement problems.
® We compared the results of the above algorithms with
502 units consisting of 3 to 98 standard cells created by

human experts.



Chapter 4. Problem Definition

p- 1414

Figure 1 An example of a circuit, 4:1 Multiplexer (Mux)

OOELUETLREE

Figure 3 1D placement of 4:1 Mux

1D placement problem is a permutation problem. To minimize
the total wire length (TWL) of the target unit block, you must first
convert a netlist containing the connection information of the circuit

and wire into a graph, such as Fig. 1 and Fig. 2. Then, we can
5



assign a unique number to each cell converted to a node in the
graph and list the number of nodes as a one—dimensional vector to
determine the arrangement order of each circuit as shown in Fig. 3.
Since information about the height and width of each cell and its
port can be obtained from the physical library in the Process Design
Kit (PDK), the total wire length can be calculated given the order of
cells and wire connection information. By randomly changing the
order of numbers and obtaining the sum of the wire lengths, the
sum of the wire lengths reduced more than before can be obtained.
However, since it is difficult to obtain a good result quickly from a
randomly placed permutation, a local optimal solution close to the
random permutation can be quickly obtained in a limited time by

applying a heuristic algorithm called Local Optimization algorithm.



Chapter 5. Methodology

In general, algorithms such as GA and SA are used to improve
the solution in candidates generated by random numbers to solve
the NP—hard problem. We intend to use GA as a control for Local

Optimization and as an assistant for Local Optimization.



5.1. Structure of Genetic Algorithm

[ Population Initialization ]

————— vy—====. . Multi-processing block
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Figure 4 Structure of Genetic Algorithm

The structure of GA is in Fig. 25! FIZ2 &S &AL +
AE5YTr4. A number of solution candidates are generated with a
random number in Population Initialization step. And, two candidates
called parents are selected to create a better solution in Selection
step. In Crossover step, two parents are mixed to generate an
offspring. This step uses either Partially Matched Crossover or
Ordered Crossover, but there is no performance difference. In
Mutation step, the two random numbers swap positions, and the
number of times the two are chosen can be adjusted, and Local
Optimization algorithms can be applied to the offspring after
Mutation step. Changing the number of runs from Selection to
Mutation can determine the number of offspring, and the ratio of
offspring to Greedy—K population is usually set between 10% and
20%. After generating offspring, Among the candidates in the
population, candidates whose quality 1s lower than that of the

offspring are exchanged with the offspring, thereby increasing the
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quality of the entire population. The procedure described so far is
referred to as the first generation, and a locally optimal solution can

be found by repeatedly executing the generation.

5.2 MultiStart

Algorithm 1 MultiStart

bestSolution = createCandidate()
stop = False
while stop # True do
candidate=createCandidate()
LocalOptimization(candidate)
if candidate.quality() > bestSolution.quality() then
bestSolution = candidate
else if candidate.quality() == bestSolution.quality() then
stop = True
end if
end while
return bestSolution

Algorithm 1 MultiStart

MultiStart means that the Local/ Optimization algorithm is
applied to randomly generated candidates without GA or SA as
shown in Algorithm 1. We evaluated the performance of Local

Optimization in Section 6.

5.3 Greedy—K: New Local Optimization Algorithm



Algorithm 2 Greedy-K

1: Get an input candidate and k, the maximum number of cells to

move

2: run = True

3: while run do

4: Prev_value = Calculate. TWL_of candidate()

5: Weight dict =  Calculate dictionary of pairs() #
{node:(sum of left wire length, sum of right wire length)} of
each cell

6: Weight list.sort() # Sorts each cell in descending order
based on the absolute value of the two values subtracted.

I 1=0

8: for each node in Weight dict do

9: if i ==k then
10: break
11: end if
12: TWL history=Evaluate TWL at all position(Prev value,

node)

13: Cur value = Move best position(TWL history)
14: if Cur value == Prev value then
15: run = False
16: break
17: end if
18: Prev value = Cur value
19: i=i+1
20 end for

21: end while
22: return best solution

Algorithm 2 Greedy-K

The Local Optimization algorithm is essential to find optimal
solutions in spaces with near—infinite search ranges quickly. We
designed a novel Local Optimization algorithm to solve the 1D
placement problem quickly and efficiently.

As mentioned on line 3 in Algorithm 2, we need to determine
the order of cells to move, and for this, we use the method shown in

Fig. 5. The sum of the lengths of the left and right wires connected
10



to the cells is calculated, and the movement order of each cell is
determined by arranging them in descending order based on the
value obtained by subtracting two numbers. For simplicity, the
weight values in Fig. 5 are shown as values without direction.
Between the experimental result of determining the movement
order by subtracting the sum of the lengths of both wires and the
experimental result of adding the sum of the lengths of both wires,
the former result was better.

In order to increase the efficiency of the operation, a
parameter = k' as shown in Algorithm 2 is provided to control the
number of cells to be moved so that the results sorted by wire
length can be used multiple times. If you want to use only the latest
sorting results, you can set k to 1. Through experiments, it was
confirmed that an optimal value can be found by setting only the
parameter k at 40% of the permutation length for a relatively short

candidate with a permutation length of 50 or less.

4 2 2 2 4 4 4 1| 4 4 4 1 1|3
+ +4 +3= +5 +1 -5 +

3 = 5 -4 = +2 2

+ - = 5 +2 =

2 5 = 3

= 3

9

Figure 5 An example of calculating the weight of cells

5.4 Clustering for 1D Placement Problems

11
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Figure 7 Clustering viewed at the cell level

As the number of cells increases, the processing time increases
rapidly due to the exponentially increasing search space. To
solve this problem, we combine a number of closely connected cells

into one cluster, reducing the size of the search space so that the

12



optimal solution can be found quickly. Nodes with a degree of 2 or
less of nodes are unlikely to have a negative effect on the sum of
the total wire length even if they are grouped into one cluster and
moved together, so we decided to combine them into one cluster.

In general, nodes with a node degree of 2 or less appear in the
leaf node of the graph, sometimes inside the graph. In addition, the
algorithm was designed so that complex nodes with node degrees of
3 or more can be grouped into clusters to see what effect it will
have if it is optimized. Therefore, the criterion of our Clustering
algorithm is the node degree. In Fig. 6 and 7, which shows an
example of clustering, there are four green clusters consisting of
nodes with a degree of 2 or less and one orange cluster consisting
of nodes with a degree of 3 or more. The Local Optimization
algorithm is applied separately to each cluster, and after applying
the Local Optimization algorithm to the cluster, the GA algorithm
and the Local Optimization algorithm are applied using the cluster
and nodes not included in the cluster. Since the user can adjust the
upper and lower limits of the node degree, which is the criterion for
Clustering as shown in Algorithm 3, it is possible to create and

experiment with various clusters.
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Algorithm 3 Clustering

1:
2:
3:

10:
11:
12:
13:
14:
13:
16:
17:

18:
19:
20:
21:
22:
23:
24:
253:
26:

selectedNode = []
for each node in graph do
if node.Degree is between lower and upper limit then

selectedNode.append(node)
end if

4
5
6: end for
7:
8
9

#Apply Breadth-First Search for each selected node

. clusters = []
. for each node in selectedNode do

visited nodes = []
queue = []
visited nodes.append(node)
queue.append(node)
while queue is not empty do
cur_node = queue.pop()
for adjacent node of cur node do
if adjacent node not in visited nodes and adja-
cent node.Degree is between lower and upper limit then
visited node.append(adjacent node)
queue.append(adjacent node)
end if
end for
end while
clusters.append(visited nodes)
selectedNode.remove(visited nodes)
end for
return clusters

Algorithm 3 Clustering according to the degree of nodes

5.5 Cell Flipping

14
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Figure 8 Wire length calculation methods of Cell Flipping

The standard cell can be reversed horizontally along the
vertical axis to reduce the length of the wire connected to the cell.
We call this function as Cell Flipping and apply it after cell
placement. Prior to this algorithm, flips were determined by experts
but were automated by Cell Flipping. In Fig. 8, the grey color
square indicates the contact of a port before the flip, and the blue
square box indicates the contact of a port after the flip. The wire
length of the cell can be calculated by comparing the port positions

before and after the flip.

5.7 DFS&BFS Initialization

Root|DFS Ordered Permuations
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Figure 9 An example of DFS Initialization with simple circuit
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DFS&BFES Initialization algorithm is one of the well—known
algorithms that use the topology of a circuit to generate initial
candidates as shown in Fig. 9. Compared to random initialization,
there is an effect of improving the quality of initial candidates. If N
cells are candidates, DFS&BFS [nitialization algorithm can generate
N candidates from DFS and BFS, respectively, using all elements as
the root. We have limited the number of candidates generated in
DFS and BFS respectively to not exceed one—third of the
population for the diversity of the candidates. For example, if the
number of candidates in a population is 30, DFS will generate 10
candidates, BFS will generate another 10 candidates, and the rest

will be randomly generated.
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Chapter 6 Experimental Results

We validate the algorithm introduced in Section 5 using 502 unit

blocks consisting of 3 to 98 standard cells.

6.1 Test Environment and Condition

Name CPU # Sockets DRAM(GB)
A AMD EPYC 7543, 32core 64thread 2 1024

B Intel Xeon Gold 6142, 8core 16thread 1 128

C Intel Xeon E5-2620 v4, 16core 32thread 2 256

Table 1 Server specification used for validation

Option Name Abbreviation | Default Value | Description

population p 128 Number of candidates

selection B 128 Number of selection of 2 parents to make an offspring

iter i 3000 Number of iterations(generations in Genetic Algorithm)

k-of-roulettewheel kr 4 Control value of the maximum probability-to-minimum probability ratio in the selection operation
cutpoint-rate c 0.6 Number of cutpoints in PMX crossover and is determined by the ratio of cutpoints to the length of chromosome
mutation-rate m 0.15 The ratio of cells to be swapped on chromosome

genitor-replacement-rate | grr 0.2 Random replacement ratio in genitor replacement operation

dfsbfs-initilization dbinit True Enable DFS&BFS Initialization

flip f True Enable Cell Flipping

clustering ¢ False Enable Clustering

clustering-method cm None Specify clustering method. You can choose one or more between leaf and low-degree

Table 2 Hyperparameters of Genetic Algorithm

For wvalidation, we used three types of servers as shown in
Table 1 and python3.9 to create a framework that can operate the
algorithm introduced in Section 5. Table 2 shows the
hyperparameters used in the framework. If some test cases use the
value different from the default value, it will be described in this
paper.

The data set has 502 unit blocks that consist of 3 to 98 cells.
50% of units only have under 8 cells and 80% of units have the
number of cells under 40. The program termination condition is
when the TWL difference between the best candidate and the worst
candidate is less than le—4, and the sum of the number of best
candidates and the worst candidates exceeds the population or the
number of best candidates exceeds 70% of the population. The unit

of length is micrometer and the default unit of time 1s second.

17



6.2 Performance of DES&BFS Initialization

1.20
1.00
1.00
0.80
0.60
0.40

0.20

Random imit. DFS&BFS init. + Random init.

Figure 10 Performance comparison between DFS&BFS initialization and the
random initialization

We evaluated the DFS&BFES Initialization algorithm in 124 units
of 3 to 96 cells. As shown in Fig. 10, 16% of TWL improvement
was confirmed by applying the DFS&BFS Initialization algorithm,

and it became an algorithm basically applied in all tests of this paper.

6.3 Performance of Cell Flipping

EExpert ® Ours

1.0

0.8

0.6

0.4

0.2

0.0
Non-Flip Flip

Figure 11 Normalized TWL comparison of expert and Greedy—-K according
to the flip operation using 502 units
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As shown in Fig. 11, the Cell Flipping algorithm improves TWL
by 6% compared to the case before applying Cell Flipping in both
human—designed results and the algorithm’ s design results. In this
test, Cell Flipping was applied to all 502 units with the DFS&BFS
[nitialization algorithm, and it was also decided to apply Cell Flipping

to all test cases in this paper.

6.4 GA vs. Greedy—K vs. GA+Greedy—K

560

460

e

260 —\j

TWL

60

Iteration

best(88.645) ——pureGA_p64,564 pureGA_p256,5256 P A_p1024,51024 P _p4096,54096
mult_p64,564 ——mult_p128,5128 ——mult_p256,5256 ga+lo_p64,564 ——ga+lo_p128,5128

Figure 12 Performance comparison, PureGA vs. MultiStart(Greedy-K) vs.
GA+ Greedy-K. Optimal value is 88.64.

In Fig. 12, ga means pure GA to which the Greedy—K algorithm is
not applied, and mult means MultiStart and the Greedy—K, Local
Optimization, algorithm applied to a population without GA operation
and ga+lo means that GA and the Greedy—K algorithm are applied
to the population together. And, the numbers after pureGA, mult,
and ga+lo indicate the number of populations and the number of
offspring generated after one iteration as shown in Table 2. For
example, mult_pl28,s128 means that the total number of

populations used in MultiStart is 128, and the entire population is

19



subject to improvement for each iteration. For the evaluation of Fig.
12, we used a circuit that has 29 cells and 36 wires. As shown in
the Fig. 12, when 100 iterations are performed, pure GA can see
slow improvement in quality, and when opting GA and Greedy—K
are applied together, it can be seen that the local optimal solution is
reached the fastest. From this, it can be seen that GA prevents
Greedy—K from quickly falling into the local optima and allows a
better solution to be found. Pure GA can find the optimal solution
when the cell length of the candidate is short, but through the
inverter chain test, the inverter connected serially, we found that if
the cell length of the candidate exceeds 50, GA never finds the
optimal solution. However, a chain test using a circuit in which the
inverter is connected in series found that if the candidate cell length
exceeds D50, GA does not find an optimal solution. And, the
difference in execution time between pure GA and GA+Greedy—K
1s up to 2,500x. Note that all tests are applied with both GA and

Greedy—K unless otherwise noted.

14.0 12.9 40%
20 30%
’ 20%
10.0 10%
0%

8.0 -10%

6.0 -20%

-30%

4.0 -40%
- o,

20 50%

-60%

0.0 -70%

ga gatlo(16) gatlo(64) gatlo(128)

mmm Relative Execution Time =es=Enhancement Rate

Figure 13 Performance of GA+ Greedy-K according to the number of
population and selection

Typically, in the selection step of GA, 10 40% of the population

1s selected to produce offspring, but in our evaluation, the same

20



number of selections as the population is evaluated to yield better
results. In the ga+1o(16) in Fig. 13, the number of populations was
set to 64 and the number of selections to 16, and the number of
selections and the number of the population were the same in the
remaining test cases. And we can know that the execution time

increases with the number of populations and selections.

6.5 Human Experts vs. Cell Flipping vs. Clustering

Test Case Left is better Even  Rightis better  Total
Flip vs. Experts 281 219 1 502
Leaf vs. Flip 11 376 115 502
Leaf+Low-Degree vs. Flip 12 347 143 502

Table 3 Performance comparison, Human expert vs. Flip, Leaf node
clustering vs. Flip, Leaf + Low-degree clustering vs. Flip in 502 units test.
Leaf=Flip+ Leaf, Leaf+ Low—Degree=Flip+ Leaf+ Low—-Degree.
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Figure 14 Overall enhancement rate comparison between Cell Flipping,
DFS&BFS Initialization, Leaf, and Leaf+ Low—-Degree in 502 units test
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In Table 3, Baseline means the result by human expert and Cell
Flipping means that the Cell Flipping algorithm is applied to 502
Units, and Leaf means that nodes that meet the condition of node
degree 2 or less are clustered from leaf nodes in the graph, and
then tested using the netlist. Leaf+Low—Degree means that in
addition to the leaf clustering condition, nodes with a node degree of
2 are found and clustered inside of the graph, and then tested using
the netlist. From the table, we can see that even with small
populations and small selections, the Clustering algorithm can yield
better results in some units. In Fig. 14, we can see the performance
of each algorithm and the performance of algorithm combinations. In
the case of DFS&BFS Initialization test, 124 units are used and the
performance of 502 units test are estimated from the result. And
once again, we can see that the larger the population and selection,
the better the result. Extracting and merging the best results from
each test case, we achieved 27.97% improvement. Due to the
nature of genetic algorithms using randomness, the more tests are
performed, the better the probability of getting better results, even

under the same test conditions.

6.6 Parallel Processing
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Performance of 1 iteration({LocalOpt.+GA)
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Figure 15 Parallelized performance according to the number of
CPUs(IntelXeon E5-2620 v4@2.10GHz, 16 core 32 threads). Test condition:
Cell length=29, Population=128, number of selection=32, iteration=2,000

We parallelized the operations from Selection to Local
Optimization in Fig. 15 using multiple CPU cores and achieved
13.06x faster performance compared to a single—core execution

environment in the 200 inverter chain test.
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Chapter 7 Conclusion

We first addressed the 1d placement problem in depth for the
full custom design flow. To minimize the total wire length of the
units consisting of 3 to 98 standard cells, we devised a novel Loca/
Optimization algorithm, Greedy—K, and it shows distinguished
performance. And we identified that Cell Flipping and DFS&BFEFS
Initialization algorithms significantly contribute to minimize the TWL.
Using these techniques, we achieved a 27.97% improvement in
TWL compared to human experts. We also found that parallel

processing technique is essential for fast runtime.
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