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Abstract

Video is a very attractive data source for computer vision and machine learn-

ing; it contains dynamic and multimodal signals to learn from. Since adding

annotations to videos is very expensive, self-supervised video representation

learning has gained significant attention. However, self-supervised learning re-

quires large-scale training, so we need large compute and memory resources.

Furthermore, real-world videos are usually very noisy, so finding good video

data to learn from requires human verification, which hinders large-scale data

collection.

In this thesis, we explore these problems in self-supervised video represen-

tation learning and propose the following three solutions to improve learning

e�ciency. First, we investigate how to learn from unlabeled videos without de-

coding them. Videos are usually stored in a compressed format, e.g., MPEG,

and decoding them requires significant compute resources. Our novel architec-

ture and proposed pretext tasks allow us to learn from unlabeled compressed

videos with minimal performance degradation and achieve fast video processing

time. Second, we introduce a multimodal bidirectional Transformer architecture

for self-supervised learning of contextualized audio-visual representation from

unlabeled videos. End-to-end training of multimodal Transformers is challeng-

ing due to the large memory requirement of Transformer architecture. With

our novel parameter reduction technique based on matrix decomposition with

low-rank approximation, we successfully train our multimodal Transformer and

achieve competitive results in various downstream tasks. Lastly, we propose

an automatic and scalable data collection pipeline for self-supervised audio-
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visual representation learning. We curate noisy video data using an MI-based

subset selection algorithm. Audio and visual models trained on the resulting

datasets yield competitive or better performance than those trained on existing,

manually verified datasets. We release a large-scale open-domain video dataset,

ACAV100M, consisting of 100M clips curated with our pipeline for audio-visual

representation learning.

Keywords: Deep Learning, Computer Vision, Large-Scale Video Understand-

ing, Self-Supervised Representation Learning

Student Number: 2017-26247
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Chapter 1

Introduction

One of the greatest goals of computer vision or machine learning is to learn

perception in a way that humans and other biological agents can, which brings

us to a question: how do we learn to perceive the world? If we look at babies

to see how they learn to perceive, there are multiple essential components [6].

They learn from dynamic and multisensory signals. They also interact with

their surroundings such as toys. The most characteristic part of early childhood

learning is unsupervised. No one tells the babies which is input and which is

output.

From this point of view, video is a very attractive data source for computer

vision. It contains multimodal signals to learn from including visual frames, au-

dio streams, and even sometimes language in the format of transcripts, as shown

in Figure 1.1. We can also teach an agent to learn physical interactions such as

object manipulation and state changes in simulated video environments [7, 8, 9].

The video understanding community has made many e↵orts so that we

have superior video models that excel on a variety of tasks including action
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Video

Multimodal Signals

Visual
Frames

Audio
Stream

Transcripts
(Subtitle)

- Master has given Dobby a sock.
- What? I didn't give...

Figure 1.1: Videos provide abundant learning signals. We can learn expressive

representations using multimodal supervision from visual frames, sound, and

even sometimes speech transcripts.

recognition [10, 11, 12], video semantic segmentation [13, 14, 15, 16], video

retrieval [17, 18, 19] and video QA [20, 21, 22, 23]. However, unlike the early

childhood learning of humans, a lot of video understanding research has focused

on fully-supervised learning to make a highly specialized video system optimized

to be good at one task. If we give a video retrieval model a video segmentation

problem, or vice versa, the model performs very poorly, which is not ideal

for true video understanding. Furthermore, while training a video model from

scratch in a supervised manner needs a lot of labels, adding annotations to

videos is very expensive.

For this reason, learning from unlabeled videos using self-supervised meth-

ods has received significant attention [24, 25, 26, 27]. Figure 1.2 illustrates a

popular scenario in learning deep self-supervised video representations. We de-

sign a pretext task that reflects the underlying nature of video data, but does

not require manually annotated labels, and train our model from scratch us-
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Figure 1.2: Learning from unlabeled videos in a self-supervised manner.

We define a pretext task with artificially generated pseudo-labels from unlabeled

videos and train our model from scratch using the task. Once we finish this

pretraining step, we can transfer our model to di↵erent downstream tasks by

attaching new prediction heads to di↵erent tasks and training the model on a

target scenario.

ing the task. Once we finish this pretraining step, the learned representation

can be transferred to di↵erent downstream tasks by attaching new prediction

heads specific to di↵erent tasks. Here, self-supervised models are very good

few-shot learners [28, 29]: the transferred model can achieve good downstream

performance with relatively small finetuning data.

Now, the key question here is: how can we define the pretext task to perform

well on downstream tasks? The time dimension in video data provides natural

supervision signals, e.g., direction, ordering and speed, and we can leverage this

temporal information to define the pretext task [30, 31, 32, 25, 33, 34]. We can

also learn transformation-invariant representations [35, 36, 37]. However, all

these methods utilize a single modality: visual frames. Since video is by nature
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Figure 1.3: Instance Discrimination. We learn audio and visual representa-

tions in a contrastive manner: We minimize the distance between the features

of audio and visual signals from the same video instance while maximizing the

distance between the features of audio and visual signals from di↵erent video

instances.

multimodal, as shown in Figure 1.1, there have been many attempts to learn

cross-modal video representations, especially leveraging the natural correlation

between audio and visual signals [38], and previous works have shown that these

multimodal methods that use both audio and visual streams achieve better

downstream performance than unimodal methods [39, 40].

Recently, to utilize the audio-visual correspondence, contrastive learning

methods are often used [41, 42]. The goal of these methods is to discriminate

between di↵erent instances [43]: By treating each video instance as a distinct

class of its own, we enforce the features of audio and visual signals from the

same video instance to be similar and contrast the features of audio & visual

signals from di↵erent video instances (see Figure 1.3).
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Problems that Hinder E�ciency in Self-Supervised Video Repre-

sentation Learning To summarize, we can learn expressive video represen-

tations using audio-visual self-supervised methods without adding expensive

annotations to videos. The learned representation needs relatively small data

for finetuning on each downstream task. However, we need large-batch train-

ing because large-scale training is one key ingredient for the success of self-

supervised learning [44, 45, 46]. Furthermore, we need large-scale video data

for pretraining because self-supervised representations generally improve with

more data [47, 48]. In this thesis, we explore the following three challenges in-

curred by this large-scale training on large-scale video data and propose novel

solutions to them to improve learning e�ciency.

Video decoding requires large compute resource. Training video

models are notoriously resource-heavy, and part of it comes from the decoding

step. Videos are usually stored in a compressed format, e.g., MPEG [49], and we

need to decode frames before feeding them into traditional video models. The

decoding step is very expensive, requiring about 10 to 20 times more prepro-

cessing (decoding) time than inference time. Furthermore, it is mainly done on

CPUs; this is very harmful to training deep neural networks because GPUs to

load them on sit idle for most of the training time. These issues are exacerbated

for self-supervised video representation learning because we need large-batch

training. To get around this problem, several previous approaches proposed su-

pervised approaches to operating directly on compressed videos [50, 51, 52, 53].

In this thesis, we extend this idea by learning from unlabeled compressed videos

(Chapter 2).

Video Transformers require large memory footprint. In the field of

natural language processing (NLP), Transformers have shown to be very pow-

erful for learning contextualized embeddings [54, 55, 56, 57, 58, 46, 59, 60],
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and several recent works have extended it to vision-and-language including

VideoBERT [61], Oscar [62] and VIVO [63]. However, None of these models

is end-to-end trained; they use a language-pretrained BERT [46] due to the

large memory requirements of Transformers. Especially, this is more problem-

atic for learning self-supervised video Transformers because Transformers scale

quadratically with the length of the input sequence and each mini-batch of video

instances for self-supervised learning usually contains thousands of frames. This

thesis aims to train a multimodal Transformer in a self-supervised manner by

leveraging audio-visual correlations. However, since we do not have pretrained

visual/audio-pretrained BERTs, we need to train our model end-to-end. Thus,

we need to reduce memory consumption during the model training. While there

are several orthogonal approaches to reducing the memory requirements in-

cluding parameter sharding [64], knowledge distillation [65] and network prun-

ing [66], we propose a novel parameter sharing technique to reduce the model

size (Chapter 3).

Finding “good” video data for audio-visual self-supervised learn-

ing in a scalable manner. Existing datasets for audio-visual learning con-

tain at most eight months of video clips [5]. Compared to visual-text datasets,

these are smaller by orders of magnitudes [67]. What makes this di↵erence?

While we can use Automatic Speech Recognition (ASR) to fully automatize

visual-text data curation, all audio-visual data curation methods have relied

on human workers to filter noisy correspondence between audio and visual

channels [3, 5, 4]. To make matters worse, we cannot scrape random videos

to increase the dataset size because some videos that we can easily see online,

such as music videos, screencasts and news broadcasts, do not exhibit audio-

visual correlation. This thesis aims to find a way to collect good video data for

audio-visual self-supervised learning without human e↵orts, especially using an

6



automatic and scalable pipeline (Chapter 4).

1.1 Contributions

We summarize the main contributions of this thesis below.

• Learning from Unlabeled Videos without Decoding (Chapter 2).

Self-supervised learning of video representations has received great atten-

tion. Existing methods typically require frames to be decoded before being

processed, which increases compute and storage requirements and ulti-

mately hinders large-scale training. In this work, we propose an e�cient

self-supervised approach to learn video representations by eliminating the

expensive decoding step. We use a three-stream video architecture that

encodes I-frames and P-frames of a compressed video. Unlike existing

approaches that encode I-frames and P-frames individually, we propose

to jointly encode them by establishing bidirectional dynamic connections

across streams. To enable self-supervised learning, we propose two pretext

tasks that leverage the multimodal nature (RGB, motion vector, residu-

als) and the internal GOP structure of compressed videos. The first task

asks our network to predict zeroth-order motion statistics in a spatio-

temporal pyramid; the second task asks correspondence types between

I-frames and P-frames after applying temporal transformations. We show

that our approach achieves competitive performance on compressed video

recognition both in supervised and self-supervised regimes.

This work is published in:

[68] Youngjae Yu*, Sangho Lee*, Gunhee Kim, Yale Song. Self-Supervised

Learning of Compressed Video Representations. ICLR 2021. (*: equal

contribution)
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• Parameter Sharing Schemes for Multimodal Transformers (Chap-

ter 3). The recent success of Transformers in the language domain has

motivated adapting it to a multimodal setting, where a new visual model

is trained in tandem with an already pretrained language model. How-

ever, due to the excessive memory requirements from Transformers, ex-

isting work typically fixes the language model and trains only the vision

module, which limits its ability to learn cross-modal information in an

end-to-end manner. In this work, we focus on reducing the parameters of

multimodal Transformers in the context of audio-visual video representa-

tion learning. We alleviate the high memory requirement by sharing the

parameters of Transformers across layers and modalities; we decompose

the Transformer into modality-specific and modality-shared parts so that

the model learns the dynamics of each modality both individually and to-

gether, and propose a novel parameter sharing scheme based on low-rank

approximation. We show that our approach reduces parameters of the

Transformers up to 97%, allowing us to train our model end-to-end from

scratch. We also propose a negative sampling approach based on an in-

stance similarity measured on the CNN embedding space that our model

learns together with the Transformers. To demonstrate our approach, we

pretrain our model on 30-second clips (480 frames) from Kinetics-700 and

transfer it to audio-visual classification tasks.

This work is published in:

[69] Sangho Lee, Youngjae Yu, Gunhee Kim, Thomas Breuel, Jan Kautz,

Yale Song. Parameter E�cient Multimodal Transformers for Video Rep-

resentation Learning. ICLR 2021.

• Massively Harvesting Good Video Data to Learn from with-
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out Human E↵orts (Chapter 4). The natural association between

visual observations and their corresponding sound provides powerful self-

supervisory signals for learning video representations, which makes the

ever-growing amount of online videos an attractive source of training

data. However, large portions of online videos contain irrelevant audio-

visual signals because of edited/overdubbed audio, and models trained

on such uncurated videos have shown to learn suboptimal representa-

tions. Therefore, existing self-supervised approaches rely on datasets with

predetermined taxonomies of semantic concepts, where there is a high

chance of audio-visual correspondence. Unfortunately, constructing such

datasets requires labor-intensive manual annotation and/or verification,

which severely limits the utility of online videos for large-scale learning.

In this work, we present an automatic dataset curation approach based

on subset optimization where the objective is to maximize the mutual in-

formation between audio and visual channels in videos. We demonstrate

that our approach finds videos with high audio-visual correspondence and

show that self-supervised models trained on our data achieve competitive

performances compared to models trained on existing manually curated

datasets. The most significant benefit of our approach is scalability: We re-

lease ACAV100M that contains 100 million videos with high audio-visual

correspondence, ideal for self-supervised video representation learning.

This work is published in:

[70] Sangho Lee*, Jiwan Chung*, Youngjae Yu, Gunhee Kim, Thomas

Breuel, Gal Chechik, Yale Song. ACAV100M: Automatic Curation of

Large-Scale Datasets for Audio-Visual Video Representation Learning.

ICCV 2021. (*: equal contribution)
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1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2-4, we introduce three indepen-

dent studies that propose solutions to di↵erent challenging problems that hinder

e�ciency in self-supervised video representation learning: learning from unla-

beled videos without decoding them (Chapter 2), parameter sharing schemes

for multimodal Transformers (Chapter 3), and finding good video data to learn

from without human e↵orts (Chapter 4). We conclude the thesis in Chapter 5.

10



Chapter 2

Learning from Unlabeled Videos
without Decoding

2.1 Introduction

There has been significant progress on self-supervised learning of video repre-

sentations. It learns from unlabeled videos by exploiting their underlying struc-

tures and statistics as free supervision signals, which allows us to leverage large

amounts of videos available online. Unfortunately, training video models is no-

toriously di�cult to scale. Typically, practitioners have to make trade-o↵s be-

tween compute (decode frames and store them as JPEG images for faster data

loading, but at the cost of large storage) and storage (decode frames on-the-fly

at the cost of high computational requirements). Therefore, large-batch training

of video models is di�cult without high-end compute clusters. Although these

issues are generally applicable to any video-based scenarios, they are particu-

larly problematic for self-supervised learning because large-scale training is one

key ingredient [44, 45, 46] but that is exactly where these issues are aggravated.

11
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Figure 2.1: IMR network consists of three sub-networks encoding di↵erent in-

formation streams provided in compressed videos. We incorporate bidirectional

dynamic connections to facilitate information sharing across streams. We train

the model using two novel pretext tasks designed by exploiting the underlying

structure of compressed videos.

Recently, several approaches demonstrated benefits of compressed video

recognition [50, 51, 52, 53]. Without ever needing to decode frames, these ap-

proaches can alleviate compute and storage requirements, e.g., resulting in 3

to 10 times faster solutions than traditional video CNNs at a minimal loss on

accuracy [51, 53]. Also, motion vectors embedded in compressed videos provide

a free alternative to optical flow which is compute-intensive; leveraging this has

been shown to be two orders of magnitude faster than optical flow-based ap-

proaches [52]. However, all the previous work on compressed video has focused

on supervised learning and there has been no study that shows the potential of

compressed videos in self-supervised learning; this is the focus of our work.

In this work, we propose a self-supervised approach to learning video rep-

resentations directly in the compressed video format. We exploit two inherent
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characteristics of compressed videos: First, video compression packs a sequence

of images into several Group of Pictures (GOP). Intuitively, the GOP struc-

ture provides atomic representation of motion; each GOP contains images with

just enough scene changes so a video codec can compress them with minimal

information loss. Because of this atomic property, we enjoy less spurious, more

consistent motion information at the GOP-level than at the frame-level. Sec-

ond, compressed videos naturally provide multimodal representation (i.e. RGB

frames, motion vectors, and residuals) that we can leverage for multimodal cor-

respondence learning. Based on these, we propose two novel pretext task (see

Figure 2.1): The first task asks our model to predict zeroth-order motion statis-

tics (e.g . where is the most dynamic region) in a pyramidal spatio-temporal

grid structure. The second involves predicting correspondence types between

I-frames and P-frames after temporal transformation. Solving our tasks re-

quire implicitly locating the most salient moving objects and matching their

appearance-motion correspondences between I-frames and P-frames; this en-

courages our model to learn discriminative representation of compressed videos.

A compressed video contains three streams of multimodal information –

i.e. RGB images, motion vectors, and residuals – with a dependency structure

between an I-frame stream and the two P-frame streams punctuated by GOP

boundaries. We design our architecture to encode this dependency structure;

it contains one CNN encoding I-frames and two other CNNs encoding motion

vectors and residuals in P-frames, respectively. Unlike existing approaches that

encode I-frames and P-frames individually, we propose to jointly encode them to

fully exploit the underlying structure of compressed videos. To this end, we use a

three-stream CNN architecture and establish bidirectional dynamic connections

going from each of the two P-frame streams into the I-frame stream, and vice

versa, and put these connections layer-wise to learn the correlations between

13



them at multiple spatial/temporal scales (see Figure 2.1). These connections

allow our model to fully leverage the internal GOP structure of compressed

videos and e↵ectively capture atomic representation of motion.

In summary, our main contributions are two-fold: (1) We propose a three-

stream architecture for compressed videos with bidirectional dynamic connec-

tions to fully exploit the internal structure of compressed videos. (2) We propose

novel pretext tasks to learn from compressed videos in a self-supervised manner.

We demonstrate our approach by pretraining the model on Kinetics-400 [71]

and finetuning it on UCF101 [1], HMDB51 [72]. Our model achieves new state-

of-the-art performance in compressed video classification tasks in both super-

vised and self-supervised regimes, while maintaining a similar computational

e�ciency as existing compressed video recognition approaches [51, 52].

2.2 Approach

We use videos compressed according to the MPEG-4 Part 2 specifications [49]

as our input, following the previous work [51, 52, 53]. This compression format

encodes an RGB image sequence as a series of GOPs (Group of Pictures) where

each GOP starts with one I-frame followed by a variable number of P-frames.

An I-frame stores RGB values of a complete image and can be decoded on its

own. A P-frame holds only the changes from the previous reference frame using

motion vectors and residuals. The motion vectors store 2D displacements of

the most similar patches between the reference and the target frames, and the

residuals store pixel-wise di↵erences to correct motion compensation errors. We

use all the three modalities contained in compressed videos as our input.

Formally, our input is T GOPs, G0, · · · , GT�1, where each Gt contains one I-

frame It 2 RH⇥W⇥3 followed by K � 1 pairs of motion vectors Mt,k 2 RH⇥W⇥2

14
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dynamically modulate the connections based on input. Feature tensors (orange

and blue cubes) are placed in the T-HxW-C plane.

and residuals Rt,k 2 RH⇥W⇥3, k 2 [1,K). For e�ciency and simplicity, we

assume an identical GOP size K for all t 2 [0, T ).

2.2.1 IMR Network for Compressed Videos

Our model consists of three CNNs, each with 3D convolutional kernels modeling

spatio-temporal dynamics within each input stream {It}, {Mt,k}, {Rt,k}, t 2

[0, T ), k 2 [0,K); we denote these sub-networks by I-network fI , M-network fM ,

and R-network fR, respectively, and call our model IMR Network (IMRNet).

We account for the di↵erence in the amount of information between I-frames

and P-frames by adjusting the capacity of networks accordingly. Specifically,

following Wu et al. [51], we make the capacity of fI larger than fM and fR by

setting the number of channels in each layer of fI to be � times higher than

those of fM and fR (we set � = 16).

Existing models for compressed videos typically perform late fusion [51, 52],
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i.e., they combine embeddings of I-frames and P-frames only after encoding

each stream. However, we find that it is critical to allow our sub-networks to

share information as they encode their respective input streams. To this end, we

establish layer-wise lateral connections between fI & fM and between fI & fR.

Bidirectional Dynamic Connections. Lateral connections have been

used to combine information from di↵erent streams, e.g., RGB images and

optical flow images [73], and RGB images sampled at di↵erent frame rates [11].

In this work, we use it to combine information from I-frames and P-frames. Our

approach is di↵erent from previous work in two key aspects: (1) We establish

bidirectional connections between streams, instead of unidirectional connections

as was typically done in the past [73, 11], so that information sharing is sym-

metrical between streams. (2) We incorporate multimodal gated attention to dy-

namically adjust the connections based on multimodal (I-frame and P-frames)

information. We call our approach bidirectional dynamic connections to high-

light these two aspects and di↵erentiate ours from previous work, e.g., SlowFast

networks [11] establish unidirectional lateral connections and the connections

are static regardless of the content from the other stream.

We combine embeddings from di↵erent sub-networks via channel-wise con-

catenation, which requires embeddings to match their spatio-temporal dimen-

sions. However, fI processes  times less frames than fM and fR, produc-

ing embeddings that are  times smaller in the temporal dimension. There-

fore, we transform the embeddings with time-strided 3D (de-)convolution with

(⇥ 1⇥ 1) kernels, C/8 channels, and (, 1, 1) temporal stride: We use convo-

lution for fM/fR ! fI to decrease the time dimension and deconvolution for

fI ! fM/fR to increase it. Note that simply using the (de-)conv layers will

perform static transformation regardless of what is provided from the other

sub-network, similar to Feichtenhofer et al. [11]. However, we find it critical to
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make the transformations aware of information from both sub-networks so that

the networks can dynamically adjust the connections and selectively share only

the most relevant information from each sub-network.

To achieve this, we dynamically modulate (de-)conv layer outputs using

multimodal-gated attention weights. Let xI 2 RTI⇥W⇥H⇥CI and xM 2 RTM⇥W⇥H⇥CM

be the embeddings from fI and fM , respectively. We max-pool xI and xM

and concatenate them to obtain multimodal embedding z 2 RCZ with CZ =

CI+CM . We define multimodal gate functions that take as input z and generate

attention weights aI 2 RCI/8 and aM 2 RCM/8 as

aI = � (W3h+ b3) , aM = � (W4h+ b4) , h = ⇣ (W2⇣ (W1z+ b1) + b2) (2.1)

where � is a sigmoid function, ⇣ is a Leaky ReLU function, and W1,W2 2

RCZ⇥CZ , b1, b2 2 RCZ ,W3 2 RCI/8⇥CZ , b3 2 RCI/8,W4 2 RCM/8⇥CZ , b4 2

RCM/8 are weight parameters. Next, we use these attention weights to mod-

ulate the (de-)conv output embeddings,

vM!I = aI ⌦ 3d conv(xM ), vI!M = aM ⌦ 3d deconv(xI) (2.2)

where ⌦ is channel-wise multiplication. We repeat the same process for fI & fR

to obtain vR!I and vI!R, and combine them with the feature embeddings via

channel-wise concatenation,

x̂I = [xI ;vM!I ;vR!I ], x̂M = [xM ;vI!M ], x̂R = [xR;vI!R] (2.3)

Each of these is fed into the next layer in the corresponding sub-network. We

establish these lateral connections across multiple layers of our network. To

obtain the final embedding, we apply average pooling on the output from the

final layer of each sub-network and concatenate them channel-wise.

Note that the design of IMRNet is orthogonal to the design of video CNNs;

while we adapt 3D ResNet [74] as the backbone in our experiments, we can use
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Figure 2.3: Pyramidal motion statistics prediction asks our network to

find a region with the highest energy of motion. Here we visualize two levels in

a spatio-temporal pyramid for illustration.

any of existing CNN architectures as the backbone, e.g., C3D [75], I3D [76],

R(2+1)D [77]. What is essential, however, is that (i) there are three sub-

networks, each modeling one of the three input streams, and (ii) information

from di↵erent networks are combined via bidirectional dynamic connections as

they are encoded.

2.2.2 Self-Supervised Learning Objectives

Compressed videos have unique properties, i.e., the multimodal nature of infor-

mation (RGB, motion vector, residuals) and the internal GOP structure that

provides atomic representation of motion. We turn these properties into free

self-supervisory signals and design two novel pretext tasks.

Pyramidal Motion Statistics Prediction (PMSP). One important

desideratum of video CNNs is learning visual representation that captures

salient objects and motion. We hypothesize that there is an implicit videog-

rapher bias captured in videos in-the-wild that naturally reflect visual saliency:

Videos are purposely recorded to highlight important objects and their move-

ments.1 Therefore, regions with the highest energy of motion can provide clues

1This is, of course, a weak hypothesis. But we show some convincing empirical evidence in
Section 2.3.3.
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to learning the desired video representation. We can easily find those regions

in compressed videos: the motion vectors in P-frames readily provide magni-

tude and angular information of motion, which we can harness to find the most

vibrant regions.

Based on this intuition, we design a task that asks our model to predict the

zeroth-order motion statistics (i.e., the most vibrant region) in a given video.

For this, we must be able to deal with a variety of object sizes because a salient

moving object can appear at any location in any size. A classical solution to

this is to perform pyramidal prediction [78, 79]: We divide a video into spatio-

temporal 3D grids at multiple scales and ask our network to predict the most

vibrant region at each scale.

Specifically, we define a pyramidal classification task with the following loss

function,

LPMSP = �
X

i

X

r

X

q

y
(i)
q,r · log↵r

⇣
x(i)
q,r

⌘
(2.4)

This is a cross-entropy loss computed at every q-th grid in every r-th level of

a spatio-temporal pyramid; i is the sample index. We define a 9-level spatio-

temporal pyramid with 3 spatial and 3 temporal scales, i.e., r 2 {(s, t)|s 2

{[2 ⇥ 2], [3 ⇥ 3], [4 ⇥ 4]}, t 2 {1, 3, 5}}. The index q iterates over all possible

temporal coordinates in the r-th level of the pyramid, e.g., in Figure 2.3 (a),

q 2 [0, · · · , 4] with r = ([2 ⇥ 2], 5). y(i)q,r is a one-hot label marking the location

with the highest energy of motion in the q-th grid in r-th level in the pyramid,

e.g., in Figure 2.3 (a), y(i)q,r is a 4-dimensional one-hot vector. x(i)
q,r is the (q, r)-th

feature in a 3D grid; we concatenate output embeddings from all three sub-

networks, x(i) = [x(i)
I ;x(i)

M ;x(i)
R ]. Finally, ↵r(·) is a 2-layer MLP with a softmax

classifier predicting the most vibrant region in the given grid; we define one

such classifier for each r.
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Algorithm 1: Self-Supervision Labels for Pyramidal Motion Statistics
Prediction
Require: T GOPs each of which has K � 1 motion vectors

{M0,1, ...,MT�1,K�1}

1: Generate dx, dy by convolving motion vectors with Prewitt operator [80],
Gx, Gy

2: t 1 . Set temporal scale t to 1
3: Y  [] . Empty list for labels
4: for i = 0 to 2 do
5: for n = 0 to t� 1 do
6: sum dx sum(dx[n ⇤K : (n+ T � t+ 1) ⇤K])
7: sum dy  sum(dy[n ⇤K : (n+ T � t+ 1) ⇤K])
8: magnitude cartToPolar(sum dx, sum dy)
9: magnitude[2⇥2]  makeGrid(magnitude, spatial = 2)

10: magnitude[3⇥3]  makeGrid(magnitude, spatial = 3)
11: magnitude[4⇥4]  makeGrid(magnitude, spatial = 4)
12: y[2⇥2]  argmaxq2[1,··· ,22](magnitude[2⇥2])
13: y[3⇥3]  argmaxq2[1,··· ,32](magnitude[3⇥3])
14: y[4⇥4]  argmaxq2[1,··· ,42](magnitude[4⇥4])
15: Y  Y [ [y[2⇥2], y[3⇥3], y[4⇥4]]
16: end for
17: t t+ 2
18: end for
19: return PMSP labels, Y , at multiple scales

{(s, t)|s 2 {[2⇥ 2], [3⇥ 3], [4⇥ 4]}, t 2 {1, 3, 5}}

Algorithm 1 shows a pseudo-code to compute the labels at multiple spatio-

temporal scales, r 2 {(s, t)|s 2 {[2⇥ 2], [3⇥ 3], [4⇥ 4]}, t 2 {1, 3, 5}}.

Correspondence Type Prediction (CTP). One idea often used in self-

supervision is applying certain transformations to data and asking a network

to predict the correspondence type given a pair of instances (e.g., true pair or

randomly selected pair) [39, 81, 82, 83]. The multimodal nature of compressed

videos makes them an ideal data format to apply such self-supervision tech-

nique: The three frame types in compressed videos exhibit di↵erent character-

istics, yet they are strongly correlated with each other. This allows us to consider
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Figure 2.4: Correspondence type prediction asks our network to categorize
di↵erent types of data transformations applied on P-frames. We illustrate four
transformation types used in our experiments.

I-frames as a heavily transformed version of the corresponding P-frames, and

vice versa. Learning the correspondence type between I-frames and P-frames

can therefore encourage our network to learn discriminative representation of

videos.

We define a correspondence type prediction task with the following loss

function,

LCTP = �
X

i

X

j

y
(i)
j · log �

⇣
x(i)
I , T (x(i)

M ,x(i)
R , j)

⌘
(2.5)

where i is the sample index and j iterates over a set of transformations. y(i)j

is a one-hot label indicating di↵erent correspondence types determined by the

type of transformation done, and T (·, j) is a data transformation function that

changes the input using the j-th transformation. We define four transformation

types (see Figure 2.4): (1)Aligned keeps the original input (no transformation),

(2) Random replaces the data with P-frames from a randomly selected video,

(3) Shu✏e randomly shu✏es the GOP order, (4) Shift randomly divides GOPs
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into two groups and switch the order, e.g., [1, 2, 3, 4, 5] to [2, 3, 4, 5, 1]. Finally,

�(·) is a 2-layer MLP with a softmax classifier.

Note that there is a nuanced di↵erence between random P-frames and shuf-

fled/shifted P-frames. The former contains P-frames that come from a di↵erent

clip, while the latter contains P-frames of the same clip as the I-frames, yet

in a di↵erent frame order. Intuitively, the former encourages our network to

learn from global (clip-level) correspondence, while the latter formulates a local

(frame-level) correspondence task. Therefore, our CTP task encourages our net-

work to learn discriminative representations at both global and local levels. We

provide empirical evidence showing the importance of this global-local mixed

objective in Section 2.3.2.

Final Objective. We optimize our model using a learning objective LPMSP+

�LCTP with � = 1. The classifiers ↵r and � are used only during self-supervised

training; we detach them thereafter.

2.3 Experiments

Architecture Details. Table 2.1 provides architecture details of our IMRNet.

In our experiments, we use both 3D ResNet-18 and 3D ResNet-50 as the back-

bone; we provide the details of both models in the table. We also include the

details of our bidirectional dynamic connections, which include 3D convolution-

al/deconvolutional layers that downsamples/upsamples the computed features

along the temporal dimension. We establish the connections after {conv1, res2,

res3, res4} layers, each with di↵erent numbers of channels.

Optimization. We pretrain our model end-to-end from scratch for 20 epochs,

including the initial warm-up period of 5 epochs. For downstream scenarios, we

finetune our model for 500 epochs for UCF101 and for 300 epochs for HMDB51,

including the warm-up period of 30 epochs. For both the pretraining and fine-
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Stage I Pathway M/R Pathway Output sizes T⇥ S2

raw clip – – 60⇥ 2242

data layer stride 12, 12 stride 2, 12
I: 5⇥ 2242

M/R: 25⇥ 2242

conv1
1⇥ 72, 64
stride 1, 22

5⇥ 72, 8
stride 1, 22

I: 5⇥ 1122

M/R: 25⇥ 1122

pool1
1⇥ 32,max

stride 1, 22
5⇥ 32,max

stride 1, 22
I: 5⇥ 562

M/R: 25⇥ 562

res2

(3D ResNet-18)
1⇥ 32, 64
1⇥ 32, 64

�
⇥2

(3D ResNet-18)
3⇥ 32, 4
1⇥ 32, 4

�
⇥2

I: 5⇥ 562

M/R: 25⇥ 562
(3D ResNet-50)2

4
1⇥ 12, 64
1⇥ 32, 64
1⇥ 12, 256

3

5⇥3

(3D ResNet-50)2

4
3⇥ 12, 4
1⇥ 32, 4
1⇥ 12, 16

3

5⇥3

res3

(3D ResNet-18)
1⇥ 32, 128
1⇥ 32, 128

�
⇥2

(3D ResNet-18)
3⇥ 32, 8
1⇥ 32, 8

�
⇥2

I: 5⇥ 282

M/R: 25⇥ 282
(3D ResNet-50)2

4
1⇥ 12, 128
1⇥ 32, 128
1⇥ 12, 512

3

5⇥4

(3D ResNet-50)2

4
3⇥ 12, 8
1⇥ 32, 8
1⇥ 12, 32

3

5⇥4

res4

(3D ResNet-18)
3⇥ 32, 256
1⇥ 32, 256

�
⇥2

(3D ResNet-18)
3⇥ 32, 16
1⇥ 32, 16

�
⇥2

I: 5⇥ 142

M/R: 25⇥ 142
(3D ResNet-50)2

4
3⇥ 12, 256
1⇥ 32, 256
1⇥ 12, 1024

3

5⇥6

(3D ResNet-50)2

4
3⇥ 12, 16
1⇥ 32, 16
1⇥ 12, 64

3

5⇥6

res5

(3D ResNet-18)
3⇥ 32, 512
1⇥ 32, 512

�
⇥2

(3D ResNet-18)
3⇥ 32, 32
1⇥ 32, 32

�
⇥2

I: 5⇥ 72

M/R: 25⇥ 72
(3D ResNet-50)2

4
3⇥ 12, 512
1⇥ 32, 512
1⇥ 12, 2048

3

5⇥3

(3D ResNet-50)2

4
3⇥ 12, 32
1⇥ 32, 32
1⇥ 12, 128

3

5⇥3

Stage conv1 res2 res3 res4

I to M/R
1⇥ 52, 8

stride 5, 12
1⇥ 52, 8

stride 5, 12
1⇥ 52, 16
stride 5, 12

1⇥ 52, 32
stride 5, 12

M/R to I
5⇥ 72, 4

stride 5, 12
5⇥ 72, 4

stride 5, 12
5⇥ 72, 8

stride 5, 12
5⇥ 72, 16
stride 5, 12

Table 2.1: IMRNet architecture details. We show two versions of IMRNet
with di↵erent backbones: 3D ResNet-18 and 3D ResNet-50. We denote the input
dimensions by {temporal size, spatial size2}, kernels by {temporal size, spatial
size2, channel size} and strides by {temporal stride, spatial stride2}.
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tuning stages, we use SGD with momentum 0.9, weight decay 10�4, and half-

period cosine learning rate schedule. We use 4 NVIDIA Tesla V100 GPUs and

use a batch size of 100.

Data. We pretrain our model on Kinetics-400 [71]. For evaluation, we

finetune the pretrained model for action recognition using UCF101 [1] and

HMDB51 [72]. We use 2-second video clips encoded in 30 FPS with a GOP

size T = 12. We use all T = 5 GOPs but subsample every other P-frames

within each GOP; this results in 5 I-frames and 25 P-frames. We randomly

crop 224⇥ 224 pixels from videos resized to 256 pixels in the shorter side while

keeping the aspect ratio. For data augmentation, we resize the video with var-

ious scales [.975, .9, .85] and apply random horizontal flip. For test videos, we

take three equidistant 224 ⇥ 224 pixel crops from videos resized to 256 pix-

els to fully cover the spatial region. We approximate the fully-convolutional

testing [10] by averaging the softmax scores for final prediction.

2.3.1 Supervised Learning Experiments

We first demonstrate our proposed IMR network in the fully-supervised setup,

training it without using our self-supervised pretext tasks. We use the standard

training and evaluation protocols for both UCF101 and HMDB51. For fair

comparisons with existing approaches [51, 52], we report results both when

we train the model from scratch and when we pretrain it on Kinetics-400 and

finetune it on downstream datasets (indicated in column Pretrain).

Table 2.2 summarizes the results. When trained from scratch, our model

outperforms CoViAR [51] by a large margin regardless of the chosen backbone.

The performance gap is alleviated when the models are pretrained on Kinet-

ics400, but our approach continues to outperform them even in this scenario.

This suggest that CoViAR struggles to learn discriminative representations
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Models OF Pretrain Backbone UCF HMDB
CoViAR‡ 7 Scratch ResNet-152 43.8 27.3
IMR (No connection) 7 Scratch 3D ResNet-18 52.7 34.6
IMR (Unidirectional) 7 Scratch 3D ResNet-18 69.7 40.8
IMR (No conv) 7 Scratch 3D ResNet-18 71.7 42.6
IMR (No attention) 7 Scratch 3D ResNet-18 73.2 43.5
IMRNet 7 Scratch 3D ResNet-18 74.1 43.7
IMRNet 7 Scratch 3D ResNet-50 80.2 55.9

CoViAR† 7 ImageNet ResNet-152 (I), ResNet-18 (P) 90.4 59.1
CoViAR‡ 7 K400 ResNet-152 90.8 59.2
IMRNet (Ours) 7 K400 3D ResNet-18 91.4 62.8
IMRNet (Ours) 7 K400 3D ResNet-50 92.6 67.8
CoViAR† 3 ImageNet ResNet-152 (I), ResNet-18 (P, OF) 94.9 70.2
DMC-Net† 3 ImageNet ResNet-152 (I), ResNet-18 (P) 90.9 62.8
DMC-Net† 3 ImageNet ResNet-152 (I), I3D (P) 92.3 71.8
IMRNet (Ours) 3 K400 3D ResNet-50 (I, P), I3D (OF) 95.1 72.2

Table 2.2: Results from the supervised setting. Column OF indicates re-
sults using optical flow during training. Column Pretrain indicates datasets
used for supervised pretraining. †: published results. ‡: our results based on of-
ficial implementations by the authors. Datasets. K: Kinetics, UCF: UCF101,
HMDB: HMDB51.

without help from a large-scale pretraining data. We believe the performance

gap comes from the di↵erence in how the two models encode compressed videos:

CoViAR combines information from I-frames and P-frames only after encoding

them separately, while we combine them in the early layers of CNN.

CoViAR and DMC-Net [52] reported improved results when they are trained

using optical flow. Therefore, we also conduct experiments by adding an I3D

network [76] to encode optical flow images; we simply concatenate our IMRNet

features with the I3D features as our final representation (no lateral connections

between IMRNet and I3D). This model outperforms both CoViAR and DMC-

Net trained with optical flow (bottom group, Table 2.2). DMC-Net improves

upon CoViAR by adapting GANs [84] to reconstruct optical flow from P-frames.

Note that our approach (with 3D ResNet-50 backbone) outperforms DMC-Net

(with ResNet-152/18 backbones) on both datasets even without using optical

flow during training and thus significantly simplifies the training setup (no

GANs required).
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Models R152⇤ R(2+1)D† CoViAR‡ DMC‡ IMR‡ (3R18) IMR‡ (3R50)
Preprocess (ms) 75.00 75.00 2.87 2.87 2.87 2.87
Inference (ms) 7.50 1.74 1.30 1.91 1.36 1.44
Total (ms) 82.50 76.74 4.17 4.78 4.23 4.31
GFLOPs 11.3 0.96 4.2 4.4 0.66 1.04

Table 2.3:Runtime analysis of per-frame speed (ms) and FLOPs. The number
of input frames are di↵erent across models: ⇤ 1 frame (since it is a 2D CNN),
† 16 frames, ‡ 25 frames. Models. R152: ResNet-152, DMC: DMC-Net, 3R18:
3D ResNet-18, 3R50: 3D ResNet-50.

Next, we conduct an ablation study on the bidirectional dynamic connec-

tion: (a) No connection removes lateral connections and thus is similar to

CoViAR, (b) Unidirectional establishes connections from M/R-Networks to

I-Network, but not vice versa, i.e., Equation 2.3 becomes x̂M = xM , x̂R = xR,

(c) No conv replaces (de-)conv layers with simple up/down-sampling, (d) No

attention removes the multimodal-gated attention module. The results are

shown in Table 2.2. We can see that lateral connections are critical component

of our model (Ours vs. No connection) and doing so in a bidirectional fashion

significantly improves performance (Ours vs. Unidirection). We can also see

that using (de-)conv layers and dynamically modulating the connection with

gate functions improve performance (Ours vs. No conv and No attention).

Table 2.3 shows per-frame runtime speed (ms) and GFLOPs measured on

an NVIDIA Tesla P100 GPU with Intel E5-2698 v4 CPUs (⇤ process individual

frames. † and ‡ process 16- and 25-frame sequences, respectively). Our approach

has the same preprocessing time of CoViAR and DMC-Net because all three

approaches use the same video loader implementation [51]. As for the inference

speed, IMRNet is comparable to CoViAR and even slightly faster than DMC-

Net (we divide the total inference time by #frames following the convention

of Wu et al. [51]). This is partly because we use lighter backbones (R18/R50

vs. R152 used in CoViAR and DMC-Net) to compensate for the expensive 3D

convolutional operations, while DMC-Net requires an OF generator network of
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7 all-convolutional layers, which adds extra cost. In terms of per-frame FLOPs,

ours is more e�cient than CoViAR and DMC-Net because the computation is

done at the sequence-level rather than per-frame; we observe a similar trend

for R(2+1)D (which uses ResNet-18) vs. ResNet-152. This shows that our 3D

CNN backbones do not bring any significant extra cost compared to CoViAR

and DMC-Net, and thus our model enjoys all the computational benefits of

compressed video processing.

2.3.2 Self-supervised Learning Experiments

We move to the self-supervised regime and demonstrate our pretext tasks by

pretraining our IMRNet on Kinetics-400 and transferring it to action recog-

nition. Because ours is the first self-supervised approach to learn compressed

video representation, there exist no published baseline that we can directly

compare with. Therefore, we provide results from existing self-supervised ap-

proaches that require the decoding step. We include approaches that learn from

RGB images – AOT [34], Rotation [37], MotPred [85], RotNet3D [37], ST-

Puzzle [35], ClipOrder [86], DPC [87] – as well as those that learn from audio

and visual channels in videos – Multisensory [39], AVTS [41], ELo [40].

Table 2.4 summarizes the results. We first notice that pretraining the mod-

els with any pretext tasks improves downstream performance (the first group

of results), suggesting self-supervised pretraining is e↵ective in general. We also

see that IMRNet pretrained using our pretext tasks (PMSP+CTP) outperforms

the baseline pretext tasks (second group) and self-supervised methods for un-

compressed videos (third group). This shows the e↵ectiveness of our IMRNet

pretrained with our pretext tasks.

Next, we conduct an ablation study by pretraining the base models using

either PMSP and CTP alone. We also test CTP (Binary) which is a simplied
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Models Compressed Modality Pretext Pretrain Backbone UCF HMDB

C3D 7 V MotPred K400 C3D 61.2 33.4
3D ResNet-18 7 V RotNet3D K600 3D ResNet-18 62.9 33.7
3D ResNet-18 7 V ST-Puzzle K400 3D ResNet-18 65.8 33.7
R(2+1)D-18 7 V ClipOrder UCF R(2+1)D-18 72.4 30.9
3D ResNet-34 7 V DPC K400 3D ResNet-34 75.7 35.7
Multisensory 7 A+V Multisensory K400 Audio-VisualNet 82.1 –
AVTS 7 A+V AVTS AS MC3 89.0 61.6
ELo 7 A+V ELo K400 (2+1)D ResNet-50 93.8 67.4

CoViAR‡ 3 V Scratch None ResNet-152 43.8 27.3
IMRNet 3 V Scratch None 3D ResNet-18 74.1 43.7

CoViAR‡ 3 V AOT K400 ResNet-152 53.6 29.3
CoViAR‡ 3 V Rotation K400 ResNet-152 56.7 31.4
IMRNet 3 V InfoNCE K400 3D ResNet-18 73.9 43.7
IMRNet 3 V AOT K400 3D ResNet-18 74.6 44.0
IMRNet 3 V Rotation K400 3D ResNet-18 75.1 44.3

CoViAR‡ 3 V PMSP K400 ResNet-152 63.5 35.9
CoViAR‡ 3 V CTP K400 ResNet-152 64.4 37.4
CoViAR‡ 3 V CTP (Binary) K400 ResNet-152 63.7 37.1
IMRNet 3 V PMSP K400 3D ResNet-18 76.0 44.9
IMRNet 3 V CTP K400 3D ResNet-18 76.7 44.8
IMRNet 3 V CTP (Binary) K400 3D ResNet-18 74.6 44.2
IMRNet 3 V PMSP+CTP K400 3D ResNet-18 76.8 45.0

Table 2.4: Results from the self-supervised setting. Column Compressed

indicates the methods that learn directly from compressed videos without de-
coding them. Modality indicates whether a method used only visual (V) modal-
ity or audio-visual modalities (A+V). Pretrain indicates datasets used for self-
supervised pretraining. ‡: based on an o�cial implementation by the authors.
Datasets. K: Kinetics, AS: AudioSet, UCF: UCF101, HMDB: HMDB51.

version of our CTP task with only two modes: Aligned and Random (see Fig-

ure 2.4). Note that this is a typical pair correspondence setup used in the

literature [3]. Table 2.4 (fourth group) shows the results. We can see that us-

ing either of our pretext tasks leads to a significant improvements compared to

the Scratch result. The CTP (Binary) results suggests that the two additional

transformation types (Shu✏e and Shift in Figure 2.4) improves the task by mak-

ing it more di�cult to solve; we noticed that the loss curve of CTP (Binary)

decreases significantly faster than CTP and quickly saturates thereafter.
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2.3.3 Qualitative Examples

PMSP Label Visualization. In Section 2.2.2, we motivated the design of our

PMSP task by arguing that there is an implicit videographer bias captured in

videos in-the-wild that naturally reflects visual saliency: Videos are purposely

recorded to highlight important objects and their movements; therefore, regions

with the highest energy of motion – captured by our PMSP labels – can provide

clues to learning video representation that captures salient moving objects. We

acknowledge that this is, of course, a weak hypothesis. However, in this section

we provide some convincing empirical evidence.

Figures 2.5-2.12 are generated by visualizing regions with the highest energy

of motion – i.e. , the PMSP labels – at multiple spatio-temporal scales. It needs

a bit of explanation on how to read the figures as there is a lot going on. Each

figure is organized into three rows; each row shows results with multiple spatial

regions at a particular temporal scale, t 2 {1, 3, 5}. We color-code di↵erent

spatial scales: Red boxes are in a [2⇥2] spatial scale, green boxes are in a [3⇥3]

spatial scale, and blue boxes are in a [4 ⇥ 4] spatial scale. Notice that all five

I-frames in the top rows (t = 1) in each set of results always contain identical

regions. This is because, at the temporal scale t = 1 (meaning, a temporal

grid of size 1), we compute the regions with the highest motion energy over

the entire video (5 GOPs), hence the regions are identical across all I-frames

in a video. Conversely, the bottom rows (t = 5, a temporal grid of size 5)

show the regions computed at each GOP, and hence the regions may di↵er

by every I-frame (recall that each GOP contains a single I-frame). The middle

rows (t = 3) show regions computed over 3 GOPs. We overlay the regions at the

overlapping I-frames, e.g . , the third I-frame at t = 3 contains regions computed

at all three grid locations spanning over the I-frame indices [1,2,3], [2,3,4], and
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[3,4,5]. We order the figures at an increasing level of complexity, and provide

detailed analyses of the results in the captions of the figures.

The results in Figures 2.5-2.12 suggest that the most vibrant regions, as

computed by our PMSP labels, tend to overlap with semantically important

regions, e.g . , the most salient moving objects. Intuitively, training our model to

detect those regions encourages it to learn visual representations that capture

salient objects and motion. This allows our model to learn discriminative visual

representation in a self-supervised manner.
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t =1
t =3

t =5

Figure 2.5: PMSP label visualization. The most vibrant regions, as highlighted by
boxes of varying sizes indicating di↵erent spatial scales ([2 ⇥ 2], [3 ⇥ 3], [4 ⇥ 4]), all
successfully capture the most salient moving object (the hand with a eye brush) and
its motion (applying eye makeup).

t =1
t =3

t =5

Figure 2.6: PMSP label visualization. At t = 1, the most vibrant region is the
punching bag, correctly capturing the semantic category of the video (BoxingPunch-
ingBag). As we get temporally finer, the regions start to capture the boxer’s movement,
e.g . , the elongated green boxes in the third and the fourth I-frames at t = 3.

31



t =1
t =3

t =5

Figure 2.7: PMSP label visualization. This example highlights the benefit of for-
mulating our task in a spatially pyramidal manner. Notice the boxes at di↵erent spatial
scales capture di↵erent moving objects at varying sizes, i.e., green boxes ([3⇥ 3]) cap-
ture the referee, blue boxes ([4⇥ 4]) capture the hands of the two sumo wrestlers, and
red boxes ([2⇥ 2]) capture the wrestlers’ legs.

t =1
t =3

t =5

Figure 2.8: PMSP label visualization. This example highlights the benefit of for-
mulating our task in a temporally pyramidal manner. While the vibrant regions at
t = 1 fail to capture the tumbling gymnast, the vibrant regions at t = 3 and t = 5
successfully track her trajectory (especially the three middle I-frames at t = 3). In
general, di↵erent videos will contain moving objects at di↵erent speeds; our pyramidal
formulation allows us to capture a wide variety of moving objects at di↵erent speeds
via multiple temporal scales.
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t =1
t =3

t =5

Figure 2.9: PMSP label visualization. Another example highlighting the benefit
of our pyramidal formulation. While some regions at t = 1 miss the toddler in swing
(see the first and the fifth I-frames in the first row), at t = 3 and t = 5 the boxes
successfully track the toddler’s trajectory.

t =1
t =3

t =5

Figure 2.10: PMSP label visualization. This example contains a dynamically mov-
ing object (a women with a bow and an arrow) spanning across a large region in the
frames, representing a challenging situation. Notice the boxes at di↵erent spatial and
temporal scales highlight di↵erent parts: at t = 1, both the green ([3⇥ 3]) and the red
([2⇥ 2]) boxes capture the bow, which exhibits the sharpest edge with motion (hence
the highest motion energy in those spatial scales), while the blue boxes ([4 ⇥ 4]) cap-
ture the arm that takes out an arrow. At t = 3 and t = 5, the regions start to capture
di↵erent parts, e.g . , the woman, which exhibits dynamic motion only towards the end
of the video.
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t =1
t =3

t =5

Figure 2.11: PMSP label visualization. Another challenging example containing a
small, dynamically moving object (Surfing). At t = 1, all the boxes focus on the crushing
waves on the bottom right corner, which is on average the most vibrant region in this
video. Things are not much better at t = 3; the surfer is still too fast to capture, and
thus the boxes fail to capture the surfer and instead highlight crushing waves. At the
finest temporal scale t = 5, the boxes begin to capture the surfer (see the first, second
and the fifth frames on the bottom).

t =1
t =3

t =5

Figure 2.12: PMSP label visualization. This is a partial -failure example that shows
boxes highlighting game statistics during horse race TV broadcast (see the boxes at
t = 1). The game statistics constantly change frame-by-frame (e.g . , time marks, rank,
etc.), which caused those regions to exhibit on average the highest energy of motion for
the entire duration of the video. Learning representations that strictly focus on those
regions could lead to non-discriminative information (many sports videos show similar
game statistics on screen). Fortunately, the boxes begin to highlight the horse riders
at a finer temporal scale; see the green boxes ([3⇥ 3]) at t = 3 and t = 5. This, again,
suggests that the pyramidal formulation makes our PMSP task robust to a variety of
challenging real-world scenarios.
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PMSP Prediction Results. Figure 2.13 and Figure 2.14 show side-by-

side comparisons of the ground-truth PMSP labels and our prediction results.

Overall, our prediction results are mostly identical to the ground-truth regions.

When our prediction deviates from the ground-truth, the predicted regions

still tend to capture important moving objects, e.g., Figure 2.13 (a) captures

di↵erent parts of the punching bag, Figure 2.14 (b) captures di↵erent parts of

the boxer, and Figure 2.14 (d) captures di↵erent arms of the swimmer.

Video-to-Video Retrieval. To demonstrate the quality of video represen-

tations learned using our self-supervised learning objectives (Section 2.2.2), we

evaluate our method in the video-to-video retrieval task. To do this, we mea-

sure the cosine similarity between a query video and all the other videos in

a candidate set, and show the top-1 retrieved video. We compare ours to two

baselines: 3D Rotation [37] is our IMRNet pretrained using the 3D rotation

prediction task (we used the IMRNet + Rotation pretrained model reported

in Table 2.4), and ImageNet is a ResNet-152 fully-supervised with ImageNet

ILSVRC-2012 [88]. We visualize the results in Figures 2.15-2.18 and analyze

the results in the caption of each figure.
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Figure 2.13: PMSP prediction results. Overall, the predicted regions tend
to highlight salient moving objects (although sometimes di↵erent from the
ground-truth). (a): BoxingPunchingBag, (b): BaseballPitch, (c): Archery, (d):
ThrowDiscus.
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Figure 2.14: PMSP prediction results. Overall, the predicted regions con-
tain the salient moving objects (although sometimes di↵erent from the ground-
truth). (a): Biking, (b): BoxingPunchingBag, (c): CricketShot, (d): FrontCrawl.
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Figure 2.15: Video-to-video retrieval result. Ours finds the most similar video to
the query in terms of both the appearance (a gymnast) and the motion (handspring).
The 3D Rotation baseline captures perhaps more similar appearance (a gymnast with
the audience in the back) but less similar motion (horizontal bar jump vs. handspring).
The ImageNet baseline fails to capture both appearance and motion (ImageNet does
not contain a category relevant to floor gymnastics).
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Figure 2.16: Video-to-video retrieval result. Ours finds the most similar video to
the query in terms of both the appearance (swim stadium) and motion (swimming).
The ImageNet baseline does capture similar appearance (water), but fails to capture
motion (swimming vs. surfing). The 3D Rotation baseline shows little to no semantic
similarity to the query video.
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Figure 2.17: Video-to-video retrieval result. Ours finds the most similar video to
the query in terms of both the appearance (scene layout) and the motion (pitching). The
ImageNet baseline does capture similar high-level semantics appearance-wise (baseball
pitcher) but motion is relatively less similar (di↵erent camera angle, no catcher and no
hitter). The 3D Rotation baseline shows little to no semantic similarity to the query
video.
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Figure 2.18: Video-to-video retrieval result. All three retrieval results fail to find
videos that belong to the same semantic category as the query video (pole vault). How-
ever, ours finds a video that contains similar appearance (running track) and similar
motion (running and jumping). The ImageNet baseline also captures similar appear-
ance (javelin throw) but less similar motion (running at a substantially slower pace).
The 3D Rotation baseline shows little to no semantic similarity to the query video.
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2.4 Related Work

Self-Supervised Learning of Video Representation. Self-supervised learn-

ing has received significant attention [89, 90, 91, 30]. Based on strong progress

in the image domain, several works proposed to learn video representations

in a self-supervised manner. One popular idea is leveraging temporal infor-

mation [30, 31, 32, 25, 33, 34]. Temporal coherence of video pixels has been

leveraged as a self-supervisory signal [92, 93]. Another popular idea is learning

transformation-invariant representations [35, 36, 37]. Also, contrastive learn-

ing [94, 95, 82, 81] has been successfully applied to videos [87]. Despite active

research in this field, to the best of our knowledge, there has not been prior

work on self-supervised learning from compressed videos.

Compressed Video Recognition. Compressed video understanding has

been tackled in a supervised setting [50, 51, 52]. Existing approaches encode

each stream separately and perform late fusion, e.g . , feature concatenation [50,

51]. However, as we show in our experiments, this can miss out useful informa-

tion that can only be learned by modeling the interaction across streams. Unlike

previous approaches, our approach shares relevant information across streams

during the encoding process. In addition, because compressed videos do not pro-

vide continuous RGB frames, it is not easy to directly apply 3D CNNs to encode

I-frames. Therefore, existing approaches use 2D CNNs to process compressed

video frames, e.g., CoViAR [51] uses 2D CNNs to process each stream and

perform average pooling over P-frames, which is insu�cient to model complex

motion dynamics. DMC-Net [52] reconstructs the optical flow from P-frames

and later use the reconstructed signal as input to I3D [76], but this requires

ground-truth optical flow which is compute-intensive. Instead, our IMR net-

work adopts the gated attention [96, 97] and bidirectional connection [98, 11]
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for lateral connection to model complex motion dynamics with I,P frames freely

available in compressed videos.

2.5 Conclusion

We introduced an IMR network for compressed video recognition and two pre-

text tasks for self-supervised learning of compressed video representation. Our

work complements and extends existing work on compressed video recognition

by (1) proposing the first self-supervised training approach on the compressed

videos, and (2) proposing a three-stream 3D CNN architecture to encode com-

pressed videos while dynamically modeling interaction between I-frames and

P-frames. We demonstrated that our IMRNet outperforms state-of-the-art ap-

proaches for compressed videos in both fully-supervised and self-supervised set-

tings, and that our pretext tasks yield better performance in downstream tasks.
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Chapter 3

Parameter Sharing Schemes for
Multimodal Transformers

3.1 Introduction

Learning multimodal representation from unlabeled videos has received consid-

erable attention [99]. Audio-visual learning is of particular interest due to the

abundance of videos with natural audio-visual co-occurrence [39, 100, 101, 102,

103, 104]. However, existing approaches learn localized representations from

short videos (hundreds of milliseconds to just under a few seconds), capturing

only short-term dependencies in data. While this is useful for certain applica-

tions, e.g., source separation [102] and atomic action recognition [105], learning

representation that captures long-term dependencies is equally important, e.g.,

for activity recognition [71, 106, 107]. Unfortunately, processing long videos re-

quires large memory resource and capturing long-term dependencies is a long-

standing problem [108, 109, 54].

In language understanding, strong progress has been made in large-scale
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Figure 3.1: (Left) Our model consists of CNNs encoding short-term dynamics
of each modality and Transformers encoding long-term dynamics of audio-visual
information from videos. (Right) To alleviate excessive memory requirements,
we propose an e�cient parameter sharing scheme based on matrix decomposi-
tion with low-rank approximation, which allows us to train our model end-to-
end.

learning of contextualized language representations using Transformers [54, 55,

56, 57, 58, 46, 59, 60]. Riding on the success of Transformers, several recent

works have extended it to the multimodal setting by adding an additional vi-

sion module to the Transformer framework [61, 110]. However, these models are

typically not end-to-end trained; they rely on a language-pretrained BERT [46],

which is fixed throughout, and train only the visual components. While the pre-

trained BERT helps accelerate convergence and brings reliable extra supervision

signal to the vision component, this partial learning setup can be undesirable if

the text data comes from di↵erent distributions (of topics, dialects, or foreign

languages) or if we want to apply it to di↵erent modalities (e.g., audio-visual).

Unfortunately, end-to-end training of such multimodal Transformer architec-

tures is challenging for most existing compute environments due to the excessive

memory requirement.

In this work, we make three key contributions. First, we propose an end-to-

end trainable bidirectional transformer architecture that learns contextualized

audio-visual representations of long videos. Our model, shown in Figure 3.1,
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consists of audio/visual CNNs, audio/visual Transformers, and a multimodal

Transformer. The CNNs operate on short (e.g., one second) video clips and

are intended to capture short-term dynamics within each modality. The Trans-

former layers operate on long video sequences (e.g., 30 seconds), capturing long-

term dynamics. To enable end-to-end training, we propose a novel parameter

reduction technique that shares parts of weight parameters across Transformers

and across layers within each Transformer. We show that this results in up to

97% parameter reduction, enabling end-to-end training of our model, with a

minimal performance degradation. To the best of our knowledge, our work is

the first to report end-to-end trained multimodal Transformers, and the first to

apply Transformers for audio-visual representation learning.

The quality of negative samples is crucial in contrastive learning, which is

part of our learning objective. As our second contribution, we propose a content-

aware negative sampling strategy that favors negatives su�ciently similar to a

positive instance. Our approach measures the similarity by reusing the CNN

embeddings obtained during model training, and thus do not introduce extra

parameters to learn. We show that this improves performance over the standard

sampling strategies.

Our third contribution is a systematic evaluation of di↵erent modality fusion

strategies. Existing works on multimodal BERT (all using vision-and-language

data) typically apply one fusion strategy without thoroughly comparing with

alternatives, e.g., some works perform early fusion [61, 111] while others perform

mid-level fusion [110, 112]. As a result, it is unclear how di↵erent fusion methods

a↵ect the final performance. In this work, we compare three fusion strategies

(early, mid, late) and show the superiority of mid-level fusion.

To demonstrate our approach, we pretrain our model on long (30-second)

video clips from Kinetics-700 [106] and finetune it on various video classification
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tasks. One benefit of the modular design of our architecture is flexibility: once

pretrained, we can use any of the subnetworks for downstream tasks depend-

ing on the modalities involved (audio-only, visual-only, audio-visual) and video

lengths (short and long). To show this, we evaluate our model on UCF101 [1]

and ESC-50 [5] for short-term visual/audio classification, and Charades [107]

and Kinetics-Sounds [3] for long-term audio-visual action recognition.

3.2 Approach

Figure 3.1 shows an overview of the proposed model architecture. The input

to our model is a sequence of visual clips v1:T and the corresponding sequence

of audio streams a1:T . For example, each sequence is a 30 second-long video

divided into 30 non-overlapping clips (each clip is one second long). We divide

our model into three parts with di↵erent characteristics, which are explained

below.

Local Feature Embedding. We feed each of T video clips to a visual

CNN fV (vt) to obtain xv
1:T 2 RT⇥D, and each audio stream to an audio CNN

fA(at) to obtain xa
1:T 2 RT⇥D. 1 Intuitively, the CNN outputs are temporally

local embeddings as they have access to only a short-range temporal window

of the entire video sequence. Thus, they are suitable for representing short-

range atomic actions (e.g., sit down, raise arms) that constitute long-range

events (e.g., gym workout). We use the SlowFast network [11] with a ResNet-50

backbone [74] as a visual CNN fV , and a ResNet-50 as an audio CNN fA. The

weights of both CNNs are randomly initialized and trained end-to-end with the

Transformer layers.

Unimodal Contextualized Embedding. The local feature embeddings

1For notational simplicity, we drop the subscripts to refer to the entire sequence unless
distinction is necessary.
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capture short-term dynamics but lack long-term contextual information. We

use Transformers [54] to enrich the embeddings with sequence-level context.

We start by learning unimodal contextualized representations using the visual

Transformer gV and the audio Transformer gA, respectively.

The Transformer consists of L layers, each with two sub-layers: a multi-head

attention layer and a feed-forward layer. Given an input sequence of embeddings

x 2 RT⇥D and A attention heads, the j-th head in the attention layer computes

the output embedding sequence aj 2 RT⇥�
, � = D/A as

aj = softmax

 
QjK

>
j

p
�

!
Vj , Qj = xW q

j ,Kj = xW k
j , Vj = xW v

j (3.1)

where W q
j ,W

k
j ,W

v
j 2 RD⇥� are weight matrices for computing the (query, key,

value) triplet given the input x. This operation is repeated for each attention

head, and the outputs are combined (with concatenation followed by one linear

layer with weights W b
2 RD⇥D), producing a 2 RT⇥D. Next, the feed-forward

layer takes this intermediate output and computes o 2 RT⇥D using a two-

layer fully-connected network with weights W c
2 RD⇥E and W

d
2 RE⇥D. The

output of each sub-layer is computed using a residual function followed by layer

normalization [113], i.e., LayerNorm(x+ Sublayer(x)). In this work, we set the

number of layers L = 6, the number of attention heads A = 12, the feature

dimension D = 768 and the intermediate dimension E = 3072. For simplicity,

we use this design for all layers across all three Transformers in our model.

Before feeding local embeddings xv and xa to unimodal Transformers, we

augment them with “positional” embeddings. Specifically, we append to the

beginning of each sequence a special vector BOS (beginning of sequence), i.e.,

xv
0 for visual and xa

0 for audio streams; their dimensions are same as xv
t and

xa
t , respectively. We also define positional embeddings p0:T encoding time in-

dices (we call this “time” embedding). This is necessary to preserve information
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about temporal ordering of local feature embeddings, which is otherwise lost in

Equation 3.1. We combine them via layer normalization,

uv
t = LayerNorm(xv

t + pv
t ), ua

t = LayerNorm(xa
t + pa

t ), 8t 2 [0, T ] (3.2)

We initialize {xv
0,x

a
0,p

v
0:T ,p

a
0:T } to the normal distribution and train them with

the rest of the model.

We feed the augmented visual embeddings into the visual Transformer gV

and obtain yv
0:T = gV (uv

0:T ), and similarly obtain ya
0:T = gA(ua

0:T ). The em-

beddings at each time step has a direct access to the entire input sequence

regardless of their position (it has a one-step signal path during forward and

backward inference). Multiple layers of such feature transformation thus allow

the resulting embedding to be deeply contextualized in the time dimension. We

denote the output embeddings corresponding to the BOS positions by BOS
v
g = yv

0

and BOS
a
g = ya

0 , and designate them as the summary embeddings representing

the sequence of each modality.

Multimodal Contextualized Embedding. The unimodal embeddings

capture long-term temporal context but miss out on cross-modal information.

The final step in forward inference is to use a multimodal Transformer hAV to

obtain embeddings contextualized in the audio-visual space.

We first augment the embeddings yv
0:T and ya

0:T with modality and time

embeddings. The modality embeddings mv and ma are vectors of the same

dimension as yv
t and ya

t , respectively. We share mv (and ma) across all the

unimodal embeddings yv
0:T (and ya

0:T ); thus, they add modality-discriminative

information to the Transformer. We also add time embeddings p0:T as before;

however, unlike in the previous step, we share the same p0:T between embed-

dings from the two modalities to correctly indicate the time indices. We augment
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the modality and time embeddings via layer normalization,

wv
t = LayerNorm(yv

t + pt +mv), wa
t = LayerNorm(ya

t + pt +ma), 8t 2 [0, T ]

(3.3)

We feed the augmented visual embeddings wv
0:T and audio embeddings wa

0:T

to the multimodal Transformer hAV , one after another, and obtain z0:(2T+1) =

hAV ([wv
0:T ;w

a
0:T ]). We again denote the output embeddings corresponding to

the BOS positions by BOS
v
h = zv0(= z0) and BOS

a
h = za0(= zT+1), and use them

as summary embeddings encoding multimodal context.

We emphasize the importance of feeding wv
0:T and wa

0:T one after another.

An alternative would be concatenating them before feeding them to hAV and

obtaining an output z0:T (instead of z0:(2T+1)). However, this restricts the Trans-

former to access audio-visual embeddings only from the same time slices, which

could be problematic when there is a temporally asynchronous relationship be-

tween the two modalities (e.g., a visual clip matches with sound captured a few

times steps before) [114, 42]. By arranging the two sequences one after the other,

the Transformer can mix-and-match appropriate audio-visual embeddings in an

asynchronous manner. Another practical concern with the alternative approach

is that it significantly increases the model size; the weight matrices Wq,Wk,Wv

grow quadratically with the input feature dimension D. Serializing the input

resolves both issues.

3.2.1 Self-Supervised Pretraining Objectives

Task 1: Masked Embedding Prediction (MEP). BERT [46] is trained

using the masked language model (MLM) task, which randomly selects input

tokens and replaces them with a mask token. The model is then trained to

predict the original (unmasked) tokens by solving a classification task with a

cross-entropy loss. However, inputs to our model are real-valued audio-visual
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signals (rather than discrete tokens),2 so applying the MLM task requires in-

put discretization, which causes information loss [110, 115]. We instead train

our model to identify the correct visual clip or audio stream compared to a

set of negative samples in a contrastive manner, which does not require input

discretization.

We formulate our MEP task using InfoNCE [94], which is the softmax ver-

sion of the noise contrastive estimation (NCE) [116]. Let õt be the t-th output

of any of the three Transformers obtained by masking the t-th input xt. Our

InfoNCE loss is then defined as

LNCE(x, õ) = �Ex

"
X

t

log
I(xt, õt)

I(xt, õt) +
P

j2neg(t) I(xj , õt)

#
, (3.4)

where neg(t) are negative sample indices and the compatibility function I(xt, õt)

is,

I(xt, õt) = exp
⇣
FFN>(õt)WIxt

⌘
, (3.5)

where WI 2 RP⇥D (P = 256) and FFN is a two-layer feed-forward network.

The use of a non-linear prediction head has shown to improve the quality of the

representations learned in a contrastive learning setup [81]; following the recent

work in Transformers [46, 59, 117], we use a GELU non-linear activation func-

tion [118] in FFN. Optimizing Equation 3.4 enforces I(xt, õt) to approximate

the density ratio p(xt|õt)
p(xt)

; this can be seen as maximizing the mutual information

between xt and õt [94]. Intuitively, this encourages the Transformer to capture

the underlying dynamics of x from each modality without explicitly learning a

generative model p(xt|õt).

Negative Sampling. We find that a good negative sampling strategy is

essential for the model’s convergence. Existing approaches either use all but xt

2In the form of RGB images and log-mel-scaled spectrograms.
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(positive) within a mini-batch as negative samples or limit it to the current se-

quence only. However, both these methods ignore the data content and thus can

miss useful negatives. Oord et al. [94] showed that leveraging prior knowledge

about data can improve the negative sample quality (e.g., by sampling negatives

from the same speaker as the positive). Unfortunately, such prior knowledge is

often not available in unlabeled videos.

We propose a content-aware negative sampling strategy that favors nega-

tives su�ciently similar to a positive instance in the CNN embedding space;

we call our approach CANS-Similar. Our approach is inspired by Ulyanov et

al. [119] who showed that randomly initialized CNNs provide a strong prior over

natural images due to the inductive bias already built into the design of the

CNNs. This suggests that our local feature embeddings xv (and xa) can capture

the underlying statistical regularities in video clips (and audio streams) right

from the beginning, which can be su�cient to assess the similarity/dissimilar-

ity between clips. Therefore, the distance measured on them can approximate

content dissimilarity well (and this will improve as the training progresses).

Motivated by this, we sample the negatives based on local feature embed-

dings xv (and xa). Specifically, we compute a pairwise `2 distance between xt

(positive) and all other instances within a mini-batch, and normalize them to

the [0, 1] interval. To remove samples that are either too similar or too di↵erent

from the positive sample, we discard instances that fall outside the 95% confi-

dence interval in the normalized distance space. We then sample the negatives

from the remainder using the normalized distance as sampling probability. This

makes instances similar to the positive instance have more chance to become

negatives. We emphasize the importance of sampling, instead of deterministi-

cally taking top most similar samples; the stochasticity allows our model to be

robust to potentially inaccurate distance estimates because samples with low
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probabilities will still have a chance to be selected as negatives.

Finally, our MEP loss is the InfoNCE loss computed on all three Transform-

ers,

LMEP = LNCE(x
a
, ỹa) + LNCE(x

v
, ỹv) + LNCE([x

a;xv], z̃) (3.6)

Task 2: Correct Pair Prediction (CPP). The MEP task encourages

our model to learn the underlying dynamics within each modality. To help our

model learn cross-modal dynamics, we design a task that predicts whether a

pair of audio-visual embeddings is from the same video. Specifically, we define

two binary classifiers, one for the two unimodal Transformers and another for

the multimodal Transformer. Each classifier takes as input either sg = [yv
0;y

a
0 ]

(and [zv0; z
a
0]), a pair of audio-visual “summary” embeddings corresponding to

the BOS positions, or sh = [yv
t ;y

a
t ] (or [z

v
t ; z

a
t ]), the output embeddings sampled

at random positions (we take two random positions t 2 [1, T ]). The classifier

predicts p(c|s) indicating whether the pair is from the same video (c = 1) or

from di↵erent videos (c = 0). We train the classifiers with a binary cross-entropy

loss,

LCPP = �Ex,y [c · log p(c|sg) + c · log p(c|sh)] (3.7)

where · is the inner product. We generate a random derangement of the input

mini-batch so that the number of positive and negative pairs are guaranteed to

be the same.

Overall Pretraining Objective. We train our model end-to-end from

scratch by optimizing LMEP + ↵LCPP with a balancing term ↵. We find our

model is insensitive to this term, so we set ↵ = 1.0.

3.2.2 Parameter Reduction

Optimizing our model is challenging due to the large memory requirement. The

most expensive part is the Transformers, which take up 82% of model param-
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Figure 3.2: Comparison of parameter sharing schemes. Ours combines (b) and
(c) but decomposes weights in each layer into private and shared parts so only
the latter is shared across Transformers.

eters. One could reduce the model size by making the Transformers shallower,

but the depth of Transformers has shown to be crucial to get good perfor-

mance [46]. We propose to reduce the model size by aggressively sharing parts

of weights across Transformers as well as layers within each Transformer (see

Figure 3.2 (d)).

Sharing across Transformers. We first consider sharing weights across

Transformers. Each Transformer encodes data coming from di↵erent distribu-

tions: gV encodes xv, gA encodes xa, and hAV encodes (yv
,ya). These input

distributions may each exhibit di↵erent dynamics, yet together share certain

regularities because they all come from the same videos. Motivated by this, we

decompose Transformer weights into shared and private parts so that di↵er-

ent patterns can be learned in a parameter-e�cient manner. Recall that each

layer of a Transformer contains weights {W
q
,W

k
,W

v
,W

b
,W

c
,W

d
}. We de-

compose each of these weights into W = U⌃V
>, where W 2 RM⇥N

, U 2

RM⇥O
,⌃ 2 RO⇥O

, V 2 RN⇥O. We perform low-rank approximation of W by

setting the rank O ⌧ M,N , and share U across Transformers while keeping

⌃ and V private to each Transformer. This helps reduce parameters because

MO + 3(O2 +NO) ⌧ 3MN . We experimented with di↵erent matrix ranks O

but the di↵erences were small; we set O = 128 (M,N = 768 or 3072).
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The decomposition converts a linear projection of input Wx into a series

of (unconstrained) linear projections U⌃V
>x. However, this can cause numer-

ical instability during optimization [120]. We could perform the Singular Value

Decomposition (SVD) over W so that it performs rotation (V >), stretch (⌃),

and rotation (U) with orthogonal basis vectors in U and V . Unfortunately,

solving the full SVD has a computational complexity of O(max(M,N)2) [121].

Here, we put an orthogonality constraint only on ⌃ and perform projection

(V >), rotation (⌃), and projection (U) of input x. In addition, we put V >x in

a unit sphere (via `2-normalization) before rotating it with ⌃. This not only

improves numerical stability, but also removes magnitude information in V
>x

and keeps angular information only, which has been shown to provide sample

discriminative information [122]. To impose the orthogonality constraint on ⌃,

we use the Padé approximation with a scale-squaring trick of Lezcano-Casado

and Mart́ınez-Rubio [123]. Intuitively, we linearly project x onto a unit sphere

(V >x) and rotate it (⌃V
>x) in each Transformer so that it captures the dynam-

ics of each input distribution independently. We then project it to the shared

space via U , capturing shared regularities across all three Transformers.

Sharing across Layers. Recently, Bai et al. [124] showed that sharing

parameters across layers in deep neural networks does not hurt the represen-

tational power of the network. Furthermore, Lan et al. [117] demonstrated

that cross-layer parameter sharing in the Transformer leads to a lighter and

faster-to-train model without sacrificing the performance on various language

understanding benchmarks. Motivated by this, we let each Transformer share

parameters across di↵erent layers.
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3.3 Experiments

We pretrain our model on Kinetics-700 [106] or AudioSet [5] and finetune it

on various downstream tasks. The o�cial release of Kinetics-700 contains 10-

second clips only, so we download 410K original videos from YouTube and take

30-second clips from each video. For fair comparison with prior work, we use

10-second clips from the o�cial release of AudioSet (we used 1.8M clips).

We pretrain our model on 64 NVIDIA Tesla V100 GPUs with a batch

size of 256 for 220K iterations. For downstream tasks, we evaluate on short-

video/audio classification using UCF101 [1] (13K clips from 101 classes; 7.2

seconds on average) and ESC-50 [5] (2K clips from 50 classes; 5 seconds), and on

long-video classification using Kinetics-Sounds [3] (23K videos from 32 classes;

10 seconds on average) and Charades [107] (10K videos from 157 classes; 30

seconds on average).

3.3.1 Experimental Setup

Architectures of Visual/Audio CNNs. Table 3.1 shows the architectures of

visual and audio CNNs we use for our model, that is, the SlowFast network [11]

with a ResNet-50 backbone [74] and a ResNet-50, respectively. For the Slow-

Fast network, we use the speed ratio ↵ = 8 and the channel ratio � = 1/8 for

the SlowFast architecture, so Tf = 8 ⇥ Ts. we use di↵erent values of Ts and

Tf for di↵erent tasks. During pretraining, we set Ts = 4 and Tf = 32. During

finetuning, we use Ts = 8 and Tf = 64 for short-video action classification on

UCF101 while we use Ts = 4 and Tf = 32 for long-video action classification

on Charades and Kinetics-Sounds. For the audio ResNet-50, we omit the down-

sampling layer pool1 to preserve information along both frequency and time

axis in early stages. We use di↵erent values of Ta for di↵erent training phases.

We set Ta = 220 for one-second clip during pretraining while we use Ta = 440
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Stage
Visual CNN

Audio CNN
Slow pathway Fast pathway

raw clip 3⇥ Ts ⇥ 1122 3⇥ Tf ⇥ 1122 128⇥ Ta

conv1
1⇥ 72, 64
stride 1, 22

5⇥ 72, 8
stride 1, 22

9⇥ 9, 32
stride 1, 1

pool1
1⇥ 32,max
stride 1, 22

1⇥ 32,max
stride 1, 22

–

res2

2

4
1⇥ 12, 64
1⇥ 32, 64
1⇥ 12, 256

3

5⇥3

2

4
3⇥ 12, 8
1⇥ 32, 8
1⇥ 12, 32

3

5⇥3

2

4
1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 128

3

5⇥3

res3

2

4
1⇥ 12, 128
1⇥ 32, 128
1⇥ 12, 512

3

5⇥4

2

4
3⇥ 12, 16
1⇥ 32, 16
1⇥ 12, 64

3

5⇥4

2

4
1⇥ 1, 64
3⇥ 3, 64
1⇥ 1, 256

3

5⇥4

res4

2

4
3⇥ 12, 256
1⇥ 32, 256
1⇥ 12, 1024

3

5⇥6

2

4
3⇥ 12, 32
1⇥ 32, 32
1⇥ 12, 128

3

5⇥6

2

4
1⇥ 1, 128
3⇥ 3, 128
1⇥ 1, 512

3

5⇥6

res5

2

4
3⇥ 12, 512
1⇥ 32, 512
1⇥ 12, 2048

3

5⇥3

2

4
3⇥ 12, 64
1⇥ 32, 64
1⇥ 12, 256

3

5⇥3

2

4
1⇥ 1, 256
3⇥ 3, 256
1⇥ 1, 1024

3

5⇥3

Table 3.1: The architectures of visual and audio CNNs. For the visual CNN,
the input dimensions are denoted by {channel size, temporal size, spatial size2},
kernels are denoted by {temporal size, spatial size2, channel size} and strides are
denoted by {temporal stride, spatial stride2}. For the audio CNN, the input di-
mensions are denoted by {frequency size, temporal size}, kernels are denoted by
{frequency size, time size, channel size} and strides are denoted by {frequency
stride, temporal stride}.

for two-second clip during finetuning.

Data Preprocessing. We preprocess the data by dividing T -second clips

into T non-overlapping parts (T = 30 for Kinetics-700 and T = 10 for AudioSet)

and sampling 16 frames from each. For audio stream, we take waveform sampled

at 44.1 kHz and convert it to log-mel-scaled spectrogram. We augment audio

data with random frequency/time masking using SpecAugment [125], and visual

data with color normalization, random resizing, random horizontal flip, and

random cropping to obtain 112 ⇥ 112 pixel frames; for test data, we resize
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videos to 128 pixels on the shorter side and take three equidistant crops of 128⇥

128 pixels to cover the entire region. We also apply audio-visual synchronized

temporal jittering [29].

Downstream Evaluation. For evaluation on UCF101, we follow the test

protocol of Feichtenhofer et al. [11]: We sample 10 clips from each test video at

a uniform time interval, and for each sampled clip, we take three equidistant

spatial crops, resulting in a total of 30 views. We use each of the 30 views as

input to our visual CNN and average the prediction scores from all 30 views

to obtain the final prediction result. For evaluation on ESC-50, we extract 10

equally spaced 2-second clips from each test audio sample. We use each of 10

clips as input to our audio CNN and average the prediction scores to obtain

the final prediction result. For evaluation on Charades and Kinetics-Sounds, we

use three audio-visual sequences with di↵erent spatial crops from a test video

and max-pool/average the prediction scores from each sequence, respectively.

Optimization. In all experiments, we use the AMSGrad [126] variant of

AdamW [127] optimizer with �1 = 0.9, �2 = 0.98, L2 weight decay of 1e-4. We

use a learning rate warm-up for the first 6% of iterations followed by a linear

decay of learning rate.

From the observations of Lezcano-Casado and Mart́ınez-Rubio [123], we

have 10 times less learning rate for the orthogonal parameters than that for the

non-orthogonal parameters: we use 1e-5 for the former and 1e-4 for the latter.

We pretrain our model on Kinetics-700 with a batch size 256 for 220K

iterations and AudioSet with a batch size 300 for 220K iterations in the main

experiments; for the ablation study, we use a much smaller batch size of 4 and

pretrain our model on Kinetics-700 for 80K iterations.

For finetuning on UCF101, we train our model for 40K iterations with a

batch size of 64 and learning rate of 0.02. For evaluation on ESC-50, we train
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a multi-class one-vs-all linear SVM on top of our fixed audio CNN for 38K

iterations with a batch size of 128 and learning rate of 0.003. For finetuning on

Charades, we train for 40K iterations with a batch size of 8, with learning rate of

0.001 for the classifier and CNN parameters, 1e-5 for the orthogonal parameters

and 1e-4 for the rest parameters. For finetuning on Kinetics-Sounds, we train

for 24K iterations with a batch size of 32, with learning rate of 0.005 for the

classifier and CNN parameters, 1e-4 for the orthogonal parameters and 1e-3 for

the rest parameters.

3.3.2 Results and Discussion

Multimodal Fusion Methods To evaluate di↵erent fusion methods on the

quality of learned representation, we test the following settings: (i) Early uses

a single multimodal Transformer with 2 ⇥ L layers, (ii) Mid is our approach

described in Figure 3.1, (iii) Late uses two unimodal Transformers each with

2 ⇥ L layers. All the methods are pretrained on audio-visual data using CPP

and MEP losses, except for (iv) Late-w/o-CPP where we use only the MEP

loss. We finetune the pretrained models on audio-visual, audio-only, and visual-

only scenarios. For fair comparisons across di↵erent fusion methods, we do not

perform parameter sharing in this ablation setting.

Table 3.2 shows that Early and Mid outperform Late on the audio-visual

scenario. This suggests the importance of encoding cross-modal information.

Note that Late-w/-CPP gets cross-modal self-supervision, which gives marginal

performance improvement over Late-w/o-CPP; however, both methods miss the

opportunity to encode any cross-modal relationship, leading to inferior results.

While both Early and Late perform similarly in the audio-visual scenario, only

Late can be used in unimodal downstream scenarios (c.f., Early requires the

presence of both modalities). This has practical implications: Mid and Late
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Fusion Method Audio-Visual Audio-only Visual-only
Early 64.9 / 89.8 - / - - / -
Late-w/-CPP 61.0 / 88.7 52.3 / 80.8 41.0 / 71.3
Late-w/o-CPP 60.6 / 87.6 50.5 / 79.9 40.7 / 71.7
Mid† 65.7 / 89.9 53.5 / 82.7 42.5 / 73.2

Table 3.2: Ablation study on Kinetics-Sounds comparing multimodal fusion
methods. We report top-1 and top-5 accuracy (%). †: Ours.

Sampling Method top-1 top-5
Current-Sequence 64.6 89.8
Current-MiniBatch 65.5 90.8
CANS-Dissimilar 66.2 91.1
CANS-Similar† 67.5 92.3

Table 3.3: Ablation study on Kinetics-Sounds comparing negative sampling
strategies. We report top-1 and top-5 accuracy (%). †: Ours.

Model X.-L X.-T Params top-1/5
Multi-2 7 7 7M 60.3 / 88.9
Multi-6 3 7 21M 65.7 / 89.9
Multi-6 3 3(All) 7M 67.1 / 92.3
Multi-6 3 3(Part†) 4M 67.5 / 92.3

Table 3.4: Ablation study on Kinetics-Sounds comparing parameter shar-
ing schemes of Multimodal Transformers. X.-L: Cross-layer, X.-T: Cross-
Transformer sharing. We report top-1 and top-5 accuracy (%). †: Ours.

Model X.-L X.-T Params top-1/5
Vis-2 7 7 14M 41.4 / 71.0
Vis-2 3 7 7M 41.2 / 72.9
Vis-6 7 7 43M 43.8 / 74.2
Vis-6 3 7 7M 43.5 / 73.7

Table 3.5: Ablation study on Kinetics-Sounds comparing parameter sharing
schemes of visual Transformers. X.-L: Cross-layer, X.-T: Cross-Transformer
sharing. We report top-1 and top-5 accuracy (%). †: Ours.

can e↵ectively handle missing modalities, i.e., once pretrained on audio-visual

data, we can use it on any of audio-visual, audio-only, and visual-only scenarios.

Our Mid fusion approach enjoys both the advantages, i.e., learning cross-modal

relationship and being robust to missing modalities, achieving overall the best

performance.
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Negative Sampling Strategies We compare four negative sampling strate-

gies: (i) Current-Sequence takes all but the positive instance from the same

sequence as negatives, (ii) Current-MiniBatch takes all but the positive in-

stance in the mini-batch as negatives; this subsumes Current-Sequence, (iii)

CANS-Dissimilar stochastically samples negatives using a modified version of

our content-aware negative sampling (CANS) that favors dissimilar samples,

and (iv) CANS-Similar is our proposed CANS approach that favors negatives

that are similar to the positive instance.

Table 3.3 shows Current-Sequence is the least e↵ective: It makes MEP

too di�cult because negatives are (sometimes too much) similar to positives.

As a result, the training dynamics is dominated by CPP, which is relatively

easier, leading to inferior performance. We make quite the contrary observa-

tions from Current-MiniBatch: the inclusion of negatives from di↵erent videos

makes MEP easier and thus makes it dominate the training dynamics. Our

CANS approach solves both these issues by eliminating negatives that are either

almost identical to or trivial to distinguish from the positives, based on the 95%

CI over the CNN embedding distances. It also samples negatives in a stochastic

manner so a wide variety of samples can be included as negatives. Our proposed

CANS-Similar can be considered as a “softened” version of Current-Sequence;

it samples negatives that are similar to positives with a high probability (this

can be considered as online hard negative mining), but it also takes instances

from di↵erent videos with a lower probability. This balances out hard and easy

negatives, making the MEP task e↵ective.

Figure 3.3 (a) provides additional evidence that supports our decision. We

see that the loss of CANS-Disimilar initially drops rapidly but starts increasing

around iteration 7K and continues to increase until around 15K; this is mainly

caused by the visual MEP loss shown in Figure 3.3 (a-2). One explanation for
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(a-1) MEP + CPP (a-2) Visual MEP
(b) Ablation: parameter sharing(a) Ablation: negative sampling

MEP + CPP

Figure 3.3: Loss curves during pretraining under di↵erent ablative settings.
(a) compares Content-Aware Negative Sampling (CANS) that favors negatives
that are dissimilar vs. similar to the positive instance. (b) compares di↵erent
cross-Transformer weight sharing schemes; see the text for details.

this might that CANS-Disimilar is easier to solve than CANS-Similar, which

causes the loss landscape of CANS-Disimilar to contain too many shallow local

minima compared to that of CANS-Similar. Recall that we use a learning rate

warm-up for the first 6% of iterations during pretraining; this roughly equals to

the first 13K (out of 220K) iterations. Given this, we speculate that the model

got out of a local minima around iteration 7K (most likely due to the increasing

learning rate), and then eventually settled in another (bad) local minima after

the warm-up period ended. Compared to this, we observe much milder learning

dynamics with CANS-Similar: the loss decreases relatively slowly but steadily,

and eventually leaps around 35K to go below the loss of CANS-Disimilar.

We, again, believe that this is because CANS-Similar is more di�cult to solve

than CANS-Disimilar (as shown by the slower decrease in loss values), which

caused the resulting loss landscape to contain steeper local minima. Our model

eventually found one of those after round 40K of iterations, resulting in a better

performing model in the downstream tasks shown in Table 3.3 (the loss kept

slowly decreasing after iteration 50K).
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Parameter Sharing Schemes Our parameter reduction scheme reduces the

number of parameters from 128M to 4M (by 97%) (Table 3.4. We reduce the

model size by sharing weights across Transformers and across layers. We validate

these ideas in two sets of experiments. Table 3.4 compares cross-Transformer

weight sharing schemes. We use Multi-6 that uses all three Transformers with

6 layers each, and compare four methods that correspond to Figure 3.2 (a)-

(d). Note that No sharing is too large to fit in a Tesla V100 GPU (16GB)

even with 2 samples, so we define Multi-2 that uses three Transformers with 2

layers each, and with the reduced number of attention heads A to 5, the feature

dimension D to 320 and the intermediate dimension E to 1280. We see that our

proposed approach, Part, achieves the best performance with the least number

of parameters. One might ask how Part leads to a smaller model when All

shares all the weights across Transformers: We decompose weights W = U⌃V
>

with low-rank approximation and share only U across Transformers, while the

⌃V
> part learns modality-specific dynamics. Table 3.5 compares cross-layer

weight sharing schemes using the visual Transformer with either 2 (Vis-2) or

6 (Vis-6) layers. The results show that sharing weights across layers does not

hurt the performance, confirming the observations by Lan et al. [117] in the

audio-visual setting.

Furthermore, recall that each layer of a Transformer contains the multi-

head attention layer weights {W
q
,W

k
,W

v
,W

b
} and the feed-forward layer

weights {W
c
,W

d
}. We chose to share all six weight matrices across Trans-

formers, though we could have shared any combination of them. To justify this

design choice, we empirically compared three variants: (i) Multi-6 that do not

share parameters across Transformers, (ii) Multi-6-Part Att that shares only

{W
q
,W

k
,W

v
,W

b
} (but not {W c

,W
d
}) and (iii) Multi-6-Part that shares all

six weight matrices. Figure 3.3 (b) shows that there is not much di↵erence be-
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tween all the variants in terms of the loss curves; we chose to use Multi-6-Part

that requires the least number of parameters, and at the same time outperforms

Multi-6.

Pretraining Objectives To evaluate the importance of MEP and CPP tasks,

we test two settings: (i) Mid-w/o-CPP and (ii) Mid-w/o-MEP. On Kinetics-

Sounds, these achieve 65.9% and 64.6%, respectively; ours achieve 67.5% (top-1

accuracy). The result show that the MEP task plays an important role during

pretraining, confirming the findings from Sun et al. [115] that the InfoNCE loss,

as deployed in CBT, is e↵ective in the cross-modal setting. The result also shows

that augmenting MEP with CPP provides further performance improvement by

learning cross-modal correspondence.

Justification for the MEP Loss Formulation. Since the multimodal

Transformer hAV has access to both visual and audio inputs, one might think

that the model could “leak” information about visual input into za and infor-

mation about audio input into zv, which could make MEP trivial to solve. Here

we show that this is not the case. By construction, we mask the same positions

in audio and visual streams when designing the MEP task, so the model has

no access to the masked input even in a cross-modal manner. Empirically, re-

moving the third term in Equation 3.6 (LNCE([xa;xv], z̃)) leads to performance

degradation in Kinetics-Sounds, i.e., top-1 accuracy 66.7% vs. ours 67.5%, which

suggests that solving the MEP task in the multimodal Transformer is beneficial

to our model.

Justification for the CPP Loss Formulation. Recall that our CPP loss

has two terms; the first term uses the summary embeddings sg and the second

term uses output embeddings sh sampled at random positions; see Equation 3.7.

One could argue that the two terms are redundant as bidirectional Transformers
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have “one-step” access to all the input embeddings, and thus solving CPP only

with the summary embeddings (the first term) would be enough. This is not

the case. We encode sh with position-specific information through the time

embeddings pt, which makes every sh di↵erent compared to sg. Empirically, we

find that removing the second term of Equation 3.7 (sh) in our CPP loss leads

to an inferior accuracy 66.9% vs. ours 67.5% on Kinetics-Sounds, suggesting its

importance in learning.

Use of Modality Embeddings in the Multimodal Transformer We use

modality embeddings mv and ma as part of input to the multimodal Trans-

former in order to distinguish embeddings coming from visual and audio Trans-

formers. They are learnable weights trained end-to-end with other parameters.

Conceptually, incorporating modality-discriminative embeddings is crucial be-

cause of our aggressive weight sharing scheme. Without them, the multimodal

Transformer will see the output from audio/visual Transformers (ya and y
v)

as if they are coming from the same distribution because the two Transformers

share a large part of weights. Using modality embeddings encourages our model

to preserve modality-specific information in the final output, and this empir-

ically leads to performance improvements: ours 67.5% vs. without modality

embeddings 67.1% on Kinetics-Sounds.

On the Importance of End-to-End Pretraining Previous work in multi-

modal visual-and-language tasks [112, 110] point out that using partially fixed

Transformers of di↵erent modalities is detrimental to multimodal representa-

tion learning (c.f., [115, 61]). We make the same observation in our audio-visual

learning scenario. We compare two variants of Multi-6 Part in Table 3.4, each

of which pretrains only the audio (or visual) CNN/Transformer in the first half
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Model Net Data UCF
ST-Puzzle [35] 3D-R18 K400 65.8
ClipOrder [86] R(2+1)D UCF 72.4
DPC [87] 3D-R34 K400 75.7
CBT [115] S3D K600 79.5
MultiSens [39] 3D-R18 AS 82.1
AVTS [41] MC3-18 K400 85.8
AVTS [41] MC3-18 AS 89.0
V-CNN† SlowFast K700 85.2
V-CNN† SlowFast AS 86.1

Datasets. K: Kinetics, AS: AudioSet, UCF: UCF101.

Table 3.6: Short video classification results on UCF101 (UCF; mean accuracy
(%)). †: Ours.

Model Net Data ESC
SVM [2] MLP - 39.6
ConvAE [128] CNN-4 39.9
RF [2] MLP - 44.3
ConvNet [129] CNN-4 - 64.5
SoundNet [128] CNN-8 FS 74.2
L3-Net [3] CNN-8 FS 79.3
DMC [130] VGG-ish FS 79.8
AVTS VGG-M AS 80.6
A-CNN† R50 AS 81.5
Datasets. AS: AudioSet, FS: Flicker-SoundNet.

Table 3.7: Short audio classification results on ESC-50 (ESC; mean accuracy
(%)). †: Ours.

Model Charades KS
Random 5.9 - / -
ATF [131] 18.3 - / -
ATF (OF) [131] 22.4 - / -
V-CNN 18.7 45.8 / 73.3
A-CNN 18.9 49.4 / 76.9
M-CNN 23.1 59.4 / 83.6
V-BERT 26.0 49.5 / 78.9
A-BERT 27.4 58.9 / 85.7
M-BERT† 29.5 75.6 / 94.6

Table 3.8: Long video classification results on Charades (mAP) and Kinetics-
Sounds (KS; top-1/5 accuracy (%)). †: Ours.

of pretraining stage and then continues pretraining the remaining weights while

fixing the weights of the audio (or visual) CNN/Transformer in the second half.

This leads to inferior performance (audio-fixed 62.8% and visual-fixed 63.1%

vs. ours 67.5%), which is consistent with the results reported in [112, 110].

64



Downstream Evaluation We pretrain our model with Mid fusion using

MEP and CPP tasks (with CANS-Similar), and employ Part weight sharing.

We use either Kinetics-700 or AudioSet for fair comparisons with prior work. Ta-

bles 3.6-3.7 show short-video/audio classification results on UCF101/ESC-50,

respectively. For fair comparisons to the baselines, we use only the visual/au-

dio CNN (no Transformers); we finetune a linear classifier on top of the visual

CNN end-to-end for UCF101, and train a multi-class one-vs-all linear SVM on

top of the fixed audio CNN for ESC-50. Although our model is pretrained on

long video clips with no direct supervision to the CNN layers (gradients must

flow through Transformers), it outperforms most of the baselines (except for

AVTS on UCF101) that received direct supervision from short video clips. We

note that, similar to ours, CBT [111] is a multimodal Transformer pretrained

on long video clips and thus is the most meaningful comparison to ours; ours

outperform CBT on UCF-101 by 5.7%. For sound classification, our approach

outperform all existing published results.

Table 3.8 shows long-video classification results on Charades and Kinetics-

Sounds (KS) when pretrained on Kinetics-700. We test Visual-only (V), Audio-only

(A), and Multimodal (M) settings to verify the benefit of multimodal learning.

Because there is no published self-supervised learning results on these datasets,

we demonstrate long-term representations by comparing CNNs (CNN; short-

term) to Transformers (BERT; long-term) on KS that contains 10-second clips.

Since CNNs process 1-second clips, we feed 10 non-overlapping clips to CNNs

and average the prediction output. In all settings, we add a 2-layer MLP with

softmax classifier on top. The results show that Transformers outperform CNNs

on Kinetics-Sounds, suggesting the superiority of long-term representations. We

also see that combining audio-visual information performs the best. We notice

that audio representations are generally stronger than visual representations;
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we believe that learning discriminative visual representations is generally more

challenging, especially when the CNNs receive (self-)supervision signals only

indirectly through Transformers. We believe that providing (self-)supervision

directly to CNNs, e.g., by first pretraining CNNs on 3D rotation prediction [37]

and then jointly training the whole model (as was done in CBT [115]), could

further improve performance. Incorporating contrastive learning [81] over the

CNN embeddings and training the whole model end-to-end is another promising

direction for future work.

3.4 Related Work

Multimodal BERT. Extending BERT [46] to vision-and-language has been

actively studied. Existing work typically adopt early fusion [132, 133, 61, 134,

135, 111, 136, 137] or mid fusion [112, 110, 115, 138] without thorough val-

idation, and they train only visual components while relying on a language-

pretrained BERT. Although there have been some e↵orts to leverage the Trans-

former architecture [54] for audio and visual inputs [139, 140], our approach is

the first to demonstrate multimodal audio-visual BERT trained from scratch

in an end-to-end manner. This is enabled by our novel parameter reduction

technique, which is one of our main technical contributions.

Audio-Visual Learning. Early work in audio-visual learning focused on

speech signals, improving audio-visual speech recognition than unimodal ap-

proaches [141, 142]. Recent approaches leverage unlabeled videos from specific

domains [143, 103, 144, 102, 104, 145, 40] and often demonstrate on audio-visual

source separation, localization, and co-segmentation. However, these approaches

rely on short-term audio-visual correspondence and thus may not generalize to

long-term video recognition that requires global context (as was suggested in

Hjelm et al. [95]), which this work focuses on.
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Parameter Reduction. Network pruning [146, 147] trains a large model

and then reduces its size while maintaining performance. Reducing the size of

CNNs for mobile applications is an active research area [148, 149, 150, 151, 152].

Our work is closely related to the work that shares parameters across layers in

deep neural networks. Trellis network [153] is a temporal convolutional architec-

ture with weight-tying across time and depth. Similar to ours, Universal Trans-

former [154], RSNMT [155], DEQ [124], ALBERT [117] share weights across

layers in Transformers. We combine this idea with our novel cross-Transformer

weight sharing, which decomposes weight matrices with low-rank approxima-

tion.

Negative Sampling. Hard negative mining has been shown to be crucial

for contrastive learning [3, 39, 41, 156, 157, 42, 158]. Korbar et al. [41] use the

time di↵erence between clips to approximate clip similarity (i.e., clips that are

further apart are deemed more di↵erent). However, such an assumption may

not hold for real-world videos, e.g., periodic actions such as push-ups. Unlike

this line of approaches, we directly use the feature embeddings learned by our

model. Several approaches adapted a similar idea [156, 157, 42, 158]. Di↵erent

from prior work, we bring the stochasticity to the sampling procedure by using

the content similarity as the sampling probability; this helps reduce potential

errors especially during the early stage of training.

3.5 Conclusion

We introduced a multimodal bidirectional Transformer architecture for self-

supervised learning of contextualized audio-visual representation from unla-

beled videos. Our main technical contributions include: (1) we propose a pa-

rameter e�cient multimodal Transformers based on matrix decomposition with

low-rank approximation; (2) we propose a novel content-aware negative sam-
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pling technique for contrastive learning. We demonstrate a successful end-to-

end training of multimodal Transformers for audio-visual learning (which is,

to the best of our knowledge, the first time in the literature). We also report

comprehensive evaluation of various design decisions in multimodal learning.
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Chapter 4

Massively Harvesting Good Video
Data to Learn from without
Human E↵orts

4.1 Introduction

Our long-term objective is learning to recognize objects, actions, and sound in

videos without the need for manual ground-truth labels. This is not only a the-

oretically interesting problem, since it mimics the development of auditory and

visual perception by infants [159], it is also of immense practical importance,

since accurate manual labeling of audio-visual data is impractical. Compared

to self-supervised learning on static images [94, 95, 82, 81], audio-visual inputs

pose additional challenges: large portions of a video may contain no relevant in-

formation, and auditory and visual inputs may not always be in correspondence.

Consequently, existing self-supervised methods on audio-visual data either start

with datasets for which there is a high probability of audio-visual correspon-

dence, or they learn audio-visual properties corresponding only to short-term
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Figure 4.1: We address the challenge of constructing a large-scale audio-visual
dataset from uncurated Internet videos without relying on manual annotation
or verification. We solve a constrained optimization problem that finds a subset
maximizing the mutual information between audio and visual signals in videos.
The result is a new 100M video dataset with high audio-visual correspondence,
ideal for self-supervised video representation learning.

statistical regularities. The necessary datasets are usually manually created or

rely on domain-specific properties (e.g., [106, 5] and below). If we want to carry

out self-supervised learning on full length (minutes, hours) of video without

manually generating and/or selecting video clips, we need automated ways of

curating such collections of audio/video clips from diverse collections of full

length video.

We consider self-supervised learning from unlabeled videos as a two-step

process: (1) an automatic dataset curation process that generates short, relevant

clips with useful self-supervisory signals, e.g., audio-visual correspondence, and

(2) a self-supervised learning approach that operates on the collection of short

clips. This paper focuses on step (1) and not on step (2), providing an automated

way of taking a collection of general or domain-specific videos of arbitrary
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length and reducing it to a collection of shorter clips containing a high portion

of relevant audio-video correspondences. The output of this step is a dataset,

which can be used as input to existing self-supervised algorithms on audio-

visual data [41, 104, 29], as well as the development of novel self-supervised

techniques.

To achieve step (1), we assume access to a large collection of unconstrained

videos and solve a subset selection problem with an information-theoretic mea-

sure of audio-visual correspondence as a selection criterion. Specifically, we find

a subset that maximizes mutual information (MI) between audio and visual

channels of videos. This is a necessary condition for self-supervised learning

approaches that rely on audio-visual correspondence [160]. The main technical

challenge we address is how to e�ciently measure the audio-visual MI and find

a subset that maximizes the MI in a scalable manner. Given that video process-

ing is notoriously compute and storage intensive, we put a particular emphasis

on scalability, i.e., we want an approach that can easily handle hundreds of

millions of video clips.

MI estimation has a long history of research [161, 162], including the recent

self-supervised approaches [94, 95, 81] that use noise contrastive estimation [116]

as the learning objective. While it is tempting to use such approaches to esti-

mate MI in our work, we quickly encounter the “chicken-and-egg” problem: to

obtain such models for estimating audio-visual MI, we need a training dataset

where we can reliably construct positive pairs with a high probability of audio-

visual correspondence; but that is what we are set out to find in the first place!

One might think that randomly chosen videos from the Internet could be suf-

ficient, but this has shown to produce suboptimal representations [104]; our

empirical results also show that self-supervised models indeed su↵er from noisy

real-world audio-visual correspondences.
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In this work, we turn to a clustering-based solution that estimates the MI by

measuring the agreement between two partitions of data [163, 164]. To circum-

vent the “chicken-and-egg” issue, we use o↵-the-shelf models as feature extrac-

tors and obtain multiple audio and visual clusters to estimate the MI. The use

of o↵-the-shelf models is a standard practice in video dataset generation. Unlike

existing approaches that use them as concept classifiers [165, 166, 167, 168, 4],

here we use them as generic feature extractors. To avoid estimating the MI

based on a restricted set of concepts the o↵-the-shelf models are trained on,

we perform clustering over features computed across multiple layers (instead of

just the penultimate layers), which has been shown to provide general feature

descriptors not tied to specific concepts [169].

To make our approach scalable, we avoid using memory-heavy components

such as the Lloyd’s algorithm [170] and instead use SGD [171] to perform K-

means clustering. Further, we approximately solve the subset maximization

objective with a mini-batch greedy method [172]. Through controlled experi-

ments with ground-truth and noisy real-world correspondences, we show that

our clustering-based approach is more robust to the real-world correspondence

patterns, leading to superior empirical performances than the contrastive MI

estimation approaches.

We demonstrate our approach on a large collection of videos at an unprece-

dented scale: We process 140 million full-length videos (total duration 1,030

years) and produce a dataset of 100 million 10-second clips (31 years) with

high audio-visual correspondence. We call this dataset ACAV100M (short for

automatically curated audio-visual dataset of 100M videos). It is two orders

of magnitude larger than the current largest video dataset used in the audio-

visual learning literature, i.e., AudioSet [5] (8 months), and twice as large as

the largest video dataset in the literature, i.e., HowTo100M [67] (15 years).
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To evaluate the utility of our approach in self-supervised audio-visual rep-

resentation learning, we produce datasets at varying scales and compare them

with existing datasets of similar sizes that are frequently used in the audio-

visual learning literature, i.e., Kinetics-Sounds [3] at 20K-scale, VGG-Sound [4]

at 200K-scale, and AudioSet [5] at 2M-scale. Under the linear evaluation pro-

tocol with three downstream datasets, UCF101 [1], ESC-50 [2], and Kinetics-

Sounds [3], we demonstrate that models pretrained on our datasets perform

competitively or better than the ones pretrained on the baseline datasets, which

were constructed with careful annotation or manual verification.

To summarize, our main contributions are: 1) We propose an information-

theoretic subset optimization approach to finding a large-scale video dataset

with a high portion of relevant audio-visual correspondences. 2) We evaluate

di↵erent components of our pipeline via controlled experiments using both the

ground-truth and the noisy real-world correspondence patterns. 3) We release

ACAV100M, a large-scale open-domain dataset of 100M videos for future re-

search in audio-visual representation learning.

4.2 Related Work

Large-Scale Data Curation. Several di↵erent types of audio-visual video

datasets have been collected: (1) manually labeled, e.g., AudioSet [5], AVE [173],

(2) domain specific, e.g., AVA ActiveSpeaker [174], AVA Speech [175], Greatest

Hits [143], FAIR-Play [103], YouTube-ASMR-300K [176], and (3) unlabeled,

unrestricted collections from consumer video sites, e.g., Flickr-SoundNet [128,

3].

AudioSet [5] contains about 2M clips corresponding to audio events retrieved

from YouTube by keyword search; human raters verified the presence of audio

events in the candidate videos. Moments in Time [177] contains over one mil-
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lion clips of diverse visual and auditory events; video clips were selected us-

ing keywords (verbs) and manually reviewed for high correspondence between

the clips and the keywords. HowTo100M [67] contains 136M clips segmented

from 1.22M narrated instructional web videos retrieved by text search from

YouTube, with an additional filtering step based on metadata. Web Videos and

Text (WVT) [178] contains 70M clips obtained by searching the web with key-

words based on the Kinetics-700 [106] categories and retaining both the video

and the associated text. Chen et al. [4] created a dataset of 200K clips for audio-

visual research; clips were originally obtained by keyword search on YouTube

and frames were classified with pretrained visual classifiers. Since keywords and

visual classes do not perfectly correspond, such correspondences needed to be

manually reviewed and corrected on randomly sampled clips in an iterative and

interactive process.

We are building systems for learning audio-visual correspondence on di-

verse, unrestricted inputs. This requires large amounts of training data, making

manual collection and labeling costly and impractical. Unlike previous dataset

curation processes that involve costly human intervention, we introduce an au-

tomatic and scalable data curation pipeline for large-scale audio-visual datasets.

Subset Selection. Our work focuses on data subset selection; extensive

prior work exists in supervised [179, 180, 181, 182], unsupervised [183, 184],

and active learning settings [185, 186]. Di↵erent criteria for subset selection have

been explored in the literature. Submodular functions naturally model notions

of information, diversity and coverage [187], and can be optimized e�ciently

using greedy algorithms [188, 189]. Geometric criteria like the coreset [190] aim

to approximate geometric extent measures over a large dataset with a relatively

small subset.

Mutual-information (MI) between input feature values and/or labels has
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been used successfully [191, 192, 193] as a probablistically motivated criterion.

We propose to use MI as an objective function for subset selection and make

the following two unique contributions: First, we use MI to measure audio-

visual correspondence within videos by formulating MI between the audio and

visual features. Second, we apply MI for the large-scale video dataset curation

problem. In case of clustering-based MI estimation, we demonstrate that opti-

mizing MI objective with a greedy algorithm is a practical solution for building

a large-scale pipeline.

4.3 Data Collection Pipeline

Our pipeline consists of four steps: (i) acquiring raw videos from the web and

filtering them based on metadata, (ii) segmenting the videos into clips and ex-

tracting features with pretrained extractors, (iii) estimating mutual information

(MI) between audio and visual representations, and (iv) selecting a subset of

clips that maximizes the MI.

4.3.1 Obtaining Candidate Videos

We crawl YouTube to download videos with a wide variety of topics. Unlike

previous work that use a carefully curated set of keywords [4], which could

inadvertently introduce bias, we aim for capturing the natural distribution of

topics present in the website. To ensure the diversity in topics, cultures and lan-

guages, we create combinations of search queries with diverse sets of keywords,

locations, events, categories, etc., to obtain an initial video list.

Before downloading videos, we process the search results using metadata

(provided by YouTube API) to filter out potentially low quality / low audio-

visual correspondence videos. We use the duration to exclude videos shorter

than 30 seconds (to avoid low quality videos) and longer than 600 seconds (to
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avoid large storage costs). We also exclude videos that contain selected keywords

(in either title or description) or from certain categories – i.e., gaming, anima-

tion, screencast, and music videos – because most videos exhibit non-natural

scenes (computer graphics) and/or low audio-visual correspondence. Finally,

we detect language from the titles and descriptions using fastText [194, 195]

and keep the ones that constitute a cumulative ratio of 0.9, resulting in eight

languages (English, Spanish, Portuguese, Russian, Japanese, French, German,

and Korean).

The result is 140 million full-length videos with a total duration of 1,030

years (median: 198 seconds). To minimize the storage cost we download 360p

resolution videos; this still consumes 1.8 petabytes of storage. Handling such

large-scale data requires a carefully designed data pipeline. We discuss our

modularized pipeline below.

4.3.2 Segmentation & Feature Extraction

Clip Segmentation. To avoid redundant clips, we extract up to three 10-

second clips from each full-length video. We do this by detecting shot boundaries

(using the scdet filter in FFmpeg) and computing pairwise clip similarities

based on the MPEG-7 video signatures (using the signature filter in FFmpeg).

We then select up to 3 clips that give the minimum total pairwise scores using

local search [196]. This gives us about 300M clips.

Feature Extraction. To measure correspondence between audio and visual

channels of the 300M clips, we need good feature representations. An ideal rep-

resentation would capture a variety of important aspects from low-level details

(e.g., texture and flow) to high-level concepts (e.g., semantic categories). How-

ever, such an oracle extractor is hard to obtain, and the sheer scale of data makes

it impractical to learn optimal feature extractors end-to-end. Therefore, we use
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the “o↵-the-shelf” pretrained models to extract features, i.e., SlowFast [11] pre-

trained on Kinetics-400 [71] and VGGish [197] pretrained on YouTube-8M [166]

for visual and audio features, respectively.

4.3.3 Subset Selection via MI Maximization

Next, we select clips that exhibit strong correspondence between visual and

audio channels. To this end, we estimate the mutual information (MI) between

audio and visual signals. Computing the exact MI is infeasible because it re-

quires estimating the joint distribution of high dimensional variables, but sev-

eral approximate solutions do exist [198]. Here we implement and compare two

approaches: a noise-contrastive estimator (NCE) [116], which measures MI in

a continuous feature space, and a clustering-based estimator that computes MI

in a discrete space via vector quantization. The former estimates MI for each

video clip, while the latter estimates MI for a set of video clips. As we show

later in our experiments, we find the clustering-based MI estimator to be more

robust to real-world noise.

NCE-based MI Estimation

Contrastive approaches have become a popular way of estimating MI between

di↵erent views of the data [94, 95]. We add linear projection heads over the pre-

computed audio/visual features and train them using the contrastive loss [81].

From a mini-batch {(vi, ai)}
Nb
i=1 where vi and ai are visual and audio features,

respectively, we minimize

l(vi, ai) = � log
exp(S(zvi , z

a
i )/⌧)PNb

j=1 exp(S(z
v
i , z

a
j )/⌧)

, (4.1)

where zvi and zai are embeddings from the linear projection heads, S(·, ·) mea-

sures the cosine similarity, and ⌧ is a temperature term (we set ⌧ = 0.1). For

each mini-batch we compute l(vi, ai) and l(ai, vi) to make the loss symmetric.
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Once trained, we can directly use S(zv, za) to estimate audio-visual MI and

find a subset by taking the top N candidates from a ranked list of video clips.

Clustering-based MI Estimation

MI Estimation. Clustering is one of the classical ways of estimating MI [163,

164]. Given two partitions of a dataset X w.r.t. audio and visual features,

A = {A1, · · · ,A|A|} and V = {V1, · · · ,V|V|}, we estimate their MI as:

MI(A,V) =

|A|X

i=1

|V|X

j=1

|Ai \Vj |

|X|
log

|X||Ai \Vj |

|Ai||Vj |
. (4.2)

This formulation estimates MI in a discrete (vector-quantized) space induced by

clustering, and thus the quality of clustering a↵ects the quality of the estimator.

A straightforward approach to obtaining A and V is to cluster videos using the

output from the penultimate layers of the pretrained networks. However, this

can introduce distributional bias specific to the datasets on which the networks

are pretrained [169, 199]. To address this issue, we cluster samples over each

output space induced by di↵erent layers of the networks. This allows the MI

estimator to consider a wide range of abstract concepts, from low-level (such as

textures) to high-level (such as object parts) [200].

Specifically, we use the feature spaces induced by the five convolutional

blocks from each of the SlowFast and VGGish feature extractors. We then

compute the average MI between all pairs of clusterings as our MI estimator.

Let CV(i)
X = {V(i)

1 , · · · ,V(i)
ni } and CA

(i)
X = {A(i)

1 , · · · ,A(i)
mi} denote the clustering

results induced by the i-th convolutional block of the visual and audio feature

extractors, respectively. We compute:

F (X) =
X

(X ,Y)2CX

MI(X ,Y)

10C2
, (4.3)
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where CX denotes the combination of two elements from {CV
(i)
X }

5
i=1[{CA

(j)
X }

5
j=1

and 10C2 denotes the number of 2-combinations out of 10 elements, which equals

to 45. This computes MI between layers from both within and across the ex-

tractors of di↵erent modalities (referred to as combination pairing scheme in

Section 4.4.2).

Algorithm 2: Greedy Algorithm
Input: initial dataset D, clustering-based MI estimator F , target
subset size M

Output: X ✓ D, |X| = M

X0  ;

for i = 0 to M � 1 do
x argmaxx2D\Xi

F (Xi [ {x})
Xi+1  Xi [ {x}

end
X XM

Return X

Algorithm 3: Batch Greedy Subset Selection
Input: initial dataset D, MI estimator F , target subset size M , batch
size b, selection size s

Output: X ✓ D, |X| = M

X0  ;, i 0
while |Xi| < M do

Randomly sample B ✓ D\Xi, |B| = b

Y0  ;, j  0
while j < s do

x argmaxx2B\Yj
F (Xi [Yj [ {x})

Yj+1  Yj [ {x}, j  j + 1
if |Xi [Yj | = M then break

end
Xi+1  Xi [Yj , i i+ 1

end
X Xi

Return X

Batch Greedy Subset Selection. Since the MI estimator F (·) is a func-
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tion of X, we can formulate an optimization problem where the goal is to

find a subset X that maximizes F (X). In general, finding a global solution to

problems such as ours is NP-hard and thus greedy heuristic solutions are used

instead [201]. However, as shown in Algorithm 2, the greedy algorithm selects

one sample in each iteration and re-evaluates the MI estimator F (·) on all the

remaining candidates. This introduces a challenge to our setting because the

time complexity is quadratic to the size of the population; this is clearly not

scalable to 300 million instances.

Therefore, we approximate the typical greedy solution using the batch greedy

algorithm [172], as shown in Algorithm 3. It randomly samples a batch B from

the remaining pool of candidates, and searches for the next element to be in-

cluded in the active solution set only within B. This batch trick reduces the

time complexity down to linear, i.e., O(N ⇥ |B|), where N is the size of the

input dataset. We demonstrate the e�cacy of the algorithm in Section 4.4.

Stochastic Clustering. One missing piece in this pipeline is an e�cient

clustering algorithm scalable to hundreds of millions of instances. The most

popular choice among various clustering methods is K-means clustering [202],

which is a special case of mixture density estimation for isotropic normal and

other densities. Typically, an expectation-maximization (EM) algorithm, such

as Lloyd’s [170], is used to find the cluster centers. Such algorithms require

repeated computation of the distances of all samples from all k cluster centers,

followed by cluster assignment, until convergence. Lloyd’s algorithm updates

cluster centers only after each pass through the entire dataset. But for very

large datasets (like ours), a small subset usually contains enough information to

obtain good estimates of the cluster centers, meaning that EM-style algorithms

tend to take (perhaps too) many epochs to converge.

There are di↵erent strategies for addressing this issue, including random
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sampling and subsetting, but a straightforward approach is to replace EM al-

gorithm with an SGD [203, 171, 204]. In such an approach, for large datasets,

convergence rate and final accuracy of the cluster centers are determined not

by the total dataset size, but by the learning rate schedule. A straightforward

SGD update rule is to compute the nearest cluster centers for each sample in

a batch and then update the cluster centers using a convex combination of the

cluster centers and their nearest samples, weighting the samples with a learning

rate � and the cluster centers with (1��). However, mixture density estimators

in general su↵er from the problem that adding mixture components with zero

probability does not change the mixture density; in practice, this means EM

and SGD-based algorithms may end up with cluster centers that stop receiving

updates at some point during the optimization.

We address this problem by estimating the mixture component utilization

rate as the ratio of the total number of updates to the cluster center divided

by the total number of estimation steps, and reinitializing cluster centers when

that probability falls below (1/k)2. In Section 4.4.2, we demonstrate that our

mini-batch SGD update shows comparable accuracy to batch update in corre-

spondence retrieval tasks.

4.4 Evaluation on Correspondence Retrieval

We systematically evaluate di↵erent components of our pipeline with synthetic

correspondence-retrieval tasks, where we generate corresponding (positive) and

non-corresponding (negative) pairs using CIFAR-10 [205], MNIST [206] and

FSDD [207]. In each correspondence retrieval task, the goal is to discover the

known corresponding samples among the non-corresponding pairs. To show the

generality of the findings, we also experiment with Kinetics-Sounds [3] which

exhibit real-world audio-visual correspondence.
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4.4.1 Experimental Setting

Datasets We construct five datasets where each instance is a pair of samples

with di↵erent correspondence types.

1/2) CIFAR10-Rotation/Flip. We use images from five randomly se-

lected categories to construct a “positive pair” set, and use the rest for a “neg-

ative pair” set. For the positive set, we create pairs of images by sampling two

di↵erent images from the same category (e.g., two images of a bird), and apply

a geometric transformation to one of them; we apply either a 90� CCW rotation

(CIFAR10-Rotation) or a horizontal flip (CIFAR10-Flip). The negative set fol-

lows the same process but each pair contains images from di↵erent categories.

We categorize this type of correspondence as “Natural Class Correspondence”

because pairings are made over natural semantic categories.

3/4) MNIST-CIFAR10/FSDD. We use images from five digit categories

to construct a positive set and use the rest for a negative set. Di↵erent from

above, correspondence is defined via an arbitrary class-level mapping, e.g.,

“digit 0” images map to the “car” images in CIFAR-10 or “digit 0” audio

samples in FSDD. We take samples from the same categories to construct the

positive set and samples from di↵erent categories for the negative set. We call

these “Arbitrary Class Correspondence” to di↵erentiate from above.

5) Kinetics-Sounds. Unlike the above datasets where the correspondence

is defined over class categories, here the correspondence is defined at the sample

level, i.e., a positive set contains pairs of audio and visual channels of the same

video, and a negative set contains randomly permuted pairs. We do not utilize

class labels to construct the dataset.

Methods We compare our pipeline (both contrastive-based and clustering-

based) to three ranking-based approaches. All the methods use the same pre-
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computed features. For images, we use ResNet-50 [74] pretrained on ImageNet [208].

For videos, we use SlowFast [11] pretrained on Kinetics-400 [71] and VG-

Gish [197] pretrained on YouTube-8M [166] for visual and audio features, re-

spectively. For the ranking baselines, we apply PCA [209] to reduce the feature

dimensionality to 64 and rank the instances based on three similarity metrics:

inner product, cosine similarity, and (negative) l2 distance. Because all our

datasets have an equal number of positive and negative instances, we simply

select the top 50% instances as the retrieval result.

Protocol We split each dataset into train and test partitions of the same

size. We conduct a total of five runs for each of the five datasets and report

results on the test splits. We use train sets only for the contrastive estimator

to train the projection heads. When constructing each dataset, we sample at

most n = 1000 instances from each category of the source datasets. For the

noise contrastive estimator, we train the linear projection heads for 100 epochs

using the AMSGrad variant of Adam optimizer [126] with a learning rate of

2e-4. We randomly take one sample from each class to build a mini-batch for

class-level correspondence datasets, and sample random Nb = 10 clips to build

a mini-batch for the sample-level correspondence dataset. When applying our

clustering-based method, we perform the SGD K-means clustering with the

“ground-truth” number of centroids as the number of classes in each source

dataset; we use the batch greedy algorithm with a batch size b = 100 and a

selection size s = 25.

4.4.2 Ablation Results & Discussion

Tables 4.1-4.3 show that the two variants of our approach – contrastive and

clustering – achieve overall higher precision rates than the ranking baselines. As
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Method CIFAR10-Rotation CIFAR10-Flip
Ranking-inner 87.872 ± 0.002 87.044 ± 0.001
Ranking-cos 87.872 ± 0.002 87.044 ± 0.001
Ranking-l2 87.872 ± 0.002 87.044 ± 0.001
Ours-Contrastive 99.395 ± 0.000 99.480 ± 0.001
Ours-Clustering 87.292 ± 0.014 87.248 ± 0.010

Table 4.1: Results of natural class correspondence retrieval on CIFAR10-
Rotation and CIFAR10-Flip. We conduct a total of five runs and report the
precision with the 99% confidence interval. We use the clustering pairing scheme
which gives the highest score in each configuration: combination, except diag-
onal for Ranking-inner, Ranking-cos and Rank-l2.

Method MNIST-CIFAR10 MNIST-FSDD
Ranking-inner 63.076 ± 0.001 64.453 ± 0.003
Ranking-cos 67.600 ± 0.002 61.893 ± 0.004
Ranking-l2 66.796 ± 0.001 62.933 ± 0.003
Ours-Contrastive 73.252 ± 0.040 73.733 ± 0.027
Ours-Clustering 77.224 ± 0.009 69.440 ± 0.049

Table 4.2: Results of arbitrary class correspondence retrieval on MNIST-
CIFAR10 and MNIST-FSDD. We conduct a total of five runs and report the
precision with the 99% confidence interval. We use the clustering pairing scheme
which gives the highest score in each configuration: combination.

Method Kinetics-Sounds
Ranking-inner 52.558 ± 0.002
Ranking-cos 60.108 ± 0.001
Ranking-l2 51.236 ± 0.001
Ours-Contrastive 73.066 ± 0.036
Ours-Clustering 88.705 ± 0.004

Table 4.3: Results of audio-visual correspondence retrieval on Kinetics-Sounds.
We conduct a total of five runs and report the precision with the 99% confidence
interval. We use the clustering pairing scheme which gives the highest score in
each configuration: combination.

84



Layers Method Precision

Single

Layer1 50.820 ± 0.014
Layer2 51.412 ± 0.011
Layer3 52.659 ± 0.012
Layer4 54.422 ± 0.012
Layer5 58.418 ± 0.030

Multiple
Diagonal 71.450 ± 0.005
Bipartite 76.969 ± 0.005

Combination 88.705 ± 0.004

Table 4.4: Correspondence retrieval results on Kinetics-Sounds with di↵erent
clustering pairing schemes. We conduct a total of five runs and report the
precision with the 99% confidence interval.

shown in Table 4.1, the contrastive approach performs well on the two datasets

with the “natural class correspondence,” conforming to the previous results that

shows contrastive learning is robust to geometric transformations [81]. Table 4.3

especially shows that the clustering approach excels on Kinetics-Sounds that

contains natural audio-visual correspondence, which is closer to our intended

scenario. Therefore, we conduct various ablation studies on Kinetics-Sounds to

validate di↵erent components of our clustering-based approach.

Multi-Layer Clustering. All the feature extractors that we use consist of

five convolutional blocks. As discussed in Section 4.3.3, we cluster samples over

each of the five output spaces to capture a wide range of abstract concepts.

This raises a question: How should we combine audio-visual clusters for MI

estimation? Table 4.4 compares the single-layer approaches to multi-layer ap-

proaches. Each of the single-layer approach estimates the audio-visual MI based

on a single pair of clustering results. We can see that the precision increases as

we use clustering results from higher layers. However, all single-layer methods

perform significantly worse than multi-layer variants.

We explore three options to select pairs of clusterings for MI estimation.

Diagonal computes an average MI across all five single-layer scores (with L
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Method
Layer Weights

Precision
1 2 3 4 5

exp(-10) 5e+10 2e+04 1 5e-05 2e-09 50.791
exp(-1) 7.4 2.7 1 0.4 0.1 65.374
exp(1) 0.1 0.4 1 2.7 7.4 79.858
exp(10) 2e-09 5e-05 1 2e+04 5e+10 57.880
linear(-0.50) 1.9 1.5 1 0.5 0.1 88.018
linear(-0.25) 1.5 1.2 1 0.8 0.5 88.673
linear(0.25) 0.5 0.8 1 1.2 1.5 88.777
linear(0.50) 0.1 0.5 1 1.5 1.9 87.997
Uniform (Ours) 1 1 1 1 1 88.705

Table 4.5: Di↵erent layer weighting schemes in clustering-based MI estimation
using Kinetics-Sounds with Combination pairing.

layers, this computes MI L times), Bipartite computes an average MI be-

tween all possible combinations of audio-visual clustering results (L2 times),

and Combination (ours) computes an average MI between all possible combi-

nations of clustering results, regardless of modalities (2LC2 times). We observe

that the performance increases with the number of connections as shown in the

bottom rows of Table 4.4. This positive relationship suggests that the consen-

sus between layers from the same extractor, as well as that across extractors,

contributes to the clarity of correspondence signal.

Table 4.5 compares di↵erent layer weighting schemes for the Combination

approach, which shows that our multi-layer approach is generally robust to

weight distributions. We explore two alternative weighting schemes: a linear(k)

function with slope k and an exp(k) function with slope e
k. We can see that

precision is stable under a linear weighting scheme while precision drops signifi-

cantly when the weights have a steep slope (e.g., exp(-10)), which is a degenerate

case similar to the single-layer approach reported in Table 4.4. By default, we

use uniform weights.

Mini-Batch SGD K-means Clustering. We compared mini-batch SGD
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Figure 4.2: Greedy vs. batch greedy algorithms with varying selection-
to-batch size ratios, s/b. The shaded regions show 99% confidence intervals
obtained by five runs on Kinetics-Sounds. The batch greedy algorithm is robust
when the ratio is 6 25%.

K-means [171] to the standard EM (Lloyd’s) approach [170] and obtained very

similar results on Kinetics-Sounds: 88.705 ± 0.004 (SGD) versus 88.732 ± 0.005

(EM). This shows that our SGD solution has negligible performance degrada-

tion while enjoying a significantly less memory requirement than the standard

EM approach.

Batch Greedy Subset Selection. We explore how the use of mini-batches

a↵ects the quality of the selected subsets. We compare the greedy algorithm and

the batch greedy algorithm with a batch size b = 160 and varying selection sizes

s = {5, 10, 20, 40, 80}. As shown in Figure 4.2, the performance gap between the

greedy algorithm and the batch greedy algorithm is marginal (greedy: 98.970 vs.

batch greedy with (b, s) = (160, 5): 98.020), which validates our use of the batch

greedy algorithm. While the batch size itself does not have a large impact on

the subset quality, the ratio of selection size to batch size (s/b) highly a↵ects the

retrieval performance; the performance drops sharply as the ratio exceeds 0.25 in

several (b, s) configurations. This is mainly dataset-dependent: by construction,
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Figure 4.3: Sensitivity analysis on the number of centroids. We determine
under/over-clustering based on the ground-truth number of class categories in
Kinetics-Sounds (c = 32). The shaded regions show 99% confidence intervals
over five runs.

there is a 50% chance that a sample will be a positive. We believe that the

constructed dataset contains roughly 25% easy positives, i.e., videos with very

high correspondence. When the selection ratio s/b does not exceed the easy

positive ratio, the batch greedy algorithm finds those videos without introducing

false positives, providing robustness. We found similar patterns with other ratios

of s/b > 25%.

Number of Centroids. We vary the number of centroids k 2 {8, 16, 32, 64, 128}

to see how sensitive our approach is to the parameter. We apply the batch

greedy algorithm with a batch size b = 100 and a selection size s = 25 on

Kinetics-Sounds. Figure 4.3 shows that, although the final performance is sim-

ilar across di↵erent number of centroids, they show di↵erent trends: underclus-

tering (k = {8, 16}) shows high precision in early iterations while overclustering

(k = {64, 128}) shows slower drop in the later stage.
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4.5 Large-Scale Evaluation

We construct datasets at varying scales (20K, 200K, 2M) and compare them

to existing datasets often used in the audio-visual learning literature: Kinetics-

Sounds [3] (20K), VGG-Sound [4] (200K), and AudioSet [5] (2M). Note that all

three datasets involve either human annotation [3, 5] or manual verification [4].

To demonstrate the scalable nature of our approach, we also generate datasets

with 10M and 100M videos and evaluate their performance.

4.5.1 Automatic Data Curation

NCE-Based MI Estimation. For the contrastive approach, we train linear

projection heads using Equation 4.1 with a batch size of Nb = 1024 from a

randomly drawn set of 100M videos. Note that these additional videos are only

used to train projection heads for MI estimation, which is discarded once dataset

curation is finished; all approaches use the same number of videos under the

same evaluation protocol on all downstream tasks. We train the model for three

epochs and rank the entire video set (300M) based on the cosine similarity [81].

We then take top N 2 {20K, 200K, 2M} ranked videos for the final dataset.

Clustering-Based MI Estimation. For SGD K-Means clustering, we

train the cluster centroids with a mini-batch of size 100K for 100 epochs using

a learning rate � = 1e-2. When applying the batch greedy algorithm, we use

the fixed batch size b = 10000 and the selection size s = 500 (with a ratio of

s/b = 0.05), but vary the number of clusters C 2 {100, 200, 500, 1000, 2000} for

each size of the datasets.

4.5.2 Linear Evaluation on Downstream Tasks

To assess the quality of the datasets, we pretrain identical models on di↵erent

datasets and evaluate their performance on downstream tasks. The idea is that

89



Kinetics-SoundsESC-50UCF101

Top 1 Accuracy Top 5 Accuracy

Figure 4.4: Linear evaluation on downstream tasks. The top-1/5 accuracy
(%) of video classification on UCF101 [1], audio classification on ESC-50 [2] and
audio-visual classification on Kinetics-Sounds (KS) [3]. We group the results by
the downstream tasks and by the scale of the pretrain datasets. Baselines are
Kinetics-Sounds [3] (20K), VGG-Sound [4] (200K), and AudioSet [5] (2M).

if a model performed particularly better than the others, the dataset used to

train that model must be superior to the other datasets. We pretrain audio-

visual CNNs from scratch using the self-supervised objective of SimCLR [81];

we use 3D ResNet-50 [210] and ResNet-50 [74] as the visual and audio CNNs,

respectively. We follow the linear evaluation protocol [81] by adding a linear

classifier on top of the learned and frozen models. We test on three down-

stream tasks: visual action recognition on UCF101 [1], sound classification on

ESC-50 [2], and audio-visual action recognition on Kinetics-Sounds [3] (we con-

catenate audio-visual features for the linear classifier). Note that the training

procedures are identical for all the models except for the datasets used to train

them. We report mean accuracy across the o�cial splits of UCF101 and ESC-50.

Figure 4.4 shows that models pretrained on our dataset (green bars) achieve

similar, or even slightly better, performances compared to the baseline datasets

(pink bars) at 20K, 200K, and 2M scales. The significant gap between ours

vs. random set (yellow bars) shows the improvement does not come from the

initial pool we crawl (the 300M set) but rather come from higher portion of
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Figure 4.5: Linear evaluation of representations pretrained on the datasets that
are constructed by our clustering-based approach. We report the top-1 accuracy
(%) on UCF101 [1], ESC-50 [2], and Kinetics-Sounds [3], grouped by the number
of cluster centroids. The shaded regions show 99% confidence intervals obtained
by runs over the o�cial splits of UCF101 (3 splits) and ESC-50 (5 splits).

audio-visual correspondence in the resulting dataset. Our clustering approach

to MI estimation (green bars) generally outperforms the contrastive approach

(blue bars), suggesting its robustness to noisy real-world audio-visual correspon-

dences. Finally, we report the results obtained from 10M and 100M datasets

produced with our clustering-based MI estimation module (we omit the base-

line results at these scales due to computational reasons). The significant per-

formance boost from the 10M and 100M models rea�rms the importance of

large-scale training. Considering our data curation process does not involve hu-

man intervention (i.e., no manual annotation and verification), this is a promis-

ing result showing the potential for large-scale self-supervised learning: one can

obtain datasets of arbitrary scales and develop self-supervised models by lever-

aging high portion of audio-visual correspondences provided in the datasets.

Impact of the Number of Centroids. To visualize the impact of the

number of clusters in our clustering-based approach, we group the results by

the number of clusters as shown in Figure 4.5. Notice that the number of clus-

ters is not positively correlated with downstream task performance. Instead,

clustering with about 500 clusters seems to yield the best performance. Fur-
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Dataset Majority Vote (%) Fleiss’ Kappa
AudioSet 65.66 0.4385
VGG-Sound 84.00 0.4634
Ours (2M) 69.00 0.5110
Random 44.00 0.6112

Table 4.6: Human evaluation results assessing the perceived audio-visual
correspondence in videos from di↵erent datasets.

thermore, experiments using the largest number of centroids (C = 2000) show

low accuracy consistently across all datasets and subset sizes. This confirms

our findings in Section 4.4.2: overclustering tends to have a negative impact

on the quality of the selected subset. We believe that this happens because, as

the number of clusters increases, samples with homogeneous concepts in large

clusters are scattered into small clusters sharing similar concepts. When we do

not have many references to compare as in the early stage of subset selection,

this fragmentation e↵ect inhibits sample count sharing between conceptually

similar small clusters, complicating the clustering-based MI estimation.

4.5.3 Human Evaluation

We conduct a user study to assess the perceived presence/absence of audio-

visual correspondence in video clips. We compare clips from four datasets: Au-

dioSet [5], VGG-Sound [4], ours with clustering (2M scale, 1K clusters), and

random (drawn from the 300M set). We prepare 100 randomly sampled clips

from each of these datasets, for a total of 400 clips. We recruit 12 participants

and present each with 100 clips (25 clips per dataset), and ask them whether

audio and visual are corresponding or not. This provides us with 3 votes per

video.

Table 4.6 shows the majority voting accuracy and inter-rater agreement

(measured by Fleiss’ Kappa [211]). Every dataset has Fleiss’ Kappa greater than
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Subset Size = 20K Subset Size = 200K Subset Size = 2M

Figure 4.6: Histograms of cluster IDs from our curated subsets and randomly
sampled subsets (with 100 cluster centroids). The blue histograms represent
the case where samples are drawn uniformly random and thus is the unbiased
representation of the concepts naturally appearing in the entire population.

0.4, verifying the reliability of the accuracy statistics [212]. Ours significantly

improves audio-visual correspondence over a random subset (69% vs. 44%),

and is even rated slightly higher than AudioSet. The annotation process for

AudioSet has focused on audio events so we suspect that several of videos do

not contain visible sound sources. There is still a significant gap between ours

and VGG-Sound; we note that our process finds audio-visual correspondence

without relying on manual verification as was done in VGG-Sound.

4.5.4 Diversity of the Sampled Clips

Histogram of Cluster IDs. To analyze the diversity of concepts contained in

our curated dataset, we examine the histograms of cluster IDs from the chosen

videos. Figure 4.6 shows audio and visual histograms obtained from either our

curated subsets or randomly sampled subsets at varying scales (20K, 200K, and

2M). To obtain these, we cluster the features from the last layer of audio and

visual feature extractors, respectively, and plot the histograms of cluster IDs.

For the purpose of visualization we sort the cluster indices by the cluster size in

a decreasing order (and thus the cluster IDs do not match between “Random”

and “Ours” in each of the plots). The histograms from random subsets represent

the natural distribution of the entire video population.
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In the visual domain, the curated datasets (green histograms) mostly follow

the original cluster distributions (which is reflected in the blue histogram in each

subplot). This indicates that the visual concept distribution largely follows the

natural distribution in the entire population, suggesting that our subset contains

visual concepts that are as diverse as the entire set.

On the other hand, the audio clusters show noticeable concentration in dis-

tribution after subset selection. Upon close inspection of videos from the largest

audio clusters, we observe that our curated datasets tend to choose videos from

clusters with high audio-visual correspondence (e.g., videos of a single person

speaking with no other sound in background) while random sampling tend to

choose videos from clusters with no apparent audio-visual correspondence (e.g.,

videos of multiple people taking with background music/noise). This shows that

the concentration in the audio histograms is caused by filtering out videos of low

audio-visual correspondence, which is a highly desirable artifact in the curated

subset.

Qualitative Analysis of Audio-Visual Clustering Results. To further

investigate the diversity of concepts appearing in our subsets, we manually in-

spect audio and visual clustering results in the 2M dataset and compare the

concepts appearing in the largest clusters to those in the smallest ones. Fig-

ure 4.7 and Figure 4.8 show representative videos from the five largest and

five smallest clusters obtained from audio and visual clustering results, respec-

tively. Figure 4.7 (from audio clusters) suggests that our curated dataset con-

tains diverse concepts including general sound categories (e.g., voice and objects

sounds) as well as specific topics (e.g., outdoor interview and cooking). Similarly,

Figure 4.8 (from visual clusters) also suggests that our dataset contains diverse

concepts including both natural (e.g., animals and fire) and human sounds (e.g.,

makeup and playing guitar). Clips from larger clusters (depicted in the left col-
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umn of Figure 4.7 and Figure 4.8) contain clear and isolated sound sources,

while sounds of smaller clusters (the right column) are less distinguishable due

to multiple sound sources or background noise. Our dataset also captures sev-

eral audio-visual concepts that existing datasets (such as VGG-Sound [4] and

AudioSet [5]) do not o↵er. For instance, in Figure 4.7, the 77th cluster contains

videos recorded from a front-facing camera with voice recordings from a phone

mic, and the 46th cluster contains videos of comedians performing exaggerated

body actions with the sound of crowd (cheering and laughter). The 88th cluster

in Figure 4.8 contains shoes unboxing videos.

4.6 Conclusion

This work complements existing line of research on self-supervised representa-

tion learning with three main contributions: i) proposing an automatic and scal-

able data collection pipeline for audio-visual representation learning, ii) demon-

strating that the MI-based subset selection can retrieve correspondence in both

artificial and practical settings, and iii) releasing a large-scale open-domain

video dataset consisting of 100M clips curated with our pipeline.
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Cluster 91 (Size Ratio: 3.9%)  
Audio: Female Voice, Visual: Woman Speaking

Cluster 51 (Size Ratio: 1.8%) 

Audio: Object Sounds, Visual: Handling Objects

Cluster 89 (Size Ratio: 3.0%) 
Audio: Commentaries, Crowd Cheering, Visual: Sports

Cluster 67 (Size Ratio: 2.3%)

Audio: Singing, Crowd Cheering, Visual: Concert

Cluster 37 (Size Ratio: 0.4%) 

Audio: Voice, Background Noise, Visual: Outdoor Interview

Cluster 76 (Size Ratio: 0.1%) 

Audio: Sizzling, Boiling, Stirring, Visual: Cooking

Cluster 44 (Size Ratio: 0.7%) 

Audio: Metallic Sounds, Visual: Machine Parts, Tools

Cluster 46 (Size Ratio: 0.2%) 
Audio: Laughing, Speech, Visual: Comedy

Cluster 77 (Size Ratio: 1.7%)  
Audio: Phone Mic Recordings, Visual: Front Camera Selfies

Cluster 33 (Size: 0.2%) 

Audio: Engine Sound, Visual: Car

Audio Clusters

Figure 4.7: Representative samples and concepts derived from a manual inspec-
tion of 100 audio clusters of the 2M subset. We show samples from the five
largest clusters on the left column and those from the five smallest clusters
on the right. Each cluster captures distinctive audio-visual concepts, indicat-
ing that our curated subset contains various concepts with high audio-visual
correspondence.
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Cluster 88 (Size Ratio: 0.1%)  
Audio: Object Sounds, Visual: Shoes Unboxing

Cluster 9 (Size Ratio: 0.1%)  
Audio: Burning Sound, Visual: Fire

Cluster 0 (Size Ratio: 0.4%) 

Audio: Guitar Sounds, Singing, Visual: Playing Guitar

Cluster 2 (Size Ratio: 0.2%) 
Audio: Punch, Crowd Noise, Visual: Martial Arts

Cluster 76 (Size Ratio: 0.2%) 

Audio: Hitting Balls, Crowd Noise, Visual: Baseball

Cluster 83 (Size Ratio: 3.6%)

Audio: Female Voice, Visual: Woman Speaking

Cluster 35 (Size Ratio: 1.9%) 

Audio: Male Voice, Visual: Indoor Interview

Cluster 42 (Size Ratio: 3.6%) 

Audio: Clear Voice, Visual: News

Cluster 33 (Size Ratio: 2.8%)  
Audio: Brushing, Voice, Visual: Makeups

Cluster 23 (Size Ratio: 2.2%)  
Audio: Ambient Sounds, Animal Sounds, Visual: Nature

Visual Clusters

Figure 4.8: Representative samples and concepts derived from a manual inspec-
tion of 100 visual clusters of the 2M subset. We show samples from the five
largest clusters on the left column and those from the five smallest clusters
on the right. Each cluster captures distinctive audio-visual concepts, indicat-
ing that our curated subset contains various concepts with high audio-visual
correspondence.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have studied several problems in self-supervised video rep-

resentation learning – large compute & memory requirements and the need of

scalable data curation pipeline for large-scale video datasets – and proposed

novel solutions to improve learning e�ciency. We summarize the main contri-

butions of this thesis as the following.

In Chapter 2, we introduced a novel neural network for compressed video

recognition, an IMR network, and trained the model on unlabeled videos with-

out decoding them using two novel pretext tasks. Our main technical contri-

butions include: (1) we propose the first self-supervised training approach on

compressed videos, and (2) we propose a three-stream 3D CNN architecture to

encode I-frames and P-Frames of compressed videos while dynamically mod-

eling interaction between them. Our IMRNet achieved the new state-of-the-

art performance on compressed video recognition in both fully-supervised and
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self-supervised settings, and the proposed pretext tasks outperformed previous

self-supervised approaches in downstream tasks.

In Chapter 3, we introduced a multimodal bidirectional Transformer archi-

tecture for audio-visual self-supervised video representation learning. To train

our model end-to-end, we proposed a novel parameter reduction technique based

on matrix decomposition with low-rank approximation, resulting in up to 97%

parameter reduction. With our novel content-ware negative sampling technique,

we successfully trained a multimodal Transformer end-to-end in a contrastive

manner for audio-visual learning, which is the first time in the literature. Our

trained model achieved competitive performance in a variety of downstream

tasks.

In Chapter 4, we proposed an automatic and scalable data collection pipeline

for self-supervised audio-visual representation learning. We empirically demon-

strated that our MI-based subset selection algorithm can retrieve correspon-

dence in both artificial and practical settings, and that audio and visual models

trained on datasets curated with our automatic pipeline yield competitive or

better performance than those trained on existing, manually verified datasets.

We released a large-scale open-domain video dataset of 100M clips curated with

our pipeline.

5.2 Future Work

There is still room for improvement in relation to e�cient self-supervised video

representation learning. In future work, we may consider improving our pro-

posed methods in this thesis in the following ways:

Exploring More Modalities. As humans, enabling one modality to ed-

ucate other modalities is key to learning to perceive a multimodal world and

building a holistic understanding without an external teacher [213, 214, 215, 6].
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Since this learning from reentry generally improves with more modalities [216],

we need to explore another data source of videos in addition to visual frames

and audio streams, that is, speech transcripts. Especially, raw visual frames

from web videos and their corresponding (automatic) transcripts usually have

weak and noisy correlations [67], so extending our data curation pipeline to the

audio, vision and language setting is an interesting future work.

Reducing the E↵ective Length of Video Inputs. Even though we re-

duced the model size by 97% using our parameter reduction technique, the

memory requirements of our multimodal Transformer are too large: We used

a total of 64 NVIDIA V100 GPUs for training the model with a batch size of

256. These issues are applicable to not only contrastive methods used in our

framework, but also other self-supervised representation learning approaches

including non-contrastive Siamese methods [217, 218] and masked modeling

methods [219, 220, 221]. The essence of the problem lies in that Transformers

scale quadratically with the length of the input sequence, and recent vision

Transformers have exacerbated the problem by taking as input a long sequence

of image or video frame patches [222]. Hence, we need to explore how to e↵ec-

tively reduce the sequence length of video inputs and incorporate it into our

training framework.

Balanced Training Recipes for Unified Multimodal Models. The

multimodal models used in this thesis (Chapter 3 and Chapter 4) have modality-

specific encoders. While this architecture allows us to capture the dynamics of

each modality-specific input distribution, we need separate encoders whenever

we add di↵erent modalities. Furthermore, we need to finetune separate predic-

tion heads for each encoder to evaluate on downstream tasks, which is very cum-

bersome. Thus, we need a single unified architecture to model data of di↵erent

modalities, and the success of Vision Transformer [222] opened up the possibility
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towards this goal. However, we use di↵erent training recipes for each modality,

ranging from data augmentations to optimization techniques [223, 224]. Thus,

finding balanced training recipes that work for all modalities would be a good

preliminary goal to create an optimal multimodal, unified model.
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D$î Yµ– ¨©` ⇠ àî Ÿ�t‡ @®Ï(multimodal)\ ‹¯⇣D ⌧

ıX0 L8– ÙË0D⌅¸ 0ƒYµ– à¥⌧ D¸ ‰%�x pt0–t‰. π

à D$ |®¡–î ‹⌅�, �⌅� D©t Œt ‰0 L8– \¸–î D$

tt| ⌅t ê0¿ƒ D$ \⌅Yµït Œt ¸©�‡ à‰. X¿Ã ê0¿

ƒYµï@ ¸\ �‹® Yµ<\ ƒâ⇠¥ Œ@ ∞ ✏ T®¨ ê–t Dî\

\‰. ⇣\, ∞¨� l` ⇠ àî ⌅‰ ç D$‰@ �ÄÑ xtà| Œt Ù

‡ à¥ x⌅t ƒƒ\ Ä⇠X¿ Jî \ Yµ– ¨©X0 ã@ D$ pt0|

lX0� ¥$Ã �‹® pt0 ⇠—– ¥$¿t à‰.

¯ Y⌅|8–⌧î, ⌅–⌧ ∏ ⌧ ê0¿ƒ D$ \⌅Yµï¸ �(⌧ 8

⌧‰D Ï5�<\ LDÙ‡ YµX ®(1D ù�‹§0 ⌅\ 8 �¿ t∞E

D ⌧‹\‰. ´ à¯\, |®t Ï¨¿ J@ D$| ƒƒX T) ¸� ∆t

Yµ– ¨©` ⇠ àî )ïD LD¯‰. D$î Ùµ MPEG@ ⇡@ Uï⌧

�›<\ �•t ⇠‡, t| T)X0 ⌅t⌧î Œ@ ∞ ê–t DîX‰. ¯

|8–⌧ ⌧‹Xî »\¥ ®x lp@ pretext task‰@ \å\X 1• ⇣åÃ

<\ Uï⌧ �‹X D$–⌧ Yµt �•Xå t¸p T)D ›µXÏ `x

D$ ò¨| �•Xå t�‰. P à¯\, |®t Ï¨¿ J@ D$\Ä0

8ÂT⌧ ≠�-‹� \⌅D ê0¿ƒYµ<\ 0∞0 ⌅\ ë)• @®Ï ∏

ú§Ï8(Transformer) lp| ⌧‹\‰. ∏ú§Ï8 ®xt Œ@ T®¨ ê–D

åîX0 L8– 0t– @®Ï ∏ú§Ï8 ®x@ �‹®\ ÖË⌅ Yµ(end-

to-end training)D ƒâX0� ¥$‡‰. �(– ¸¨ï– 0⇠\ â, Ñt|

µt ¯ |8–⌧î @®Ï ∏ú§Ï8 ®xX l0| ⌅Ï 1ı�<\ ÖË⌅

Yµ‹0<p, ‰ë\ ‹§l–⌧ ã@ 1•D pP»‰. »¿…<\, ≠�-‹�

ê0¿ƒ \⌅Yµï– ¨©` ⇠ àî D$ pt0| ®<0 ⌅\ U• �•X
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‡(scalable) êŸT⌧ ⇠— �t⌅|xD ⌧H\‰. t �t⌅|x@ ¡8�Ù…

(Mutual Information)– 0⇠\ ÄÑ —i  › L‡¨òD µt xtà� àî

pt0| D0¡Xp, t| µt ⇠—⌧ pt0K–⌧ Yµ⌧ ≠� ✏ ‹� ®

x‰@ x⌅X Ä⇠| µt Ã‰¥ƒ 0t pt0K–⌧ Yµ⌧ ®x¸ DPXÏ

D∑XpòTò@1•DÙx‰.¯|8–⌧ît�t⌅|xDt©XÏ≠�

✏ ‹� \⌅YµD ⌅t ¨©` ⇠ àî, 1µ ⌧X D$ tΩ<\ l1⌧ $�

ƒTx D$ pt0K ACAV100MD l1X�‰.

¸î¥: %Ï›, ÙË0D⌅, �‹® D$ tt, ê0¿ƒ \⌅Yµï

Yà: 2017-26247
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