creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

2279 A4 B FHe B A
A o]

Mining Real World Tensors via Efficient Tensor

Decomposition Methods

2023 2

1A ato]ig
Mining Real World Tensors via Efficient Tensor

Decomposition Methods

o

o

1

]

1=

2023

iy
HE

i

20223 12

%

_CH

A 7] A (3l)

e

Mining Real World Tensors via
Efficient Tensor Decomposition

Methods

Jun-Gi Jang

Department of Computer Science & Engineering
College of Engineering

The Graduate School

Seoul National University

Abstract

Many real-world data can be represented as tensors including vectors (1-order ten-
sor), matrices (2-order tensor), and higher-order tensors. For example, there are stock
data, healthcare data, video data, sensor data, and movie rating data represented as
tensors. Tensor decomposition has been widely used in applications to analyze real-
world tensors. Since knowledge is inherent in real-world tensors, it is crucial to devise
effective Tensor decomposition methods. However, existing Tensor decomposition-
based methods require high computational costs and space costs. Therefore, it is very
challenging to discover hidden information in large-scale tensors without efficient
tensor decomposition methods.

In this thesis, I overcome the limitations of previous tensor analysis methods
based on tensor decomposition. Since existing tensor decomposition methods require

heavy computations involved with large-scale input tensors, it is crucial to avoid

the computations to achieve high efficiency. My proposed methods achieve high ef-
ficiency by approximating an input tensor and exploiting the approximation result.
I devise highly efficient methods for regular and irregular tensors by exploiting the
characteristics of real-world tensors and carefully determining the order of computa-
tions. Furthermore, I develop a fast and memory-efficient tensor decomposition-based
method that analyzes diverse time ranges.

Extensive experiments show that the proposed methods achieve higher effi-
ciency than existing methods while having comparable errors. The proposed meth-
ods decompose regular and irregular tensors up to 38.4x and 6x faster than ex-
isting methods, respectively. In addition, the proposed method analyzes various time
range queries up to 171.9 x faster than existing methods. Consequently, the proposed
methods allow us to explore meaningful knowledge from various real-world tensors

efficiently.

Keywords : Tensor Mining, Efficiency, Tensor Decomposition, Tucker Decomposi-
tion, PARAFAC2 Decomposition, Real-world Regular Tensors, Real-world Irregular
Tensors

Student Number : 2017-23528

ii

Contents

Abstract i
Contents L iii
Listof Figures vii
Listof Tables ix
Chapter 1 Introduction 1
1.1 Contributions L 4

1.2 Overalllmpact 5

1.3 Thesis Organization 6
Chapter 2 Background 7
21 Tensor 7
211 TensorNotation. 7

2.1.2 Tensor Operation 7

2.2 Tensor Decomposition 9
2.21 Tucker Decomposition 9

2.22 PARAFAC2 decomposition 11

23 RelatedWorks L 14
23.1 Tensor Decomposition on Regular Tensors 15

2.3.2 PARAFAC2 Decomposition on Irregular Tensors 16

2.3.3 Online Streaming Tensor Decomposition 17

iii
-':lx'-'; | I |

2.3.4 Answering Time Range Queries on Regular Tensors 18
Chapter 3 Efficient Static and Streaming Tensor Decomposition in

Regular Tensors 19
3.1 Motivation e 19
3.2 Preliminaries 22
3.2.1 Singular Value Decomposition (SVD) 23

3.2.2 Streaming Tucker Decomposition 24

3.3 Proposed Method for Static Tensors: D-Tucker 25
331 Overview 26

3.3.2 ApproximationPhase 28

3.3.3 InitializationPhase 31

3.3.4 IterationPhase 37

3.3.5 Lemmasand Theorems 40

3.3.6 Proofs of Lemmas and Theorems 42

3.4 Proposed Method for Online Tensors: D-TuckerO 44
341 OVerview 44

3.4.2 Efficient Update for Time Slice 45

3.4.3 Applying Approximation Phase 50

3.44 Theoretical Analysis, 53

3.45 Proofs of Lemmas and Theorems 53

35 Experiment. 56
3.5.1 Experimental Settings, 57

3.5.2 Time Cost and Reconstruction Error 62

3.5.3 Effectiveness of the Initialization Phase 62

3.5.4 Efficiency of the Iteration Phase 62

iv

3.6

355 SpaceCost. oo 64

3.5.,6 Scalability 64
3.5.7 Streaming Setting L 66
3.5.8 Sizeof TimeSlice 69
Summary 69

Chapter 4 Efficient Tensor Decomposition in Irregular Tensors . . . 71

4.1

4.2

4.3

4.4

4.5

Motivation e 71
Preliminaries 74
4.2.1 Singular Value Decomposition (SVD) 74
Proposed Method 76
431 OVerview e 76
4.3.2 Compressing an irregular input tensor 77
43.3 Overview ofupdaterule 81
434 Finding the factorized matricesof Qyand Yy 81
435 UpdatingH,V,andW 83
43.6 Careful distributionof work 89
4.3.7 Complexities 90
Experiments 92
44.1 Experimental Settings 93
4.4.2 Performance. 95
443 DataScalability L 97
444 Multi-core Scalability 0L 99
445 Discoveries 99
Summary 103
v
2] 2 1T

Chapter 5 Efficient Tensor Decomposition for Diverse Time Ranges

in Regular Tensors
51 Motivation e
5.2 Problem Definition
53 Proposed Method L.
53.1 PreprocessingPhase,
532 QueryPhase.
533 Analysis
5.3.4 Proofs of Lemmas and Theorems
54 Experiment.
5.4.1 Experimental Settings

5.4.2 Trade-off between Query Time and Reconstruction Error
543 SpaceCost.
544 QueryCost
5.4.5 Effectsof Block Sizeb
54.6 DiscOVery
55 Summary e e e e e e e e
Chapter6 FutureWorks
6.1 Efficient Online Streaming Method for an Irregular Tensor
6.2 Novel Tensor Method with Deep Learning Techniques
Chapter7 Conclusion
References
AbstractinKorean Lo Lo Lo Lo

vi

Figure 2.1.
Figure 2.2.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 4.10.

Figure 4.11.

List of Figures

Example of Tucker decomposition
Example of PARAFAC2 decomposition
Overview of D-Tucker
Example of matricizing a 4-order tensor
Performance of D-Tucker
The initialization phase of D-Tucker
The iteration phase of D-Tucker
Scalability of D-Tucker
Running time of D-TuckerO
Errors of D-TuckerO
Scalability of D-TuckerO
Trade-off between running time and fitness for DPAR2

Overview of DPAR2
Compression stage of DPAR2
Example of computing G") for DPar2
Example of computing G?) for DPAR2
Example of computing G®) for DPar2
Irregularity analysis L.
Preprocessing time and iteration time of DPAR2
The size of preprocesseddata.
Data scalability for DPAR2

Feature similarity analysis

vii

Figure 5.1.

Figure 5.2.

Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 5.9.

Figure 5.10.

Main goal of ZOOM-TUCKER 106

Trade-off between query time and reconstruction error of Zoom-

TUCKER o 107
Reconstruction errors at each time point on Stock dataset . . 113
Preprocessing phase of ZooM-TUCKER 114
Examples of adjustment for Zoom-TUCKER 118
Space cost for ZOOM-TUCKER. 130
Query time of ZoOOM-TUCKER 132
Sensitivity with respect to blocksize 134
Anomalous range detection by Zoom-TUCKER 135
Trend change analysis 136
viii

Table 1.1.
Table 1.2.
Table 2.1.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 4.1.
Table 4.2.
Table 4.3.
Table 5.1.
Table 5.2.

Table 5.3.

List of Tables

Tensor decomposition-based real-world applications

An overview of works studied in this thesis .
An overview of related works
Symbol description

Time and space costs of D-Tucker

Description of real-world tensor datasets for D-Tucker

Description of real-world tensor datasets for D-TuckerO

Symbol description

Description of real-world tensor datasets for DPAR2

Finding similar stocks for DPar2
Symbol description for ZooM-TUCKER

Time and space complexities of Zoom-TUCKER

Description of real-world tensor datasets for Zoom-TUCKER

ix

14

22

41

59

59

75

92

102

108

122

127

Chapter 1

Introduction

Tensors are natural representations of many real-world data such as sensor data,
stock data, video data, and electronic health data. Vectors and matrices are first-order
tensors and second-order tensors, respectively, and higher-order tensors denote third
or higher tensors. For example, we construct stock data as a third-order tensor of the
following form: (time, feature, stock). The tensor can be viewed as the collection of
stock matrices whose rows and columns correspond to time and features (e.g., the
opening price, the closing price, the trade volume, etc.), respectively. In addition to
stock data, we represent sensor data as a third-order tensor of (time, location, sensor)
form.

Tensor mining has attracted much attention from various research and industrial
fields since it allows us to find key information that provides deeper insights into the
complex phenomena inherent in real-world tensors, and support making effective
decisions in the age of information overload. To achieve it, many researchers have
been exploiting tensor decomposition for various applications such as missing value
prediction, anomaly detection, recommendation, and so on. Tensor decomposition
decomposes an input tensor into latent factor matrices which contain information
hidden in the tensor. Table 1.1 summarizes the details of real-world applications with
tensor decomposition.

Although the importance of tensor mining has been emerging, it is challenging

since the size of real-world tensors explosively increases, and tensor analysis requires

Table 1.1: Tensor decomposition-based real-world applications

Application & Its References | Brief Description

Feature analysis Discover knowledge from latent features
[1,2,3,4,5] obtained by tensor decomposition

Missing value prediction

[6.7. 8, 9] Predict missing values in a tensor

Recommendation

[10, 11, 12, 13, 14] Recommend new items that users would prefer

Anomaly detection

[15, 16, 17, 18] Detect anomalous patterns in a tensor

Model compression

learni 1
[19, 20, 21, 22, 23, 24] Compress deep learning models

expensive tensor operations. In addition, it is necessary to analyze various forms of
data in various settings as environments where data is generated become more com-
plex. However, previous tensor decomposition-based methods fail to provide high
efficiency, and thus they are very limited to be used in real-world settings. Therefore,
it is crucial to devise efficient tensor decomposition methods to extract knowledge
from real-world tensors of various forms in real-world settings.

In this thesis, I concentrated on developing highly efficient tensor decomposition
methods for large real-world tensors in real-world settings. Two main topics to be
addressed are to 1) devise efficient tensor decomposition methods for regular and
irregular tensors in real-world settings and 2) analyze a temporal tensor for diverse
time ranges. We started with improving the performance of tensor decomposition in
terms of time and space costs. Given a large tensor in real-world settings, we aim at
the following research questions:

+ [Chapter 3] how can we efficiently discover hidden concepts and patterns of

large tensors in static and online streaming settings?

« [Chapter 4] how can we efficiently analyze large irregular tensors in a static

Table 1.2: An overview of works studied in this thesis.

Setting . .))
W Static Setting Online Setting

D-TuckerO [Chapter 3]
ZooM-Tucker [Chapter 5]

Regular Tensor D-Tucker [Chapter 3]

Online irregular
Irregular Tensor DPAR2 [Chapter 4] tensor decomposition
(Future work [Chapter 6])

setting?
Note that an irregular tensor is a collection of matrices where the number of columns
is the same and the number of rows is different from each other. In an online stream-
ing setting, the size of the time dimension of a tensor grows over time.

The second topic is to analyze diverse time ranges when a large tensor with the
time dimension is given. Assume that users are interested in exploring knowledge
from various time ranges. For example, given a temporal tensor including matrices
collected from Jan. 1, 2008, to May 6, 2020, a user can be interested in hidden informa-
tion inherent in the range (from Jan. 1, 2020, to April 30, 2020). This thesis answers
the following question to provide an opportunity to efficiently explore knowledge
from various perspectives:

» [Chapter 5] Given a temporal tensor and a time range, how can we efficiently

analyze the tensor in the given time range?

The main challenge to be addressed is to improve the efficiency of tensor de-
composition for real-world tensors. ALS (Alternating Least Square) has been widely
used for obtaining factor matrices of tensor decomposition. Until convergence, it it-
eratively updates a target factor matrix while fixing all the other factor matrices.
However, computations with an input tensor at each iteration require high costs due

to the large size of the tensor. In addition, performing tensor decomposition several

times is also burdensome. Therefore, avoiding repeated computations involved with
a given tensor is required to achieve the goal.

To address the challenge, I approximate an input tensor before iterations, and
then obtain factor matrices by exploiting the approximated results. The methods to
be developed generate approximated results which are obtained with high efficiency
and are much smaller than the input tensor. Then, they obtain factor matrices by
exploiting the approximated results in iterative computations. Note that the input
tensor is not used in the iterations. Although they do not generate the same results
as the methods that use the input tensor and sacrifice a little accuracy, I empirically
show that our proposed methods have better trade-offs between efficiency and ac-
curacy than existing tensor decomposition-based methods. The accuracy loss is not

significant compared to the efficiency improvement.

1.1 Contributions

Table 1.2 describes an overview of works studied in this thesis, and I summarize our
contributions as follows:

- Efficient Tucker Decomposition in Large-scale Regular Tensors (Chap-
ter 3). I propose D-Tucker and D-TuckerO, fast and memory-efficient Tucker
decomposition methods for regular tensors in static and online streaming set-
tings, respectively. Both methods achieve high efficiency by approximating a
given tensor, and then efficiently computing Tucker decomposition only using
the approximated results. D-Tucker achieves up to 38.4 x faster and requires up
to 17.2x less space than existing Tucker decomposition methods while having
comparable accuracy. In addition, D-TuckerO successfully works in the online

streaming setting by efficiently dealing with new incoming tensors, and out-

performs its competitors by up to 6.1x faster than them.

+ Efficient PARAFAC2 Decomposition in Large-scale Irregular Tensors
(Chapter 4). I devise DPAR2, a fast and scalable PARAFAC2 decomposition
method for irregular tensors. DPAR2 achieves high efficiency by reducing nu-
merical computations and intermediate data, and maximizing multi-core paral-
lelism. DPAR?2 is the fastest PARAFAC2 decomposition method by giving up to
6.0 x faster than existing PARAFAC2 decomposition methods. It is also scalable

with respect to input and output sizes.

+ Efficient Tucker Decomposition for Diverse Time Range Queries (Chap-
ter 5). I propose ZooM-TUCKER to analyze a temporal tensor for diverse time
ranges. ZooM-TUCKER effectively approximates a given tensor before time range
queries are given, and answers diverse time range queries quickly and memory-
efficiently by exploiting the approximated results and fruitful mathematical
techniques. Note that Zoom-TUckER works in an online setting since the pre-
processing phase is extensible for new incoming tensors by performing Tucker
decomposition of them. Given a time range query, ZoomM-TUCKER is up to 171.9 %
times faster and requires up to 230 less space than previous methods. Zoom-
TuckeR provides an opportunity to explore diverse time ranges in large-scale

temporal dense tensors.

1.2 Overall Impact

My research outcomes leave a lasting impact in academic and industrial fields as the

followings:

+ Efficiency Improvement. My proposed methods significantly improve the
efficiency of tensor decomposition methods for regular and irregular tensors

in terms of speed, space, and scalability.

« Effective Analysis. My proposed methods allow researchers to effectively an-
alyze tensors in real-world applications such as anomaly detection and feature
analysis.

Most of the algorithms introduced in this thesis are open to the public for repro-
ducibility and my research achieved the following results:

« Our work [25] was selected as the best research paper in KDD 2021 and awarded

the Qualcomm Innovation Fellowship Korea.
« Our work [1] was selected as the best paper (honorable mention) in ICDE 2022.

+ Our research works [1, 25, 26, 27] included in this thesis were supported by
the Yulchon AI Star Award, Naver Ph.D. Fellowship, and Future Gauss Lecture

Program.

1.3 Thesis Organization

The rest of this thesis proposal is organized as follows. The background on tensor
notations, tensor decomposition, and related works are provided in Chapter 2. In
Chapter 3, we propose the fast and memory-efficient tucker decomposition methods,
D-Tucker and D-TuckerO, for large real-world tensors in static and streaming set-
tings. In Chapter 4, we propose DPAR2, a fast and scalable PARAFAC2 decomposition
method for real-world irregular tensors. In Chapter 5, we propose a novel method
ZooM-TuckeRr that efficiently analyzes various time ranges using Tucker decompo-

sition. Finally, I present future works in Chapter 6, and conclude in Chapter 7.

Chapter 2

Background

This section describes notations, definitions, and related works for tensors and tensor

decomposition.

2.1 Tensor

2.1.1 Tensor Notation

Each ‘dimension’ of a tensor (i.e., a multi-dimensional array) is denoted by mode. ‘di-
mensionality’ of a mode denotes the length of it. An N-order tensor is represented as
a boldface Euler script capital (e.g. X € R/1*2><Iv) Jetter, and matrices are denoted
by boldface capitals (e.g. A). A mode-n fiber is a vector having fixed indices except for
the n-th index in a tensor. A sliced matrix is a matrix having fixed all indices except
for two indices in a tensor. An irregular tensor is a 3-order tensor X whose k-frontal
slice X(:,:,k) is X € R/, We denote irregular tensors by {X;}X_, instead of X

where K is the number of k-frontal slices of the tensor.

2.1.2 Tensor Operation

We use the following tensor operations in this thesis: Frobenius norm, matricization,
n-mode product, Kronecker product, and slicing.

Frobenius Norm. The Frobenius norm of X (€ R/1**/V) is denoted by ||X||r

and defined as follows:

Matricization. Mode-n matricization converts a given tensor into a matrix form
along n-th mode. We denote the mode-n matricization of a tensor X € R/ *2xxIv a4

X(n)- Each element (iy, ...,iy) of X is mapped to an element (i, j) of X, such that

N k-1
=1 | a=D]|,
k=1 m=1
k#n m#n
where all indices start from 1.
n-mode product. The n-mode product X x,A of a tensor X € R/ 2% XIv with

a matrix A € R/l has the size of I; x- - -I,_1 xJ,, xI, 1 -+~ x Iy, and defined by

I,
(x ><nIA)il‘-~infljnin+l~~l.N = : :xiliZ‘niNajnin

i,=1

where a;,;, is the (jn,i,)-th entry of A. The result of n-mode product of a tensor X
with a matrix A is identical to that of the following three operations: 1) performing
mode-n matricization X(,), 2) computing Y(,) = AX(,), and 3) reshaping the result
Y, asatensorY € RIV< 3y

Kronecker product. Kronecker product of a matrix A € RP*? with a matrix
B € R™ produces the output C = A ® B of the size pr x gs. Each element of the

output is defined as follows:

Cr(l—l)+u,s(v—l)+w =da;y X bu,w (2‘1)

S
X Its Tucker
3-order tensor decomposition

Figure 2.1: Example of Tucker decomposition. Given a tensor X, Tucker decomposition de-
composes it into the factor matrices A(l), A AB) and core tensor G. Note that A(l), A®)
and A®) are column orthogonal matrices.

where a;, is (f,v)-th element of the matrix A and b, ,, is (,w)-th element of the
matrix B.
Khatri-Rao product. The Khatri-Rao product between two matrices X € RP*¢

and Y € R™1 is denoted by (X®Y) € RP"*4. The Khatri-Rao product performs the

Kronecker product column by column: (X0Y) = [X(:,1);---;X(5,¢) | ©[Y(:,1);-- -5 Y(:

)] =X 1)Y(1);---5X(5,9) @Y (5, q)], where ; denotes the horizontal concate-
nation.

Slicing a tensor. Slicing an N-order tensor X (€ R/>*¥) along modes not
in {m,n} decomposes X into L sliced matrices of size I,, x I,, where L =1 X ... X
In—1 X Lty X oo X Iy—y X Iygy1 X ... X Iy. For example, consider a 3-order tensor X
(€ RIExK3) in Figure 3.1. Slicing X along mode 3 leads to K3 sliced matrices of size

11 ><12.

2.2 Tensor Decomposition

This section describes two representative tensor decomposition methods used in this

thesis: Tucker decomposition and PARAFAC2 decomposition.

2.2.1 Tucker Decomposition

Algorithm 1: Tucker-ALS (HOOI) [28]

Input: tensor X € R1**V and core tensor dimensionality Ji, ...,Jy

i=1,...,N)
initialize: factor matrices A®) (i =1,...,N)
repeat
fori=1,...,Ndo
Y+ X x4 A(l)T cee Xl A(i_l)T Xit1 A(H‘l)T e XNA(N)T
A" « J; leading left singular vectors of Y
end for
until the maximum iteration is reached, or the error ceases to decrease;

: G X ADT 5, AQT sy AT

FR A L

Definition 2.1 (Tucker Decomposition). Given an N-order tensor X € RI'**IN Tycker

decomposition decomposes X into the core tensor G € R/ >N and factor matrices

A® € Rn forn=1...N. O

Note that A®™ is a column orthogonal matrix, i.e. AT A() — T where I is the
identity matrix, and core tensor G is small and dense. Figure 2.1 shows an example
of Tucker decomposition. The objective function of Tucker decomposition is given as
follows.

min X —Gx; AN ... xy AN (2.2)
AL AW

where we represent the given tensor X using the core tensor G and factor matrices

A,
DC%SXIA(”---XNA(N) (2.3)

In addition, we re-express Equation (2.3) with matricization and Kronecker product

as follows:
X = AVG) (@}, ANT) (2.4)

10

where (®1k\;énA(k)T) indicates Kronecker product of AX7T for k = NN —1,....n+
l,n—1,..,2, 1.

Computing the Tucker decomposition. A common approach to minimize
Equation (2.2) is ALS (Alternating Least Square). ALS approach iteratively updates the
factor matrix of a mode while fixing all factor matrices of other modes. Algorithm 1
describes Tucker decomposition based on ALS approach, which is called higher-order
orthogonal iteration (HOOI). A bottleneck of ALS approach for a dense tensor is to
compute Equation (2.5) (line 4 in Algorithm 1) which requires O(HJ,Z:1 I,) space and

O(J; x szllm) computational time even to compute the first n-mode product be-

tween an input tensor X and the factor matrix A(1).

Y20 ADT s AT s AT s ANT oy) X (®;€vﬁA<k>>

(2.5)
Note that Equation (2.5) re-expresses line 4 of Algorithm 1 with mode-i matricization

and Kronecker product (see details in [29]). Moreover, the computational time grows

as the number of iterations increases.

2.2.2 PARAFAC2 decomposition

PARAFAC?2 decomposition proposed by Harshman [30] successfully deals with irreg-

ular tensors. The definition of PARAFAC2 decomposition is as follows:

Definition 2.2 (PARAFAC2 Decomposition). Given a target rank R and a 3-order
tensor {Xi }X_, whose k-frontal slice is Xy € R/ fork = 1,...,K, PARAFAC2 decom-
position approximates each k-th frontal slice X; by UySiVT. Uy is a matrix of the size

Iy X R, Sy is a diagonal matrix of the size R X R, and V is a matrix of the size J X R

11

{(Xihie, Q H Sk V7

PARAFAC2
Decomposition
—

< A given irregular >«

tensor
Figure 2.2: Example of PARAFAC2 decomposition. Given an irregular tensor {Xk}kK:l,
PARAFAC2 decomposition decomposes it into the factor matrices H, V, Qg, and S; for

k=1,...,K. Note that Q;H is equal to Uy.

A\ 4

Its PARAFAC2 Decomposition

which are common for all the slices. (]

The objective function of PARAFAC2 decomposition [30] is given as follows.

K
min X —UeSi V|7 2.6
o {Sk}N; I 7 (2.6)
For uniqueness, Harshman [30] imposed the constraint (i.e., UkTU = @ for all k), and
replace U] with Q;H where Qy is a column orthogonal matrix and H is a common

matrix for all the slices. Then, Equation (2.6) is reformulated with Q;H:

K
min X — Q:HS V|7 2.7
{Qk}»{Sk}\H,VkZ] Xk — QuHS V|| (2.7)

Figure 2.2 shows an example of PARAFAC2 decomposition for a given irregular ten-
sor. A common approach to solve the above problem is ALS (Alternating Least Square)
which iteratively updates a target factor matrix while fixing all factor matrices except
for the target. Algorithm 2 describes PARAFAC2-ALS. First, we update each Q; while
fixing H, V, S¢ for k = 1,...,K (lines 4 and 5). By computing SVD of X, VS:H” as
Z;CEIQP;{T, we update Qy as Z;CP;(T, which minimizes Equation (2.8) over Qy [2, 31, 32].

After updating Q, the remaining factor matrices H, V, Sy is updated by minimizing

12

Algorithm 2: PARAFAC2-ALS [31]

Input: X; € R fork=1,....K
Output: U, € R&*R S, € RRXR for k=1,...,K, and V € R/*R,
Parameters: target rank R
1: initialize matrices H € RR*R V, and S; for k = 1,...,K
2: repeat
3: fork=1,...,Kdo
compute Z;E,’CP;{T <+ X VS;H” by performing truncated SVD at rank R
Q —ZP]
end for
fork=1,...Kdo
Y, QZX/(
end for
10: construct a tensor Y € RF*/*K from slices Yy € RF*/ fork =1,....K
/* running a single iteration of CP-ALS on Y */
1: H< Y (WoV) (W WxVTV)f
122V <—Y(2>(W®H)(WTW*HTH)T
132 W<« Y3 (VoH)(VIV<H H)!
14: fork=1,....Kdo
15: Sy + diag(W(k,:))
16: end for
17: until the maximum iteration is reached, or the error ceases to decrease;
18: fork=1,...,K do
19: U+ QH
20: end for

R A

the following objective function:

K

min X, —HS, VT ||? 2.8
{Sk}H?V;HQk k WV |F (2.8)

Minimizing this function is to update H, V, Sy using CP decomposition of a tensor
Y € RR*/*K whose k-th frontal slice is Q/{Xk (lines 8 and 10). We run a single iteration
of CP decomposition for updating them [31] (lines 11 to 16). Qx, H, S, and V are
alternatively updated until convergence.

Iterative computations with an irregular dense tensor require high computa-

tional costs and large intermediate data. RD-ALS [33] reduces the costs by prepro-

13

Table 2.1: An overview of related works corresponding to our proposed works in this
thesis.

Regular Tensor & | Irregular Tensor & Regular Tensor &
Static Setting Static Setting Online Setting

Chapter 2.3.3
Chapter 2.3.4

Chapter 3 (D-TuckerO)
Chapter 5 (ZooM-TUCKER)

Related Works Chapter 2.3.1 Chapter 2.3.2

Our Works | Chapter 3 (D-Tucker) | Chapter 4 (DPAR2)

cessing a given tensor and performing PARAFAC2 decomposition using the prepro-
cessed result, but the improvement of RD-ALS is limited. Also, recent works suc-
cessfully have dealt with sparse irregular tensors by exploiting sparsity. However,
the efficiency of their models depends on the sparsity patterns of a given irregular
tensor, and thus there is little improvement on irregular dense tensors. Specifically,
computations with large dense slices X for each iteration are burdensome as the
number of iterations increases. We focus on improving the efficiency and scalability

in irregular dense tensors.

2.3 Related Works

I describe related works for tensor decomposition methods working in real-world
settings. I deal with two tensor forms (i.e., regular tensors and irregular tensors) and
two real-world settings (i.e., static and online settings). Table 2.1 shows an overview
of related works corresponding to our proposed works studied in this thesis. In Chap-
ter 2.3.1, I present static tensor decomposition methods for regular tensors, which is
related to D-Tucker (Chapter 3). In Chapter 2.3.2, I present static tensor decomposition
methods for irregular tensors, which is related to DPAR2 (Chapter 4). In Chapter 2.3.3,
I present online tensor decomposition methods for regular tensors, which is related

to D-TuckerO (Chapter 3). In Chapter 2.3.4, I describe methods for answering time

14

range queries on regular tensors, which is related to Zoom-TuckeR (Chapter 5).

2.3.1 Tensor Decomposition on Regular Tensors

De Lathauwer et al. [28] proposed Tucker-ALS (Algorithm 1) which alternately up-
dates factor matrices and obtains core tensor. A few Tucker decomposition methods
slightly reduce the computational time using efficient matrix operations [34, 35]. Che
et al. [36] applied randomized algorithms for Tucker decomposition. The main chal-
lenges of Tucker decomposition are heavy computational time and large memory re-
quirements due to large-scale dense tensors. To overcome the challenges, MACH [37]
is designed to reduce the computational time and the memory requirement by sam-
pling input tensors. Also, Malik et al. [38] used a sketch of input tensors to overcome
the challenges. However, there is still plenty of room for improvement in terms of
efficiency. Several works [5, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57] optimize tensor decomposition in parallel systems and distributed systems.
Tucker decomposition has been widely used for several applications including
dimensionality reduction [19, 58], recommendation [7, 59, 11], clustering [60, 61],
image tag refinement [62, 63], phenotype discovery [2, 3, 4], and many others [64, 65,
1]. Oh et al. [7] analyzed movie rating data and discovered relations between movie
and time attributes by considering only observable entries. Kim et al. [19] used Tucker
decomposition for compressing a deep convolutional neural network. Jang et al. [25]
proposed a Tucker decomposition-based method to efficiently analyze a given time

range.

15

2.3.2 PARAFAC2 Decomposition on Irregular Tensors

Cheng and Haardt [33] proposed RD-ALS which preprocesses a given tensor and per-
forms PARAFAC2 decomposition using the preprocessed result. However, RD-ALS
requires high computational costs to preprocess a given tensor. Also, RD-ALS is less
efficient in updating factor matrices since it computes reconstruction errors for the
convergence criterion at each iteration. Recent works [2, 3, 66] attempted to ana-
lyze irregular sparse tensors. SPARTan [2] is a scalable PARAFAC2-ALS method for
large electronic health records (EHR) data. COPA [3] improves the performance of
PARAFAC2 decomposition by applying various constraints (e.g., smoothness). RE-
PAIR [66] strengthens the robustness of PARAFAC2 decomposition by applying low-
rank regularization. We do not compare DPAar2 with COPA and REPAIR since they
concentrate on imposing practical constraints to handle irregular sparse tensors, es-
pecially EHR data. However, we do compare DPAR2 with SPARTan which the effi-
ciency of COPA and REPAIR is based on. TASTE [67] is a joint PARAFAC2 decom-
position method for large temporal and static tensors. Although the above methods
are efficient in PARAFAC2 decomposition for irregular tensors, they concentrate only
on irregular sparse tensors, especially EHR data. LogPar [68], a logistic PARAFAC2
decomposition method, analyzes temporal binary data represented as an irregular
binary tensor. SPADE [69] efficiently deals with irregular tensors in a streaming set-
ting. TedPar [4] improves the performance of PARAFAC2 decomposition by explic-
itly modeling the temporal dependency. Although the above methods effectively deal
with irregular sparse tensors, especially EHR data, none of them focus on devising

an efficient PARAFAC2 decomposition method on irregular dense tensors.

16

2.3.3 Online Streaming Tensor Decomposition

Many works [70, 71, 72, 73, 74, 75, 76] have developed CP decomposition methods
in an online streaming setting. RLST (Recursive Least Squares Tracking) and SDT
(Simultaneous Diagonalization Tracking) [70] are adaptive PARAFAC decomposition
methods of a third-order tensor in an online streaming setting. Zhou et al. [71] de-
veloped onlineCP, a streaming CP decomposition method, while Zhou et al. [75] ex-
tend onlineCP for sparse tensors. Gujral et al. [74] and Smith et al. [73] proposed
streaming CP decomposition methods in parallel systems. Lee et al. [77] proposed
a robust tensor factorization that leverages two temporal characteristics: graduality
and seasonality. Ahn et al. [76, 78] proposed tensor factorization methods by captur-
ing temporal locality patterns. Son et al. [79] proposed a n online tensor factorization
method by capturing sudden change in data. The main difference between the above
methods and our proposed method is that they focus on developing online versions
of CP decomposition while D-TuckerO is based on Tucker decomposition.

Sun et al. [17] incrementally analyzed temporal tensors over time: they proposed
two algorithms, DTA (dynamic tensor analysis) and STA (streaming tensor analysis).
However, the above methods update factor matrices and core tensor by naively us-
ing a new incoming tensor without compression, thereby efficiency improvement is
limited when a new incoming tensor is sufficiently large. In addition, tucker-ts and
tucker-ttmts [38] can be applied to online streaming settings. However, they fail to
avoid increasing the running time over time. Sun et al. [80] proposed a streaming
Tucker decomposition method with a sketching technique in distributed systems, as-
suming that time slices are stored in several machines. MAST [72] deals with the
scenario in which a given tensor grows in multiple modes while D-TuckerO runs on

the setting where only one mode increases.

17

2.3.4 Answering Time Range Queries on Regular Tensors

Zoom-SVD [81] deals with the time range query problem, but it is suitable only
for multiple time series data represented as a matrix. Although there is no exist-
ing method that precisely addresses the time range query problem for tensors, there
are several methods [26, 37, 38] that can be adapted to solve the problem. They per-
form a preprocessing phase by exploiting a sampling technique [37] or randomized
SVD [26] before the query phase, and then obtain Tucker results using the prepro-
cessed results in the query phase. However, they do not satisfy the desired properties

for the solution: fast running time, low space cost, and accuracy.

18

Chapter 3

Efficient Static and Streaming Tensor

Decomposition in Regular Tensors

3.1 Motivation

How can we efficiently discover hidden concepts and patterns of large dense tensors?
Many real-world data including video, music, and air quality, can be represented as
dense tensors. Tucker decomposition is a fundamental tool for factorizing a given ten-
sor into factor matrices and a core tensor to find hidden concepts and latent patterns.
Tucker decomposition has spurred much interest with various applications including
dimensionality reduction [19, 58], recommendation [7, 59], and clustering [60, 61].
Alternating Least Square (ALS) is the most widely used method for Tucker de-
composition. Existing ALS-based methods, however, fail to satisfy all the desired
properties for dense tensor decompositions: fast running time, low memory require-
ment, and high accuracy. Tucker-ALS which updates factor matrices iteratively is
slow when the number of iterations is large. Moreover, Tucker-ALS has a memory
problem to obtain final factor matrices and a core tensor since it directly handles
large dense tensors in order to update the factor matrices and the core tensor at each
iteration. A few static Tucker decomposition methods reduce the computational cost
using efficient matrix operations [34, 35] or applying randomized algorithms [36, 82].
In addition, other Tucker decomposition methods [37, 38] reduce the computational

time and the memory requirement by approximating large dense tensors. However,

19

none of them provide both fast running time and accuracy. The major challenges
to deal with large dense tensors are 1) how to efficiently approximate a large dense
tensor with low error, and 2) how to update factor matrices by using approximated
results.

In this work, we propose D-Tucker and D-TuckerO, efficient Tucker decompo-
sition methods on large dense tensors. D-Tucker and D-TuckerO run in static and
online streaming settings, respectively. The main ideas of D-Tucker are as follows: 1)
slice an input tensor into matrices and compress each matrix by exploiting random-
ized singular value decomposition (SVD), 2) initialize and update factor matrices and
a core tensor using the SVD results, and 3) carefully determine the ordering of compu-
tations for efficiency. Similar to D-Tucker, D-TuckerO tackles Tucker decomposition
for an online streaming setting with the following ideas: 1) avoid direct computations
related to previous time steps, 2) approximate each new incoming tensor, and then 3)
carefully update factor matrices by determining the ordering of computations.

D-Tucker has three main phases: approximation, initialization, and iteration (see
Figure 3.1). The approximation phase of D-Tucker slices an input tensor into matrices,
and then performs randomized SVD [83] of each sliced matrix. It allows us to reduce
the size of the input tensor for updating the factor matrices and the core tensor. The
initialization phase of D-Tucker initializes factor matrices by computing orthogonal
factor matrices using the SVD results of sliced matrices. The iteration phase of D-
Tucker updates the factor matrices and the core tensor by carefully exploiting the SVD
results. D-Tucker achieves better time and space efficiency by carefully dealing with
SVD results. Experimental results show that D-Tucker is faster and more memory-
efficient than existing methods.

In an online streaming setting, D-TuckerO efficiently deals with each new in-

20

coming tensor by updating the temporal factor matrix, and then updating factor ma-
trices of non-temporal modes. To update the temporal factor matrix, we leverage
only the new incoming tensor and factor matrices of non-temporal modes obtained
at the previous time step. For factor matrices of non-temporal modes, we avoid direct
computations related to the entire tensor and the temporal factor matrix obtained at
previous time steps. It enables that computational cost and memory requirements are
proportional to the size of a new incoming tensor, not the entire tensor. In addition,
at each time step, we approximate a new incoming tensor using the approximation
phase of D-Tucker, and then update the factor matrices by carefully using the ap-
proximation results. Exploiting the approximation phase gives D-TuckerO the same
benefit as D-Tucker: it allows us to use a smaller size of the approximated results than
that of a new incoming tensor in updating the factor matrices and the core tensor,
to achieve better time and space efficiency. Through comprehensive experiments, we
show that D-TuckerO is more efficient than existing streaming methods, and the run-
ning time of D-TuckerO is proportional to the size of a newly arrived tensor, not the
accumulated tensor.

The contributions of the paper are as follows.

« Algorithm. We propose D-Tucker and D-TuckerO, efficient methods for de-

composing dense tensors in static and online streaming settings.

«+ Analysis. We provide analysis for the time and space complexities of our pro-

posed methods D-Tucker and D-TuckerO.

+ Experiment. We experimentally show that D-Tucker 1) is up to 38.4x faster
and requires up to 17.2x less space than competitors (see Figure 3.3), and
2) provides good starting points to minimize the running time. Moreover, D-

Tucker is scalable in handling dense tensors in terms of dimensionality, rank,

21

Table 3.1: Symbol description.

Symbol Description
X, Reordered tensor (€ I} x I, X K3 X ... X Ky)
G Core tensor (€ J; X Ja X ... X Jy)
A® Factor matrix of the n-th mode
I, Dimensionality of the n-th mode of X, for modes n =1 and 2
K, Dimensionality of the n-th mode of X, for mode n=3,4,...,.N
A Dimensionality of the n-th mode of core tensor
[X ; Y} Horizontal concatenation of two matrices X and Y
Xty ky (k3, ..., kn)-th sliced matrix of size I} X I
Uity ky Left singular vector matrix of X4, xy
Xk ky Singular value matrix of X..x; . ky
Viksky Right singular vector matrix of X..x, xy
L Number of sliced matrices (= K3 X -+ - Ky)
r Number of singular values for SVD
N Order of the given tensor
€ Error tolerance in the iteration phase
tuew New time-step in an online streaming setting
Xowa Accumulated tensor
Xew New time slice at a time step ey
Toia Dimensionality of the temporal mode of an accumulated tensor (€ I} X I X K3 X ... X Tyj4)
Trew Dimensionality of the temporal mode of a new time slice (€ I} X I X K3 X ... X Tyew)
blkdiag({A;}}_,) Block diagonal matrix consisting of A, for / = 1,...L (see Equation (3.5))
Af,';(){ Pre-existing factor matrix of the n-th mode in an online streaming setting
® Kronecker product
T Pseudoinverse

order, and the number of iterations. D-TuckerO is up to 6.1 x faster than com-
petitors in an online streaming setting (see Figure 3.7).

In the rest of the chapter, we describe the preliminaries in Section 3.2, propose

our methods D-Tucker and D-TuckerO in Sections 3.3 and 3.4, respectively, present

experimental results in Section 3.5, and conclude in Section 3.6. The code and datasets

are available at https://datalab.snu.ac.kr/dtucker.

3.2 Preliminaries

Table 3.1 shows the symbols used in this chapter.

22

https://datalab.snu.ac.kr/dtucker

Algorithm 3: Randomized SVD [84]

Input: matrix A € R™*", target rank k, and sampling parameters p and [
Output: SVD results U € R 3 ¢ R¥*k v ¢ R7*k
1: draw random matrices £ € RP*" and ¥ € R/>*"
form matrices Y = QA and Z = AT
obtain column orthogonal matrices Q and P by QR factorization of Y/ and Z7.
form matrices W = QP and B =YQ.
obtain a matrix X which minimizes ||[WX — B||
compute SVD of X = UZ V7
U+« PO, T« 3, V< QV,

3.2.1 Singular Value Decomposition (SVD)

Given a matrix X € R™*", Singular Value Decomposition (SVD) decomposes it into
the three matrices U € R™*", X € R™", and V € R"*” where X is equal to Uuzvt.u
is a column orthogonal matrix (i.e., UT U = I) consisting of left singular vectors of X;
3 is an r x r diagonal matrix consisting of singular values 6, where 61 > 6, > ---
> 6, > 0.V € R™ is a column orthogonal matrix (i.e., V'V = I) consisting of right
singular vectors of X.

SVD with randomized algorithm. Randomized SVD efficiently approximates
amatrix A € R"™*" with alow rank using randomization techniques (See Algorithm 3).
The main idea of randomized SVD is 1) to generate random matrices 2 € RP*™
and ¥ € R where p and [are sampling parameters, and find column orthogo-
nal matrices Q € R"*? and P € R"™*! of sketches Y! = (QA)T € R*? and ZT =
(BAT)T € R™! respectively, 2) to construct a smaller matrices W = QP € RP*!

and B = YQ € RP*?, and find X € R"*? that minimizes | WX — B

, 3) to compute
X = kaEkV,{ by truncated SVD at target rank k, and 4) to compute U = PU; € R"™**
and V = QV, € R The dominant terms to compute randomized SVD are to form
sketches Y and Z. Recent works [38, 85] require O(mn) time to construct random

matrix and form matrix Y using sparse embedding matrix € RP*" = & D.

23

o h: [m] — [p] is a random map so that h(m’) = p’ for p’ € [p] with probability

1/p for each m’ € [m|, where [m| = {1,2,...,m} and [p] = {1,2,...,p}.

« ® € {0,1}P7": for each m'-th column of ®, all the entries are 0 except that
h(m')-th entry is 1; each column vector is a one-hot encoding vector whose

only one entry is 1 and remaining entries are 0.

« Diagonal matrix D € R™*": diagonal entries are randomly chosen to be 1 or
—1 with equal probability.

Due to the special form of ® and D, the complexity of multiplying €2 to A is O(mn)
(see [85] for details). Z is also constructed like Y using sparse embedding matrix.
Therefore, the time complexity of randomized SVD is O(mn) when we use sparse
embedding matrices. In the paper, we use randomized SVD to efficiently deal with
large dense matrices in the approximation phase. We use standard SVD [86] with time
complexity O(mnk) to stably deal with relatively small matrices in the initialization

and iteration phases.

3.2.2 Streaming Tucker Decomposition

We formally define the problem of Tucker decomposition in an online streaming set-

ting as follows:

Definition 3.1. (TUCKER DECOMPOSITION IN A STREAMING FASHION)

Rll XX K3 X XKy_1 XT,

Given: a time slice X, € v qt a time-step tyey, a pre-existing set

of factor matrix AS;[)I forn=1,2,...,N, and a pre-existing core tensor G,;; where A(()’lz

and G4 approximate X 14 € R <X K3 XKy -1 xTold
Update: the factor matrix AS,'QV forn=1,2,...,N and the core tensor G, to approxi-

mate the accumulated tensor X € RIVxKxxKy1xTowa yyhere T, 101 = Tora + Thew-

24

ASZ'QV € RIn (or RE>n) for n = 1,2,...,N — 1 is a factor matrix updated at

taews Ag:? € RTwew/V is the temporal factor matrix corresponding to #,,,,, and A%z, =
(N)
Aold

€ Rl >V g the temporal factor matrix corresponding to tpra1 = to1d + thew

Al
where Aglvd) € RTua*/v is the pre-existing temporal factor matrix.

Computing the Tucker decomposition in an online streaming setting. We
can deal with a newly arrived tensor using a static version of Tucker decomposition.
However, it is inevitable that running times and memory requirements increase over
time. Recent works have tried to update factor matrices and a core tensor without the
growth of the costs. DTA [17] updates factor matrices and core tensor by efficiently
updating covariance matrices X(Tn) (n)- STA [17] is an approximate version of DTA
by exploiting SPIRIT [87] which efficiently deals with newly arrived vectors. Tucker-
ts and Tucker-ttmts can be adapted to an online streaming setting: 1) approximating
each newly arrived tensor using a sketching technique, and 2) updating factor ma-
trices and core tensor using the approximated results of the whole tensor. Although
they avoid increasing running time and memory requirements over time, there re-
mains a need for accelerating the update process since computations involved with
a large dense incoming tensor are still time-consuming. To efficiently update factor
matrices and a core tensor in an online streaming setting, we need to 1) prevent the

increase of cost over time, 2) reduce the cost of approximating a newly arrived tensor,

and 3) update them using the approximated results of the newly arrived tensor.

3.3 Proposed Method for Static Tensors: D-Tucker

We propose D-Tucker, a fast and memory-efficient Tucker decomposition method for

large-scale dense tensors. We first give an overview of D-Tucker in Section 3.3.1. We

25

describe details of D-Tucker in Sections 3.3.2 to 3.3.4. Finally, we analyze D-Tucker’s

complexities in Sections 3.3.5 and 3.3.6.

3.3.1 Overview

D-Tucker efficiently computes Tucker decomposition of large dense tensors. The main

challenges are as follows:

1. Exploiting the characteristics of real-world tensors. Many real-world ten-
sors are dense, provoking time and space problems. Furthermore, many real-
world tensors are skewed (i.e., one of the dimensionality is much smaller than
the others) and have low dimensional structures. How can we exploit such
characteristics of real-world tensors to compress a dense input tensor with low

computational cost and error?

2. Minimizing intermediate data. Existing methods require heavy computa-
tions and large space while updating factor matrices and a core tensor in the
iteration phase. How can we minimize the size of intermediate data when up-

dating the factor matrices and the core tensor?

3. Reducing numerical computation. Tucker decomposition deals with a large
number of tensor computations. How can we reduce the computational time

of Tucker decomposition?

We address the above challenges with the following ideas:

1. Slicing an input tensor into matrices and computing randomized SVD
of sliced matrices minimize the computational cost and error, by utilizing the

low dimensional structure of sliced matrices (Section 3.3.2).

26

Algorithm 4: D-Tucker

Input: tensor X
Output: factor matrices A®) (i =1,2,...,N), and core tensor G
Parameters: rank J; (i =1,2,...,N), and error tolerance €

1: approximate slices of X by Algorithm 5
initialize factor matrices A" (i=1,2,...,N) by Algorithm 6
repeat

update factor matrices A®) (i =1,2,...,N) and core tensor G by Algorithm 7

until the maximum iteration is reached, or the error difference is smaller than the error
tolerance €

2. Avoiding the reconstruction from SVD results reduces the computational
time as well as memory usage. By replacing a dense input tensor with SVD
results of sliced matrices, we overcome a bottleneck of Tucker decomposition,

n-mode product with a dense input tensor (Sections 3.3.3 and 3.3.4).

3. Careful ordering for matrix operations reduces the memory usage and

minimizes the computations. (Sections 3.3.3 and 3.3.4)

As shown in Figure 3.1 and Algorithm 4, D-Tucker comprises three phases: ap-
proximation (Algorithm 5), initialization (Algorithm 6), and iteration (Algorithm 7).
In the approximation phase, D-Tucker reorders modes of the input tensor in descend-
ing order for efficiency, extracts matrices of size /1 x I, by slicing the reordered tensor
where I} and I, are the two largest dimensionalities, and performs randomized SVD of
sliced matrices in order to support fast and memory-efficient Tucker decomposition
(line 1 in Algorithm 4). In the initialization phase, we obtain initial factor matrices
using the SVD results of sliced matrices (line 2 in Algorithm 4). This phase provides
a good starting point for the iteration phase, reducing the number of iterations. In
the iteration phase, we obtain the factor matrices and the core tensor using the initial

factor matrices and the SVD results of sliced matrices (line 4 in Algorithm 4).

27

3
K Approximation Initialization a® D Iteration A)D
3

K, Phase =TT _I Phase @ Phase
Ll x —>y, X‘H:>I:> :>

I, I,

1. Slice the given tensor X 2. Perform 3. Initialize factor matrices using 4. lteratively update factor matrices
along the mode having the randomized SVD the SVD results of sliced matrices and obtain the core tensor using the
smallest dimensionality (K3) of sliced matrices SVD results

Figure 3.1: Overview of D-Tucker. We first slice the given 3-order tensor X € R/t *12*3 along
the mode having the smallest dimensionality (K3), and approximate sliced matrices using sin-
gular value decomposition (SVD). Then, we compute factor matrices using the SVD results of
sliced matrices in the initialization step. We iteratively update factor matrices using SVD re-
sults of sliced matrices. After that, we obtain the core tensor using the updated factor matrices
and SVD results of sliced matrices.

3.3.2 Approximation Phase

The main goal of the approximation phase is to compress the input tensor with low
error; it enables the iteration phase to reduce the memory requirements and the num-
ber of flops. Given a large-scale dense tensor, previous works based on ALS approach
require heavy computations and memory usage in updating a factor matrix at each
iteration step since they directly process the given tensor. Although a few methods
tried to solve the above problem by approximating the input tensor, they give high er-
rors, or require heavy computations. The approximation phase of D-Tucker enables
efficiently updating the factor matrices and the core tensor in the iteration phase
based on two characteristics of real-world tensors: 1) skewed shape, and 2) low di-
mensional structure in sliced matrices. We reorder modes of a given tensor based on
the first characteristic, and compress the sliced matrices of the reordered tensor using
a fast dimensionality reduction technique, randomized SVD.

Skewed shape of real-world tensors. A skewed shape, where there are gaps
between the dimensionalities of modes, exists in many real-world tensors. For exam-
ple, a 3-order Air Quality tensor (see Table 3.3) of size (30648,376,6) in the form of
(timestamp in second, location, atmospheric pollutants; measurement) has a skewed

shape where the dimensionality of the last mode is much smaller than those of oth-

28

Algorithm 5: Approximation phase of D-Tucker

Input: tensor X
Output: sets of SVD result U:tks,~-~,kNEtika,---,kNVIk3,...,kN of sliced matrix X4, . iy
Parameters: rank r

1: reorder modes of the input tensor by dimensionality in descending order

2: extract the matrix X..¢, ty € R/1*2 by slicing the reordered tensor where I; and I are

.......

the two largest dimensionalities

3: for each (ks,...,ky) do
4: perform randomized SVD of Xk, . 1y =~ U:;k%,_,,kNE;;k},,_,_’kNka} """ Ky
5. end for o

ers. We reorder modes in descending order of dimensionality (line 1 in Algorithm 5).

Reordered tensor is defined as follows:

Definition 3.2 (Reordered tensor X,). Given an N-mode input tensor X, we reorder
the input tensor by dimensionality in descending order. We represent the reordered tensor
as X, € RixbxKsx—xKv \yhere I| and I, are the two largest dimensionalities, K, for

n=3,4,...,N are the remaining dimensionalities, and I} > I, > K3 > --- > Kj. O

This reordering helps minimize the output size of the approximation phase, which
is described in the analysis of space complexity in Section 3.3.5.

Low dimensional structure in sliced matrices. Many real-world data rep-
resented as a matrix have a low dimensional structure since they have redundant
and correlated components. Similarly, sliced matrices of a given real-world tensor
for any two modes often have a low dimensional structure. For example, consider
the 3-order Air Quality tensor X € R/1*2%K5 of size (30648,376,6) in Table 3.3 con-
taining (timestamp in second, location, atmospheric pollutants; measurement), sliced
along modes 3. Out of the 6 sliced matrices, the ith sliced matrix X.; € RAXE -
dicates the matrix containing (timestamp in second, location; measurement) for the
ith atmospheric pollutant. We observe that the number r of singular values to keep

90% energy of each sliced matrix is (28,8,6,7,6,18), which is much smaller than

29

I} = 30648 and I, = 360. Note that the energy of a matrix X.,; € RN*% g defined as
Z'Zinl(l' +2) o2 where o, is the rth singular value of X..,. This result indicates that the
sliced matrices have low dimensional structures. D-Tucker compresses the given ten-
sor by exploiting the low dimensional structure, achieving low errors. Moreover, this
structure provides the following computational benefit: the approximation phase of
D-Tucker yields faster performance by leveraging the randomized SVD [84] of sliced
matrices. It enables us to avoid performing tensor decomposition methods for sub-
tensors, which makes D-Tucker efficient since the tensor-based methods iteratively
perform expensive operations such as n-mode product. Therefore, D-Tucker achieves
high efficiency and low errors even on single-core systems.

We express a reordered tensor X, € RI*2xKsx—xKv a5 3 collection of sliced

matrix X, xy. We formally define the sliced matrix X, x, in Definition 3.3.

Definition 3.3 (Sliced matrix X..x, x,). Given areorderedtensor X, € R D XKy x-xKy

each sliced matrix of size I} x I, is extracted by slicing the reordered tensor X,. The size
of a sliced matrix X.., r, isly X I, where I, is the number of rows and I, is the number

of columns of the sliced matrix. (]

After slicing the tensor X, into the matrices X..x,. k,, we decompose the sliced
matrix using randomized SVD [84] with sparse embedding matrix [38, 85] (line 4 in

Algorithm 5).

X:Zkg...kN = Uiikg...kN222k3‘..kNV’;I;‘k3___kN (31)

where U., 1, (€ RI™") is a left singular vector matrix, 3.4, (€ R™") is a singu-
lar value matrix, and V..t _x, (€ RA ") is a right singular vector matrix. Note that the

number 7 of singular values is much smaller than the dimensionalities /; and I,. By

30

Mode-1 Matricization Matrix (€ I;X(I;XK3XK4))

X.11 X.21 X.12 X.22

X::Z,l x::2,2 f
x::1,1 X::1,2
Matrix (€ I, x(I;XK3XK4))
4-order tensor N
(€ I;xI;xK3xKy) Xl11 Xl21 X1z X2

Mode-2 Matricization

Figure 3.2: Example of matricizing a 4-order tensor X € R/1*2XK3xKs yi5ing sliced matrices
for the first and the second mode when K3 = 2 and K4 = 2.

computing Equation (3.1) for all sliced matrices, we achieve high efficiency in terms
of time and space, to obtain factor matrices and a core tensor. In the following ini-
tialization and iteration phases, we describe how to perform Tucker decomposition

efficiently with the SVD results of sliced matrices rather than the raw input tensor.

3.3.3 Initialization Phase

The initialization phase, which initializes factor matrices of a given tensor X, en-
ables the iteration phase to reduce the number of iterations by providing a good
starting point of the ALS algorithm. The main challenge is how to handle the SVD
results for efficient initialization of the factor matrices. Truncated HOSVD has pro-
vided good initial factor matrices to compute Tucker decomposition based on ALS
approach [28]. However, truncated HOSVD has limitations in efficiently initializing
factor matrices using the SVD results because it cannot avoid reconstructing the re-
ordered tensor for the mode i = 3,4,...,N using the SVD results. To avoid recon-
structing the reordered tensor using the SVD results, we apply Sequentially Trun-
cated Higher-Order SVD (ST-HOSVD) [88], which is a variant of HOSVD. Note that
ST-HOSVD obtains factor matrix A) which contains left singular vectors of mode-i

matricization of XX x; ANT x, A@T... 5, | AG-DT, Applying ST-SHOVD allows us

31

to efficiently initialize factor matrices using the results of the approximation phase,
in contrast to HOSVD. The detail is described in initializing factor matrices for the
remaining modes.

D-Tucker initializes factor matrices by obtaining the left singular vectors effi-
ciently using the SVD results. For the first mode, we efficiently obtain the factor ma-
trix by reusing the SVD results from the approximation phase. For the second mode,
we efficiently compute mode-1 product between the first factor matrix and the SVD
results by carefully ordering matrix multiplications, and then obtain the initial factor
matrix. For the remaining modes, we process a small tensor computed by n-mode
products between the SVD results and the factor matrices of the first and the second
modes. These enable D-Tucker to achieve high efficiency in terms of time and space.
Note that we use standard SVD [86] in the initialization phase since the randomized
SVD can decrease the effectiveness of the initialization. We describe the initializa-
tion of the first two modes corresponding to the dimensionalities I} and I, and then
describe those of remaining modes [82].

First mode. Our goal is to initialize the factor matrix of the first mode as left
singular vectors of mode-1 matricization of X. A naive approach would compute SVD
of mode-1 matricization of X. However, this approach requires heavy computation
and high memory usage since it directly deals with a large-scale dense tensor. Our
idea is to avoid reconstructing X from the SVD results of sliced matrices, initializ-
ing the factor matrix of the first mode. Without the reconstruction, we reduce the
computational cost and memory usage.

As shown in Figure 3.2, we represent mode-1 matricized matrix X;) of the re-

32

Algorithm 6: Initialization phase of D-Tucker
Input: SVD results U;, ¥, and V, for [=1,2,...,L
where L is the number of sliced matrices
Output: initialized factor matrices A®) (i=1,2,...,N)
Parameters: rank J; (i=1,2,...,N)
1: perform SVD of [U121;--- ;ULEL] ~UxV?
22 A) U
3: compute Y 3) inser = AT [Ul; e ;UL]
4 Y rouse < Y(Z),inler
5: Y(Z)Jnter A Y(2),interblkdiag({EIV;}IL:I)
6
7
8
9

: ' < reshape(Y 2) jnters 11,12, K3, -+, KN])
: A® « J, leading singular vectors of Y
: fori<3toN do

if i = 3 then
10: Y euse < Yreuseblkdiag({Z VI AP})
11: Y < reshape(Y reuse; [J1,J2, K3, -+, Kn])
12: else
13: H — Hreuse Xi-1 A(iil)T
14: end if

15: A « J; leading singular vectors of Y
16: 1dreuse —Y
17: end for

ordered tensor X, as follows:

Xy = |Xuy 15 ;X::KL..‘,KN] = [Xn-'- ; X5 ;XL]

where L is equal to K3 X --- X Ky, and the index [is defined as in Equation (3.2).

N i—1
1:1+Z<(ki—1)HKm> (3.2)
i=3 m=3

where K, is the dimensionality of mode-m, N is the order of the input tensor, and

H5n;13 K., is equal to 1 if i — 1 < m. Note that we represent a sliced matrix as X; with

33

1 matricized matrix X(y) is expressed as follows:

where X is a representation of U;X,V]. The computational cost to explicitly recon-
struct the matrices X; for / = 1..L from SVD results and to obtain left singular vectors
of X(1) is expensive in terms of time and space. D-Tucker obtains left singular vectors
of the first mode without the reconstruction of X;. The main idea is to carefully de-
couple U;X; and V], and perform SVD of a concatenated matrix consisting of U;%;
for [= 1..L. The above idea allows us to efficiently obtain left singular vectors of
the concatenated matrix based on block structure [89, 81]. Performing SVD of the

rxKsxxKy)) consisting of U;X; for [= 1..L is more ef-

concatenated matrix (€ R *(
ficient than SVD of the mode-1 matricized matrix X (€ RA* (hxKsx--xKv)) (line 1

in Algorithm 6).

X~ |UE;- ;ULEL] x (blkdiag({Vi}j_1))" = UZV' (bikdiag({Vi}iy))"

(3.4)

where UX VT is the SVD result of the concatenated matrix [U D ITERINE 51! L}, and
the number L of sliced matrices is equal to K3 x - X Ky. blkdiag({V,}}-_) € RRL*"E

is a block diagonal matrix consisting of V; € R2*" for [=1, ..., L:

V, O -~ O
. . OV, - 0
blkdiag({Vi}i—) = | _ (3.5)
SR O
O O A3

34

U and VT (blkdiag({V,}%_,))T are column orthogonal and ¥ has the property of sin-
gular value matrix, and thus the last term of Equation (3.4) has the SVD form. There-
fore we obtain the initial factor matrix A(") = U (line 2 in Algorithm 6).

Second mode. Our goal is to initialize the factor matrix of the second mode as
left singular vectors of mode-2 matricization of X x| AT like ST-HOSVD. As in the
first mode, a naive approach would compute SVD of mode-2 matricization of X x|
AT but it has the same problems of heavy computational cost and high memory
requirement. Our idea is to compute X x| AT without reconstructing X from a set
of SVD results of sliced matrices, and then compute SVD of mode-2 matricization of
X x; AT By avoiding the reconstruction, we reduce the computational cost and
memory usage to compute X X | AT,

To compute n-mode product for mode-1, we exploit SVD results computed from
the approximation phase, instead of the given tensor, and then obtain left singular

vectors for the second mode. In detail, we perform matrix multiplication between

AT and mode-1 matricized matrix described in Equation (3.3) as follows:

A(l)Tx(l) ~ AT [U121V1T2"' §UL2LVﬂ 66
3.6

= (A<1>T [Ul; " ;UL]) blkdiag({ZV]}Yi_1) = Y (o) imerblkdiag({ZV] }y)

where Y (2) inrer = AT [Ul e ;UL] ,Lisequalto K3 x - - x Ky, and blkdiag({Z, V] }-,)
is a block diagonal matrix consisting of 3;V]. In Equation (3.6), Y 2)inter is com-
puted, and then multiplied with the block diagonal matrix. After reshaping the re-
sult of Y (9) jnrerblkdiag({X VI}) asatensor Y of the size J; x b X K3 X -+ X Ky,
we compute left singular vectors of mode-2 matricized matrix Y) to initialize A®)

(lines 3 to 7 in Algorithm 6).

35

Remaining modes. For mode i = 3,...,N, our goal is to initialize A as left
singular vectors of mode-i matricization Y of X x AT X2 AQT. . X1 AT,
For a mode-i, explicitly computing X x; AT x5, A@T... ;5 AG=2T jg inefficient
since it is computed for the previous mode-(i — 1). Our idea is to reuse the result of
X x AT 5, ADT s, 5 AU=DT tg jnitialize the factor matrix of the mode-i.

Now, we describe how to obtain the factor matrix of the third mode, and then
the factor matrix of the modes i = 4,5, ..., N. For mode-3, the goal is to obtain X X
AT 5, A@T and perform SVD. The following equation re-expresses the mode-1

matricization of X x; AT x, A@T,

AVTX pikdiag (AP Y) = (AT [U:- . U,)) blkdiag({Z VAP)

=Y (2) inserblkdiag({Z,VTAP}E)

(3.7)

Note that we save Y, pu5e = <A(1)T [Ul;... ;ULD to reuse when computing Equa-
tion (3.7) (line 4 in Algorithm 6). After computing Equation (3.7), we 1) reshape the
result as a tensor Y of size J; x J, X K3 X -+ x Ky, 2) perform SVD of Y3), and 3)
store Y as Y euse for remaining modes (lines 10, 11, 15, and 16 in Algorithm 6).

Next, factor matrices for mode i = 4,5,...,N are initialized by using the result
of the previous mode. For mode i, we compute Y oy50 X1 AG-DT and then perform
SVD of mode-i matricization of Y,eyse X;—1 AT Since Y is much smaller than an
input tensor X, we efficiently initialize factor matrices A() for i = 3, ..., N. This is the
reason why we apply ST-HOSVD, not HOSVD which requires high computational
costs to compute left singular vectors for the remaining modes i = 3,...,N. HOSVD

needs to perform SVD of mode-i matricization of X. Then, we initialize the factor

36

Algorithm 7: Iteration phase of D-Tucker

Input: SVD results U;, ¥, and V, (I =1,2,...,L),

factor matrices A®) (i=1,...,N), and core tensor G

Output: updated factor matrices AU (i=1,...,N), and core tensor G
Parameters: Rank J; (i=1,...,N)

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

fori<+ 1to2do
if i = 1 then
Y(l),inter «— A(z)T [Vl; T ;VL]
Y(l),imer « Y(1),interblkdiag<{ElU’lr}lL:1)
Y < reshape(Y (1) jnser» 11,92, K3, -, Kn])
else
Y(Z),inter — A(I)T [Ul; T ;UL]
Y reuse < Y(Z),inter
Y(2).inter — Y(Z),interblkdiag({zlv}r }lel)
Y FEShape(Y(Z),interv [Jl b, K3, 7KN])
end if
Y Yx; ACT. oy AT
A « J; leading singular vectors of Y
end for
Y reuse < Yreuseblkdiag({EIV’IIA(2> %:1)
Y reuse reShape(Yreuse; [Jl 3 J2, K3, 7KND
fori<+ 3toN do
Y < Yreuse <3 A(3>T s X1 A(iil)T Xit+1 A<i+]>T “o XN A(N)T
A leading singular vectors of Y ;)
end for
9 — 1dreuse X3 A(3)T o XN A(N)T

matrix A() as the left singular vectors of the SVD result (line 15 in Algorithm 6).

3.34

Iteration Phase

The goal of the iteration phase is to alternately update factor matrices and compute

core tensor by efficiently computing n-mode products in lines 4 and 8 of Algorithm 1.

As described in Section 2.2.1, a naive ALS approach is much inefficient in terms of

time and space due to a large intermediate tensor including the input tensor. Further-

more, increasing the number of iterations affects the overall running time. Therefore,

the main challenge of the iteration phase is how to reduce the number of flops by

minimizing the intermediate data. Our ideas to tackle the challenge are to 1) exploit

37

the special structure of SVD results, 2) carefully determine the ordering of matrix
multiplications, and 3) avoid redundant computations for the first and second modes.

Our ideas allow D-Tucker to be less affected by the number of iterations, and
to avoid rapid growth of computational time as the number of iterations increases,
due to the small amount of computations. We describe how to update 1) the factor
matrices of the first two modes corresponding to the dimensionalities /; and /,, and
2) those of other modes and the core tensor. Note that we use standard SVD [86] for
stable convergence in the iteration phase.

First mode. Consider updating the first factor matrix A(!). We use the initialized
factor matrices and SVD results of the sliced matrices for A(!). Following line 4 of
Algorithm 1, we efficiently compute n-mode product for mode-2 using SVD results
obtained in the approximation phase instead of the given tensor, and then perform
products for remaining modes 3,4, ..., N. We matricize the tensor along mode-2 with

the sliced matrices as follows:

)T

After that, we perform matrix multiplication between A'¥)" and the mode-2 matri-

cized matrix as follows:

ATX g = AT [y 3 UT: v 3, U o5
3.8

= (ADT |Vys. s, |) bikdiag({ZUTHEL) = Y merblkdiag {ZUF H-)

where Y (1) jnrer = AT {Vl; e ;VL] ,Lisequalto K3 x - -- x Ky, and blkdiag({E,UT }1-)
is a block diagonal matrix consisting of EIUIT. In Equation (3.8), we compute Y (1) jusers

and multiply it with the block diagonal matrix. Then, we reshape the result of Y 1) jnzer

38

blkdiag({X; U}) asY of size I} X J, X K3 X --- x Ky (lines 3 to 5 in Algorithm 7).
After that, we perform the remaining n-mode products with Y for n =3,4,...,N, and
then update the factor matrix A(") by computing SVD of mode-1 matricized matrix
Y1) (lines 12 and 13 in Algorithm 7).

Second mode. Next, to update A(?), we compute n-mode product for mode-
1 using SVD results obtained in the approximation phase instead of the given ten-
sor. Then, we perform n-mode products for remaining modes 3,4,...,N. As in Equa-

(DT and the mode-1 matricized

tion (3.6), we perform matrix multiplication between A
matrix which is the matricization of the tensor along mode-1 with the sliced matri-
ces in Equation (3.3). For efficiency, we compute Equation (3.6) with the following
order: 1) Y (2) inter = AT [Ul;"' ;UL}, 2) multiply it with the block diagonal ma-
trix blkdiag({3,; V] }-_|), and 3) reshape the result of Y (2) inrerblkdiag ({3 VI)
as Y (€ RN *LxKxxKv) (lines 7, 9, and 10 in Algorithm 7). Note that Y 2 inter 18
reused when computing A®) for i = 3,4,...,N and the core tensor (line 8 in Algo-
rithm 7). We update A by performing the remaining n-mode products with Y for
n=3,4,...,N, and computing SVD of mode-2 matricized matrix Y ;) (lines 12 and 13
in Algorithm 7).

Remaining modes and core tensor. Consider updating factor matrices A(?)
foralli=3,4,...,N, and the core tensor G. The mode-1 matricization of X x; AT x,
AT s given by Equation (3.7). In computing Equation (3.7), reusing the saved Y 2)inter
at line 8 of Algorithm 7 allows us to avoid redundant computation, sufficiently reduc-
ing computational costs; the reason is that Y (3) jur, is much smaller than the input
tensor X and the SVD results of sliced matrices. We compute Y (2) jer blkd iag({E;VlT
A® lel) and reshape the result Y, of size J; X Jo X K3--- X Ky once, which is

reused to compute factor matrices A fori=3.4,...,N and the core tensor G (lines 15

39

and 16 in Algorithm 7). For i = 3, ..., N, we update A") by performing the remaining
n-mode products, and SVD of Y(; (lines 17 to 20 in Algorithm 7). In addition, we

update the core tensor by performing n-mode products between the reshaped tensor
Yyeuse (€ RI2xKsxKxy and AT for all n = 3,4,....N (line 21 in Algorithm 7).
3.3.5 Lemmas and Theorems

We theoretically analyze the time complexity, the space complexity, and the error of
D-Tucker, as summarized in Table 3.2. For brevity, we assume I} =L =1, K} = K» =
..=Ky=K,r=J; =J,=...=Jy =J. For readability, we provide proofs of Lemmas
and Theorems in Section 3.3.6.

Time complexity. We analyze the time complexities of D-Tucker in Theorem 3.1.

Lemma 3.1. The approximation phase of D-Tucker takes O(I’KN~2) where I is the

largest dimensionality, and K is the remaining dimensionality. O
Proof. See the proof in Section 3.3.6.1. O

Lemma 3.2. The initialization phase of D-Tucker takes O (IKN~2J%) where I is the

largest dimensionality, K is the remaining dimensionality, and J is the rank. (|
Proof. See the proof in Section 3.3.6.2. O

Lemma 3.3. The time complexity of an iteration at the iteration phase is O(NIKN=2J?)
where N is the order of a given tensor, I is the largest dimensionality, K is the remaining

dimensionality, and J is the rank. (|

Proof. See the proof in Section 3.3.6.3. O

40

Table 3.2: Time and space costs of D-Tucker and competitors. Space cost indicates the re-
quirement for updating factor matrices and the core tensor. Boldface denotes the optimal
complexities. I denotes the two largest dimensionalities, K is the remaining dimensionalities,
M is the number of iterations, J is the dimensionality of the core tensor, and N is the order of
the given tensor.

Algorithm ‘ Time Space
D-Tucker O(I’KN-2 + MNIKN-2J?) O(IKN=2))
Tucker-ALS [90] O(MNIPKN=2)) O(IPKN72)
MACH [37] O(MNIPKN=2J) O(IPKN72)
RTD [36] O(MNI?KN2) O(IPKN72)
Tucker-ts [38] ONPKN=2 4+ MN(1JN +J?V)) O(NLJN +J?N)

Tucker-ttmts [38] | O(NIPKN =2+ MN(1J?N -2+ J2N=2)) O(NLJY +J2-1)

Theorem 3.1. The total time complexity of D-Tucker is O(I*K"=2J + MNIK"=2J?)
where M is the number of iterations, N is the order of a given tensor, I is the largest

dimensionality, K is the remaining dimensionality, and J is the rank. (]
Proof. See the proof in Section 3.3.6.4. O

Note that the time complexity of the approximation phase of D-Tucker is pro-
portional only to the size I?’KN =2 of the input tensor without any parameters such
as rank J and order N. Also, D-Tucker is less affected by the number of iterations be-
cause the time complexity O(NIK"~2J?) per iteration of the iteration phase is much
smaller than the time complexity O(I>K"=2) of the approximation phase: I is much
larger than NJ? since I > J and I >> N. Thus, D-Tucker avoids rapid growth of com-

putational time as the number of iterations increases.

Space complexity. We analyze space requirements of D-Tucker for initializing and

updating factor matrices.

Theorem 3.2. D-Tucker requires O(IKV~2J) space for initializing and updating factor

matrices. O

Proof. See the proof in Section 3.3.6.5. O

41

Note that the original input tensor requires O(I>K"~2) space. Thanks to the re-
ordering in the approximation phase, the space complexity of D-Tucker is //J times
smaller than directly using the raw input tensor. Without the reordering, the com-
pression rate would worsen; e.g., if we have decomposed sliced matrices of size I X Kj,,
the compression rate would have decreased to K, /J, which is worse than 7/J since

I1>K,>J.

3.3.6 Proofs of Lemmas and Theorems

We provide proofs for lemmas and theorems described in Section 3.3.5.

3.3.6.1 Proof of Lemma 3.1

Proof. Performing randomized SVD of each sliced matrix takes O(I?) (Algorithm 3).
Since the number of sliced matrices is KV 2, the time complexity of the approxima-

tion phase is O(I?’K™~2). O

3.3.6.2 Proof of Lemma 3.2

Proof. For the first mode, size of |U;X;;--- ;Ulzl} is I x KN=2J. Then, perform-
ing SVD [86] takes O(IKN=2J?) for the first mode. For the second mode, it takes
O(IKN=2J?) to compute Y 2)inter (line 3 of Algorithm 6), O(IKN2J?) to compute
Y(z)’imerblkdiag({ElVlT M- ,),and O(IKV=2J?) to perform SVD of Y (5). Then, it takes
O(IKN=2J2) to initialize the factor matrix of the second mode. For the remaining
modes, it takes O(TKN 2% + Ziv:_g KN=27k3+K) to compute the remaining n-mode
products for all n =2,3,....,N, and O(J Zg;(f KN=27k 2tk to compute SVD for all
n=3,4,...,N. For all modes, the dominant term is O(IKN=2J?) since I > K > J, thus

we simplify the time complexity of the initialization phase as O(IKV~2J?). U

42

3.3.6.3 Proof of Lemma 3.3

Proof. For the first mode, the time complexity is O(IKN~2J?) to compute Y (1),inter and
Y (1) inter blkdiag({%,U; }_) in Equation (3.8), and O(I Ziv:_(f KN=27k 24Ky for com-
puting the remaining n-mode products for all n = 3,4,...,N. We simplify O(1 Zivz_(?
KN=27k 24Ky as O(NIKN=2J?) since J < K. The computational time of the second
mode is the same as that of the first mode. Before computing for remaining modes, it
takes O(IKV=2J% 4+ KN=2J3) to compute Y ¢ys. in line 15 of Algorithm 7. For mode-
i, it takes O(—KN~(=1ji 4 Zﬁcv;(? KN=27k 34Ky to perform n-mode products for all
n=23,4,i—1,i+1,...,N. For core tensor, it takes 0(22’;03 KN727k 34K to perform
n-mode products for all n = 3,4,..., N. We simplify the complexity O(—KN_(i_l)Ji +

Vo KNk 3Ry and O(SRg KNV 2R 3R) to O(NKN=2J3) since K > J. There-
fore, the time complexity of one iteration in the iteration phase is O(IKN~2J% +
NIKN=2J2 + IKN 7272 + KN=2J° + NKV=2J3). Without loss of generality, we express

the time complexity of the iteration phase as O(NIKY~2J?) since I > K > J. O

3.3.6.4 Proof of Theorem 3.1

Proof. The total time complexity of D-Tucker is the summation of time complexi-
ties for the three phases: approximation, initialization, and iteration. By Lemmas 3.1
to 3.3, the time complexity is O(I?’KN=2J + MNIKN~2J?), which is simplified from

O(PPKN=2] +IKN=2J? + MNIKN~2J?) without loss of generality. O

3.3.6.5 Proof of Theorem 3.2

Proof. In the initialization phase, initializing for the first two modes requires O(IKN~2J)
space to deal with |U;¥,;.--;U;X, |, mode-2 matricization matrix Y(z), and related

tensors in lines 1 to 7 of Algorithm 6. Initializing for the remaining modes requires

43

O(KN=2J?) to store Yi)> Yreuse> 9reuse, and related tensors in lines 8 to 17 of Algo-
rithm 6.

The iteration phase requires O(IK"~2J) space for matrices Y (2),interblkdiag ({3 Ul
-) and Y(1)ng,blkdiag({ElVlT}lL:l) in lines 4 and 9 of Algorithm 7. The dominant
term for the remaining modes is O(KN *ZJZ) to store Y,euse in line 16 of Algorithm 7.

Considering I > K > J, the total space complexity is O(TKN~2J). O

3.4 Proposed Method for Online Tensors: D-TuckerO

3.4.1 Overview

We propose D-TuckerO, an efficient Tucker decomposition method in an online stream-
ing setting. Our goal is to design D-TuckerO to efficiently update factor matrices and
core tensor for a new incoming tensor slice. The main challenges that need to be tack-
led for an efficient Tucker decomposition method in an online streaming setting are

as follows:

1. Preventing the increase of costs over time. How can we prevent increasing

the computational cost and space cost as tensors continuously arrive over time?

2. Accelerating updates. How can we accelerate the update process for each

incoming time slice?
We address the challenges with the following main ideas:

1. Avoiding explicit computations with X,;; and Aglvd) enables D-TuckerO to

update factor matrices and core tensor without increasing the costs where X4

44

N)

and A 4 are a pre-existing tensor and a pre-existing temporal factor matrix,

ol

respectively.

2. Applying the approximation phase for an incoming time slice acceler-

ates the update procedure for factor matrices and core tensor.

As shown in Algorithm 8, D-TuckerO efficiently updates factor matrices when a new
incoming tensor is given. We present an efficient update procedure for each new
incoming tensor in Section 3.4.2, and then describe how to apply the approximation
phase to the update procedure in Section 3.4.3. Lastly, we analyze the time and space
complexities of D-TuckerO. For brevity, we set the last mode N as the temporal mode

when an N-order tensor repeatedly comes.

3.4.2 Efficient Update for Time Slice

Our goal is to update factor matrices and the core tensor for a new incoming tensor
slice X,¢y,. D-TuckerO alternately updates factor matrices, and core tensor as in ALS
algorithm; D-TuckerO updates the n-th factor matrix while fixing the other factor
matrices and core tensor. We present how to update the temporal factor matrix A
and then factor matrices of non-temporal modes.

Temporal Mode. Consider updating the temporal factor matrix A™). A naive
approach is to update it by computing lines 4 and 5 in Tucker-ALS. However, dealing
with an accumulated tensor X is impractical since the size of the tensor X increases
over time. To efficiently update the factor without dealing with the accumulated ten-

(N)

sor, we only update a part of the temporal factor matrix, i.e., A; /, corresponding to

V)

thew- Lemma 3.4 describe an update rule for A;, /.

Lemma 3.4 (Update rule for temporal mode). When fixing all non-temporal factor

45

Algorithm 8: Update phase of D-TuckerO

Input: a time slice X,,,,, € RI1*2XK3XXKn—1Xtnew 3 pre-existing set A of factor matrix

A((;Z[)l (n=1,...,N), and core tensor G4, a set of P(o';zi, Qg’;gi forn=1,...N—1, P((JILH)

and Q(oll\;“)
Output: updated factor matrices AE,Z)W (n=1,...,N) and core tensor G,
Parameters: Rank J; (i=1,...,N)
1: obtain SVD results U;, ¥, and V; (1 = 1,2, ..., L) of X,,,, using the approximation
phase.

obtain A,S’X& by computing Equation (3.9) with the SVD results of X,,,,

forn<1toN—1do
obtain AS,Z)W by computing Equation (3.10) with the SVD results of X,

update PE)’;BI — Pg;(), + Pffézv by Equation (3.14)

update QE;’;()j — QE)';; + ngélv by Equation (3.18)
end for

obtain G,,,, by computing Equation (3.19) with the SVD results of X,
update Pg,\;f” — Pg;i;” + PSLZZJ D by Equation (3.20)

update Qi’l\j” — Q(}l\i;l) + Q;S[ijl) by Equation (3.21)

0.

—_
4

N)

matrices, Az(nc is updated as follows:

¥
Al(l{l\(],) A X(N),new <®5<V—11 (A(k)T>) GZN) (3.9)

where 1 indicates a pseudo-inverse of a matrix, and (®1kv:—11 (A(k)T) T) indicates the entire

Kronecker product of (A(k)T)T fork=N—-1,N—2,...,2,1. O

Proof. See the proof in Section 3.4.5.1. O

(N) (N)

Since A, is already computed at the previous step, we only compute A,

using Xpew, G(y), and A® for n =1,2,...,N — 1. In updating the temporal factor
matrix AN, we exploit Gy) ¢ and A(()'llgi for n =1,2,...,N — 1 to compute Gy
and (@) (A(k)T)T), respectively. In Equation (3.9), we compute 1) (A(k)T)T for k =

1,...,;N — 1, 2) the Kronecker product, and 3) matrix multiplication between Xy) ney»

the result of the Kronecker product, and GZN)-OI 4 in Equation (3.9).

46

s

Non-temporal Modes. Our goal is to update A" when a new incoming ten-

(N) .
old Whose size

sor X, is given. By avoiding explicit computations with X,;; and A
increases over time, we efficiently update A", We first introduce an update rule for

A" and then provide details on efficiently computing A" based on the rule.

Lemma 3.5 (Update rule for non-temporal mode). When fixing A®) fork=1,...,n—
1,n+1,...,N, AS,Z)W is updated as follows:

A® . po) <Q<n>>’1 (3.10)

>

(n) (n)
respectively. O

whereP™ and Q") are equal toX(,,)(®2’#nA(k))GT and <G(n)(®£;én (ARTARNGT

N—

Proof. See the proof in Section 3.4.5.2. O

To update A, we compute P and Q) in Equation (3.10). However, a naive
computation for Equation (3.10) is impractical since the size of X, and AW increases

over time. To achieve the efficiency, we avoid explicit computations with X, ,;4 and

Aglvd) decoupled from X, and AW respectively, in P and Q).

We now describe details on efficient computations of P and Q). Given P,

we divide it into P((Jr;zl and P,SZZV where P(()';L)i and PE@» are equal to Equations (3.12)

47

and (3.13), respectively.

(V)
(n) old ®y | gr
p [X(n),()ld X() new:| A(N) ® (®k;£ A) G(n) (3.11)
— (X ota 0,d®(®k¢ 'Ab))6T,) (3.12)
((n) new mc (®k7é A()))G(n)> (3'13)
=P}, + Pl (3.14)

We only compute ngv for Equation (3.14) as P((),;Zi is computed and stored at the pre-

vious step. P is used as PE)’;; at the next step.
Next, we efficiently compute Q("); we divide Q(”) into Q[(,';; and Q,(f;)w which are

equal to Equations (3.16) and (3.17), respectively.

(N)
A
(n) _ (N)T (N)T old N—17 A (k)T (k) T
Q G [Aold A } A ® <®k¢n (AT A)) G, (3.15)
=Gy (AT AN @ (22 ADTAW))) 6T, (3.16)
+ G (AR AN (@2 ADTA))) 6T (3.17)
= Qold + Qnew (3.18)

Similar to P, Qg;()i is computed and stored at the previous step. We only compute
Q,(fgv for Equation (3.18). Q(is also used as Q d at the next step.

Core tensor. After updating factor matrices, we update the core tensor with
Lemma 3.6. By avoiding explicit computations with X,;; and Aglvd), we efficiently up-

date G. We first derive an equation for updating the core tensor, and then describe

how to efficiently update it.

48

Lemma 3.6 (Update rule for core tensor). When fixing all factor matrices, we update

the core tensor with the following equation:
~1
G(N) _ (Q(N+])> P(N-H) (319)
wherePN 1 and Q) are equal to ANTX () (@7 A® (AWTAK) 1) gnd (ANTAN),
respectively. Note that (N +1) in PNV and QINHY) corresponds to the core tensor. [

Proof. See the proof in Section 3.4.5.3. O]

A naive computation for Equation (3.19) is expensive due to X and A®") corre-
sponding to f,4;. Therefore, we precisely divide PN+ and Q(N +1) to avoid comput-

ing the terms related to X,;; and Aglvd). PV+1) is divided as follows:

P(N+1)

.
=AMTX) <®kN_11 (A7) > = (
l’

f
= AL X (o) (47)

N+1 N+1
:P(()ld+)+Pl(1€vj)

N——

(3.20)

Similar to updating the factor matrices of the non-temporal modes, we only compute
PS,IZ; Y for updating the core tensor since PE)II\;H) is already computed at the previous

step.

49

Next, we divide QV+1) into le\;rl) and Q.

(V)

A
(N+1) _ AT AN) _ [A (NT (N)T old | _ (AN)T 4 (N) (N)T 5 (N)
Q A A [Aold Ainc :| (N) (Aold A()ld> + <Amc Amc)

= Q5+

(3.21)

Then, we compute QS,]:J 1>, and obtain Q(N +1); note that le\;H) is already computed

at the previous step.

3.4.3 Applying Approximation Phase

The objective of applying the approximation phase is to accelerate the update pro-
cess for each incoming time slice. The main ideas are to 1) approximate a time slice
by performing randomized SVD of each sliced matrix of a time slice and 2) update
factor matrices and a core tensor with the SVD results of the time slice instead of the
time slice X,,,,. We accelerate computing Equation (3.9) for the temporal mode, the

N+1)

computation of P for non-temporal modes, and P! for the core tensor.

(V)

Temporal Mode. To obtain the factor matrix A; ' of the temporal mode, we
first apply the approximation phase for a new incoming tensor X, and then effi-
ciently compute Equation (3.9). With the temporal mode fixed to the last mode, we
assume that dimensionalities of an incoming tensor X,,,, € RI*2%*T are sorted in
descending order.

To apply the approximation phase to Equation (3.9), we start from re-expressing

the term Xy sen (@] (AWT) wL) in tensor form. Referring to Equation (2.5), we can

50

rewrite the term as follows:

¥

Xy 1 (A0) !

XN-1 <A(N71)>

Since the above equation has the same form as line 4 of Algorithm 1 for the N-th
mode, computing it is the same as computing the N-th factor matrix in the iteration
phase of D-Tucker. D-TuckerO first performs randomized SVD of each sliced matrix
of a time slice X,,.,, where the size of a sliced matrix is I; X I,. Then, we compute the
term X0, X1 (A(l))T X2 (A(Z))T. The mode-1 matricization of the term is given by

the following equation.
i T
Yinter = ((A(l)> ' |:U1 Jeee ;UL}) X blkdtag <{2[V’lr (A(Z)T) }%_1> (322)

We compute (A(l))Jr [Ul;... ;UL} and blkdiag({Z,V] (A(Z)T)% L), respectively;

then, Y., is obtained by multiplying the two results. After that, we perform n-mode

products between Y, and (A("))# forn=3,4,...,N — 1. Lastly, AW i updated by

mc
multiplying the mode-N matricization of the result of the #n-mode products and GZN)'

Non-temporal Modes. For a mode n except for N, the goal is to efficiently com-

pute P, = (X (n) new (A(N) ® (®§(V;HIA(")))GT) for updating the n-th factor matrix.

inc (n)
Due to the expensive computations with X, as in Tucker-ALS, we apply the ap-

(n)

proximation phase to reduce the computational cost of computing Py¢,,. We perform

randomized SVD of each sliced matrix of a new incoming time slice X,,,, where the
(n)

size of a sliced matrix is I} x I, and then compute Py, using the SVD results.
(N)

To obtain P\, we compute (X) new (Aje @ (®2’;}11A(k))), and then multiply it

with G(Tn). Before applying the approximation phase, we re-express (X(,) sew (A(N) ®

inc

51

(®21_,,1A(k))) in tensor form as follows:
Xew X1 A(I)T c X1 A(n_l)T Xn41 A(n+l>T cee XNA(N)T (3.23)

Since the above equation has the same form as line 4 of Algorithm 1 for the n-th
mode, computing it is the same as computing the n-th factor matrix in the iteration
phase of D-Tucker. By using the SVD results of each sliced matrix of the time slice
Xyew, we compute Equation (3.23) in the same way as computing an n-th factor ma-
trix in the iteration phase of D-Tucker. Then, we obtain P,({z)w by performing matrix

multiplication between the mode-n matricized version of the result of Equation (3.23)

and G(Tn). After that, we update the n-th factor matrix using Pﬁ,’;{v

Core tensor. To efficiently update the core tensor G, we focus on accelerat-

ing the computation for the matrix PS,]ZJ D since the matrices Pglvjl) and le\yl)

)

are already computed and the computational cost of QS,IZJ Y is relatively low. For

pl AEZ)TX(N),HKW (@2’:_11 (A(k)T)T), directly using X(y) ne is inefficient, so we

apply the approximation phase. We first re-express P,(f;]vj Y in tensor form:

Xry X1 AT sy AN=DT 5 AT (3.24)

mc

P%j Y is obtained by computing the above equation in the following order: comput-

¥

ing 1) Equation (3.22) for X, X1 (A(l))Jr X2 (A(Z))T, 2) n-mode products with A"
(N)

forn=3,...,N — 1, and 3) n-mode product with A, . T Note that we use the SVD re-

sults of X, in Equation (3.22), thereby we reduce the computational cost to update
the core tensor compared to using X,,,,,. After that, we compute Equation (3.19) using

P(NH).

new

52

3.4.4 Theoretical Analysis

Theorem 3.3. Given a time slice Xy, of size 2 X KN7=3 X T\, the total time complex-
ity of D-TuckerO to update factor matrices and core tensoris O(I 2KN 3T+ NIKN 3T 0000 2)
where N is the order of a given tensor, I is the largest dimensionality, K is the remaining

dimensionality, and J is the rank.
Proof. See the proof in Section 3.4.5.4. O

Theorem 3.4. D-TuckerO requires O(IKN~3T,,,,J) space for updating factor matrices

when a new incoming tensor X of the size I} X I X KN 73 X T is given.

Proof. See the proof in Section 3.4.5.5. O

3.4.5 Proofs of Lemmas and Theorems

We provide proofs for Lemmas and Theorems described in Section 3.4.

3.4.5.1 Proof of Lemma 3.4

Proof. The following equation represents the mode-N matricized version of Equa-

tion (2.4) by replacing X with X,;; and X,

X(N)pld N A(()]lvd)G(N)(®N_1A(")T)
Xpoen] ARG (& 1407)

mc

where X(y) is the mode-N matricized matrix of an accumulated tensor X, and X y) o4
and X(y) pew are the mode-N matricization of a pre-existing tensor X,;; and a new

incoming tensor slice X,,,, respectively. By fixing the factor matrix A® for n =

53

()

1,2,...,N — 1, we update the factor matrix A"Y of the temporal mode as follows:

_ T
ADd | Xt (G (@} AWT))

N | _ i
A X e (G (@ ART))

inc

By adapting the properties, (AB)" = B'AT and (C®D)" = C' @ D' to the above

equation, we obtain the following equation:

F —1
A X (G (@ ADT)) =X) <®iv—11 (A(k) (A7A®))) Giy)

U
3.4.5.2 Proof of Lemma 3.5
Proof. For mode n, we formulate the loss function L, as follows:
1 n
Ly = 51X —A"G, (&), AV (3.25)

where (®kN7énA(k)) indicates Kronecker products of A® fork=N,N—1,...n+1,n—
1,...,1. When fixing A® for k=1,....n— 1,n+1,...,N, the partial derivative of the

function L, with respect to A™ is as follows:

aL(ﬂ) N N\ ~T n N T A (k T
JA™ ==X (@, AM)Gl) +AVG) (27, (ADTAW))GT)
L,

To minimize , we set it to zero and compute A" as follows:

oA

—1
n k k k
AW =X (@, AD)GT) x (G (2}, (ADTAW)GT,))
— P (Q1) -

54

where P and Q") are equal to X(n) (®2]¢nA(k))G(Tn) and (G(n) (®;€V¢n (AKTAWY))GT) ,

respectively. O

3.4.5.3 Proof of Lemma 3.6

Proof. To update core tensor, we start from the following equation:
Gx; AD . xy AW =

For each mode 1, we multiply AT = (AT A) =T AT on both left and right terms.

Then, we obtain the core tensor by computing the following equation:
9 :x X]A(I)T"' XNA(N)T

For brevity, we compute the core tensor with mode-N matricization. We carefully de-

couple the computations for AE)];Q and AS,IZV)V It leads to avoiding explicit computations

related to Agllvd) and X) new-

G(N) — (A(N)TA(N))fl > A(N)TX(N) (®§(V;11A(k) (A(k)TA(k))fl) (3 26)
1 .

_ (Q(N+1)> ~ pV+)

where PV and QV+1) are equal to AMTX (@7 AW (AWTAK) 1) and (ANMTAN),

respectively. O

3.4.5.4 Proof of Theorem 3.3

Proof. There are two dominant terms in the time complexity of D-TuckerO: 1) the

approximation of a new time slice X, and 2) n-mode products between the approx-

55

imation result and factor matrices A®) (or (A(k)T) T). Approximating a new time slice
X e require O(I’KN=3T,,,,,) by Lemma 3.1. In addition, the time complexity of up-
dating all factor matrices is O(NIKN =3 T;,,,J?) since updating them includes n-mode
products between the approximation of X, and A® (or (A(k)T) Jr) whose complex-
ity is analyzed in Lemma 3.3. Therefore, the total time complexity of D-TuckerO for

each time slice is O(IZKN%TMW + NIKN73TMWJ2). O

3.4.5.5 Proof of Theorem 3.4

Proof. The space of of D-TuckerO is determined by storing P(,) ;s and Q(,) 414, and
computing P(,) e, and Q) new- Space costs of P, ;4 and Q) 414 are O((I} + 1 +
(N —3)K)J) and O((N — 1)J?) for all n = 1,...,N — 1, respectively. We perform n-
mode product between G of the size JV and AMTAM for Q(n) new of the size J X J.
Since the intermediate data are always smaller than G, the space cost of Q(y) s is
O(JV) which is the size of §. Additionally, the space cost of P,) ey is OUKN T, J)
since the size of the SVD results of X,,,,, is O(IKN BTewd), and the size of interme-
diate data of P,) 4, is always smaller than O(IKN—3T,,,J). The total space cost to
update factor matrices and core tensor for Xy, is O((I} + I, + (N —3)K)J + (N —
1J? + IV + IKN 73T, J). We simplify the space cost as O(IKY 3T, J) since the

dominant term is to compute Py, 0y [

3.5 Experiment

In this section, we experimentally evaluate the performance of D-Tucker and D-
TuckerO. We answer the following questions:
« Q1. Time cost and reconstruction error (Section 3.5.2). How quickly does

D-Tucker obtain factor matrices and core tensor compared to other competi-

56

tors, while having low reconstruction error?

Q2. Effectiveness of the initialization phase (Section 3.5.3). How much

does the initialization phase reduce the number of iterations in D-Tucker?

Q3. Efficiency of the iteration phase (Section 3.5.4). How efficient is the

iteration phase of D-Tucker compared to other methods?

Q4. Space cost (Section 3.5.5). How much space does D-Tucker require to

obtain factor matrices and core tensor compared to other competitors?

Q5. Scalability (Section 3.5.6). How well does D-Tucker scale up with regard

to dimensionality, rank, order, and a number of iterations?

Q6. Running time and error in online streaming setting (Section 3.5.7).
For each new incoming tensor, how efficiently does D-TuckerO update factor

matrices and core tensor?

Q7. Size of a time slice in an online streaming setting (Section 3.5.8).
How efficiently does D-TuckerO handle an incoming tensor slice of various

sizes?

3.5.1 Experimental Settings

We describe experimental settings for the datasets, competitors, and environments.

Machine. We use a workstation with a single CPU (Intel Xeon E5-2630 v4 @

2.2GHz), and 512GB memory.

Dataset. For static Tucker decomposition, we use four real-world tensors in Ta-

ble 3.3 for evaluating the performance. Brainq dataset! [91] contains fMRI informa-

tion consisting of (word, voxel, person; measurement). Boats dataset? [92] contains

Thttp://www.cs.cmu.edu/afs/cs/project /theo-73 /www /science2008 /data.html
http://changedetection.net/

57

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
http://changedetection.net/

grayscale videos in the form of (height, width, frame; value). Air quality dataset® con-
tains air pollutant information in Korea, in the form of (timestamp in second, location,
atmospheric pollutants; measurement). HSI dataset? [93] contains hyperspectral im-
ages of natural scenes in the form of (spatial dimension (x), spatial dimension (y),
spectral dimension, scene index; value).

For online streaming decomposition, we use four real-world tensors described in
Table 3.4. Stock dataset contains features of stocks over 200 days in South Korea. The
features consist of (adjusted opening price / previous day’s adjusted closing price),
(adjusted highest price / previous day’s adjusted closing price), (adjusted lowest price
/ previous day’s adjusted closing price), and (adjusted closing price / previous day’s
adjusted closing price). FMA dataset® [94, 95] is a song dataset whose form is (song,
frequency, time; value). Each song is represented as an image of a log-power spectro-
gram. Traffic dataset® [96] contains traffic volume measurements from 1,084 sensors
over 200 days, and each sensor yields 96 observations per day. Absorb dataset” is a
4-order tensor containing aerosol absorption; the form is (longitudes, latitudes, alti-
tude, time; measurement). Note that the original values in this data are so small that
we use a tensor multiplied by 10.

Competitors. We compare D-Tucker with static Tucker decomposition meth-
ods based on ALS approach. All the methods including D-Tucker are implemented in

MATLAB (R2019b).

+ D-Tucker [26]: we use randomized SVD [85] in the approximation phase using

the implementation of Malik and Becker [38], standard SVD (svds() function in

Shttps://www.airkorea.or.kr

4https://personalpages.manchester.ac.uk/staff/d.h.foster /Hyperspectral images_of
natural_scenes_04.html

Shttps://github.com/mdeff/fma

®https://github.com/florinsch/BigTrafficData

"https://www.earthsystemgrid.org/

58

https://www.airkorea.or.kr
https://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral_images_of_natural_scenes_04.html
https://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral_images_of_natural_scenes_04.html
https://github.com/mdeff/fma
https://github.com/florinsch/BigTrafficData
https://www.earthsystemgrid.org/

Table 3.3: Description of real-world tensor datasets for evaluating the performance of static
Tucker decomposition methods.

Dataset Order Dimensionality Rank
Brainq' [91] 3 (360,21764,9) (10,10,5)
Boats? [92] 3 (320,240,7000) (10,10,10)
Air Quality? 3 (30648,376,6) (10,10,5)
HSI* [93] 4 (1021,1340,33,8) (10,10,10,5)

Table 3.4: Description of real-world tensor datasets for evaluating the performance of stream-
ing Tucker decomposition methods.

Dataset Order Dimensionality Rank
Stock 3 (3028,4,200) (10,4,10)
FMA?® [94, 95] 3 (7994,1025,200) (10,10,10)
Traffic® [96] 3 (1084,96,200) (10,10,10)
Absorb’ 4 (192,288,30,200) (10,10,10,10)

MATLAB) in the initialization and iteration phases, and Tensor Toolbox [97]

for tensor operations such as n-mode product and matricization.

« Tucker-ALS: Tucker decomposition method based on ALS. We use the imple-

mentation in Tensor Toolbox [97].

« MACH [37]: Tucker decomposition method which samples entries of an input
tensor and runs Tucker-ALS for the sampled tensor. We run Tucker-ALS in

Tensor Toolbox [97] after sampling elements of a tensor.

- Randomized Tucker Decomposition (RTD) [36]: Tucker decomposition us-

ing a randomized algorithm. We use the Matlab code provided by authors.

+ Tucker-ts, Tucker-ttmts [38]: Tucker-ts is a Tucker decomposition method
using tensor sketch designed to approximate the solution of a large least-squares
problem. Tucker-ttmts is a variant of Tucker-ts for better efficiency. We use the

Matlab code® provided by authors.

8https://github.com/OsmanMalik /tucker-tensorsketch

59

https://github.com/OsmanMalik/tucker-tensorsketch

We also compare D-TuckerO with the following streaming Tucker decomposition
methods in an online streaming setting:
+ D-TuckerO: We leverage Tensor Toolbox [97] for tensor operations such as

n-mode product and matricization.

« Tucker-ALS: Tucker decomposition method based on ALS. We use the imple-

mentation in Tensor Toolbox [97].

« Tucker-ts, Tucker-ttmts [38]: Tucker-ts and Tucker-ttmts are easily adapted

to online streaming settings.

« DTA (Dynamic Tensor Analysis): DTA finds factor matrices and core tensor to

fit newly arrived tensors. We use the Matlab code’ provided by the authors.

+ STA (Streaming Tensor Analysis): STA is an approximation version of DTA
that finds factor matrices and core tensor to fit newly arrived tensors. We use
the Matlab code’ provided by authors.

Parameters. We use the following parameters.

« Number of threads: we use a single thread.
« Max number of iterations: we set the maximum number of iterations to 50.

« Rank: the dimensionality J,, of the nth mode of a core tensor is set to 10. We
set it to 4 and 5, respectively, when the dimensionality is smaller than 5 and
10, respectively. We also set the rank J of randomized SVD to 10 which is the
same as the dimensionality J, of core tensor.

XIS

e 2]

 Tolerance: the iteration stops when the variation of the error
is less than € = 10~* except in Section 3.5.3 where we vary it.

We set other parameters of competitors based on their original papers. To compare

“http://www.cs.cmu.edu/~jimeng/code/tensorCode.zip

60

http://www.cs.cmu.edu/~jimeng/code/tensorCode.zip

O Braing A Boats [] Airquality <> HSI

D-Tucker EZZZ Tucker-ts Tucker-ttmts Tucker-ALS BZS4 MACH RTD
@ 1.00
_ 100 165x @ _] —
S — 0 4 o s 210
“; “CJ \u-;/ 1.5x 17.2x 5.7x]
S S 7S = 3
2 2 3
: N : . 210 ‘ |
% A 3.4x =
% 0.10 z 5
g 7.5x g o @® * = 10!
= & o 2
Best 4% A B 38ax m o =
L' A ‘A‘ 0.10 M@ Best = 100
10° 10! 107 10° 10" 10 10% 10° Bramq Boats AirQuality HSI
Running Time (sec) Running Time (sec) Data
(a) Running time vs. error for (b) Running time vs. error for (c) Memory Usage
Brainq and Boats datasets Air quality and HSI datasets

Figure 3.3: D-Tucker achieves the best performance in terms of error, running time, and mem-
ory usage. (a) (b) Comparison for the tradeoff between running time and error; D-Tucker is up
to 38.4 x faster than the second-fastest competitor while having a similar error. (c) Space cost
of D-Tucker. D-Tucker initializes and updates factor matrices and core tensor by using up to
17.2x smaller space than competitors except for Boats dataset. Note that, for Boats dataset,
D-Tucker requires 2x higher space than Tucker-ttmts which has 7.5 higher error than our
method.

running time, we run each method 10 times for D-Tucker and D-TuckerO, and report
the average.

Reconstruction error. In a static setting, we evaluate the accuracy in terms

[2= I3

x| where X is an input tensor and X is the
F

of reconstruction error defined as
reconstruction of the output of Tucker decomposition.

In an online streaming setting, we measure two kinds of errors, global and local

S IX=%il3
SR

where X; is a tensor obtained at time i and X; is a reconstructed tensor from factor

reconstruction errors. The global reconstruction error is defined as

matrices and core tensor of D-TuckerO. The global error indicates how well the re-
sults of a Tucker decomposition method represent an accumulated tensor over time.
The local reconstruction error is defined as W In contrast to the global

error, the local error indicates how well the results of a Tucker decomposition method

represent a new incoming tensor.

61

3.5.2 Time Cost and Reconstruction Error

We measure the running time and the reconstruction error of D-Tucker and com-
petitors. As shown in Figures 3.3(a) and 3.3(b), D-Tucker achieves the best trade-offs
between the time and error, achieving up to 38.4 x faster running time than Tucker-ts,
Tucker-ttmts, and MACH with smaller or similar reconstruction errors. Tucker-ALS
and RTD have smaller reconstruction errors for Air quality and HSI datasets, but they

are at least 3.4x and 42 x slower than D-Tucker, respectively.

3.5.3 Effectiveness of the Initialization Phase

We show that the initialization phase of D-Tucker provides a good starting point
for the iteration step, by measuring the number of iterations in the iteration phase.
We vary the error tolerance € in the iteration phase from 10~ to 1073, As shown in
Figure 3.4, the number of iterations with the initialization phase is up to 1.7 x smaller
than that without the initialization phase. The initialization phase allows D-Tucker
to reduce the total running time since the running time of the initialization phase
is less than the reduction time of the iteration phase. Moreover, the average ratio of
the initialization phase’s running time to the total running time in D-Tucker does
not exceed 20%. This indicates that the initialization phase of D-Tucker reduces the
number of iterations significantly with little additional overhead on the total running

time.

3.5.4 Efficiency of the Iteration Phase

We investigate the number of iterations and the running time per iterations. In Fig-
ure 3.5, For each iteration, D-Tucker is at least 4.6 faster than competitors on all

datasets except for Boat dataset, and consumes a smaller number of iterations than

62

I3

~©— w/lnit == wjo Init =©- w/hit == w/oInit ~©— w/lnit == wloInit

0 1.4x

0

Running Time Ratio (%)
R),

Number of Iterations

Number of Iterations

Number of Iterations
i
X

Number of Iterations

1071 107 107 1077 107
Tolerance

107 107 107° 1077 10% 107 107 107° 1077 107°
Tolerance Tolerance

(b) Boats

10701077 1070 1077 107°
Tolerance

(d) HSI

Braing Boats AirQuality HSI
Data

(a) Brainq (c) Air quality (e) Running time
ratio of the

initialization phase

Figure 3.4: The initialization phase of D-Tucker helps reduce the number of iterations and
thus the total running time. (a-d) The number of iterations with the initialization phase is up
to 1.7x, 1.4x, 1.4, and 1.1 x smaller than those without the initialization phase for Braing,
Boats, Air quality, and HSI datasets, respectively. (e) The average ratio of the running time in
the initialization phase compared to the total running time does not exceed 20% for all the
datasets.

D-Tucker Tucker-ALS RTD Tucker-ts Tucker-ttmts K32 MACH
r 50 ol TN 7N A
) - K 0
8 10 ! 5
- =
5 IS
= \ 3 25x
[= -
2 100 . eex | M | 5 107 0
5 5.3x/ | 3
Q. 4.6x 5.5x 0 Nal
) e % g
E z
oo 31
10

Brainq

Datasets

Boats Air quality HSI

Datasets

Braing Boats Air quality ~ HSI

(a) Time per iteration (b) Number of iterations

Figure 3.5: In the iteration phase, D-Tucker is the most efficient compared to competitors. (a)
The running time of each iteration of D-Tucker is up to 6.6 faster than those of competitors
except for the Boats dataset. For the Boats dataset, Tucker-ttmts achieves the fastest running
time per iteration, but requires a much larger number of iterations, and has a much higher
error than D-Tucker. (b) The number of iterations of D-Tucker is in general smaller than
others; while there are cases D-Tucker requires more number of iterations, the difference is
negligible considering the running time per iteration.

the competitors. Although Tucker-ttmts is faster than D-Tucker at each iteration, it
requires a larger number of iterations than D-Tucker; hence, the total running time
of D-Tucker is 4.5 longer than that of Tucker-ttmts at the iteration phase. For the
number of iterations, Figure 3.5(b) shows that D-Tucker requires a smaller number of

iterations than all the competitors except for Tucker-ALS on 3-order datasets; how-

63

ever, the difference is quite small considering the running time per iteration.

3.5.5 Space Cost

We investigate the memory requirements of D-Tucker and competitors for initializing
and updating factor matrices and a core tensor. Figure 3.3(c) shows that D-Tucker re-
quires up to 17.2x smaller space than the second best methods Tucker-ts and Tucker-
ttmts in terms of memory usage. For Boats dataset, Tucker-ts, and Tucker-ttmts re-
quire small space since this dataset has the following setting where the two methods
operate well: 1) order N and rank J are very small, and 2) dimensionalities / and K are
very large. Note that D-Tucker has 7.5 less error than Tucker-ttmts while requiring

2.1x more space than Tucker-ttmts.

3.5.6 Scalability

We investigate the scalability of D-Tucker and competitors with regard to dimen-
sionality, target rank, order, and number of iterations in Figure 3.6. In sum, D-Tucker
is the most scalable with the smallest running time. Since the time complexities of
Tucker-ts and Tucker-ttmts are proportional to JV, they are not scalable for the tar-
get rank, and order of an input tensor. RTD operates for all the given experimental
settings, but RTD is much slower than D-Tucker. MACH and Tucker-ALS also op-
erate for all the given experimental settings, but they are at least 2x slower than
D-Tucker. Furthermore, they become much slower than D-Tucker as the number of
iterations increases (e.g., when setting smaller tolerance € or when converging slowly
in real-world datasets). The details of scalability experiments are as follows.
Dimensionality. For investigating the scalability related to dimensionality, we

generate synthetic 3-order tensors of true rank J;,, = 10, while increasing the total

64

D-Tucker —A— Tucker-ALS, MACH —>— Tucker-ts, Tucker-ttmts RTD

0 5 // 10° o-oM.
10 1

Time (sec)
Time (sec)
Time (sec)
Time (sec)

= 100

17 1 10 10¢ 1020 30 40 50

w
s
=3

5 10 15 20 25

Total dimensionality Rank Order Number of Iterations
(a) Total (b) Rank (c) Order (d) Number of Iterations
dimensionality

Figure 3.6: Scalability of D-Tucker compared to other Tucker decomposition methods. O.0.M.:
out of memory. For clarity, we show 4 groups of methods having similar tendencies. Note that
D-Tucker is the most scalable with the smallest running time: for all settings, D-Tucker is at
least 2.1 x faster than competitors. Tucker-ts and Tucker-ttmts have limited scalability with
respect to the target rank and the order. RTD has good scalability for all aspects, but it is up
to 76x slower than D-Tucker. MACH and Tucker-ALS are also scalable for all aspects, but
they are at least 2x slower than D-Tucker. Furthermore, their performance gaps compared
to D-Tucker become even worse when the number of iterations increases.

dimensionality I; , K3 from 10 to 10'? (dimensionality list: { (102,102, 10%), (10, 10?,10?),

(10%,10%,10%), (103,10%,10%), (10* 103, 10°)}). As shown in Figure 3.6(a), D-Tucker
is the fastest for various dimensionalities, and runs at least 2.7 x faster than all com-
petitors.

Target rank. For investigating the scalability related to target rank, we generate
synthetic 3-order tensors of size I) =, = K3 = 103 and true rank J,,,, = 10, while
varying the target rank from 10 to 50. As shown in Figure 3.6(b), D-Tucker is the
fastest for various target ranks. Tucker-ts and Tucker-ttmts provide the worst scala-
bilities since their time complexities are proportional to JV. The running times of all
competitors except Tucker-ts and Tucker-ttmts scale with regard to target ranks, but
they are at least 2.1x slower than D-Tucker.

Order. For investigating the scalability related to order N, we generate synthetic
N-order tensors of true rank J;,,, = 10, while varying the order from 3 to 7. We set di-

mensionalities of synthetic tensors to I; = 103, , = 102, and K; = 10 for i = 3,4, ..., 7.

65

In Figure 3.6(c), D-Tucker is the fastest for various orders of input tensors. Since the
time and memory complexities of Tucker-ts and Tucker-ttmts are proportional to J?V,
they are 5883 x slower than D-Tucker, and cannot deal with 6 and 7-order tensors.
Although all competitors except Tucker-ts and Tucker-ttmts can process higher order
tensors, they are at least 2.1 x slower than D-Tucker.

Number of iterations. We generate synthetic 3-order tensors of size I} =1, =
K3 = 10° with true rank J;,,. = 10. Then we evaluate the running time varying the
number of iterations from 5 to 25. As shown in Figure 3.6(d), D-Tucker is the fastest
for varying numbers of iterations. In addition, the running time of D-Tucker is not af-
fected much by the number of iterations while those of all competitors except Tucker-
ts and Tucker-ttmts are affected much by the number of iterations. Note that the

running time of Tucker-ts and Tucker-ttmts are 3.6 x slower than that of D-Tucker

although those are less affected by the number of iterations than D-Tucker.

3.5.7 Streaming Setting

We compare D-TuckerO with streaming Tucker decomposition methods. We initially
construct factor matrices and a core tensor using the first 20% of a whole tensor, and
then measure the running time of updating a new incoming tensor at each time point.
In addition, we set t,,,, of each time slice to 10.

Running Time. As shown in Figure 3.7, we compare the running time of D-
TuckerO with those of competitors. For the 3-order datasets, D-TuckerO is up to 6.1 x
faster than the second-fastest competitor Tucker-ttmts as shown in Figures 3.7(a)
to 3.7(c). Also, D-TuckerO is at least 2.9 faster than the competitors for Absorb
dataset which is a 4-order tensor. In addition, the running time of D-TuckerO does

not increase over time since it is proportional to the size of a new incoming tensor,

66

D-TuckerO —A— Tucker-ALS —— DTA —+— STA —— Tucker-ts —8— Tucker-ttmts

R NP

<)

|

3 3 3 3
.E M ,g .E g 10 g g
" o 10 21.7x o ™
2o IR AR EARAR bzl ¥ . 0.1 o 52.5%
g 29.2x £ R R E S 1 vy
E] . 6.1x 2 3.0x El E 2.9x
0.01 1 0.01 0.1
10 50 100 150 10 50 100 150 10 50 100 150 10 50 100 150
Total Time Length ¢/, Total Time Length #;y1 Total Time Length t;01 Total Time Length tipa
(a) Update time in Stock (b) Update time in FMA (c) Update time in (d) Update time in
dataset dataset Traffic dataset Absorb dataset

Figure 3.7: Running time of D-TuckerO and competitors over time. D-TuckerO outperforms
competitors when we compare the running time of updating factor matrices and core tensor
for each new incoming tensor. D-TuckerO is up to 6.1 x faster than the second fastest method,
and the running time does not increase over time.

not the accumulated tensor.

Error. We measure global and local reconstruction errors of D-TuckerO and
competitors. Figures 3.8(a) to 3.8(d) show the results for global reconstruction errors,
and Figures 3.8(e) to 3.8(h) show the results for local reconstruction errors. As shown
in Figures 3.8(a) to 3.8(d), D-TuckerO has comparable global errors with Tucker-ALS
which performs Tucker decomposition for accumulated tensors, while DTA and STA
have higher global errors than D-TuckerO. These results indicate that updated results
of D-TuckerO sufficiently contain global patterns of an accumulated tensor. As shown
in Figures 3.8(e) to 3.8(h), the local errors of D-TuckerO are close to those of Tucker-
ALS which is a static version of Tucker decomposition since updated results of D-
TuckerO sufficiently contains information of a new incoming tensor. In addition, the
approximation phase of D-TuckerO does not hurt accuracy much since a time slice

of real-world datasets has a low-rank structure.

67

J9se)ep qI0sqy Ul I01Id 80T ({)

o1y yy8ua awi] |ejol
0S1L 0oL 0S oL

10143 [B207]

J9sejep qIOSqY UI 10113 [eqO[D) (P)

o1y y38ua awi] |ejo]
0SL 0oL 0S oL

<
o

1
S

~
S

o113 eqo|D

60

sjup-IdpPn|] —m—

J9se)ep dljyel], Ul I0113 [ed0] (3)

101y yy8ua awi] |ejol
051 00l 0S oL

m o
=1 =1
Joaig [e207]

=
o

J9SBJEp JIJRI], UT 011D [RqO[D) ()

101y y38ua awi] |ejol

0SL 001 0$ oL .
L0
0@
o
o
=8
€0
S
BeooenaEaageaaEa 0
S}-IPN] —%— VIS ——

‘uoT}1s0dwodap INON], JO UOISIIA OTJe}S B ST YIIym STV
-ION], Y}IM SIOLId [ed0] pue [eqo[3 d[qeredurod saAdIyde OIONI - “Suras Surureals aUIUO Ue UT SIOLId [Bd0] PUe [BqO[D) :8°¢ 23]

Jasejep YA Ul 10112 2207 (J)

o1y yyBua awi] |ejol
0S1L 0oL 0S oL

R RO MR RV RV R RV RYEVE Y

mo
=3 =3
Jo11g [e207]

=
o

SgeBgPeagRaaase”

j9sejep YN Ul Jo1Id Teqoro) (q)

o1y yj8ua awi] |ejol
0SL 0oL 0S oL

€0

10113 [eqo|D

EEEe g BaEasEEea 0

via —— STv-pPn] —7—

19sB]Rp 20§ Ul I0LId [0 ()

o1y yyBua awi] |ejol
0S1L 00l 0S oL

10417 [€207]

19SBJEp YJ01§ UT I01Id [eqO[D) (B)

o1y yj8ua awi] ejol
0SL 00l 0S oL

10113 [eqo|D

«@
S

rEegeaEEEgEEEEEE

opPnl-q —6—

68

S
5
@

Running Time (sec)
e
=
S

=4
o

Ve
e

Slope =0.95

-

>

Running Time (sec)

-’
7
7

Slope =1.06

- N s

Running Time (sec)

-
Slope =1.05

e

Running Time (sec)

-

slope=1.12

e

0.01

10 20 40 80 160 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
Slice Size t;0. Slice Size t,,cu Slice Size t0. Slice Size t e

(a) Stock dataset (b) FMA dataset (c) Traffic dataset (d) Absorb dataset

Figure 3.9: We measure the running time of D-TuckerO, varying the size of a time slice. The
running time of D-TuckerO increases near-linearly as the size of a time slice increases. Note
that a slope equal to 1 indicates linear scalability.

3.5.8 Size of Time Slice

We evaluate the performance of D-TuckerO, varying the size #,,,, of a time slice: 10,
20, 40, 80, and 160. Figure 3.9 shows that there are near-linear relationships between
tnew and the running time of D-TuckerO in an online streaming setting; for all the four
datasets, the slopes are close to 1. This is because the running time of D-TuckerO is

proportional to the size of a new incoming tensor.

3.6 Summary

We propose D-Tucker and D-TuckerO, efficient Tucker decomposition methods for
large-scale dense tensors in static and online streaming settings. D-Tucker and D-
TuckerO accelerate computing Tucker decomposition by approximating a given dense
tensor, and carefully computing Tucker results from the approximated tensor. We
show D-Tucker provides the fastest running time and the smallest memory usage.
Furthermore, D-TuckerO is also the fastest method to update factor matrices and
a core tensor for new incoming tensors. We also provide theoretical analysis for
the time and space complexities of D-Tucker and D-TuckerO. Extensive experiments
show that D-Tucker is up to 38.4 x faster, and requires up to 17.2x less space than

existing methods with little sacrifice in accuracy. D-Tucker is also scalable with re-

69

gard to dimensionality, rank, order, and the number of iterations. D-TuckerO is up to
6.1x faster than existing methods running in an online streaming setting, while not

increasing the running time over time.

70

Chapter 4

Efficient Tensor Decomposition in

Irregular Tensors

4.1 Motivation

How can we efficiently analyze an irregular dense tensor? Many real-world multi-
dimensional arrays are represented as irregular dense tensors; an irregular tensor
is a collection of matrices with different row lengths. For example, stock data can be
represented as an irregular dense tensor; the listing period is different for each stock
(irregularity), and almost all of the entries of the tensor are observable during the
listing period (high density). The irregular tensor of stock data is the collection of
the stock matrices whose row and column dimension corresponds to time and fea-
tures (e.g., the opening price, the closing price, the trade volume, etc.), respectively.
In addition to stock data, many real-world data including music song data and sound
data are also represented as irregular dense tensors. Each song can be represented
as a slice matrix (e.g., time-by-frequency matrix) whose rows correspond to the time
dimension. Then, the collection of songs is represented as an irregular tensor consist-
ing of slice matrices of songs each of whose time length is different. Sound data are
represented similarly.

Tensor decomposition has attracted much attention from the data mining com-
munity to analyze tensors [98, 99, 25, 41, 16, 76, 78, 100, 11, 56]. Specifically, PARAFAC2

decomposition has been widely used for modeling irregular tensors in various appli-

71

cations including phenotype discovery [2, 3], trend analysis [101], and fault detec-
tion [102]. However, existing PARAFAC2 decomposition methods are not fast and
scalable enough for irregular dense tensors. Perros et al. [2] improve the efficiency
of handling irregular sparse tensors, by exploiting the sparsity patterns of a given
irregular tensor. Many recent works [3, 66, 67, 68] adopt their idea to handle irreg-
ular sparse tensors. However, they are not applicable to irregular dense tensors that
have no sparsity pattern. Although Cheng and Haardt [33] improve the efficiency of
PARAFAC2 decomposition by preprocessing a given tensor, there is plenty of room
for improvement in terms of computational costs. Moreover, there remains a need
for fully employing multicore parallelism. The main challenge to successfully design
a fast and scalable PARAFAC2 decomposition method is how to minimize the com-
putational costs involved with an irregular dense tensor and the intermediate data
generated in updating factor matrices.

In this work, we propose DPAR2 (Dense PARAFAC2 decomposition), a fast and
scalable PARAFAC2 decomposition method for irregular dense tensors. Based on the
characteristics of real-world data, DPAR2 compresses each slice matrix of a given
irregular tensor using randomized Singular Value Decomposition (SVD). The small
compressed results and our careful ordering of computations considerably reduce
the computational costs and the intermediate data. In addition, DPAR2 maximizes
multi-core parallelism by considering the difference in sizes between slices. With
these ideas, DPAR2 achieves higher efficiency and scalability than existing PARAFAC2
decomposition methods on irregular dense tensors. Extensive experiments show that
DPAR2 outperforms the existing methods in terms of speed, space, and scalability
while achieving a comparable fitness, where the fitness indicates how a method ap-

proximates a given data well (see Section 4.4.1).

72

"ssauyyy o[qeredurod

Suraey o[rym s103139duwIod a3 ey} 191seJ X ()'9 03 dn ST Zav("Ssoujy pue paads usamiaq Jo-apers 31saq Ay} sapraoxd zavdd ‘(g PUe ‘G|
‘01 :y suel 19.31e) 93IY) 0] S}ASLIep P[IOM-[BI UO SSIUJL PUe W) SUTUUNI 3} JO JUIUIAINSEIA [10]0d UT pamala 3sag] :1'F 23]

Jo-opeil, (p)

Fo-opeilL (9)

Fo-opeiL (q) Bo-apeil ()

(09s) awir] Suruuny ejo| (99s) awir] Sutuuny [ejo]

(09s) awi] Sujuuny [eiol (995) swi] Sutuuny Jeiol

oL 8 v o 8 v 001 o 000L 00t Lo
2 £60
[m] .
“ 520 o o
260 mu R <60 W v . w 8 oo U P w
o o x070 2T A xoe 0§
-) o}) < e ———— -]
o O - v60 o 160 =T 50 < v
< x¥'T 199g & JRCILT-JHNNE U 2V v T T isogel §t 190G~
NVLIdVdS Il S1V-¢Ov4vdvd STv-ad ¢iedd
dSSWad @ oyel O vy @ Ammpy A oposyy O PoIssn Y wegn 4+ YWd O

73

=T} &+

[, -
=]

; .H k.

The contributions of this work are as follows.
+ Algorithm. We propose DPAR2, a fast and scalable PARAFAC2 decomposition

method for decomposing irregular dense tensors.

« Analysis. We provide analysis for the time and space complexities of our pro-

posed method DPAR2.

+ Experiment. DPAR2 achieves up to 6.0x faster running time than previous
PARAFAC2 decomposition methods based on ALS while achieving a similar

fitness (see Figure 4.1).

« Discovery. With DPAR2, we find that the Korean stock market and the US
stock market have different correlations (see Figure 4.11) between features (e.g.,
prices and technical indicators). We also find similar stocks (see Table 4.3) on
the US stock market during a specific event (e.g., COVID-19).

In the rest of the chapter, we propose our method DPAR2 in Section 4.3, present
experimental results in Section 4.4, and conclude in Section 4.5. The code and datasets

are available at https://datalab.snu.ac.kr/dpar2.

4.2 Preliminaries

We use the symbols listed in Table 4.1.

4.2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) decomposes A € R'*/ to X = UX V. U € R/ ¥R
is the left singular vector matrix of A; U = [u |-u r} is a column orthogonal matrix
where R is the rank of A and uy, - - -, ug are the eigenvectors of AAT. ¥ isan R xR

diagonal matrix whose diagonal entries are singular values. The i-th singular value

74

https://datalab.snu.ac.kr/dpar2

Table 4.1: Symbol description.

Symbol Description

{X;}X_ | irregular tensor of slices X for k=1,...,K
X slice matrix (€ I x J)
X(i,:) i-throw of a matrix X
X(:,j) j-th column of a matrix X
X(i,j) (i, j)-th element of a matrix X

Xn) mode-n matricization of a tensor X
Qi, Sk factor matrices of the kth slice
H YV factor matrices of an irregular tensor

Ay, Bi, Ci SVD results of the kth slice
D,E,F SVD results of the second stage
F® kth vertical block matrix (€ RR*R) of F(e RKR*R)
Zi, i, P SVD results of FKEDT VS, HT

R target rank
® Kronecker product
® Khatri-Rao product

horizontal concatenation
vec(+) vectorization of a matrix

* element-wise product

0;isin X;; where 6y > 6, > --- >0 > 0.V ¢ R/*R is the right singular vector
matrix of A; V = |:V1 ... VR:| is a column orthogonal matrix where vy, ---, v are the
eigenvectors of ATA.

Randomized SVD. Many works [84, 83, 85] have introduced efficient SVD meth-
ods to decompose a matrix A € R’*/ by applying randomized algorithms. We intro-
duce a popular randomized SVD in Algorithm 9. Randomized SVD finds a column
orthogonal matrix Q € R/ (R+s) of (AAT)A€ using random matrix €2, constructs a
smaller matrix B = QT A (€ R®+9)*/) and finally obtains the SVD result U (= QU),
3, V of A by computing SVD for B, ie., B ~ UX V7. Given a matrix A, the time

complexity of randomized SVD is O(IJR) where R is the target rank.

75

Algorithm 9: Randomized SVD [83]

Input: A € RPY
Output: U € RIXR S ¢ RE*R and V € R/*R,
Parameters: target rank R, and an exponent ¢

1: generate a Gaussian test matrix € R/*(R+9)
construct Y + (AAT)7A0Q
QR < Y using QR factorization
construct B + QTA
UX VT « B using truncated SVD at rank R
return U= ij, Y,and V

4.3 Proposed Method

In this section, we propose DPAR2, a fast and scalable PARAFAC2 decomposition

method for irregular dense tensors.

4.3.1 Overview

Before describing main ideas of our method, we present main challenges that need
to be tackled.
C1. Dealing with large irregular tensors. PARAFAC2 decomposition (Algorithm 2)
iteratively updates factor matrices (i.e., Uy, Sk, and V) using an input tensor.
Dealing with a large input tensor is burdensome to update the factor matrices

as the number of iterations increases.

C2. Minimizing numerical computations and intermediate data. How can

we minimize the intermediate data and overall computations?

C3. Maximizing multi-core parallelism. How can we parallelize the computa-
tions for PARAFAC2 decomposition?

The main ideas that address the challenges mentioned above are as follows:

I1. Compressing an input tensor using randomized SVD considerably re-

76

U, = QH

K
K K
X (ags, (P9} B DI Q@ H sV
A given irregular Matrices compressed by Factor matrices of PARAFAC2 Decomposition
tensor exploiting randomized SVD using the compressed results

Figure 4.2: Overview of DPAR2. Given an irregular tensor {Xj }szl, DPAR?2 first compresses the
given irregular tensor by exploiting randomized SVD. Then, DPAR? iteratively and efficiently
updates the factor matrices, Q, H, S¢, and V, using only the compressed matrices, to get the
result of PARAFAC2 decomposition.

duces the computational costs to update factor matrices (Section 4.3.2).

12. Careful reordering of computations with the compression results mini-

mizes the intermediate data and the number of operations (Sections 4.3.3 to 4.3.5).

13. Careful distribution of work between threads enables DPAR2 to achieve

high efficiency by considering various lengths I for k =1, ..., K (Section 4.3.6).

As shown in Figure 4.2, DPAR2 first compresses each slice of an irregular ten-
sor using randomized SVD (Section 4.3.2). The compression is performed once before
iterations, and only the compression results are used at iterations. It significantly re-
duces the time and space costs in updating factor matrices. After compression, DPAR2
updates factor matrices at each iteration, by exploiting the compression results (Sec-
tions 4.3.3 to 4.3.5). Careful reordering of computations is required to achieve high
efficiency. Also, by carefully allocating input slices to threads, DPAR2 accelerates the

overall process (Section 4.3.6).

4.3.2 Compressing an irregular input tensor

DPAR? (see Algorithm 10) is a fast and scalable PARAFAC2 decomposition method
based on ALS described in Algorithm 2. The main challenge that needs to be tackled is
to minimize the number of heavy computations involved with a given irregular tensor

{X(}X_, consisting of slices Xy for k = 1,..., K (in lines 4 and 8 of Algorithm 2). As the

77

C1B, (12, CxBy)
k=1 “kPk
Ar o B fnpose) . Zw

SVD 1 ' ' I ' SVD, '
[0S - FRes
iy SAVLJ) ; ?D:_tl:[:@lkglif;ioncatenanon E _D_ o :_ _____ E
2 - | [P Thepreprocessedresults !
._A_Z_
Stage 1 Stage 2

Figure 4.3: Two-stage SVD for a given irregular tensor. In the first stage, DPAR2 performs
randomized SVD of X; for all k. In the second stage, DPAR2 performs randomized SVD of
M < R*KR which is the horizontal concatenation of C;By.

number of iterations increases (lines 2 to 17 in Algorithm 2), the heavy computations
make PARAFAC2-ALS slow. For efficiency, we preprocess a given irregular tensor into
small matrices, and then update factor matrices by carefully using the small ones.
Our approach to address the above challenges is to compress a given irregular
tensor {Xy}X_, before starting iterations. As shown in Figure 4.3, our main idea is
two-stage lossy compression with randomized SVD for the given tensor: 1) DPAR2
performs randomized SVD for each slice X for k = 1,...,K at target rank R, and 2)
DPAR2 performs randomized SVD for a matrix, the horizontal concatenation of sin-
gular value matrices and right singular vector matrices of slices X;. Randomized SVD
allows us to compress slice matrices with low computational costs and low errors.

First Stage. In the first stage, DPAR2 compresses a given irregular tensor by

performing randomized SVD for each slice Xy, at target rank R (line 3 in Algorithm 10).
Xy ~ ABCl (4.1)

where A; € RR is a matrix consisting of left singular vectors, By € R®*R is a diago-

nal matrix whose elements are singular values, and C; € R7*R is a matrix consisting

78

Algorithm 10: DPAR2

Input: X; € R fork=1,....K
Output: Uy e RR S, c RR*Rfor k =1,...,K, and V € R/,
Parameters: target rank R

1:

0 o

10:

11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

25:

26

initialize matrices H € RF*R YV and Sy fork=1,....K
/* Compressing slices in parallel */
fork=1,...,K do
compute A;ByC! «+ SVD(Xy) by performing randomized SVD at rank R
end for
M [, (CBy)
compute DEF” < SVD(M) by performing randomized SVD at rank R
/* Tteratively updating factor matrices */
repeat
fork=1,...,.K do
compute ZyZ;P! < SVD(FWED! VS H”) by performing SVD at rank R
end for
/* no explicit computation of Yy */
fork=1,...,K do
Y, « PZ/ FWED”
end for
/* running a single iteration of CP-ALS on Y */
compute G Y (W@®V) based on Lemma 4.1
H+ GH(WIWxVIV)T > Normalize H
compute G2 Y (2)(W©H) based on Lemma 4.2
V« G (WIWxH'H)" > Normalize V
compute GB) Y (3)(V©H) based on Lemma 4.3
W« GO(VIV«HTH)T
fork=1,...,K do
Sk < diag(W(k,:))
end for
until the maximum iteration is reached, or the error ceases to decrease;
: fork=1,....,K do
Uy AkaP]{H
: end for

of right singular vectors.

Second Stage. Although small compressed data are generated in the first step,

there is room to further compress the intermediate data from the first stage. In the

second stage, we compress a matrix M = ||X_ (C;By) which is the horizontal concate-

nation of C;By for k = 1,..., K. Compressing the matrix M maximizes the efficiency

79

of updating factor matrices H, V, and W (see Equation (2.8)) at later iterations. We
construct a matrix M € R/*KR by horizontally concatenating C;By for k = 1,...,K
(line 5 in Algorithm 10). Then, DPAR2 performs randomized SVD for M (line 6 in

Algorithm 10):

M = [CB;; - ;CxBg] = ||X, (C;B;) ~ DEF” (4.2)

where D € R7*R is a matrix consisting of left singular vectors, E € RF*R

is a diagonal
matrix whose elements are singular values, and F € RER*R s 3 matrix consisting of
right singular vectors.

With the two stages, we obtain the compressed results D, E, F, and Ay for k =

1,...,K. Before describing how to update factor matrices, we re-express the k-th slice

Xy by using the compressed results:
X, ~ A FHOED” (4.3)

where F®) € RR*R s the kth vertical block matrix of F:

Since CyBy is the kth horizontal block of M and DEF®7 is the kth horizontal block
of DEF”, B,C] corresponds to FXED”. Therefore, we obtain Equation (4.3) by re-
placing B;C! with FOED” from Equation (4.1).

In updating factor matrices, we use A;FWED” instead of X;. The two-stage

compression lays the groundwork for efficient updates.

80

4.3.3 Overview of update rule

Our goal is to efficiently update factor matrices, H, V, and Sy and Qi for k= 1,...,K,
using the compressed results AF'ED” . The main challenge of updating factor ma-
trices is to minimize numerical computations and intermediate data by exploiting the
compressed results obtained in Section 4.3.2. A naive approach would reconstruct
X = A,)FWEDT from the compressed results, and then update the factor matrices.
However, this approach fails to improve the efficiency of updating factor matrices.
We propose an efficient update rule using the compressed results to 1) find Q; and
Y}, (lines 5 and 8 in Algorithm 2), and 2) compute a single iteration of CP-ALS (lines 11
to 13 in Algorithm 2).

There are two differences between our update rule and PARAFAC2-ALS (Algo-
rithm 2). First, we avoid explicit computations of Q; and Y. Instead, we find small
factorized matrices of Qi and Yy, respectively, and then exploit the small ones to
update H, V, and W. The small matrices are computed efficiently by exploiting the
compressed results AkF(k)EDT instead of Xj. The second difference is that DPAR2
obtains H, V, and W using the small factorized matrices of Y. Careful ordering of
computations with them considerably reduces time and space costs at each iteration.
We describe how to find the factorized matrices of Q; and Yy in Section 4.3.4, and

how to update factor matrices in Section 4.3.5.

4.3.4 Finding the factorized matrices of Q; and Y,

The first goal of updating factor matrices is to find the factorized matrices of Q; and
Y for k =1,...,K, respectively. In Algorithm 2, finding Q; and Yy is expensive due
to the computations involved with X; (lines 4 and 8 in Algorithm 2). To reduce the

costs for Qy and Yy, our main idea is to exploit the compressed results Ay, D, E, and

81

F®), instead of X;. Additionally, we exploit the column orthogonal property of Ay,
ie., AkTA;< =1, where I is the identity matrix.

We first re-express Qy using the compressed results obtained in Section 4.3.2.
DPAR2 reduces the time and space costs for Q; by exploiting the column orthogonal
property of Ay. First, we express X; VS;H' as A;FXED” VS, H” by replacing X; with
AFWEDT. Next, we need to obtain left and right singular vectors of A{F®ED”
VS H'. A naive approach is to compute SVD of A(FXED” VS H”, but there is a
more efficient way than this approach. Thanks to the column orthogonal property of
Ay, DPAR2 performs SVD of FREDT VS, HT € RR*R not A, FWEDT VS H” € RI<R,

at target rank R (line 9 in Algorithm 10):
FOED'VS,H' *L 7,5, P! (4.5)

where X, is a diagonal matrix whose entries are the singular values of FX ED” VS, H
the column vectors of Z; and Py are the left singular vectors and the right singular
vectors of F(k)EDTVSkHT, respectively. Then, we obtain the factorized matrices of

Q. as follows:
Qi = AvZiP; (4.6)

where A;Z; and Py are the left and the right singular vectors of AkF(k)EDTVSkHT,
respectively. We avoid the explicit construction of Qy, and use AkaPZ instead of Q.
Since Ay is already column-orthogonal, we avoid performing SVD of A,FWED” VS, H' ,
which are much larger than FKED” VS, H .

Next, we find the factorized matrices of Y;. DPAR2 re-expresses Q,{Xk (line 8

in Algorithm 2) as Q,{AkF(k)EDT using Equation (4.3). Instead of directly computing

82

G® e RR*R W € RKXR p, ZTF() € RR*R EDTV € RR*R
W(1,7) Py Z} FO

____.plleF(l) -__?_.
W(K,r)

Figure 4.4: Computation for G!) = Y(1)(W®YV). The rth column G, r) of G is com-

puted by (Zszl Wi(k,r) (PkZ,ZF(k))) EDV(:,r).

EDTV(:,1)

QkTAkF(k)EDT, we replace QkT with PkaTA,{. Then, we represent Yy as the following

expression (line 12 in Algorithm 10):
Y; QAR WED = P ZI ATAFWEDT = P Z] FWEDT

Note that we use the property A,{Ak = Ig«r, where Iz« is the identity matrix of size
R X R, for the last equality. By exploiting the factorized matrices of Qy, we compute

Y without involving Ay in the process.

4.3.5 Updating H, V,and W

The next goal is to efficiently update the matrices H, V, and W using the small fac-
torized matrices of Y. Naively, we would compute Y and run a single iteration of
CP-ALS with Y to update H, V, and W (lines 11 to 13 in Algorithm 2). However,
multiplying a matricized tensor and a Khatri-Rao product (e.g., Y(1)(W © V)) is bur-
densome, and thus we exploit the structure of the decomposed results PkZ,{F(k)EDT
of Yy to reduce memory requirements and computational costs. In other word, we do
not compute Yy, and use only PkaTF(k)EDT in updating H, V, and W. Note that the
k-th frontal slice of Y, Y(:,:,k), is PkZ,{F(k)EDT.

83

Updating H. In Y(;)(W® V)(W' W % VI'V)7, we focus on efficiently comput-
ing Y(;)(W® V) based on Lemma 4.1. A naive computation for Y)(W® V) re-
quires a high computational cost O(JKR?) due to the explicit reconstruction of Y.
Therefore, we compute that term without the reconstruction by carefully determin-
ing the order of computations and exploiting the factorized matrices of Y(), D, E,
Py, Zy, and F® for k = 1,...,K. With Lemma 4.1, we reduce the computational cost

of Y()(W® V) to O(JR* +KR?).

Lemma 4.1. Let us denote Y (1)(W©® V) with G e RR*R GW(:,r) is equal to

(K Wikor) (PZ[F®)) EDTV(:.1)). 0

Proof. Y (i) is represented as follows:

Yoy = [PZ]FOEDT .o ; PRZfFOED |

ED” ... O
= (I (pezf¥®)) | 0 | = (I (Pe{FY)) (g s EDT)

(§) ... EDT

where Ix,x is the identity matrix of size K x K. Then, G(!) = Y (WOYV) is ex-

pressed as follows:

G = (Hle (ka;Fac)

N——

) (lkax @EDT) (|5 (W(,r) @ V(. 1)
= (I (PZLF®)) (I, (W(.r) S EDTV (1))
The mixed-product property (i.e., (A®B)(C®@D) = AC®BD)) is used in the above

equation. Therefore, G(V)(:,r) is equal to (||£_, (P.ZIF®)) (W(:,r) @ EDTV(:,r)).
We represent it as > & | W(k, r) (PkZ,{F(k)) ED”V(:,r) using block matrix multipli-

84

G® € R/*R DE € R/*R, W € RK*R F(K)TZ, pI' € RR*R H € RR*R

c?¢,r) pE WD FOOMZ P
A Lo
= R S
Lok I p@TypT ! f
F71.P t H(,7)
W(K,r)

Figure 4.5: Computation for G(?) = Y(2)(W©H). The rth column G2 (., r) of G? is com-
puted by DESX (W(k, PFRTZ,PTH(:, r)).
cation since the k-th vertical block vector of (W(:,r) @ ED"V(:,r)) € R¥R is W(k, r)
ED'V(:,r) € RX, O
As shown in Figure 4.4, we compute Y ;)(W © V) column by column. In com-
puting G (2, 7), we compute ED”V(:,r), sum up W(k, r) (PkZ,{F(k)) for all k, and
then perform matrix multiplication between the two preceding results (line 14 in
Algorithm 10). After computing G!) « Y(1)(W®YV), we update H by computing
G (WTW %« VI'V)T where + denotes the Moore-Penrose pseudoinverse (line 15 in
Algorithm 10). Note that the pseudoinverse operation requires a lower computational
cost compared to computing G{) since the size of (W' W x VTV) € RF*R is small.
Updating V. In computing Y 2)(W ©@ U)(W' W« U"U)", we need to efficiently
compute Y () (W ©U) based on Lemma 4.2. As in updating H, a naive computation
for Y(2)(W ® U) requires a high computational cost O(JKR?). We efficiently com-
pute Y () (W © U) with the cost O(JR* + KR*), by carefully determining the order of

computations and exploiting the factorized matrices of Y 3).

Lemma 4.2. Let us denote Y (5)(W © H) with G e Rk GO)(:,r) is equal to DE
(S (Wi, FOTZPTH(, 1))). 0

85

Proof. Y 3) is represented as follows:
Y() = |DEFUTZ,PT ..., DEF(K)TZKPE} =DE (HkK:lF(")TZkP,{)
Then, G?) = Y (2)(W©H) is expressed as follows:

W(I,)H(:,1); -+ ;W(1,R)H(:,R)
G? =DE (||,{<:1F<k)TZkP,{)

W(K,1)H(:,1); --- ;W(K,R)H(:,R)

G@(:,r)isequaltoDE Y, (W(k, r)FOTZ,PTH(:, r)) according to the above equa-
tion. O
As shown in Figure 4.5, we compute G2 « Y 2)(W®H) column by column. After
computing G, we update V by computing G (W' W« H'H)" (lines 16 and 17 in
Algorithm 10).

Updating W. In computing Y(3)(V©OH) (VIV+HTH)', we efficiently compute
Y 3)(V©H) based on Lemma 4.3. As in updating H and V, a naive computation for
Y 3)(V ©H) requires a high computational cost O(JKR?). We compute Y 3)(V ® H)
with the cost O(JR? + KR?) based on Lemma 4.3. Exploiting the factorized matrices

of Y(3) and carefully determining the order of computations improves the efficiency.

Lemma4.3. Let us denote Y 3)(VOH) with G®) e REXR GO)(k,r) is equal tovec (PkZ,{

T
F(k)) (ED”V(:,r) @H(:,r)) where vec(-) denotes the vectorization of a matrix. [

86

G® e RK*R P ZTFK) € RRXR EDTV € RR*R, H € RF*R

_____ (vec(PkZ,fF(")))T H(:,7)

G(3)(k,7‘)—i—’D i — l |: ®E"hi|

Figure 4.6: Computation for GG = Y3 (V © H). GO (k,r) is computed by
T
(vec (sz,{F<’<>>) (EDTV(:,r) @ H(:,).

Proof. Y 3) is represented as follows:

(Vec (PIZITF(I)EDT))T
Yo - s = (I (e (rizfwmm)))

vec K T r
(vec (PAZEFEDT))

- (\]L(DE@I) vec (PkZ,{F(k)»T - (Hszl <vec (PkZ,ZF<k>>>)T (ED” @ 1)

where Ig«g is the identity matrix of size R X R. The property of the vectorization (i.e.,

vec(AB) = (BT @I)vec(A)) is used. Then, G©) = Y 3)(V©H) is expressed as follows:
T
G = (I, (vee (Pezf®W))) " (IF (EDTV(:,r) @ H(:.1)))

GO (k,r) is (vec (PkZ,ZF(k)))T (ED”V(:,r) @H(:,r)) according to the above equa-
tion. O
We compute GG = Y 3)(V© H) row by row. Figure 4.6 shows how we compute
G®)(k,r). In computing G, we first compute ED”V, and then obtain G®)(k,:) for
all k (line 18 in Algorithm 10). After computing G©), we update W by computing

G®)(VTV «H'H)" where 1 denotes the Moore-Penrose pseudoinverse (line 19 in

87

Algorithm 10). We obtain S; whose diagonal elements correspond to the kth row
vector of W (line 21 in Algorithm 10).

After convergence, we obtain the factor matrices, (Uy +— AkaP,{H = Q:H), Sy,
and V (line 25 in Algorithm 10).

Convergence Criterion. At the end of each iteration, we determine whether to
stop or not (line 23 in Algorithm 10) based on the variation of e = (Z,’;l I1Xk — Xk”%)
where X; = QHS, V7 is the kth reconstructed slice. However, measuring reconstruc-
tion errors > x_, ||Xx — X4 ||% is inefficient since it requires high time and space costs
proportional to input slices X. To efficiently verify the convergence, our idea is to ex-
ploit A{FEDT instead of X;, since the objective of our update process is to minimize
the difference between AkF(k)EDT and Xk = Q;HS, V’. With this idea, we improve

the efficiency by computing S°x_, IP.Z FOED” — HS; V|3, not the reconstruc-

tion errors. Our computation requires the time O(JKR?) and space costs O(JKR)
which are much lower than the costs O(Ele IJR) and O(Zszl IiJ) of naively com-
puting 3 [[Xy — X

| AyFOEDT — X;||2. Since the Frobenius norm is unitarily invariant, we modify the

2, respectively. From |[P.Z] FKED” — HS, V' ||Z, we derive

computation as follows:

|PZl FYED” —HS, V7 |2 = | QP Z] FYED” — QHS; V7|2

= | AvZP] P ZI FOEDT — QHS VT ||7 = | A FPEDT — X, |2

where PZPk and ZkZ,Z are equal to I € R®*R since P, and Z; are orthonormal matri-
ces. Note that the size of PkZ,fF(k)EDT and HS; V7 is R x J which is much smaller
than the size I x J of input slices X;. This modification completes the efficiency of

our update rule.

88

Algorithm 11: Careful distribution of work in DPAR2

Input: the number 7 of threads X; e R fork=1,...,.K
Output: sets J; fori=1,.
1: initialize J; < 0 for i = 1 T

2: construct a list S of size T Whose elements are zero
3: construct a list L;,; containing the number of rows of X for k=1,...,K
4: sort Ly in descending order, and obtain lists L,,; and L;,, that contain sorted values
and those corresponding indices
5. fork=1,...,K do
6: tnin <— argminS
7: I+ Ling [k]
8 T ¢ T U{Xa}
9: S[tmin} — S[tmin] + Lyai [k}
10: end for

4.3.6 Careful distribution of work

The last challenge for an efficient and scalable PARAFAC2 decomposition method is
how to parallelize the computations described in Sections 4.3.2 to 4.3.5. Although a
previous work [2] introduces the parallelization with respect to the K slices, there
is still room for maximizing parallelism. Our main idea is to carefully allocate input
slices Xy to threads by considering the irregularity of a given tensor.

The most expensive operation is to compute randomized SVD of input slices Xy
for all k; thus we first focus on how well we parallelize this computation (i.e., lines 2
to 4 in Algorithm 10). A naive approach is to randomly allocate input slices to threads,
and let each thread compute randomized SVD of the allocated slices. However, the
completion time of each thread can vary since the computational cost of computing
randomized SVD is proportional to the number of rows of slices; the number of rows
of input slices is different from each other as shown in Figure 4.7. Therefore, we need
to distribute X}, fairly across each thread considering their numbers of rows.

Fori=1,..,T, consider that an ith thread performs randomized SVD for slices in

a set J; where T is the number of threads. To reduce the completion time, the sums of

89

rows of slices in the sets should be nearly equal to each other. To achieve it, we exploit
a greedy number partitioning technique that repeatedly adds a slice into a set with
the smallest sum of rows. Algorithm 11 describes how to construct the sets J; for
compressing input slices in parallel. Let L;,;; be a list containing the number of rows
of Xy for k=1,...,K (line 3 in Algorithm 11). We first obtain lists L, and L;,4, sorted
values and those corresponding indices, by sorting L;,;; in descending order (line 4 in
Algorithm 11). We repeatedly add a slice Xy, to a set J; that has the smallest sum. For
each k, we find the index f,,;, of the minimum in § whose ith element corresponds
to the sum of row sizes of slices in the ith set J; (line 6 in Algorithm 11). Then, we
add a slice X; to the set J; . where [is equal to L;y,4[k], and update the list S by
Sltmin) < S[tmin] + Lyar[k] (lines 7 to 9 in Algorithm 11). Note that S[k|, Liq[k], and
L,,[k] denote the kth element of S, L;,4, and L, respectively. After obtaining the
sets J; fori =1,..,T, ith thread performs randomized SVD for slices in the set J;.

After decomposing Xy for all k£, we do not need to consider the irregularity for
parallelism since there is no computation with A; which involves the irregularity.
Therefore, we uniformly allocate computations across threads for all & slices. In each
iteration (lines 8 to 22 in Algorithm 10), we easily parallelize computations. First, we
parallelize the iteration (lines 8 to 10) for all k slices. To update H, V, and W, we
need to compute GV, G?), and G®) in parallel. In Lemmas 4.1 and 4.2, DPAR2 paral-
lelly computes W(k,r) (PkZ,{F(k)) and W(k,r)FWZ,PTH(:, r) for k, respectively. In
Lemma 4.3, DPAR2 parallelly computes (vec (PkZ,{F(k)))T (ED"V(:,r)®H(:,r)) for
k.

4.3.7 Complexities

We analyze the time complexity of DPAR2.

90

= <
“b;b db;bé‘t()(]()
3 5000 E
g g 2000
= =
0 0
0 2000 4000 0 2000
Sorted Stock Index Sorted Stock Index
(a) US stock data (b) KR stock data

Figure 4.7: The length of the temporal dimension of input slices X; on US Stock and Korea
Stock data. We sort the lengths in descending order.

Lemma 4.4. Compressing input slices takes O ((Zszl Ik]R) +JKR2> time.

Proof. The SVD in the first stage takes O (Zszl IkJR) times since computing ran-
domized SVD of X takes O(I;JR) time. Then, the SVD in the second stage takes
V) (JKR2) due to randomized SVD of M) € R/*KR Therefore, the time complexity
of the SVD in the two stages is O ((Zszl IkJR) +JKR2>. O

Lemma 4.5. At each iteration, computing Yy and updatingH, V, and W takes O (JR> +
KR?) time.

Proof. For Yy, computing FKED” VS H and performing SVD of it for all k take
O(JR* + KR?). Updating each of H, V, and W takes O(JR? + KR> + R?) time. There-
fore, the complexity for Yi, H, V, and W is O (JR2 —|—KR3). OJ

Theorem 4.1. The time complexity of DPARZ is O ((Z,’;l I/JR) +JKR? +MKR3)

where M is the number of iterations.

Proof. The overall time complexity of DPAR2 is the summation of the compression

cost (see Lemma 4.4) and the iteration cost (see Lemma 4.5): O (<Zf:1 I/JR) +JKR?+

M(JR*+ KR3)> .Note that MJR? term is omitted since it is much smaller than <Zf:1 IkJR>

and JKR?. O

91

Table 4.2: Description of real-world tensor datasets.

Dataset Max Dim. /; Dim.J Dim.K Summary
FMA! [94] 704 2,049 7,997 music
Urban? [103] 174 2,049 8,455 wurban sound
US Stock® 7,883 88 4,742 stock
Korea Stock* [25] 5,270 88 3,664 stock
Activity® [104, 105] 553 570 320 video feature
Action® [104, 105] 936 570 567 video feature
Traffic® [96] 2,033 9 1,084 traffic
PEMS-SF’ 963 144 440 traffic

Theorem 4.2. The size of preprocessed data of DPARZ2 is O ((Zle IkR> +KR? + JR) .

Proof. The size of preprocessed data of DPAR2 is proportional to the size of E, D, Ay,
and F®) for k = 1,...,K. The size of E and D is R and J x R, respectively. For each «,
the size of A and Fis I X R and R X R, respectively. Therefore, the size of preprocessed

data of DPar2 s O ((2 kR) + KR®+JR). 0

4.4 Experiments

In this section, we experimentally evaluate the performance of DPAR2. We answer
the following questions:
Q1 Performance (Section 4.4.2). How quickly and accurately does DPAR2 per-

form PARAFAC2 decomposition compared to other methods?

Q2 Data Scalability (Section 4.4.3). How well does DPAR2 scale up with respect

to tensor size and target rank?

Q3 Multi-core Scalability (Section 4.4.4). How much does the number of threads

affect the running time of DPAR2?

Q4 Discovery (Section 4.4.5). What can we discover from real-world tensors us-

ing DPAR2?

92

4.4.1 Experimental Settings

We describe experimental settings for the datasets, competitors, parameters, and en-
vironments.

Machine. We use a workstation with 2 CPUs (Intel Xeon E5-2630 v4 @ 2.2GHz),
each of which has 10 cores, and 512GB memory for the experiments.

Real-world Data. We evaluate the performance of DPAR2 and competitors on
real-world datasets summarized in Table 4.2. FMA dataset! [94] is the collection of
songs. Urban Sound dataset? [103] is the collection of urban sounds such as drilling,
siren, and street music. For the two datasets, we convert each time series into an im-
age of a log-power spectrogram so that their forms are (time, frequency, song; value)
and (time, frequency, sound; value), respectively. US Stock dataset® is the collection
of stocks on the US stock market. Korea Stock dataset* [25] is the collection of stocks
on the South Korea stock market. Each stock is represented as a matrix of (date, fea-
ture) where the feature dimension includes 5 basic features and 83 technical indica-
tors. The basic features collected daily are the opening, the closing, the highest, and
the lowest prices and trading volume, and technical indicators are calculated based
on the basic features. The two stock datasets have the form of (time, feature, stock;
value). Activity data® and Action data® are the collection of features for motion videos.
The two datasets have the form of (frame, feature, video; value). We refer the reader
to [104] for their feature extraction. Traffic data® is the collection of traffic volume

around Melbourne, and its form is (sensor, frequency, time; measurement). PEMS-

Thttps://github.com/mdeff/fma

Zhttps:/ /urbansounddataset.weebly.com /urbansound8k.html
Shttps://datalab.snu.ac.kr/dpar2

4https://github.com /jungijang/KoreaStockData
Shttps://github.com/titu1994/MLSTM-FCN
Shttps://github.com/florinsch/BigTrafficData

93

https://github.com/mdeff/fma
https://urbansounddataset.weebly.com/urbansound8k.html
https://datalab.snu.ac.kr/dpar2
https://github.com/jungijang/KoreaStockData
https://github.com/titu1994/MLSTM-FCN
https://github.com/florinsch/BigTrafficData

SF data’ contain the occupancy rate of different car lanes of San Francisco bay area
freeways: (station, timestamp, day; measurement). Traffic data and PEMS-SF data are
3-order regular tensors, but we can analyze them using PARAFAC2 decomposition
approaches.

Synthetic Data. We evaluate the scalability of DPAR2 and competitors on syn-
thetic tensors. Given the number K of slices, and the slice sizes I and J, we generate
a synthetic tensor using tenrand(l, J, K) function in Tensor Toolbox [97], which ran-
domly generates a tensor X € R/*/*K_ We construct a tensor {X;}X_, where X is
equal to X(:,:,k) fork=1,...K.

Competitors. We compare DPAR2 with PARAFAC2 decomposition methods

based on ALS. All the methods including DPAR2 are implemented in MATLAB (R2020b).

« DPAR2: the proposed PARAFAC2 decomposition model which preprocesses a
given irregular dense tensor and updates factor matrices using the preprocess-
ing result.

« RD-ALS [33]: PARAFAC2 decomposition which preprocesses a given irregular
tensor. Since there is no public code, we implement it using Tensor Toolbox [97]
based on its paper [33].

« PARAFAC2-ALS: PARAFAC2 decomposition based on ALS approach. It is im-
plemented based on Algorithm 2 using Tensor Toolbox [97].

« SPARTan [2]: fast and scalable PARAFAC2 decomposition for irregular sparse
tensors. Although it targets on sparse irregular tensors, it can be adapted to

irregular dense tensors. We use the code implemented by authors®.

Parameters. We use the following parameters.

« Number of threads: we use 6 threads except in Section 4.4.4.

"http://www.timeseriesclassification.com/
8https://github.com /kperros/SPARTan

94

http://www.timeseriesclassification.com/
https://github.com/kperros/SPARTan

+ Max number of iterations: the maximum number of iterations is set to 32.

« Rank: we set the target rank R to 10 except in the trade-off experiments of
Section 4.4.2 and Section 4.4.4. We also set the rank of randomized SVD to 10
which is the same as the target rank R of PARAFAC2 decomposition.

To compare running time, we run each method 5 times, and report the average.

Fitness. We evaluate the fitness defined as follows:

. (zf_l uxk—xku%>
S Xl

where X is the k-th input slice and X, is the k-th reconstructed slice of PARAFAC2
decomposition. Fitness close to 1 indicates that a model approximates a given input

tensor well.

4.4.2 Performance

We evaluate the fitness and the running time of DPar2, RD-ALS, SPARTan, and
PARAFAC2-ALS.

Trade-off. Figure 4.1 shows that DPAR2 provides the best trade-off of running
time and fitness on real-world irregular tensors for the three target ranks: 10, 15, and
20. DPAR2 achieves 6.0x faster running time than the competitors for FMA dataset
while having a comparable fitness. In addition, DPAR2 provides at least 1.5x faster
running times than the competitors for the other datasets. The performance gap is
large for FMA and Urban datasets whose sizes are larger than those of the other
datasets. It implies that DPAR2 is more scalable than the competitors in terms of tensor
sizes.

Preprocessing time. We compare DPAR2 with RD-ALS and exclude SPARTan

95

DPar2 RD-ALS PARAFAC2-ALS @R SPARTAN

Preprocessing Time (sec)
>

Time per Iteration (sec)
- S

FMA Urban US Stock KR Stock Activity Action Traffic PEMS-SF FMA Urban US Stock KR Stock Activity Action Traffic PEMS-SF
Data Data

(a) Preprocessing time (b) Iteration time

Figure 4.8: [Best viewed in color] (a) DPAR?2 efficiently preprocesses a given irregular dense
tensor, which is up to 10x faster compared to RD-ALS. (b) At each iteration, DPAR2 runs by
up to 10.3x faster than the second-best method.

and PARAFAC2-ALS since only RD-ALS has a preprocessing step. As shown in Fig-
ure 4.8(a), DPAR2 is up to 10x faster than RD-ALS. There is a large performance gap
on FMA and Urban datasets since RD-ALS cannot avoid the overheads for the large
tensors. RD-ALS performs SVD of the concatenated slice matrices ||&_, X[, which
leads to its slow preprocessing time.

Iteration time. Figure 4.8(b) shows that DPAR2 outperforms competitors for
running time at each iteration. Compared to SPARTan and PARAFAC2-ALS, DPar2
significantly reduces the running time per iteration due to the small size of the pre-
processed results. Although RD-ALS reduces the computational cost at each iteration
by preprocessing a given tensor, DPAR2 is up to 10.3x faster than RD-ALS. Com-
pared to RD-ALS that computes the variation of (Zszl X — QuHS VT H%) for the
convergence criterion, DPAR2 efficiently verifies the convergence by computing the
variation of Y8, P« Z] FRED” —HS, VT ||3, which affects the running time at each
iteration. In summary, DPAR2 obtains Ug, Sy, and V in a reasonable running time even
if the number of iterations increases.

Size of preprocessed data. We measure the size of preprocessed data on real-

world datasets. For PARAFAC2-ALS and SPARTan, we report the size of an input

96

DPar2 RD-ALS 7%, |nput Tensor

60\1()0< 201

s 7 ?I? Y 9.5x

2 1 7 % % I % 777777777 Y 14.2x

2 72 | %2 B5% wet 531~ I 2 12

g 7 7 0 Ny o 2 | %

S 01 oA A BB % [7

111 el
FMA Urban US Stock KR Stock Activity Action Traffic PEMS-SF

Data

Figure 4.9: The size of preprocessed data. DPAR2 generates up to 201 x smaller preprocessed
data than input tensors used for SPARTan and PARAFAC2-ALS.

irregular tensor since they have no preprocessing step. Compared to an input irreg-
ular tensor, DPAR2 generates much smaller preprocessed data by up to 201 times
as shown in Figure 4.9. Given input slices Xy, of size I; x J, the compression ratio in-
creases as the number J of columns increases; the compression ratio is larger on FMA,

Urban, Activity, and Action datasets than on US Stock, KR Stock, Traffic, and PEMS-

Size of an irregular tensor
ze of the preprocessed results

SF. This is because the compression ratio is proportional to g

LK _ 1
IKR+KR*+JR — RJJI+RZ/IJ+R]IK

which is much larger than R? /IJ and R/IK.

assuming I} = ... = Ix = I; R/J is the dominant term

4.4.3 Data Scalability

We evaluate the data scalability of DPAR2 by measuring the running time on several
synthetic datasets. We first compare the performance of DPAR2 and the competitors
by increasing the size of an irregular tensor. Then, we measure the running time by
changing a target rank.

Tensor Size. To evaluate the scalability with respect to the tensor size, we gen-
erate 5 synthetic tensors of the following sizes I x J x K: {1000 x 1000 x 1000, 1000 x
1000 % 2000, 2000 x 1000 x 2000,2000 x 2000 x 2000, 2000 x 2000 x 4000}. For sim-

97

S g Eidi

DPar2 PARAFAC2-ALS —>— SPARTan RD-ALS

10° X/*"M——X
10°
15.3x

7.0x

o

IS
\
\

15.9%

Running Time (sec)
N

Running Time (sec)
Scale Up: Ty /T,

10? -

10° 101 10 20 EQ I 30 12 i 6 8 10
Tensor Size Rank Number of Threads
(a) Scalability for tensor size (b) Scalability for rank (c) Machine Scalability

Figure 4.10: Data scalability. DPAR2 is more scalable than other PARAFAC2 decomposition
methods in terms of both tensor size and rank. (a) DPAR2 is 15.3x faster than the second-
fastest method on the irregular dense tensor of the total size 1.6 x 10'°. (b) DPaR2 is 7.0x
faster than the second-fastest method even when a high target rank is given. (c) Multi-core
scalability with respect to the number of threads. Tjs indicates the running time of DPAR2 on
the number M of threads. DPAR2 gives near-linear scalability, and accelerates 5.5 when the
number of threads increases from 1 to 10.

plicity, we set I} = --- = Ix = I. Figure 4.10(a) shows that DPAR2 is up to 15.3 x faster
than competitors on all synthetic tensors; in addition, the slope of DPAR2 is lower
than that of competitors. We also note that only DPAR2 obtains factor matrices of
PARAFAC2 decomposition within a minute for all the datasets.

Rank. To evaluate the scalability with respect to rank, we generate the follow-
ing synthetic data: I} = --- = Ix = 2,000, J = 2,000, and K = 4,000. Given the syn-
thetic tensors, we measure the running time for 5 target ranks: 10, 20, 30, 40, and 50.
DPAR2 is up to 15.9x faster than the second-fastest method with respect to rank in
Figure 4.10(b). For higher ranks, the performance gap slightly decreases since DPAR2
depends on the performance of randomized SVD which is designed for a low target
rank. Still, DPAR2 is up to 7.0x faster than competitors with respect to the highest

rank used in our experiment.

98

4.4.4 Multi-core Scalability

We generate the following synthetic data: I} = --- = Ix = 2,000, J = 2,000, and K =
4,000, and evaluate the multi-core scalability of DPAR2 with respect to the number
of threads: 1,2,4,6,8, and 10. 7j; indicates the running time when using the number
M of threads. As shown in Figure 4.10(c), DPAR2 gives near-linear scalability, and

accelerates 5.5 x when the number of threads increases from 1 to 10.

4.4.5 Discoveries

We discover various patterns using DPAR2 on real-world datasets.

4.4.5.1 Feature Similarity on Stock Dataset

We measure the similarities between features on US Stock and Korea Stock datasets,
and compare the results. We compute Pearson Correlation Coefficient (PCC) between
V(i,:), which represents a latent vector of the ith feature. For effective visualization,
we select 4 price features (the opening, the closing, the highest, and the lowest prices),
and 4 representative technical indicators described as follows:

« OBV (On Balance Volume): a technical indicator for cumulative trading vol-
ume. If today’s closing price is higher than yesterday’s price, OBV increases by
the amount of today’s volume. If not, OBV decreases by the amount of today’s
volume.

« ATR (Average True Range): a technical indicator for volatility developed by J.
Welles Wilder, Jr. It increases in high volatility while decreasing in low volatil-
ity.

« MACD (Moving Average Convergence and Divergence): a technical indi-

cator for trend developed by Gerald Appel. It indicates the difference between

99

OPENING OPENING EELERECEEELENEER 0.03 0.17 -0.14 EFL

HIGHEST HIGHEST 00 00 (RO -0.04 0.19 -0.15
LOWEST LOWEST 00 00 URRVR-LN -0.01 0.14 -0.16 Xy
CLOSING CLOSING [EEERCEELENN 0.04 037 -0.12 U:E)

oBv |027 020 019 019 OBV [0-03 -0.04 -0.01 0.04

ATR 039 039 034 0.36 o ATR J0.17 019 0.14 037 [*°

MACD 0.07 -0.08 0.06 -0.07 MACD 0.14 0.15 -0.16 -0.12
-0.4
Petoe Tl 053 0.53 -0.50 051 o4 Pivelo @l 0.49 0.49 0.47 0.33 I
-—-0.6

o = = o o = = @]
e 2 2 2 2 & § 8 2 2 2 2 2z & § 8
g Z o < =z o 5 7 o = =z &
Z T 2 s B Z I z s &
g2 8 5 ¢ @ £ 8 g5 2 2
c = = © c =z = ©

(a) US stock data (b) Korea stock data

Figure 4.11: The similarity patterns of features are different on the two stock markets. (a) For
US Stock data, ATR and OBV have a positive correlation with the price features. (b) For Korea
Stock data, they are uncorrelated with the price features in general.

long-term and short-term exponential moving averages (EMA).

« STOCH (Stochastic Oscillator): a technical indicator for momentum devel-
oped by George Lane. It indicates the position of the current closing price com-
pared to the highest and the lowest prices in a duration.

Figures 4.11(a) and 4.11(b) show correlation heatmaps for US Stock data and Ko-
rea Stock data, respectively. We analyze correlation patterns between price features
and technical indicators. On both datasets, STOCH has a negative correlation and
MACD has a weak correlation with the price features. On the other hand, OBV and
ATR indicators have different patterns on the two datasets. On the US stock dataset,
ATR and OBV have a positive correlation with the price features. On the Korea stock
dataset, OBV has little correlation with the price features. Also, ATR has little corre-
lation with the price features except for the closing price. These different patterns are
due to the difference of the two markets in terms of market size, market stability, tax,

investment behavior, etc.

100

B e

o

4.4.5.2 Finding Similar Stocks

On US Stock dataset, which stock is similar to a target stock st in a time range that a user
is curious about? In this section, we provide analysis by setting the target stock sz to
Microsoft (Ticker: MSFT), and the range a duration when COVID-19 was very active
(Jan. 2, 2020 - Apr. 15, 2021). We efficiently answer the question by 1) constructing the
tensor included in the range, 2) obtaining factor matrices with DPAR2, and 3) post-
processing the factor matrices of DPAR2. Since Uy, represents temporal latent vectors
of the kth stock, the similarity sim(s;,s;) between stocks s; and s; is computed as

follows:
. _ 2
sim(s;,s;) = exp (—Y| Uy, — Uy, [|7) (4.7)

where exp is the exponential function. We set y to 0.01 in this section. Note that we
use only the stocks that have the same target range since Uy, — Uy, is defined only
when the two matrices are of the same size.

Based on sim(s;,s;), we find similar stocks to s7 using two different techniques:
1) k-nearest neighbors, and 2) Random Walks with Restarts (RWR). The first approach
simply finds stocks similar to the target stock, while the second one finds similar
stocks by considering the multi-faceted relationship between stocks.

k-nearest neighbors. We compute sim(s7,s;) for j = 1,...,K where K is the
number of stocks to be compared, and find top-10 similar stocks to sy, Microsoft
(Ticker: MSFT). In Table 4.3(a), the Microsoft stock is similar to stocks of the Tech-
nology sector or with a large capitalization (e.g., Amazon.com, Apple, and Alphabet)
during the COVID-19. Moody’s is also similar to the target stock.

Random Walks with Restarts (RWR). We find similar stocks using another

101

Table 4.3: Based on the results of DPAR2, we find similar stocks to Microsoft (MSFT) during
COVID-19. (a) Top-10 stocks from k-nearest neighbors. (b) Top-10 stocks from RWR. The blue
color refers to the stocks that appear only in one of the two approaches among the top-10
stocks.

(a) Similarity based Result (b) RWR Result

Rank Stock Name Sector ~ Rank Stock Name Sector
1 Adobe Technology 1 Synopsys Technology
2 Amazon.com Consumer Cyclical 2 ANSYS Technology
3 Apple Technology 3 Adobe Technology
4 Moody’s Financial Services 4 Amazon.com Consumer Cyclical
5 Intuit Technology 5 Netflix Communication Services
6 ANSYS Technology 6 Autodesk Technology
7 Synopsys Technology 7 Apple Technology
8 Alphabet Communication Services 8 Moody’s Financial Services
9 ServiceNow Technology 9 NVIDIA Technology
10 EPAM Systems Technology 10 S&P Global Financial Services

approach, Random Walks with Restarts (RWR) [106, 107, 108, 109, 110, 111]. To ex-
ploit RWR, we first a similarity graph based on the similarities between stocks. The

elements of the adjacency matrix A of the graph are defined as follows:

o sim(s;,s;) i j
A(i, j) = (4.8)

0 ifi=j

We ignore self-loops by setting A(i,i) to 0 fori=1,...,K.
After constructing the graph, we find similar stocks using RWR. The scores r is

computed by using the power iteration [112] as described in [111]:
rl) « (1 —)ATr() 4 ¢q (4.9)

where A is the row-normalized adjacency matrix, r'/) is the score vector at the ith
iteration, c is a restart probability, and q is a query vector. We set ¢ to 0.15, the maxi-
mum iteration to 100, and q to the one-hot vector where the element corresponding

to Microsoft is 1, and the others are 0.

102

As shown in Table 4.3, the common pattern of the two approaches is that many
stocks among the top-10 belong to the technology sector. There is also a difference.
In Table 4.3, the blue color indicates the stocks that appear only in one of the two
approaches among the top-10. In Table 4.3(a), the k-nearest neighbor approach sim-
ply finds the top-10 stocks which are closest to Microsoft based on distances. On the
other hand, the RWR approach finds the top-10 stocks by considering more compli-
cated relationships. There are 4 stocks appearing only in Table 4.3(b). S&P Global is
included since it is very close to Moody’s which is ranked 4th in Table 4.3(a). Netflix,
Autodesk, and NVIDIA are relatively far from the target stock compared to stocks
such as Intuit and Alphabet, but they are included in the top-10 since they are very
close to Amazon.com, Adobe, ANSYS, and Synopsys. This difference comes from the
fact that the k-nearest neighbors approach considers only distances from the target
stock while the RWR approach considers distances between other stocks in addition
to the target stock.

DPAR2 allows us to efficiently obtain factor matrices, and find interesting pat-

terns in data.

4.5 Summary

We propose DPAR2, a fast and scalable PARAFAC2 decomposition method for irreg-
ular dense tensors. By compressing an irregular input tensor, careful reordering of
the operations with the compressed results in each iteration, and careful partitioning
of input slices, DPAR2 successfully achieves high efficiency to perform PARAFAC2
decomposition for irregular dense tensors. Experimental results show that DPAR2 is
up to 6.0x faster than existing PARAFAC2 decomposition methods while achieving

comparable accuracy, and it is scalable with respect to the tensor size and target rank.

103

With DPAR2, we discover interesting patterns in real-world irregular tensors. Future
work includes devising an efficient PARAFAC2 decomposition method in a streaming

setting.

104

Chapter 5

Efficient Tensor Decomposition for

Diverse Time Ranges in Regular Tensors

5.1 Motivation

Given a temporal dense tensor and a time range (e.g., January - March 2019), how
can we efficiently analyze the tensor in the given time range? Many real-world data
including stock data, video data, and traffic volume data are represented as temporal
dense tensors. Tensor decomposition has played an important role in various applica-
tions including data clustering [60, 61], concept discovery [44, 100, 113], dimensional-
ity reduction [19, 114], anomaly detection [16], and link prediction [115, 116]. Tucker
decomposition, one of the tensor decomposition methods, has been recognized as a
crucial tool for discovering latent factors and detecting relations between them.

In practice, we analyze a given temporal tensor from various perspectives. As-
sume a user is interested in investigating patterns of various time ranges using Tucker
decomposition. Given a temporal tensor and a user-provided time range (start time
and end time) query, our goal is to find the patterns of the temporal tensor at the
range using Tucker decomposition. For example, given a temporal tensor including
matrices collected between Jan. 1, 2008 to May 6, 2020, a user may be interested in
Tucker decomposition of a subrange between Jan. 1, 2020 to April 30, 2020 (see Fig-
ure 5.1). Since Tucker decomposition generates factor matrices and a core tensor to ac-

curately approximate an input tensor, answering time range queries, (i.e., performing

105

I covip-19 \ Time
Start time dimension
I -Jan. 1, 2020 fe—
End time @
I - Apr. 30, 2020 EiSit
= Temporal tensor Tucker results I
A time range QuUery From Jan. 1, 2008 for the time
I To M”Z 6, 2020 range query I

Figure 5.1: Given a temporal tensor and a user-provided time range (start time and end time)
query, the goal of the time-ranged Tucker decomposition is to find the patterns of the temporal
tensor at the range using Tucker decomposition.

Tucker decomposition of different sub-tensors) yields different Tucker results. How-
ever, conventional Tucker decomposition methods [36, 38, 28] based on Alternating
Least Square (ALS) is not appropriate for answering diverse time range queries since
they target performing Tucker decomposition once for a given tensor; the methods
require a high computational cost and large storage space since they need to perform
Tucker decomposition of the sub-tensor included in a time range query from scratch,
every time the query is given. Due to this limitation, the existing methods are not
efficient in exploring diverse time ranges for a given temporal tensor.

A few methods [37, 26] with a preprocessing phase can be adapted to the time
range query problem; before the query phase, they preprocess a given tensor, and per-
form Tucker decomposition with the preprocessed tensor for each time range query.
However, they suffer from an accuracy issue for narrow time ranges since prepro-
cessed results are tailored for performing Tucker decomposition of the whole given
temporal tensor. The results fail to capture local patterns that appear only in a specific

range.

106

“JOIId UOT}ONI}SUOIT }SIMO] [}

pue paads Aronb 35335 o17) Yim Jurod 1594 1) 03 1S9SO[D ST YANON] -WOO7Z "sdajsawur) gz T ST 95Uel awiI} & Jo YI3ua] 9y} sueaw (gz1) 3
‘sagues awr) Jo Yy3uo[atf) Juasardar sureu ejep oY} 19)je sIqUUNN ‘(SPU0dIS ()0(°0Z UL} 2I0W Saxe)) W} JO INO :*}'0°0 "sarrenb oFuer awry

(1-9) ap1m pue (J-8) moireu 10 ‘s10313odwod pue ¥YANON] -WOO7Z JO IOLI UOTIONIISU0II pue auir) Aronb usamjeq Jo-apei] :z'g 21n3r]

(¥co1) e1ep qrosqy (1) (c16) eaep VINA () (b2o1) waep oygerl, (1) (8%02) e1ep 30015 (1) (8%02) eep 09pIA (Y) (8%02) EIEP JEOY (3)

(os)ownl Buluuny jeqq (09s)own] Suuny jeqa (99S)Swip Buluuny pgng (99s) swnp Suuny joae (995) swig Suuuny e 1sdg
_ 01 101 10he 01 01 (Olg o 01 101 0l 5 01 10T 10T 00 0T 01 - H_ 10T e =
o o —
xv o | B v_o § X W §| 508 |1 v @ mf |6 Lo | & =
L o z 6T 2 x0T | 3 \4 z XLy z e 2z 43
0§ 10g RSN oE g g 2
5 = o L0g =8 02
@ 5 S u s s z03 s 7
30'0 oy A m m m m m Qﬂ
013 703 A 708 L 803 A 3 A 3
(¥9) erep qiosqy (3) (z€) ®wep VNI (@ (79) eyep omgeIL (p) (821) ®aep Yo0IS (9) (82T) ®Ivp 09PIA (4) (821) eaep jeoq (v)
(09s) oty Buluuny | cue (29s) awiy Suluuny [oqg (09s) awiny Suluuny oag (998) awiny Buluny joag (99s) awiy Suluny yeag (99s) owi) Suuuny Lsag
0L 101 0l @ o z01 ! 0T = 01 1 O0lg 201 I Ol 01 i =Ohe 01 T e m
I =
_ o @k vo | & O g 00f gy __0 f ol pv e [§ Z
L X ° 2 X102 2 xte |rog : X6TLE 2 xLvT 2 2
0w z g & X rog Z 2 5
G0g T0g A N o u @ ! H r0f B
o1 5 s -3 XT'6 (G605 g g &
5 A > E 5 703 > =
g g g0l A 90T T A T £
¢1g z0¢g [| 3 °73 A g 08 @
aly 1 sjup-4pPng A SEENRILTE ‘ HOVW H S[e-13dn| ¥ JdPnl-q VY (pasodoud) sa3dnj-wooz @

(09s) awi] Suluuny

107

Table 5.1: Symbol description.

Symbol Description

X temporal tensor (€ I} X ... X Iy)
I, & J, dimensionality of the n-th mode of X and G
b block size
ty &t, starting and ending points of time range query
[t5, 1] time range of a query
X< i-th temporal block tensor (€ I X ...Iy_| x b)

(A<i>)(k> k-th factor matrix of i-th temporal block tensor

Gg<i> core tensor of i-th temporal block tensor
X temporal tensor obtained in the time range [f, 7]
AW k-th factor matrix of time range query [f5, 7]
G core tensor of time range query [t 7]
S index of temporal block tensor corresponding to f
E index of temporal block tensor corresponding to #,
® Kronecker product
Xn n-mode product

In this paper, we propose ZoomM-TUCKER (Zoomable Tucker decomposition), a
fast and memory-efficient Tucker decomposition method to analyze a temporal ten-
sor for diverse time ranges. ZooM-TUCKER enables us to discover local patterns in a
narrow time range (zoom-in), or global patterns in a wider time range (zoom-out).
ZooM-TUCKER consists of two phases: the preprocessing phase and the query phase.
The preprocessing phase of ZooM-TUCKER exploits block structure to lay the ground-
work in achieving an efficient query phase and capturing local information. In the
query phase, ZooM-TUCKER addresses the high computational cost and space cost by
elaborately decoupling block results and carefully determining the order of compu-
tation. Thanks to these ideas, Zoom-TUCKER answers an arbitrary time range query
with higher efficiency than existing methods. Through extensive experiments, we
demonstrate the effectiveness and efficiency of our method compared to other meth-
ods. The main contributions of this paper are as follows:

« Algorithm. We propose Zoom-TUCKER, a fast and memory-efficient Tucker

decomposition method for answering diverse time range queries.

108

+ Analysis. We provide both time and space complexities for the preprocessing
and query phases of Zoom-TUCKER.
« Experiment. Experimental results show that Zoom-TUCKER answers time range
queries up to 171.9 x faster and requires up to 230X less space than other meth-
ods while providing comparable accuracy, as shown in Figures 5.2 and 5.6.
 Discovery. Thanks to Zoom-TUCKER, we discover anomalous ranges and trend
changes in Stock dataset (Figures 5.9 and 5.10).
In the rest of this chapter, we describe the preliminaries, and formally define the
problem in Section 5.2. We then propose our method Zoom-TUCKER in Section 5.3, and
present experimental results in Section 5.4. Then, we conclude in Section 5.5. The code

of our method and datasets are available at https://datalab.snu.ac.kr/zoomtucker.

5.2 Problem Definition

We define the problem addressed in this work and the symbols are described in Ta-

ble 5.1. We describe the formal definition of the time range query problem as follows:

Problem 1 (Time Range Query on Temporal Tensor).

Given: a temporal dense tensor X € Rl *2-*Iv and a time range [t;,t,] where Iy is the
length of the time dimension, and I, is the dimensionality of mode-n forn=1,...N—1,
Find: the Tucker results of the sub-tensor X of X in the time range [t,,t,] efficiently. The

N)

Tucker result includes factor matrices A AN and core tensor G.

To address the time range query problem, a method should efficiently handle
various time range queries. Given an arbitrary time range query, existing methods [36,
38, 28] performing Tucker decomposition from scratch requires a high computational

cost and large space cost. Compared to the aforementioned methods, Tucker decom-

109

https://datalab.snu.ac.kr/zoomtucker

position methods [26, 37] with a preprocessing phase save time and space costs in
that they allow us to compress a whole tensor before a query phase, and then perform
Tucker decomposition of a sub-tensor corresponding to a given time range query by
exploiting the compressed tensor instead of the input tensor. However, they are still
unsatisfactory in terms of time, space, and accuracy for the time range query prob-
lem since they are tailored for performing Tucker decomposition of only the whole

tensor once.

5.3 Proposed Method

In this section, we propose ZooM-TUCKER, a novel method for extracting key patterns
of a temporal tensor in an arbitrary time range. The following challenges need to be
tackled:

C1 Dealing with various time range queries. Each user deals with different
time ranges or a user analyzes patterns for various time ranges. How can we
preprocess a temporal tensor to deal with various time ranges?

C2 Minimizing computational cost. Tucker decomposition requires a high com-
putational cost. How can we quickly perform Tucker decomposition for a given
time range query?

C3 Minimizing intermediate data. Imprudent computation for Tucker decom-
position provokes huge intermediate data. How can we avoid generating huge
intermediate data?

We address the challenges with the following main ideas:
I1 Exploiting block structure enables a query phase to decrease the number of
operations and memory requirements while capturing local information.

12 Elaborately decoupling block results decreases the computational cost of

110

Tucker decomposition for a tensor obtained in a given time range.
I3 Carefully determining the order of computation minimizes intermediate
data generation while avoiding redundant computation.

ZooM-TuckeR efficiently computes Tucker decomposition for various time range
queries. ZooM-TUCKER consists of two phases: the preprocessing phase and the query
phase. The preprocessing phase is computed once for a given temporal tensor while
the query phase is computed using the results of the preprocessing phase for each
time range query. ZooM-TUCKER compresses a given tensor block by block along
the time dimension in the preprocessing phase. ZoomM-TUcKER performs Tucker de-
composition for each block. In the query phase, Zoom-TUcKER performs Tucker de-
composition for each time range query by 1) adjusting the first and the last blocks
included in the time range to fit the range and 2) carefully stitching the block results

in the time range.

5.3.1 Preprocessing Phase

The objective of the preprocessing phase is to manipulate a given temporal tensor
for an efficient query phase. In the query phase, performing Tucker decomposition
from scratch requires high computational cost and large space cost as the number
of queries increases. To avoid it, compressing a given tensor is inevitable to provide
fast processing in the query phase. Additionally, we consider that compressed results
need to contain local patterns that appear only in specific ranges. The preprocessing
phase of existing Tucker decomposition methods [37, 38, 26] fails to support high
efficiency of the query phase while maintaining local patterns. Then, how can we
compress a given tensor to deal with various time range queries? Our main idea is to

exploit a block structure: 1) carefully designating the form of a block, and 2) selecting a

111

Algorithm 12: Preprocessing phase of Zoom-TUCKER

Input: temporal tensor X € RI 2 xIv-1xIy

Output: result sets G, forn=1,...,N+1

Parameters: block size b

1: compute the number B = f%ﬂ of blocks

split X into block tensors X< € RN %t for j =1,... B

fori< 1toBdo
perform Tucker decomposition of X; &~ G x| (A<>) (D ... 5y (A<>)(N)
store each factor matrices (A<">)(") in the results set C,, for =1,..,N
store core tensor G<* in the result set Cyai1

end for

compression approach for each block. In this paper, we 1) split a given temporal tensor
into sub-tensors along the time dimension, and 2) leverage Tucker decomposition for
each sub-tensor. The idea allows ZooM-TUCKER to support an efficient query phase
and capture local patterns. Additionally, the preprocessing phase is extensible for new
incoming tensors by performing Tucker decomposition of them.

To capture local information, we split a given tensor along the time dimension.
Let the reconstruction error at each timestep ¢ be measured by performing Tucker
decomposition. The reconstruction error is defined as W where X(t) is an
input sub-tensor obtained at each timestep ¢ and X(¢) is the sub-tensor at timestep
t reconstructed from Tucker results. Figure 5.3 shows the reconstruction errors of
Stock dataset at each time point. Given a sub-tensor in a range that has relatively high
errors, performing Tucker decomposition of the sub-tensor (orange line in Figure 5.3)
provides lower errors than the preceding result computed from a whole temporal
tensor (blue line in Figure 5.3). This observation implies that decomposing a sub-
tensor allows us to capture local information, leading to low errors. Based on the
observation, we construct sub-tensors by splitting a temporal tensor along the time
dimension and perform Tucker decomposition of each sub-tensor. It provides lower

error than performing Tucker decomposition of a whole tensor on all the timesteps,

112

A —

S 08 1 208

= i

5 15

S 0.61 S 0.6]

5 Z

£ 04

[&] | o V.41 r T T
@ 0 I AR g A

NN NN NS NN DN\
Date Date

Figure 5.3: Reconstruction errors at each time point on Stock dataset. The blue line presents
reconstruction errors computed from a whole temporal tensor, while the orange line describes
reconstruction errors computed from a sub-tensor in a range. Performing Tucker decompo-
sition from a sub-tensor provides relatively low reconstruction errors.

by capturing local information.

To support an efficient query phase, we store the Tucker decomposition results
of sub-tensors. There are two benefits to leveraging Tucker decomposition in the
preprocessing phase: 1) saving the space cost due to the small preprocessed results
compared to the given tensor, and 2) enabling the query phase to exploit the mixed-
product property applicable to mixing matrix multiplication and Kronecker product,
ie, (AT®BT)(C®D) = (ATC®B!D). Computing (AT C® B D) requires less costs
than computing (A7 ® BT)(C ® D) when the size of the four matrices is I x J and
I >> J. The reason is that the size of ATC and B”D is only J x J while the size of
(AT @BT) and (C®D) is J? x I? and I x J?, respectively. We further present the
exploitation of this property to achieve high efficiency of the query phase in Sec-
tions 5.3.2.3 and 5.3.2.4.

Figure 5.4 presents an overview of the preprocessing phase. Without loss of gen-
erality, we assume that the temporal mode is the last mode (Nth mode). We express
a given tensor X as temporal block tensors X =/~ € RI <X xIv-ixb for j — 1 (%"W
(line 2 in Algorithm 12) where b is a block size and Iy is the dimensionality of the

time dimension. Then, we perform Tucker decomposition for each temporal block

113

Tucker result Tucker result Tucker result
0fx<1> 0fx<Z> 0fx<3>
(A<1>)(3) (A<2>)(3) A<3> ®3)

@@Tb)(l) <z>)(2) @|:(|A<3>)(2)
= &= L

g<2> g<3>

(A<1>)(1) (A<2>)(1) (A<3>)(1)

Figure 5.4: Preprocessing phase of ZooM-TUCKER. ZooM-TUCKER splits a temporal tensor
into temporal block tensors along the time dimension. Then, Zoom-TUCKER performs Tucker
decomposition for each temporal block tensor.

tensor X~ (line 4 in Algorithm 12), and store each factor matrix (A<">)" in a set
@, and the core tensor G~ in a set Cy4 (lines 5 and 6 in Algorithm 12). Since
the preprocessing phase is computed once and affects errors of the query phase, this
phase prefers an accurate but slow Tucker decomposition method rather than a fast
but approximate Tucker decomposition one. Specifically, we use Tucker-ALS, which

is stable and accurate, in this phase.

5.3.2 Query Phase

The objective of the query phase is to efficiently compute Tucker decomposition for
a given time range [f,,7,|. The query phase of ZooM-TUCKER operates as follows:

S1. Given a time range [t,7,], we load Tucker results (i.e., G<, (A<*)™) of tem-
poral block tensors X< for i = S, ..., E where S = [%] and E = [%] are the
indices of the first and the last temporal block tensors including #; and 7., re-
spectively.

S2. We adjust the Tucker results of X5~ and X~ to fit the range since a part of
them may not be within the given range.

S$3. Given the Tucker results of X< for i = S, .., E included in the range, ZOOM-
Tucker updates factor matrices by efficiently stitching the Tucker results.

S4. After that, ZooMm-TUCKER updates the core tensor using factor matrices updated

114

at Step S3 and the Tucker results.
S5. ZooMm-TuckeR repeatedly performs Steps S3 and S4 until convergence.
The most important challenge of the efficient query phase is how to minimize the
computational cost for updating factor matrices (Step S3) and the core tensor (Step S4)
of the time range while minimizing the intermediate data. To tackle the challenge, our
main ideas are to 1) elaborately decouple X(n) (®kN#nA(k)T> based on preprocessed
results, and 2) carefully determine the order of computation. We first give an objective
function and an update rule for the query phase (Section 5.3.2.1). Then, we describe

how to achieve high efficiency of Zoom-TUCKER in detail (Sections 5.3.2.2 to 5.3.2.4).

5.3.2.1 Objective function and update rule

In the query phase, our goal is to obtain factor matrices AM AW and core tensor
G for a given time range query [f,,.]. The query phase of ZooM-TUCKER alternately
updates factor matrices, and core tensor as in ALS. We minimize the following objec-

tive function as mode-n matricized form for a time range [t;,7,]:
Ly = X =AW G (@R AT 7 5.1

where X(n) is the mode-n matricized version of a tensor obtained in the time range
[t5,1.], and (}(n) is the mode-n matricized version of G. From the objective function (5.1),
we derive the following update rule for n-th factor matrix (see the proof in Sec-

tion 5.3.4.1):

Lemma 5.1 (Update rule). When fixing all but the n-th factor matrix, the following

115

Algorithm 13: Query phase of Zoom-TUCKER

Input: a time range [f;,7,], and Tucker result sets €, forn=1,....N+1
Output: factor matrices A" forn=1,..,N, and core tensor §
Parameters: tolerance €, and block size b
1: S« [¥]and E + [%]
2: load (A<*>)®) and G< fori =S, ..., E from € for k=1,...,N + 1
3: obtain (A<5>)™) and (A<E>)(™) by eliminating the rows of (A<5>)™) and (A<E>)W)
excluded in the range
4 (A<S>)(N) N Q<S>R<S>, (A<E>)(N) — Q<E>R<E>
5. (A<S>)(N) « Q<S>, 9<S> . 9<S> ><NR<S>, (A<E>)(N) « Q<E>’ and
9<E> « 9<E> XNR<E>

6: repeat
7: fork=1..N—-1do
8: update A®) by computing Equation (5.4) and orthogonalizing it with QR
decomposition
9: end for
10: update AY) by computing Equation (5.6) and orthogonalizing it with QR
decomposition

11: update core tensor G by computing Equation (5.7)

12: until the variation of an error is less than € or the number of iterations is larger than
the maximum number of iterations

13: return A® fork=1,....Nand §

update rule for the n-th factor matrix minimizes the objective function (5.1).

-1
n Y N X)) T n
AW X, (®k Al >> a7 <c<)) (5.2)
where C") € R'*/» of the n-th mode is given by
n) __ (3 N RKT (k)T
€t = Gy (2, AVTAW) 6, O

In contrast to naively computing Equation (5.2) with X(,,), ZooM-TuckeR efficiently
computes Equation (5.2) by exploiting preprocessed results obtained in the prepro-
cessing phase.

Before describing an efficient update procedure, we introduce a useful lemma

(see the proof in Section 5.3.4.2).

116

Lemma 5.2. LetS € R/ and 8’ € R/**J be N-order tensors, and U™ and V")
forn=1,...n—1,n+1,...,N be matrices of size I X J. Assume our goal is to compute

the following equation:

Sy (@, UTVO) ST (5:3)
where S, and S (n) are the mode-n matricized version of 8§ and 8/, respectively. Naively
computing Equation (5.3) by first computing ®],:;énU(k)TV(k) and multiply with the re-
maining matrices requires O(NLJ* +J*N +JN*1) time and O(J?N + N1J) space. In-
stead, exploiting Equation (2.4) enables to compute Equation (5.3) efficiently: O(NIJ? -
NJNTYY time and O(JN + NIJ) space. O

Foralln=1,...,N, c® s computed based on Lemma 5.2, by replacing S(n), U(k), V(k),
and S’(n) with G(n), A(k), A(k), and G(n), respectively.

5.3.2.2 Adjusting edge blocks of time range query (Step S2)

:x:<5> :x:<E>

Before updates, we adjust the Tucker results of and , the temporal block
tensors corresponding to f#; and 7, of the given time range [f,,7,], respectively. The
temporal factor matrices (A<5>)(V) of <5 and (A<E>)™) of X<E> may contain
the rows that are not included in the range (see Figure 5.5(a)). To fit to the given time
range, we need to remove the non-included rows of (A<5>)™) and (A<F>)™)_ and
adjust the Tucker results of X5 and X<£~.

Let p be S or E. For the temporal factor matrix (A<P>)() of X <P in the range,
Zoom-TUCKER obtains the manipulated temporal factor matrix (A<P>)) by remov-

ing the rows of (A<P>)™) that are not included in the time range (line 3 in Algo-

rithm 13). Next, we perform QR decomposition to make (A<?>)™) maintain column-

117

to—1 - Out of t

(ASS>)(M) L5 > e 41 AM[s]
ts+ 1 :
(A<i>)(N) : : | <j AWM
te» 11 t
(A<E>) ™ t Out of ¢

et 1

(a) Example of adjustment (b) Example of division

Figure 5.5: Examples of adjustment (Section 5.3.2.2) and division (Section 5.3.2.3).
orthogonality (line 4 in Algorithm 13); we use (Q<?>)") as the temporal factor ma-
trix of X <~ and update the core tensor G~ + G~ x (R<P>)V) where (Q<P>)V)

and (R<P>)(™) are the results of QR decomposition (line 5 in Algorithm 13).

5.3.2.3 Efficient update of factor matrices (Step S3)

We present how to efficiently update the factor matrix of the non-temporal modes
and the temporal mode.

Updating factor matrix of non-temporal modes. Consider updating the n-
th factor matrix, which corresponds to a non-temporal mode. A naive approach is
to reconstruct X(n) from the Tucker results of the preprocessing phase and compute
Equation (5.2). However, it requires large time and space costs since the reconstructed
tensor is much larger than the preprocessed results. Our main ideas are to 1) elabo-
rately decouple X(n) (®§€V n A(k)) block by block using the preprocessed results, and 2)
carefully determine the order of computations, which significantly reduces time and
space costs compared to the naive approach. We derive Equation (5.4) in Lemma 5.3

to update A" (see the proof in Section 5.3.4.3).

Lemma 5.3 (Updating factor matrix of a non-temporal mode). Assume that X(n) is

replaced with the preprocessed results (i.e, (A<>)") and G<'>). Then, the following

118

equation is equal to Equation (5.2) in Lemma 5.1 for n-th mode:
£ -1

A(n) — Z(A<z>)(n) (B<i>)(n) <C(n)> (5.4)

i=S
where the i-th block matrix (B<">)(") of the n-th mode is
(B<7)" =G5> ((A< NTEM) (®k#n (A RTR <k>>) Gl (5.5)

and C™ s defined in Lemma 5.1. (A<">)®) is the k-th factor matrix of the temporal

block tensor X<, and G(<n")> is the mode-n matricized version of the core tensor o <i>
AW[i] is a sub-matrix of the temporal factor matrix A%™) such that,
AM)[8]
— AN
AMI(E]
To compute (A<>)YNMT AN [} we split AN) into sub-matrices AN[i] (1=, ..., E) along

the time dimension (see Figure 5.5(b)); the size of AN [i] fori=S+1,....E —1isb x Jy,
and that of AN [S] and AN[E] is (b — rg) x Jy and (b— rg) x Jy, respectively, where

rs and rg are the number of the rows removed with respect to t; and t,, respectively. [

ZooM-TuckeR efficiently updates A" with Equation (5.4). ZooM-TUCKER min-
imizes the intermediate data and reduces the high computational cost by indepen-
dently computing C) and (B<*>)(fori =, ..., E. Note that (B<*>)(") fori = §, ..., E
is computed based on Lemma 5.2, by replacing S,), U®, VK and S’(,,) with G(<n")>,
(A<=)0) AR (or AM[i]), and G (n)> Tespectively. Next, we obtain A™ by summing
up the results of (A<’>)(”) (B<i>)() (C(”))f1 fori=S,...,E. For orthogonalization,
we then update A" < Q™ after QR decomposition A — QUR™ (line 8 in Algo-

rithm 13).

119

Updating factor matrix of temporal mode. The goal is to update the factor

matrix A®)

of the temporal mode by using the preprocessed results instead of X(N).
Reconstructing X(N) requires high space and time costs in Equation (5.2). Based on
our ideas used for the non-temporal modes, we efficiently update AY) by computing

Equation (5.6) in Lemma 5.4 (see the proof in Section 5.3.4.4).

Lemma 5.4 (Updating factor matrix of temporal mode). Assume that f((w) is replaced
with the preprocessed results (i.e., (A<>)") and G). Then, the following equation is

equal to Equation (5.2) in Lemma 5.1 for the temporal mode:

(A<S>)(N) (B<S>)(N)
- —1
AW : (C<N>) (5.6)

(A<E>)(N) (B<E>)(N)

where the i-th matrix (B<">)N) € RN fori =S, ... E is

(B<i>)(N) _ G(<1\;)> <®iv;11 (A<i>)(k)TA(k)> G(TN)

(A<>)®) js the k-th factor matrix of X<, G(<]\’,)> is the mode-N matricized version of

the core tensor of X", and C™V) is equal to G(N) (®g;11A(k)TA(k)) G(TN). (]

We obtain A™) by using (CV)~!, (A<>)N) and (B<>)™) for i = §,...,E.

(V) by independently computing C?) and (B<">)(™)

Zoom-TuckeR efficiently updates A
fori=3S,...,E. (B<")) is efficiently computed based on Lemma 5.2, by replacing
St U®, v®) and S (n) With G(<]\‘,)> (A<i>)(k), A% and G(N), respectively. For or-
thogonalization, we update AY) <~ Q™) after QR decomposition AN — QWIRW)

(line 10 in Algorithm 13).

120

5.3.2.4 Efficient update of core tensor (Step S4).

At the end of each iteration, ZooM-TUCKER updates the core tensor using the factor
matrices: G(N) +— AW)TX(N) (®§€V;111§(k)) (mode-N matricization of line 8 in Algo-
rithm 1). We efficiently compute the core tensor by avoiding reconstruction of X(N)
and carefully determining the order of computation. We replace 5(() with the prepro-
cessed results and refine the equation with block decoupling and the mixed-product
property (see Equation (5.9) in Section 5.3.4.4).

G + <i<A<N>Tm><A<">><N>G§é>> (b <A<f>><k>TA<k>)> 67)

i=S

With Equation (5.7), ZooM-TUckeR efficiently updates G, reducing the intermediate
data and the computational cost. For each i, Zoom-Tucker computes (AN [i])(A<?>)N)
G(<]\’,)> (2R (A<i>)OT A(K)) after transforming it into n-mode products as in Equa-
tion (2.4). After that, Zoom-TUCKER obtains G(N) by summing up the results and re-

shape it to the core tensor S (line 11 in Algorithm 13).

5.3.3 Analysis

We analyze the time and space complexities of Zoom-TUCKER in the preprocessing
phase and the query phase. We assume that/ =1) = ... =Iy_j,andJ =J; = ... = Jy.
M is the number of iterations, /|, ;| =1, —#;+ 1 is the length of a time range query,
N is the order of a given tensor, [is the dimensionality, b is the block size, B is the
number of blocks, and J is the rank. All proofs are summarized in Sections 5.3.4.5
to 5.3.4.8.

Time complexity. We analyze the computational cost of Zoom-TUCKER in the

preprocessing phase and the query phase.

Theorem 5.1. The preprocessing phase takes O(MNIN~'JbB) time.

121

Table 5.2: Time and space complexities of Zoom-TUCKER and other methods for a time range
[fs,t.]. The optimal complexities are in bold. 1, J, M, N, and l[tm,g] are described in Section 5.3.3.
S is a sampling rate for MACH.

Algorithm ‘ Time Space
ZooM-TUCKER O (I, IMN2J?/b) O(ly, (NLJ /b)
D-Tucker [26] O(ly, () IN2MNJ?) Ol) IV 2T)

Tucker-ALS O(ly, IV 'MNJ) O(ly, 1N

MACH [37] O(Sly, . IN"'"MNJ) O(Sly, (1N 1)

RTD [36] O(ly, 1V 'MN) Oty 1N)
Tucker-ts [38] | O(ly, IV 'N+MNLIY) O(ly, 1N+ NLIY)
Tucker-ttmts [38] | O(lj,) IV "N +MNIJ*N=2) O(l, (N~ + NLIN)

Theorem 5.2. Given a time range query [t;,1,], the query phase of ZooM-TUCKER takes

O (MNP (145 + 252)) time 0

Space complexity. We provide analysis for the space cost of ZooM-TUCKER in

the preprocessing phase and the query phase.

Theorem 5.3. Zoom-TUcKER requires O (NIJ([X]) +IyJ) space to store the Tucker

results in the preprocessing phase. O

Theorem 5.4. Given a time range query |t;,t,], ZooMm-TUCKER requires O (NIJ ((l['sb"'” 1

+J l[”’”o space in the query phase. .

Table 5.2 shows the time and space complexities of ZooM-TUCKER and competi-
tors for a given time range query [t;,.]. The time and space complexities of Zoom-
TuckeR mainly depend on [and [, ;. We also note that the block size b reduces
the complexities of Zoom-TuckER. We compare the time and space complexities of
ZooM-TuckEeRr with those of the second-best method, D-Tucker. For both time and
space complexities, the result of dividing the complexity of Zoom-TUCKER by that
of D-Tucker is % ZooM-TUCKER has better time and space complexities than D-
Tucker since IV =3b is larger than N in real-world datasets; for example, in the experi-

ments, we use 50 as the default block size b while the order of the real-world datasets

122

is 3 or 4. As b increases, the space complexity of the preprocessing and the query
phases, and the time complexity of the query phase decrease; however, a large block
size b can provoke a high reconstruction error for a narrow time range query since
the preprocessing phase with the large b cannot capture local information. In Sec-
tion 5.4.5, we experimentally find a block size that enables the preprocessing phase
to capture local information with low reconstruction errors for narrow time range

queries.
5.3.4 Proofs of Lemmas and Theorems

5.3.4.1 Proof of Lemma 5.1

Proof. After fixing all factor matrices except for the n-th factor matrix, the partial

derivative of the Equation (5.1) with respect to the factor matrix A" is as follows:

= 2% (2}, AW)G],) + 28006, (=), AVTAY) 6,

oL . . %
We set - A((:)) to zero, and solve the equation with respect to the factor matrix A"):

5.3.4.2 Proof of Lemma 5.2

Proof. A naive approach computing Equation (5.3) is to explicitly compute the entire

Kronecker product (®§€V #nU(k)TV(")> of the size J¥~! x J¥~1. We compute matrix

123

multiplication between the preceding result S,y and S'(,). Therefore, the time and
space complexities are O(NIJ? 4 J?N 4+ J¥*1) and O(J?N + N1J), respectively.

We compute Equation (5.3) using n-mode product instead of Kronecker prod-
uct. Let Z(,) = S, (k#nU(k)TV(k)) be equal to I(”)S() (®k#nU(k)TV(k)) where
I € R’*/ is an identity matrix. Then, we transform Z into Equation (5.8) using
Equation (2.4).

Z =8 x (U(I)TV(I))T X (U(nfl)TV(nfl))T
(5.8)

X I(n) Xt 1 (U(n+1)Tv(n+l))T C XN (U(N)TV(N))T

Based on Equation (5.8), we compute Equation (5.3) in the following order: 1) UkTy®)
fork=1,..,n—1,n+1,..,N, 2) Z,), and 3) Z S’T) Therefore, the computational
costis O(NIJ? +NJN*1). In addition, the size of intermediate data is always no larger
than JV so that the space complexity is O(JY +NIJ). O

5.3.4.3 Proof of Lemma 5.3

Proof. From Equation (5.2), we carefully decouple f((n) (@5{\’ n A(k)) block by block so

that we represent the term as a summation of block matrices:

Al — [X(<n§>) ..X(<nf)?>} : ® (®§<V;e_l‘&(k)> G&) (C(n))il

(ZX<,> (AMp@ (2, A<k>))) &, (C(")>_]

124

Next, we express i-th block matrix X(<ni)> as the result (A<">)(")G(<ni)> ((A<i>)(N)T

® (®2;an (A<i>)(k>T)) obtained in the preprocessing step.

E
Al — Z (A<z>)(n) (<nl)> ((A<z>)(N)TA(N) i ® <®§c\;znl (A<z>)(k)TA(k)))
i=S
~ -1 E . . -1
% G&) (C(n)) _ (Z(A<l>)(n) (B<1>)(n) (C(n)))
i=S
Note that AV)[i] is described in Lemma 5.4. O

5.3.4.4 Proof of Lemma 5.4

Proof. From Equation (5.2), we decouple X(N) for updating N-th factor matrix. We
first re-express X(N) (®],:]:_111§(k)) using temporal block tensors X< for i = §, .., E as

follows:
X (205 AW)

Ko (2p2/A0) = :
X

3 (ehAw)

<i>

™) with the tucker results obtained at the preprocessing phase.

Then, we replace X

)
Xw) <®2V;11A(’“)> ~ : (5.9)

(A<E>)(N)G(<NE)> (2N (A<E>)WTAW)

(A<S>)(N)G<S> (®§(V;11 (A<S>)(k)TA(k))

125

Next, we obtain the following equation by inserting the right term of the above equa-

tion into Equation (5.2):

(A<S>)(N)G<S> (®sz—11 (A<S>)(k)TA(k)) G(TN)

) (N) .
AN — : <C(N))
(A<E>)(N)G(<1\g> (®21;11 (A<E>)(k)TA(k)) G(TN)
(A<S>)(N) (B<S>)(N)
_ : (c™) -
(A<E>)(N) (B<E>)(N)
(A<5>)N) and (A<E>)N) are adjusted to fit to a range [f;,7,]. O

5.3.4.5 Proof of Theorem 5.1

Proof. We split a tensor X into B temporal block tensors X<, and then perform
Tucker decomposition of X< for i = 1, .., B. Since we use Tucker-ALS in the prepro-
cessing phase, the time complexity for each temporal block tensor X< is O (MNIV~'Jb).

Therefore, the preprocessing phase takes O(MNIY~'JbB) time. O

5.3.4.6 Proof of Theorem 5.2

Proof. The time complexity of the query phase depends on updating factor matrices

and core tensor. Updating a factor matrix or core tensor takes O (J zl[,“,e} (1 + % + N JZH))

time. Therefore, the total time complexity is O (MNJ 21[,“,6] (1 + % + & JZH)) which
contains the time complexity of updating factor matrices and core tensor, the number

of iterations, and the number of factor matrices. O

126

Table 5.3: Description of real-world tensor datasets.

Dataset Dimensionality Length /; ;) of Time Range Summary
Boats! [92] 320 x 240 x 7000 (128,2048) Video
Walking Video [38] 1080 x 1980 x 2400 (128,2048) Video
Stock® 3028 x 54 x 3050 (128,2048) Time series
Traffic* [96] 1084 x 96 x 2000 (64,1024) Traffic volume
FMA’ [94] 7994 x 1025 x 700 (32,512) Music
Absorb® 192 x 288 x 30 x 1200 (64,1024) Climate

5.3.4.7 Proof of Theorem 5.3

Proof. For the mode-N, summing up the size of the factor matrices of the time dimen-
sion is equal to IyJ. For each mode n # N, there are B factor matrices, for the n-th
mode, of size O(1J) where B = %’" is the number of blocks. Then, the space complexity

is O(NLJ([27) + InJ). O

5.3.4.8 Proof of Theorem 5.4

Proof. Given a time range [t;,?,], summing up the size of the factor matrices of the
time dimension is equal to /|, ;) X J; the size of the factor matrix of a non-temporal
mode is X J, and the number of block is equal to [I[“T'”] or ((I[“T’e]}) + 1. The size
of the block results used in the query phase is O(N1J(fl["T’eW) + 1, 1,)J)- By carefully
stitching the block results, intermediate data are always smaller than the block results.
Therefore, the space cost of ZooM-TUCKER is O (NIJ ((I[“T’e]l) —i—Jl[,_ﬁte]) for a given

time range [t,7,). O

5.4 Experiment

We present experimental results to answer the following questions.

Q1 Performance Trade-off (Section 5.4.2). Does ZooM-TUCKER provide the best

trade-off between query time and reconstruction error?

127

Q2 Space Cost (Section 5.4.3). What is the space cost of ZooMm-TUCKER and com-
petitors for preprocessed results?

Q3 Query Cost (Section 5.4.4). How quickly does ZooM-TUCKER answer various
time range queries?

Q4 Effects of the block size b (Section 5.4.5). How does a block size b affect
query time and reconstruction error of ZooM-TUCKER?

Q5 Discovery (Section 5.4.6). What pattern does Zoom-TUCKER discover in dif-

ferent time ranges?

5.4.1 Experimental Settings

Machine. We run experiments on a workstation with a single CPU (Intel Xeon E5-
2630 v4 @ 2.2GHz), and 512GB memory.

Dataset. We use six real-world dense tensors in Table 5.3. Boats! [92] and Walk-
ing Video? [38] datasets contain grayscale videos in the form of (height, width, time;
value). Stock dataset® contains 5 basic features (open price, high price, low price,
close price, trade volume) and 49 technical indicators features of Korea Stocks. Stock
dataset has the form of (stock, features, date; value). The basic features are collected
daily from Jan. 2, 2008 to May 6, 2020. Traffic dataset* [96] contains traffic volume in-
formation in the form of (sensor, frequency, time; measurement). FMA dataset® [94]
contains music information: (song, frequency, time; value). We convert a time series
into an image of a log-power spectrogram for each song. Absorb dataset® is about ab-

sorption of aerosol in the form of (longitudes, latitudes, altitude, time; measurement).

Thttp://changedetection.net/
https://github.com/OsmanMalik /tucker-tensorsketch
Shttps://datalab.snu.ac.kr/zoomtucker
4https://github.com/florinsch/BigTrafficData
https://github.com/mdeff/fma
Shttps://www.earthsystemgrid.org/

128

http://changedetection.net/
https://github.com/OsmanMalik/tucker-tensorsketch
https://datalab.snu.ac.kr/zoomtucker
https://github.com/florinsch/BigTrafficData
https://github.com/mdeff/fma
https://www.earthsystemgrid.org/

Competitors. We compare Zoom-TUCKER with 6 Tucker decomposition meth-
ods based on ALS approach. Zoom-TuckER and other methods are implemented in
MATLAB (R2019b). We use the open sourced codes for 4 competitors: D-Tucker’,
Tucker-ALS [97], Tucker-ts®, and Tucker-ttmts®. For MACH, we run Tucker-ALS in
Tensor Toolbox [97] for a sampled tensor after sampling elements of a tensor; we
use our implementation for a sampling scheme. We use the source code of RTD [36]
provided by the authors.

Parameters. We use the following parameters for experiments:

« Number of threads: we use a single thread.
« Max number of iterations: the maximum number of iterations is set to 100.
« Rank: we set the dimensionality J, of each mode of core tensor to 10.

+ Choosing a time range query: we randomly choose a start time #; of a time
range, and compute 7, = fs+/}; ;) — | where [, ;| is the length of the time range;

we choose [|; ;) among the sets described in Table 5.3.

 Block size b: we set b to 50 except in Section 5.4.5.

VIIXIE-IISI

» Tolerance: the iteration stops when the variation of the error T [29]
is less than € = 1074,
Other parameters for competitors are set to the values proposed in each paper. To
compare the running time, we run each method 5 times, and report the average.
Implementation details. In the time range query problem, Zoom-TUCKER, D-
Tucker, and MACH preprocess a given tensor, and then perform Tucker decompo-
sition for a time range query using preprocessed results included in the range. In

contrast, Tucker-ALS and RTD perform Tucker decomposition using a sub-tensor

"https://datalab.snu.ac.kr/dtucker/
8https://github.com/OsmanMalik /tucker-tensorsketch

129

https://datalab.snu.ac.kr/dtucker/
https://github.com/OsmanMalik/tucker-tensorsketch

Zoom-Tucker (proposed) EZZ D-Tucker E= MACH =& Input Tensor

—
o
T

—_
S
O

Space Cost (MB)

Figure 5.6: Space cost for storing preprocessed results. Input Tensor corresponds to the space
cost of Tucker-ALS, Tucker-ts, Tucker-ttmts, and RTD. ZooM-TUCKER requires up to 230x
less space than competitors.

included in a time range query. Although Tucker-ts and Tucker-ttmts have a prepro-
cessing phase, they also perform Tucker decomposition from scratch for a time range
query since there is an inseparable preprocessed result along the time dimension.

Reconstruction error. Given an input tensor X and the reconstruction X from

[l

. Re-
[RYH

the output of Tucker decomposition, reconstruction error is defined as

construction error describes how well the reconstruction X of Tucker decomposition

represents an input tensor X.

5.4.2 Trade-off between Query Time and Reconstruction

Error

We compare the running time and reconstruction error of Zoom-TUckER with those
of competitors for various time ranges. For each dataset, we use the narrowest and
the widest time ranges among the ranges described in Table 5.3. Figure 5.2 shows
that ZooM-TUCKER is the closest method to the best point with the smallest error
and running time. ZooM-TUCKER is up to 171.9x and 111.9x faster than the second-

fastest method, in narrow and wide time ranges, respectively, with similar errors.

130

Ralks L

o

5.4.3 Space Cost

We compare the storage cost of ZooMm-TUcKER with those of competitors for stor-
ing preprocessed results. Note that memory requirements for a time range query are
proportional to the storage cost since preprocessed results or an input tensor is the
dominant term in the space cost. Figure 5.6 shows that Zoom-TUCKER requires the
lowest space; ZooM-TUCKER requires up to 230x less space than the second-best
method D-Tucker. ZooM-TUCKER has more compression rate on the 4-order tensor,

Absorb dataset.

5.4.4 Query Cost

Figure 5.7 shows that ZooM-TUCKER outperforms competitors for all time ranges;
ZooM-TUCKER is up to 171.9x faster than the second-fastest method for the nar-
row time ranges. ZooM-TUCKER is up to 111.9x faster than competitors for the wide
time ranges. In addition, ZooMm-TUCKER exhibits near-linear scalability in terms of

the length of a time range.

131

“(Spu029s 000z Uey} IOW SINE}) W} JO JNO :'}'0°0 "dFUEI WIT} B JO YISUS[3} JO SWLID} UT AJI[Iqe[eds
Teaur] Surpraoid o[rym si03rpeduwod uey) 193sef X6 1,1 03 dn ST ¥EON]-W007Z ‘soranb aFuer sy snorrea 10y awr} A19N() :£°G 2I3L]

©1ep qI0sqy (3) e1ep VINA (9) eyep oygeIl, (p) eiep Yo01S (9) ©1ep 03pIA (q) eiep jeoq (v)
y18ua Aserip aSuey y18ua Asarip aSuey y18ua Asenip aSuey Yi8ua Asenp aSuey y18ua Asanpy a8uey y38ua Aserip aSuey

Vol el¢ 9% sel 19 A A ve0r @1¢ 9% sel 19 QW0Z V20T ¢l¢ 99T Sal QPO F01 gl 9% sel SF0C FEOT €IS 99% ol
X508 ? xn,e& » xH,mﬁ - x:.ﬁ 01 ® » z
. T 5 . S ¥ 5 |y E £ E
X9 'b¥ Y EX X6TIT T 3 w 1 m T m m
X 3 @ T @ @ @ -

X ?, A
—— oS 5 5 o F g g
3 5101 3 o1 3 3 o 3 3
B B B o g 2 7
IR o 3 o o a8 a3 k3
@ oo 018 o1 i 01

aly —— SjwP-IdPN] b s}aPn] o HOVW —B— LB EN Rl [—— Jpn]-q (pasodoud) 1axon]-wooz

]
F

&k 5

1

o

-'_
"IT

132

5.4.5 Effects of Block Size b

We investigate the effects of block size b on running time and reconstruction error
of Zoom-TuckeR. We use block sizes 10, 25, 50, 100, and 200 on Stock, Traffic, and
Absorb datasets. As shown in Figures 5.8(a) to 5.8(c), there are trade-off relationships
between running time and reconstruction error for narrow time range queries. In
Figures 5.8(d) to 5.8(f), the running time of ZoomM-TUCKER is inversely proportional
to b for a wide range query while the reconstruction error is not sensitive to b. A
large b prevents the preprocessing phase from capturing local information so that
it is challenging to serve narrow time range queries. For wide time range queries,
local information has little effect on reconstruction errors since capturing widespread
patterns is more beneficial in reducing errors. Therefore, we select 50, which is the
largest value providing small errors for narrow time range queries, for the default

block size to preprocess all datasets in other experimental sections.

133

"S9SBIIOUT 9ZIS ¥OO0[q SB ‘YINUI 9FULLD JOU OP SIOLId Y] I[IYM ISBIIIIP
sawm) Juruuni atf) ‘sationb a3uer awry apim 10 (J9°p) ‘sor1onb oFURI SWIT) MOIIRU I0] I0IId UOTIONIISUOII PUR W} SUTUUNT US2MId]
sdiysuonje[a1 Jo-aper) a1e a1dy[, (9°qe) 'sdagsewun) g7 = | + 7 — 27 s a3uer awin} Jo Y33ua[a1f) sueaw (gZ1) <39 ‘safuel awr) Jo Y3ua|
a} Juasaxdar sureu ejep 9y} 19} SIAQUINN] ‘S}9seIep qI0Sqy pue OUJel], Yo01g U0 g dZIS Y00[q 0} }02dsar YIIM AJATIISUS :§'G 2INS1]

(F2or) e3ep qI0sqVy (3) (P2OT) eyep ougerl, (3) (8%07) BIBP 30035 (P) (F9) B3ep qI0sqy (9) (¥9) eyep oygeil, () (821) erep oI5 (e)

(q) 2215 0|9 (q) 3215 >poIg (q) sz15 o)y (q) 2215 0|9 (q) 2218 0|9 (9) sz15 32019

01 0o 01 01 Ol e 01 01 01 101 01 Ol ey

=
<
S
©
<

=

0 200

v
<
=
n
<
S
o
<
S

bt}
s

¥|
1o B LY = g Mg .
([F g TN -¥- VT y v ’ v N

v

)
2
=3

L

v voo{ "V

n

6L°0

n
=
S

(99s) awi] Sutuuny

(99s) awi| Suiuuny
)

(09s) awir] Suluuny

(09s) awi| Suiuuny
~
S
S

(09s) awit| Sutuuny

)
=3
=3
o
I
<
<
=
~

=
)
=]

S
o
S

10113 UOIINIISUOIY
10113 UOIIINIISU0IDY
10413 UOIIINIISUOIDY
(09s) awi| Suiuuny
9
S
S
!
4
/
/
=
S
1013 UOIIINIISUOINY
=
S
S
10113 UOI}ONIISUOIY
<
S
10113 UOIINIISUOIDY

10113 UOIINIISUOIDY = §F= awi] Surtuuny

134

@ @ @ Mean closed prices of all the stocks at each day

\ W

N
=
—~
=
g
=
2
[=9
>
D

8o
o

Difference Ratio
[S)

1.8 Date Date Date
@® (Sep.-Oct., 2014) (@ (May-Jun., 2018) (@ (Mar.-Apr., 2020)
AN 3e® (Issue) Threat of (Issue) Regional (Issue) Characterized
Date military conflict election of South COVID-19 as a
Korea pandemic

Figure 5.9: Anomalous two-month ranges and their related events, found by Zoom-TUCKER.
5.4.6 Discovery

On Stock dataset, we discover interesting results by answering various time range
queries with ZooM-TUCKER.

Finding anomalous ranges. The goal is to find narrow time ranges that are
anomalous, compared to the entire time range. For the goal, we select every consec-
utive two-month interval from Jan. 1, 2008 to Apr. 30, 2020, perform Tucker decom-
position for each of the intervals using ZooM-TUCKER, and find anomalous ranges
that deviate the most from the entire ranges. Given a two-month range r, and its cor-

responding sub-tensor X, we compute the anomaly score for r using the difference

1915

REEAE where Y and Z are the sub-tensors for r reconstructed from the Tucker
Badl

ratio

results of 1) the entire range query, and 2) the two-month range query, respectively.
The leftmost plot of Figure 5.9 shows the difference ratios and the top three
anomalous ranges where the threshold indicates 2 standard deviations from the mean.
The right three plots of Figure 5.9 show that the three anomalies follow the similar
plunging pattern of prices from issues affecting the stock market.
Analyzing trend change. We analyze the change of yearly trend of Samsung
Electronics in the years 2013 and 2018. For each of the range (year 2013 or 2018), we

perform ZooM-TuckERr and get the feature matrix A(!) each of whose rows contain

135

33 Smartphone-related stocks, 46 Semiconductor-related stocks

(\ Distant
Mean distance = (.78 Mean distance = 0.95 1.0
N \Y

Mean distance = 0.96 an distance = 0.75

Me . 05
|
2018
Close

k Each cell denotes the distance between the rows of the factor matrix
AM), corresponding to Samsung Electronics and a stock

Figure 5.10: Cosine distance between feature vectors of Samsung Electronics and other stocks
related to smartphones or semiconductors in 2013 and 2018. Zoom-TUCKER helps capture the
clear change of the trend, where Samsung Electronics is closer to smartphone-related stocks
in 2013, but to semiconductor-related stocks in 2018.

the latent features of a stock. We also manually pick 33 smartphone-related stocks
and 46 semiconductor-related stocks, and compare the cosine distance between the
latent feature vectors of each stock and Samsung Electronics.

Figure 5.10 shows the result. Note that there is a clear change of the distances be-
tween year 2013 and 2018: Samsung Electronics is closer to smartphone-related stocks
in 2013, but to semiconductor-related stocks in 2018. This result exactly reflects the
sales trend of Samsung Electronics; the annual sales of its smartphone division are
3.7x larger than those of its semiconductor division in 2013, while in 2018 the annual
sales of its semiconductor division are 30% larger than those of its smartphone divi-

sion. ZooM-TUCKER enables us to quickly and accurately capture this trend change.

5.5 Summary

In this work, we propose ZooM-TUCKER, an efficient Tucker decomposition method
to discover latent factors in a given time range from a temporal tensor. ZooM-TUCKER
efficiently answers diverse time range queries with the preprocessing phase and the

query phase. In the preprocessing phase, ZooM-TUCKER lays the groundwork for an

136

efficient time range query by compressing sub-tensors along time dimension block
by block. Given a time range query in the query phase, ZoomM-TUCKER elaborately
stitches compressed results reducing computational cost and space cost. Experiments
show that Zoom-TUCKER is up to 171.9x faster and requires up to 230 less space
than existing methods, with comparable accuracy to competitors. With Zoom-TUCKER,
we discover interesting patterns including anomalous ranges and trend changes in a
real-world stock dataset. Future research includes extending the method for sparse

tensors.

137

Chapter 6

Future Works

In this section, I describe research plans that extend my works of this thesis. My fu-
ture works are to 1) devise an efficient method for an irregular tensor in an online
streaming setting and 2) propose tensor algorithms integrated with deep learning
techniques. With the following plan, I look forward to understanding complex phe-

nomena inherent in the tensors.

6.1 Efficient Online Streaming Method for an Irreg-

ular Tensor

How can we efficiently analyze an irregular tensor in an online streaming setting?
Many real-world irregular tensors are dynamically collected in nature where an ir-
regular tensor consists of matrices whose columns have the same size but rows have
different sizes. Specifically, the row sizes of existing matrices and the number of ma-
trices grow over time. However, many existing methods are inefficient in the online
streaming setting, and the main challenge is to avoid computations involved with old
data accumulated over time. To address this problem, my future research plan is to

devise an efficient method for an irregular tensor in an online streaming setting.

138

6.2 Novel Tensor Method with Deep Learning Tech-

niques

How can we effectively analyze real-world tensors? How can we find accurate factor
matrices of tensor decomposition? Recent representative deep learning architectures
have improved the performance in various applications. However, tensor data are
relatively far from deep learning, compared to graph, image, and text data processed
using Graph Convolutional Network (GCN), Convolutional Neural Network (CNN),
and Transformer, respectively. Although a few tensor algorithms [117, 118, 119, 120]
use deep learning techniques, there are still a lot of problems to be addressed for in-
tegrating a tensor algorithm with deep learning architectures. Since they focus only
on using a deep learning technique to fuse factor vectors, they fail to extract factor
vectors of high quality. Yang [121] et al. extract factor vectors by contrastive learn-
ing with data augmentation, but there is room for extracting better factor vectors by
further improving the performance of data augmentation. My research direction is
to find the characteristics inherent in real-world tensors and then develop a tensor
algorithm integrated with deep learning techniques which fully employ the charac-

teristics.

139

Chapter 7

Conclusion

In this dissertation, I develop efficient tensor decomposition methods for regular and
irregular tensors in real-world settings. In addition, my proposed method successfully
deals with diverse time ranges in a temporal tensor.

First, I propose D-Tucker, a fast and memory-efficient Tucker decomposition
method for regular tensors. D-Tucker approximates a given tensor and computes
Tucker decomposition only using the approximated results. I experimentally show
that D-Tucker is much faster than existing methods while requiring less space than
them.

Second, I propose DPAR?2, a fast and scalable PARAFAC2 decomposition method
for irregular tensors. Similar to D-Tucker, DPAR2 reduces numerical computations
and intermediate data by approximating an irregular tensor and computing PARAFAC2
decomposition with the approximated results. In addition, it maximizes multi-core
parallelism by considering irregularity. With these ideas, DPAR2 achieves much faster
and more scalable than existing PARAFAC2 decomposition methods.

Finally, I propose ZooM-TUCKER, a fast and memory-efficient Tucker decom-
position method for diverse time ranges ZooMm-TUcKER effectively approximates a
given tensor before time range queries are given. Then, it answers diverse time range
queries quickly and memory-efficiently by carefully dealing with the approximated
results and exploiting fruitful mathematical techniques. Through extensive experi-

ments, I show that Zoom-TUCKER answers diverse time range queries more efficiently

140

than existing Tucker decomposition methods.

In future works, I will develop more powerful tensor algorithms based on the
knowledge found in previous works. My future directions are to develop an efficient
method for an irregular tensor in an online streaming setting, develop tensor algo-
rithms with deep learning techniques (e.g., contrastive learning), and generalize ten-

sor decomposition.

141

(1]

(2]

(5]

(7]

References

J. Jang and U. Kang, “Dpar2: Fast and scalable PARAFAC2 decomposition for
irregular dense tensors,” in 38th IEEE International Conference on Data Engi-
neering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022, pp. 24542467,
IEEE, 2022.

L. Perros, E. E. Papalexakis, F. Wang, R. W. Vuduc, E. Searles, M. Thompson, and
J. Sun, “Spartan: Scalable PARAFAC2 for large & sparse data,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pp. 375-384, ACM, 2017.

A. Afshar, L. Perros, E. E. Papalexakis, E. Searles, J. C. Ho, and J. Sun, “COPA:
constrained PARAFAC2 for sparse & large datasets,” in Proceedings of the 27th
ACM International Conference on Information and Knowledge Management,
CIKM 2018, Torino, Italy, October 22-26, 2018, pp. 793-802, ACM, 2018.

K. Yin, W. K. Cheung, B. C. M. Fung, and J. Poon, “Tedpar: Temporally depen-
dent PARAFAC? factorization for phenotype-based disease progression mod-
eling,” in Proceedings of the 2021 SIAM International Conference on Data Mining,
SDM 2021, Virtual Event, April 29 - May 1, 2021 (C. Demeniconi and L. Davidson,
eds.), pp. 594-602, SIAM, 2021.

J. Oh, K. Shin, E. E. Papalexakis, C. Faloutsos, and H. Yu, “S-HOT: scalable high-
order tucker decomposition,” in Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United
Kingdom, February 6-10, 2017, pp. 761-770, ACM, 2017.

H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li, “A tensor-based
method for missing traffic data completion,” Transportation Research Part C:

Emerging Technologies, vol. 28, pp. 15-27, 2013.

S. Oh, N. Park, L. Sael, and U. Kang, “Scalable tucker factorization for sparse

tensors - algorithms and discoveries,” in 34th IEEE International Conference on

142

Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pp. 1120-1131,
IEEE Computer Society, 2018.

D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using ma-
trix and tensor factorizations,” ACM Trans. Knowl. Discov. Data, vol. 5, no. 2,
pp. 10:1-10:27, 2011.

[9] J.Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating miss-

[10]

[13]

(14]

ing values in visual data,” in IEEE 12th International Conference on Computer
Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, pp. 2114-2121,
IEEE Computer Society, 2009.

N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommendation based
on tensor decomposition,” in Proceeding of the 33rd International ACM SI-
GIR Conference on Research and Development in Information Retrieval, SIGIR
2010, Geneva, Switzerland, July 19-23, 2010 (F. Crestani, S. Marchand-Maillet,
H. Chen, E. N. Efthimiadis, and J. Savoy, eds.), pp. 737-738, ACM, 2010.

D. Choi, J.-G. Jang, and U. Kang, “S3cmtf: Fast, accurate, and scalable method
for incomplete coupled matrix-tensor factorization,” PloS one, vol. 14, no. 6,
p- €0217316, 2019.

L. Xiong, X. Chen, T. Huang, J. G. Schneider, and J. G. Carbonell, “Temporal
collaborative filtering with bayesian probabilistic tensor factorization,” in Pro-
ceedings of the SIAM International Conference on Data Mining, SDM 2010, April
29 - May 1, 2010, Columbus, Ohio, USA, pp. 211-222, SIAM, 2010.

P. Bhargava, T. Phan, J. Zhou, and J. Lee, “Who, what, when, and where:
Multi-dimensional collaborative recommendations using tensor factorization
on sparse user-generated data,” in Proceedings of the 24th international confer-

ence on world wide web, pp. 130-140, 2015.

Z. Chen, Z. Xu, and D. Wang, “Deep transfer tensor decomposition with or-
thogonal constraint for recommender systems,” in Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative

143

[15]

(16]

Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pp. 4010-4018, AAAI Press, 2021.

D. Koutra, E. E. Papalexakis, and C. Faloutsos, “Tensorsplat: Spotting latent
anomalies in time,” in 16th Panhellenic Conference on Informatics, PCI 2012, Pi-
raeus, Greece, October 5-7, 2012, pp. 144-149, IEEE Computer Society, 2012.

T. Kwon, L. Park, D. Lee, and K. Shin, “Slicenstitch: Continuous CP decompo-
sition of sparse tensor streams,” in 37th IEEE International Conference on Data
Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 816-827, IEEE,
2021.

[17] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dynamic tensor

[20]

[21]

analysis,” in Proceedings of the Twelfth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23,
2006, pp. 374-383, ACM, 2006.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse par-
allelizable tensor decompositions,” in Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pp. 521-536, Springer, 2012.

Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep
convolutional neural networks for fast and low power mobile applications,” in
ICLR, 2016.

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(Y. Bengio and Y. LeCun, eds.), 2015.

A. H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavsky,
V. Glukhov, I. V. Oseledets, and A. Cichocki, “Stable low-rank tensor decompo-

sition for compression of convolutional neural network,” in Computer Vision -

144

ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XXIX, vol. 12374 of Lecture Notes in Computer Science, pp. 522—
539, Springer, 2020.

M. Yin, S. Liao, X. Liu, X. Wang, and B. Yuan, “Towards extremely compact rnns
for video recognition with fully decomposed hierarchical tucker structure,” in
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pp. 12085-12094, Computer Vision Foundation / IEEE, 2021.

Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks
for video classification,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (D. Pre-
cup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
pp. 3891-3900, PMLR, 2017.

M. Yin, H. Phan, X. Zang, S. Liao, and B. Yuan, “BATUDE: budget-aware neu-
ral network compression based on tucker decomposition,” in Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
February 22 - March 1, 2022, pp. 8874-8882, AAAI Press, 2022.

[25] J. Jang and U. Kang, “Fast and memory-efficient tucker decomposition for an-

swering diverse time range queries,” in KDD ’21: The 27th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021, pp. 725-735, ACM, 2021.

[26] J. Jang and U. Kang, “D-tucker: Fast and memory-efficient tucker decomposi-

tion for dense tensors,” in 36th IEEE International Conference on Data Engineer-
ing, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pp. 1850-1853, IEEE, 2020.

[27] J.-G. Jang and U. Kang, “Static and streaming tucker decomposition for dense

(28]

tensors,” ACM Transactions on Knowledge Discovery from Data, 2022.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best rank-1 and rank-
(R1,Ro, ..., RN) approximation of higher-order tensors,” SIAM }. Matrix Anal-
ysis Applications, vol. 21, no. 4, pp. 1324-1342, 2000.

145

[29]

(30]

(31]

(34]

(35]

[36]

(38]

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Review, vol. 51, no. 3, pp- 455-500, 2009.

R. A. Harshman, “Parafac2: Mathematical and technical notes,” UCLA working
papers in phonetics, vol. 22, no. 3044, p. 122215, 1972.

H. A. Kiers, J. M. Ten Berge, and R. Bro, “Parafac2—part i. a direct fitting al-
gorithm for the parafac2 model,” Journal of Chemometrics: A Journal of the
Chemometrics Society, vol. 13, no. 3-4, pp. 275-294, 1999.

G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU press, 2013.

Y. Cheng and M. Haardt, “Efficient computation of the PARAFAC2 decompo-
sition,” in 53rd Asilomar Conference on Signals, Systems, and Computers, AC-
SCC 2019, Pacific Grove, CA, USA, November 3-6, 2019 (M. B. Matthews, ed.),
pp. 16261630, IEEE, 2019.

B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB tensor classes for fast
algorithm prototyping,” ACM Transactions on Mathematical Software, vol. 32,
pp. 635-653, Dec. 2006.

J. Li, C. Battaglino, L. Perros, J. Sun, and R. W. Vuduc, “An input-adaptive and
in-place approach to dense tensor-times-matrix multiply,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, pp. 76:1-76:12,
ACM, 2015.

M. Che and Y. Wei, “Randomized algorithms for the approximations of tucker
and the tensor train decompositions,” Adv. Comput. Math., vol. 45, no. 1,
pp. 395-428, 2019.

C. E. Tsourakakis, “MACH: fast randomized tensor decompositions,” in Pro-
ceedings of the SIAM International Conference on Data Mining, SDM 2010, April
29 - May 1, 2010, Columbus, Ohio, USA, pp. 689-700, SIAM, 2010.

O. A. Malik and S. Becker, “Low-rank tucker decomposition of large tensors

using tensorsketch,” in Advances in Neural Information Processing Systems 31:

146

(39]

[40]

(42]

[43]

[45]

Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 10117-10127, 2018.

U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries,” in The 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, Beijing, China, August 12-16, 2012 (Q. Yang, D. Agarwal, and J. Pei,
eds.), pp- 316-324, ACM, 2012.

S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT: efficient
and parallel sparse tensor-matrix multiplication,” in 2015 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2015, Hyderabad, India,
May 25-29, 2015, pp. 61-70, IEEE Computer Society, 2015.

S. Oh, N. Park, J. Jang, L. Sael, and U. Kang, “High-performance tucker fac-
torization on heterogeneous platforms,” IEEE Trans. Parallel Distributed Syst.,
vol. 30, no. 10, pp. 2237-2248, 2019.

S. Smith and G. Karypis, “Accelerating the tucker decomposition with com-
pressed sparse tensors,” in Euro-Par 2017: Parallel Processing - 23rd Interna-
tional Conference on Parallel and Distributed Computing, Santiago de Com-
postela, Spain, August 28 - September 1, 2017, Proceedings, vol. 10417 of Lecture
Notes in Computer Science, pp. 653—-668, Springer, 2017.

F. Yang, F. Shang, Y. Huang, J. Cheng, J. Li, Y. Zhao, and R. Zhao, “LFTF: A
framework for efficient tensor analytics at scale,” Proc. VLDB Endow., vol. 10,
no. 7, pp. 745-756, 2017.

L. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-scale ten-
sor decompositions,” in 31st IEEE International Conference on Data Engineering,
ICDE 2015, Seoul, South Korea, April 13-17, 2015, pp. 1047-1058, IEEE Computer
Society, 2015.

K. Shin and U. Kang, “Distributed methods for high-dimensional and large-

scale tensor factorization,” in 2014 IEEE International Conference on Data Min-

147

[46]

(47]

(48]

[49]

[51]

(52]

(53]

ing, ICDM 2014, Shenzhen, China, December 14-17, 2014, pp. 989-994, IEEE Com-
puter Society, 2014.

K. Shin, L. Sael, and U. Kang, “Fully scalable methods for distributed tensor
factorization,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1, pp. 100-113, 2017.

N. Park, B. Jeon, J. Lee, and U. Kang, “Bigtensor: Mining billion-scale tensor
made easy,” in Proceedings of the 25th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October
24-28, 2016, pp. 2457-2460, ACM, 2016.

V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu, P. Murali, Y. Sabharwal,
and D. Sreedhar, “On optimizing distributed tucker decomposition for dense
tensors,” in 2017 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017, pp. 1038-1047, IEEE
Computer Society, 2017.

J. W. Choi, X. Liu, and V. T. Chakaravarthy, “High-performance dense tucker
decomposition on GPU clusters,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis, SC 2018,
Dallas, TX, USA, November 11-16, 2018, pp. 42:1-42:11, IEEE / ACM, 2018.

W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for large-
scale scientific data,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, pp. 912-922,
IEEE Computer Society, 2016.

G. Ballard, A. Klinvex, and T. G. Kolda, “Tuckermpi: A parallel c++/mpi soft-
ware package for large-scale data compression via the tucker tensor decom-
position,” ACM Transactions on Mathematical Software (TOMS), vol. 46, no. 2,
pp. 1-31, 2020.

A. H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale problems,”
Neurocomputing, vol. 74, no. 11, pp. 1970-1984, 2011.

X. Li, S. Huang, K. S. Candan, and M. L. Sapino, “2pcp: Two-phase CP decom-

position for billion-scale dense tensors,” in 32nd IEEE International Conference

148

[54]

[55]

[56]

[57]

(58]

(59]

on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pp. 835-846,
2016.

D. Chen, Y. Hu, L. Wang, A. Y. Zomaya, and X. Li, “H-PARAFAC: hierarchi-
cal parallel factor analysis of multidimensional big data,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 4, pp. 1091-1104, 2017.

N. Park, S. Oh, and U. Kang, “Fast and scalable distributed boolean tensor fac-
torization,” in 33rd IEEE International Conference on Data Engineering, ICDE
2017, San Diego, CA, USA, April 19-22, 2017, pp. 1071-1082, IEEE Computer So-
ciety, 2017.

N. Park, S. Oh, and U. Kang, “Fast and scalable method for distributed boolean
tensor factorization,” VLDB 7., vol. 28, no. 4, pp. 549-574, 2019.

L Jeon, E. E. Papalexakis, C. Faloutsos, L. Sael, and U. Kang, “Mining billion-
scale tensors: algorithms and discoveries,” VLDB 7, vol. 25, no. 4, pp. 519-544,
2016.

N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos, “Tensor decomposition for signal processing and machine learn-
ing,” IEEE Trans. Signal Processing, vol. 65, no. 13, pp. 3551-3582, 2017.

S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization
for personalized tag recommendation,” in Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY,
USA, February 4-6, 2010 (B. D. Davison, T. Suel, N. Craswell, and B. Liu, eds.),
pp. 81-90, ACM, 2010.

X. Cao, X. Wei, Y. Han, and D. Lin, “Robust face clustering via tensor decom-
position,” IEEE Trans. Cybernetics, vol. 45, no. 11, pp. 2546-2557, 2015.

H. Huang, C. H. Q. Ding, D. Luo, and T. Li, “Simultaneous tensor subspace
selection and clustering: the equivalence of high order svd and k-means clus-
tering,” in Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27,
2008, pp. 327-335, ACM, 2008.

149

[62] J. Tang, X. Shu, G. Qi, Z. Li, M. Wang, S. Yan, and R. C. Jain, “Tri-clustered

tensor completion for social-aware image tag refinement,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 8, pp. 1662-1674, 2017.

[63] J. Tang, X. Shu, Z. Li, Y. Jiang, and Q. Tian, “Social anchor-unit graph regu-

[65]

[69]

larized tensor completion for large-scale image retagging,” IEEE Trans. Pattern
Anal. Mach. Intell.,, vol. 41, no. 8, pp. 2027-2034, 2019.

T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data
mining,” in Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), December 15-19, 2008, Pisa, Italy, pp. 363-372, IEEE Computer
Society, 2008.

L. Perros, R. Chen, R. W. Vuduc, and J. Sun, “Sparse hierarchical tucker factor-
ization and its application to healthcare,” in 2015 IEEE International Conference
on Data Mining, ICDM 2015, Atlantic City, N, USA, November 14-17, 2015 (C. C.
Aggarwal, Z. Zhou, A. Tuzhilin, H. Xiong, and X. Wu, eds.), pp. 943-948, IEEE
Computer Society, 2015.

Y. Ren, J. Lou, L. Xiong, and J. C. Ho, “Robust irregular tensor factorization
and completion for temporal health data analysis,” in CIKM ’20: The 29th ACM
International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020 (M. d’Aquin, S. Dietze, C. Hauff, E. Curry,
and P. Cudré-Mauroux, eds.), pp. 1295-1304, ACM, 2020.

A. Afshar, I Perros, H. Park, C. Defilippi, X. Yan, W. Stewart, J. Ho, and J. Sun,
“Taste: Temporal and static tensor factorization for phenotyping electronic
health records,” in Proceedings of the ACM Conference on Health, Inference, and
Learning, pp. 193-203, 2020.

K. Yin, A. Afshar, J. C. Ho, W. K. Cheung, C. Zhang, and J. Sun, “Logpar: Logis-
tic PARAFAC?2 factorization for temporal binary data with missing values,” in
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 1625-1635, ACM, 2020.

E. Gujral, G. Theocharous, and E. E. Papalexakis, “SPADE: streaming
PARAFAC2 decomposition for large datasets,” in Proceedings of the 2020 SIAM

150

[70]

(71]

(72]

(73]

[75]

[76]

International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May
7-9, 2020 (C. Demeniconi and N. V. Chawla, eds.), pp. 577-585, SIAM, 2020.

D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the PARAFAC
decomposition of a third-order tensor,” IEEE Trans. Signal Process., vol. 57, no. 6,
pp. 2299-2310, 2009.

S. Zhou, X. V. Nguyen, J. Bailey, Y. Jia, and I. Davidson, “Accelerating online
CP decompositions for higher order tensors,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pp. 1375-1384, ACM, 2016.

Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect streaming ten-
sor completion,” in Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13
- 17, 2017, pp. 435-443, ACM, 2017.

S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, “Streaming tensor fac-
torization for infinite data sources,” in Proceedings of the 2018 SIAM Interna-
tional Conference on Data Mining, SDM 2018, May 3-5, 2018, San Diego Marriott
Mission Valley, San Diego, CA, USA, pp. 81-89, SIAM, 2018.

E. Gujral, R. Pasricha, and E. E. Papalexakis, “Sambaten: Sampling-based batch
incremental tensor decomposition,” in Proceedings of the 2018 SIAM Interna-
tional Conference on Data Mining, SDM 2018, May 3-5, 2018, San Diego Marriott
Mission Valley, San Diego, CA, USA, pp. 387-395, SIAM, 2018.

S. Zhou, S. M. Erfani, and J. Bailey, “Online CP decomposition for sparse ten-
sors,” in IEEE International Conference on Data Mining, ICDM 2018, Singapore,
November 17-20, 2018, pp. 1458—-1463, IEEE Computer Society, 2018.

D. Ahn, S. Kim, and U. Kang, “Accurate online tensor factorization for temporal
tensor streams with missing values,” in CIKM °21: The 30th ACM International
Conference on Information and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, pp. 2822-2826, ACM, 2021.

151

[77]

D. Lee and K. Shin, “Robust factorization of real-world tensor streams with
patterns, missing values, and outliers,” in 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 840-851,
IEEE, 2021.

D. Ahn, J. Jang, and U. Kang, “Time-aware tensor decomposition for sparse
tensors,” Mach. Learn., vol. 111, no. 4, pp. 1409-1430, 2022.

S. Son, Y.-c. Park, M. Cho, and U. Kang, “Dao-cp: Data-adaptive online cp de-
composition for tensor stream,” PLOS ONE, vol. 17, pp. 1-18, 04 2022.

Y. Sun, Y. Guo, C. Luo,]J. A. Tropp, and M. Udell, “Low-rank tucker approxi-
mation of a tensor from streaming data,” SIAM J. Math. Data Sci., vol. 2, no. 4,
pp. 11231150, 2020.

[81] J. Jang, D. Choi, J. Jung, and U. Kang, “Zoom-svd: Fast and memory efficient

(82]

(84]

(85]

method for extracting key patterns in an arbitrary time range,” in Proceedings
of the 27th ACM International Conference on Information and Knowledge Man-
agement, CIKM 2018, Torino, Italy, October 22-26, 2018, pp. 1083-1092, ACM,
2018.

R. Minster, A. K. Saibaba, and M. E. Kilmer, “Randomized algorithms for low-
rank tensor decompositions in the tucker format,” SIAM Journal on Mathemat-
ics of Data Science, vol. 2, no. 1, pp. 189-215, 2020.

N. Halko, P. Martinsson, and J. A. Tropp, “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions,’
SIAM Review, vol. 53, no. 2, pp. 217-288, 2011.

F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, “A fast randomized algorithm
for the approximation of matrices,” Applied and Computational Harmonic Anal-
Ysis, vol. 25, no. 3, pp- 335-366, 2008.

K. L. Clarkson and D. P. Woodruff, “Low-rank approximation and regression in
input sparsity time,” Journal of the ACM (JACM), vol. 63, no. 6, pp. 1-45, 2017.

[86] J. Baglama and L. Reichel, “Augmented implicitly restarted lanczos bidiagonal-

ization methods,” SIAM ¥. Scientific Computing, vol. 27, no. 1, pp. 19-42, 2005.

152

(87]

(88]

[91]

S.Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in mul-
tiple time-series,” in Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pp. 697—
708, ACM, 2005.

N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation
strategy for the higher-order singular value decomposition,” SIAM . Scientific
Computing, vol. 34, no. 2, 2012.

M. Iwen and B. Ong, “A distributed and incremental svd algorithm for agglom-
erative data analysis on large networks,” SIAM Journal on Matrix Analysis and
Applications, vol. 37, no. 4, pp. 1699-1718, 2016.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM J. Matrix Analysis Applications, vol. 21, no. 4, pp. 1253-
1278, 2000.

T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave, R. A.
Mason, and M. A. Just, “Predicting human brain activity associated with the

meanings of nouns,” Science, vol. 320, pp. 1191-1195, May 2008.

Y. Wang, P. Jodoin, F. M. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “Cdnet
2014: An expanded change detection benchmark dataset,” in IEEE Conference on
Computer Vision and Pattern Recognition CVPR Workshops, pp. 393-400, 2014.

D. Foster, K. Amano, S. Nascimento, and M. Foster, “Frequency of metamerism
in natural scenes,” Optical Society of America. Journal A: Optics, Image Science,
and Vision, vol. 23, pp. 2359-2372, 10 2006.

M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A dataset
for music analysis,” in 18th International Society for Music Information Retrieval
Conference (ISMIR), 2017.

M. Defferrard, S. P. Mohanty, S. F. Carroll, and M. Salathé, “Learning to recog-
nize musical genre from audio,” in The 2018 Web Conference Companion, ACM
Press, 2018.

153

[96]

[99]

[100]

[101]

[102]

[103]

F. Schimbinschi, X. V. Nguyen, J. Bailey, C. Leckie, H. L. Vu, and R. Kotagiri,
“Traffic forecasting in complex urban networks: Leveraging big data and ma-
chine learning,” in 2015 IEEE International Conference on Big Data (IEEE BigData
2015), Santa Clara, CA, USA, October 29 - November 1, 2015, pp. 1019-1024, IEEE
Computer Society, 2015.

B. W. Bader, T. G. Kolda, et al., “Matlab tensor toolbox version 3.0-dev.” Avail-
able online, Oct. 2017.

Y. Lin, J. Sun, P. C. Castro, R. B. Konuru, H. Sundaram, and A. Kelliher, “Metafac:
community discovery via relational hypergraph factorization,” in Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Paris, France, June 28 - July 1, 2009, pp. 527-536, ACM, 2009.

S. Spiegel, J. H. Clausen, S. Albayrak, and J. Kunegis, “Link prediction on evolv-
ing data using tensor factorization,” in New Frontiers in Applied Data Mining -
PAKDD 2011 International Workshops, Shenzhen, China, May 24-27, 2011, Re-
vised Selected Papers, vol. 7104 of Lecture Notes in Computer Science, pp. 100-
110, Springer, 2011.

D. Ahn, S. Son, and U. Kang, “Gtensor: Fast and accurate tensor analysis sys-
tem using gpus,” in CIKM °20: The 29th ACM International Conference on In-
formation and Knowledge Management, Virtual Event, Ireland, October 19-23,
2020 (M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux, eds.),
pp. 3361-3364, ACM, 2020.

N. E. Helwig, “Estimating latent trends in multivariate longitudinal data
via parafac2 with functional and structural constraints,” Biometrical Journal,
vol. 59, no. 4, pp. 783-803, 2017.

B. M. Wise, N. B. Gallagher, and E. B. Martin, “Application of parafac2 to fault
detection and diagnosis in semiconductor etch,” Journal of Chemometrics: A
Journal of the Chemometrics Society, vol. 15, no. 4, pp. 285-298, 2001.

J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound
research,” in Proceedings of the ACM International Conference on Multimedia,
MM ’14, Orlando, FL, USA, November 03 - 07, 2014, pp. 1041-1044, ACM, 2014.

154

[104] J. Wang, Z.Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for action recog-

[105]

nition with depth cameras,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pp. 1290-1297, IEEE
Computer Society, 2012.

F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-fcns for

time series classification,” 2018.

[106] J.Jung, J. Yoo, and U. Kang, “Signed random walk diffusion for effective repre-

sentation learning in signed graphs,” PLOS ONE, vol. 17, pp. 1-19, 03 2022.

[107] J. Jung, W. Jin, H. Park, and U. Kang, “Accurate relational reasoning in edge-

labeled graphs by multi-labeled random walk with restart,” World Wide Web,
vol. 24, no. 4, pp- 1369-1393, 2021.

[108] J.Jung, W. Jin, and U. Kang, “Random walk-based ranking in signed social net-

[109]

[110]

works: model and algorithms,” Knowl. Inf. Syst., vol. 62, no. 2, pp. 571-610, 2020.

W. Jin, J. Jung, and U. Kang, “Supervised and extended restart in random walks
for ranking and link prediction in networks,” PLOS ONE, vol. 14, pp. 1-23, 03
2019.

K. Shin, J. Jung, L. Sael, and U. Kang, “BEAR: block elimination approach for
random walk with restart on large graphs,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015 (T. K. Sellis, S. B. Davidson, and Z. G. Ives, eds.),
pp. 1571-1585, ACM, 2015.

[111] J.Jung, N. Park, L. Sael, and U. Kang, “Bepi: Fast and memory-efficient method

[112]

for billion-scale random walk with restart,” in Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017 (S. Salihoglu, W. Zhou, R. Chirkova, J. Yang,
and D. Suciu, eds.), pp. 789-804, ACM, 2017.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

155

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

B. Jeon, L Jeon, L. Sael, and U. Kang, “Scout: Scalable coupled matrix-tensor
factorization - algorithm and discoveries,” in 32nd IEEE International Conference
on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pp. 811-822,
IEEE Computer Society, 2016.

H. Wang and N. Ahuja, “A tensor approximation approach to dimensionality
reduction,” International Journal of Computer Vision, vol. 76, no. 3, pp. 217-229,
2008.

Y. Liu, Q. Yao, and Y. Li, “Generalizing tensor decomposition for n-ary relational
knowledge bases,” in WWW, pp. 1104-1114, ACM / IW3C2, 2020.

T. Lacroix, G. Obozinski, and N. Usunier, “Tensor decompositions for temporal

knowledge base completion,” in ICLR, OpenReview.net, 2020.

H. Liu, Y. Li, M. Tsang, and Y. Liu, “Costco: A neural tensor completion model
for sparse tensors,” in Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 324-334, 2019.

H. Chen and J. Li, “Neural tensor model for learning multi-aspect factors in rec-
ommender systems,” in International Joint Conference on Artificial Intelligence
(IJCAI), vol. 2020, 2020.

X. Wu, B. Shi, Y. Dong, C. Huang, and N. V. Chawla, “Neural tensor factor-
ization for temporal interaction learning,” in Proceedings of the Twelfth ACM

international conference on web search and data mining, pp. 537-545, 2019.

B. Jing, H. Tong, and Y. Zhu, “Network of tensor time series,” in Proceedings of
the Web Conference 2021, pp. 2425-2437, 2021.

C. Yang, C. Qian, N. Singh, C. Xiao, M. B. Westover, E. Solomonik, and J. Sun,
“Atd: Augmenting cp tensor decomposition by self supervision,” in Advances

in Neural Information Processing Systems.

156

OF
24

Q

1310],

SIRAS

o)

o},
ol A& &0, +

oe], A2 o] tlofE], & F4F HlolH, AlA HlolE, F=t 5+ HlolH

Gk

1 Hlo|H 7 RIM R &

[e]
L2
find

Lty o

5t

AAA T ZA]

|

o] diM=

HEol WA =371 Wiz

g

Al
2

=
[¢)

JZnO

‘I_

WSS drrgo] 2ot g 2 AL

ol

o
o

fanren

o|J
BR

o

Tor

Fo}. wheb A, ElA ElojE 2]

o mi-¢- 585

__]:.
T

o] §&/4< =0

|

T £42 24kt A R u

N AR

J=r

St
o

=

Zrt A

ff o

9

)

—

Sk, AlSts

sfigct &

Al &

=

T 2| 3844, 6Hf

il 2o 171.98] W=7

6]

Aol =

= Al

157

F80]: HA o]y,

AAA =2 JA]

SH : 2017-23528

158

ARe) 2

A5t

jjof] =}

Fo 2 Wt opjet 4

S

23 ATFE

ol

10} AL Aok

Pe m4d Bee

35

| =

5

o2 Lo}

o}
ar

™
(5

—

=7

SEETEE

15
=

__o_u,_

ToR

ol

N

R

1)

nju

o

}_Eo]

- =

o} 7}

~
__OO

	Chapter 1 Introduction
	1.1 Contributions
	1.2 Overall Impact
	1.3 Thesis Organization

	Chapter 2 Background
	2.1 Tensor
	2.1.1 Tensor Notation
	2.1.2 Tensor Operation

	2.2 Tensor Decomposition
	2.2.1 Tucker Decomposition
	2.2.2 PARAFAC2 Decomposition

	2.3 Related Works
	2.3.1 Tensor Decomposition on Regular Tensors
	2.3.2 PARAFAC2 Decomposition Irregular Tensors
	2.3.3 Online Streaming Tensor Decomposition
	2.3.4 Answering Time Range Queries on Regular Tensors

	Chapter 3 Efficient Static and Streaming Tensor Decomposition in Regular Tensors
	3.1 Motivation
	3.2 Preliminaries
	3.2.1 Singular Value Decomposition
	3.2.2 Streaming Tucker Decomposition

	3.3 Proposed Method for Static Tensors: D-Tucker
	3.3.1 Overview
	3.3.2 Approximation Phase
	3.3.3 Initialization Phase
	3.3.4 Iteration Phase
	3.3.5 Lemmas and Theorems
	3.3.6 Proofs of Lemmas and Theorems

	3.4 Proposed Method for Online Tensors: D-TuckerO
	3.4.1 Overview
	3.4.2 Efficient Update for Time Slice
	3.4.3 Applying Approximation Phase
	3.4.4 Theoretical Analysis
	3.4.5 Proofs of Lemmas and Theorems

	3.5 Experiment
	3.5.1 Experimental Settings
	3.5.2 Time Cost and Reconstruction Error
	3.5.3 Effectiveness of the Initialization Phase
	3.5.4 Efficiency of the Iteration Phase
	3.5.5 Space Cost
	3.5.6 Scalability
	3.5.7 Streaming Setting
	3.5.8 Size of Time Slice

	3.6 Summary

	Chapter 4 Efficient Tensor Decomposition in Irregular Tensors
	4.1 Motivation
	4.2 Preliminaries
	4.2.1 Singular Value Decomposition

	4.3 Proposed Method
	4.3.1 Overview
	4.3.2 Compressing an irregular tensor
	4.3.3 Overview of update rule
	4.3.4 Finding the factorized matrices of Qk and Yk
	4.3.5 Updating H, V, and W
	4.3.6 Careful distribution of work
	4.3.7 Complexities

	4.4 Experiments
	4.4.1 Experimental Settings
	4.4.2 Performance
	4.4.3 Data Scalability
	4.4.4 Multi-core Scalability
	4.4.5 Discoveries

	4.5 Summary

	Chapter 5 Efficient Tensor Decomposition for Diverse Time Ranges in Regular Tensors
	5.1 Motivation
	5.2 Problem Definition
	5.3 Proposed Method
	5.3.1 Preprocessing Phase
	5.3.2 Query Phase
	5.3.3 Analysis
	5.3.4 Proofs of Lemmas and Theorems

	5.4 Experiment
	5.4.1 Experimental Settings
	5.4.2 Trade-off between Query Time and Reconstruction Error
	5.4.3 Space Cost
	5.4.4 Query Cost
	5.4.5 Effects of Block Size b
	5.4.6 Discovery

	5.5 Summary

	Chapter 6 Future Works
	6.1 Efficient Online Streaming Method for an Irregular Tensor
	6.2 Novel Tensor Method with Deep Learning Techniques

	Chapter 7 Conclusion
	References
	Abstract in Korean

<startpage>13
Chapter 1 Introduction 1
 1.1 Contributions 4
 1.2 Overall Impact 5
 1.3 Thesis Organization 6
Chapter 2 Background 7
 2.1 Tensor 7
 2.1.1 Tensor Notation 7
 2.1.2 Tensor Operation 7
 2.2 Tensor Decomposition 9
 2.2.1 Tucker Decomposition 9
 2.2.2 PARAFAC2 Decomposition 11
 2.3 Related Works 14
 2.3.1 Tensor Decomposition on Regular Tensors 15
 2.3.2 PARAFAC2 Decomposition Irregular Tensors 16
 2.3.3 Online Streaming Tensor Decomposition 17
 2.3.4 Answering Time Range Queries on Regular Tensors 18
Chapter 3 Efficient Static and Streaming Tensor Decomposition in Regular Tensors 19
 3.1 Motivation 19
 3.2 Preliminaries 22
 3.2.1 Singular Value Decomposition 23
 3.2.2 Streaming Tucker Decomposition 24
 3.3 Proposed Method for Static Tensors: D-Tucker 25
 3.3.1 Overview 26
 3.3.2 Approximation Phase 28
 3.3.3 Initialization Phase 31
 3.3.4 Iteration Phase 37
 3.3.5 Lemmas and Theorems 40
 3.3.6 Proofs of Lemmas and Theorems 42
 3.4 Proposed Method for Online Tensors: D-TuckerO 44
 3.4.1 Overview 44
 3.4.2 Efficient Update for Time Slice 45
 3.4.3 Applying Approximation Phase 50
 3.4.4 Theoretical Analysis 53
 3.4.5 Proofs of Lemmas and Theorems 53
 3.5 Experiment 56
 3.5.1 Experimental Settings 57
 3.5.2 Time Cost and Reconstruction Error 62
 3.5.3 Effectiveness of the Initialization Phase 62
 3.5.4 Efficiency of the Iteration Phase 62
 3.5.5 Space Cost 64
 3.5.6 Scalability 64
 3.5.7 Streaming Setting 66
 3.5.8 Size of Time Slice 69
 3.6 Summary 69
Chapter 4 Efficient Tensor Decomposition in Irregular Tensors 71
 4.1 Motivation 71
 4.2 Preliminaries 74
 4.2.1 Singular Value Decomposition 74
 4.3 Proposed Method 76
 4.3.1 Overview 76
 4.3.2 Compressing an irregular tensor 77
 4.3.3 Overview of update rule 81
 4.3.4 Finding the factorized matrices of Qk and Yk 81
 4.3.5 Updating H, V, and W 83
 4.3.6 Careful distribution of work 89
 4.3.7 Complexities 90
 4.4 Experiments 92
 4.4.1 Experimental Settings 93
 4.4.2 Performance 95
 4.4.3 Data Scalability 97
 4.4.4 Multi-core Scalability 99
 4.4.5 Discoveries 99
 4.5 Summary 103
Chapter 5 Efficient Tensor Decomposition for Diverse Time Ranges in Regular Tensors 105
 5.1 Motivation 105
 5.2 Problem Definition 109
 5.3 Proposed Method 110
 5.3.1 Preprocessing Phase 111
 5.3.2 Query Phase 114
 5.3.3 Analysis 121
 5.3.4 Proofs of Lemmas and Theorems 123
 5.4 Experiment 127
 5.4.1 Experimental Settings 128
 5.4.2 Trade-off between Query Time and Reconstruction Error 130
 5.4.3 Space Cost 131
 5.4.4 Query Cost 131
 5.4.5 Effects of Block Size b 133
 5.4.6 Discovery 135
 5.5 Summary 136
Chapter 6 Future Works 138
 6.1 Efficient Online Streaming Method for an Irregular Tensor 138
 6.2 Novel Tensor Method with Deep Learning Techniques 139
Chapter 7 Conclusion 140
References 142
Abstract in Korean 157
</body>

