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Abstract

Many real-world data can be represented as tensors including vectors (1-order ten-

sor), matrices (2-order tensor), and higher-order tensors. For example, there are stock

data, healthcare data, video data, sensor data, and movie rating data represented as

tensors. Tensor decomposition has been widely used in applications to analyze real-

world tensors. Since knowledge is inherent in real-world tensors, it is crucial to devise

e�ective Tensor decomposition methods. However, existing Tensor decomposition-

based methods require high computational costs and space costs. �erefore, it is very

challenging to discover hidden information in large-scale tensors without e�cient

tensor decomposition methods.

In this thesis, I overcome the limitations of previous tensor analysis methods

based on tensor decomposition. Since existing tensor decomposition methods require

heavy computations involved with large-scale input tensors, it is crucial to avoid
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the computations to achieve high e�ciency. My proposed methods achieve high ef-

�ciency by approximating an input tensor and exploiting the approximation result.

I devise highly e�cient methods for regular and irregular tensors by exploiting the

characteristics of real-world tensors and carefully determining the order of computa-

tions. Furthermore, I develop a fast and memory-e�cient tensor decomposition-based

method that analyzes diverse time ranges.

Extensive experiments show that the proposed methods achieve higher e�-

ciency than existing methods while having comparable errors. �e proposed meth-

ods decompose regular and irregular tensors up to 38.4× and 6× faster than ex-

isting methods, respectively. In addition, the proposed method analyzes various time

range queries up to 171.9× faster than existing methods. Consequently, the proposed

methods allow us to explore meaningful knowledge from various real-world tensors

e�ciently.

Keywords : Tensor Mining, E�ciency, Tensor Decomposition, Tucker Decomposi-

tion, PARAFAC2 Decomposition, Real-world Regular Tensors, Real-world Irregular

Tensors

Student Number : 2017-23528
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Chapter 1

Introduction

Tensors are natural representations of many real-world data such as sensor data,

stock data, video data, and electronic health data. Vectors and matrices are �rst-order

tensors and second-order tensors, respectively, and higher-order tensors denote third

or higher tensors. For example, we construct stock data as a third-order tensor of the

following form: (time, feature, stock). �e tensor can be viewed as the collection of

stock matrices whose rows and columns correspond to time and features (e.g., the

opening price, the closing price, the trade volume, etc.), respectively. In addition to

stock data, we represent sensor data as a third-order tensor of (time, location, sensor)

form.

Tensor mining has a�racted much a�ention from various research and industrial

�elds since it allows us to �nd key information that provides deeper insights into the

complex phenomena inherent in real-world tensors, and support making e�ective

decisions in the age of information overload. To achieve it, many researchers have

been exploiting tensor decomposition for various applications such as missing value

prediction, anomaly detection, recommendation, and so on. Tensor decomposition

decomposes an input tensor into latent factor matrices which contain information

hidden in the tensor. Table 1.1 summarizes the details of real-world applications with

tensor decomposition.

Although the importance of tensor mining has been emerging, it is challenging

since the size of real-world tensors explosively increases, and tensor analysis requires

1



Table 1.1: Tensor decomposition-based real-world applications

Application & Its References Brief Description

Feature analysis
[1, 2, 3, 4, 5]

Discover knowledge from latent features
obtained by tensor decomposition

Missing value prediction
[6, 7, 8, 9] Predict missing values in a tensor

Recommendation
[10, 11, 12, 13, 14] Recommend new items that users would prefer

Anomaly detection
[15, 16, 17, 18] Detect anomalous pa�erns in a tensor

Model compression
[19, 20, 21, 22, 23, 24] Compress deep learning models

expensive tensor operations. In addition, it is necessary to analyze various forms of

data in various se�ings as environments where data is generated become more com-

plex. However, previous tensor decomposition-based methods fail to provide high

e�ciency, and thus they are very limited to be used in real-world se�ings. �erefore,

it is crucial to devise e�cient tensor decomposition methods to extract knowledge

from real-world tensors of various forms in real-world se�ings.

In this thesis, I concentrated on developing highly e�cient tensor decomposition

methods for large real-world tensors in real-world se�ings. Two main topics to be

addressed are to 1) devise e�cient tensor decomposition methods for regular and

irregular tensors in real-world se�ings and 2) analyze a temporal tensor for diverse

time ranges. We started with improving the performance of tensor decomposition in

terms of time and space costs. Given a large tensor in real-world se�ings, we aim at

the following research questions:

• [Chapter 3] how can we e�ciently discover hidden concepts and pa�erns of

large tensors in static and online streaming se�ings?

• [Chapter 4] how can we e�ciently analyze large irregular tensors in a static

2



Table 1.2: An overview of works studied in this thesis.

Tensor Form

Setting

Static Setting Online Setting

Regular Tensor D-Tucker [Chapter 3] D-TuckerO [Chapter 3]
Zoom-Tucker [Chapter 5]

Irregular Tensor DPar2 [Chapter 4]
Online irregular

tensor decomposition
(Future work [Chapter 6])

se�ing?

Note that an irregular tensor is a collection of matrices where the number of columns

is the same and the number of rows is di�erent from each other. In an online stream-

ing se�ing, the size of the time dimension of a tensor grows over time.

�e second topic is to analyze diverse time ranges when a large tensor with the

time dimension is given. Assume that users are interested in exploring knowledge

from various time ranges. For example, given a temporal tensor including matrices

collected from Jan. 1, 2008, to May 6, 2020, a user can be interested in hidden informa-

tion inherent in the range (from Jan. 1, 2020, to April 30, 2020). �is thesis answers

the following question to provide an opportunity to e�ciently explore knowledge

from various perspectives:

• [Chapter 5] Given a temporal tensor and a time range, how can we e�ciently

analyze the tensor in the given time range?

�e main challenge to be addressed is to improve the e�ciency of tensor de-

composition for real-world tensors. ALS (Alternating Least Square) has been widely

used for obtaining factor matrices of tensor decomposition. Until convergence, it it-

eratively updates a target factor matrix while �xing all the other factor matrices.

However, computations with an input tensor at each iteration require high costs due

to the large size of the tensor. In addition, performing tensor decomposition several
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times is also burdensome. �erefore, avoiding repeated computations involved with

a given tensor is required to achieve the goal.

To address the challenge, I approximate an input tensor before iterations, and

then obtain factor matrices by exploiting the approximated results. �e methods to

be developed generate approximated results which are obtained with high e�ciency

and are much smaller than the input tensor. �en, they obtain factor matrices by

exploiting the approximated results in iterative computations. Note that the input

tensor is not used in the iterations. Although they do not generate the same results

as the methods that use the input tensor and sacri�ce a li�le accuracy, I empirically

show that our proposed methods have be�er trade-o�s between e�ciency and ac-

curacy than existing tensor decomposition-based methods. �e accuracy loss is not

signi�cant compared to the e�ciency improvement.

1.1 Contributions

Table 1.2 describes an overview of works studied in this thesis, and I summarize our

contributions as follows:

• E�cient Tucker Decomposition in Large-scale Regular Tensors (Chap-

ter 3). I propose D-Tucker and D-TuckerO, fast and memory-e�cient Tucker

decomposition methods for regular tensors in static and online streaming set-

tings, respectively. Both methods achieve high e�ciency by approximating a

given tensor, and then e�ciently computing Tucker decomposition only using

the approximated results. D-Tucker achieves up to 38.4× faster and requires up

to 17.2× less space than existing Tucker decomposition methods while having

comparable accuracy. In addition, D-TuckerO successfully works in the online

streaming se�ing by e�ciently dealing with new incoming tensors, and out-

4



performs its competitors by up to 6.1× faster than them.

• E�cient PARAFAC2 Decomposition in Large-scale Irregular Tensors

(Chapter 4). I devise DPar2, a fast and scalable PARAFAC2 decomposition

method for irregular tensors. DPar2 achieves high e�ciency by reducing nu-

merical computations and intermediate data, and maximizing multi-core paral-

lelism. DPar2 is the fastest PARAFAC2 decomposition method by giving up to

6.0× faster than existing PARAFAC2 decomposition methods. It is also scalable

with respect to input and output sizes.

• E�cient TuckerDecomposition forDiverse TimeRange�eries (Chap-

ter 5). I propose Zoom-Tucker to analyze a temporal tensor for diverse time

ranges.Zoom-Tucker e�ectively approximates a given tensor before time range

queries are given, and answers diverse time range queries quickly and memory-

e�ciently by exploiting the approximated results and fruitful mathematical

techniques. Note that Zoom-Tucker works in an online se�ing since the pre-

processing phase is extensible for new incoming tensors by performing Tucker

decomposition of them. Given a time range query,Zoom-Tucker is up to 171.9×

times faster and requires up to 230× less space than previous methods. Zoom-

Tucker provides an opportunity to explore diverse time ranges in large-scale

temporal dense tensors.

1.2 Overall Impact

My research outcomes leave a lasting impact in academic and industrial �elds as the

followings:
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• E�ciency Improvement. My proposed methods signi�cantly improve the

e�ciency of tensor decomposition methods for regular and irregular tensors

in terms of speed, space, and scalability.

• E�ective Analysis. My proposed methods allow researchers to e�ectively an-

alyze tensors in real-world applications such as anomaly detection and feature

analysis.

Most of the algorithms introduced in this thesis are open to the public for repro-

ducibility and my research achieved the following results:

• Our work [25] was selected as the best research paper in KDD 2021 and awarded

the �alcomm Innovation Fellowship Korea.

• Our work [1] was selected as the best paper (honorable mention) in ICDE 2022.

• Our research works [1, 25, 26, 27] included in this thesis were supported by

the Yulchon AI Star Award, Naver Ph.D. Fellowship, and Future Gauss Lecture

Program.

1.3 �esis Organization

�e rest of this thesis proposal is organized as follows. �e background on tensor

notations, tensor decomposition, and related works are provided in Chapter 2. In

Chapter 3, we propose the fast and memory-e�cient tucker decomposition methods,

D-Tucker and D-TuckerO, for large real-world tensors in static and streaming set-

tings. In Chapter 4, we propose DPar2, a fast and scalable PARAFAC2 decomposition

method for real-world irregular tensors. In Chapter 5, we propose a novel method

Zoom-Tucker that e�ciently analyzes various time ranges using Tucker decompo-

sition. Finally, I present future works in Chapter 6, and conclude in Chapter 7.
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Chapter 2

Background

�is section describes notations, de�nitions, and related works for tensors and tensor

decomposition.

2.1 Tensor

2.1.1 Tensor Notation

Each ‘dimension’ of a tensor (i.e., a multi-dimensional array) is denoted by mode. ‘di-

mensionality’ of a mode denotes the length of it. An N-order tensor is represented as

a boldface Euler script capital (e.g. X ∈ RI1×I2×···×IN ) le�er, and matrices are denoted

by boldface capitals (e.g. A). A mode-n �ber is a vector having �xed indices except for

the n-th index in a tensor. A sliced matrix is a matrix having �xed all indices except

for two indices in a tensor. An irregular tensor is a 3-order tensor X whose k-frontal

slice X(:, :,k) is Xk ∈ RIk×J . We denote irregular tensors by {Xk}K
k=1 instead of X

where K is the number of k-frontal slices of the tensor.

2.1.2 Tensor Operation

We use the following tensor operations in this thesis: Frobenius norm, matricization,

n-mode product, Kronecker product, and slicing.

Frobenius Norm. �e Frobenius norm of X (∈ RI1×...×IN ) is denoted by ‖X‖F
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and de�ned as follows:

‖X‖F =

√ ∑
∀(i1,...,iN)∈X

X2
(i1,...,iN)

.

Matricization.Mode-n matricization converts a given tensor into a matrix form

along n-th mode. We denote the mode-n matricization of a tensor X∈RI1×I2×···×IN as

X(n). Each element (i1, ..., iN) of X is mapped to an element (in, j) of X(n) such that

j = 1+
N∑

k=1
k 6=n

(ik−1)
k−1∏
m=1
m6=n

Im

 ,

where all indices start from 1.

n-mode product. �e n-mode product X×nA of a tensor X ∈RI1×I2×···×IN with

a matrix A ∈ RJn×In has the size of I1×·· ·In−1×Jn ×In+1 · · ·× IN , and de�ned by

(X×n A)i1...in−1 jnin+1...iN =

In∑
in=1

xi1i2...iN a jnin

where a jnin is the ( jn, in)-th entry of A. �e result of n-mode product of a tensor X

with a matrix A is identical to that of the following three operations: 1) performing

mode-n matricization X(n), 2) computing Y(n) = AX(n), and 3) reshaping the result

Y(n) as a tensor Y ∈ RI1×···In−1×Jn×In+1···×IN .

Kronecker product. Kronecker product of a matrix A ∈ Rp×q with a matrix

B ∈ Rr×s produces the output C = A⊗B of the size pr× qs. Each element of the

output is de�ned as follows:

Cr(t−1)+u,s(v−1)+w = at,v×bu,w (2.1)
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Figure 2.1: Example of Tucker decomposition. Given a tensor X, Tucker decomposition de-
composes it into the factor matrices A(1), A(2), A(3), and core tensor G. Note that A(1), A(2)

and A(3) are column orthogonal matrices.

where at,v is (t,v)-th element of the matrix A and bu,w is (u,w)-th element of the

matrix B.

Khatri-Rao product. �e Khatri-Rao product between two matrices X ∈Rp×q

and Y ∈ Rr×q is denoted by (X�Y) ∈ Rpr×q. �e Khatri-Rao product performs the

Kronecker product column by column: (X�Y)= [X(:,1); · · · ;X(:,q)]�[Y(:,1); · · · ;Y(:

,q)] = [X(:,1)⊗Y(:,1); · · · ;X(:,q)⊗Y(:,q)], where ; denotes the horizontal concate-

nation.

Slicing a tensor. Slicing an N-order tensor X (∈ RI1×...×IN ) along modes not

in {m,n} decomposes X into L sliced matrices of size Im× In, where L = I1× ...×

Im−1× Im+1× ...× In−1× In+1× ...× IN . For example, consider a 3-order tensor X

(∈RI1×I2×K3) in Figure 3.1. Slicing X along mode 3 leads to K3 sliced matrices of size

I1× I2.

2.2 Tensor Decomposition

�is section describes two representative tensor decomposition methods used in this

thesis: Tucker decomposition and PARAFAC2 decomposition.

2.2.1 Tucker Decomposition
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Algorithm 1: Tucker-ALS (HOOI) [28]
Input: tensor X ∈ RI1×...×IN and core tensor dimensionality J1, ...,JN
Output: core tensor G ∈ RJ1,...,JN and factor matrices A(i)

(i = 1, ...,N)
1: initialize: factor matrices A(i) (i = 1, ...,N)
2: repeat

3: for i = 1, ...,N do

4: Y←X×1 A(1)T · · ·×i−1 A(i−1)T ×i+1 A(i+1)T · · ·×N A(N)T

5: A(i)← Ji leading le� singular vectors of Y(i)
6: end for

7: until the maximum iteration is reached, or the error ceases to decrease;
8: G←X×1 A(1)T ×2 A(2)T · · ·×N A(N)T

De�nition 2.1 (Tucker Decomposition). Given an N-order tensorX∈RI1×...×IN
, Tucker

decomposition decomposes X into the core tensor G ∈ RJ1×...×JN
and factor matrices

A(n) ∈ RIn×Jn
for n = 1...N. �

Note that A(n) is a column orthogonal matrix, i.e. A(n)T A(n) = I where I is the

identity matrix, and core tensor G is small and dense. Figure 2.1 shows an example

of Tucker decomposition. �e objective function of Tucker decomposition is given as

follows.

min
G,A(1),...,A(N)

||X−G×1 A(1) · · ·×N A(N)|| (2.2)

where we represent the given tensor X using the core tensor G and factor matrices

A(n):

X≈ G×1 A(1) · · ·×N A(N) (2.3)

In addition, we re-express Equation (2.3) with matricization and Kronecker product

as follows:

X(n) ≈ A(n)G(n)(⊗N
k 6=nA(k)T ) (2.4)
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where (⊗N
k 6=nA(k)T ) indicates Kronecker product of A(k)T for k = N,N − 1, ...,n +

1,n−1, ...,2,1.

Computing the Tucker decomposition. A common approach to minimize

Equation (2.2) is ALS (Alternating Least Square). ALS approach iteratively updates the

factor matrix of a mode while �xing all factor matrices of other modes. Algorithm 1

describes Tucker decomposition based on ALS approach, which is called higher-order

orthogonal iteration (HOOI). A bo�leneck of ALS approach for a dense tensor is to

compute Equation (2.5) (line 4 in Algorithm 1) which requires O(
∏N

m=1 Im) space and

O(J1×
∏N

m=1 Im) computational time even to compute the �rst n-mode product be-

tween an input tensor X and the factor matrix A(1).

Y←X×1 A(1)T · · ·×i−1 A(i−1)T ×i+1 A(i+1)T · · ·×N A(N)T ⇔ Y(i)← X(i)

(
⊗N

k 6=iA
(k)
)

(2.5)

Note that Equation (2.5) re-expresses line 4 of Algorithm 1 with mode-i matricization

and Kronecker product (see details in [29]). Moreover, the computational time grows

as the number of iterations increases.

2.2.2 PARAFAC2 decomposition

PARAFAC2 decomposition proposed by Harshman [30] successfully deals with irreg-

ular tensors. �e de�nition of PARAFAC2 decomposition is as follows:

De�nition 2.2 (PARAFAC2 Decomposition). Given a target rank R and a 3-order

tensor {Xk}K
k=1 whose k-frontal slice is Xk ∈ RIk×J

for k = 1, ...,K, PARAFAC2 decom-

position approximates each k-th frontal slice Xk by UkSkVT
. Uk is a matrix of the size

Ik×R, Sk is a diagonal matrix of the size R×R, and V is a matrix of the size J×R

11



Its PARAFAC2 DecompositionA given irregular
tensor

PARAFAC2
Decomposition

Figure 2.2: Example of PARAFAC2 decomposition. Given an irregular tensor {Xk}K
k=1,

PARAFAC2 decomposition decomposes it into the factor matrices H, V, Qk, and Sk for
k = 1, ...,K. Note that QkH is equal to Uk.

which are common for all the slices. �

�e objective function of PARAFAC2 decomposition [30] is given as follows.

min
{Uk},{Sk},V

K∑
k=1

||Xk−UkSkVT ||2F (2.6)

For uniqueness, Harshman [30] imposed the constraint (i.e., UT
k U = Φ for all k), and

replace UT
k with QkH where Qk is a column orthogonal matrix and H is a common

matrix for all the slices. �en, Equation (2.6) is reformulated with QkH:

min
{Qk},{Sk},H,V

K∑
k=1

||Xk−QkHSkVT ||2F (2.7)

Figure 2.2 shows an example of PARAFAC2 decomposition for a given irregular ten-

sor. A common approach to solve the above problem is ALS (Alternating Least Square)

which iteratively updates a target factor matrix while �xing all factor matrices except

for the target. Algorithm 2 describes PARAFAC2-ALS. First, we update each Qk while

�xing H, V, Sk for k = 1, ...,K (lines 4 and 5). By computing SVD of XkVSkHT as

Z′kΣ
′
kP′Tk , we update Qk as Z′kP′Tk , which minimizes Equation (2.8) over Qk [2, 31, 32].

A�er updating Qk, the remaining factor matrices H, V, Sk is updated by minimizing

12



Algorithm 2: PARAFAC2-ALS [31]
Input: Xk ∈ RIk×J for k = 1, ...,K
Output: Uk ∈ RIk×R, Sk ∈ RR×R for k = 1, ...,K, and V ∈ RJ×R.
Parameters: target rank R

1: initialize matrices H ∈ RR×R, V, and Sk for k = 1, ...,K
2: repeat

3: for k = 1, ...,K do

4: compute Z′kΣ
′
kP′Tk ← XkVSkHT by performing truncated SVD at rank R

5: Qk← Z′kP′Tk
6: end for

7: for k = 1, ...,K do

8: Yk←QT
k Xk

9: end for

10: construct a tensor Y ∈ RR×J×K from slices Yk ∈ RR×J for k = 1, ...,K
/* running a single iteration of CP-ALS on Y */

11: H← Y(1)(W�V)(WT W∗VT V)†

12: V← Y(2)(W�H)(WT W∗HT H)†

13: W← Y(3)(V�H)(VT V∗HT H)†

14: for k = 1, ...,K do

15: Sk← diag(W(k, :))
16: end for

17: until the maximum iteration is reached, or the error ceases to decrease;
18: for k = 1, ...,K do

19: Uk←QkH
20: end for

the following objective function:

min
{Sk},H,V

K∑
k=1

||QT
k Xk−HSkVT ||2F (2.8)

Minimizing this function is to update H, V, Sk using CP decomposition of a tensor

Y∈RR×J×K whose k-th frontal slice is QT
k Xk (lines 8 and 10). We run a single iteration

of CP decomposition for updating them [31] (lines 11 to 16). Qk, H, Sk, and V are

alternatively updated until convergence.

Iterative computations with an irregular dense tensor require high computa-

tional costs and large intermediate data. RD-ALS [33] reduces the costs by prepro-
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Table 2.1: An overview of related works corresponding to our proposed works in this

thesis.

Regular Tensor &
Static Setting

Irregular Tensor &
Static Setting

Regular Tensor &
Online Setting

Related Works Chapter 2.3.1 Chapter 2.3.2 Chapter 2.3.3
Chapter 2.3.4

Our Works Chapter 3 (D-Tucker) Chapter 4 (DPar2) Chapter 3 (D-TuckerO)
Chapter 5 (Zoom-Tucker)

cessing a given tensor and performing PARAFAC2 decomposition using the prepro-

cessed result, but the improvement of RD-ALS is limited. Also, recent works suc-

cessfully have dealt with sparse irregular tensors by exploiting sparsity. However,

the e�ciency of their models depends on the sparsity pa�erns of a given irregular

tensor, and thus there is li�le improvement on irregular dense tensors. Speci�cally,

computations with large dense slices Xk for each iteration are burdensome as the

number of iterations increases. We focus on improving the e�ciency and scalability

in irregular dense tensors.

2.3 Related Works

I describe related works for tensor decomposition methods working in real-world

se�ings. I deal with two tensor forms (i.e., regular tensors and irregular tensors) and

two real-world se�ings (i.e., static and online se�ings). Table 2.1 shows an overview

of related works corresponding to our proposed works studied in this thesis. In Chap-

ter 2.3.1, I present static tensor decomposition methods for regular tensors, which is

related to D-Tucker (Chapter 3). In Chapter 2.3.2, I present static tensor decomposition

methods for irregular tensors, which is related to DPar2 (Chapter 4). In Chapter 2.3.3,

I present online tensor decomposition methods for regular tensors, which is related

to D-TuckerO (Chapter 3). In Chapter 2.3.4, I describe methods for answering time
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range queries on regular tensors, which is related to Zoom-Tucker (Chapter 5).

2.3.1 Tensor Decomposition on Regular Tensors

De Lathauwer et al. [28] proposed Tucker-ALS (Algorithm 1) which alternately up-

dates factor matrices and obtains core tensor. A few Tucker decomposition methods

slightly reduce the computational time using e�cient matrix operations [34, 35]. Che

et al. [36] applied randomized algorithms for Tucker decomposition. �e main chal-

lenges of Tucker decomposition are heavy computational time and large memory re-

quirements due to large-scale dense tensors. To overcome the challenges, MACH [37]

is designed to reduce the computational time and the memory requirement by sam-

pling input tensors. Also, Malik et al. [38] used a sketch of input tensors to overcome

the challenges. However, there is still plenty of room for improvement in terms of

e�ciency. Several works [5, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57] optimize tensor decomposition in parallel systems and distributed systems.

Tucker decomposition has been widely used for several applications including

dimensionality reduction [19, 58], recommendation [7, 59, 11], clustering [60, 61],

image tag re�nement [62, 63], phenotype discovery [2, 3, 4], and many others [64, 65,

1]. Oh et al. [7] analyzed movie rating data and discovered relations between movie

and time a�ributes by considering only observable entries. Kim et al. [19] used Tucker

decomposition for compressing a deep convolutional neural network. Jang et al. [25]

proposed a Tucker decomposition-based method to e�ciently analyze a given time

range.
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2.3.2 PARAFAC2 Decomposition on Irregular Tensors

Cheng and Haardt [33] proposed RD-ALS which preprocesses a given tensor and per-

forms PARAFAC2 decomposition using the preprocessed result. However, RD-ALS

requires high computational costs to preprocess a given tensor. Also, RD-ALS is less

e�cient in updating factor matrices since it computes reconstruction errors for the

convergence criterion at each iteration. Recent works [2, 3, 66] a�empted to ana-

lyze irregular sparse tensors. SPARTan [2] is a scalable PARAFAC2-ALS method for

large electronic health records (EHR) data. COPA [3] improves the performance of

PARAFAC2 decomposition by applying various constraints (e.g., smoothness). RE-

PAIR [66] strengthens the robustness of PARAFAC2 decomposition by applying low-

rank regularization. We do not compare DPar2 with COPA and REPAIR since they

concentrate on imposing practical constraints to handle irregular sparse tensors, es-

pecially EHR data. However, we do compare DPar2 with SPARTan which the e�-

ciency of COPA and REPAIR is based on. TASTE [67] is a joint PARAFAC2 decom-

position method for large temporal and static tensors. Although the above methods

are e�cient in PARAFAC2 decomposition for irregular tensors, they concentrate only

on irregular sparse tensors, especially EHR data. LogPar [68], a logistic PARAFAC2

decomposition method, analyzes temporal binary data represented as an irregular

binary tensor. SPADE [69] e�ciently deals with irregular tensors in a streaming set-

ting. TedPar [4] improves the performance of PARAFAC2 decomposition by explic-

itly modeling the temporal dependency. Although the above methods e�ectively deal

with irregular sparse tensors, especially EHR data, none of them focus on devising

an e�cient PARAFAC2 decomposition method on irregular dense tensors.
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2.3.3 Online Streaming Tensor Decomposition

Many works [70, 71, 72, 73, 74, 75, 76] have developed CP decomposition methods

in an online streaming se�ing. RLST (Recursive Least Squares Tracking) and SDT

(Simultaneous Diagonalization Tracking) [70] are adaptive PARAFAC decomposition

methods of a third-order tensor in an online streaming se�ing. Zhou et al. [71] de-

veloped onlineCP, a streaming CP decomposition method, while Zhou et al. [75] ex-

tend onlineCP for sparse tensors. Gujral et al. [74] and Smith et al. [73] proposed

streaming CP decomposition methods in parallel systems. Lee et al. [77] proposed

a robust tensor factorization that leverages two temporal characteristics: graduality

and seasonality. Ahn et al. [76, 78] proposed tensor factorization methods by captur-

ing temporal locality pa�erns. Son et al. [79] proposed a n online tensor factorization

method by capturing sudden change in data. �e main di�erence between the above

methods and our proposed method is that they focus on developing online versions

of CP decomposition while D-TuckerO is based on Tucker decomposition.

Sun et al. [17] incrementally analyzed temporal tensors over time: they proposed

two algorithms, DTA (dynamic tensor analysis) and STA (streaming tensor analysis).

However, the above methods update factor matrices and core tensor by naively us-

ing a new incoming tensor without compression, thereby e�ciency improvement is

limited when a new incoming tensor is su�ciently large. In addition, tucker-ts and

tucker-�mts [38] can be applied to online streaming se�ings. However, they fail to

avoid increasing the running time over time. Sun et al. [80] proposed a streaming

Tucker decomposition method with a sketching technique in distributed systems, as-

suming that time slices are stored in several machines. MAST [72] deals with the

scenario in which a given tensor grows in multiple modes while D-TuckerO runs on

the se�ing where only one mode increases.
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2.3.4 Answering Time Range�eries on Regular Tensors

Zoom-SVD [81] deals with the time range query problem, but it is suitable only

for multiple time series data represented as a matrix. Although there is no exist-

ing method that precisely addresses the time range query problem for tensors, there

are several methods [26, 37, 38] that can be adapted to solve the problem. �ey per-

form a preprocessing phase by exploiting a sampling technique [37] or randomized

SVD [26] before the query phase, and then obtain Tucker results using the prepro-

cessed results in the query phase. However, they do not satisfy the desired properties

for the solution: fast running time, low space cost, and accuracy.
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Chapter 3

E�cient Static and Streaming Tensor

Decomposition in Regular Tensors

3.1 Motivation

How can we e�ciently discover hidden concepts and pa�erns of large dense tensors?

Many real-world data including video, music, and air quality, can be represented as

dense tensors. Tucker decomposition is a fundamental tool for factorizing a given ten-

sor into factor matrices and a core tensor to �nd hidden concepts and latent pa�erns.

Tucker decomposition has spurred much interest with various applications including

dimensionality reduction [19, 58], recommendation [7, 59], and clustering [60, 61].

Alternating Least Square (ALS) is the most widely used method for Tucker de-

composition. Existing ALS-based methods, however, fail to satisfy all the desired

properties for dense tensor decompositions: fast running time, low memory require-

ment, and high accuracy. Tucker-ALS which updates factor matrices iteratively is

slow when the number of iterations is large. Moreover, Tucker-ALS has a memory

problem to obtain �nal factor matrices and a core tensor since it directly handles

large dense tensors in order to update the factor matrices and the core tensor at each

iteration. A few static Tucker decomposition methods reduce the computational cost

using e�cient matrix operations [34, 35] or applying randomized algorithms [36, 82].

In addition, other Tucker decomposition methods [37, 38] reduce the computational

time and the memory requirement by approximating large dense tensors. However,
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none of them provide both fast running time and accuracy. �e major challenges

to deal with large dense tensors are 1) how to e�ciently approximate a large dense

tensor with low error, and 2) how to update factor matrices by using approximated

results.

In this work, we propose D-Tucker and D-TuckerO, e�cient Tucker decompo-

sition methods on large dense tensors. D-Tucker and D-TuckerO run in static and

online streaming se�ings, respectively. �e main ideas of D-Tucker are as follows: 1)

slice an input tensor into matrices and compress each matrix by exploiting random-

ized singular value decomposition (SVD), 2) initialize and update factor matrices and

a core tensor using the SVD results, and 3) carefully determine the ordering of compu-

tations for e�ciency. Similar to D-Tucker, D-TuckerO tackles Tucker decomposition

for an online streaming se�ing with the following ideas: 1) avoid direct computations

related to previous time steps, 2) approximate each new incoming tensor, and then 3)

carefully update factor matrices by determining the ordering of computations.

D-Tucker has three main phases: approximation, initialization, and iteration (see

Figure 3.1). �e approximation phase of D-Tucker slices an input tensor into matrices,

and then performs randomized SVD [83] of each sliced matrix. It allows us to reduce

the size of the input tensor for updating the factor matrices and the core tensor. �e

initialization phase of D-Tucker initializes factor matrices by computing orthogonal

factor matrices using the SVD results of sliced matrices. �e iteration phase of D-

Tucker updates the factor matrices and the core tensor by carefully exploiting the SVD

results. D-Tucker achieves be�er time and space e�ciency by carefully dealing with

SVD results. Experimental results show that D-Tucker is faster and more memory-

e�cient than existing methods.

In an online streaming se�ing, D-TuckerO e�ciently deals with each new in-
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coming tensor by updating the temporal factor matrix, and then updating factor ma-

trices of non-temporal modes. To update the temporal factor matrix, we leverage

only the new incoming tensor and factor matrices of non-temporal modes obtained

at the previous time step. For factor matrices of non-temporal modes, we avoid direct

computations related to the entire tensor and the temporal factor matrix obtained at

previous time steps. It enables that computational cost and memory requirements are

proportional to the size of a new incoming tensor, not the entire tensor. In addition,

at each time step, we approximate a new incoming tensor using the approximation

phase of D-Tucker, and then update the factor matrices by carefully using the ap-

proximation results. Exploiting the approximation phase gives D-TuckerO the same

bene�t as D-Tucker: it allows us to use a smaller size of the approximated results than

that of a new incoming tensor in updating the factor matrices and the core tensor,

to achieve be�er time and space e�ciency. �rough comprehensive experiments, we

show that D-TuckerO is more e�cient than existing streaming methods, and the run-

ning time of D-TuckerO is proportional to the size of a newly arrived tensor, not the

accumulated tensor.

�e contributions of the paper are as follows.

• Algorithm. We propose D-Tucker and D-TuckerO, e�cient methods for de-

composing dense tensors in static and online streaming se�ings.

• Analysis. We provide analysis for the time and space complexities of our pro-

posed methods D-Tucker and D-TuckerO.

• Experiment. We experimentally show that D-Tucker 1) is up to 38.4× faster

and requires up to 17.2× less space than competitors (see Figure 3.3), and

2) provides good starting points to minimize the running time. Moreover, D-

Tucker is scalable in handling dense tensors in terms of dimensionality, rank,
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Table 3.1: Symbol description.
Symbol Description

Xr Reordered tensor (∈ I1× I2×K3× ...×KN)
G Core tensor (∈ J1× J2× ...× JN)

A(n) Factor matrix of the n-th mode
In Dimensionality of the n-th mode of Xr for modes n = 1 and 2
Kn Dimensionality of the n-th mode of Xr for mode n = 3,4, ...,N
Jn Dimensionality of the n-th mode of core tensor[

X ; Y
]

Horizontal concatenation of two matrices X and Y
X::k3...kN (k3, ...,kN)-th sliced matrix of size I1× I2
U::k3...kN Le� singular vector matrix of X::k3...kN

Σ::k3...kN Singular value matrix of X::k3...kN

V::k3...kN Right singular vector matrix of X::k3...kN

L Number of sliced matrices (= K3×·· ·KN )
r Number of singular values for SVD
N Order of the given tensor
ε Error tolerance in the iteration phase

tnew New time-step in an online streaming se�ing
Xold Accumulated tensor
Xnew New time slice at a time step tnew
Told Dimensionality of the temporal mode of an accumulated tensor (∈ I1× I2×K3× ...×Told)
Tnew Dimensionality of the temporal mode of a new time slice (∈ I1× I2×K3× ...×Tnew)

blkdiag({Al}L
l=1) Block diagonal matrix consisting of Al for l = 1, ...L (see Equation (3.5))

A(n)
old Pre-existing factor matrix of the n-th mode in an online streaming se�ing
⊗ Kronecker product
† Pseudoinverse

order, and the number of iterations. D-TuckerO is up to 6.1× faster than com-

petitors in an online streaming se�ing (see Figure 3.7).

In the rest of the chapter, we describe the preliminaries in Section 3.2, propose

our methods D-Tucker and D-TuckerO in Sections 3.3 and 3.4, respectively, present

experimental results in Section 3.5, and conclude in Section 3.6. �e code and datasets

are available at https://datalab.snu.ac.kr/dtucker.

3.2 Preliminaries

Table 3.1 shows the symbols used in this chapter.
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Algorithm 3: Randomized SVD [84]
Input: matrix A ∈ Rm×n, target rank k, and sampling parameters p and l
Output: SVD results U ∈ Rm×k, Σ ∈ Rk×k, V ∈ Rn×k

1: draw random matrices Ω ∈ Rp×m and Ψ ∈ Rl×n

2: form matrices Y =ΩA and Z =ΨAT

3: obtain column orthogonal matrices Q and P by QR factorization of YT and ZT .
4: form matrices W =ΩP and B = YQ.
5: obtain a matrix X which minimizes ‖WX−B‖
6: compute SVD of X = ŨΣṼT

7: U← PŨk, Σ← Σ̃k, V←QṼk

3.2.1 Singular Value Decomposition (SVD)

Given a matrix X ∈ Rm×n, Singular Value Decomposition (SVD) decomposes it into

the three matrices U ∈Rm×r, Σ ∈Rr×r, and V ∈Rn×r where X is equal to UΣVT. U

is a column orthogonal matrix (i.e., UT U = I) consisting of le� singular vectors of X;

Σ is an r× r diagonal matrix consisting of singular values σr where σ1 ≥ σ2 ≥ ·· ·

≥ σr ≥ 0. V ∈Rn×r is a column orthogonal matrix (i.e., VT V = I) consisting of right

singular vectors of X.

SVD with randomized algorithm. Randomized SVD e�ciently approximates

a matrix A∈Rm×n with a low rank using randomization techniques (See Algorithm 3).

�e main idea of randomized SVD is 1) to generate random matrices Ω ∈ Rp×m

and Ψ ∈ Rl×n where p and l are sampling parameters, and �nd column orthogo-

nal matrices Q ∈ Rn×p and P ∈ Rm×l of sketches YT = (ΩA)T ∈ Rn×p and ZT =

(ΨAT )T ∈ Rm×l , respectively, 2) to construct a smaller matrices W = ΩP ∈ Rp×l

and B = YQ ∈ Rp×p, and �nd X ∈ Rl×p that minimizes ‖WX−B‖, 3) to compute

X≈ ŨkΣkṼT
k by truncated SVD at target rank k, and 4) to compute U = PŨk ∈Rm×k

and V = QṼk ∈ Rn×k. �e dominant terms to compute randomized SVD are to form

sketches Y and Z. Recent works [38, 85] require O(mn) time to construct random

matrix and form matrix Y using sparse embedding matrix Ω ∈ Rp×m =ΦD.
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• h: [m]→ [p] is a random map so that h(m′) = p′ for p′ ∈ [p] with probability

1/p for each m′ ∈ [m], where [m] = {1,2, ...,m} and [p] = {1,2, ..., p}.

• Φ ∈ {0,1}p×m: for each m′-th column of Φ, all the entries are 0 except that

h(m′)-th entry is 1; each column vector is a one-hot encoding vector whose

only one entry is 1 and remaining entries are 0.

• Diagonal matrix D ∈ Rm×m: diagonal entries are randomly chosen to be 1 or

−1 with equal probability.

Due to the special form of Φ and D, the complexity of multiplying Ω to A is O(mn)

(see [85] for details). Z is also constructed like Y using sparse embedding matrix.

�erefore, the time complexity of randomized SVD is O(mn) when we use sparse

embedding matrices. In the paper, we use randomized SVD to e�ciently deal with

large dense matrices in the approximation phase. We use standard SVD [86] with time

complexity O(mnk) to stably deal with relatively small matrices in the initialization

and iteration phases.

3.2.2 Streaming Tucker Decomposition

We formally de�ne the problem of Tucker decomposition in an online streaming set-

ting as follows:

De�nition 3.1. (Tucker decomposition in a streaming fashion)

Given: a time slice Xnew ∈RI1×I2×K3×···×KN−1×Tnew
at a time-step tnew, a pre-existing set

of factor matrix A(n)
old for n = 1,2, ...,N, and a pre-existing core tensor Gold where A(n)

old

and Gold approximate Xold ∈ RI1×I2×K3×···×KN−1×Told
,

Update: the factor matrix A(n)
new for n = 1,2, ...,N and the core tensor Gnew to approxi-

mate the accumulated tensor X ∈ RI1×I2×K3×···×KN−1×Ttotal
where Ttotal = Told +Tnew.
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A(n)
new ∈ RIn×Jn (or RKn×Jn ) for n = 1,2, ...,N − 1 is a factor matrix updated at

tnew, A(N)
inc ∈ RTnew×JN is the temporal factor matrix corresponding to tnew, and A(N)

new =A(N)
old

A(N)
inc

 ∈ RTtotal×JN is the temporal factor matrix corresponding to ttotal = told + tnew

where A(N)
old ∈ RTold×JN is the pre-existing temporal factor matrix.

Computing the Tucker decomposition in an online streaming setting.We

can deal with a newly arrived tensor using a static version of Tucker decomposition.

However, it is inevitable that running times and memory requirements increase over

time. Recent works have tried to update factor matrices and a core tensor without the

growth of the costs. DTA [17] updates factor matrices and core tensor by e�ciently

updating covariance matrices XT
(n)X(n). STA [17] is an approximate version of DTA

by exploiting SPIRIT [87] which e�ciently deals with newly arrived vectors. Tucker-

ts and Tucker-�mts can be adapted to an online streaming se�ing: 1) approximating

each newly arrived tensor using a sketching technique, and 2) updating factor ma-

trices and core tensor using the approximated results of the whole tensor. Although

they avoid increasing running time and memory requirements over time, there re-

mains a need for accelerating the update process since computations involved with

a large dense incoming tensor are still time-consuming. To e�ciently update factor

matrices and a core tensor in an online streaming se�ing, we need to 1) prevent the

increase of cost over time, 2) reduce the cost of approximating a newly arrived tensor,

and 3) update them using the approximated results of the newly arrived tensor.

3.3 Proposed Method for Static Tensors: D-Tucker

We propose D-Tucker, a fast and memory-e�cient Tucker decomposition method for

large-scale dense tensors. We �rst give an overview of D-Tucker in Section 3.3.1. We
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describe details of D-Tucker in Sections 3.3.2 to 3.3.4. Finally, we analyze D-Tucker’s

complexities in Sections 3.3.5 and 3.3.6.

3.3.1 Overview

D-Tucker e�ciently computes Tucker decomposition of large dense tensors. �e main

challenges are as follows:

1. Exploiting the characteristics of real-world tensors. Many real-world ten-

sors are dense, provoking time and space problems. Furthermore, many real-

world tensors are skewed (i.e., one of the dimensionality is much smaller than

the others) and have low dimensional structures. How can we exploit such

characteristics of real-world tensors to compress a dense input tensor with low

computational cost and error?

2. Minimizing intermediate data. Existing methods require heavy computa-

tions and large space while updating factor matrices and a core tensor in the

iteration phase. How can we minimize the size of intermediate data when up-

dating the factor matrices and the core tensor?

3. Reducing numerical computation. Tucker decomposition deals with a large

number of tensor computations. How can we reduce the computational time

of Tucker decomposition?

We address the above challenges with the following ideas:

1. Slicing an input tensor into matrices and computing randomized SVD

of slicedmatrices minimize the computational cost and error, by utilizing the

low dimensional structure of sliced matrices (Section 3.3.2).
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Algorithm 4: D-Tucker
Input: tensor X
Output: factor matrices A(i) (i = 1,2, ...,N), and core tensor G
Parameters: rank Ji (i = 1,2, ...,N), and error tolerance ε

1: approximate slices of X by Algorithm 5
2: initialize factor matrices A(i) (i = 1,2, ...,N) by Algorithm 6
3: repeat

4: update factor matrices A(i) (i = 1,2, ...,N) and core tensor G by Algorithm 7
5: until the maximum iteration is reached, or the error di�erence is smaller than the error

tolerance ε

2. Avoiding the reconstruction from SVD results reduces the computational

time as well as memory usage. By replacing a dense input tensor with SVD

results of sliced matrices, we overcome a bo�leneck of Tucker decomposition,

n-mode product with a dense input tensor (Sections 3.3.3 and 3.3.4).

3. Careful ordering for matrix operations reduces the memory usage and

minimizes the computations. (Sections 3.3.3 and 3.3.4)

As shown in Figure 3.1 and Algorithm 4, D-Tucker comprises three phases: ap-

proximation (Algorithm 5), initialization (Algorithm 6), and iteration (Algorithm 7).

In the approximation phase, D-Tucker reorders modes of the input tensor in descend-

ing order for e�ciency, extracts matrices of size I1× I2 by slicing the reordered tensor

where I1 and I2 are the two largest dimensionalities, and performs randomized SVD of

sliced matrices in order to support fast and memory-e�cient Tucker decomposition

(line 1 in Algorithm 4). In the initialization phase, we obtain initial factor matrices

using the SVD results of sliced matrices (line 2 in Algorithm 4). �is phase provides

a good starting point for the iteration phase, reducing the number of iterations. In

the iteration phase, we obtain the factor matrices and the core tensor using the initial

factor matrices and the SVD results of sliced matrices (line 4 in Algorithm 4).
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Figure 3.1: Overview of D-Tucker. We �rst slice the given 3-order tensor X∈RI1×I2×K3 along
the mode having the smallest dimensionality (K3), and approximate sliced matrices using sin-
gular value decomposition (SVD). �en, we compute factor matrices using the SVD results of
sliced matrices in the initialization step. We iteratively update factor matrices using SVD re-
sults of sliced matrices. A�er that, we obtain the core tensor using the updated factor matrices
and SVD results of sliced matrices.

3.3.2 Approximation Phase

�e main goal of the approximation phase is to compress the input tensor with low

error; it enables the iteration phase to reduce the memory requirements and the num-

ber of �ops. Given a large-scale dense tensor, previous works based on ALS approach

require heavy computations and memory usage in updating a factor matrix at each

iteration step since they directly process the given tensor. Although a few methods

tried to solve the above problem by approximating the input tensor, they give high er-

rors, or require heavy computations. �e approximation phase of D-Tucker enables

e�ciently updating the factor matrices and the core tensor in the iteration phase

based on two characteristics of real-world tensors: 1) skewed shape, and 2) low di-

mensional structure in sliced matrices. We reorder modes of a given tensor based on

the �rst characteristic, and compress the sliced matrices of the reordered tensor using

a fast dimensionality reduction technique, randomized SVD.

Skewed shape of real-world tensors. A skewed shape, where there are gaps

between the dimensionalities of modes, exists in many real-world tensors. For exam-

ple, a 3-order Air �ality tensor (see Table 3.3) of size (30648,376,6) in the form of

(timestamp in second, location, atmospheric pollutants; measurement) has a skewed

shape where the dimensionality of the last mode is much smaller than those of oth-
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Algorithm 5: Approximation phase of D-Tucker
Input: tensor X
Output: sets of SVD result U::k3,...,kNΣ::k3,...,kN VT

::k3,...,kN
of sliced matrix X::k3,...,kN

Parameters: rank r
1: reorder modes of the input tensor by dimensionality in descending order
2: extract the matrix X::k3,...,kN ∈ RI1×I2 by slicing the reordered tensor where I1 and I2 are

the two largest dimensionalities
3: for each (k3, ...,kN) do
4: perform randomized SVD of X::k3,...,kN ' U::k3,...,kNΣ::k3,...,kN VT

::k3,...,kN
5: end for

ers. We reorder modes in descending order of dimensionality (line 1 in Algorithm 5).

Reordered tensor is de�ned as follows:

De�nition 3.2 (Reordered tensor Xr). Given an N-mode input tensor X, we reorder

the input tensor by dimensionality in descending order. We represent the reordered tensor

as Xr ∈ RI1×I2×K3×···×KN
where I1 and I2 are the two largest dimensionalities, Kn for

n = 3,4, ...,N are the remaining dimensionalities, and I1 ≥ I2 ≥ K3 ≥ ·· · ≥ KN . �

�is reordering helps minimize the output size of the approximation phase, which

is described in the analysis of space complexity in Section 3.3.5.

Low dimensional structure in sliced matrices. Many real-world data rep-

resented as a matrix have a low dimensional structure since they have redundant

and correlated components. Similarly, sliced matrices of a given real-world tensor

for any two modes o�en have a low dimensional structure. For example, consider

the 3-order Air �ality tensor X ∈RI1×I2×K3 of size (30648,376,6) in Table 3.3 con-

taining (timestamp in second, location, atmospheric pollutants; measurement), sliced

along modes 3. Out of the 6 sliced matrices, the ith sliced matrix X::i ∈ RI1×I2 in-

dicates the matrix containing (timestamp in second, location; measurement) for the

ith atmospheric pollutant. We observe that the number r of singular values to keep

90% energy of each sliced matrix is (28,8,6,7,6,18), which is much smaller than
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I1 = 30648 and I2 = 360. Note that the energy of a matrix X::i ∈ RI1×I2 is de�ned as∑min(I1,I2)
r=1 σ2

r where σr is the rth singular value of X::i. �is result indicates that the

sliced matrices have low dimensional structures. D-Tucker compresses the given ten-

sor by exploiting the low dimensional structure, achieving low errors. Moreover, this

structure provides the following computational bene�t: the approximation phase of

D-Tucker yields faster performance by leveraging the randomized SVD [84] of sliced

matrices. It enables us to avoid performing tensor decomposition methods for sub-

tensors, which makes D-Tucker e�cient since the tensor-based methods iteratively

perform expensive operations such as n-mode product. �erefore, D-Tucker achieves

high e�ciency and low errors even on single-core systems.

We express a reordered tensor Xr ∈ RI1×I2×K3×···×KN as a collection of sliced

matrix X::k3...kN . We formally de�ne the sliced matrix X::k3...kN in De�nition 3.3.

De�nition 3.3 (Sliced matrix X::k3...kN ). Given a reordered tensorXr ∈RI1×I2×K3×···×KN
,

each sliced matrix of size I1× I2 is extracted by slicing the reordered tensor Xr. �e size

of a sliced matrix X::k3...kN is I1× I2 where I1 is the number of rows and I2 is the number

of columns of the sliced matrix. �

A�er slicing the tensor Xr into the matrices X::k3...kN , we decompose the sliced

matrix using randomized SVD [84] with sparse embedding matrix [38, 85] (line 4 in

Algorithm 5).

X::k3...kN ' U::k3...kNΣ::k3...kN VT
::k3...kN

(3.1)

where U::k3...kN (∈RI1×r) is a le� singular vector matrix, Σ::k3...kN (∈Rr×r) is a singu-

lar value matrix, and V::k3...kN (∈RI2×r) is a right singular vector matrix. Note that the

number r of singular values is much smaller than the dimensionalities I1 and I2. By
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Figure 3.2: Example of matricizing a 4-order tensor X ∈ RI1×I2×K3×K4 using sliced matrices
for the �rst and the second mode when K3 = 2 and K4 = 2.

computing Equation (3.1) for all sliced matrices, we achieve high e�ciency in terms

of time and space, to obtain factor matrices and a core tensor. In the following ini-

tialization and iteration phases, we describe how to perform Tucker decomposition

e�ciently with the SVD results of sliced matrices rather than the raw input tensor.

3.3.3 Initialization Phase

�e initialization phase, which initializes factor matrices of a given tensor X, en-

ables the iteration phase to reduce the number of iterations by providing a good

starting point of the ALS algorithm. �e main challenge is how to handle the SVD

results for e�cient initialization of the factor matrices. Truncated HOSVD has pro-

vided good initial factor matrices to compute Tucker decomposition based on ALS

approach [28]. However, truncated HOSVD has limitations in e�ciently initializing

factor matrices using the SVD results because it cannot avoid reconstructing the re-

ordered tensor for the mode i = 3,4, ...,N using the SVD results. To avoid recon-

structing the reordered tensor using the SVD results, we apply Sequentially Trun-

cated Higher-Order SVD (ST-HOSVD) [88], which is a variant of HOSVD. Note that

ST-HOSVD obtains factor matrix A(i) which contains le� singular vectors of mode-i

matricization of X×1 A(1)T×2 A(2)T · · ·×i−1 A(i−1)T. Applying ST-SHOVD allows us
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to e�ciently initialize factor matrices using the results of the approximation phase,

in contrast to HOSVD. �e detail is described in initializing factor matrices for the

remaining modes.

D-Tucker initializes factor matrices by obtaining the le� singular vectors e�-

ciently using the SVD results. For the �rst mode, we e�ciently obtain the factor ma-

trix by reusing the SVD results from the approximation phase. For the second mode,

we e�ciently compute mode-1 product between the �rst factor matrix and the SVD

results by carefully ordering matrix multiplications, and then obtain the initial factor

matrix. For the remaining modes, we process a small tensor computed by n-mode

products between the SVD results and the factor matrices of the �rst and the second

modes. �ese enable D-Tucker to achieve high e�ciency in terms of time and space.

Note that we use standard SVD [86] in the initialization phase since the randomized

SVD can decrease the e�ectiveness of the initialization. We describe the initializa-

tion of the �rst two modes corresponding to the dimensionalities I1 and I2, and then

describe those of remaining modes [82].

First mode. Our goal is to initialize the factor matrix of the �rst mode as le�

singular vectors of mode-1 matricization ofX. A naive approach would compute SVD

of mode-1 matricization of X. However, this approach requires heavy computation

and high memory usage since it directly deals with a large-scale dense tensor. Our

idea is to avoid reconstructing X from the SVD results of sliced matrices, initializ-

ing the factor matrix of the �rst mode. Without the reconstruction, we reduce the

computational cost and memory usage.

As shown in Figure 3.2, we represent mode-1 matricized matrix X(1) of the re-
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Algorithm 6: Initialization phase of D-Tucker
Input: SVD results Ul , Σl , and Vl for l = 1,2, ...,L

where L is the number of sliced matrices
Output: initialized factor matrices A(i) (i = 1,2, ...,N)
Parameters: rank Ji (i = 1,2, ...,N)

1: perform SVD of
[
U1Σ1; · · · ;ULΣL

]
' UΣVT

2: A(1)← U
3: compute Y(2),inter = A(1)T [U1; · · · ;UL

]
4: Yreuse← Y(2),inter

5: Y(2),inter← Y(2),interblkdiag({ΣlVT
l }L

l=1)
6: Y← reshape(Y(2),inter, [J1, I2,K3, · · · ,KN ])

7: A(2)← J2 leading singular vectors of Y(2)
8: for i← 3 to N do

9: if i = 3 then

10: Yreuse← Yreuseblkdiag({ΣlVT
l A(2)}L

l=1)
11: Y← reshape(Yreuse, [J1,J2,K3, · · · ,KN ])
12: else

13: Y← Yreuse×i−1 A(i−1)T

14: end if

15: A(i)← Ji leading singular vectors of Y(i)
16: Yreuse← Y

17: end for

ordered tensor Xr as follows:

X(1) =
[
X::1,...,1; · · · ;X::K3,...,KN

]
=
[
X1; · · · ;Xl; · · · ;XL

]
where L is equal to K3×·· ·×KN , and the index l is de�ned as in Equation (3.2).

l = 1+
N∑

i=3

(
(ki−1)

i−1∏
m=3

Km

)
(3.2)

where Km is the dimensionality of mode-m, N is the order of the input tensor, and∏i−1
m=3 Km is equal to 1 if i−1 < m. Note that we represent a sliced matrix as Xl with

the index l instead of X::k3...kN for brevity. Using the SVD of sliced matrices, the mode-
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1 matricized matrix X(1) is expressed as follows:

X(1) =
[
X1; · · · ;Xl; · · · ;XL

]
'
[
X̃1; · · · ; X̃l; · · · ; X̃L

]
(3.3)

where X̃l is a representation of UlΣlVT
l . �e computational cost to explicitly recon-

struct the matrices X̃l for l = 1..L from SVD results and to obtain le� singular vectors

of X(1) is expensive in terms of time and space. D-Tucker obtains le� singular vectors

of the �rst mode without the reconstruction of X̃l . �e main idea is to carefully de-

couple UlΣl and VT
l , and perform SVD of a concatenated matrix consisting of UlΣl

for l = 1..L. �e above idea allows us to e�ciently obtain le� singular vectors of

the concatenated matrix based on block structure [89, 81]. Performing SVD of the

concatenated matrix (∈ RI1×(r×K3×···×KN)) consisting of UlΣl for l = 1..L is more ef-

�cient than SVD of the mode-1 matricized matrix X(1) (∈ RI1×(I2×K3×···×KN)) (line 1

in Algorithm 6).

X(1) '
[
U1Σ1; · · · ;ULΣL

]
× (blkdiag({Vl}L

l=1))
T ' UΣVT(blkdiag({Vl}L

l=1))
T

(3.4)

where UΣVT is the SVD result of the concatenated matrix
[
U1Σ1; · · · ;ULΣL

]
, and

the number L of sliced matrices is equal to K3×·· ·×KN . blkdiag({Vl}L
l=1) ∈RI2L×rL

is a block diagonal matrix consisting of Vl ∈ RI2×r for l = 1, ...,L:

blkdiag({Vl}L
l=1) =



V1 O · · · O

O V2 · · · O
... O . . . ...

O O · · · VL


(3.5)
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U and VT(blkdiag({Vl}L
l=1))

T are column orthogonal and Σ has the property of sin-

gular value matrix, and thus the last term of Equation (3.4) has the SVD form. �ere-

fore we obtain the initial factor matrix A(1) = U (line 2 in Algorithm 6).

Second mode. Our goal is to initialize the factor matrix of the second mode as

le� singular vectors of mode-2 matricization of X×1 A(1)T like ST-HOSVD. As in the

�rst mode, a naive approach would compute SVD of mode-2 matricization of X×1

A(1)T, but it has the same problems of heavy computational cost and high memory

requirement. Our idea is to compute X×1 A(1)T without reconstructing X from a set

of SVD results of sliced matrices, and then compute SVD of mode-2 matricization of

X×1 A(1)T. By avoiding the reconstruction, we reduce the computational cost and

memory usage to compute X×1 A(1)T.

To compute n-mode product for mode-1, we exploit SVD results computed from

the approximation phase, instead of the given tensor, and then obtain le� singular

vectors for the second mode. In detail, we perform matrix multiplication between

A(1)T and mode-1 matricized matrix described in Equation (3.3) as follows:

A(1)TX(1) ' A(1)T
[
U1Σ1VT

1 ; · · · ;ULΣLVT
L

]
=
(

A(1)T
[
U1; · · · ;UL

])
blkdiag({ΣlVT

l }L
l=1) = Y(2),interblkdiag({ΣlVT

l }L
l=1)

(3.6)

where Y(2),inter =A(1)T
[
U1; · · · ;UL

]
, L is equal to K3×·· ·×KN , and blkdiag({ΣlVT

l }L
l=1)

is a block diagonal matrix consisting of ΣlVT
l . In Equation (3.6), Y(2),inter is com-

puted, and then multiplied with the block diagonal matrix. A�er reshaping the re-

sult of Y(2),interblkdiag({Σl VT
l }L

l=1) as a tensor Y of the size J1× I2×K3×·· ·×KN ,

we compute le� singular vectors of mode-2 matricized matrix Y(2) to initialize A(2)

(lines 3 to 7 in Algorithm 6).
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Remaining modes. For mode i = 3, ...,N, our goal is to initialize A(i) as le�

singular vectors of mode-i matricization Y(i) of X×1 A(1)T×2 A(2)T · · ·×i−1 A(i−1)T.

For a mode-i, explicitly computing X×1 A(1)T×2 A(2)T · · ·×i−2 A(i−2)T is ine�cient

since it is computed for the previous mode-(i−1). Our idea is to reuse the result of

X×1 A(1)T×2 A(2)T · · ·×i−2 A(i−2)T to initialize the factor matrix of the mode-i.

Now, we describe how to obtain the factor matrix of the third mode, and then

the factor matrix of the modes i = 4,5, ...,N. For mode-3, the goal is to obtain X×1

A(1)T×2 A(2)T, and perform SVD. �e following equation re-expresses the mode-1

matricization of X×1 A(1)T×2 A(2)T.

A(1)TX(1)blkdiag({A(2)}L
l=1)'

(
A(1)T

[
U1; · · · ;UL

])
blkdiag({ΣlVT

l A(2)}L
l=1)

= Y(2),interblkdiag({ΣlVT
l A(2)}L

l=1)

(3.7)

Note that we save Yreuse =
(

A(1)T
[
U1; · · · ;UL

])
to reuse when computing Equa-

tion (3.7) (line 4 in Algorithm 6). A�er computing Equation (3.7), we 1) reshape the

result as a tensor Y of size J1× J2×K3× ·· · ×KN , 2) perform SVD of Y(3), and 3)

store Y as Yreuse for remaining modes (lines 10, 11, 15, and 16 in Algorithm 6).

Next, factor matrices for mode i = 4,5, ...,N are initialized by using the result

of the previous mode. For mode i, we compute Yreuse×i−1 A(i−1)T , and then perform

SVD of mode-i matricization of Yreuse×i−1 A(i−1)T . Since Y(i) is much smaller than an

input tensor X, we e�ciently initialize factor matrices A(i) for i = 3, ...,N. �is is the

reason why we apply ST-HOSVD, not HOSVD which requires high computational

costs to compute le� singular vectors for the remaining modes i = 3, ...,N. HOSVD

needs to perform SVD of mode-i matricization of X. �en, we initialize the factor
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Algorithm 7: Iteration phase of D-Tucker
Input: SVD results Ul , Σl , and Vl ( l = 1,2, ...,L),

factor matrices A(i) (i = 1, ...,N), and core tensor G
Output: updated factor matrices A(i) (i = 1, ...,N), and core tensor G
Parameters: Rank Ji (i = 1, ...,N)

1: for i← 1 to 2 do

2: if i = 1 then

3: Y(1),inter← A(2)T [V1; · · · ;VL
]

4: Y(1),inter← Y(1),interblkdiag({ΣlUT
l }L

l=1)
5: Y← reshape(Y(1),inter, [I1,J2,K3, · · · ,KN ])
6: else

7: Y(2),inter← A(1)T [U1; · · · ;UL
]

8: Yreuse← Y(2),inter

9: Y(2),inter← Y(2),interblkdiag({ΣlVT
l }L

l=1)
10: Y← reshape(Y(2),inter, [J1, I2,K3, · · · ,KN ])
11: end if

12: Y← Y×3 A(3)T · · ·×N A(N)T

13: A(i)← Ji leading singular vectors of Y(i)
14: end for

15: Yreuse← Yreuseblkdiag({ΣlVT
l A(2)}L

l=1)
16: Yreuse← reshape(Yreuse, [J1,J2,K3, · · · ,KN ])
17: for i← 3 to N do

18: Y← Yreuse×3 A(3)T · · ·×i−1 A(i−1)T×i+1 A(i+1)T · · ·×N A(N)T

19: A(i)← Ji leading singular vectors of Y(i)
20: end for

21: G← Yreuse×3 A(3)T · · ·×N A(N)T

matrix A(i) as the le� singular vectors of the SVD result (line 15 in Algorithm 6).

3.3.4 Iteration Phase

�e goal of the iteration phase is to alternately update factor matrices and compute

core tensor by e�ciently computing n-mode products in lines 4 and 8 of Algorithm 1.

As described in Section 2.2.1, a naive ALS approach is much ine�cient in terms of

time and space due to a large intermediate tensor including the input tensor. Further-

more, increasing the number of iterations a�ects the overall running time. �erefore,

the main challenge of the iteration phase is how to reduce the number of �ops by

minimizing the intermediate data. Our ideas to tackle the challenge are to 1) exploit
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the special structure of SVD results, 2) carefully determine the ordering of matrix

multiplications, and 3) avoid redundant computations for the �rst and second modes.

Our ideas allow D-Tucker to be less a�ected by the number of iterations, and

to avoid rapid growth of computational time as the number of iterations increases,

due to the small amount of computations. We describe how to update 1) the factor

matrices of the �rst two modes corresponding to the dimensionalities I1 and I2, and

2) those of other modes and the core tensor. Note that we use standard SVD [86] for

stable convergence in the iteration phase.

Firstmode.Consider updating the �rst factor matrix A(1). We use the initialized

factor matrices and SVD results of the sliced matrices for A(1). Following line 4 of

Algorithm 1, we e�ciently compute n-mode product for mode-2 using SVD results

obtained in the approximation phase instead of the given tensor, and then perform

products for remaining modes 3,4, ...,N. We matricize the tensor along mode-2 with

the sliced matrices as follows:

X(2) =
[
XT

1 ; · · · ;XT
l ; · · · ;XT

L

]
'
[
X̃T

1 ; · · · ; X̃T
l ; · · · ; X̃T

L

]
A�er that, we perform matrix multiplication between A(2)T and the mode-2 matri-

cized matrix as follows:

A(2)TX(2) ' A(2)T
[
V1Σ1UT

1 ; · · · ;VLΣLUT
L

]
=
(

A(2)T
[
V1; · · · ;VL

])
blkdiag({ΣlUT

l }L
l=1) = Y(1),interblkdiag({ΣlUT

l }L
l=1)

(3.8)

where Y(1),inter =A(2)T
[
V1; · · · ;VL

]
, L is equal to K3×·· ·×KN , and blkdiag({ΣlUT

l }L
l=1)

is a block diagonal matrix consisting ofΣlUT
l . In Equation (3.8), we compute Y(1),inter,

and multiply it with the block diagonal matrix. �en, we reshape the result of Y(1),inter
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blkdiag({Σl UT
l }L

l=1) as Y of size I1×J2×K3×·· ·×KN (lines 3 to 5 in Algorithm 7).

A�er that, we perform the remaining n-mode products with Y for n = 3,4, ...,N, and

then update the factor matrix A(1) by computing SVD of mode-1 matricized matrix

Y(1) (lines 12 and 13 in Algorithm 7).

Second mode. Next, to update A(2), we compute n-mode product for mode-

1 using SVD results obtained in the approximation phase instead of the given ten-

sor. �en, we perform n-mode products for remaining modes 3,4, ...,N. As in Equa-

tion (3.6), we perform matrix multiplication between A(1)T and the mode-1 matricized

matrix which is the matricization of the tensor along mode-1 with the sliced matri-

ces in Equation (3.3). For e�ciency, we compute Equation (3.6) with the following

order: 1) Y(2),inter = A(1)T
[
U1; · · · ;UL

]
, 2) multiply it with the block diagonal ma-

trix blkdiag({ΣlVT
l }L

l=1), and 3) reshape the result of Y(2),interblkdiag ({Σl VT
l }L

l=1)

as Y (∈ RJ1×I2×K3×···×KN ) (lines 7, 9, and 10 in Algorithm 7). Note that Y(2),inter is

reused when computing A(i) for i = 3,4, ...,N and the core tensor (line 8 in Algo-

rithm 7). We update A(2) by performing the remaining n-mode products with Y for

n = 3,4, ...,N, and computing SVD of mode-2 matricized matrix Y(2) (lines 12 and 13

in Algorithm 7).

Remaining modes and core tensor. Consider updating factor matrices A(i)

for all i= 3,4, ...,N, and the core tensor G. �e mode-1 matricization of X×1 A(1)T×2

A(2)T is given by Equation (3.7). In computing Equation (3.7), reusing the saved Y(2),inter

at line 8 of Algorithm 7 allows us to avoid redundant computation, su�ciently reduc-

ing computational costs; the reason is that Y(2),inter is much smaller than the input

tensor X and the SVD results of sliced matrices. We compute Y(2),inter blkdiag({ΣlVT
l

A(2)}L
l=1) and reshape the result Yreuse of size J1× J2×K3 · · · ×KN once, which is

reused to compute factor matrices A(i) for i= 3,4, ...,N and the core tensorG (lines 15
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and 16 in Algorithm 7). For i = 3, ...,N, we update A(i) by performing the remaining

n-mode products, and SVD of Y(i) (lines 17 to 20 in Algorithm 7). In addition, we

update the core tensor by performing n-mode products between the reshaped tensor

Yreuse (∈ RJ1×J2×K3···×KN ) and A(n)T for all n = 3,4, ...,N (line 21 in Algorithm 7).

3.3.5 Lemmas and�eorems

We theoretically analyze the time complexity, the space complexity, and the error of

D-Tucker, as summarized in Table 3.2. For brevity, we assume I1 = I2 = I, K1 = K2 =

...= KN = K, r = J1 = J2 = ...= JN = J. For readability, we provide proofs of Lemmas

and �eorems in Section 3.3.6.

Time complexity. We analyze the time complexities of D-Tucker in �eorem 3.1.

Lemma 3.1. �e approximation phase of D-Tucker takes O(I2KN−2) where I is the

largest dimensionality, and K is the remaining dimensionality. �

Proof. See the proof in Section 3.3.6.1.

Lemma 3.2. �e initialization phase of D-Tucker takes O (IKN−2J2) where I is the

largest dimensionality, K is the remaining dimensionality, and J is the rank. �

Proof. See the proof in Section 3.3.6.2.

Lemma 3.3. �e time complexity of an iteration at the iteration phase is O(NIKN−2J2)

where N is the order of a given tensor, I is the largest dimensionality, K is the remaining

dimensionality, and J is the rank. �

Proof. See the proof in Section 3.3.6.3.
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Table 3.2: Time and space costs of D-Tucker and competitors. Space cost indicates the re-
quirement for updating factor matrices and the core tensor. Boldface denotes the optimal
complexities. I denotes the two largest dimensionalities, K is the remaining dimensionalities,
M is the number of iterations, J is the dimensionality of the core tensor, and N is the order of
the given tensor.

Algorithm Time Space

D-Tucker O(I2KN−2 +MNIKN−2J2) O(IKN−2J)
Tucker-ALS [90] O(MNI2KN−2J) O(I2KN−2)

MACH [37] O(MNI2KN−2J) O(I2KN−2)
RTD [36] O(MNI2KN−2) O(I2KN−2)

Tucker-ts [38] O(NI2KN−2 +MN(IJN + J2N)) O(NIJN + J2N)
Tucker-�mts [38] O(NI2KN−2 +MN(IJ2N−2 + J2N−2)) O(NIJN + J2N−1)

�eorem 3.1. �e total time complexity of D-Tucker is O(I2KN−2J +MNIKN−2J2)

where M is the number of iterations, N is the order of a given tensor, I is the largest

dimensionality, K is the remaining dimensionality, and J is the rank. �

Proof. See the proof in Section 3.3.6.4.

Note that the time complexity of the approximation phase of D-Tucker is pro-

portional only to the size I2KN−2 of the input tensor without any parameters such

as rank J and order N. Also, D-Tucker is less a�ected by the number of iterations be-

cause the time complexity O(NIKN−2J2) per iteration of the iteration phase is much

smaller than the time complexity O(I2KN−2) of the approximation phase: I is much

larger than NJ2 since I� J and I� N. �us, D-Tucker avoids rapid growth of com-

putational time as the number of iterations increases.

Space complexity. We analyze space requirements of D-Tucker for initializing and

updating factor matrices.

�eorem 3.2. D-Tucker requires O(IKN−2J) space for initializing and updating factor

matrices. �

Proof. See the proof in Section 3.3.6.5.
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Note that the original input tensor requires O(I2KN−2) space. �anks to the re-

ordering in the approximation phase, the space complexity of D-Tucker is I/J times

smaller than directly using the raw input tensor. Without the reordering, the com-

pression rate would worsen; e.g., if we have decomposed sliced matrices of size I×Kn,

the compression rate would have decreased to Kn/J, which is worse than I/J since

I > Kn > J.

3.3.6 Proofs of Lemmas and�eorems

We provide proofs for lemmas and theorems described in Section 3.3.5.

3.3.6.1 Proof of Lemma 3.1

Proof. Performing randomized SVD of each sliced matrix takes O(I2) (Algorithm 3).

Since the number of sliced matrices is KN−2, the time complexity of the approxima-

tion phase is O(I2KN−2).

3.3.6.2 Proof of Lemma 3.2

Proof. For the �rst mode, size of
[
U1Σ1; · · · ;UlΣl

]
is I ×KN−2J. �en, perform-

ing SVD [86] takes O(IKN−2J2) for the �rst mode. For the second mode, it takes

O(IKN−2J2) to compute Y(2),inter (line 3 of Algorithm 6), O(IKN−2J2) to compute

Y(2),interblkdiag({ΣlVT
l }L

l=1), and O(IKN−2J2) to perform SVD of Y(2). �en, it takes

O(IKN−2J2) to initialize the factor matrix of the second mode. For the remaining

modes, it takes O(IKN−2J2 +
∑N−3

k=0 KN−2−kJ3+k) to compute the remaining n-mode

products for all n = 2,3, ...,N, and O(J
∑N−3

k=0 KN−2−kJ2+k) to compute SVD for all

n = 3,4, ...,N. For all modes, the dominant term is O(IKN−2J2) since I > K > J, thus

we simplify the time complexity of the initialization phase as O(IKN−2J2).
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3.3.6.3 Proof of Lemma 3.3

Proof. For the �rst mode, the time complexity is O(IKN−2J2) to compute Y(1),inter and

Y(1),inter blkdiag({ΣlUT
l }L

l=1) in Equation (3.8), and O(I
∑N−3

k=0 KN−2−kJ2+k) for com-

puting the remaining n-mode products for all n = 3,4, ...,N. We simplify O(I
∑N−3

k=0

KN−2−kJ2+k) as O(NIKN−2J2) since J < K. �e computational time of the second

mode is the same as that of the �rst mode. Before computing for remaining modes, it

takes O(IKN−2J2 +KN−2J3) to compute Yreuse in line 15 of Algorithm 7. For mode-

i, it takes O(−KN−(i−1)Ji +
∑N−3

k=0 KN−2−kJ3+k) to perform n-mode products for all

n = 3,4, i− 1, i+ 1, ...,N. For core tensor, it takes O(
∑N−3

k=0 KN−2−kJ3+k) to perform

n-mode products for all n = 3,4, ...,N. We simplify the complexity O(−KN−(i−1)Ji +∑N−3
k=0 KN−2−kJ3+k) and O(

∑N−3
k=0 KN−2−k J3+k) to O(NKN−2J3) since K > J. �ere-

fore, the time complexity of one iteration in the iteration phase is O(IKN−2J2 +

NIKN−2J2 + IKN−2J2 +KN−2J3 +NKN−2J3). Without loss of generality, we express

the time complexity of the iteration phase as O(NIKN−2J2) since I > K > J.

3.3.6.4 Proof of �eorem 3.1

Proof. �e total time complexity of D-Tucker is the summation of time complexi-

ties for the three phases: approximation, initialization, and iteration. By Lemmas 3.1

to 3.3, the time complexity is O(I2KN−2J +MNIKN−2J2), which is simpli�ed from

O(I2KN−2J+ IKN−2J2 +MNIKN−2J2) without loss of generality.

3.3.6.5 Proof of �eorem 3.2

Proof. In the initialization phase, initializing for the �rst two modes requires O(IKN−2J)

space to deal with
[
U1Σ1; · · · ;UlΣl

]
, mode-2 matricization matrix Y(2), and related

tensors in lines 1 to 7 of Algorithm 6. Initializing for the remaining modes requires
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O(KN−2J2) to store Y(i), Yreuse, Yreuse, and related tensors in lines 8 to 17 of Algo-

rithm 6.

�e iteration phase requires O(IKN−2J) space for matrices Y(2),interblkdiag({ΣiUT
l

}L
l=1) and Y(1),interblkdiag({ΣlVT

l }L
l=1) in lines 4 and 9 of Algorithm 7. �e dominant

term for the remaining modes is O(KN−2J2) to store Yreuse in line 16 of Algorithm 7.

Considering I > K > J, the total space complexity is O(IKN−2J).

3.4 ProposedMethod forOnlineTensors: D-TuckerO

3.4.1 Overview

We propose D-TuckerO, an e�cient Tucker decomposition method in an online stream-

ing se�ing. Our goal is to design D-TuckerO to e�ciently update factor matrices and

core tensor for a new incoming tensor slice. �e main challenges that need to be tack-

led for an e�cient Tucker decomposition method in an online streaming se�ing are

as follows:

1. Preventing the increase of costs over time. How can we prevent increasing

the computational cost and space cost as tensors continuously arrive over time?

2. Accelerating updates. How can we accelerate the update process for each

incoming time slice?

We address the challenges with the following main ideas:

1. Avoiding explicit computations withXold and A(N)
old enables D-TuckerO to

update factor matrices and core tensor without increasing the costs where Xold
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and A(N)
old are a pre-existing tensor and a pre-existing temporal factor matrix,

respectively.

2. Applying the approximation phase for an incoming time slice acceler-

ates the update procedure for factor matrices and core tensor.

As shown in Algorithm 8, D-TuckerO e�ciently updates factor matrices when a new

incoming tensor is given. We present an e�cient update procedure for each new

incoming tensor in Section 3.4.2, and then describe how to apply the approximation

phase to the update procedure in Section 3.4.3. Lastly, we analyze the time and space

complexities of D-TuckerO. For brevity, we set the last mode N as the temporal mode

when an N-order tensor repeatedly comes.

3.4.2 E�cient Update for Time Slice

Our goal is to update factor matrices and the core tensor for a new incoming tensor

slice Xnew. D-TuckerO alternately updates factor matrices, and core tensor as in ALS

algorithm; D-TuckerO updates the n-th factor matrix while �xing the other factor

matrices and core tensor. We present how to update the temporal factor matrix A(N)

and then factor matrices of non-temporal modes.

Temporal Mode. Consider updating the temporal factor matrix A(N). A naive

approach is to update it by computing lines 4 and 5 in Tucker-ALS. However, dealing

with an accumulated tensor X is impractical since the size of the tensor X increases

over time. To e�ciently update the factor without dealing with the accumulated ten-

sor, we only update a part of the temporal factor matrix, i.e., A(N)
inc , corresponding to

tnew. Lemma 3.4 describe an update rule for A(N)
inc .

Lemma 3.4 (Update rule for temporal mode). When �xing all non-temporal factor
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Algorithm 8: Update phase of D-TuckerO
Input: a time slice Xnew ∈ RI1×I2×K3×···×KN−1×tnew , a pre-existing set A of factor matrix

A(n)
old (n = 1, ...,N), and core tensor Gold , a set of P(n)

old , Q(n)
old for n = 1, ...,N−1, P(N+1)

old ,
and Q(N+1)

old

Output: updated factor matrices A(n)
new (n = 1, ...,N) and core tensor Gnew

Parameters: Rank Ji (i = 1, ...,N)
1: obtain SVD results Ul , Σl , and Vl ( l = 1,2, ...,L) of Xnew using the approximation

phase.
2: obtain A(N)

new by computing Equation (3.9) with the SVD results of Xnew
3: for n← 1 to N−1 do

4: obtain A(n)
new by computing Equation (3.10) with the SVD results of Xnew

5: update P(n)
old ← P(n)

old +P(n)
new by Equation (3.14)

6: update Q(n)
old ←Q(n)

old +Q(n)
new by Equation (3.18)

7: end for

8: obtain Gnew by computing Equation (3.19) with the SVD results of Xnew

9: update P(N+1)
old ← P(N+1)

old +P(N+1)
new by Equation (3.20)

10: update Q(N+1)
old ←Q(N+1)

old +Q(N+1)
new by Equation (3.21)

matrices, A(N)
inc is updated as follows:

A(N)
inc ← X(N),new

(
⊗N−1

k=1

(
A(k)T

)†
)

G†
(N) (3.9)

where † indicates a pseudo-inverse of a matrix, and (⊗N−1
k=1

(
A(k)T

)†
) indicates the entire

Kronecker product of

(
A(k)T

)†
for k = N−1,N−2, ...,2,1. �

Proof. See the proof in Section 3.4.5.1.

Since A(N)
old is already computed at the previous step, we only compute A(N)

inc

using Xnew, G(N), and A(n) for n = 1,2, ...,N − 1. In updating the temporal factor

matrix A(N), we exploit G(N),old and A(n)
old for n = 1,2, ...,N − 1 to compute G(N)

and (⊗N−1
k=1

(
A(k)T

)†
), respectively. In Equation (3.9), we compute 1)

(
A(k)T

)† for k =

1, ...,N−1, 2) the Kronecker product, and 3) matrix multiplication between X(N),new,

the result of the Kronecker product, and G†
(N),old in Equation (3.9).
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Non-temporal Modes. Our goal is to update A(n) when a new incoming ten-

sor Xnew is given. By avoiding explicit computations with Xold and A(N)
old whose size

increases over time, we e�ciently update A(n). We �rst introduce an update rule for

A(n), and then provide details on e�ciently computing A(n) based on the rule.

Lemma 3.5 (Update rule for non-temporal mode). When �xing A(k)
for k = 1, ...,n−

1,n+1, ...,N, A(n)
new is updated as follows:

A(n)
new← P(n)

(
Q(n)

)−1
(3.10)

where P(n)
and Q(n)

are equal to X(n)(⊗N
k 6=nA(k))GT

(n) and

(
G(n)(⊗N

k 6=n(A
(k)T A(k)))GT

(n)

)
,

respectively. �

Proof. See the proof in Section 3.4.5.2.

To update A(n), we compute P(n) and Q(n) in Equation (3.10). However, a naive

computation for Equation (3.10) is impractical since the size of X(n) and A(N) increases

over time. To achieve the e�ciency, we avoid explicit computations with X(n),old and

A(N)
old decoupled from X(n) and A(N), respectively, in P(n) and Q(n).

We now describe details on e�cient computations of P(n) and Q(n). Given P(n),

we divide it into P(n)
old and P(n)

new where P(n)
old and P(n)

new are equal to Equations (3.12)
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and (3.13), respectively.

P(n) =
[
X(n),old X(n),new

]
×

A(N)
old

A(N)
inc

⊗ (⊗N−1
k 6=n A(k))

GT
(n) (3.11)

=
(

X(n),old(A
(N)
old ⊗ (⊗N−1

k 6=n A(k)))GT
(n)

)
(3.12)

+
(

X(n),new(A
(N)
inc ⊗ (⊗N−1

k 6=n A(k)))GT
(n)

)
(3.13)

= P(n)
old +P(n)

new (3.14)

We only compute P(n)
new for Equation (3.14) as P(n)

old is computed and stored at the pre-

vious step. P(n) is used as P(n)
old at the next step.

Next, we e�ciently compute Q(n); we divide Q(n) into Q(n)
old and Q(n)

new which are

equal to Equations (3.16) and (3.17), respectively.

Q(n) = G(n)

[A(N)T
old A(N)T

inc

]A(N)
old

A(N)
inc

⊗(⊗N−1
k 6=n (A

(k)T A(k))
)

GT
(n) (3.15)

= G(n)

(
(A(N)T

old A(N)
old )⊗ (⊗N−1

k 6=n (A
(k)T A(k)))

)
GT

(n) (3.16)

+G(n)

(
(A(N)T

inc A(N)
inc )(⊗N−1

k 6=n (A
(k)T A(k)))

)
GT

(n) (3.17)

= Q(n)
old +Q(n)

new (3.18)

Similar to P(n), Q(n)
old is computed and stored at the previous step. We only compute

Q(n)
new for Equation (3.18). Q(n) is also used as Q(n)

old at the next step.

Core tensor. A�er updating factor matrices, we update the core tensor with

Lemma 3.6. By avoiding explicit computations with Xold and A(N)
old , we e�ciently up-

date G. We �rst derive an equation for updating the core tensor, and then describe

how to e�ciently update it.
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Lemma 3.6 (Update rule for core tensor). When �xing all factor matrices, we update

the core tensor with the following equation:

G(N) =
(

Q(N+1)
)−1

P(N+1) (3.19)

where P(N+1)
and Q(N+1)

are equal to A(N)T X(N)(⊗N−1
k=1 A(k)(A(k)T A(k))−1) and

(
A(N)T A(N)

)
,

respectively. Note that (N +1) in P(N+1)
and Q(N+1)

corresponds to the core tensor. �

Proof. See the proof in Section 3.4.5.3.

A naive computation for Equation (3.19) is expensive due to X and A(N) corre-

sponding to ttotal . �erefore, we precisely divide P(N+1) and Q(N+1) to avoid comput-

ing the terms related to Xold and A(N)
old . P(N+1) is divided as follows:

P(N+1)

= A(N)T X(N)

(
⊗N−1

k=1

(
A(k)T

)†
)
=

[A(N)T
old A(N)T

inc

]X(N),old

X(N),new

(⊗N−1
k=1

(
A(k)T

)†
)

= A(N)T
old X(N),old

(
⊗N−1

k=1

(
A(k)T

)†
)
+A(N)T

inc X(N),new

(
⊗N−1

k=1

(
A(k)T

)†
)

= P(N+1)
old +P(N+1)

new

(3.20)

Similar to updating the factor matrices of the non-temporal modes, we only compute

P(N+1)
new for updating the core tensor since P(N+1)

old is already computed at the previous

step.
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Next, we divide Q(N+1) into Q(N+1)
old and Q(N+1)

new .

Q(N+1) = A(N)T A(N) =
[
A(N)T

old A(N)T
inc

]A(N)
old

A(N)
inc

=
(

A(N)T
old A(N)

old

)
+
(

A(N)T
inc A(N)

inc

)
= Q(N+1)

old +Q(N+1)
new

(3.21)

�en, we compute Q(N+1)
new , and obtain Q(N+1); note that Q(N+1)

old is already computed

at the previous step.

3.4.3 Applying Approximation Phase

�e objective of applying the approximation phase is to accelerate the update pro-

cess for each incoming time slice. �e main ideas are to 1) approximate a time slice

by performing randomized SVD of each sliced matrix of a time slice and 2) update

factor matrices and a core tensor with the SVD results of the time slice instead of the

time slice Xnew. We accelerate computing Equation (3.9) for the temporal mode, the

computation of P(n) for non-temporal modes, and P(N+1) for the core tensor.

Temporal Mode. To obtain the factor matrix A(N)
inc of the temporal mode, we

�rst apply the approximation phase for a new incoming tensor Xnew and then e�-

ciently compute Equation (3.9). With the temporal mode �xed to the last mode, we

assume that dimensionalities of an incoming tensor Xnew ∈RI1×I2×···×T are sorted in

descending order.

To apply the approximation phase to Equation (3.9), we start from re-expressing

the term X(N),new (⊗N−1
k=1

(
A(k)T

)†
) in tensor form. Referring to Equation (2.5), we can
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rewrite the term as follows:

Xnew×1

(
A(1)

)†
· · ·×N−1

(
A(N−1)

)†

Since the above equation has the same form as line 4 of Algorithm 1 for the N-th

mode, computing it is the same as computing the N-th factor matrix in the iteration

phase of D-Tucker. D-TuckerO �rst performs randomized SVD of each sliced matrix

of a time slice Xnew where the size of a sliced matrix is I1× I2. �en, we compute the

term Xnew×1
(
A(1)

)†×2
(
A(2)

)†. �e mode-1 matricization of the term is given by

the following equation.

Yinter =

((
A(1)

)† [
U1; · · · ;UL

])
×blkdiag

(
{ΣlVT

l

(
A(2)T

)†
}L

l=1

)
(3.22)

We compute
(
A(1)

)†
[
U1; · · · ;UL

]
and blkdiag({ΣlVT

l

(
A(2)T

)†}L
l=1) , respectively;

then, Yinter is obtained by multiplying the two results. A�er that, we perform n-mode

products between Yinter and
(
A(n)

)† for n = 3,4, ...,N−1. Lastly, A(N)
inc is updated by

multiplying the mode-N matricization of the result of the n-mode products and G†
(N).

Non-temporalModes. For a mode n except for N, the goal is to e�ciently com-

pute P(n)
new = (X(n),new (A(N)

inc ⊗ (⊗N−1
k 6=n A(k)))GT

(n)) for updating the n-th factor matrix.

Due to the expensive computations with Xnew as in Tucker-ALS, we apply the ap-

proximation phase to reduce the computational cost of computing P(n)
new. We perform

randomized SVD of each sliced matrix of a new incoming time slice Xnew where the

size of a sliced matrix is I1× I2, and then compute P(n)
new using the SVD results.

To obtain P(n)
new, we compute (X(n),new (A(N)

inc ⊗ (⊗N−1
k 6=n A(k))), and then multiply it

with GT
(n). Before applying the approximation phase, we re-express (X(n),new (A(N)

inc ⊗
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(⊗N−1
k 6=n A(k))) in tensor form as follows:

Xnew×1 A(1)T · · ·×n−1 A(n−1)T ×n+1 A(n+1)T · · ·×N A(N)T
inc (3.23)

Since the above equation has the same form as line 4 of Algorithm 1 for the n-th

mode, computing it is the same as computing the n-th factor matrix in the iteration

phase of D-Tucker. By using the SVD results of each sliced matrix of the time slice

Xnew, we compute Equation (3.23) in the same way as computing an n-th factor ma-

trix in the iteration phase of D-Tucker. �en, we obtain P(n)
new by performing matrix

multiplication between the mode-n matricized version of the result of Equation (3.23)

and GT
(n). A�er that, we update the n-th factor matrix using P(n)

new.

Core tensor. To e�ciently update the core tensor G, we focus on accelerat-

ing the computation for the matrix P(N+1)
new since the matrices P(N+1)

old and Q(N+1)
old

are already computed and the computational cost of Q(N+1)
new is relatively low. For

P(N+1)
new = A(N)T

inc X(N),new

(
⊗N−1

k=1

(
A(k)T

)†
)

, directly using X(N),new is ine�cient, so we

apply the approximation phase. We �rst re-express P(N+1)
new in tensor form:

Xnew×1 A(1)† · · ·×N−1 A(N−1)†×N A(N)T
inc (3.24)

P(N+1)
new is obtained by computing the above equation in the following order: comput-

ing 1) Equation (3.22) for Xnew×1
(
A(1)

)†×2
(
A(2)

)†, 2) n-mode products with A(n)†

for n = 3, ...,N−1, and 3) n-mode product with A(N)T
inc . Note that we use the SVD re-

sults of Xnew in Equation (3.22), thereby we reduce the computational cost to update

the core tensor compared to using Xnew. A�er that, we compute Equation (3.19) using

P(N+1)
new .
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3.4.4 �eoretical Analysis

�eorem 3.3. Given a time slice Xnew of size I2×KN−3×Tnew, the total time complex-

ity of D-TuckerO to update factor matrices and core tensor is O(I2KN−3Tnew+NIKN−3TnewJ2)

where N is the order of a given tensor, I is the largest dimensionality, K is the remaining

dimensionality, and J is the rank.

Proof. See the proof in Section 3.4.5.4.

�eorem 3.4. D-TuckerO requires O(IKN−3TnewJ) space for updating factor matrices

when a new incoming tensor X of the size I1× I2×KN−3×Tnew is given.

Proof. See the proof in Section 3.4.5.5.

3.4.5 Proofs of Lemmas and�eorems

We provide proofs for Lemmas and �eorems described in Section 3.4.

3.4.5.1 Proof of Lemma 3.4

Proof. �e following equation represents the mode-N matricized version of Equa-

tion (2.4) by replacing X with Xold and Xnew:

X(N) =

X(N),old

X(N),new

≈
A(N)

old G(N)(⊗N−1A(n)T )

A(N)
inc G(N)(⊗N−1A(n)T )


where X(N) is the mode-N matricized matrix of an accumulated tensor X, and X(N),old

and X(N),new are the mode-N matricization of a pre-existing tensor Xold and a new

incoming tensor slice Xnew, respectively. By �xing the factor matrix A(n) for n =
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1,2, ...,N−1, we update the factor matrix A(N) of the temporal mode as follows:

A(N)
old

A(N)
inc

=

X(N),old
(
G(N)(⊗N−1

k=1 A(k)T )
)†

X(N),new
(
G(N)(⊗N−1

k=1 A(k)T )
)†


By adapting the properties, (AB)† = B†A† and (C⊗D)† = C† ⊗D† to the above

equation, we obtain the following equation:

A(N)
inc ← X(N),new

(
G(N)(⊗N−1

k=1 A(k)T )
)†

= X(N),new

(
⊗N−1

k=1

(
A(k)

(
A(k)T A(k)

)−1
))

G†
(N)

3.4.5.2 Proof of Lemma 3.5

Proof. For mode n, we formulate the loss function L(n) as follows:

L(n) =
1
2
‖X(n)−A(n)G(n)(⊗N

k 6=nA(k))T‖2 (3.25)

where (⊗N
k 6=nA(k)) indicates Kronecker products of A(k) for k = N,N−1, ...,n+1,n−

1, ...,1. When �xing A(k) for k = 1, ...,n−1,n+1, ...,N, the partial derivative of the

function L(n) with respect to A(n) is as follows:

∂L(n)

∂A(n)
=−X(n)(⊗N

k 6=nA(k))GT
(n)+A(n)G(n)(⊗N

k 6=n(A
(k)T A(k)))GT

(n)

To minimize ∂L(n)

∂A(n) , we set it to zero and compute A(n) as follows:

A(n) = X(n)(⊗N
k 6=nA(k))GT

(n)×
(

G(n)(⊗N
k 6=n(A

(k)T A(k)))GT
(n)

)−1

= P(n)
(

Q(n)
)−1
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where P(n) and Q(n) are equal to X(n)(⊗N
k 6=nA(k))GT

(n) and
(

G(n)(⊗N
k 6=n(A

(k)T A(k)))GT
(n)

)
,

respectively.

3.4.5.3 Proof of Lemma 3.6

Proof. To update core tensor, we start from the following equation:

G×1 A(1) · · ·×N A(N) =X

For each mode n, we multiply A(n)† =(A(n)T A(n))−1A(1)T on both le� and right terms.

�en, we obtain the core tensor by computing the following equation:

G=X×1 A(1)† · · ·×N A(N)†

For brevity, we compute the core tensor with mode-N matricization. We carefully de-

couple the computations for A(N)
old and A(N)

new. It leads to avoiding explicit computations

related to A(N)
old and X(N),new.

G(N) = (A(N)T A(N))−1×A(N)T X(N)(⊗N−1
k=1 A(k)(A(k)T A(k))−1)

=
(

Q(N+1)
)−1

P(N+1)
(3.26)

where P(N+1) and Q(N+1) are equal to A(N)T X(N)(⊗N−1
k=1 A(k)(A(k)T A(k))−1) and

(
A(N)T A(N)

)
,

respectively.

3.4.5.4 Proof of �eorem 3.3

Proof. �ere are two dominant terms in the time complexity of D-TuckerO: 1) the

approximation of a new time slice Xnew, and 2) n-mode products between the approx-
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imation result and factor matrices A(k) (or
(
A(k)T

)†). Approximating a new time slice

Xnew require O(I2KN−3Tnew) by Lemma 3.1. In addition, the time complexity of up-

dating all factor matrices is O(NIKN−3 TnewJ2) since updating them includes n-mode

products between the approximation of Xnew and A(k) (or
(
A(k)T

)†) whose complex-

ity is analyzed in Lemma 3.3. �erefore, the total time complexity of D-TuckerO for

each time slice is O(I2KN−3Tnew +NIKN−3TnewJ2).

3.4.5.5 Proof of �eorem 3.4

Proof. �e space of of D-TuckerO is determined by storing P(n),old and Q(n),old , and

computing P(n),new and Q(n),new. Space costs of P(n),old and Q(n),old are O((I1 + I2 +

(N− 3)K)J) and O((N− 1)J2) for all n = 1, ...,N− 1, respectively. We perform n-

mode product between G of the size JN and A(n)T A(n) for Q(n),new of the size J× J.

Since the intermediate data are always smaller than G, the space cost of Q(n),new is

O(JN) which is the size of G. Additionally, the space cost of P(n),new is O(IKN−3TnewJ)

since the size of the SVD results of Xnew is O(IKN−3TnewJ), and the size of interme-

diate data of P(n),new is always smaller than O(IKN−3TnewJ). �e total space cost to

update factor matrices and core tensor for Xnew is O((I1 + I2 +(N− 3)K)J +(N−

1)J2 + JN + IKN−3TnewJ). We simplify the space cost as O(IKN−3TnewJ) since the

dominant term is to compute P(n),new.

3.5 Experiment

In this section, we experimentally evaluate the performance of D-Tucker and D-

TuckerO. We answer the following questions:

• Q1. Time cost and reconstruction error (Section 3.5.2). How quickly does

D-Tucker obtain factor matrices and core tensor compared to other competi-
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tors, while having low reconstruction error?

• Q2. E�ectiveness of the initialization phase (Section 3.5.3). How much

does the initialization phase reduce the number of iterations in D-Tucker?

• Q3. E�ciency of the iteration phase (Section 3.5.4). How e�cient is the

iteration phase of D-Tucker compared to other methods?

• Q4. Space cost (Section 3.5.5). How much space does D-Tucker require to

obtain factor matrices and core tensor compared to other competitors?

• Q5. Scalability (Section 3.5.6). How well does D-Tucker scale up with regard

to dimensionality, rank, order, and a number of iterations?

• Q6. Running time and error in online streaming setting (Section 3.5.7).

For each new incoming tensor, how e�ciently does D-TuckerO update factor

matrices and core tensor?

• Q7. Size of a time slice in an online streaming setting (Section 3.5.8).

How e�ciently does D-TuckerO handle an incoming tensor slice of various

sizes?

3.5.1 Experimental Settings

We describe experimental se�ings for the datasets, competitors, and environments.

Machine. We use a workstation with a single CPU (Intel Xeon E5-2630 v4 @

2.2GHz), and 512GB memory.

Dataset. For static Tucker decomposition, we use four real-world tensors in Ta-

ble 3.3 for evaluating the performance. Brainq dataset1 [91] contains fMRI informa-

tion consisting of (word, voxel, person; measurement). Boats dataset2 [92] contains
1http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
2http://changedetection.net/
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grayscale videos in the form of (height, width, frame; value). Air quality dataset3 con-

tains air pollutant information in Korea, in the form of (timestamp in second, location,

atmospheric pollutants; measurement). HSI dataset4 [93] contains hyperspectral im-

ages of natural scenes in the form of (spatial dimension (x), spatial dimension (y),

spectral dimension, scene index; value).

For online streaming decomposition, we use four real-world tensors described in

Table 3.4. Stock dataset contains features of stocks over 200 days in South Korea. �e

features consist of (adjusted opening price / previous day’s adjusted closing price),

(adjusted highest price / previous day’s adjusted closing price), (adjusted lowest price

/ previous day’s adjusted closing price), and (adjusted closing price / previous day’s

adjusted closing price). FMA dataset5 [94, 95] is a song dataset whose form is (song,

frequency, time; value). Each song is represented as an image of a log-power spectro-

gram. Tra�c dataset6 [96] contains tra�c volume measurements from 1,084 sensors

over 200 days, and each sensor yields 96 observations per day. Absorb dataset7 is a

4-order tensor containing aerosol absorption; the form is (longitudes, latitudes, alti-

tude, time; measurement). Note that the original values in this data are so small that

we use a tensor multiplied by 10.

Competitors. We compare D-Tucker with static Tucker decomposition meth-

ods based on ALS approach. All the methods including D-Tucker are implemented in

MATLAB (R2019b).

• D-Tucker [26]: we use randomized SVD [85] in the approximation phase using

the implementation of Malik and Becker [38], standard SVD (svds() function in
3https://www.airkorea.or.kr
4https://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral images of

natural scenes 04.html
5https://github.com/mdeff/fma
6https://github.com/florinsch/BigTrafficData
7https://www.earthsystemgrid.org/
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Table 3.3: Description of real-world tensor datasets for evaluating the performance of static
Tucker decomposition methods.

Dataset Order Dimensionality Rank

Brainq1 [91] 3 (360,21764,9) (10,10,5)
Boats2 [92] 3 (320,240,7000) (10,10,10)
Air �ality3 3 (30648,376,6) (10,10,5)
HSI4 [93] 4 (1021,1340,33,8) (10,10,10,5)

Table 3.4: Description of real-world tensor datasets for evaluating the performance of stream-
ing Tucker decomposition methods.

Dataset Order Dimensionality Rank

Stock 3 (3028,4,200) (10,4,10)
FMA5 [94, 95] 3 (7994,1025,200) (10,10,10)
Tra�c6 [96] 3 (1084,96,200) (10,10,10)
Absorb7 4 (192,288,30,200) (10,10,10,10)

MATLAB) in the initialization and iteration phases, and Tensor Toolbox [97]

for tensor operations such as n-mode product and matricization.

• Tucker-ALS: Tucker decomposition method based on ALS. We use the imple-

mentation in Tensor Toolbox [97].

• MACH [37]: Tucker decomposition method which samples entries of an input

tensor and runs Tucker-ALS for the sampled tensor. We run Tucker-ALS in

Tensor Toolbox [97] a�er sampling elements of a tensor.

• Randomized Tucker Decomposition (RTD) [36]: Tucker decomposition us-

ing a randomized algorithm. We use the Matlab code provided by authors.

• Tucker-ts, Tucker-ttmts [38]: Tucker-ts is a Tucker decomposition method

using tensor sketch designed to approximate the solution of a large least-squares

problem. Tucker-�mts is a variant of Tucker-ts for be�er e�ciency. We use the

Matlab code8 provided by authors.
8https://github.com/OsmanMalik/tucker-tensorsketch
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We also compare D-TuckerO with the following streaming Tucker decomposition

methods in an online streaming se�ing:

• D-TuckerO: We leverage Tensor Toolbox [97] for tensor operations such as

n-mode product and matricization.

• Tucker-ALS: Tucker decomposition method based on ALS. We use the imple-

mentation in Tensor Toolbox [97].

• Tucker-ts, Tucker-ttmts [38]: Tucker-ts and Tucker-�mts are easily adapted

to online streaming se�ings.

• DTA (Dynamic Tensor Analysis): DTA �nds factor matrices and core tensor to

�t newly arrived tensors. We use the Matlab code9 provided by the authors.

• STA (Streaming Tensor Analysis): STA is an approximation version of DTA

that �nds factor matrices and core tensor to �t newly arrived tensors. We use

the Matlab code9 provided by authors.

Parameters. We use the following parameters.

• Number of threads: we use a single thread.

• Max number of iterations: we set the maximum number of iterations to 50.

• Rank: the dimensionality Jn of the nth mode of a core tensor is set to 10. We

set it to 4 and 5, respectively, when the dimensionality is smaller than 5 and

10, respectively. We also set the rank J of randomized SVD to 10 which is the

same as the dimensionality Jn of core tensor.

• Tolerance: the iteration stops when the variation of the error
√
‖X‖2

F−‖G‖2
F

‖X‖F
[29]

is less than ε = 10−4 except in Section 3.5.3 where we vary it.

We set other parameters of competitors based on their original papers. To compare
9http://www.cs.cmu.edu/∼jimeng/code/tensorCode.zip
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Figure 3.3: D-Tucker achieves the best performance in terms of error, running time, and mem-
ory usage. (a) (b) Comparison for the tradeo� between running time and error; D-Tucker is up
to 38.4× faster than the second-fastest competitor while having a similar error. (c) Space cost
of D-Tucker. D-Tucker initializes and updates factor matrices and core tensor by using up to
17.2× smaller space than competitors except for Boats dataset. Note that, for Boats dataset,
D-Tucker requires 2× higher space than Tucker-�mts which has 7.5× higher error than our
method.

running time, we run each method 10 times for D-Tucker and D-TuckerO, and report

the average.

Reconstruction error. In a static se�ing, we evaluate the accuracy in terms

of reconstruction error de�ned as ‖X−X̂‖
2
F

‖X‖2
F

where X is an input tensor and X̂ is the

reconstruction of the output of Tucker decomposition.

In an online streaming se�ing, we measure two kinds of errors, global and local

reconstruction errors. �e global reconstruction error is de�ned as
√∑T

i=1 ‖Xi−X̂i‖2
F∑T

i=1 ‖Xi‖2
F

where Xi is a tensor obtained at time i and X̂i is a reconstructed tensor from factor

matrices and core tensor of D-TuckerO. �e global error indicates how well the re-

sults of a Tucker decomposition method represent an accumulated tensor over time.

�e local reconstruction error is de�ned as
√
‖Xnew−X̂new‖F
‖Xnew‖F

. In contrast to the global

error, the local error indicates how well the results of a Tucker decomposition method

represent a new incoming tensor.
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3.5.2 Time Cost and Reconstruction Error

We measure the running time and the reconstruction error of D-Tucker and com-

petitors. As shown in Figures 3.3(a) and 3.3(b), D-Tucker achieves the best trade-o�s

between the time and error, achieving up to 38.4× faster running time than Tucker-ts,

Tucker-�mts, and MACH with smaller or similar reconstruction errors. Tucker-ALS

and RTD have smaller reconstruction errors for Air quality and HSI datasets, but they

are at least 3.4× and 42× slower than D-Tucker, respectively.

3.5.3 E�ectiveness of the Initialization Phase

We show that the initialization phase of D-Tucker provides a good starting point

for the iteration step, by measuring the number of iterations in the iteration phase.

We vary the error tolerance ε in the iteration phase from 10−4 to 10−8. As shown in

Figure 3.4, the number of iterations with the initialization phase is up to 1.7× smaller

than that without the initialization phase. �e initialization phase allows D-Tucker

to reduce the total running time since the running time of the initialization phase

is less than the reduction time of the iteration phase. Moreover, the average ratio of

the initialization phase’s running time to the total running time in D-Tucker does

not exceed 20%. �is indicates that the initialization phase of D-Tucker reduces the

number of iterations signi�cantly with li�le additional overhead on the total running

time.

3.5.4 E�ciency of the Iteration Phase

We investigate the number of iterations and the running time per iterations. In Fig-

ure 3.5, For each iteration, D-Tucker is at least 4.6× faster than competitors on all

datasets except for Boat dataset, and consumes a smaller number of iterations than
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Figure 3.4: �e initialization phase of D-Tucker helps reduce the number of iterations and
thus the total running time. (a-d) �e number of iterations with the initialization phase is up
to 1.7×, 1.4×, 1.4×, and 1.1× smaller than those without the initialization phase for Brainq,
Boats, Air quality, and HSI datasets, respectively. (e) �e average ratio of the running time in
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Figure 3.5: In the iteration phase, D-Tucker is the most e�cient compared to competitors. (a)
�e running time of each iteration of D-Tucker is up to 6.6× faster than those of competitors
except for the Boats dataset. For the Boats dataset, Tucker-�mts achieves the fastest running
time per iteration, but requires a much larger number of iterations, and has a much higher
error than D-Tucker. (b) �e number of iterations of D-Tucker is in general smaller than
others; while there are cases D-Tucker requires more number of iterations, the di�erence is
negligible considering the running time per iteration.

the competitors. Although Tucker-�mts is faster than D-Tucker at each iteration, it

requires a larger number of iterations than D-Tucker; hence, the total running time

of D-Tucker is 4.5× longer than that of Tucker-�mts at the iteration phase. For the

number of iterations, Figure 3.5(b) shows that D-Tucker requires a smaller number of

iterations than all the competitors except for Tucker-ALS on 3-order datasets; how-
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ever, the di�erence is quite small considering the running time per iteration.

3.5.5 Space Cost

We investigate the memory requirements of D-Tucker and competitors for initializing

and updating factor matrices and a core tensor. Figure 3.3(c) shows that D-Tucker re-

quires up to 17.2× smaller space than the second best methods Tucker-ts and Tucker-

�mts in terms of memory usage. For Boats dataset, Tucker-ts, and Tucker-�mts re-

quire small space since this dataset has the following se�ing where the two methods

operate well: 1) order N and rank J are very small, and 2) dimensionalities I and K are

very large. Note that D-Tucker has 7.5× less error than Tucker-�mts while requiring

2.1× more space than Tucker-�mts.

3.5.6 Scalability

We investigate the scalability of D-Tucker and competitors with regard to dimen-

sionality, target rank, order, and number of iterations in Figure 3.6. In sum, D-Tucker

is the most scalable with the smallest running time. Since the time complexities of

Tucker-ts and Tucker-�mts are proportional to JN , they are not scalable for the tar-

get rank, and order of an input tensor. RTD operates for all the given experimental

se�ings, but RTD is much slower than D-Tucker. MACH and Tucker-ALS also op-

erate for all the given experimental se�ings, but they are at least 2× slower than

D-Tucker. Furthermore, they become much slower than D-Tucker as the number of

iterations increases (e.g., when se�ing smaller tolerance ε or when converging slowly

in real-world datasets). �e details of scalability experiments are as follows.

Dimensionality. For investigating the scalability related to dimensionality, we

generate synthetic 3-order tensors of true rank Jtrue = 10, while increasing the total
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Figure 3.6: Scalability of D-Tucker compared to other Tucker decomposition methods. O.O.M.:
out of memory. For clarity, we show 4 groups of methods having similar tendencies. Note that
D-Tucker is the most scalable with the smallest running time: for all se�ings, D-Tucker is at
least 2.1× faster than competitors. Tucker-ts and Tucker-�mts have limited scalability with
respect to the target rank and the order. RTD has good scalability for all aspects, but it is up
to 76× slower than D-Tucker. MACH and Tucker-ALS are also scalable for all aspects, but
they are at least 2× slower than D-Tucker. Furthermore, their performance gaps compared
to D-Tucker become even worse when the number of iterations increases.

dimensionality I1I2K3 from 106 to 1010 (dimensionality list: {(102,102, 102), (103,102,102),

(103,103,102), (103,103,103),(104,103, 103)}). As shown in Figure 3.6(a), D-Tucker

is the fastest for various dimensionalities, and runs at least 2.7× faster than all com-

petitors.

Target rank. For investigating the scalability related to target rank, we generate

synthetic 3-order tensors of size I1 = I2 = K3 = 103 and true rank Jtrue = 10, while

varying the target rank from 10 to 50. As shown in Figure 3.6(b), D-Tucker is the

fastest for various target ranks. Tucker-ts and Tucker-�mts provide the worst scala-

bilities since their time complexities are proportional to JN . �e running times of all

competitors except Tucker-ts and Tucker-�mts scale with regard to target ranks, but

they are at least 2.1× slower than D-Tucker.

Order. For investigating the scalability related to order N, we generate synthetic

N-order tensors of true rank Jtrue = 10, while varying the order from 3 to 7. We set di-

mensionalities of synthetic tensors to I1 = 103, I2 = 102, and Ki = 10 for i = 3,4, ...,7.
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In Figure 3.6(c), D-Tucker is the fastest for various orders of input tensors. Since the

time and memory complexities of Tucker-ts and Tucker-�mts are proportional to J2N ,

they are 5883× slower than D-Tucker, and cannot deal with 6 and 7-order tensors.

Although all competitors except Tucker-ts and Tucker-�mts can process higher order

tensors, they are at least 2.1× slower than D-Tucker.

Number of iterations. We generate synthetic 3-order tensors of size I1 = I2 =

K3 = 103 with true rank Jtrue = 10. �en we evaluate the running time varying the

number of iterations from 5 to 25. As shown in Figure 3.6(d), D-Tucker is the fastest

for varying numbers of iterations. In addition, the running time of D-Tucker is not af-

fected much by the number of iterations while those of all competitors except Tucker-

ts and Tucker-�mts are a�ected much by the number of iterations. Note that the

running time of Tucker-ts and Tucker-�mts are 3.6× slower than that of D-Tucker

although those are less a�ected by the number of iterations than D-Tucker.

3.5.7 Streaming Setting

We compare D-TuckerO with streaming Tucker decomposition methods. We initially

construct factor matrices and a core tensor using the �rst 20% of a whole tensor, and

then measure the running time of updating a new incoming tensor at each time point.

In addition, we set tnew of each time slice to 10.

Running Time. As shown in Figure 3.7, we compare the running time of D-

TuckerO with those of competitors. For the 3-order datasets, D-TuckerO is up to 6.1×

faster than the second-fastest competitor Tucker-�mts as shown in Figures 3.7(a)

to 3.7(c). Also, D-TuckerO is at least 2.9× faster than the competitors for Absorb

dataset which is a 4-order tensor. In addition, the running time of D-TuckerO does

not increase over time since it is proportional to the size of a new incoming tensor,
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Figure 3.7: Running time of D-TuckerO and competitors over time. D-TuckerO outperforms
competitors when we compare the running time of updating factor matrices and core tensor
for each new incoming tensor. D-TuckerO is up to 6.1× faster than the second fastest method,
and the running time does not increase over time.

not the accumulated tensor.

Error. We measure global and local reconstruction errors of D-TuckerO and

competitors. Figures 3.8(a) to 3.8(d) show the results for global reconstruction errors,

and Figures 3.8(e) to 3.8(h) show the results for local reconstruction errors. As shown

in Figures 3.8(a) to 3.8(d), D-TuckerO has comparable global errors with Tucker-ALS

which performs Tucker decomposition for accumulated tensors, while DTA and STA

have higher global errors than D-TuckerO. �ese results indicate that updated results

of D-TuckerO su�ciently contain global pa�erns of an accumulated tensor. As shown

in Figures 3.8(e) to 3.8(h), the local errors of D-TuckerO are close to those of Tucker-

ALS which is a static version of Tucker decomposition since updated results of D-

TuckerO su�ciently contains information of a new incoming tensor. In addition, the

approximation phase of D-TuckerO does not hurt accuracy much since a time slice

of real-world datasets has a low-rank structure.
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Figure 3.9: We measure the running time of D-TuckerO, varying the size of a time slice. �e
running time of D-TuckerO increases near-linearly as the size of a time slice increases. Note
that a slope equal to 1 indicates linear scalability.

3.5.8 Size of Time Slice

We evaluate the performance of D-TuckerO, varying the size tnew of a time slice: 10,

20, 40, 80, and 160. Figure 3.9 shows that there are near-linear relationships between

tnew and the running time of D-TuckerO in an online streaming se�ing; for all the four

datasets, the slopes are close to 1. �is is because the running time of D-TuckerO is

proportional to the size of a new incoming tensor.

3.6 Summary

We propose D-Tucker and D-TuckerO, e�cient Tucker decomposition methods for

large-scale dense tensors in static and online streaming se�ings. D-Tucker and D-

TuckerO accelerate computing Tucker decomposition by approximating a given dense

tensor, and carefully computing Tucker results from the approximated tensor. We

show D-Tucker provides the fastest running time and the smallest memory usage.

Furthermore, D-TuckerO is also the fastest method to update factor matrices and

a core tensor for new incoming tensors. We also provide theoretical analysis for

the time and space complexities of D-Tucker and D-TuckerO. Extensive experiments

show that D-Tucker is up to 38.4× faster, and requires up to 17.2× less space than

existing methods with li�le sacri�ce in accuracy. D-Tucker is also scalable with re-
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gard to dimensionality, rank, order, and the number of iterations. D-TuckerO is up to

6.1× faster than existing methods running in an online streaming se�ing, while not

increasing the running time over time.
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Chapter 4

E�cient Tensor Decomposition in

Irregular Tensors

4.1 Motivation

How can we e�ciently analyze an irregular dense tensor? Many real-world multi-

dimensional arrays are represented as irregular dense tensors; an irregular tensor

is a collection of matrices with di�erent row lengths. For example, stock data can be

represented as an irregular dense tensor; the listing period is di�erent for each stock

(irregularity), and almost all of the entries of the tensor are observable during the

listing period (high density). �e irregular tensor of stock data is the collection of

the stock matrices whose row and column dimension corresponds to time and fea-

tures (e.g., the opening price, the closing price, the trade volume, etc.), respectively.

In addition to stock data, many real-world data including music song data and sound

data are also represented as irregular dense tensors. Each song can be represented

as a slice matrix (e.g., time-by-frequency matrix) whose rows correspond to the time

dimension. �en, the collection of songs is represented as an irregular tensor consist-

ing of slice matrices of songs each of whose time length is di�erent. Sound data are

represented similarly.

Tensor decomposition has a�racted much a�ention from the data mining com-

munity to analyze tensors [98, 99, 25, 41, 16, 76, 78, 100, 11, 56]. Speci�cally, PARAFAC2

decomposition has been widely used for modeling irregular tensors in various appli-
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cations including phenotype discovery [2, 3], trend analysis [101], and fault detec-

tion [102]. However, existing PARAFAC2 decomposition methods are not fast and

scalable enough for irregular dense tensors. Perros et al. [2] improve the e�ciency

of handling irregular sparse tensors, by exploiting the sparsity pa�erns of a given

irregular tensor. Many recent works [3, 66, 67, 68] adopt their idea to handle irreg-

ular sparse tensors. However, they are not applicable to irregular dense tensors that

have no sparsity pa�ern. Although Cheng and Haardt [33] improve the e�ciency of

PARAFAC2 decomposition by preprocessing a given tensor, there is plenty of room

for improvement in terms of computational costs. Moreover, there remains a need

for fully employing multicore parallelism. �e main challenge to successfully design

a fast and scalable PARAFAC2 decomposition method is how to minimize the com-

putational costs involved with an irregular dense tensor and the intermediate data

generated in updating factor matrices.

In this work, we propose DPar2 (Dense PARAFAC2 decomposition), a fast and

scalable PARAFAC2 decomposition method for irregular dense tensors. Based on the

characteristics of real-world data, DPar2 compresses each slice matrix of a given

irregular tensor using randomized Singular Value Decomposition (SVD). �e small

compressed results and our careful ordering of computations considerably reduce

the computational costs and the intermediate data. In addition, DPar2 maximizes

multi-core parallelism by considering the di�erence in sizes between slices. With

these ideas,DPar2 achieves higher e�ciency and scalability than existing PARAFAC2

decomposition methods on irregular dense tensors. Extensive experiments show that

DPar2 outperforms the existing methods in terms of speed, space, and scalability

while achieving a comparable �tness, where the �tness indicates how a method ap-

proximates a given data well (see Section 4.4.1).
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�e contributions of this work are as follows.

• Algorithm. We propose DPar2, a fast and scalable PARAFAC2 decomposition

method for decomposing irregular dense tensors.

• Analysis. We provide analysis for the time and space complexities of our pro-

posed method DPar2.

• Experiment. DPar2 achieves up to 6.0× faster running time than previous

PARAFAC2 decomposition methods based on ALS while achieving a similar

�tness (see Figure 4.1).

• Discovery. With DPar2, we �nd that the Korean stock market and the US

stock market have di�erent correlations (see Figure 4.11) between features (e.g.,

prices and technical indicators). We also �nd similar stocks (see Table 4.3) on

the US stock market during a speci�c event (e.g., COVID-19).

In the rest of the chapter, we propose our method DPar2 in Section 4.3, present

experimental results in Section 4.4, and conclude in Section 4.5. �e code and datasets

are available at https://datalab.snu.ac.kr/dpar2.

4.2 Preliminaries

We use the symbols listed in Table 4.1.

4.2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) decomposes A∈RI×J to X = UΣVT. U∈RI×R

is the le� singular vector matrix of A; U =
[
u1 · · ·ur

]
is a column orthogonal matrix

where R is the rank of A and u1, · · · , uR are the eigenvectors of AAT. Σ is an R×R

diagonal matrix whose diagonal entries are singular values. �e i-th singular value
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Table 4.1: Symbol description.

Symbol Description

{Xk}K
k=1 irregular tensor of slices Xk for k = 1, ...,K

Xk slice matrix (∈ Ik× J)
X(i, :) i-th row of a matrix X
X(:, j) j-th column of a matrix X
X(i, j) (i, j)-th element of a matrix X
X(n) mode-n matricization of a tensor X

Qk, Sk factor matrices of the kth slice
H, V factor matrices of an irregular tensor

Ak, Bk, Ck SVD results of the kth slice
D, E, F SVD results of the second stage

F(k) kth vertical block matrix (∈ RR×R) of F(∈ RKR×R)

Zk, Σk, Pk SVD results of F(k)EDT VSkHT

R target rank
⊗ Kronecker product
� Khatri-Rao product
∗ element-wise product
‖ horizontal concatenation

vec(·) vectorization of a matrix

σi is in Σi,i where σ1 ≥ σ2 ≥ ·· · ≥ σR ≥ 0. V ∈ RJ×R is the right singular vector

matrix of A; V =
[
v1 · · ·vR

]
is a column orthogonal matrix where v1, · · · , vR are the

eigenvectors of ATA.

Randomized SVD. Many works [84, 83, 85] have introduced e�cient SVD meth-

ods to decompose a matrix A ∈ RI×J by applying randomized algorithms. We intro-

duce a popular randomized SVD in Algorithm 9. Randomized SVD �nds a column

orthogonal matrix Q ∈RI×(R+s) of (AAT )qAΩ using random matrix Ω, constructs a

smaller matrix B = QT A (∈R(R+s)×J), and �nally obtains the SVD result U (= QŨ),

Σ, V of A by computing SVD for B, i.e., B ≈ ŨΣVT . Given a matrix A, the time

complexity of randomized SVD is O(IJR) where R is the target rank.
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Algorithm 9: Randomized SVD [83]
Input: A ∈ RI×J

Output: U ∈ RI×R, S ∈ RR×R, and V ∈ RJ×R.
Parameters: target rank R, and an exponent q

1: generate a Gaussian test matrix Ω ∈ RJ×(R+s)

2: construct Y← (AAT )qAΩ
3: QR← Y using QR factorization
4: construct B←QT A
5: ŨΣVT ← B using truncated SVD at rank R
6: return U = QŨ, Σ, and V

4.3 Proposed Method

In this section, we propose DPar2, a fast and scalable PARAFAC2 decomposition

method for irregular dense tensors.

4.3.1 Overview

Before describing main ideas of our method, we present main challenges that need

to be tackled.

C1. Dealingwith large irregular tensors. PARAFAC2 decomposition (Algorithm 2)

iteratively updates factor matrices (i.e., Uk, Sk, and V) using an input tensor.

Dealing with a large input tensor is burdensome to update the factor matrices

as the number of iterations increases.

C2. Minimizing numerical computations and intermediate data. How can

we minimize the intermediate data and overall computations?

C3. Maximizing multi-core parallelism. How can we parallelize the computa-

tions for PARAFAC2 decomposition?

�e main ideas that address the challenges mentioned above are as follows:

I1. Compressing an input tensor using randomized SVD considerably re-
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Factor matrices of PARAFAC2 Decomposition
using the compressed results 

A given irregular
tensor

Matrices compressed by  
exploiting randomized SVD

Figure 4.2: Overview of DPar2. Given an irregular tensor {Xk}K
k=1,DPar2 �rst compresses the

given irregular tensor by exploiting randomized SVD. �en, DPar2 iteratively and e�ciently
updates the factor matrices, Qk, H, Sk, and V, using only the compressed matrices, to get the
result of PARAFAC2 decomposition.

duces the computational costs to update factor matrices (Section 4.3.2).

I2. Careful reordering of computations with the compression results mini-

mizes the intermediate data and the number of operations (Sections 4.3.3 to 4.3.5).

I3. Careful distribution of work between threads enables DPar2 to achieve

high e�ciency by considering various lengths Ik for k = 1, ...,K (Section 4.3.6).

As shown in Figure 4.2, DPar2 �rst compresses each slice of an irregular ten-

sor using randomized SVD (Section 4.3.2). �e compression is performed once before

iterations, and only the compression results are used at iterations. It signi�cantly re-

duces the time and space costs in updating factor matrices. A�er compression, DPar2

updates factor matrices at each iteration, by exploiting the compression results (Sec-

tions 4.3.3 to 4.3.5). Careful reordering of computations is required to achieve high

e�ciency. Also, by carefully allocating input slices to threads, DPar2 accelerates the

overall process (Section 4.3.6).

4.3.2 Compressing an irregular input tensor

DPar2 (see Algorithm 10) is a fast and scalable PARAFAC2 decomposition method

based on ALS described in Algorithm 2. �e main challenge that needs to be tackled is

to minimize the number of heavy computations involved with a given irregular tensor

{Xk}K
k=1 consisting of slices Xk for k = 1, ...,K (in lines 4 and 8 of Algorithm 2). As the
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Figure 4.3: Two-stage SVD for a given irregular tensor. In the �rst stage, DPar2 performs
randomized SVD of Xk for all k. In the second stage, DPar2 performs randomized SVD of
M ∈ RJ×KR which is the horizontal concatenation of CkBk.

number of iterations increases (lines 2 to 17 in Algorithm 2), the heavy computations

make PARAFAC2-ALS slow. For e�ciency, we preprocess a given irregular tensor into

small matrices, and then update factor matrices by carefully using the small ones.

Our approach to address the above challenges is to compress a given irregular

tensor {Xk}K
k=1 before starting iterations. As shown in Figure 4.3, our main idea is

two-stage lossy compression with randomized SVD for the given tensor: 1) DPar2

performs randomized SVD for each slice Xk for k = 1, ...,K at target rank R, and 2)

DPar2 performs randomized SVD for a matrix, the horizontal concatenation of sin-

gular value matrices and right singular vector matrices of slices Xk. Randomized SVD

allows us to compress slice matrices with low computational costs and low errors.

First Stage. In the �rst stage, DPar2 compresses a given irregular tensor by

performing randomized SVD for each slice Xk at target rank R (line 3 in Algorithm 10).

Xk ≈ AkBkCT
k (4.1)

where Ak ∈RIk×R is a matrix consisting of le� singular vectors, Bk ∈RR×R is a diago-

nal matrix whose elements are singular values, and Ck ∈RJ×R is a matrix consisting
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Algorithm 10: DPar2
Input: Xk ∈ RIk×J for k = 1, ...,K
Output: Uk ∈ RIk×R, Sk ∈ RR×R for k = 1, ...,K, and V ∈ RJ×R.
Parameters: target rank R

1: initialize matrices H ∈ RR×R, V, and Sk for k = 1, ...,K
/* Compressing slices in parallel */

2: for k = 1, ...,K do

3: compute AkBkCT
k ← SVD(Xk) by performing randomized SVD at rank R

4: end for

5: M←‖K
k=1(CkBk)

6: compute DEFT ← SVD(M) by performing randomized SVD at rank R
/* Iteratively updating factor matrices */

7: repeat

8: for k = 1, ...,K do

9: compute ZkΣkPT
k ← SVD(F(k)EDT VSkHT ) by performing SVD at rank R

10: end for

/* no explicit computation of Yk */
11: for k = 1, ...,K do

12: Yk← PkZT
k F(k)EDT

13: end for

/* running a single iteration of CP-ALS on Y */

14: compute G(1)← Y(1)(W�V) based on Lemma 4.1
15: H←G(1)(WT W∗VT V)† . Normalize H
16: compute G(2)← Y(2)(W�H) based on Lemma 4.2
17: V←G(2)(WT W∗HT H)† . Normalize V
18: compute G(3)← Y(3)(V�H) based on Lemma 4.3
19: W←G(3)(VT V∗HT H)†

20: for k = 1, ...,K do

21: Sk← diag(W(k, :))
22: end for

23: until the maximum iteration is reached, or the error ceases to decrease;
24: for k = 1, ...,K do

25: Uk← AkZkPT
k H

26: end for

of right singular vectors.

Second Stage. Although small compressed data are generated in the �rst step,

there is room to further compress the intermediate data from the �rst stage. In the

second stage, we compress a matrix M= ‖K
k=1(CkBk)which is the horizontal concate-

nation of CkBk for k = 1, ...,K. Compressing the matrix M maximizes the e�ciency
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of updating factor matrices H, V, and W (see Equation (2.8)) at later iterations. We

construct a matrix M ∈ RJ×KR by horizontally concatenating CkBk for k = 1, ...,K

(line 5 in Algorithm 10). �en, DPar2 performs randomized SVD for M (line 6 in

Algorithm 10):

M = [C1B1; · · · ;CKBK ] = ‖K
k=1(CkBk)≈ DEFT (4.2)

where D∈RJ×R is a matrix consisting of le� singular vectors, E∈RR×R is a diagonal

matrix whose elements are singular values, and F ∈ RKR×R is a matrix consisting of

right singular vectors.

With the two stages, we obtain the compressed results D, E, F, and Ak for k =

1, ...,K. Before describing how to update factor matrices, we re-express the k-th slice

Xk by using the compressed results:

Xk ≈ AkF(k)EDT (4.3)

where F(k) ∈ RR×R is the kth vertical block matrix of F:

F =


F(1)

...

F(K)

 (4.4)

Since CkBk is the kth horizontal block of M and DEF(k)T is the kth horizontal block

of DEFT , BkCT
k corresponds to F(k)EDT . �erefore, we obtain Equation (4.3) by re-

placing BkCT
k with F(k)EDT from Equation (4.1).

In updating factor matrices, we use AkF(k)EDT instead of Xk. �e two-stage

compression lays the groundwork for e�cient updates.

80



4.3.3 Overview of update rule

Our goal is to e�ciently update factor matrices, H, V, and Sk and Qk for k = 1, ...,K,

using the compressed results AkF(k)EDT . �e main challenge of updating factor ma-

trices is to minimize numerical computations and intermediate data by exploiting the

compressed results obtained in Section 4.3.2. A naive approach would reconstruct

X̃k = AkF(k)EDT from the compressed results, and then update the factor matrices.

However, this approach fails to improve the e�ciency of updating factor matrices.

We propose an e�cient update rule using the compressed results to 1) �nd Qk and

Yk (lines 5 and 8 in Algorithm 2), and 2) compute a single iteration of CP-ALS (lines 11

to 13 in Algorithm 2).

�ere are two di�erences between our update rule and PARAFAC2-ALS (Algo-

rithm 2). First, we avoid explicit computations of Qk and Yk. Instead, we �nd small

factorized matrices of Qk and Yk, respectively, and then exploit the small ones to

update H, V, and W. �e small matrices are computed e�ciently by exploiting the

compressed results AkF(k)EDT instead of Xk. �e second di�erence is that DPar2

obtains H, V, and W using the small factorized matrices of Yk. Careful ordering of

computations with them considerably reduces time and space costs at each iteration.

We describe how to �nd the factorized matrices of Qk and Yk in Section 4.3.4, and

how to update factor matrices in Section 4.3.5.

4.3.4 Finding the factorized matrices of Qk and Yk

�e �rst goal of updating factor matrices is to �nd the factorized matrices of Qk and

Yk for k = 1, ...,K, respectively. In Algorithm 2, �nding Qk and Yk is expensive due

to the computations involved with Xk (lines 4 and 8 in Algorithm 2). To reduce the

costs for Qk and Yk, our main idea is to exploit the compressed results Ak, D, E, and
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F(k), instead of Xk. Additionally, we exploit the column orthogonal property of Ak,

i.e., AT
k Ak = I, where I is the identity matrix.

We �rst re-express Qk using the compressed results obtained in Section 4.3.2.

DPar2 reduces the time and space costs for Qk by exploiting the column orthogonal

property of Ak. First, we express XkVSkHT as AkF(k)EDT VSkHT by replacing Xk with

AkF(k)EDT . Next, we need to obtain le� and right singular vectors of AkF(k)EDT

VSkHT . A naive approach is to compute SVD of AkF(k)EDT VSkHT , but there is a

more e�cient way than this approach. �anks to the column orthogonal property of

Ak,DPar2 performs SVD of F(k)EDT VSk HT ∈RR×R, not AkF(k)EDT VSkHT ∈RIk×R,

at target rank R (line 9 in Algorithm 10):

F(k)EDT VSkHT SVD
= ZkΣkPT

k (4.5)

whereΣk is a diagonal matrix whose entries are the singular values of F(k)EDT VSkHT ,

the column vectors of Zk and Pk are the le� singular vectors and the right singular

vectors of F(k)EDT VSkHT , respectively. �en, we obtain the factorized matrices of

Qk as follows:

Qk = AkZkPT
k (4.6)

where AkZk and Pk are the le� and the right singular vectors of AkF(k)EDT VSkHT ,

respectively. We avoid the explicit construction of Qk, and use AkZkPT
k instead of Qk.

Since Ak is already column-orthogonal, we avoid performing SVD of AkF(k)EDT VSkHT ,

which are much larger than F(k)EDT VSkHT .

Next, we �nd the factorized matrices of Yk. DPar2 re-expresses QT
k Xk (line 8

in Algorithm 2) as QT
k AkF(k)EDT using Equation (4.3). Instead of directly computing
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Figure 4.4: Computation for G(1) = Y(1)(W�V). �e rth column G(1)(:,r) of G(1) is com-
puted by

(∑K
k=1 W(k,r)

(
PkZT

k F(k)
))

EDT V(:,r).

QT
k AkF(k)EDT , we replace QT

k with PkZT
k AT

k . �en, we represent Yk as the following

expression (line 12 in Algorithm 10):

Yk←QT
k AkF(k)EDT = PkZT

k AT
k AkF(k)EDT = PkZT

k F(k)EDT

Note that we use the property AT
k Ak = IR×R, where IR×R is the identity matrix of size

R×R, for the last equality. By exploiting the factorized matrices of Qk, we compute

Yk without involving Ak in the process.

4.3.5 Updating H, V, and W

�e next goal is to e�ciently update the matrices H, V, and W using the small fac-

torized matrices of Yk. Naively, we would compute Y and run a single iteration of

CP-ALS with Y to update H, V, and W (lines 11 to 13 in Algorithm 2). However,

multiplying a matricized tensor and a Khatri-Rao product (e.g., Y(1)(W�V)) is bur-

densome, and thus we exploit the structure of the decomposed results PkZT
k F(k)EDT

of Yk to reduce memory requirements and computational costs. In other word, we do

not compute Yk, and use only PkZT
k F(k)EDT in updating H, V, and W. Note that the

k-th frontal slice of Y, Y(:, :,k), is PkZT
k F(k)EDT .
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Updating H. In Y(1)(W�V)(WT W ∗VT V)†, we focus on e�ciently comput-

ing Y(1)(W�V) based on Lemma 4.1. A naive computation for Y(1)(W�V) re-

quires a high computational cost O(JKR2) due to the explicit reconstruction of Y(1).

�erefore, we compute that term without the reconstruction by carefully determin-

ing the order of computations and exploiting the factorized matrices of Y(1), D, E,

Pk, Zk, and F(k) for k = 1, ...,K. With Lemma 4.1, we reduce the computational cost

of Y(1)(W�V) to O(JR2 +KR3).

Lemma 4.1. Let us denote Y(1)(W�V) with G(1) ∈ RR×R
. G(1)(:,r) is equal to((∑K

k=1 W(k,r)
(
PkZT

k F(k)
))

EDT V(:,r)
)

. �

Proof. Y(1) is represented as follows:

Y(1) =
[
P1ZT

1 F(1)EDT ; · · · ; PKZT
KF(K)EDT

]

=
(
‖K

k=1

(
PkZT

k F(k)
))


EDT · · · O
... . . . ...

O · · · EDT

=
(
‖K

k=1

(
PkZT

k F(k)
))(

IK×K⊗EDT )

where IK×K is the identity matrix of size K ×K. �en, G(1) = Y(1)(W�V) is ex-

pressed as follows:

G(1) =
(
‖K

k=1

(
PkZT

k F(k)
))(

IK×K⊗EDT )(‖R
r=1(W(:,r)⊗V(:,r))

)
=
(
‖K

k=1

(
PkZT

k F(k)
))(
‖R

r=1
(
W(:,r)⊗EDT V(:,r)

))
�e mixed-product property (i.e., (A⊗B)(C⊗D) = AC⊗BD)) is used in the above

equation. �erefore, G(1)(:,r) is equal to
(
‖K

k=1

(
PkZT

k F(k)
))(

W(:,r)⊗EDT V(:,r)
)
.

We represent it as
∑K

k=1 W(k,r)
(
PkZT

k F(k)
)

EDT V(:,r) using block matrix multipli-
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Figure 4.5: Computation for G(2) = Y(2)(W�H). �e rth column G(2)(:,r) of G(2) is com-
puted by DE

∑K
k=1

(
W(k,r)F(k)T ZkPT

k H(:,r)
)

.

cation since the k-th vertical block vector of
(
W(:,r)⊗EDT V(:,r)

)
∈RKR is W(k,r)

EDT V(:,r) ∈ RR.

As shown in Figure 4.4, we compute Y(1)(W�V) column by column. In com-

puting G(1)(:,r), we compute EDT V(:,r), sum up W(k,r)
(
PkZT

k F(k)
)

for all k, and

then perform matrix multiplication between the two preceding results (line 14 in

Algorithm 10). A�er computing G(1) ← Y(1)(W�V), we update H by computing

G(1)(WT W ∗VT V)† where † denotes the Moore-Penrose pseudoinverse (line 15 in

Algorithm 10). Note that the pseudoinverse operation requires a lower computational

cost compared to computing G(1) since the size of (WT W∗VT V) ∈ RR×R is small.

Updating V. In computing Y(2)(W�U)(WT W∗UT U)†, we need to e�ciently

compute Y(2)(W�U) based on Lemma 4.2. As in updating H, a naive computation

for Y(2)(W�U) requires a high computational cost O(JKR2). We e�ciently com-

pute Y(2)(W�U) with the cost O(JR2+KR3), by carefully determining the order of

computations and exploiting the factorized matrices of Y(2).

Lemma 4.2. Let us denote Y(2)(W�H) with G(2) ∈ RJ×R
. G(2)(:,r) is equal to DE(∑K

k=1
(
W(k,r)F(k)T ZkPT

k H(:,r)
))

. �
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Proof. Y(2) is represented as follows:

Y(2) =
[
DEF(1)T Z1PT

1 ; · · · ; DEF(K)T ZKPT
K

]
= DE

(
‖K

k=1F(k)T ZkPT
k

)

�en, G(2) = Y(2)(W�H) is expressed as follows:

G(2) = DE
(
‖K

k=1F(k)T ZkPT
k

)


W(1,1)H(:,1); · · · ;W(1,R)H(:,R)
...

...
...

W(K,1)H(:,1); · · · ;W(K,R)H(:,R)


G(2)(:,r) is equal to DE

∑K
k=1
(
W(k,r)F(k)T ZkPT

k H(:,r)
)

according to the above equa-

tion.

As shown in Figure 4.5, we compute G(2)← Y(2)(W�H) column by column. A�er

computing G(2), we update V by computing G(2)(WT W∗HT H)† (lines 16 and 17 in

Algorithm 10).

Updating W. In computing Y(3)(V�H)(VT V∗HT H)†, we e�ciently compute

Y(3)(V�H) based on Lemma 4.3. As in updating H and V, a naive computation for

Y(3)(V�H) requires a high computational cost O(JKR2). We compute Y(3)(V�H)

with the cost O(JR2 +KR3) based on Lemma 4.3. Exploiting the factorized matrices

of Y(3) and carefully determining the order of computations improves the e�ciency.

Lemma4.3. Let us denote Y(3)(V�H)with G(3) ∈RK×R
. G(3)(k,r) is equal to vec

(
PkZT

k

F(k)
)T (

EDT V(:,r)⊗H(:,r)
)

where vec(·) denotes the vectorization of a matrix. �
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Figure 4.6: Computation for G(3) = Y(3)(V � H). G(3)(k,r) is computed by(
vec
(

PkZT
k F(k)

))T (
EDT V(:,r)⊗H(:,r)

)
.

Proof. Y(3) is represented as follows:

Y(3) =


(
vec
(
P1ZT

1 F(1)EDT
))T

...(
vec
(
PKZT

KF(K)EDT
))T

=
(
‖K

k=1

(
vec
(

PkZT
k F(k)EDT

)))T

=
(
‖K

k=1(DE⊗ I)vec
(

PkZT
k F(k)

))T
=
(
‖K

k=1

(
vec
(

PkZT
k F(k)

)))T (
EDT ⊗ IR×R

)
where IR×R is the identity matrix of size R×R. �e property of the vectorization (i.e.,

vec(AB) = (BT ⊗I)vec(A)) is used. �en, G(3) =Y(3)(V�H) is expressed as follows:

G(3) =
(
‖K

k=1

(
vec
(

PkZT
k F(k)

)))T (
‖R

r=1
(
EDT V(:,r)⊗H(:,r)

))
G(3)(k,r) is

(
vec
(
PkZT

k F(k)
))T (EDT V(:,r)⊗H(:,r)

)
according to the above equa-

tion.

We compute G(3) = Y(3)(V�H) row by row. Figure 4.6 shows how we compute

G(3)(k,r). In computing G(3), we �rst compute EDT V, and then obtain G(3)(k, :) for

all k (line 18 in Algorithm 10). A�er computing G(3), we update W by computing

G(3)(VT V ∗HT H)† where † denotes the Moore-Penrose pseudoinverse (line 19 in
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Algorithm 10). We obtain Sk whose diagonal elements correspond to the kth row

vector of W (line 21 in Algorithm 10).

A�er convergence, we obtain the factor matrices, (Uk←AkZkPT
k H = QkH), Sk,

and V (line 25 in Algorithm 10).

Convergence Criterion. At the end of each iteration, we determine whether to

stop or not (line 23 in Algorithm 10) based on the variation of e=
(∑K

k=1 ‖Xk− X̂k‖2
F

)
where X̂k =QkHSkVT is the kth reconstructed slice. However, measuring reconstruc-

tion errors
∑K

k=1 ‖Xk− X̂k‖2
F is ine�cient since it requires high time and space costs

proportional to input slices Xk. To e�ciently verify the convergence, our idea is to ex-

ploit AkF(k)EDT instead of Xk, since the objective of our update process is to minimize

the di�erence between AkF(k)EDT and X̂k = QkHSkVT . With this idea, we improve

the e�ciency by computing
∑K

k=1 ‖PkZT
k F(k)EDT −HSkVT‖2

F, not the reconstruc-

tion errors. Our computation requires the time O(JKR2) and space costs O(JKR)

which are much lower than the costs O(
∑K

k=1 IkJR) and O(
∑K

k=1 IkJ) of naively com-

puting
∑K

k=1 ‖Xk− X̂k‖2
F, respectively. From ‖PkZT

k F(k)EDT −HSkVT‖2
F, we derive

‖AkF(k)EDT − X̂k‖2
F. Since the Frobenius norm is unitarily invariant, we modify the

computation as follows:

‖PkZT
k F(k)EDT −HSkVT‖2

F = ‖QkPkZT
k F(k)EDT −QkHSkVT‖2

F

= ‖AkZkPT
k PkZT

k F(k)EDT −QkHSkVT‖2
F = ‖AkF(k)EDT − X̂k‖2

F

where PT
k Pk and ZkZT

k are equal to I ∈RR×R since Pk and Zk are orthonormal matri-

ces. Note that the size of PkZT
k F(k)EDT and HSkVT is R× J which is much smaller

than the size Ik× J of input slices Xk. �is modi�cation completes the e�ciency of

our update rule.
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Algorithm 11: Careful distribution of work in DPar2
Input: the number T of threads, Xk ∈ RIk×J for k = 1, ...,K
Output: sets Ti for i = 1, ...,T .

1: initialize Ti← /0 for i = 1, ...,T .
2: construct a list S of size T whose elements are zero
3: construct a list Linit containing the number of rows of Xk for k = 1, ...,K
4: sort Linit in descending order, and obtain lists Lval and Lind that contain sorted values

and those corresponding indices
5: for k = 1, ...,K do

6: tmin← argminS
7: l← Lind [k]
8: Ttmin ← Ttmin ∪{Xl}
9: S[tmin]← S[tmin]+Lval [k]

10: end for

4.3.6 Careful distribution of work

�e last challenge for an e�cient and scalable PARAFAC2 decomposition method is

how to parallelize the computations described in Sections 4.3.2 to 4.3.5. Although a

previous work [2] introduces the parallelization with respect to the K slices, there

is still room for maximizing parallelism. Our main idea is to carefully allocate input

slices Xk to threads by considering the irregularity of a given tensor.

�e most expensive operation is to compute randomized SVD of input slices Xk

for all k; thus we �rst focus on how well we parallelize this computation (i.e., lines 2

to 4 in Algorithm 10). A naive approach is to randomly allocate input slices to threads,

and let each thread compute randomized SVD of the allocated slices. However, the

completion time of each thread can vary since the computational cost of computing

randomized SVD is proportional to the number of rows of slices; the number of rows

of input slices is di�erent from each other as shown in Figure 4.7. �erefore, we need

to distribute Xk fairly across each thread considering their numbers of rows.

For i= 1, ..,T , consider that an ith thread performs randomized SVD for slices in

a set T i where T is the number of threads. To reduce the completion time, the sums of
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rows of slices in the sets should be nearly equal to each other. To achieve it, we exploit

a greedy number partitioning technique that repeatedly adds a slice into a set with

the smallest sum of rows. Algorithm 11 describes how to construct the sets T i for

compressing input slices in parallel. Let Linit be a list containing the number of rows

of Xk for k = 1, ...,K (line 3 in Algorithm 11). We �rst obtain lists Lval and Lind , sorted

values and those corresponding indices, by sorting Linit in descending order (line 4 in

Algorithm 11). We repeatedly add a slice Xk to a set T i that has the smallest sum. For

each k, we �nd the index tmin of the minimum in S whose ith element corresponds

to the sum of row sizes of slices in the ith set T i (line 6 in Algorithm 11). �en, we

add a slice Xl to the set Ttmin where l is equal to Lind [k], and update the list S by

S[tmin]← S[tmin] + Lval[k] (lines 7 to 9 in Algorithm 11). Note that S[k], Lind [k], and

Lval[k] denote the kth element of S, Lind , and Lval , respectively. A�er obtaining the

sets T i for i = 1, ..,T , ith thread performs randomized SVD for slices in the set T i.

A�er decomposing Xk for all k, we do not need to consider the irregularity for

parallelism since there is no computation with Ak which involves the irregularity.

�erefore, we uniformly allocate computations across threads for all k slices. In each

iteration (lines 8 to 22 in Algorithm 10), we easily parallelize computations. First, we

parallelize the iteration (lines 8 to 10) for all k slices. To update H, V, and W, we

need to compute G(1), G(2), and G(3) in parallel. In Lemmas 4.1 and 4.2, DPar2 paral-

lelly computes W(k,r)
(
PkZT

k F(k)
)

and W(k,r)F(k)ZkPT
k H(:,r) for k, respectively. In

Lemma 4.3, DPar2 parallelly computes
(
vec
(
PkZT

k F(k)
))T (EDT V(:,r)⊗H(:,r)

)
for

k.

4.3.7 Complexities

We analyze the time complexity of DPar2.
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Figure 4.7: �e length of the temporal dimension of input slices Xk on US Stock and Korea
Stock data. We sort the lengths in descending order.

Lemma 4.4. Compressing input slices takes O
((∑K

k=1 IkJR
)
+ JKR2

)
time.

Proof. �e SVD in the �rst stage takes O
(∑K

k=1 IkJR
)

times since computing ran-

domized SVD of Xk takes O(IkJR) time. �en, the SVD in the second stage takes

O
(
JKR2

)
due to randomized SVD of M(2) ∈ RJ×KR. �erefore, the time complexity

of the SVD in the two stages is O
((∑K

k=1 IkJR
)
+ JKR2

)
.

Lemma4.5. At each iteration, computing Yk and updating H, V, and W takesO(JR2+

KR3) time.

Proof. For Yk, computing F(k)EDT VSkHT and performing SVD of it for all k take

O(JR2 +KR3). Updating each of H, V, and W takes O(JR2 +KR3 +R3) time. �ere-

fore, the complexity for Yk, H, V, and W is O
(
JR2 +KR3

)
.

�eorem 4.1. �e time complexity of DPar2 is O
((∑K

k=1 IkJR
)
+ JKR2 +MKR3

)
where M is the number of iterations.

Proof. �e overall time complexity of DPar2 is the summation of the compression

cost (see Lemma 4.4) and the iteration cost (see Lemma 4.5):O
((∑K

k=1 IkJR
)
+JKR2+

M(JR2+KR3)

)
. Note that MJR2 term is omi�ed since it is much smaller than

(∑K
k=1 IkJR

)
and JKR2.
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Table 4.2: Description of real-world tensor datasets.
Dataset Max Dim. Ik Dim. J Dim. K Summary

FMA1 [94] 704 2,049 7,997 music
Urban2 [103] 174 2,049 8,455 urban sound
US Stock3 7,883 88 4,742 stock
Korea Stock4 [25] 5,270 88 3,664 stock
Activity5 [104, 105] 553 570 320 video feature
Action5 [104, 105] 936 570 567 video feature
Tra�c6 [96] 2,033 96 1,084 tra�c
PEMS-SF7 963 144 440 tra�c

�eorem 4.2. �e size of preprocessed data of DPar2 is O
((∑K

k=1 IkR
)
+KR2 + JR

)
.

Proof. �e size of preprocessed data of DPar2 is proportional to the size of E, D, Ak,

and F(k) for k = 1, ...,K. �e size of E and D is R and J×R, respectively. For each k,

the size of A and F is Ik×R and R×R, respectively. �erefore, the size of preprocessed

data of DPar2 is O
((∑K

k=1 IkR
)
+KR2 + JR

)
.

4.4 Experiments

In this section, we experimentally evaluate the performance of DPar2. We answer

the following questions:

Q1 Performance (Section 4.4.2). How quickly and accurately does DPar2 per-

form PARAFAC2 decomposition compared to other methods?

Q2 Data Scalability (Section 4.4.3). How well does DPar2 scale up with respect

to tensor size and target rank?

Q3 Multi-core Scalability (Section 4.4.4).How much does the number of threads

a�ect the running time of DPar2?

Q4 Discovery (Section 4.4.5). What can we discover from real-world tensors us-

ing DPar2?
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4.4.1 Experimental Settings

We describe experimental se�ings for the datasets, competitors, parameters, and en-

vironments.

Machine. We use a workstation with 2 CPUs (Intel Xeon E5-2630 v4 @ 2.2GHz),

each of which has 10 cores, and 512GB memory for the experiments.

Real-world Data. We evaluate the performance of DPar2 and competitors on

real-world datasets summarized in Table 4.2. FMA dataset1 [94] is the collection of

songs. Urban Sound dataset2 [103] is the collection of urban sounds such as drilling,

siren, and street music. For the two datasets, we convert each time series into an im-

age of a log-power spectrogram so that their forms are (time, frequency, song; value)

and (time, frequency, sound; value), respectively. US Stock dataset3 is the collection

of stocks on the US stock market. Korea Stock dataset4 [25] is the collection of stocks

on the South Korea stock market. Each stock is represented as a matrix of (date, fea-

ture) where the feature dimension includes 5 basic features and 83 technical indica-

tors. �e basic features collected daily are the opening, the closing, the highest, and

the lowest prices and trading volume, and technical indicators are calculated based

on the basic features. �e two stock datasets have the form of (time, feature, stock;

value). Activity data5 and Action data5 are the collection of features for motion videos.

�e two datasets have the form of (frame, feature, video; value). We refer the reader

to [104] for their feature extraction. Tra�c data6 is the collection of tra�c volume

around Melbourne, and its form is (sensor, frequency, time; measurement). PEMS-
1https://github.com/mdeff/fma
2https://urbansounddataset.weebly.com/urbansound8k.html
3https://datalab.snu.ac.kr/dpar2
4https://github.com/jungijang/KoreaStockData
5https://github.com/titu1994/MLSTM-FCN
6https://github.com/florinsch/BigTrafficData
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SF data7 contain the occupancy rate of di�erent car lanes of San Francisco bay area

freeways: (station, timestamp, day; measurement). Tra�c data and PEMS-SF data are

3-order regular tensors, but we can analyze them using PARAFAC2 decomposition

approaches.

Synthetic Data. We evaluate the scalability of DPar2 and competitors on syn-

thetic tensors. Given the number K of slices, and the slice sizes I and J, we generate

a synthetic tensor using tenrand(I, J, K) function in Tensor Toolbox [97], which ran-

domly generates a tensor X ∈ RI×J×K . We construct a tensor {Xk}K
k=1 where Xk is

equal to X(:, :,k) for k = 1, ...K.

Competitors. We compare DPar2 with PARAFAC2 decomposition methods

based on ALS. All the methods includingDPar2 are implemented in MATLAB (R2020b).

• DPar2: the proposed PARAFAC2 decomposition model which preprocesses a

given irregular dense tensor and updates factor matrices using the preprocess-

ing result.

• RD-ALS [33]: PARAFAC2 decomposition which preprocesses a given irregular

tensor. Since there is no public code, we implement it using Tensor Toolbox [97]

based on its paper [33].

• PARAFAC2-ALS: PARAFAC2 decomposition based on ALS approach. It is im-

plemented based on Algorithm 2 using Tensor Toolbox [97].

• SPARTan [2]: fast and scalable PARAFAC2 decomposition for irregular sparse

tensors. Although it targets on sparse irregular tensors, it can be adapted to

irregular dense tensors. We use the code implemented by authors8.

Parameters. We use the following parameters.

• Number of threads: we use 6 threads except in Section 4.4.4.
7http://www.timeseriesclassification.com/
8https://github.com/kperros/SPARTan
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• Max number of iterations: the maximum number of iterations is set to 32.

• Rank: we set the target rank R to 10 except in the trade-o� experiments of

Section 4.4.2 and Section 4.4.4. We also set the rank of randomized SVD to 10

which is the same as the target rank R of PARAFAC2 decomposition.

To compare running time, we run each method 5 times, and report the average.

Fitness. We evaluate the �tness de�ned as follows:

1−
(∑K

k=1 ‖Xk− X̂k‖2
F∑K

k=1 ‖Xk‖2
F

)

where Xk is the k-th input slice and X̂k is the k-th reconstructed slice of PARAFAC2

decomposition. Fitness close to 1 indicates that a model approximates a given input

tensor well.

4.4.2 Performance

We evaluate the �tness and the running time of DPar2, RD-ALS, SPARTan, and

PARAFAC2-ALS.

Trade-o�. Figure 4.1 shows that DPar2 provides the best trade-o� of running

time and �tness on real-world irregular tensors for the three target ranks: 10, 15, and

20. DPar2 achieves 6.0× faster running time than the competitors for FMA dataset

while having a comparable �tness. In addition, DPar2 provides at least 1.5× faster

running times than the competitors for the other datasets. �e performance gap is

large for FMA and Urban datasets whose sizes are larger than those of the other

datasets. It implies thatDPar2 is more scalable than the competitors in terms of tensor

sizes.

Preprocessing time. We compare DPar2 with RD-ALS and exclude SPARTan
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Figure 4.8: [Best viewed in color] (a) DPar2 e�ciently preprocesses a given irregular dense
tensor, which is up to 10× faster compared to RD-ALS. (b) At each iteration, DPar2 runs by
up to 10.3× faster than the second-best method.

and PARAFAC2-ALS since only RD-ALS has a preprocessing step. As shown in Fig-

ure 4.8(a), DPar2 is up to 10× faster than RD-ALS. �ere is a large performance gap

on FMA and Urban datasets since RD-ALS cannot avoid the overheads for the large

tensors. RD-ALS performs SVD of the concatenated slice matrices ‖K
k=1XT

k , which

leads to its slow preprocessing time.

Iteration time. Figure 4.8(b) shows that DPar2 outperforms competitors for

running time at each iteration. Compared to SPARTan and PARAFAC2-ALS, DPar2

signi�cantly reduces the running time per iteration due to the small size of the pre-

processed results. Although RD-ALS reduces the computational cost at each iteration

by preprocessing a given tensor, DPar2 is up to 10.3× faster than RD-ALS. Com-

pared to RD-ALS that computes the variation of
(∑K

k=1 ‖Xk−QkHSkVT‖2
F

)
for the

convergence criterion, DPar2 e�ciently veri�es the convergence by computing the

variation of
∑K

k=1 ‖PkZT
k F(k)EDT −HSkVT‖2

F, which a�ects the running time at each

iteration. In summary, DPar2 obtains Uk, Sk, and V in a reasonable running time even

if the number of iterations increases.

Size of preprocessed data. We measure the size of preprocessed data on real-

world datasets. For PARAFAC2-ALS and SPARTan, we report the size of an input
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Figure 4.9: �e size of preprocessed data. DPar2 generates up to 201× smaller preprocessed
data than input tensors used for SPARTan and PARAFAC2-ALS.

irregular tensor since they have no preprocessing step. Compared to an input irreg-

ular tensor, DPar2 generates much smaller preprocessed data by up to 201 times

as shown in Figure 4.9. Given input slices Xk of size Ik× J, the compression ratio in-

creases as the number J of columns increases; the compression ratio is larger on FMA,

Urban, Activity, and Action datasets than on US Stock, KR Stock, Tra�c, and PEMS-

SF. �is is because the compression ratio is proportional to Size of an irregular tensor
Size of the preprocessed results ≈

IJK
IKR+KR2+JR = 1

R/J+R2/IJ+R/IK assuming I1 = ... = IK = I; R/J is the dominant term

which is much larger than R2/IJ and R/IK.

4.4.3 Data Scalability

We evaluate the data scalability of DPar2 by measuring the running time on several

synthetic datasets. We �rst compare the performance of DPar2 and the competitors

by increasing the size of an irregular tensor. �en, we measure the running time by

changing a target rank.

Tensor Size. To evaluate the scalability with respect to the tensor size, we gen-

erate 5 synthetic tensors of the following sizes I×J×K: {1000×1000×1000,1000×

1000×2000,2000×1000×2000,2000×2000×2000,2000×2000×4000}. For sim-

97



1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

2£ 100

3£ 100

DPar2 PARAFAC2-ALS SPARTan RD-ALS

109 1010

Tensor Size

101

102

103

R
un

ni
ng

Ti
m

e
(s

ec
)

𝟏𝟓.𝟑×

(a) Scalability for tensor size

10 20 30 40 50
Rank

102

103

R
un

ni
ng

Ti
m

e
(s

ec
)

𝟕. 𝟎×

𝟏𝟓.𝟗×

(b) Scalability for rank

1 2 4 6 8 10
Number of Threads

2

4

6

Sc
al

e
U

p:
T

M
/T

1

Slope = 0.56

(c) Machine Scalability

Figure 4.10: Data scalability. DPar2 is more scalable than other PARAFAC2 decomposition
methods in terms of both tensor size and rank. (a) DPar2 is 15.3× faster than the second-
fastest method on the irregular dense tensor of the total size 1.6× 1010. (b) DPar2 is 7.0×
faster than the second-fastest method even when a high target rank is given. (c) Multi-core
scalability with respect to the number of threads. TM indicates the running time of DPar2 on
the number M of threads. DPar2 gives near-linear scalability, and accelerates 5.5× when the
number of threads increases from 1 to 10.

plicity, we set I1 = · · ·= IK = I. Figure 4.10(a) shows that DPar2 is up to 15.3× faster

than competitors on all synthetic tensors; in addition, the slope of DPar2 is lower

than that of competitors. We also note that only DPar2 obtains factor matrices of

PARAFAC2 decomposition within a minute for all the datasets.

Rank. To evaluate the scalability with respect to rank, we generate the follow-

ing synthetic data: I1 = · · ·= IK = 2,000, J = 2,000, and K = 4,000. Given the syn-

thetic tensors, we measure the running time for 5 target ranks: 10, 20, 30, 40, and 50.

DPar2 is up to 15.9× faster than the second-fastest method with respect to rank in

Figure 4.10(b). For higher ranks, the performance gap slightly decreases since DPar2

depends on the performance of randomized SVD which is designed for a low target

rank. Still, DPar2 is up to 7.0× faster than competitors with respect to the highest

rank used in our experiment.
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4.4.4 Multi-core Scalability

We generate the following synthetic data: I1 = · · ·= IK = 2,000, J = 2,000, and K =

4,000, and evaluate the multi-core scalability of DPar2 with respect to the number

of threads: 1,2,4,6,8, and 10. TM indicates the running time when using the number

M of threads. As shown in Figure 4.10(c), DPar2 gives near-linear scalability, and

accelerates 5.5× when the number of threads increases from 1 to 10.

4.4.5 Discoveries

We discover various pa�erns using DPar2 on real-world datasets.

4.4.5.1 Feature Similarity on Stock Dataset

We measure the similarities between features on US Stock and Korea Stock datasets,

and compare the results. We compute Pearson Correlation Coe�cient (PCC) between

V(i, :), which represents a latent vector of the ith feature. For e�ective visualization,

we select 4 price features (the opening, the closing, the highest, and the lowest prices),

and 4 representative technical indicators described as follows:

• OBV (On Balance Volume): a technical indicator for cumulative trading vol-

ume. If today’s closing price is higher than yesterday’s price, OBV increases by

the amount of today’s volume. If not, OBV decreases by the amount of today’s

volume.

• ATR (Average TrueRange): a technical indicator for volatility developed by J.

Welles Wilder, Jr. It increases in high volatility while decreasing in low volatil-

ity.

• MACD (Moving Average Convergence and Divergence): a technical indi-

cator for trend developed by Gerald Appel. It indicates the di�erence between
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Figure 4.11: �e similarity pa�erns of features are di�erent on the two stock markets. (a) For
US Stock data, ATR and OBV have a positive correlation with the price features. (b) For Korea
Stock data, they are uncorrelated with the price features in general.

long-term and short-term exponential moving averages (EMA).

• STOCH (Stochastic Oscillator): a technical indicator for momentum devel-

oped by George Lane. It indicates the position of the current closing price com-

pared to the highest and the lowest prices in a duration.

Figures 4.11(a) and 4.11(b) show correlation heatmaps for US Stock data and Ko-

rea Stock data, respectively. We analyze correlation pa�erns between price features

and technical indicators. On both datasets, STOCH has a negative correlation and

MACD has a weak correlation with the price features. On the other hand, OBV and

ATR indicators have di�erent pa�erns on the two datasets. On the US stock dataset,

ATR and OBV have a positive correlation with the price features. On the Korea stock

dataset, OBV has li�le correlation with the price features. Also, ATR has li�le corre-

lation with the price features except for the closing price. �ese di�erent pa�erns are

due to the di�erence of the two markets in terms of market size, market stability, tax,

investment behavior, etc.
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4.4.5.2 Finding Similar Stocks

On US Stock dataset, which stock is similar to a target stock sT in a time range that a user

is curious about? In this section, we provide analysis by se�ing the target stock sT to

Microso� (Ticker: MSFT), and the range a duration when COVID-19 was very active

(Jan. 2, 2020 - Apr. 15, 2021). We e�ciently answer the question by 1) constructing the

tensor included in the range, 2) obtaining factor matrices with DPar2, and 3) post-

processing the factor matrices of DPar2. Since Uk represents temporal latent vectors

of the kth stock, the similarity sim(si,s j) between stocks si and s j is computed as

follows:

sim(si,s j) = exp
(
−γ‖Usi−Us j‖2

F
)

(4.7)

where exp is the exponential function. We set γ to 0.01 in this section. Note that we

use only the stocks that have the same target range since Usi −Us j is de�ned only

when the two matrices are of the same size.

Based on sim(si,s j), we �nd similar stocks to sT using two di�erent techniques:

1) k-nearest neighbors, and 2) Random Walks with Restarts (RWR). �e �rst approach

simply �nds stocks similar to the target stock, while the second one �nds similar

stocks by considering the multi-faceted relationship between stocks.

k-nearest neighbors. We compute sim(sT ,s j) for j = 1, ...,K where K is the

number of stocks to be compared, and �nd top-10 similar stocks to sT , Microso�

(Ticker: MSFT). In Table 4.3(a), the Microso� stock is similar to stocks of the Tech-

nology sector or with a large capitalization (e.g., Amazon.com, Apple, and Alphabet)

during the COVID-19. Moody’s is also similar to the target stock.

Random Walks with Restarts (RWR). We �nd similar stocks using another
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Table 4.3: Based on the results of DPar2, we �nd similar stocks to Microso� (MSFT) during
COVID-19. (a) Top-10 stocks from k-nearest neighbors. (b) Top-10 stocks from RWR. �e blue
color refers to the stocks that appear only in one of the two approaches among the top-10
stocks.

(a) Similarity based Result

Rank Stock Name Sector

1 Adobe Technology
2 Amazon.com Consumer Cyclical
3 Apple Technology
4 Moody’s Financial Services
5 Intuit Technology
6 ANSYS Technology
7 Synopsys Technology
8 Alphabet Communication Services
9 ServiceNow Technology

10 EPAM Systems Technology

(b) RWR Result

Rank Stock Name Sector

1 Synopsys Technology
2 ANSYS Technology
3 Adobe Technology
4 Amazon.com Consumer Cyclical
5 Net�ix Communication Services
6 Autodesk Technology
7 Apple Technology
8 Moody’s Financial Services
9 NVIDIA Technology

10 S&P Global Financial Services

approach, Random Walks with Restarts (RWR) [106, 107, 108, 109, 110, 111]. To ex-

ploit RWR, we �rst a similarity graph based on the similarities between stocks. �e

elements of the adjacency matrix A of the graph are de�ned as follows:

A(i, j) =


sim(si,s j) if i 6= j

0 if i = j
(4.8)

We ignore self-loops by se�ing A(i, i) to 0 for i = 1, ...,K.

A�er constructing the graph, we �nd similar stocks using RWR. �e scores r is

computed by using the power iteration [112] as described in [111]:

r(i)← (1− c)ÃT r(i−1)+ cq (4.9)

where Ã is the row-normalized adjacency matrix, r(i) is the score vector at the ith

iteration, c is a restart probability, and q is a query vector. We set c to 0.15, the maxi-

mum iteration to 100, and q to the one-hot vector where the element corresponding

to Microso� is 1, and the others are 0.
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As shown in Table 4.3, the common pa�ern of the two approaches is that many

stocks among the top-10 belong to the technology sector. �ere is also a di�erence.

In Table 4.3, the blue color indicates the stocks that appear only in one of the two

approaches among the top-10. In Table 4.3(a), the k-nearest neighbor approach sim-

ply �nds the top-10 stocks which are closest to Microso� based on distances. On the

other hand, the RWR approach �nds the top-10 stocks by considering more compli-

cated relationships. �ere are 4 stocks appearing only in Table 4.3(b). S&P Global is

included since it is very close to Moody’s which is ranked 4th in Table 4.3(a). Net�ix,

Autodesk, and NVIDIA are relatively far from the target stock compared to stocks

such as Intuit and Alphabet, but they are included in the top-10 since they are very

close to Amazon.com, Adobe, ANSYS, and Synopsys. �is di�erence comes from the

fact that the k-nearest neighbors approach considers only distances from the target

stock while the RWR approach considers distances between other stocks in addition

to the target stock.

DPar2 allows us to e�ciently obtain factor matrices, and �nd interesting pat-

terns in data.

4.5 Summary

We propose DPar2, a fast and scalable PARAFAC2 decomposition method for irreg-

ular dense tensors. By compressing an irregular input tensor, careful reordering of

the operations with the compressed results in each iteration, and careful partitioning

of input slices, DPar2 successfully achieves high e�ciency to perform PARAFAC2

decomposition for irregular dense tensors. Experimental results show that DPar2 is

up to 6.0× faster than existing PARAFAC2 decomposition methods while achieving

comparable accuracy, and it is scalable with respect to the tensor size and target rank.
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With DPar2, we discover interesting pa�erns in real-world irregular tensors. Future

work includes devising an e�cient PARAFAC2 decomposition method in a streaming

se�ing.
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Chapter 5

E�cient Tensor Decomposition for

Diverse Time Ranges in Regular Tensors

5.1 Motivation

Given a temporal dense tensor and a time range (e.g., January - March 2019), how

can we e�ciently analyze the tensor in the given time range? Many real-world data

including stock data, video data, and tra�c volume data are represented as temporal

dense tensors. Tensor decomposition has played an important role in various applica-

tions including data clustering [60, 61], concept discovery [44, 100, 113], dimensional-

ity reduction [19, 114], anomaly detection [16], and link prediction [115, 116]. Tucker

decomposition, one of the tensor decomposition methods, has been recognized as a

crucial tool for discovering latent factors and detecting relations between them.

In practice, we analyze a given temporal tensor from various perspectives. As-

sume a user is interested in investigating pa�erns of various time ranges using Tucker

decomposition. Given a temporal tensor and a user-provided time range (start time

and end time) query, our goal is to �nd the pa�erns of the temporal tensor at the

range using Tucker decomposition. For example, given a temporal tensor including

matrices collected between Jan. 1, 2008 to May 6, 2020, a user may be interested in

Tucker decomposition of a subrange between Jan. 1, 2020 to April 30, 2020 (see Fig-

ure 5.1). Since Tucker decomposition generates factor matrices and a core tensor to ac-

curately approximate an input tensor, answering time range queries, (i.e., performing
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Time 
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To May 6, 2020
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Tucker results 
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- Jan. 1, 2020
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- Apr. 30, 2020

Given Given Goal

A time range query

Figure 5.1: Given a temporal tensor and a user-provided time range (start time and end time)
query, the goal of the time-ranged Tucker decomposition is to �nd the pa�erns of the temporal
tensor at the range using Tucker decomposition.

Tucker decomposition of di�erent sub-tensors) yields di�erent Tucker results. How-

ever, conventional Tucker decomposition methods [36, 38, 28] based on Alternating

Least Square (ALS) is not appropriate for answering diverse time range queries since

they target performing Tucker decomposition once for a given tensor; the methods

require a high computational cost and large storage space since they need to perform

Tucker decomposition of the sub-tensor included in a time range query from scratch,

every time the query is given. Due to this limitation, the existing methods are not

e�cient in exploring diverse time ranges for a given temporal tensor.

A few methods [37, 26] with a preprocessing phase can be adapted to the time

range query problem; before the query phase, they preprocess a given tensor, and per-

form Tucker decomposition with the preprocessed tensor for each time range query.

However, they su�er from an accuracy issue for narrow time ranges since prepro-

cessed results are tailored for performing Tucker decomposition of the whole given

temporal tensor. �e results fail to capture local pa�erns that appear only in a speci�c

range.
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Table 5.1: Symbol description.
Symbol Description

X temporal tensor (∈ I1× ...× IN)
In & Jn dimensionality of the n-th mode of X and G

b block size
ts & te starting and ending points of time range query
[ts, te] time range of a query
X<i> i-th temporal block tensor (∈ I1× ...IN−1×b)(

A<i>)(k) k-th factor matrix of i-th temporal block tensor
G<i> core tensor of i-th temporal block tensor
X̃ temporal tensor obtained in the time range [ts, te]

Ã(k) k-th factor matrix of time range query [ts, te]
G̃ core tensor of time range query [ts, te]
S index of temporal block tensor corresponding to ts
E index of temporal block tensor corresponding to te
⊗ Kronecker product
×n n-mode product

In this paper, we propose Zoom-Tucker (Zoomable Tucker decomposition), a

fast and memory-e�cient Tucker decomposition method to analyze a temporal ten-

sor for diverse time ranges. Zoom-Tucker enables us to discover local pa�erns in a

narrow time range (zoom-in), or global pa�erns in a wider time range (zoom-out).

Zoom-Tucker consists of two phases: the preprocessing phase and the query phase.

�e preprocessing phase of Zoom-Tucker exploits block structure to lay the ground-

work in achieving an e�cient query phase and capturing local information. In the

query phase, Zoom-Tucker addresses the high computational cost and space cost by

elaborately decoupling block results and carefully determining the order of compu-

tation. �anks to these ideas, Zoom-Tucker answers an arbitrary time range query

with higher e�ciency than existing methods. �rough extensive experiments, we

demonstrate the e�ectiveness and e�ciency of our method compared to other meth-

ods. �e main contributions of this paper are as follows:

• Algorithm. We propose Zoom-Tucker, a fast and memory-e�cient Tucker

decomposition method for answering diverse time range queries.
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• Analysis. We provide both time and space complexities for the preprocessing

and query phases of Zoom-Tucker.

• Experiment.Experimental results show thatZoom-Tucker answers time range

queries up to 171.9× faster and requires up to 230× less space than other meth-

ods while providing comparable accuracy, as shown in Figures 5.2 and 5.6.

• Discovery. �anks to Zoom-Tucker, we discover anomalous ranges and trend

changes in Stock dataset (Figures 5.9 and 5.10).

In the rest of this chapter, we describe the preliminaries, and formally de�ne the

problem in Section 5.2. We then propose our methodZoom-Tucker in Section 5.3, and

present experimental results in Section 5.4. �en, we conclude in Section 5.5. �e code

of our method and datasets are available at https://datalab.snu.ac.kr/zoomtucker.

5.2 Problem De�nition

We de�ne the problem addressed in this work and the symbols are described in Ta-

ble 5.1. We describe the formal de�nition of the time range query problem as follows:

Problem 1 (Time Range �ery on Temporal Tensor).

Given: a temporal dense tensor X ∈ RI1×I2···×IN
and a time range [ts, te] where IN is the

length of the time dimension, and In is the dimensionality of mode-n for n = 1, ...,N−1,

Find: the Tucker results of the sub-tensor X̃ of X in the time range [ts, te] e�ciently. �e

Tucker result includes factor matrices Ã(1)
, …, Ã(N)

, and core tensor G̃.

To address the time range query problem, a method should e�ciently handle

various time range queries. Given an arbitrary time range query, existing methods [36,

38, 28] performing Tucker decomposition from scratch requires a high computational

cost and large space cost. Compared to the aforementioned methods, Tucker decom-
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position methods [26, 37] with a preprocessing phase save time and space costs in

that they allow us to compress a whole tensor before a query phase, and then perform

Tucker decomposition of a sub-tensor corresponding to a given time range query by

exploiting the compressed tensor instead of the input tensor. However, they are still

unsatisfactory in terms of time, space, and accuracy for the time range query prob-

lem since they are tailored for performing Tucker decomposition of only the whole

tensor once.

5.3 Proposed Method

In this section, we propose Zoom-Tucker, a novel method for extracting key pa�erns

of a temporal tensor in an arbitrary time range. �e following challenges need to be

tackled:

C1 Dealing with various time range queries. Each user deals with di�erent

time ranges or a user analyzes pa�erns for various time ranges. How can we

preprocess a temporal tensor to deal with various time ranges?

C2 Minimizing computational cost.Tucker decomposition requires a high com-

putational cost. How can we quickly perform Tucker decomposition for a given

time range query?

C3 Minimizing intermediate data. Imprudent computation for Tucker decom-

position provokes huge intermediate data. How can we avoid generating huge

intermediate data?

We address the challenges with the following main ideas:

I1 Exploiting block structure enables a query phase to decrease the number of

operations and memory requirements while capturing local information.

I2 Elaborately decoupling block results decreases the computational cost of
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Tucker decomposition for a tensor obtained in a given time range.

I3 Carefully determining the order of computation minimizes intermediate

data generation while avoiding redundant computation.

Zoom-Tucker e�ciently computes Tucker decomposition for various time range

queries. Zoom-Tucker consists of two phases: the preprocessing phase and the query

phase. �e preprocessing phase is computed once for a given temporal tensor while

the query phase is computed using the results of the preprocessing phase for each

time range query. Zoom-Tucker compresses a given tensor block by block along

the time dimension in the preprocessing phase. Zoom-Tucker performs Tucker de-

composition for each block. In the query phase, Zoom-Tucker performs Tucker de-

composition for each time range query by 1) adjusting the �rst and the last blocks

included in the time range to �t the range and 2) carefully stitching the block results

in the time range.

5.3.1 Preprocessing Phase

�e objective of the preprocessing phase is to manipulate a given temporal tensor

for an e�cient query phase. In the query phase, performing Tucker decomposition

from scratch requires high computational cost and large space cost as the number

of queries increases. To avoid it, compressing a given tensor is inevitable to provide

fast processing in the query phase. Additionally, we consider that compressed results

need to contain local pa�erns that appear only in speci�c ranges. �e preprocessing

phase of existing Tucker decomposition methods [37, 38, 26] fails to support high

e�ciency of the query phase while maintaining local pa�erns. �en, how can we

compress a given tensor to deal with various time range queries? Our main idea is to

exploit a block structure: 1) carefully designating the form of a block, and 2) selecting a
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Algorithm 12: Preprocessing phase of Zoom-Tucker
Input: temporal tensor X ∈ RI1×I2×···×IN−1×IN

Output: result sets Cn for n = 1, ...,N +1
Parameters: block size b

1: compute the number B = d IN
b e of blocks

2: split X into block tensors X<i> ∈ RI1×...×b for i = 1, ...,B
3: for i← 1 to B do

4: perform Tucker decomposition of Xi ≈ G<i>×1 (A<i>)(1) · · ·×N (A<i>)(N)

5: store each factor matrices (A<i>)(n) in the results set Cn, for n = 1, ...,N
6: store core tensor G<i> in the result set CN+1
7: end for

compression approach for each block. In this paper, we 1) split a given temporal tensor

into sub-tensors along the time dimension, and 2) leverage Tucker decomposition for

each sub-tensor. �e idea allows Zoom-Tucker to support an e�cient query phase

and capture local pa�erns. Additionally, the preprocessing phase is extensible for new

incoming tensors by performing Tucker decomposition of them.

To capture local information, we split a given tensor along the time dimension.

Let the reconstruction error at each timestep t be measured by performing Tucker

decomposition. �e reconstruction error is de�ned as ‖X(t)−X̂(t)‖2
F

‖X(t)‖2
F

where X(t) is an

input sub-tensor obtained at each timestep t and X̂(t) is the sub-tensor at timestep

t reconstructed from Tucker results. Figure 5.3 shows the reconstruction errors of

Stock dataset at each time point. Given a sub-tensor in a range that has relatively high

errors, performing Tucker decomposition of the sub-tensor (orange line in Figure 5.3)

provides lower errors than the preceding result computed from a whole temporal

tensor (blue line in Figure 5.3). �is observation implies that decomposing a sub-

tensor allows us to capture local information, leading to low errors. Based on the

observation, we construct sub-tensors by spli�ing a temporal tensor along the time

dimension and perform Tucker decomposition of each sub-tensor. It provides lower

error than performing Tucker decomposition of a whole tensor on all the timesteps,
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Figure 5.3: Reconstruction errors at each time point on Stock dataset. �e blue line presents
reconstruction errors computed from a whole temporal tensor, while the orange line describes
reconstruction errors computed from a sub-tensor in a range. Performing Tucker decompo-
sition from a sub-tensor provides relatively low reconstruction errors.

by capturing local information.

To support an e�cient query phase, we store the Tucker decomposition results

of sub-tensors. �ere are two bene�ts to leveraging Tucker decomposition in the

preprocessing phase: 1) saving the space cost due to the small preprocessed results

compared to the given tensor, and 2) enabling the query phase to exploit the mixed-

product property applicable to mixing matrix multiplication and Kronecker product,

i.e., (AT ⊗BT )(C⊗D) = (AT C⊗BT D). Computing (AT C⊗BT D) requires less costs

than computing (AT ⊗BT )(C⊗D) when the size of the four matrices is I× J and

I >> J. �e reason is that the size of AT C and BT D is only J× J while the size of

(AT ⊗BT ) and (C⊗D) is J2× I2 and I2× J2, respectively. We further present the

exploitation of this property to achieve high e�ciency of the query phase in Sec-

tions 5.3.2.3 and 5.3.2.4.

Figure 5.4 presents an overview of the preprocessing phase. Without loss of gen-

erality, we assume that the temporal mode is the last mode (Nth mode). We express

a given tensor X as temporal block tensors X<i> ∈RI1×I2×···×IN−1×b for i = 1, ...,d IN
b e

(line 2 in Algorithm 12) where b is a block size and IN is the dimensionality of the

time dimension. �en, we perform Tucker decomposition for each temporal block
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Figure 5.4: Preprocessing phase of Zoom-Tucker. Zoom-Tucker splits a temporal tensor
into temporal block tensors along the time dimension. �en, Zoom-Tucker performs Tucker
decomposition for each temporal block tensor.

tensor X<i> (line 4 in Algorithm 12), and store each factor matrix (A<i>)(n) in a set

Cn and the core tensor G<i> in a set CN+1 (lines 5 and 6 in Algorithm 12). Since

the preprocessing phase is computed once and a�ects errors of the query phase, this

phase prefers an accurate but slow Tucker decomposition method rather than a fast

but approximate Tucker decomposition one. Speci�cally, we use Tucker-ALS, which

is stable and accurate, in this phase.

5.3.2 �ery Phase

�e objective of the query phase is to e�ciently compute Tucker decomposition for

a given time range [ts, te]. �e query phase of Zoom-Tucker operates as follows:

S1. Given a time range [ts, te], we load Tucker results (i.e., G<i>, (A<i>)(n)) of tem-

poral block tensors X<i> for i = S, ...,E where S = d ts
b e and E = d te

b e are the

indices of the �rst and the last temporal block tensors including ts and te, re-

spectively.

S2. We adjust the Tucker results of X<S> and X<E> to �t the range since a part of

them may not be within the given range.

S3. Given the Tucker results of X<i> for i = S, ..,E included in the range, Zoom-

Tucker updates factor matrices by e�ciently stitching the Tucker results.

S4. A�er that,Zoom-Tucker updates the core tensor using factor matrices updated
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at Step S3 and the Tucker results.

S5. Zoom-Tucker repeatedly performs Steps S3 and S4 until convergence.

�e most important challenge of the e�cient query phase is how to minimize the

computational cost for updating factor matrices (Step S3) and the core tensor (Step S4)

of the time range while minimizing the intermediate data. To tackle the challenge, our

main ideas are to 1) elaborately decouple X̃(n)

(
⊗N

k 6=nÃ(k)T
)

based on preprocessed

results, and 2) carefully determine the order of computation. We �rst give an objective

function and an update rule for the query phase (Section 5.3.2.1). �en, we describe

how to achieve high e�ciency of Zoom-Tucker in detail (Sections 5.3.2.2 to 5.3.2.4).

5.3.2.1 Objective function and update rule

In the query phase, our goal is to obtain factor matrices Ã(1), …, Ã(N), and core tensor

G̃ for a given time range query [ts, te]. �e query phase of Zoom-Tucker alternately

updates factor matrices, and core tensor as in ALS. We minimize the following objec-

tive function as mode-n matricized form for a time range [ts, te]:

L(n) = ‖X̃(n)− Ã(n)G̃(n)(⊗N
k 6=nÃ(k)T )‖2

F (5.1)

where X̃(n) is the mode-n matricized version of a tensor obtained in the time range

[ts, te], and G̃(n) is the mode-n matricized version of G̃. From the objective function (5.1),

we derive the following update rule for n-th factor matrix (see the proof in Sec-

tion 5.3.4.1):

Lemma 5.1 (Update rule). When �xing all but the n-th factor matrix, the following
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Algorithm 13: �ery phase of Zoom-Tucker
Input: a time range [ts, te], and Tucker result sets Cn for n = 1, ...,N +1
Output: factor matrices Ã(n) for n = 1, ..,N, and core tensor G̃
Parameters: tolerance ε, and block size b

1: S← d ts
b e and E← d te

b e
2: load (A<i>)(k) and G<i> for i = S, ...,E from Ck for k = 1, ...,N +1
3: obtain (Ā<S>)(N) and (Ā<E>)(N) by eliminating the rows of (A<S>)(N) and (A<E>)(N)

excluded in the range
4: (Ā<S>)(N)→Q<S>R<S>, (Ā<E>)(N)→Q<E>R<E>

5: (A<S>)(N)←Q<S>, G<S>← G<S>×N R<S>, (A<E>)(N)←Q<E>, and
G<E>← G<E>×N R<E>

6: repeat

7: for k = 1...N−1 do

8: update Ã(k) by computing Equation (5.4) and orthogonalizing it with QR
decomposition

9: end for

10: update Ã(N) by computing Equation (5.6) and orthogonalizing it with QR
decomposition

11: update core tensor G̃ by computing Equation (5.7)
12: until the variation of an error is less than ε or the number of iterations is larger than

the maximum number of iterations
13: return Ã(k) for k = 1, ...,N and G̃

update rule for the n-th factor matrix minimizes the objective function (5.1).

Ã(n)← X̃(n)

(
⊗N

k 6=nÃ(k)
)

G̃T
(n)

(
C(n)

)−1
(5.2)

where C(n) ∈ RJn×Jn
of the n-th mode is given by

C(n) = G̃(n)

(
⊗N

k 6=nÃ(k)T Ã(k)
)

G̃T
(n) �

In contrast to naively computing Equation (5.2) with X̃(n), Zoom-Tucker e�ciently

computes Equation (5.2) by exploiting preprocessed results obtained in the prepro-

cessing phase.

Before describing an e�cient update procedure, we introduce a useful lemma

(see the proof in Section 5.3.4.2).
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Lemma 5.2. Let S ∈ RJ×...×J
and S′ ∈ RJ×...×J

be N-order tensors, and U(n)
and V(n)

for n = 1, ...,n−1,n+1, ...,N be matrices of size I× J. Assume our goal is to compute

the following equation:

S(n)

(
⊗N

k 6=nU(k)T V(k)
)

S′T(n) (5.3)

where S(n) and S′(n) are the mode-n matricized version of S and S′, respectively. Naively

computing Equation (5.3) by �rst computing ⊗N
k 6=nU(k)T V(k)

and multiply with the re-

maining matrices requires O(NIJ2 + J2N + JN+1) time and O(J2N +NIJ) space. In-

stead, exploiting Equation (2.4) enables to compute Equation (5.3) e�ciently: O(NIJ2+

NJN+1) time and O(JN +NIJ) space. �

For all n = 1, ...,N, C(n) is computed based on Lemma 5.2, by replacing S(n), U(k), V(k),

and S′(n) with G̃(n), Ã(k), Ã(k), and G̃(n), respectively.

5.3.2.2 Adjusting edge blocks of time range query (Step S2)

Before updates, we adjust the Tucker results of X<S> and X<E>, the temporal block

tensors corresponding to ts and te of the given time range [ts, te], respectively. �e

temporal factor matrices (A<S>)(N) of X<S> and (A<E>)(N) of X<E> may contain

the rows that are not included in the range (see Figure 5.5(a)). To �t to the given time

range, we need to remove the non-included rows of (A<S>)(N) and (A<E>)(N), and

adjust the Tucker results of X<S> and X<E>.

Let p be S or E . For the temporal factor matrix (A<p>)(N) of X<p> in the range,

Zoom-Tucker obtains the manipulated temporal factor matrix (Ā<p>)(N) by remov-

ing the rows of (A<p>)(N) that are not included in the time range (line 3 in Algo-

rithm 13). Next, we perform QR decomposition to make (Ā<p>)(N) maintain column-
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Figure 5.5: Examples of adjustment (Section 5.3.2.2) and division (Section 5.3.2.3).

orthogonality (line 4 in Algorithm 13); we use (Q<p>)(N) as the temporal factor ma-

trix ofX<p> and update the core tensorG<p>←G<p>×N (R<p>)(N) where (Q<p>)(N)

and (R<p>)(N) are the results of QR decomposition (line 5 in Algorithm 13).

5.3.2.3 E�cient update of factor matrices (Step S3)

We present how to e�ciently update the factor matrix of the non-temporal modes

and the temporal mode.

Updating factor matrix of non-temporal modes. Consider updating the n-

th factor matrix, which corresponds to a non-temporal mode. A naive approach is

to reconstruct X̃(n) from the Tucker results of the preprocessing phase and compute

Equation (5.2). However, it requires large time and space costs since the reconstructed

tensor is much larger than the preprocessed results. Our main ideas are to 1) elabo-

rately decouple X̃(n)

(
⊗N

k 6=nÃ(k)
)

block by block using the preprocessed results, and 2)

carefully determine the order of computations, which signi�cantly reduces time and

space costs compared to the naive approach. We derive Equation (5.4) in Lemma 5.3

to update Ã(n) (see the proof in Section 5.3.4.3).

Lemma 5.3 (Updating factor matrix of a non-temporal mode). Assume that X̃(n) is

replaced with the preprocessed results (i.e., (A<i>)(n) and G<i>
). �en, the following
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equation is equal to Equation (5.2) in Lemma 5.1 for n-th mode:

Ã(n)←
E∑

i=S

(A<i>)(n)(B<i>)(n)
(

C(n)
)−1

(5.4)

where the i-th block matrix (B<i>)(n) of the n-th mode is

(B<i>)(n) = G<i>
(n)

(
(A<i>)(N)T Ã(N)[i]⊗

(
⊗N−1

k 6=n (A
<i>)(k)T Ã(k)

))
G̃T

(n), (5.5)

and C(n)
is de�ned in Lemma 5.1. (A<i>)(k) is the k-th factor matrix of the temporal

block tensorX<i>
, and G<i>

(n) is the mode-n matricized version of the core tensor ofX<i>
.

Ã(N)[i] is a sub-matrix of the temporal factor matrix Ã(N)
such that,


Ã(N)[S]

.

.

.

Ã(N)[E]

= Ã(N)

To compute (A<i>)(N)T Ã(N)[i], we split Ã(N)
into sub-matrices Ã(N)[i] (i= S, ...,E) along

the time dimension (see Figure 5.5(b)); the size of Ã(N)[i] for i = S+1, ...,E−1 is b×JN ,

and that of Ã(N)[S] and Ã(N)[E] is (b− rS)× JN and (b− rE)× JN , respectively, where

rS and rE are the number of the rows removed with respect to ts and te, respectively. �

Zoom-Tucker e�ciently updates Ã(n) with Equation (5.4). Zoom-Tucker min-

imizes the intermediate data and reduces the high computational cost by indepen-

dently computing C(n) and (B<i>)(n) for i= S, ...,E . Note that (B<i>)(n) for i= S, ...,E

is computed based on Lemma 5.2, by replacing S(n), U(k), V(k), and S′(n) with G<i>
(n) ,

(A<i>)(k), Ã(k) (or Ã(N)[i]), and G̃(n), respectively. Next, we obtain Ã(n) by summing

up the results of (A<i>)(n)(B<i>)(n)
(
C(n)

)−1 for i = S, ...,E . For orthogonalization,

we then update Ã(n)← Q̃(n) a�er QR decomposition Ã(n)→ Q̃(n)R̃(n) (line 8 in Algo-

rithm 13).
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Updating factor matrix of temporal mode. �e goal is to update the factor

matrix Ã(N) of the temporal mode by using the preprocessed results instead of X̃(N).

Reconstructing X̃(N) requires high space and time costs in Equation (5.2). Based on

our ideas used for the non-temporal modes, we e�ciently update Ã(N) by computing

Equation (5.6) in Lemma 5.4 (see the proof in Section 5.3.4.4).

Lemma 5.4 (Updating factor matrix of temporal mode). Assume that X̃(N) is replaced

with the preprocessed results (i.e., (A<i>)(n) and G<i>
). �en, the following equation is

equal to Equation (5.2) in Lemma 5.1 for the temporal mode:

Ã(N)←


(A<S>)(N)(B<S>)(N)

.

.

.

(A<E>)(N)(B<E>)(N)


(

C(N)
)−1

(5.6)

where the i-th matrix (B<i>)(N) ∈ RJN×JN
for i = S, ...,E is

(B<i>)(N) = G<i>
(N)

(
⊗N−1

k=1 (A
<i>)(k)T Ã(k)

)
G̃T

(N)

(A<i>)(k) is the k-th factor matrix of X<i>
, G<i>

(N) is the mode-N matricized version of

the core tensor of X<i>
, and C(N)

is equal to G̃(N)

(
⊗N−1

k=1 Ã(k)T Ã(k)
)

G̃T
(N). �

We obtain Ã(N) by using (C(N))−1, (A<i>)(N), and (B<i>)(N) for i = S, ...,E .

Zoom-Tucker e�ciently updates Ã(N) by independently computing C(N) and (B<i>)(N)

for i = S, ...,E . (B<i>)(N) is e�ciently computed based on Lemma 5.2, by replacing

S(n), U(k), V(k), and S′(n) with G<i>
(N) , (A<i>)(k), Ã(k), and G̃(N), respectively. For or-

thogonalization, we update Ã(N)← Q̃(N) a�er QR decomposition Ã(N)→ Q̃(N)R̃(N)

(line 10 in Algorithm 13).
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5.3.2.4 E�cient update of core tensor (Step S4).

At the end of each iteration, Zoom-Tucker updates the core tensor using the factor

matrices: G̃(N) ← Ã(N)T X̃(N)

(
⊗N−1

k=1 Ã(k)
)

(mode-N matricization of line 8 in Algo-

rithm 1). We e�ciently compute the core tensor by avoiding reconstruction of X̃(N)

and carefully determining the order of computation. We replace X̃(N) with the prepro-

cessed results and re�ne the equation with block decoupling and the mixed-product

property (see Equation (5.9) in Section 5.3.4.4).

G̃(N)←
(

E∑
i=S

(Ã(N)T [i])(A<i>)(N)G<i>
(N)

(
⊗N−1

k=1 (A
<i>)(k)T Ã(k)

))
(5.7)

With Equation (5.7), Zoom-Tucker e�ciently updates G̃, reducing the intermediate

data and the computational cost. For each i,Zoom-Tucker computes (Ã(N)T [i])(A<i>)(N)

G<i>
(N)

(
⊗N−1

k=1 (A
<i>)(k)T Ã(k)

)
a�er transforming it into n-mode products as in Equa-

tion (2.4). A�er that, Zoom-Tucker obtains G̃(N) by summing up the results and re-

shape it to the core tensor G̃ (line 11 in Algorithm 13).

5.3.3 Analysis

We analyze the time and space complexities of Zoom-Tucker in the preprocessing

phase and the query phase. We assume that I = I1 = ...= IN−1, and J = J1 = ...= JN .

M is the number of iterations, l[ts,te] = te− ts +1 is the length of a time range query,

N is the order of a given tensor, I is the dimensionality, b is the block size, B is the

number of blocks, and J is the rank. All proofs are summarized in Sections 5.3.4.5

to 5.3.4.8.

Time complexity. We analyze the computational cost of Zoom-Tucker in the

preprocessing phase and the query phase.

�eorem 5.1. �e preprocessing phase takes O(MNIN−1JbB) time.
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Table 5.2: Time and space complexities of Zoom-Tucker and other methods for a time range
[ts, te]. �e optimal complexities are in bold. I, J, M, N, and l[ts,te] are described in Section 5.3.3.
S is a sampling rate for MACH.

Algorithm Time Space

Zoom-Tucker O(l[ts,te]IMN2J2/b) O(l[ts,te]NIJ/b)
D-Tucker [26] O(l[ts,te]I

N−2MNJ2) O(l[ts,te]I
N−2J)

Tucker-ALS O(l[ts,te]I
N−1MNJ) O(l[ts,te]I

N−1)
MACH [37] O(Sl[ts,te]I

N−1MNJ) O(Sl[ts,te]I
N−1)

RTD [36] O(l[ts,te]I
N−1MN) O(l[ts,te]I

N−1)
Tucker-ts [38] O(l[ts,te]I

N−1N +MNIJN) O(l[ts,te]I
N−1 +NIJN)

Tucker-�mts [38] O(l[ts,te]I
N−1N +MNIJ2N−2) O(l[ts,te]I

N−1 +NIJN)

�eorem 5.2. Given a time range query [ts, te], the query phase of Zoom-Tucker takes

O
(

MNJ2l[ts,te]
(

1+ NI
b + NJN−1

b

))
time. �

Space complexity. We provide analysis for the space cost of Zoom-Tucker in

the preprocessing phase and the query phase.

�eorem 5.3. Zoom-Tucker requires O
(
NIJ(d IN

b e)+ INJ
)

space to store the Tucker

results in the preprocessing phase. �

�eorem5.4. Given a time range query [ts, te], Zoom-Tucker requiresO
(

NIJ(d l[ts ,te]
b e)

+Jl[ts,te]
)

space in the query phase. �

Table 5.2 shows the time and space complexities of Zoom-Tucker and competi-

tors for a given time range query [ts, te]. �e time and space complexities of Zoom-

Tucker mainly depend on I and l[ts,te]. We also note that the block size b reduces

the complexities of Zoom-Tucker. We compare the time and space complexities of

Zoom-Tucker with those of the second-best method, D-Tucker. For both time and

space complexities, the result of dividing the complexity of Zoom-Tucker by that

of D-Tucker is N
IN−3b . Zoom-Tucker has be�er time and space complexities than D-

Tucker since IN−3b is larger than N in real-world datasets; for example, in the experi-

ments, we use 50 as the default block size b while the order of the real-world datasets
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is 3 or 4. As b increases, the space complexity of the preprocessing and the query

phases, and the time complexity of the query phase decrease; however, a large block

size b can provoke a high reconstruction error for a narrow time range query since

the preprocessing phase with the large b cannot capture local information. In Sec-

tion 5.4.5, we experimentally �nd a block size that enables the preprocessing phase

to capture local information with low reconstruction errors for narrow time range

queries.

5.3.4 Proofs of Lemmas and�eorems

5.3.4.1 Proof of Lemma 5.1

Proof. A�er �xing all factor matrices except for the n-th factor matrix, the partial

derivative of the Equation (5.1) with respect to the factor matrix Ã(n) is as follows:

∂L(n)

∂Ã(n)
=−2X̃(n)(⊗N

k 6=nÃ(k))G̃T
(n)+2Ã(n)G̃(n)

(
⊗N

k 6=nÃ(k)T Ã(k)
)

G̃T
(n)

We set ∂L(n)

∂Ã(n) to zero, and solve the equation with respect to the factor matrix Ã(n):

Ã(n)
(

G̃(n)

(
⊗N

k 6=nÃ(k)T Ã(k)
)

G̃T
(n)

)
= X̃(n)

(
⊗N

k 6=nÃ(k)
)

G̃T
(n)

⇔ Ã(n) = X̃(n)

(
⊗N

k 6=nÃ(k)
)

G̃T
(n)

(
C(n)

)−1

5.3.4.2 Proof of Lemma 5.2

Proof. A naive approach computing Equation (5.3) is to explicitly compute the entire

Kronecker product
(
⊗N

k 6=nU(k)T V(k)
)

of the size JN−1× JN−1. We compute matrix

123



multiplication between the preceding result S(n) and S′(n). �erefore, the time and

space complexities are O(NIJ2 + J2N + JN+1) and O(J2N +NIJ), respectively.

We compute Equation (5.3) using n-mode product instead of Kronecker prod-

uct. Let Z(n) = S(n)

(
⊗N

k 6=nU(k)T V(k)
)

be equal to I(n)S(n)

(
⊗N

k 6=nU(k)T V(k)
)

where

I(n) ∈ RJ×J is an identity matrix. �en, we transform Z into Equation (5.8) using

Equation (2.4).

Z= S×1 (U(1)T V(1))T · · ·×n−1 (U(n−1)T V(n−1))T

×n I(n)×n+1 (U(n+1)T V(n+1))T · · ·×N (U(N)T V(N))T
(5.8)

Based on Equation (5.8), we compute Equation (5.3) in the following order: 1) U(k)T V(k)

for k = 1, ...,n−1,n+1, ...,N, 2) Z(n), and 3) Z(n)S′
T
(n). �erefore, the computational

cost is O(NIJ2+NJN+1). In addition, the size of intermediate data is always no larger

than JN so that the space complexity is O(JN +NIJ).

5.3.4.3 Proof of Lemma 5.3

Proof. From Equation (5.2), we carefully decouple X̃(n)

(
⊗N

k 6=nÃ(k)
)

block by block so

that we represent the term as a summation of block matrices:

Ã(n) =
[
X<S>
(n) · · ·X<E>

(n)

]



Ã(N)[S]
...

Ã(N)[E]

⊗
(
⊗N−1

k 6=n Ã(k)
)
G̃T

(n)

(
C(n)

)−1

=

(
E∑

i=S

X<i>
(n)

(
Ã(N)[i]⊗

(
⊗N−1

k 6=n Ã(k)
)))

G̃T
(n)

(
C(n)

)−1
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Next, we express i-th block matrix X<i>
(n) as the result (A<i>)(n)G<i>

(n)

(
(A<i>)(N)T

⊗
(
⊗N−1

k 6=n (A
<i>)(k)T

))
obtained in the preprocessing step.

Ã(n) =
E∑

i=S

(A<i>)(n)G<i>
(n)

(
(A<i>)(N)T Ã(N)[i]⊗

(
⊗N−1

k 6=n (A
<i>)(k)T Ã(k)

))
× G̃T

(n)

(
C(n)

)−1
=

(
E∑

i=S

(A<i>)(n)(B<i>)(n)
(

C(n)
)−1
)

Note that Ã(N)[i] is described in Lemma 5.4.

5.3.4.4 Proof of Lemma 5.4

Proof. From Equation (5.2), we decouple X̃(N) for updating N-th factor matrix. We

�rst re-express X̃(N)

(
⊗N−1

k=1 Ã(k)
)

using temporal block tensors X<i> for i = S, ..,E as

follows:

X̃(N)

(
⊗N−1

k=1 Ã(k)
)
=


X<S>
(N)

(
⊗N−1

k=1 Ã(k)
)

...

X<E>
(N)

(
⊗N−1

k=1 Ã(k)
)


�en, we replace X<i>
(N) with the tucker results obtained at the preprocessing phase.

X̃(N)

(
⊗N−1

k=1 Ã(k)
)
≈


(A<S>)(N)G<S>

(N)

(
⊗N−1

k=1 (A
<S>)(k)T Ã(k)

)
...

(A<E>)(N)G<E>
(N)

(
⊗N−1

k=1 (A
<E>)(k)T Ã(k)

)
 (5.9)
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Next, we obtain the following equation by inserting the right term of the above equa-

tion into Equation (5.2):

Ã(N) =


(A<S>)(N)G<S>

(N)

(
⊗N−1

k=1 (A
<S>)(k)T Ã(k)

)
G̃T

(N)
...

(A<E>)(N)G<E>
(N)

(
⊗N−1

k=1 (A
<E>)(k)T Ã(k)

)
G̃T

(N)


(

C(N)
)−1

=


(A<S>)(N)(B<S>)(N)

...

(A<E>)(N)(B<E>)(N)


(

C(N)
)−1

(A<S>)(N) and (A<E>)(N) are adjusted to �t to a range [ts, te].

5.3.4.5 Proof of �eorem 5.1

Proof. We split a tensor X into B temporal block tensors X<i>, and then perform

Tucker decomposition ofX<i> for i= 1, ...,B. Since we use Tucker-ALS in the prepro-

cessing phase, the time complexity for each temporal block tensorX<i> isO(MNIN−1Jb).

�erefore, the preprocessing phase takes O(MNIN−1JbB) time.

5.3.4.6 Proof of �eorem 5.2

Proof. �e time complexity of the query phase depends on updating factor matrices

and core tensor. Updating a factor matrix or core tensor takesO
(

J2l[ts,te]
(

1+ NI
b + NJN−1

b

))
time. �erefore, the total time complexity is O

(
MNJ2l[ts,te]

(
1+ NI

b + NJN−1

b

))
which

contains the time complexity of updating factor matrices and core tensor, the number

of iterations, and the number of factor matrices.

126



Table 5.3: Description of real-world tensor datasets.
Dataset Dimensionality Length l[ts,te] of Time Range Summary

Boats1 [92] 320×240×7000 (128,2048) Video
Walking Video [38] 1080×1980×2400 (128,2048) Video
Stock3 3028×54×3050 (128,2048) Time series
Tra�c4 [96] 1084×96×2000 (64,1024) Tra�c volume
FMA5 [94] 7994×1025×700 (32,512) Music
Absorb6 192×288×30×1200 (64,1024) Climate

5.3.4.7 Proof of �eorem 5.3

Proof. For the mode-N, summing up the size of the factor matrices of the time dimen-

sion is equal to INJ. For each mode n 6= N, there are B factor matrices, for the n-th

mode, of size O(IJ) where B= IN
b is the number of blocks. �en, the space complexity

is O(NIJ(d IN
b e)+ INJ).

5.3.4.8 Proof of �eorem 5.4

Proof. Given a time range [ts, te], summing up the size of the factor matrices of the

time dimension is equal to l[ts,te]× J; the size of the factor matrix of a non-temporal

mode is I× J, and the number of block is equal to d l[ts,te]
b e or (d l[ts,te]

b e)+ 1. �e size

of the block results used in the query phase is O(NIJ(d l[ts,te]
b e)+ l[ts,te]J). By carefully

stitching the block results, intermediate data are always smaller than the block results.

�erefore, the space cost of Zoom-Tucker is O
(

NIJ(d l[ts,te]
b e)+ Jl[ts,te]

)
for a given

time range [ts, te].

5.4 Experiment

We present experimental results to answer the following questions.

Q1 Performance Trade-o� (Section 5.4.2).DoesZoom-Tucker provide the best

trade-o� between query time and reconstruction error?
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Q2 Space Cost (Section 5.4.3). What is the space cost of Zoom-Tucker and com-

petitors for preprocessed results?

Q3 �ery Cost (Section 5.4.4). How quickly does Zoom-Tucker answer various

time range queries?

Q4 E�ects of the block size b (Section 5.4.5). How does a block size b a�ect

query time and reconstruction error of Zoom-Tucker?

Q5 Discovery (Section 5.4.6). What pa�ern does Zoom-Tucker discover in dif-

ferent time ranges?

5.4.1 Experimental Settings

Machine. We run experiments on a workstation with a single CPU (Intel Xeon E5-

2630 v4 @ 2.2GHz), and 512GB memory.

Dataset. We use six real-world dense tensors in Table 5.3. Boats1 [92] and Walk-

ing Video2 [38] datasets contain grayscale videos in the form of (height, width, time;

value). Stock dataset3 contains 5 basic features (open price, high price, low price,

close price, trade volume) and 49 technical indicators features of Korea Stocks. Stock

dataset has the form of (stock, features, date; value). �e basic features are collected

daily from Jan. 2, 2008 to May 6, 2020. Tra�c dataset4 [96] contains tra�c volume in-

formation in the form of (sensor, frequency, time; measurement). FMA dataset5 [94]

contains music information: (song, frequency, time; value). We convert a time series

into an image of a log-power spectrogram for each song. Absorb dataset6 is about ab-

sorption of aerosol in the form of (longitudes, latitudes, altitude, time; measurement).
1http://changedetection.net/
2https://github.com/OsmanMalik/tucker-tensorsketch
3https://datalab.snu.ac.kr/zoomtucker
4https://github.com/florinsch/BigTrafficData
5https://github.com/mdeff/fma
6https://www.earthsystemgrid.org/
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Competitors. We compare Zoom-Tucker with 6 Tucker decomposition meth-

ods based on ALS approach. Zoom-Tucker and other methods are implemented in

MATLAB (R2019b). We use the open sourced codes for 4 competitors: D-Tucker7,

Tucker-ALS [97], Tucker-ts8, and Tucker-�mts8. For MACH, we run Tucker-ALS in

Tensor Toolbox [97] for a sampled tensor a�er sampling elements of a tensor; we

use our implementation for a sampling scheme. We use the source code of RTD [36]

provided by the authors.

Parameters. We use the following parameters for experiments:

• Number of threads: we use a single thread.

• Max number of iterations: the maximum number of iterations is set to 100.

• Rank: we set the dimensionality Jn of each mode of core tensor to 10.

• Choosing a time range query: we randomly choose a start time ts of a time

range, and compute te = ts+ l[ts,te]−1 where l[ts,te] is the length of the time range;

we choose l[ts,te] among the sets described in Table 5.3.

• Block size b: we set b to 50 except in Section 5.4.5.

• Tolerance: the iteration stops when the variation of the error
√
‖X‖2

F−‖G‖2
F

‖X‖F
[29]

is less than ε = 10−4.

Other parameters for competitors are set to the values proposed in each paper. To

compare the running time, we run each method 5 times, and report the average.

Implementation details. In the time range query problem, Zoom-Tucker, D-

Tucker, and MACH preprocess a given tensor, and then perform Tucker decompo-

sition for a time range query using preprocessed results included in the range. In

contrast, Tucker-ALS and RTD perform Tucker decomposition using a sub-tensor
7https://datalab.snu.ac.kr/dtucker/
8https://github.com/OsmanMalik/tucker-tensorsketch
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Figure 5.6: Space cost for storing preprocessed results. Input Tensor corresponds to the space
cost of Tucker-ALS, Tucker-ts, Tucker-�mts, and RTD. Zoom-Tucker requires up to 230×
less space than competitors.

included in a time range query. Although Tucker-ts and Tucker-�mts have a prepro-

cessing phase, they also perform Tucker decomposition from scratch for a time range

query since there is an inseparable preprocessed result along the time dimension.

Reconstruction error. Given an input tensor X and the reconstruction X̂ from

the output of Tucker decomposition, reconstruction error is de�ned as ‖X−X̂‖
2
F

‖X‖2
F

. Re-

construction error describes how well the reconstruction X̂ of Tucker decomposition

represents an input tensor X.

5.4.2 Trade-o� between �ery Time and Reconstruction

Error

We compare the running time and reconstruction error of Zoom-Tucker with those

of competitors for various time ranges. For each dataset, we use the narrowest and

the widest time ranges among the ranges described in Table 5.3. Figure 5.2 shows

that Zoom-Tucker is the closest method to the best point with the smallest error

and running time. Zoom-Tucker is up to 171.9× and 111.9× faster than the second-

fastest method, in narrow and wide time ranges, respectively, with similar errors.
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5.4.3 Space Cost

We compare the storage cost of Zoom-Tucker with those of competitors for stor-

ing preprocessed results. Note that memory requirements for a time range query are

proportional to the storage cost since preprocessed results or an input tensor is the

dominant term in the space cost. Figure 5.6 shows that Zoom-Tucker requires the

lowest space; Zoom-Tucker requires up to 230× less space than the second-best

method D-Tucker. Zoom-Tucker has more compression rate on the 4-order tensor,

Absorb dataset.

5.4.4 �ery Cost

Figure 5.7 shows that Zoom-Tucker outperforms competitors for all time ranges;

Zoom-Tucker is up to 171.9× faster than the second-fastest method for the nar-

row time ranges. Zoom-Tucker is up to 111.9× faster than competitors for the wide

time ranges. In addition, Zoom-Tucker exhibits near-linear scalability in terms of

the length of a time range.
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5.4.5 E�ects of Block Size b

We investigate the e�ects of block size b on running time and reconstruction error

of Zoom-Tucker. We use block sizes 10, 25, 50, 100, and 200 on Stock, Tra�c, and

Absorb datasets. As shown in Figures 5.8(a) to 5.8(c), there are trade-o� relationships

between running time and reconstruction error for narrow time range queries. In

Figures 5.8(d) to 5.8(f), the running time of Zoom-Tucker is inversely proportional

to b for a wide range query while the reconstruction error is not sensitive to b. A

large b prevents the preprocessing phase from capturing local information so that

it is challenging to serve narrow time range queries. For wide time range queries,

local information has li�le e�ect on reconstruction errors since capturing widespread

pa�erns is more bene�cial in reducing errors. �erefore, we select 50, which is the

largest value providing small errors for narrow time range queries, for the default

block size to preprocess all datasets in other experimental sections.
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Figure 5.9: Anomalous two-month ranges and their related events, found by Zoom-Tucker.

5.4.6 Discovery

On Stock dataset, we discover interesting results by answering various time range

queries with Zoom-Tucker.

Finding anomalous ranges. �e goal is to �nd narrow time ranges that are

anomalous, compared to the entire time range. For the goal, we select every consec-

utive two-month interval from Jan. 1, 2008 to Apr. 30, 2020, perform Tucker decom-

position for each of the intervals using Zoom-Tucker, and �nd anomalous ranges

that deviate the most from the entire ranges. Given a two-month range r, and its cor-

responding sub-tensor X̃, we compute the anomaly score for r using the di�erence

ratio ‖X̃−Ŷ‖
2
F

‖X̃−Ẑ‖2
F

where Ŷ and Ẑ are the sub-tensors for r reconstructed from the Tucker

results of 1) the entire range query, and 2) the two-month range query, respectively.

�e le�most plot of Figure 5.9 shows the di�erence ratios and the top three

anomalous ranges where the threshold indicates 2 standard deviations from the mean.

�e right three plots of Figure 5.9 show that the three anomalies follow the similar

plunging pa�ern of prices from issues a�ecting the stock market.

Analyzing trend change. We analyze the change of yearly trend of Samsung

Electronics in the years 2013 and 2018. For each of the range (year 2013 or 2018), we

perform Zoom-Tucker and get the feature matrix Ã(1) each of whose rows contain
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Figure 5.10: Cosine distance between feature vectors of Samsung Electronics and other stocks
related to smartphones or semiconductors in 2013 and 2018. Zoom-Tucker helps capture the
clear change of the trend, where Samsung Electronics is closer to smartphone-related stocks
in 2013, but to semiconductor-related stocks in 2018.

the latent features of a stock. We also manually pick 33 smartphone-related stocks

and 46 semiconductor-related stocks, and compare the cosine distance between the

latent feature vectors of each stock and Samsung Electronics.

Figure 5.10 shows the result. Note that there is a clear change of the distances be-

tween year 2013 and 2018: Samsung Electronics is closer to smartphone-related stocks

in 2013, but to semiconductor-related stocks in 2018. �is result exactly re�ects the

sales trend of Samsung Electronics; the annual sales of its smartphone division are

3.7× larger than those of its semiconductor division in 2013, while in 2018 the annual

sales of its semiconductor division are 30% larger than those of its smartphone divi-

sion. Zoom-Tucker enables us to quickly and accurately capture this trend change.

5.5 Summary

In this work, we propose Zoom-Tucker, an e�cient Tucker decomposition method

to discover latent factors in a given time range from a temporal tensor. Zoom-Tucker

e�ciently answers diverse time range queries with the preprocessing phase and the

query phase. In the preprocessing phase, Zoom-Tucker lays the groundwork for an
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e�cient time range query by compressing sub-tensors along time dimension block

by block. Given a time range query in the query phase, Zoom-Tucker elaborately

stitches compressed results reducing computational cost and space cost. Experiments

show that Zoom-Tucker is up to 171.9× faster and requires up to 230× less space

than existing methods, with comparable accuracy to competitors. WithZoom-Tucker,

we discover interesting pa�erns including anomalous ranges and trend changes in a

real-world stock dataset. Future research includes extending the method for sparse

tensors.
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Chapter 6

Future Works

In this section, I describe research plans that extend my works of this thesis. My fu-

ture works are to 1) devise an e�cient method for an irregular tensor in an online

streaming se�ing and 2) propose tensor algorithms integrated with deep learning

techniques. With the following plan, I look forward to understanding complex phe-

nomena inherent in the tensors.

6.1 E�cient Online StreamingMethod for an Irreg-

ular Tensor

How can we e�ciently analyze an irregular tensor in an online streaming se�ing?

Many real-world irregular tensors are dynamically collected in nature where an ir-

regular tensor consists of matrices whose columns have the same size but rows have

di�erent sizes. Speci�cally, the row sizes of existing matrices and the number of ma-

trices grow over time. However, many existing methods are ine�cient in the online

streaming se�ing, and the main challenge is to avoid computations involved with old

data accumulated over time. To address this problem, my future research plan is to

devise an e�cient method for an irregular tensor in an online streaming se�ing.
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6.2 Novel TensorMethodwithDeep LearningTech-

niques

How can we e�ectively analyze real-world tensors? How can we �nd accurate factor

matrices of tensor decomposition? Recent representative deep learning architectures

have improved the performance in various applications. However, tensor data are

relatively far from deep learning, compared to graph, image, and text data processed

using Graph Convolutional Network (GCN), Convolutional Neural Network (CNN),

and Transformer, respectively. Although a few tensor algorithms [117, 118, 119, 120]

use deep learning techniques, there are still a lot of problems to be addressed for in-

tegrating a tensor algorithm with deep learning architectures. Since they focus only

on using a deep learning technique to fuse factor vectors, they fail to extract factor

vectors of high quality. Yang [121] et al. extract factor vectors by contrastive learn-

ing with data augmentation, but there is room for extracting be�er factor vectors by

further improving the performance of data augmentation. My research direction is

to �nd the characteristics inherent in real-world tensors and then develop a tensor

algorithm integrated with deep learning techniques which fully employ the charac-

teristics.
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Chapter 7

Conclusion

In this dissertation, I develop e�cient tensor decomposition methods for regular and

irregular tensors in real-world se�ings. In addition, my proposed method successfully

deals with diverse time ranges in a temporal tensor.

First, I propose D-Tucker, a fast and memory-e�cient Tucker decomposition

method for regular tensors. D-Tucker approximates a given tensor and computes

Tucker decomposition only using the approximated results. I experimentally show

that D-Tucker is much faster than existing methods while requiring less space than

them.

Second, I propose DPar2, a fast and scalable PARAFAC2 decomposition method

for irregular tensors. Similar to D-Tucker, DPar2 reduces numerical computations

and intermediate data by approximating an irregular tensor and computing PARAFAC2

decomposition with the approximated results. In addition, it maximizes multi-core

parallelism by considering irregularity. With these ideas, DPar2 achieves much faster

and more scalable than existing PARAFAC2 decomposition methods.

Finally, I propose Zoom-Tucker, a fast and memory-e�cient Tucker decom-

position method for diverse time ranges Zoom-Tucker e�ectively approximates a

given tensor before time range queries are given. �en, it answers diverse time range

queries quickly and memory-e�ciently by carefully dealing with the approximated

results and exploiting fruitful mathematical techniques. �rough extensive experi-

ments, I show that Zoom-Tucker answers diverse time range queries more e�ciently
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than existing Tucker decomposition methods.

In future works, I will develop more powerful tensor algorithms based on the

knowledge found in previous works. My future directions are to develop an e�cient

method for an irregular tensor in an online streaming se�ing, develop tensor algo-

rithms with deep learning techniques (e.g., contrastive learning), and generalize ten-

sor decomposition.
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요 약

실세계에존재하는다양한다차원데이터가텐서로표현된다.텐서는 1차원의벡터,

2차원의 행렬, 3차원 이상의 고차원 텐서를 포함하는 개념이다. 예를 들어, 주식 데

이터,헬스케어데이터,동영상데이터,센서데이터,영화등급데이터등이텐서로

표현될수있다.실세계텐서들에는중요한지식및정보들이내재되어있기때문에

텐서를분석하는도구를개발하는것은매우중요하다.하지만,전통적인텐서분석

방법들은대다수의규모가매우큰실세계텐서를분석하는데있어많은시간과공

간자원을필요로하기때문에,텐서들로부터중요한지식및정보들을탐색하는데

많은어려움을겪어왔다.

본학위논문에서는텐서분해기반대규모실세계텐서분석기술의한계를극

복하고자한다.기존텐서분해방법들은주어진대규모입력텐서와의계산이많기

때문에이를줄이는것이효율성을높이는데매우중요하다.따라서,텐서데이터의

실세계구조적특징을활용하여대규모입력텐서에대한계산량을줄임으로써정확

도손실을최소화하면서도빠르고확장성있는기법을제안한다.또한,다양한시간

범위에숨겨진지식정보들을효율적으로탐색할수있는텐서분해기반텐서분석

기술을제안한다.

본학위논문에서제안하는방법들이실세계텐서를매우효율적으로분석할수

있다는 것을 실험을 통해 보여준다. 제안하는 방법들은 비슷한 에러를 가지면서도

매우 높은 효율성을 달성한다. 제안하는 방법들은 기존 방법들과 비교하여 주어진

규칙텐서와불규칙텐서를각각최대 38.4배, 6배빠르게분해한다.또한,제안하는

방법은 임의의 시간 범위에 대해 최대 171.9배 빠르게 분석하는 것을 가능하게 해

준다.제안하는방법들은다양한실세계텐서들로부터유의미한지식을효율적으로
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탐구하는것을가능하게한다.

주요어 : 텐서 마이닝, 텐서 분해, 터커 분해, PARAFAC2 분해, 실세계 규칙 텐서,

실세계불규칙텐서

학번 : 2017-23528
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