
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

Optimizing Components for Data Durability

on Different Software Layers

다양한 소프트웨어 계층에서 데이터 내구성을 위한

구성 요소 최적화

February 2023

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim



Ph.D. DISSERTATION

Optimizing Components for Data Durability

on Different Software Layers

다양한 소프트웨어 계층에서 데이터 내구성을 위한

구성 요소 최적화

February 2023

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim



Optimizing Components for Data Durability on

Different Software Layers

다양한 소프트웨어 계층에서 데이터 내구성을 위한

구성 요소 최적화

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2022 년 11 월

서울대학교 대학원

컴퓨터 공학부

김화정

김화정의 공학박사 학위논문을 인준함

2022 년 11 월

위 원 장 신 영 길 (인)

부위원장 염 헌 영 (인)

위 원 엄 현 상 (인)

위 원 전 병 곤 (인)

위 원 성 한 울 (인)



Abstract

Data movement between remote systems frequently occurs for various pur-

poses, such as backup, replication, or analysis. Data can be corrupted or lost

during transmission due to hardware failures or system crashes. Many systems

provide procedures for data durability, such as integrity verification or periodic

backups to detect data corruption in a timely manner. These procedures either

increase data processing time or require additional I/O operations.

In this dissertation, we focus on eliminating redundant operations that de-

grade system performance in the process of ensuring data durability; we present

three optimization schemes on the storage, application, and network layers. For

the storage layer, we focus on providing robust data durability on flash-based

storage systems without adding delays to the entire data processing time. By

involving idle cores, we parallelize the checksum computation and overlap it

with I/O operations to mitigate the overhead caused by I/O reordering for ro-

bust data durability. On the application layer, we present an efficient backup

and recovery scheme by exploiting write-ahead logging (WAL) to provide data

durability for database systems. We substantially eliminate additional I/O op-

erations by keeping log data for backup and recovery. Archiving log data, on the

other hand, degrades the system performance because the amount of log data

to manage grows, and logging operations on the critical path slow down data

processing times. To address these limitations, we present an in-transit logging

scheme that logs important data by inspecting packets on the network layer

at the destination system. The proposed scheme guarantees fault-tolerance by

delivering the original requests through local clients on the target system. With

i



the proposed schemes, it is possible to provide data durability on different soft-

ware layers without adding delays to data processing times or redundant I/O

operations.

We have implemented and evaluated our schemes on real multi-core systems

to show the effectiveness of our approach. Using machines equipped with high-

performance storage devices connected via 10 Gbps, we evaluated and compared

our schemes to existing schemes. Experimental results demonstrate that the

proposed schemes efficiently provide data durability by leveraging idle resources

and ready-to-use data on the storage, application, and network layers while

providing better system performance.

Keywords: Storage Systems, Database Systems, Data Durability, Integrity

Verification, Write-ahead-Logging, Packet Inspection

Student Number: 2018-36618

ii



Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Background 6

2.1 The Internal Structure and Operations of Flash-based SSD . . . 6

2.2 Data Integrity Verification Procedure . . . . . . . . . . . . . . . . 8

2.3 Existing Database Backup and Recovery Schemes . . . . . . . . . 10

2.3.1 Physical Backup and Recovery . . . . . . . . . . . . . . . 10

2.3.2 Logical Backup and Recovery . . . . . . . . . . . . . . . . 10

iii



2.4 Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 Related Work 14

3.1 Data Corruption inside Flash-based SSD . . . . . . . . . . . . . . 14

3.2 Data Integrity Verification . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Backup and Recovery . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Logging Optimization . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 eBPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 4 Providing Data Durability for the Storage Layer 20

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Design and Implementation . . . . . . . . . . . . . . . . . 27

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Performance Results and Analysis . . . . . . . . . . . . . 36

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5 Providing Data Durability in the Application Layer 45

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Overall Procedure . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 57

iv



5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 59

5.4.2 Performance Results and Analysis . . . . . . . . . . . . . 60

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 6 Providing Data Durability in the Network Layer 65

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 77

6.4.2 Performance Results and Analysis . . . . . . . . . . . . . 77

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 7 Discussion 83

7.1 Providing Data Durability for Storage and Database Systems . . 83

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 8 Conclusion 86

요약 102

v



List of Figures

Figure 2.1 Internal structure of a flash-based SSD . . . . . . . . . . 7

Figure 2.2 Data transfer procedure including verification . . . . . . 9

Figure 2.3 Ethernet Packet Format . . . . . . . . . . . . . . . . . . 12

Figure 4.1 Major functions of the entire data transfer procedure

including verification . . . . . . . . . . . . . . . . . . . . 25

Figure 4.2 Overall architecture . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.3 Scheduling example of the existing and proposed schemes.

Each box represents the execution of corresponding pro-

cess, such as write a file to the storage device, read a file

from the storage device, and verify integrity of the file.

Each number indicates a different file . . . . . . . . . . . 30

Figure 4.4 Prototype implementation to inject faults . . . . . . . . 34

Figure 4.5 Data verification time . . . . . . . . . . . . . . . . . . . . 37

Figure 4.6 The entire data transfer time . . . . . . . . . . . . . . . 37

Figure 4.7 CPU utilization comparison . . . . . . . . . . . . . . . . 39

Figure 4.8 Data transfer time comparison changing file size . . . . . 40

Figure 4.9 Host memory and SSD status changes over time . . . . . 41

vi



Figure 4.10 Robustness test by injecting faults in different data stor-

age layers on the receiver system . . . . . . . . . . . . . 43

Figure 5.1 Existing Crash Recovery Procedure of Write-Ahead Log-

ging in MySQL . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.2 Overall Procedure . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.3 Backup/Recovery Information File Format . . . . . . . . 52

Figure 5.4 Backup Operations in Proposed Scheme . . . . . . . . . 53

Figure 5.5 Recovery Operations in Proposed Scheme . . . . . . . . 55

Figure 5.6 Backup and Recovery Scenario . . . . . . . . . . . . . . . 60

Figure 5.7 Backup and Recovery Time with SSDs . . . . . . . . . . 62

Figure 6.1 Throughput comparison with and without WAL . . . . . 66

Figure 6.2 Component diagram for logging and recovery . . . . . . 69

Figure 6.3 Log Format . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 6.4 Recovery procedure by replaying original requests . . . . 74

Figure 6.5 Finite state machine of connection . . . . . . . . . . . . . 75

Figure 6.6 Example of packet serialization on the server system . . 76

Figure 6.7 In-transit logging throughput comparison . . . . . . . . . 78

Figure 6.8 Recovery time comparison . . . . . . . . . . . . . . . . . 79

Figure 6.9 Partial recovery time comparison . . . . . . . . . . . . . 80

vii



List of Tables

Table 4.1 Specification of the machines. . . . . . . . . . . . . . . . . 35

Table 4.2 The results of fault injection experiments in different stor-

age stack of the receiver system . . . . . . . . . . . . . . . 43

Table 6.1 Log file size . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 6.2 CPU core utilization . . . . . . . . . . . . . . . . . . . . . 81

viii



Chapter 1

Introduction

1.1 Motivation

The amount of data transferred to remote systems grows exponentially as the

amount of data grows. Previous studies predict that global data center traffic

will reach around 250 ZB by 2030 [1, 2]. Data is transferred to remote storage

systems for various purposes, such as backup, replication, or analysis. During

this process, data can be corrupted or lost due to various reasons. According

to [3], the reasons for data corruption or loss are as follows: hardware failures

occurred inside the storage device, software failures including program bugs,

system crashes, or human errors.

Storage and database systems provide procedures for ensuring data durabil-

ity in order to prevent data corruption or loss as a result of such malfunctions.

When detecting data corruption caused by network failures during data trans-

fer, the receiver node verifies data integrity by comparing the checksum of data.

Storage engines in database systems usually perform periodic backups or log-

1



ging operations to protect the data from failures. However, these procedures

increase the entire data transfer time between remote systems, require addi-

tional I/O operations, and introduce delays on the critical path; as a result,

these procedures slow down the whole system.

1.2 Overview

In this dissertation, we present three optimization schemes to provide data dura-

bility on the storage, application, and network layers, without adding delays to

data processing times or additional I/O operations. For the storage layer, we

first analyze the bottlenecks in the entire transfer procedure including integrity

verification between remote systems. We also investigate the internal opera-

tions of flash-based storage devices in order to provide robust data durability.

We present optimization scheme to provide robust and efficient data durability

for the storage layer by reordering and parallelizing each step without increasing

the entire data transfer time. On the application layer, we investigate existing

database backup and recovery techniques and present an efficient backup and

recovery scheme to provide data durability for database systems by leveraging

ready-to-use data, write-ahead log (WAL). Although archiving log data elimi-

nates redundant I/O operations for backup and recovery, it incurs management

overhead, and logging operations on the critical path degrade system perfor-

mance. In order to overcome the overhead of preserving log data, we present

an in-transit logging scheme that provides data durability on the network layer

by inspecting original requests from remote clients. We allocate separate cores

to inspect packets while avoiding interference with normal operations and suc-

cessfully moving logging operations out of the critical path.

We have implemented and evaluated our schemes on real multi-core sys-

2



tems using realistic scenarios on different software layers. Experimental results

demonstrate that the proposed scheme provides robust data durability by over-

lapping and parallelizing steps for the storage layer by employing idle comput-

ing resources. The proposed schemes also efficiently provide data durability on

the application and network layers without compromising system performance

by utilizing ready-to-use data, such as write-ahead log (WAL) and incoming

packets.

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

• For optimizing procedures of providing data durability for the storage

layer, we introduce a concurrent and robust end-to-end integrity verifica-

tion scheme considering the internal operation of the storage devices for

data transfer between remote systems with flash-based storage devices.

To perform data integrity verification including possible data corruptions

that occurred inside the storage devices, we control the order of I/O oper-

ations considering the internal operations of the storage devices. We also

parallelize checksum computation and overlap it with I/O operations to

mitigate the overhead caused by I/O reordering.

• For optimizing procedures of providing data durability on the application

layer, we introduce an efficient backup and recovery scheme by exploiting

write-ahead logging (WAL) in database systems. For backup, we devise

a backup system that uses log data generated by the existing storage

engine to eliminate the additional I/O operations. Our scheme restores a

backup by leveraging and optimizing the existing crash recovery procedure

of storage engine to reduce recovery time. For example, we divide the

3



recovery range and apply backup data for each range independently via

multiple threads.

• For optimizing procedures of providing data durability on the network

layer, we introduce an in-transit logging scheme that logs the important

data in the network at the destination system as soon as the data arrives

before being processed. We filter packets whose destination is the target

system, such as database servers, and store the data that need to be

logged by extracting data from the packet’s payload. For recovery, we use

recorded original request packets to mimic clients and restore the database

by making the server believe that clients are sending normal requests.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 first

presents background information on the existing approaches to guarantee data

durability in storage and database systems. We discuss related work in Chap-

ter 3. Chapter 4 presents a concurrent and robust end-to-end data integrity

verification scheme for flash-based storage devices to efficiently provide data

durability for the storage layer. Chapter 5 presents an efficient database backup

and recovery scheme using write-ahead logging (WAL) to efficiently provide

data durability on the application layer. Chapter 6 presents an in-transit log-

ging scheme that performs logging operations by extracting data from original

requests to efficiently provide data durability on the network layer. Chapter 7

discusses how to provide data durability for storage and database systems, and

some limitations of the proposed schemes. Finally, we conclude and discuss

potential future research directions in Chapter 8.

The technical material is adapted from existing published or under review.

4



Chapters 2 and 3 have some material adapted from [4–6]. Chapter 4 is adapted

from [4], chapter 5 is adapted from [5], and chapter 6 is adapted from [6].

5



Chapter 2

Background

2.1 The Internal Structure and Operations of Flash-

based SSD

The internal structure of flash-based SSD is illustrated in Figure 2.1. As illus-

trated in the figure, flash-based SSD has a certain amount of DRAM buffer,

called buffer cache, to cache data. Flash-based SSDs cache data in the buffer

cache to increase throughput and improve NAND flash endurance [7–9].

When the host system requests writing data to the storage device, the SSD

controller first caches the data in the buffer cache inside SSD. The primary role

of the buffer cache is caching data to be written to or read from NAND flash

memory. The reason for caching data before writing to NAND flash memory

is the out-of-place update nature of flash memory. When the data stored in

NAND flash memory are modified, the new data are written to another location.

The old data are invalidated, and the block containing the data is a candidate

for garbage collection that causes performance degradation of SSD [10–15].

6



NAND

Flash

Memory

Host Interface Logic

Processor

Buffer Cache (RAM Buffer)

Flash Controller

SSD Controller

NAND

Flash

Memory

NAND

Flash

Memory

NAND

Flash

Memory

Figure 2.1: Internal structure of a flash-based SSD

In addition, repetitive data writes shorten the lifetime of SSD because the

endurance of flash memory is limited [14–18]. Therefore, the data is cached in

the buffer cache to prevent the modified data from being repeatedly written to

NAND flash memory in a short time.

Data can become corrupted while moving from the buffer cache to NAND

flash memory [19–21]. The internal failures of SSDs are relatively common, and

the failure rates of various SSDs range from 4.2% to 34.1% [19]. The causes of

data corruption inside SSD are metadata corruption (i.e., FTL metadata map-

ping disruption), shorn writes (i.e., incomplete writes), dropped writes (i.e.,

data cached in the buffer cache are not written to NAND flash memory), mis-

directed writes (i.e., writes in the wrong location), and so on [20,21]. Therefore,

data transfer including verification should consider the internal structure and

operations of SSD.

In SSDs, there exist error correction code (ECC) which can detect and

correct errors in SSDs. However, it is not sufficient for end-to-end integrity

7



verification. Because ECC can check only internal errors in SSD, it is not able to

detect errors of a transmitted file on the path to buffer cache in SSD. Therefore,

a new end-to-end integrity verification scheme other than ECC is necessary.

2.2 Data Integrity Verification Procedure

The existing implementation of data transfer including verification is shown

in Figure 2.2. A sender system first reads a file from the storage device and

sends it over the network to a receiver system. After the file is transferred, the

sender computes the checksum of the file and transfers it to the receiver. The

receiver system writes the file to the storage device and computes the checksum

of the file. Then, the receiver compares the checksum value with the value of

the sender to detect data corruption in the entire procedure. If the checksum

values match, the data transfer proceeds to the next files. If the checksum values

are different, the receiver requests retransmission of the corrupted file to the

sender.

To perform integrity verification on the receiver system, the receiver reads

a file from the storage device to compute the checksum of the file. However,

without explicit eviction of the page cache of host memory, the verification is

performed with the cached data, not the data written to the storage device.

In other words, it is impossible to detect data corruption caused by errors

occurring while writing files from host memory to the storage device or the

aforementioned internal failures of the storage device.

8



read data

from storage

send data write data

to storage

send checksum

compute

checksum

compare

checksum 

values

Sender

System

Receiver

System

request retransmission

retransmit data write data

to storage

compute

checksum

compare

checksum 

values

opt

[checksum 

mismatch]

loop

[hasData]

Figure 2.2: Data transfer procedure including verification

9



2.3 Existing Database Backup and Recovery Schemes

There are two major mechanisms to provide database backup and recovery,

physical backup and logical backup. Physical backups use raw data for backup

and recovery whereas logical backups use the data in a form of query state-

ments. Both mechanisms are provided at the application layer as in the pro-

posed scheme. In this section, we will explain how these mechanisms perform

backup and recovery.

2.3.1 Physical Backup and Recovery

Xtrabackup of Percona [22] is one of the most popular applications that pro-

vide physical backup for MySQL database. To provide full backup, Xtrabackup

copies all the files of the data directory of the database to the designated backup

directory. Similarly, to restore a full backup, Xtrabackup copies back files in

the backup directory to the data directory of the database. For the incremental

backup, Xtrabackup compares the log sequence number (LSN) of each data

page between the current database and the previous backup. If the page LSN

of the current database differs from the previous backup, Xtrabackup writes

the page to the delta file.

2.3.2 Logical Backup and Recovery

On the other hand, mysqldump [23], one of the tools provided as a utility for

MySQL, provides the logical backup. To perform the full backup with mysql-

dump, it first scans all the tables in the database, and generate query statements

that can create tables and insert data. All the query statements are stored in a

single SQL file. Mysqldump interprets and executes all the query statements in

the backup file to restore the full backup. Meanwhile, mysqldump uses binary

10



log (binlog) [24] to perform the incremental backup. The binary log contains

a collection of the events that change the database such as table creation and

data insertion. Therefore, using binlog, mysqldump does not require database

scan or data extraction to generate query statements for incremental backup.

Instead, mysqldump extracts query sequences from binlog between the previ-

ous and current backup time to generate query statements for the incremental

backup. However, every execution of a query statement requires the extra write

of query history to a separate binlog file.

2.4 Packet Inspection

The extended Berkeley Packet Filter (eBPF) [25] originated from BPF [26] that

provides functionalities of capturing and filtering network packets. The BPF is

evolved to eBPF to provide more extensive functionalities by introducing BPF

map data structure and supporting 64-bit registers. The eBPF detects specific

kernel events (e.g., packet arrival at the network driver) and triggers a user-

defined function to be executed. With eBPF, we can easily inspect and filter

network packets of specific target systems.

When an application sends data through the network, data is encapsulated

as it goes through the network stack of the kernel. Figure 2.3 illustrates the

brief packet format of the TCP/IP protocol stack. The packet arriving at the

network driver on the host system is encapsulated by TCP, IP, and Ethernet

layers as shown in the figure. That is, in order to extract the application data,

it is necessary to go through the process of parsing the header information of

each layer.

Let’s suppose that we want to extract application data from the request

packets at the server system, using TCP/IP protocol stack. This requires us to

11



Ethernet

Header

(14B)

IP

Header

(20B)

+ (0~40B)

TCP

Header

(20B)

+ (0~40B)

TCP

Payload

(maximum 1460B)

CRC

(4B)

TCP Payload

TCP Segment ( IP Payload)

IP MTU (Ethernet Payload) (maximum 1500B)

Ethernet Frame

Figure 2.3: Ethernet Packet Format

inspect the header fields of each layer in order. The first layer is ethernet frame,

which contains the internet layer protocol information. For packets of TCP/IP

protocol stack, the internet layer protocol should be IPv4. After it is confirmed

that the internet layer protocol is IPv4, then we check the IP layer header.

In inspecting IP protocol header, we first check the destination IP address

matches the server system’s IP address. If the IP address matches, we further

check if the transport layer protocol is TCP and the length of the IP header to

determine where the IP layer payload begins. The IP and TCP layer headers

include an optional field of variable-length, it is necessary to check the header

length in both layers. If the IP address does not match, we stop inspecting the

packet. Inspecting the TCP header is the last step to check whether the target

application data is transmitted in the payload. Different from inspecting the

other layers, inspecting the TCP layer requires the extraction of information

as well as checking and filtering of specific packet fields. In the checking and

filtering step, we first check whether the destination port matches the target

application’s service port. Then we get the length of the TCP header to locate

where the TCP layer payload begins. In the information extracting step, we

check and record the following fields: sequence number, source port, and payload

length. We record the sequence number for preserving the request orders of the

extracted data from the packets. The source port information is required to

12



isolate requests from distinct clients. We check the length of the TCP payload

and proceed to inspect the packet with a length greater than zero, indicating

that the packet contains the application data that we need. Also, we extract

the application data from the TCP payload.

13



Chapter 3

Related Work

3.1 Data Corruption inside Flash-based SSD

Several studies have investigated possible data corruption using the charac-

teristics of flash-based SSDs. Ahmadian et al. [27] analyzed and investigated

the various failures of SSD. They implemented a platform that detects phys-

ical failures inside SSD. Cai et al. [28] explored the fundamentals and recent

research on flash-based SSD reliability. They investigated several studies on er-

ror mitigation and data recovery and suggested a system-memory codesign to

enhance the reliability of flash-based SSD. Grupp et al. [21] investigated the

characteristics of several commodity SSDs in terms of performance, power, and

reliability. Based on the characteristics, they focused on performing application

case studies, improving the performance while extending the lifetime of the

storage devices.

Jaffer et al. [29] investigated the resilience of popular file systems to various

errors in flash-based SSDs. They also introduced a fault injection framework

14



and performed an extensive study over a thousand error cases. Meza et al. [19]

performed an extensive analysis of flash-based SSD reliability trends in the field.

They analyzed various internal and external characteristics of SSDs and inves-

tigated how these characteristics affect failures. Narayanan et al. [20] presented

an extensive SSD failure characterization in production data centers using field

data. They also investigated several factors that affect SSD failures and used

machine learning approaches to evaluate the influence of relevant factors on

failures.

3.2 Data Integrity Verification

Several studies have analyzed how to provide data integrity verification effi-

ciently. Globus [30] introduced file-level overlapping data transfer and checksum

computation to optimize the entire data transfer time. Liu et al. [31] also over-

lapped data transfer and checksum computation but performed an integrity

verification at the block level. They divided a single file into different sized

blocks and performed experiments to determine the optimal block size for dif-

ferent datasets. Arslan et al. [32] introduced FIVER, which cooperates with the

data transfer and integrity verification process. They proposed overlapping dur-

ing the data transfer and verification using cooperating processes to perform the

verification process that takes a longer time. However, these approaches [30–32]

perform integrity verification with data resides on host memory.

To provide the integrity verification with the data stored in the storage

device, Charyyev et al. [33] proposed a robust integrity verification algorithm

(RIVA). RIVA focuses on detecting possible data corruption in the process of

moving the data from host memory to the storage device. To detect such silent

data corruption, RIVA deletes the file content in the page cache of host memory

15



by invalidating the page cache and reading the content directly from the disk

to perform the integrity verification. Previous studies, including RIVA [33], still

overlooked the possibility of data corruption inside the storage device.

3.3 Backup and Recovery

There have been several studies to provide backup and recovery functionalities

at different layers. Ext3cow [34] and BTRFS [35] support backup and recovery

via snapshot by exploiting a copy-on-write (CoW) strategy at the file system

layer. Ext3cow [34] introduced file versioning and file system snapshot using

the CoW by extending the ext3 file system. BTRFS [35] manages files and di-

rectories in the subvolumes that are the unit of creating snapshots or clones.

However, the CoW-based backup and recovery mechanism involves extra write

operations caused by data copy or garbage collection which damages the per-

formance of normal operations on flash-based SSDs [36, 37]. In addition, both

techniques have dependencies on specific file systems.

On the other hand, many researchers have investigated providing snapshots

or versioning to support backup and recovery functionality at the block layer.

Peabody [38] introduced a network block storage device that supports roll the

state back to an arbitrary point in time by sector versioning and log keeping.

TRAP [39] proposed a new disk array architecture that provides point-in-time

recovery by leveraging exclusive-OR operations on top of RAID4/5 controllers.

These approaches [38, 39] are file system independent but require modification

to operating systems.

A number of studies have taken advantage of the characteristics of flash-

based SSDs to support backup and recovery functionalities at the storage de-

vice [36, 37, 40, 41]. BVSSD [36] introduced a block-level versioning system by

16



exploiting the property of flash. A flash-optimized snapshot system, ioSnap [40],

adds the remap-on-Write capability to the FTL to provide snapshot function-

ality. Also, ioSnap keeps track of blocks for each snapshot through a snapshot

tree that traces the relationships between the snapshots. LTFTL [41] intro-

duced lightweight time-shift FTL that maintains multiple versions of storage

states to provide rollback capability. BR-SSD [37] proposed a backup and re-

covery scheme by extending the out-of-place update nature of flash-based SSD.

These approaches [36, 37, 40, 41] take advantage of the nature of flash-based

SSDs so that they require modifications of the firmware of the SSDs.

To support instantaneous recovery from system failures, several studies in-

troduced a recovery protocol that consists of on-demand single-tuple redo and

single-transaction undo processes [42,43]. However, these approaches only pro-

vide on-demand single page reconstruction.

3.4 Logging Optimization

Several prior works have been proposed to optimize the logging performance

by adopting Non-Volatile memory (NVM) including Intel Optane Persistent

Memory Module [44–49].

LeanStore [45] introduced logging and commit protocol by adding a few

steps to Wang and Johnson’s scheme [44] to exploit the low write latency char-

acteristics of NVM. LeanStore’s protocol enables low-latency transactions on

persistent memory by avoiding remote partition flushes. NVWAL [48] and NV-

Logging [49] reduced the logging overhead of transaction systems by exploiting

byte-addressable NVM. These approaches [44, 45, 48, 49] can be employed on

machines with NVM and logging operation is still in the critical path of execu-

tion.

17



ATOM [46] introduced a hardware log manager that removes delays in the

critical path caused by logging operations. Inspired by data movement task

offloading to a DMA engine, ATOM offloads logging functions (e.g., allocating

log space, writing log entries, and truncating logs) by introducing primitives

for exposing atomic durable regions to hardware. ATOM relies on hardware

primitives to persist the log at the destination.

PASV [50] optimized the logging performance by removing redundant log

operations in LSM-tree based relational database systems (RDBs). For RDBs

employing the LSM-tree based storage engine, there is a performance overhead

due to logging performed independently at each of the RDB and storage engine

layers. PASV addresses double-logging problem in LSM-tree based RDBs but

logging operation is still in the critical path of execution.

3.5 Packet Inspection

Deep packet inspection (DPI) is widely used for network security, bandwidth

management, user profiling for monetization, and other applications by inspec-

tion the packet contents including headers [51–54]. Several studies have taken

advantage of the DPI technique, but mainly focused on network security [55–57]

or traffic management [55,56,58–62].

Cilium [55,56] provides eBPF-based networking, security, and observability

solution for cloud native environments. Linux Security Module (LSM) intro-

duced a patchset that facilitates a unified and dynamic MAC and audit policy

by allowing eBPF programs to be attached to LSM hooks [57]. Cloudflare [58]

and Katran [59, 60] provide layer 4 load balancing functionality by adopting

eBPF. They leverage XDP and eBPF to enable fast packet processing by pro-

viding an in-kernel capability. Syrup [61] introduced a framework that enables

18



application developers can specify their preferred scheduling policies. Syrup al-

lows developers to define application-specific scheduling policies and executes

them in the kernel with the help of eBPF. CRAB [62] proposed an alternative

load balancing scheme that removes the load balancing from the critical path

by redirecting TCP connections. CRAB inspects packets using an in-kernel

middlebox implementation based on eBPF that allows connection redirection,

thus removing the load balancer from the data path. These approaches [55–62]

utilize deep packet inspection for network security or traffic management.

3.6 eBPF

Recently, using eBPF for I/O acceleration has been investigated to improve

application performance [63–66].

BMC [63] introduced an in-kernel cache for accelerating Memcached [67].

BMC intercepts requests from the network driver before being processed by the

host’s network stack and handles them within the in-kernel cache. XRP [64]

accelerates I/O operations by resubmitting I/O with the assistance of eBPF.

XRP resubmits I/Os based on user-defined storage functions by using eBPF

hook in the NVMe driver’s interrupt handler to bypass the kernel’s storage

stack. ExtFUSE [65] introduced extensible user file system framework by lever-

aging eBPF. ExtFUSE allows applications to load in-kernel request handlers

for their specialized functionality and to serve low-level file system requests.

Zhong et al. [66] explored the potential of using BPF to accelerate storage by

injecting user-defined functions into the kernel’s storage stack. However, these

approaches [63–66] require the developer’s effort in providing their own handlers

for application-specific optimization.

19



Chapter 4

Providing Data Durability for the
Storage Layer

4.1 Overview

Data integrity verification is one of the most important features of storage

systems. For example, file systems (e.g., BtrFS) detect data corruption by per-

forming a cyclic redundancy check (CRC) in the units of pages of 4 KiB [68].

As the volume of data grows rapidly, it has become common to move data to

remote storage systems. Transferring data to remote storage systems increases

the possibility of data corruption caused by network failure, packet loss, or

storage corruption of the receiver system [31]. Therefore, many systems have

adopted end-to-end integrity verification by comparing the checksum of each

file using secure hash functions such as MD5 and SHA1 [30–33]. When the re-

ceiver system detects data corruption, it reconstructs the corrupted data by

requesting a data retransmission from the sender system. It is important to

detect data corruption at the right time because detecting and reconstructing

20



data corruption after a certain period affects the results of the data processing

already done.

In recent years, flash-based storage devices, solid-state drives (SSDs), are

increasingly replacing hard-disk drives in modern storage systems [29, 69, 70].

Such flash-based storage devices have a cache layer, called a buffer cache, that

buffers data [7–9,71,72]. When writing data to SSD, the data are cached in the

buffer cache of SSD for a while. Data cached in the buffer cache are flushed

to NAND flash memory when the buffer cache is full, or according to SSD

controller’s buffer management policy. As the capacity of SSD increases, the size

of the buffer cache also increases proportionally. In other words, the data written

to the storage device stay in the buffer cache for a longer time. As a result,

reading data immediately after writing to flash-based SSD returns data from

the buffer cache, which has not yet been flushed to NAND flash memory. During

the process of flushing data from the buffer cache to NAND flash memory, data

can become corrupted due to the internal failures of SSD [19–21]. These data

corruptions that occurred during the data processing inside the SSD are difficult

to detect.

The general implementation of data transfer, including verification, is as

follows. As a first step, the sender system reads a file from its storage device

and sends it over the network to the receiver system. The sender system also

computes and sends the checksum value of the file to the receiver system. When

the file is transferred to and stored in the storage device of the receiver, the

receiver performs an integrity verification by computing the checksum of the

file to detect errors during transmission. Finally, the receiver compares the

checksum value with the value sent from the sender. If the two values are

different, the receiver considers that the file has been corrupted during the

transmission and requests the sender to retransmit the file. In the existing

21



implementation, data corruption that may occur in the procedure of flushing

the data to the storage device is not sufficiently considered because the integrity

verification is performed with data buffered in host memory.

To catch undetectable errors that occur while flushing data from the buffer

cache to NAND flash memory, the integrity verification must be performed af-

ter a sufficient number of new data have been written to ensure that the data

are flushed to NAND flash memory. If the receiver system clears the cached

content of the file in page cache of host memory to provide robust data in-

tegrity verification, the entire data transfer time is significantly increased due

to additional I/O operations and cache eviction. Therefore, the receiver system

should schedule I/O operations considering the internal structure of SSD with-

out extra overhead to perform a full coverage integrity verification in the data

transfer process.

To address these issues, many researchers have investigated to optimize

the entire time of data transfer, including integrity verification. For example,

Liu et al. [31] and Globus [30] overlapped a data transfer and checksum com-

putation with file and block granularity, respectively. Arslan et al. [32] intro-

duced FIVER, which cooperates during data transfer and integrity verifica-

tion processes to reduce the entire data transfer time. Different from these

approaches [30–32] that focus on reducing data transfer time, RIVA [33] intro-

duces a robust integrity verification algorithm that considers undetected write

errors that occur on disk drives. However, RIVA focuses on detecting corruption

that occurs during data is stored on the storage device from the host memory,

and does not consider corruption that may occur inside the storage device. Con-

sidering the internal structure of flash-based storage devices, room still exists

for reconsideration of robust and reliable integrity verification.

In this chapter, we introduce a reliable data transfer through robust data

22



integrity verification scheme considering the internal operations of flash-based

storage devices. We still provide efficient data transfer through concurrent ver-

ification procedure. To support robust and reliable data integrity verification,

we schedule procedures for data verification in consideration of the internal

structure of flash-based storage devices. After receiving a file and writing it to

the storage device, we delete the memory mapping information of the file to

invalidate the data stored in host memory of the receiver system. By doing this,

we perform integrity verification with the data written on NAND flash memory

which is the actual final destination. We delay the integrity verification process

until the file to be verified is flushed to NAND flash memory. Integrity verifi-

cation is performed by reading the file from the storage device directly after

sufficient new data are stored on the storage device. To hide the overhead due

to cache invalidation, we parallelize the checksum computation procedure. We

investigate the end-to-end data transfer procedure including integrity verifica-

tion and identify the main bottleneck is checksum computation. Based on the

results of bottleneck analysis, we adopt page-level integrity verification using

the CRC32C algorithm, a variant of CRC, that enables parallel execution of

integrity verification for a single file. We reduce the entire time for data transfer

including verification by efficiently parallelizing the verification procedure. We

use the CRC32C algorithm because the algorithm is used in many file systems

(e.g., BtrFS, ZFS, and XFS) to ensure the integrity of the data and metadata of

a file in units of pages of 4 KiB [68,73,74]. With page-level integrity verification,

we involve multiple threads to perform concurrent checksum computation for

a single file. To examine that our proposed scheme detects errors in each layer

of the storage stack, we implement a prototype that intentionally injects faults

on the specific layer of the storage stack. After transferred file is stored, we

manipulate the data of each storage layer to inject faults. Then, data integrity

23



verification is performed to ensure that the proposed scheme can detect faults

correctly.

For evaluations, we measured the entire data transfer time with realistic data

transfer scenarios. With the prototype implementation, the proposed scheme

detects data corruptions on each layer of the storage stack. Specifically, using

fault injection, we demonstrate that the proposed scheme can detect errors

occurring in NAND flash memory inside storage device that cannot be detected

by the exiting scheme. Moreover, the experimental results demonstrate that the

verification time for a single file and the entire data transfer time is reduced by

up to 84% and 62% compared with the existing scheme, respectively.

In summary, our main contributions are as follows:

• We study and analyze the main bottleneck of the end-to-end data transfer

procedure including integrity verification.

• We schedule I/O operations considering the internal structure of flash-

based storage device to ensure integrity verification including data cor-

ruption that occurs inside the storage device.

• We parallelize checksum computation procedure and overlap it with I/O

operations to provide efficient data transfer while ensuring the robustness

of data integrity verification.

• We implement a prototype that intentionally injects faults on the specific

layer of the storage stack and examines detection of data corruptions.

• The experimental results show that our scheme provides robust and re-

liable data transfer while efficiently performing computations and I/O

operations.

24



4.2 Motivation

In this section, we demonstrate and analyze a simple preliminary experiment

conducted to investigate the main bottlenecks in data transfer including in-

tegrity verification between remote systems. We transferred a single 1 GiB file

for the analysis and stored it to the storage device of the receiver system. Then,

we read the file directly from the storage device and performed the integrity ver-

ification. We used a Samsung PM983 3.84 TB NVMe SSD [75] as the storage

device. The detailed specifications of the sender and receiver system are de-

scribed in Section 4.4. The analysis result is illustrated in Figure 4.1. As shown

in the figure, the checksum computation time in the receiver system occupies

54% of the entire data transfer time. Moreover, the write and read operations

on the receiver system account for 12% and 13% of the entire data transfer time.

If we consider the internal structure of SSD, the entire data transfer time with

verification becomes longer, because we should perform data verification after

it is guaranteed that the data has been written to NAND flash memory of SSD.

Therefore, to perform integrity verification efficiently, we adopted page-level

checksum computation, which verifies a single file concurrently using multiple

threads.

17% 12% 13% 54% 4%

(S) Read a File (R) Write a File (R) Read a File (R) Compute Checksum Others

(S) Sender System (R) Receiver System

Figure 4.1: Major functions of the entire data transfer procedure including
verification

25



4.3 Design and Implementation

4.3.1 Overall Architecture

Previous studies have mainly focused on reducing the data transfer time, and

robustly providing integrity verification of transferred data has been overlooked.

To address this problem, research such as RIVA [33] that invalidates data cached

during the transmission process and performs integrity verification with data

stored in the storage device has been proposed. Considering the internal struc-

ture of SSD, there is still a possibility that corruption may occur in the process

of data is stored on the final destination, which is hard to be detected using

existing schemes.

Performing integrity verification by reading the data after stored on NAND

flash memory increases the entire data transfer time and degrades the per-

formance. To efficiently perform the entire data transfer while ensuring robust

integrity verification, we parallelize checksum computation procedure by involv-

ing multiple threads and overlap it with I/O operations. We control the order

of I/O operations to detect data corruption that occurred inside the storage de-

vice; thus retransmission can be performed immediately to prevent corrupted

data from being used for subsequent processing.

Figure 4.2 illustrates the overall architecture of the proposed system. As il-

lustrated in the figure, our system consists of four components, including amem-

ory manager, I/O manager, data verifier, and concurrency controller. When a

file is transferred over the network, the memory manager first allocates memory

to store the file content. After the transfer is complete, the I/O manager writes

the file to the storage device. When the file is completely written to the storage

device, the memory manager deletes the file content in memory by invalidat-

ing the page caches to prevent performing integrity verification with cached

26



Concurrency Controller

Memory

Manager

Storage Device

launch processes

I/O ManagerData Verifier

schedule I/Os

write file

read file

Host Memory

integrity verification

memory comparison cache invalidation
memory allocation

page cache invalidation

Figure 4.2: Overall architecture

data. The concurrency controller schedules I/O operations so that the file to

be verified is written to NAND flash memory. Then, the concurrency controller

requests the I/O manager to read the file to be verified. The concurrency con-

troller launches multiple data verifier threads to perform integrity verification

for a single file. The data verifier computes the checksum of a partial range of

the file and compares it with the values from the sender system. The concur-

rency controller schedules multiple data verifier threads and I/O operations in

parallel to minimize the entire data transfer time.

4.3.2 Design and Implementation

Memory Manager

The memory manager is responsible for memory allocation, deallocation, and

cache invalidation after the transferred data are completely written to the stor-

age device. The memory manager allocates and deallocates memory using the

27



mmap, munmap, and mincore system calls to efficiently manage page caches of

the receiver system. During file transfer, the data are buffered in the memory

region created by the mmap system call. When receiving and writing the file to

the storage device are finished, the memory region used to buffer the file should

be cleared to ensure the data verification is performed with the file stored in the

storage medium, which is the actual final destination. To remove data of the

file buffered in memory, we use the munmap and mincore system calls. Because

the munmap system call deletes the mappings for the specified address range,

it causes a page fault on further references to the unmapped memory region.

Although the munmap system call deletes the mappings at once, the memory

manager uses the mincore system call to ensure that all pages in the specified

range have been deleted. By invalidating cached data, our scheme ensures ro-

bust data integrity for transferred data so that prevents corrupted data is used

in any subsequent processing.

Concurrency Controller

The concurrency controller is responsible for scheduling I/O operations and

integrity verification procedures so that the entire data transfer is performed

efficiently. The integrity verification procedure performs two types of I/O oper-

ations: writing the transferred file to the storage device and reading the file for

integrity verification. The concurrency controller reduces the data verification

time by overlapping the I/O operations and the verification process performed

by the data verifier.

Supporting Data Verification Scheduling The important role of the con-

currency controller is to schedule I/O operations regarding the size of the buffer

cache of SSD, which in general is 0.1% of the storage capacity [72]. We ensure

28



the robustness of data integrity by verifying the file written in NAND flash

memory. To do this, we read the file to be verified from the storage device after

sufficient data are written. To write sufficient data to the storage device, the

concurrency controller maintains the accumulated size of files that stay in the

buffer cache before being flushed to NAND flash memory of SSD. In addition,

using the verification waiting list, the concurrency controller memorizes the

files for which the integrity verification should be performed next.

For example, suppose that the buffer cache size of SSD is 4 GiB and that

the dataset to be transferred consists of eight 1-GiB files. When a single file of

1 GiB is transferred, the concurrency controller schedules the I/O manager to

write the file and adds the file information to the waiting list. After the written

data exceed the buffer cache size, the concurrency controller schedules the I/O

manager to read the file to be verified directly from the storage device. In this

example, after writing five files, the concurrency controller reads the file and

performs the verification. Then, the concurrency controller launches the I/O

manager and data verifier simultaneously to write the transferred file to the

storage device and perform the checksum computation for the file in the waiting

list in parallel.

Figure 4.3 illustrates the scheduling example of the concurrency controller

in the case of transferring the dataset consisting of eight files of 1 GiB. In

the existing scheme (Figure 4.3a), each file is read from the storage device

immediately after write performed, then perform integrity verification using a

single thread. As can be seen, the procedures for write, read, and verify data

are performed sequentially for each file in the existing scheme. In contrast, as

shown in Figure 4.3b, we control the order of each procedure corresponding to

individual files to guarantee that the integrity verification is performed with

data written on NAND flash memory.

29



T
im

e
li
n
e

(W
) 
F
1

(R
) 
F
1

(W
) 
F
2

(R
) 
F
2

(W
) 
W

ri
te

(R
) 
R
e
a
d

(V
) 
V
e
ri
fy

(V
) 
F
1

(V
) 
F
2

(W
) 
F
3

(R
) 
F
3

(V
) 
F
3

…

(F
) 
F
il
e

(a
)
S
ch
ed

u
li
n
g
ex
a
m
p
le

o
f
th
e
ex
is
ti
n
g
sc
h
em

e

T
im

e
li
n
e

(W
) 
F
1

(W
) 
F
2

(W
) 
F
3

(W
) 

F
4

(W
) 
F
5

(R
) 
F
1

(W
) 
F
6

(R
) 
F
2

(W
) 
F
7

(R
) 
F
3

(W
) 
F
8

(R
) 
F
4

(R
) 
F
5

(R
) 
F
6

(R
) 

F
7

(R
) 
F
8

(W
) 
W

ri
te

(R
) 
R
e
a
d

(V
) 
V
e
ri
fy

(V
) 
F
1

(V
) 
F
2

(V
) 
F
3

(V
) 
F
4

(V
) 

F
5

(V
) 
F
6

(V
) 
F
7

(V
) 
F
8

(V
) 
F
1

(V
) 
F
1

(V
) 
F
1

(V
) 
F
2

(V
) 
F
2

(V
) 
F
2

(V
) 
F
3

(V
) 
F
3

(V
) 
F
3

(V
) 
F
4

(V
) 
F
4

(V
) 
F
4

(V
) 

F
5

(V
) 
F
6

(V
) 
F
7

(V
) 
F
8

(V
) 

F
5

(V
) 
F
6

(V
) 
F
7

(V
) 
F
8

(V
) 

F
5

(V
) 
F
6

(V
) 
F
7

(V
) 
F
8

(F
) 
F
il
e

(b
)
S
ch
ed

u
li
n
g
ex
a
m
p
le

o
f
th
e
p
ro
p
o
se
d
sc
h
em

e

F
ig
u
re

4
.3
:
S
ch
ed

u
li
n
g
ex
am

p
le

of
th
e
ex
is
ti
n
g
an

d
p
ro
p
os
ed

sc
h
em

es
.
E
ac
h
b
ox

re
p
re
se
n
ts

th
e
ex
ec
u
ti
on

of
co
rr
e-

sp
on

d
in
g
p
ro
ce
ss
,
su
ch

as
w
ri
te

a
fi
le

to
th
e
st
or
ag

e
d
ev
ic
e,

re
ad

a
fi
le

fr
om

th
e
st
or
ag

e
d
ev
ic
e,

an
d
ve
ri
fy

in
te
gr
it
y

o
f
th
e
fi
le
.
E
ac
h
n
u
m
b
er

in
d
ic
at
es

a
d
iff
er
en
t
fi
le

30



Supporting Pipelined Data Verification Another key role of the con-

currency controller is overlapping I/O operations with checksum computation

procedures. Based on the bottleneck analysis described in Section 4.2, we iden-

tify that checksum computation occupies 54% of the entire procedure. Thus,

we overlap the procedure of integrity verification for a given file with I/O op-

erations, such as write the file to the storage device or read the file from the

storage device.

In the illustrated example of Figure 4.3b, integrity verification for file 1 ((V)

F1) is executed concurrently with the write operation for file 6 ((W) F6). Read

operations can also be executed concurrently with integrity verification. In the

example, read operations for files 5 – 8 ((R) F5 – F8) are overlapped with the

integrity verification for files 4 – 7 ((V) F4 – F7), respectively.

Through such overlapping, our scheme enables efficient data transfer includ-

ing verification despite the overhead of read files after write them to NAND flash

memory.

Supporting Concurrent Data Verification The last key role of the con-

currency controller is executing multiple verification procedures for a single file

in parallel by dividing the range. As described in Section 4.2, the checksum

computation time is a major bottleneck in the integrity verification procedure.

Therefore, we perform verification for a single file using multiple threads by

dividing the file depending on the number of threads, in addition to pipelined

data verification. To simplify the task of dividing the file by a varied number

of threads, we adopt a page-level checksum. The concurrency controller divides

the memory area that contains file content according to the number of threads

executing the verification and launches multiple data verifier threads. When

launching a thread, the concurrency controller passes the memory range infor-

31



mation (e.g., start address, length) of the data to be verified to each thread and

checksum value of the corresponding range transferred from the sender.

In the example of Figure 4.3, the number of threads that are concurrently

executed for the integrity verification is four. If we increase the number of

threads, the verification time and entire data transfer time decreases. However,

if we decrease the number of threads, it takes a longer time to verify and transfer

the data.

The number of threads to perform verification is configurable depending on

the computation resource (e.g., CPU) and the size of the file to be verified. We

analyze the correlation between the number of threads and the computation

resources through evaluation results in Section 4.4.

I/O Manager

The I/O manager is responsible for I/O operations scheduled by the concur-

rency controller. The I/O manager writes file contents from host memory to

the storage device when the file transfer is completed. Before closing the file,

the I/O manager synchronizes the file state with the storage device using the

fsync system call. After writing the file to the storage device, the I/O manager

notifies the memory manager, so that the memory manager deletes the content

of the file from host memory. In addition, the I/O manager reads the file to

perform the integrity verification from the storage device and transfers the file

location in memory to the data verifier. The I/O manager uses synchronous

calls to ensure that all I/O operations are performed immediately.

Data Verifier

The data verifier performs the checksum computation for a single file scheduled

by the concurrency controller. When performing the verification, multiple veri-

32



fication threads can be executed in parallel by the concurrency controller. The

concurrency controller divides and assigns the range of the file to be verified in

each thread. Then, the concurrency controller passes the range to each thread

with a list of checksum values transferred from the sender. Each verification

thread computes the checksum values for pages that correspond to the specific

range of the file. When the computation is finished, the data verifier validates

the results by comparing the memory region of the corresponding checksum

values using the memcmp system call. The reason for validating results by com-

paring memory is to provide a constant validation time. Instead of comparing

memory regions, if we validate results by comparing values, the verification time

increases in proportion to the number of pages verified in each thread, which

can lead to a new bottleneck.

Error Detection by Injecting Faults

To investigate our scheme detects errors on each layer of the storage stack, we

implement a prototype that intentionally corrupts data written on the specific

storage layer, as shown in Figure 4.4. Basically, we inject faults by modifying

the stored file in each layer as follows. Transferred file is first written to host

memory, then stored on the storage device. In the storage device, a file is first

stored on the buffer cache and then stored on NAND flash memory, the actual

final destination. Thus, the prototype fault injector corrupts the data in the

order in which the file is written to the storage stack.

In the case of injecting faults into files on host memory, we change the

file contents by manipulating cached page data( 1○). However, in the case of

injecting faults into files on the buffer cache or NAND flash memory, the process

of injecting faults is more complicated. Because observing the internal failure

of SSD in the real system is costly, we injected faults into the files in NAND

33



NAND

Flash

Memory

NAND

Flash

Memory

NAND

Flash

Memory

NAND

Flash

Memory

Storage Device

Buffer Cache (RAM Buffer)

Host Memory

Fault

Injector

①

②

③

① corrupts data on host memory by modifying page cache

② corrupts data on buffer cache of SSD by flipping bit

③ corrupts data on NAND flash memory by flushing flipped data

Figure 4.4: Prototype implementation to inject faults

flash memory in SSD, the final destination of the file transmission. We directly

injected faults into a file in the buffer cache of SSD( 2○) and wrote dummy

data sequentially to flush the corrupted data from the buffer cache to NAND

flash memory( 3○). We write dummy data that are larger than the capacity

of SSD buffer cache, so that guarantee corrupted data are written to NAND

flash memory. More specifically, at first, we copied the data from a transferred

1-GiB file and modified it by flipping the least significant bit in every 4-KiB

page. After the original file is flushed to NAND flash memory, the fault injector

overwrites it with the corrupted data and writes enough dummy data to flush

the corrupted data to NAND flash memory.

34



4.4 Evaluation

4.4.1 Experimental Setup

We evaluated the performance of our integrity verification scheme using two

machines connected by a 10 Gbps network. The machine has 72 physical cores

but we only use 18 physical cores on a single socket. We use a 3.84 TB Sam-

sung PM9A3 NVMe SSD for storage device. The detailed specifications of the

machine are described in Table 4.1.

Through the experiments, we focused on demonstrating that our scheme

provides robust and reliable data transfer without sacrificing performance with

the help of additional computing resources. To demonstrate the efficiency of the

proposed scheme, we first conduct the experiment to investigate the effect of

the concurrent integrity verification using multiple threads. We evaluated the

proposed scheme with a realistic workload that transfers 20 files of 1 GB over

the network. We evaluated the entire data transfer time of the proposed scheme

by changing the number of data verifiers and compare it with the sequential

approach. In order to investigate how much more computing resources required

for the proposed scheme, we analyzed the average and total CPU utilization

during data transfer including integrity verification. Then, we evaluated the

entire data transfer time by changing file sizes and compare it with the existing

schemes, including the sequential, file-level pipelining [31], and RIVA [33] which

Table 4.1: Specification of the machines.

Processor 4-way Intel E7-8870@2.1GHz

Memory 256 GiB

Storage Samsung PM9A3 NVMe SSD, 3.84TB

OS Ubuntu 16.04

Kernel kernel v4.4.0

35



is the most recent state-of-the-art scheme. Finally, to validate the proposed

scheme guarantees robust and reliable data integrity verification, we analyzed

the changes of each layer of the storage stack as data move from host memory

to NAND flash memory. With the prototype implementation, we investigated

fault detection by the existing and proposed schemes by injecting faults into

different storage layers of the receiver system.

In the following experiments, each evaluation point is obtained by averaging

the results of 5 independent executions.

4.4.2 Performance Results and Analysis

Data Verification Time

We used a single file of size 1 GiB to demonstrate the effectiveness of concurrent

computation. In this experiment, we focused on the effectiveness of concurrent

verification rather than other techniques, so we used the file already stored in the

storage device. Figure 4.5a presents the data verification time when performing

multiple integrity verification procedures concurrently using multiple threads.

When we measured the verification time by doubling the number of threads,

the verification time reduced until the number of threads reached 16. The reason

is that the data size assigned to each thread is halved when we double the

number of threads performing the computation. However, when the number of

threads is more than 16, the verification time is almost the same, but when

the number of threads is more than 256, the verification time increases. This is

because, when numerous threads are executed concurrently, the management

overhead, such as thread creation and context switching, greatly increases.

To identify the management overhead, we measure the number of context

switches during data verification. Figure 4.5b shows the normalized number

36



0

1

2

3

4

5

6

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 128 256

N
o

rm
a

li
z
e

d
 I

m
p

ro
v
e

m
e

n
ts

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Number of Threads

Verification Time (ms) Normalized Verification Time

(a) Data verification time

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256N
o

rm
a

li
z
e

d
 N

u
m

b
e

r 
o

f 
C

o
n

te
x

t 
S

w
it

c
h

Number of Threads

(b) Normalized number of context switch

Figure 4.5: Data verification time

214

75 71

0

50

100

150

200

250

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Number of Concurrent Verifier

2       4       8 16     32     64 128   256

Existing

Proposed_SP
Proposed_SPC

(a) The entire data transfer time

0

1

2

3

4

2 4 8 16 32 64 128 256N
o

rm
a
li

z
e

d
 N

u
m

b
e

r 
o

f 
C

o
n

te
x

t 
S

w
it

c
h

Number of Concurrent Verifiers

(b) Normalized number of context switch

Figure 4.6: The entire data transfer
time

of context switches as the number of threads increases. As can be seen, until

the number of threads reaches 16, the number of context switch increase is

insignificant. However, the number of context switches increases exponentially

when more than 32 threads are used to perform the verification. As a result,

the verification time increases despite doubling the number of threads.

Entire Data Transfer Time

Figure 4.6a presents the entire data transfer time of the existing sequential

scheme and the proposed scheme. The entire data transfer time includes the

data transfer time between the sender and receiver systems, the data writing

time to the storage device of the receiver system, and the data integrity verifica-

tion time. In the figure, we denote the existing sequential scheme as Sequential

and the proposed scheme as Proposed SP and Proposed SPC. In the proposed

37



scheme notations, S, P, and C stand for scheduling, pipelining, and concurrent

verification, respectively. The evaluation results indicate that the entire trans-

fer time is reduced by 65% with the Proposed SP scheme compared with the

Sequential scheme. Similar to the file-level pipelining introduced in the previ-

ous study [31], the overlapping computation and I/O operation reduced the

entire transfer time by 65%. The difference between file-level pipelining and the

proposed scheme is that the proposed scheme delays performing the integrity

verification until the file is written to NAND flash memory. As a result, the pro-

posed scheme provides robust integrity verification compared with the file-level

pipelining scheme while efficiently transferring files.

When we applied the concurrent verification using multiple threads (Pro-

posed SPC), the entire data transfer time was reduced by 67% and 5% compared

with the existing sequential scheme (Sequential) and proposed scheme without

concurrent verification (Proposed SP), respectively. The entire data transfer

time decreased until the number of concurrent verification threads reaches 8.

As depicted in the figure, when we performed the integrity verification in paral-

lel with 8 threads, the entire data transfer time was the most shortened, which

is a 67% reduction compared with the existing sequential scheme.

However, using more than 8 threads for integrity verification increased the

entire data transfer time. When too many threads were executed in parallel,

thread management tasks (e.g., thread creation, clean up, context switch, etc.)

took a longer time, as mentioned in the previous section. Figure 4.6b reveals

that the number of context switches increased rapidly when we used more than

32 concurrent verifiers. Moreover, the concurrency controller maintained the

total size of the verified data as a global variable. Because each verification

thread accesses the global variable, performing verification with many threads

causes memory access contention. As a result, the entire data transfer time

38



0

50

100

150

200

250

300

350

400

A
v
e
ra

g
e
 C

P
U

 U
ti

li
z
ti

o
n

 (
%

)

Number of Concurrent Verifier

2       4       8 16      32     64 128   256

Existing

Proposed_SP
Proposed_SPC

(a) Average CPU utilization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a
li
z
e
d

 T
o

ta
l

C
P

U
 U

ti
li

z
a
ti

o
n

Number of Concurrent Verifier

2       4       8 16      32     64 128   256

Existing

Proposed_SP
Proposed_SPC

(b) Total CPU utilization

Figure 4.7: CPU utilization comparison

increased.

Resource Utilization

As we created multiple threads to concurrently verify the integrity of the file,

we measured the CPU utilization of each scheme over time, as presented in

Figure 4.7. Figures 4.7a and 4.7b list the average and total CPU utilization for

each scheme, respectively. The average CPU utilization of the proposed scheme

with 8 concurrent verifiers is 316%, which is 3.4 times higher than that of the

existing sequential scheme (92%). However, Figure 4.6a indicates that the entire

data transfer time of the existing sequential scheme is up to 3.01 times longer

than that of the proposed scheme. As a result, the total CPU utilization of the

proposed scheme is from 10% to 20% higher than that of the existing sequential

scheme (Figure 4.7b).

The difference in the gap depends on the number of concurrent verifiers. For

example, using 8 concurrent verifiers, the proposed scheme completes the data

transfer and verification 3.01 times faster using 20% more of the total resources,

compared with the existing sequential scheme.

In summary, with the proposed scheme, we can reduce the entire data trans-

39



0

5

10

15

20

25

100 MB 500 MB 1 GB

E
x
e
c

u
ti

o
n

 T
im

e
 (

s
)

File Size

Sequential RIVA Proposed_SP Proposed_SPC

(a) The entire data transfer time with
file size under 1 GB

0

100

200

300

400

500

600

700

800

900

1000

5 GB 10 GB 20 GB 30 GB 50 GB

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

File Size

Sequential RIVA Proposed_SP Proposed_SPC

(b) The entire data transfer time with file size over 5
GB

Figure 4.8: Data transfer time comparison changing file size

fer and verification time by up to 67% by intensively investing computing re-

sources in a short time.

Entire Data Transfer Time with Different File Sizes

Figure 4.8 shows the entire data transfer time of each scheme with various file

size. In the experiments, we compare the entire data transfer time including

verification with the existing schemes that performs data verification in the

order in which files were transferred (Sequential) and the state-of-the-art robust

data transfer scheme (RIVA) [33]. We used a single file of different sizes from

100 MB to 50 GB to demonstrate the effectiveness of concurrent verification

with various file sizes.

With the Proposed SP scheme, there is an overhead due to scheduling and

time to write and read data on the final destination, NAND flash memory, but

it is negligible as shown in the experimental results. The entire data transfer

time of the Proposed SP scheme takes 1% to 5% longer than those of Sequential

and RIVA, regardless of the file size. With the Proposed SPC scheme, the entire

data transfer time difference is insignificant for the file size of 100 MB. Different

from the Proposed SP scheme, the Proposed SPC scheme is effective for data

40



F5

Host Memory

F1 F2 F3 F4

SSD
Buffer Cache

NAND Flash Memory

Timeline
W

 R
 I

 T
 E

 (
 F

 5
 )

F6

Host Memory

F2 F3 F4 F5

SSD
Buffer Cache

NAND Flash Memory R
 E

 A
 D

 (
 F

 1
 )

F1

F6

Host Memory

F3 F4 F5 F1

SSD
Buffer Cache

NAND Flash Memory

V
 E

 R
 I

 F
 Y

 (
 F

 1
 )

W
 R

 I
 T

 E
 (

 F
 6

 )

F1

F7

Host Memory

F4 F5 F1 F6

SSD
Buffer Cache

NAND Flash Memory

F1

F7 F1 F8

F2 F2 F3

Figure 4.9: Host memory and SSD status changes over time

transfer including integrity verification as the file size increases. As the file size

increases, the entire transfer time reduction reaches about 30% when the file

size is 1 GB or more. The reason is that the Proposed SPC scheme reduces the

time of data verification by involving multiple threads to perform concurrent

verification.

Host Memory and SSD Status Analysis

To validate that the proposed scheme reads a file from NAND flash memory

of SSD, we analyzed the changes in the data residing on each storage medium

(e.g., host memory, buffer cache of SSD, and NAND flash memory) over time.

Figure 4.9 illustrates changes of data residing on each storage medium during

data transfers. The figure presents the data change of each storage medium from

the time when the data written to the buffer cache starts flushing to NAND

flash memory.

When a newly transferred file (e.g., F5 in the figure) starts to write to SSD,

the SSD controller starts to flush the first 1-GB file to NAND flash memory

(e.g., F1 in the figure). Simultaneously, a new file, F6, is transferred over the

network and written to host memory. The second state of the figure displays

the state of each storage medium after flushing file F1 and writing file F5. In

the second state, file F1 exists only in NAND flash memory and is removed

from the buffer cache of SSD. Therefore, the concurrency controller schedules

41



the I/O manager to read file F1 to start the verification. After reading file F1

from SSD, the data on each storage medium are shown in the third state of

the figure. The SSD controller flushes file F2 to make space in the buffer cache

so that file F1 can be cached. In the third state, the concurrency controller

performs the integrity verification of file F1 in parallel using multiple threads.

The state after the verification completes is presented in the last state of the

figure. The concurrency controller schedules the I/O manager so that file F6

is written to the storage device while the verification is performed. The file

transfer continues, and the new file F8 is transferred to host memory.

The proposed scheme provides the improved robustness of the integrity

verification by scheduling the read and write operations alternately. Moreover,

the proposed scheme performs the integrity verification after the file is written

to NAND flash memory.

Detecting Data Corruption

To evaluate the robustness of the proposed scheme, we conducted experiments

to measure how many errors can be detected in each scheme. In the experiments,

we focused on whether each scheme can detect errors occurring in each layer of

the storage stack where data resides until the data transmitted to the receiver

system is stored in NAND flash memory in SSD, the actual final destination

of the transferred data. With the prototype implementation, we adopted a

mechanism of injecting faults into files in different storage layers, host memory,

the buffer cache of SSD, and NAND flash memory, as shown in Figure 4.10.

Table 4.2 presents the result of detecting errors of each scheme when inject-

ing faults into different storage layers. In the experiments, the proposed scheme

(Proposed SP, Proposed SPC) detects all errors in the transferred file in NAND

flash memory, while the other schemes do not detect the errors that occurred

42



NAND

Flash

Memory

NAND

Flash

Memory

NAND

Flash

Memory

NAND

Flash

Memory

Buffer Cache (RAM Buffer)

Host Memory

① fault injected to the file on host-memory

② fault injected to the file 

on buffer cache of the storage

③ fault injected to the file on NAND flash memory

Figure 4.10: Robustness test by injecting faults in different data storage layers
on the receiver system

Table 4.2: The results of fault injection experiments in different storage stack
of the receiver system

Host memory Buffer cache Flash memory

File-LevelPpl ✓ - -

RIVA ✓ ✓ -

Proposed SP ✓ ✓ ✓
Proposed SPC ✓ ✓ ✓

in some layers. For example, RIVA [33] could not detect errors that occurred

in NAND flash memory of SSD. On the other hand, file-level pipelining (File-

LevelPpl) [31] only detects errors that occurred in host memory. This is because

data verification is performed with the data stored in the buffer cache of SSD

or host memory with each scheme, not the data stored on NAND flash memory

in SSD. In contrast, the proposed scheme detects the internal failures of the

storage device because the data verifier reads files to be verified directly from

NAND flash memory after guaranteeing the data are written to NAND flash

memory.

43



4.5 Summary

In this chapter, we propose a concurrent and robust end-to-end data integrity

verification scheme for flash-based storage devices. We schedule I/O opera-

tions considering the internal structure and operation of the storage device to

perform an integrity verification with the data written on the final storage me-

dia. By doing this, the proposed scheme detects data corruption that occurred

across storage layers including inside the storage device. To provide data trans-

fer without sacrificing performance, we concurrently perform I/O operations

and integrity verification with the fine-grained data unit. With the prototype

implementation and storage medium state analysis, we guarantee that the pro-

posed scheme performs robust integrity verification with the data written on

the actual final destination. The experimental results with realistic scenarios

demonstrate that the proposed scheme provides robust and reliable data trans-

fer while reducing the entire data transfer time by up to 62% compared with

the existing scheme.

44



Chapter 5

Providing Data Durability in the
Application Layer

5.1 Overview

Database systems are widely deployed in cloud services and applications to

store their data. One important feature of the database system is data backup

and recovery. Database administrators prevent loss and corruption of data by

periodic backup including structure information (e.g., schema, indexes, and so

on) and stored data [76–79]. When a disaster happens to the database system,

such as hardware failure, data corruption due to bugs, system crashes, and other

reasons, the administrators restore the database from the backup. Especially,

services and applications of cloud computing require a mechanism to efficiently

backup continuously increasing data.

For database backup and recovery, two techniques are widely used [80].

One of the techniques is a physical backup [22] that copies files containing the

architecture of the database and the table files. Physical backup is intuitive

45



since backup and recovery can be done by copying the files of the database.

The other technique is a logical backup [80] that scans the entire database

to generate sequences of query statements that can reproduce the database

itself. Since logical backup is based on query statements, so that backup data

is portable across the underlying file systems, OS, and MySQL versions.

Both techniques support two backup and recovery strategies: a full backup

and an incremental backup. The full backup is performed by storing the data of

the entire database, whereas the incremental backup is performed by copying

or scanning data that changed since the latest backup [77, 81–84]. For exam-

ple, Xtrabackup of Percona [22] provides a backup and recovery solution using

the physical backup. Xtrabackup performs the full backup and recovery by

copying the entire files of the database. Meanwhile, the incremental backup is

performed by comparing each data page between the current database and the

latest backup. Xtrabackup writes the pages that have changed since the last

backup to the delta files.

On the other hand, MySQL provides a tool for logical backup, mysql-

dump [23]. Mysqldump scans and extracts the contents of the database to

generate a sequence of query statements for rebuilding the database. When

restoring a backup, mysqldump interprets the query statements and executes

them. For the incremental backup, mysqldump uses a binary log (binlog) that

contains a collection of the events that modify the database. The binlog con-

tains all the query statements in the same order in which they were executed.

Therefore, with binlog, mysqldump performs an incremental backup without

scanning or extracting the data from the database. However, both techniques

require additional I/O operations such as extracting data from the database or

copying files when performing a backup. In addition, both techniques take a

long time to restore the database from backup.

46



In addition to the aforementioned utilities (e.g., Xtrabackup and mysql-

dump), many researchers have investigated to provide backup and recovery

functionality across different layers of the storage stack. For example, ext3cow [34]

and BTRFS [35] support snapshot-based backup and recovery functionality de-

pending on copy-on-write (CoW) strategies. In addition, many researchers have

been investigated providing backup and recovery functionalities on the storage

device itself by modifying the flash translation layer (FTL) of the flash-based

solid-state devices (SSDs) [36,37,40,41]. However, snapshot-based backup pro-

vided by the file systems disrupts normal operations and SSD-supported backup

and recovery functionalities are not available on commodity SSDs.

In this chapter, we introduce an efficient backup and recovery scheme for

database systems by exploiting write-ahead logging (WAL). Our key idea is

to exploit log data created by the existing WAL for database backup without

additional query or I/O operations. Furthermore, we reduce recovery time by

modifying the existing recovery procedure of the database system. To do this,

for backup, we devise a backup system based on the existing log system. In

the backup system, we maintain the backup state of the system by managing

a backup information list. Each node in the list contains backup information

regarding WAL. The backup system stores the system backup state to the

separate file if the state changes, such as creating a new backup or deleting old

backups. Also, we modify the existing procedure of WAL management of the

database system to preserve the log data of WAL. To reduce the recovery time,

we divide the entire recovery range based on the buffer pool size. We reduce

the time to apply log data to the data files by involving multiple I/O threads

of the database system. Besides, we maintain the latest recovery information

to provide data consistency in the case of a system crash during a recovery

operation.

47



We implement the proposed scheme on MySQL 8.0.15 and evaluate the

performance of backup and recovery under synthetic backup and recovery sce-

narios with sysbench benchmark. To evaluate the impact of the storage device

performance on the database backup and recovery, we run the scenario with

different storage device configurations (e.g., the number of devices). The ex-

perimental results show that the proposed scheme provides instant backup and

fast recovery. In addition, regarding the backup, the proposed scheme does not

require additional I/O operations for storing backup data.

In summary, our main contributions are as follows:

• We analyze the existing backup and recovery schemes for the database

system.

• We introduce an efficient backup and recovery scheme using write-ahead

logging to provide instant backup and fast recovery.

• We implement the proposed scheme on MySQL and evaluate its perfor-

mance with a synthetic scenario.

• The experimental results show that the proposed scheme provides fast

backup and recovery speeds compared with the existing backup/recovery

techniques.

5.2 Motivation

The database systems use write-ahead logging (WAL) to provide data con-

sistency and durability. Since WAL contains all the changes of data in the

database, it is one of the most essential components of the database system.

When the data are changed, it must be recorded in WAL first. Before changes

are applied to the data files, the log must be written to the persistent storage.

48



Thus, WAL has a record of all data changes in the database. However, the

data recorded in WAL is temporary. The data of WAL is deleted after they

are applied to their data files. In the proposed scheme, we keep the log data

even they are applied, so that using them as backup data. By using log data of

WAL as backup data, the proposed scheme does not perform additional data

manipulation such as copying when performing a backup.

The recovery procedure of MySQL is executed at MySQL startup and does

not run again until it terminates. The procedure reads and applies log data in

WAL that are not written to their appropriate tablespaces due to unexpected

system terminations. Starting from log data with a checkpoint label, MySQL

scans forward and copies the logged changes to the buffer pool first. If the

buffer pool becomes full while loading log data into the buffer pool, the recov-

ery procedure pauses loading and applies log records in the buffer pool to the

persistent storage device. However, it is done by a single thread responsible for

recovery because it is performed in the middle of the recovery procedure. Since

flushing data in the buffer pool with a single thread is inefficient, the proposed

scheme modifies the existing recovery procedure so that multiple threads can

be involved for the flush operation.

Figure 5.1 presents the existing crash recovery procedure of WAL in MySQL.

Each log data has a unique log sequence number (LSN) that represents the

ordering of the changes. For example, assume that we want to recover pages

between LSNG to LSNN of WAL. The recovery procedure scans log data in

WAL sequentially from the first page of the entire recovery range ( 1○). While

scanning log data, the procedure also copies log data into the buffer pool if

the LSN value of the corresponding data page is smaller than that of the log

data ( 2○). When the buffer pool is full of log data that needs to be recovered,

the procedure pauses scanning and copying log data and begins applying data

49



memory

storage

WAL

LSNG

table 1 table 2 table 3

…
Database

buffer pool size

LSNK…… …… LSNN

buffer pool size

LSNG LSNK……

recv_apply_hashed_log_recs()

scan log data in the entire recovery range

copy log data to the buffer pool②

①

③apply buffer pool data 

to the tablespaces

with a single thread

the entire recovery range

memory

storage

WAL

LSNG
table 1 table 2 table 3

…
Databasebuffer pool size

LSNK…… …… LSNN

buffer pool size

LSNG LSNK……

recv_apply_hashed_log_recs()

scan log data in the 

entire recovery range

copy log data to the 

buffer pool
②

①

③ apply buffer pool data 

to the tablespaces

with a single thread

the entire recovery range

Figure 5.1: Existing Crash Recovery Procedure of Write-Ahead Logging in
MySQL

from the buffer pool to the corresponding data files ( 3○). The existing recovery

procedure performs I/O operations with a single thread, since I/O threads are

sleeping during recovery.

5.3 Design and Implementation

5.3.1 Overall Procedure

Figure 5.2 presents the overall procedure of the proposed scheme. We perform

a full backup by copying the files of the entire database. In the case of per-

forming a full backup and restore, we copy the files of the entire database.

Meanwhile, regarding incremental backup and restore, we use log data of WAL

to provide backup without additional I/O operations and provide restore by

modifying the existing crash recovery procedure. In addition, we maintain a

separate backup/recovery information file that contains information about all

backups and the last recovery.

First, we create the file in the backup directory to store backup information

persistently and to ensure data consistency in the event of a crash during a

50



`LSNI LSNJ… LSNN…
WALRequest 

Backup

Request 

Recovery

latest 

backup 

position

current

backup

position

Set the backup position in WAL

Store backup information 

along with 

other information

Backup/Restore

Information File

Store restore begin/end information

Database

State SX

Database

State SN
`LSNJ LSNN…

apply log data of the recovery range

`LSNI LSNJ… LSNN…
WALRequest 

Backup

Request 

Recovery

latest 

backup 

position

current

backup

position

Set the backup position 

in WAL
Store backup information 

along with 

other information

Backup/Restore

Information File

Store restore begin/end information

Database

State SX

Database

State SN

apply log data of the recovery range

`LSNJ LSNN…

Figure 5.2: Overall Procedure

recovery operation. The file contains summarized backup information, backup

information list, and last recovery information. All information included in the

file is generated and stored during backup and recovery operations.

When the database administrator requests a backup, our system first sets

the current backup position in WAL. For example, as can be seen at the top

of the figure, LSNI is the backup position of the previous backup and LSNN

is the current backup position. After setting the backup position in WAL, we

generate the corresponding backup information including the start position,

end position, timestamp, and so on. Then we update backup information in the

backup/recovery information file along with previous backup information.

When the administrator wants to change the state of the database to a cer-

tain point in the past, we restore the database by applying log data of WAL

according to the backup information we stored in a file. Suppose that the cur-

rent state of the database is SX , and the administrator wants to change the

database state to the past, SN . Our system gets the corresponding backup in-

formation that the administrator wants to restore. Then the system applies log

data from WAL to the database between the recovery range of that backup. In

this example, the log data between LSNJ to LSNN is in the recovery range,

51



Backup Summary Last Recovery Information Backup Information List

  last_backup_lsn   last_backup_id

  valid_backup_count

  backup_id   flags

  start_lsn   end_lsn

  timestamp

  backup_id   flags

  start_lsn   end_lsn

  timestamp

  backup_id   flags

  start_lsn   end_lsn

  timestamp

…
  recovery_flag   recovery_type   recovery_id

  recovery_start_lsn   recovery_end_lsn

  recovery_start_time   recovery_end_time

backup info. 1 backup info. 2 backup info. N

Figure 5.3: Backup/Recovery Information File Format

and we apply that data to the database to change the database state from

SX to SN . To ensure data consistency when a system crash occurs during the

recovery operation, we record the recovery status with corresponding recovery

information to the backup/recovery information file at the beginning and the

end of each operation.

We will explain each procedure in more detail in the following sections.

5.3.2 Design

Backup/Recovery Information Management

We maintain backup/recovery related information in a separate backup/recov-

ery information file as shown in Figure 5.3. The figure presents the file format to

store backup/recovery information. We create the backup/recovery information

file in the backup directory to store information persistently. The file is com-

posed of three parts, the backup summary, the last recovery information, and

the backup information list. The backup summary and the backup information

list contain information about all backups of the current database. We man-

age summarized backup information such as the number of valid backups, and

backup information list that maintains data related to each backup. We also

record information about the last recovery in the backup/recovery information

file, such as the status (e.g., PROCESSING or FINISHED), the type (e.g., full

or incremental), and so on. If a crash occurs during a recovery operation, the

recovery state of the file will remain recorded as PROCESSING, so at the

52



LOG SYSTEM

`LSNG… LSNN……

WAL

current

log

position

latest

backup

LSN

BACKUP SYSTEM

② allocate new backup node

and fill the information
④update backup information file 

with new backup list

Backup/Recovery

Info. File
backupD backupG…

① load the last backup_id and 

the latest backup LSN value 

backupN…

start_lsn end_lsn timestamp

③ insert the node 

to the list

…

Backup/Recovery

Info. File

(a) Log SystemLOG SYSTEM

`LSNG… LSNN……

WAL

current

log

position

latest

backup

LSN

BACKUP SYSTEM

② allocate new backup node

and fill the information
④update backup information file 

with new backup list

Backup/Recovery

Info. File
backupD backupG…

① load the last backup_id and 

the latest backup LSN value 

backupN…

start_lsn end_lsn timestamp

③ insert the node 

to the list

…

Backup/Recovery

Info. File

(b) Backup System

Figure 5.4: Backup Operations in Proposed Scheme

time restart the database system, we restore the database according to the last

recovery information.

Backup Operations

The proposed scheme performs backup based on the physical backup strategy.

Especially, we provide an efficient backup by exploiting log data of WAL. We

first copy the entire files of the database to the designated backup directory to

perform a full backup. To use log data as backup data, we design a structure to

manage backup information as shown in Figure 5.3. We maintain summarized

backup information such as the last LSN value of the latest backup, the latest

ID assigned to the backup, and the number of valid backups. Meanwhile, data

related to each backup are contained in the backup information list.

Figure 5.4 depicts the procedure of backup operations in the proposed

53



scheme. When performing a backup, our backup system first sets the current log

position in WAL and get the current LSN value of the log from the log system.

Then, the backup system loads the last backup id and the latest backup LSN

value from the node at the end of the list ( 1○). For each backup, the backup

system assigns a unique ID and store the timestamp together to distinguish

between different backups. Then, the system allocates a new backup node and

fill the backup information ( 2○).

To use log data of WAL as backup data, the backup system records the

position of WAL at the time of each backup. To indicate the start and end of

each backup, two LSN values are used. To identify the end of the backup, the

backup system reads the LSN value of the last page flushed to WAL from the

log system at the beginning of the backup operation. The LSN value guarantees

that all previous pages have been flushed to WAL. The system stores the LSN

value and uses the value as the end position of the current backup and start

position of the next backup. As a start point for a backup, we use the LSN value

from the previous backup, except for the full backup. Since the full backup has

no preceding backups, the value zero (0) is used for the start point of the full

backup. For example, in the case shown in the figure, LSNG and LSNN are

the start lsn and end lsn of the backup, respectively.

We also define some flag values that represent information of the corre-

sponding backup such as the validity, type (e.g., full or incremental), and so on.

After all information of the corresponding backup is filled in the backup node,

the backup system inserts the node to the end of the backup list ( 3○). Then, the

system updates the backup/recovery information file with the newly updated

list along with the backup summary at the end of each backup operation ( 4○).

To support backup using log data of WAL, we modify the existing WAL

maintenance structure to keep the log data. Instead of overwriting log data

54



memory

storage

WAL Database
buffer pool size

…… LSNN

buffer pool size

divide the recovery range

copy log data to the buffer pool④

③

flush buffer pool to the tablespaces

with multiple threads

buf_flush_sync_all_buf_pools()…

LSNK

scan log data in the recovery range

recovery range 1 recovery range 2

recovery range

the entire recovery range

LSNG …… LSNJ

LSNG …… LSNJ

Backup/Recovery

Info. File

Backup/Recovery

Info. File

table 1 table 2 table 3

…

record start of the recovery
record end of the recovery

①

②

⑤

⑥

memory

storage

WAL Database
buffer pool size

……LSNN

buffer pool size

divide the 

recovery range

copy log data to 

the buffer pool
④

③

flush buffer pool to the tablespaces

with multiple threads

buf_flush_sync_all_buf_pools()…

LSNK

scan log data in the recovery range

recovery range 1 recovery range 2

recovery range

the entire recovery range

LSNG…… LSNJ

LSNG…… LSNJ

Backup/Recovery

Info. File

Backup/Recovery

Info. File

table 1 table 2 table 3

…

record start of the recovery
record end of 

the recovery

①

②

⑤

⑥

Figure 5.5: Recovery Operations in Proposed Scheme

to the existing WAL files, we create a new WAL file to store new log data.

However, since we copy all files of the database as full backup, so we do not

need to preserve log data of WAL in the full backup range. So, after a full

backup is completed, WAL files that contain log data in the full backup range

can be removed.

Recovery Operations

In the proposed scheme, restoring a full backup is performed by copying the

entire files from the backup directory to the data directory. Figure 5.5 describes

the proposed scheme for restoring an incremental backup using log data of

WAL. We propose a recovery scheme by modifying the existing crash recovery

procedure using WAL in MySQL.

Before starting the recovery operation, we record the corresponding recov-

ery information to the backup/recovery information file to indicate that the

55



recovery is started and is in progress ( 1○). By recording the status of the latest

recovery to the file, we provide data consistency by redoing recovery when the

recovery procedure is not completed normally. Unlike the existing procedure,

we first estimate the size of the entire recovery to prevent applying log data

in the buffer pool to the data files by a single thread. If the estimated size

exceeds the buffer pool size, we divide the entire recovery range so that a single

recovery range does not exceed the buffer pool size ( 2○). Then we start the re-

covery procedure of each recovery range. For example, in the case shown in the

figure, we divide the entire recovery range from LSNG to LSNN in two. One

range is from LSNG to LSNJ and the other range is from LSNK to LSNN .

Therefore, we start recovery from LSNG to LSNJ corresponding to recovery

range 1. We scan and read log data in WAL, as the existing procedure ( 3○).

While scanning log data between the recovery range in WAL, we copy log data

to the buffer pool ( 4○). However, we skip log data that are belonging to the

system tablespaces such as MySQL user because we copy files containing sys-

tem information from the backup directory. When all log data in the recovery

range are loaded in the buffer pool, we stop the recovery procedure and flush

the buffer pool by waking up the I/O threads those are sleeping ( 5○). Since

MySQL 8.0 supports scalable WAL [85], we leverage this feature to flush log

data with multiple threads. After the data in the buffer pool are flushed to

the tablespaces, we restart the recovery procedure of the next recovery range.

In other words, we divide the whole recovery range into several independent

recoveries and handle them sequentially. If the recovery procedure completes

normally, we update the backup/recovery information file to indicate that the

last recovery completes successfully ( 6○).

56



5.3.3 Implementation

We implement our scheme in MySQL 8.0.15. We define a set of SQL queries

to use the proposed scheme for backup and recovery of the database such

as CREATE [FULL|INC] BACKUP, RESTORE [FULL|INC] BACKUP, SHOW BACKUPS,

and DELETE BACKUP. Among these SQL queries, RESTORE [FULL|INC] BACKUP

takes a backup id as an argument from the user. The users acquire the backup id

as the return value of the backup operations or find it in the list of valid backups

returned by the SHOW BACKUPS query.

Backup Operations

We define several data structures to manage backup information and add them

to the log t data structure that manages the state of the redo log system of

MySQL. We add atomic variables that represent the state of our backup system

such as backup id, last backup LSN, backup count and so on. We guarantee

the atomicity of such state variables by using the atomic template class provided

by C++11. We manage each backup information with backup node t data

structure that contains backup id, flags, start lsn, end lsn, timestamp,

and so on.

When performing a backup, our backup system assigns a new ID to the cor-

responding backup. Then, the system allocates a new node to store correspond-

ing backup information. At the beginning of each backup, we load the current

value of flushed to disk lsn from the log t structure. This value is used as

end lsn of the corresponding backup and start lsn of the next backup. The

backup system sets the flags of the node and changes state to the valid, then in-

serts a backup node to the global backup info list that manages information

of the entire backups. In the case of performing a full backup, we copy the entire

57



files of the database to the designated backup directory whereas incremental

backup copies the files containing system information. Before terminating the

backup operation, we update the state of the backup system and update the

backup/recovery information file to maintain the latest state persistently.

Recovery Operations

The recovery procedure is performed by passing the backup id that wants to

restore to the RESTORE [FULL|INC] BACKUP query. Before we perform a recovery

procedure, we first pause MySQL service to not accept any transactions from the

users by calling log stop background threads(). Then we set the restore on

flag to inform that our recovery procedure is running. Since the contents of the

backup/recovery information file are loaded at the time of MySQL startup, the

recovery procedure reads the recovery range of the corresponding backup id.

We first record the corresponding recovery information to the backup/recov-

ery information file, such as type (e.g., full or incremental), ID, the start lsn

and end lsn, and so on. At this time, the recovery flag value is set to PRO-

CESSING to indicate that the recovery operation has started and is in progress.

The recovery flag does not change until the recovery operation completes nor-

mally. Then we estimate the size of pages between start lsn to end lsn, which

is the entire recovery range. If the estimated size is larger than the buffer pool

size, we divide the entire recovery range so that data in each recovery range

are smaller than the buffer pool size. For example, pages between LSNG to

LSNN are the entire recovery range in Figure 5.5. In this case, we divide the

recovery range 1 by LSNG to LSNJ and recovery range 2 by LSNK to LSNN

because the entire recovery range is larger than the buffer pool size. Recovery

is performed sequentially for each range to preserve the data order.

For each recovery range, we scan and read log data from WAL. In contrast

58



to the existing recovery procedure, we stop the recovery procedure and wake up

the I/O threads to flush the buffer pool at the end of each recovery range. We

repeat the recovery procedure until the last range is recovered. After restor-

ing data in all recovery range is done, we resume MySQL service by calling

log start background threads(). When the recovery procedure for all recov-

ery ranges completes normally, we set the recovery flag value to FINISHED

and update the backup/recovery information file.

5.4 Evaluation

5.4.1 Experimental Setup

The machine we used in the following experiments is equipped with an Intel

Xeon 2-way E5-2620 which has 16 physical cores with 16GiB memory. We use

Samsung 860 PRO 256GB [86] as storage devices.

We use one SSD to evaluate the performance of each scheme when the data

and backup directories are on the same storage device. On the other hand, we

separate the data and backup directories physically by using two SSDs and

evaluate backup and recovery performance.

We implement our scheme on MySQL 8.0.15 and evaluate its performance

with sysbench OLTP READ WRITE workload [87]. We set the number of

transactions to 35 million and run the workload for 600 seconds resulting in

the entire data size 9GB approximately. We also run the same backup and

recovery scenario with mysqldump [23] and Xtrabackup [22] and compare the

performance.

59



TB0

running transactions (600s)

TB1

Incremental 

Backup
TB2

Incremental 

Backup
TB3

Incremental 

Backup

S1 (t = 0s) S2 (t = 180s) S3 (t = 360s) S4 (t=540s) S5 (t=600s)

Database 

State

Full

Backup

(a) Backup Scenario

Restore 

a full backup

TR0

Restore 

an incremental

backup

TR1

Restore 

an incremental 

backup

TR2

Restore 

an incremental 

backup

TR3

S1S5 S2 S3 S4

Database 

State

(b) Recovery Scenario

Figure 5.6: Backup and Recovery Scenario

5.4.2 Performance Results and Analysis

Backup and Recovery Scenario

In this section, we describe a synthetic scenario that we designed to evaluate the

backup and recovery performance of the proposed scheme compared with the

existing schemes. Figure 5.6 depicts a backup and recovery scenario used in the

following experiments. In the scenario, we perform a full backup before running

transactions. The transactions are executed for 600 seconds while executing an

incremental backup every 180 seconds. As shown in Figure 5.6a, the database

is growing from state S1 to S5 over time. The time for a full backup is denoted

by TB0 and incremental backups are denoted by TB1 to TB3.

We present the entire recovery scenario in Figure 5.6b. To restore an incre-

60



mental backup, all the previous backups must be restored sequentially. There-

fore, we evaluate recovery time as the accumulated time for restoring the current

backup. Starting at the database state S5, we restore a full backup and change

the database state to S1. The time for restoring a full backup is denoted by

TR0. The following incremental backups are restored sequentially and change

the database state from S1 to S4. The entire time for restoring each incremen-

tal backup is denoted by TR1 to TR3. For example, in the case of restoring an

incremental backup and changing the database state to S2, we first restore a

full backup and then the first incremental backup in order. The recovery time

is denoted by TR1, which is the total time for changing the database state from

S5 to S2.

Backup and Recovery Performance

Figure 5.7 demonstrates the database backup and recovery time between differ-

ent schemes. Figures 5.7a and 5.7b show the time for each backup with Xtra-

backup, mysqldump and proposed scheme according to the backup scenario

described in Section 5.4.2. As can be seen, the time for a full backup of existing

schemes takes longer than that of the proposed scheme. In the case of the full

backup, using two SSDs to physically separate the backup data from the data

is 26% and 43% faster than using one SSD in Xtrabackup and the proposed

schemes, respectively. Since Xtrabackup and the proposed scheme copy the files

of the entire database to the designated backup directory for the full backup, so

increasing the total bandwidth of the underlying storage device reduces backup

time. Different from Xtrabackup, the proposed scheme spends less time for full

backup because the proposed scheme performs no additional operations other

than copying files. In contrast, mysqldump generates SQL query sequences by

extracting table structures and data from the database using SELECT queries,

61



0

20

40

60

80

100

120

140

160

TB0 TB1 TB2 TB3

ti
m

e 
(s

)

xtrabackup mysqldump proposed

(a) Backup Time with One SSD

0

20

40

60

80

100

120

140

160

TB0 TB1 TB2 TB3

ti
m

e 
(s

)

xtrabackup mysqldump proposed

(b) Backup Time with Two SSDs

0

1000

2000

3000

4000

5000

TR0 TR1 TR2 TR3

ti
m

e 
(s

)

xtrabackup mysqldump proposed

(c) Recovery Time with One SSD

0

1000

2000

3000

4000

5000

TR0 TR1 TR2 TR3

ti
m

e 
(s

)

xtrabackup mysqldump proposed

(d) Recovery Time with Two SSDs

Figure 5.7: Backup and Recovery Time with SSDs

the total bandwidth of the underlying storage device does not affect the backup

time.

However, in the case of the incremental backup, mysqldump and the pro-

posed scheme show the instant backup speed. Xtrabackup takes the longest

incremental backup time since it requires scanning the entire tables in the

database and previous backup data to generate delta files. For mysqldump, the

time for each incremental backup is 4/4, 6/5, and 8/6 seconds using one/two

SSDs, respectively. Mysqldump uses binlog for incremental backups, which

records that a backup event has occurred in the binlog file as described in

Section 2.3. In the proposed scheme, each incremental backup takes only one

second regardless of the number of the underlying storage device. The reason

62



for performing the incremental backup instantly is that the backup operation

is performed by utilizing log data of WAL without copying or comparing data.

Meanwhile, unlike backup time, mysqldump takes the longest time to re-

store a full backup. Figures 5.7c and 5.7d present the time for each recovery

with Xtrabackup, mysqldump and proposed scheme according to the recovery

scenario described in Section 5.4.2. Mysqldump interprets and executes SQL

queries in the backup SQL sequences, whereas Xtrabackup and the proposed

scheme copy back the files from the backup directory to the data directory.

However, Xtrabackup takes more time as we restore incremental backups be-

cause it restores the database from the delta file page by page by a single

thread. Different from Xtrabackup, the proposed scheme copies files containing

system information and restores data that does not belong to it. In addition,

the proposed scheme flushes the buffer pool with multiple threads by modifying

the existing recovery procedure of MySQL. As a result, after restoring all the

incremental backups, the recovery time of the proposed scheme is much faster

than that of other schemes. Regarding recovery, using two SSDs to separate

backup data reduces time to restore the full backup compared with using one

SSD by 32% and 27% with Xtrabackup and the proposed scheme, respectively.

Using two SSDs increases the total bandwidth of the underlying storage device,

resulting in reduced data copy time.

In summary, the proposed scheme provides instant backup and fast recovery

compared with the existing schemes. Using log data of WAL eliminates addi-

tional I/O operations such as data scanning or copying, so the proposed scheme

provides instant backup time.

63



5.5 Summary

In this chapter, we propose an efficient backup and recovery scheme for database

systems. Our key idea is using log data of write-ahead logging (WAL) of the

database for backup and recovery. We develop a backup system that manages

backup information by using log data of the existing system without additional

I/O operations. Furthermore, we optimize the existing crash recovery proce-

dure of WAL by utilizing multiple threads. We implemented and evaluated

our scheme in a popular database system, MySQL. The experimental results

demonstrate that the proposed scheme provides instant backup by eliminat-

ing additional I/O operations. Moreover, the proposed scheme provides fast

recovery performance compared with the existing schemes.

64



Chapter 6

Providing Data Durability in the
Network Layer

6.1 Overview

Write-ahead logging is a common technique in mission critical systems, such

as database systems, file systems, and transaction processing systems, for en-

suring data integrity and reliability [88–90]. However, to provide short-term

data durability, most systems bear a high cost in terms of resource utilization

and performance. For example, in MySQL [91], write-ahead logging file size is

48MB1 to store 4KB page entries, and in RocksDB [92], write-ahead logging file

size is 64MB1 to store key-value pairs. Previous studies [45, 46, 93] claim that

write-ahead logging in the critical path slows down system performance by up

to 70%. Our experiments shown in Figure 6.1 also indicate that write-ahead

logging in the critical path degrades throughput by 45% and 20% on average

for transaction processing workload and social graph workload, respectively. In

1default configuration, configurable value

65



0

10000

20000

30000

40000

50000

60000

70000

T
h

ro
u

g
h

p
u

t 
(T

p
m

C
)

wWAL woWAL

(a) Transaction processing

0

10000

20000

30000

40000

50000

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
)

wWAL woWAL

(b) Social graph

Figure 6.1: Throughput comparison with and without WAL

other words, we should pay indispensable costs (e.g., performance degradation,

and additional resources) to provide short-term data durability that is rarely

used.

Many researchers have investigated optimization techniques that persist log

data on non-volatile memory to reduce logging overhead [44–49]. For exam-

ple, NVWAL [48] introduced byte-granularity differential logging and user-level

heap management to take advantage of the byte-addressability of NVM. NV-

Logging [49] proposed NVRAM-aware per-transaction logging to efficiently ex-

ploit the byte-addressability of NVM. Different from these software logging

approaches [48,49], Joshi et al. [46] and Shin et al. [47] suggested hardware log

manager that provides logging operations out of the critical path. Despite the

fact that several research efforts have been devoted to reduce logging overhead,

logging operations still remain on the critical path (software logging) [48,49] or

require special hardware instructions (hardware logging) [46,47].

In this chapter, we propose an in-transit logging (ITLogging) scheme to

66



provide fault-tolerance by logging the important data in the network layer using

deep packet inspection technique. Deep packet inspection is commonly used for

network security or traffic management [51–62]. Unlike the common approaches,

we employ deep packet inspection to identify the important data to be logged

before being processed, allowing us to move logging operations out of the critical

path without the help of special hardware or instructions. For recovery, we

mimic clients using recorded packets of ITLogging and restore the database by

making the server believe that clients are sending normal requests. ITLogging

preserves the global ordering of data by replaying packets maintaining the order

of arrival and distinguish packets based on their original source port number.

To demonstrate the effectiveness of the proposed scheme, we evaluate log-

ging and recovery performance on the MySQL database system using two types

of workload, transaction processing and social graph. We evaluate the perfor-

mance of each workload while performing logging operations in the network

layer through packet inspection using a dedicated core. Also, we measure the

recovery time according to the logging duration. The experimental results show

that ITLogging enables to log the important data without sacrificing workload

performance by using separate cores.

In summary, our main contributions are as follows:

• We propose an in-transit logging scheme, ITLogging, that records the im-

portant data in the network layer using deep packet inspection technique.

• We provide fault-tolerance with almost no cost by mimicking a client on

the target host system and replaying original requests.

• We demonstrate that ITLogging provides fault-tolerance in the database

system using small amount of computing resources without adding any

delays in the critical path.

67



6.2 Motivation

Logging is commonly used for providing fault-tolerance when unexpected sys-

tem malfunctions occur. In most database systems, logging occurs during the

processing of clients’ write requests. However, performing logging operations

during write request handling incurs delays which lead to performance degra-

dation. According to several previous studies, in the case of transaction process-

ing, logging operations degrade workload throughput by 40% on average and

up to 70% even exploiting the characteristics of emerging non-volatile mem-

ory because logging operations occur in the critical path [46,47]. On the other

hand, RocksDB spends 68.1% and 81.0% of its overall write processing time

on logging on a SATA and Optane SSD, respectively, according to SpanDB’s

analysis of write request processing stages [94].

We conduct preliminary experiments to check the performance degradation

in MySQL caused by logging operations under different workloads. Figure 6.1

presents the difference in request processing throughput with and without log-

ging operations under transaction processing and social graph workloads. As

can be seen, logging operations during request processing decrease MySQL per-

formance by up to 45%. That is, moving logging operations out of the critical

path may result in performance improvements.

6.3 Design and Implementation

6.3.1 Design

In this section we introduce the design details for ITLogging, in-transit logging

scheme for providing fault-tolerance by preserving the important data out of

the critical path. We first introduce the logging procedure using the deep packet

inspection technique and then explain how to perform recovery with preserved

68



Packet Filter

Ether IP TCP

Frame/Packet

Header Parser

Connection

Data Classifier

Query

Packet Extractor

Log Writer

(a) Logging Component

Log Parser

Log Classifier

Connection Handler

Log Replayer

...

Request Handler

Response Handler

(b) Recovery Component

Figure 6.2: Component diagram for logging and recovery

data in the network layer. We then describe how to guarantee the correctness

and global ordering in the recovery procedure.

Logging Procedure

The component diagram for preserving the important data using deep packet

inspection is presented in Figure 6.2a.

In order to inspect whether the packet contains the data of the target appli-

cation, we first analyze the header information by traversing each layer of the

network stack, as explained in Section 2.4. All packets whose destination does

not match the IP address and port of the target server system are filtered out by

the Packet Filter. The Frame/Packet Header Parser inspects headers of ether-

net, IP, and TCP by sequentially, leaving only the packets containing the data

69



of the target application. In the ethernet and IP layers, we check the protocol

of the encapsulated packet is IPv4 and TCP, respectively. We then check the

payload length at the TCP layer, remaining only packets with payload lengths

greater than zero and filtering out the rest; the packets whose payload length

is greater than zero only contain the application data that we want.

The packets that have survived so far contain data to be used for recovery

in the case of system malfunctions, thereby before further proceeding to inspect

the payload, the Packet Extractor extracts some important values of the fields

from the TCP header. The Packet Extractor extracts and records the following

field values from the TCP packet: source port, sequence number, and payload

length. The source port is used for isolating transactions from different clients

during the recovery. If we can not distinguish which transaction each request

belongs to, the consistency of the database can not be guaranteed. Assume

there are two independent transactions executed by two different clients. If two

transactions are guaranteed to execute independently, even if one is aborted by

rollback, the other should not be affected. In such cases, if transaction isolation

is not guaranteed, the database consistency will be broken; a transaction that

should be aborted will be committed or a transaction that should be committed

will be aborted. We record the source port information along with the payload

data so that requests from different transactions can be distinguished during

recovery, thereby preventing database consistency from being broken. The se-

quence number is used to preserve request orders between packets from the

same client. The payload length is used for identifying the total length of the

data that will be logged because payload data is variable length.

After completing the extraction of header fields required for recovery, the

Data Classifier then inspects the payload of the packet and classifies packets

into two types; those containing data for establishing the initial connection

70



Source

Port

(2B)

Sequence

Number

(4B)

Payload

Length

(4B)

Payload

Data

(length B)

Figure 6.3: Log Format

(Connection) and those containing the queries modifying the database state

(Query). When the data of type Connection arrives, the Data Classifier first

stores the data in a separate data structure, a hash table. In ITLogging, the log

file is periodically truncated because we only keep log data for a short period of

time. Thus, the data of type Connection, which is required for connection estab-

lishment, should be maintained separately and always be included whenever a

log file is truncated and newly generated. In order to distinguish the connection

data of different clients, the Connection type data is stored separately based on

its source port; and then Data Classifier passes the data together with extracted

information such as source port, sequence number, and payload length to the

Log Writer. Unlike the Connection type data, Query type data is not reused

and only needs to be logged, so when the Query type data arrives, the Data

Classifier passes the data together with information extracted by the Packet

Extractor to the Log Writer.

The final step of logging is persisting log data in the non-volatile storage

medium. The Log Writer is responsible for storing the log data safely in the

storage medium. A single log entry consists of source port, sequence number,

payload length, and variable-length payload data, as shown in Figure 6.3. When

all information composing a single log entry is transferred from the Data Clas-

sifier, the Log Writer first concatenates it into a single data stream. Then the

Log Writer atomically writes a single log entry to the log file.

71



Checkpointing

Checkpointing is accomplished by periodically recording the processed packets.

According to MySQL policy, we set the recording period to one second. Every

second, the completed packet is recorded in a separate file for storing check-

pointing information including packet number, time, and packet payload. We

maintain two files for storing packets, each of which contains packets for ten

seconds. The file size is configurable depending on the type of workload. For

example, we configure the file size for storing packets for transaction process-

ing, TPC-C, to 40 MB, whereas we configure it to 120 MB for social graph,

LinkBench. Every file contains packets for initial connections through individual

source port. We support partial recovery with this information, which avoids

re-executing already completed packets and only processes packets that have

been requested but not yet been processed.

Recovery Procedure

According to the logging procedure, the payload data of the original request

packet is stored in the log file without any modification. That is, we can easily

restore database status by sending the original requests. Therefore, we mimic

the original clients on the host system, making the illusion of multiple clients

sending requests to the server. The component diagram for mimicking the client

that performs recovery is presented in Figure 6.2b.

The first step for recovery is read log entries from the log file. The Log Parser

first reads the log file that stores log entries that need to be restored. The Log

Parser loads log entries into the memory based on the log format depicted in

Figure 6.3.

The Log Classifier identifies the type of the log entry, Connection or Query,

72



which was classified by the Data Classifier during logging procedure. If the log

entry is Connection type, it is collected separately based on the source port

and used for connection establishment. If the log entry is Query type, the Log

Classifier assigns a unique and global recovery sequence number. The Query

type log entries are maintained independently for each source port.

The Connection Handler establishes distinct connections equal to the num-

ber of original connections, NC . We launch NC threads with Connection data of

each source port and establish independent NC connections within each thread.

Individual connections are mapped to each source port and are used to replay

requests sent from each source port to ensure transaction isolation between

clients. After establishing a connection that corresponds to each source port

within each thread, the connection information, such as socket descriptor, is

mapped and maintained one by one to each source port.

Because multi-threaded log replay introduces a high overhead for preserv-

ing global order between original requests, the Log Replayer, a key component

of recovery, operates within a single thread. The Log Replayer is composed of

two network packet handlers; the Request Handler and Response Handler. The

Request Handler sends requests as the original client did by sending log data

through the connection mapped to its source port according to the global recov-

ery sequence number assigned by the Log Classifier. In order to guarantee the

global order, the Request Handler does not send the next request until the re-

sponse to the previous request in each transaction (i.e., each connection) arrives.

In other words, within a single transaction (single connection), the request will

be send after the preceding request processing is completed. When the server

has completed processing the request, it sends a response in the same manner

as it did in response to the original client request. The response is managed

by the Response Handler. Unlike the original clients, recovery does not need

73



Socket for

Client A's Packet

Socket for

Client B's Packet

Socket for

Client C's Packet

Socket for

Client D's Packet

Packet of Client A Packet of Client B Packet of Client C Packet of Client D

(a) Single Poll (SPoll)

Socket for

Client A's Packet

Socket for

Client B's Packet

Socket for

Client C's Packet

Socket for

Client D's Packet

Packet of Client A Packet of Client B Packet of Client C Packet of Client D

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Order #1

send()

poll()

recv()

Order #2

send()

poll()

recv()

Order #3

send()

poll()

recv()

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Establish a 

Connection

Send initial

packets

Order #1

send()

Order #2

send()

Order #3

send()

poll()

recv()

Order #4

poll()

recv()

poll()

recv()

send()

FREE

WAITING_RSP

SENDING

SENDING

FREE

(a) Single Poll (SPoll) (b) Batch Poll (BPoll)

Order #1

send()

poll() & recv()

FREE

WAITING_RSP

SENDING

SENDING

FREE

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

Order #2

send()

poll() & recv()

Order #3

send()

poll() & recv()

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

Establish a

Connection

Send initial

packets

(b) Batch Poll (BPoll)

Order #1

send()

Order #2

send()

Order #3

send()

Order #4

poll()

recv()

poll()

recv()

poll()

recv()

send()

Figure 6.4: Recovery procedure by replaying original requests

to process response data since recovery aims to restore the database server’s

state. However, in order to confirm that the request has been processed by the

server and to proceed with subsequent requests, the response data should be

read from the TCP buffer.

The Log Replayer performs recovery by replaying log entries one by one, just

like the original request execution. The Log Replayer consists of the Request

Handler and Response Handler. The Request Handler replays log entries one

by one. The Request Handler sends only one request pertaining to a specific

connection across all connections. That means log entries are restored one by one

sequentially. Assume that original requests have performed with four distinct

connections as shown in Figure 6.4. First, the request originating from client

74



WAITING_RSPSENDINGFREE

Packet sent 

through it's port

Waiting

response

Ready to 

send packet

Figure 6.5: Finite state machine of connection

A is sent through the corresponding connection to the server and waits until

the response arrives. Other connections are idle while the first log entry is

being processed. After the first log entry has been processed, the subsequent

log entry, whose global recovery sequence number is two, is sent through the

corresponding connection to the server. Until the last log entry, all log entries

are processed in the same way, one by one.

Figure 6.5 describes the finite state machine for each connection. There

are three states a single connection can have: FREE, SENDING, and WAIT-

ING RSP. All connections are set to a FREE state initially. During recovery, a

log entry belongs to a connection can be processed through the connection with

the FREE state; when the request is submitted, the connection’s state changes

to SENDING. Then the Response Handler waits and processes corresponding

response. When response processing is completed, the state of the connections

is changed to FREE and the Request Handler continues restoring the database.

75



Payload

Data

(length B)

Server

Port 3306

Client A

4208

Client B

4210

Client C

4212

Client D

4214

Figure 6.6: Example of packet serialization on the server system

Global Ordering

Usually, service server provides a single port to receive requests from multi-

ple clients. For example, MySQL receives requests through port 3306 (default

configuration). That is, the request packets from the number of clients are se-

rialized in the server system’s service port. All the requests sent from multiple

clients are serialized in the order they arrived at the server port as in the ex-

ample shown in Figure 6.6. Therefore, our scheme guarantees global ordering

of the original requests by sending packets in the order they captured on the

server side during recovery. At the time of recovery, the Log Classifier assigns

a unique number, the global recovery sequence number, to each Query type log

entry based on the entry’s sequence number, source port, and the written order

in the log file. The Log Replayer sends requests to the server according to its

global recovery sequence number.

However, ensuring global order between requests from multiple clients in-

troduces overhead of restoring the database during recovery procedure. We will

explore the overhead caused by ensuring global ordering in Section 6.4.2

76



6.4 Evaluation

6.4.1 Experimental Setup

We evaluated the proposed in-transit logging scheme using two machines di-

rectly connected by a 10Gbps network. Each machine is equipped with an Intel

Xeon W-2245 3.9GHz processor (16 cores with hyper threading), 32GB memory,

and Intel P4510 4TB NVMe SSD. We used Ubuntu 18.04 with Linux Kernel

5.13 and ext4 file system, with MySQL 8.0. We evaluated our scheme using

two workloads, transaction processing and social graph workload. For trans-

action processing workload, we used TPC-C [95] implementation, tpcc-mysql,

developed and provided by Percona [96]. For social graph workload, we used

LinkBench [97] on MySQL with MyRocks [98] storage engine.

6.4.2 Performance Results and Analysis

Logging Performance

We measure and compare the performance of transaction processing and social

graph workload on the following MySQL configurations.

• MySQL-wWAL represents unmodified MySQL server that providing

fault-tolerance using write-ahead logging.

• MySQL-kWAL represents MySQL server that keeps log data for backup

and recovery (proposed scheme in Chapter 5).

• MySQL-woWAL represents unmodified MySQL server but does not

provide fault-tolerance by disabling write-ahead logging. Transaction through-

put under MySQL-woWAL gives us an ideal performance baseline.

77



0

10000

20000

30000

40000

50000

60000

70000
T

h
ro

u
g

h
p

u
t 
(T

p
m

C
)

MySQL-wWAL MySQL-kWAL MySQL-woWAL MySQL-ITLogging

0

10000

20000

30000

40000

50000

60000

70000

T
h
ro

u
g

h
p

u
t 

(r
e

q
u

e
s
ts

/s
)

(a) Transaction processing

0

10000

20000

30000

40000

50000

T
h
ro

u
g

h
p

u
t 

(r
e

q
u

e
s
ts

/s
)

(b) Social graph

Figure 6.7: In-transit logging throughput comparison

• MySQL-ITLogging represents that the proposed logging scheme is used

for providing fault-tolerance.

For transaction processing workload, we run TPC-C transaction for 600 sec-

onds using 16 clients and measure transaction throughput of different MySQL

configurations. Figure 6.7a shows transaction throughput of TPC-C on differ-

ent MySQL configurations. The throughput improves by 1.45x when MySQL

does not perform write-ahead logging (MySQL-woWAL). With ITLogging,

MySQL server does not need to perform write-ahead logging since we guaran-

tee fault-tolerance by logging the important data in the network layer using

deep packet inspection. Moving procedures for providing fault-tolerance out of

the critical path results in throughput improvement, and the proposed scheme

improves throughput by 1.42x compared to the baseline (MySQL-wWAL), as

shown in the figure.

For social graph workload, we run 500,000 requests using 16 clients and mea-

78



0

20

40

60

80

100

120

140

ti
m

e
 (

s
)

Normal Execution Recovery

(a) Transaction processing

0

10

20

30

40

50

60

70

80

ti
m

e
 (

s
)

Normal Execution Recovery

(b) Social graph

Figure 6.8: Recovery time comparison

sure the number of requests processed per second. Figure 6.7b shows LinkBench

throughput on different MySQL configurations. The throughput improves by

1.20x when MySQL does not perform write-ahead logging (MySQL-woWAL).

The proposed scheme improves social graph processing throughput by 1.18x

compared to the baseline (MySQL-wWAL), as shown in the figure.

The overhead incurred by packet inspection is under 2%, which is negligible,

in both transaction processing and social graph workloads. We also measure the

throughput of two workloads while keeping log data for backup and recovery

as proposed in Chapter 5. As shown in the figure, keeping write-ahead log data

(MySQL-kWAL) incurs 2% throughput degradation on average compared

with the baseline (MySQL-wWAL) on both workloads.

Recovery Time

We measure the recovery time of the proposed scheme under various sizes of log

files. We measure the recovery time with log files of requests that are normally

executed during 10, 20, 30, and 60 seconds. The results are shown in Figure 6.8.

Recovery takes longer than normal execution because the proposed scheme

79



0

5

10

15

20

25

30

ti
m

e
 (

s
)

Normal Execution Recovery Partial Recovery

(a) Transaction processing

0

2

4

6

8

10

12

14

ti
m

e
 (

s
)

Normal Execution Recovery Partial Recovery

(b) Social graph

Figure 6.9: Partial recovery time comparison

guarantees global ordering and isolation between requests from different clients.

However, recovery occurs rarely and only needs to be performed at system

reboot after the system malfunctions.

Partial Recovery Time

Our scheme support partial recovery by leveraging checkpointing. With log

files of requests that are normally executed during 10 seconds, we measure

the partial recovery time. The results are shown in Figure 6.9. The error bars

indicate minimum and maximum partial recovery time depending on trials.

We measure 10 times of partial recovery for each workload. Partial recovery

substantially reduces the recovery time by processing only packets that have

not been processed after checkpointing.

Resource Utilization

Table 6.1 presents a single log file size according to logging duration. The size of

the log file grows in proportion to the logging duration, as shown in the table.

80



Transaction
processing

Social
graph

10s 40MB 114MB

20s 85MB 227MB

30s 128MB 362MB

60s 260MB 724MB

Table 6.1: Log file size

Transaction
processing

Social
graph

MySQL-wWAL 12.24 11.66

MySQL-woWAL 11.16 11.77

MySQL-ITLogging-Server 10.84 11.38

MySQL-ITLogging-Logging 0.22 0.12

Table 6.2: CPU core utilization

Depending on the workload, the size of the log file may vary even for the same

duration. For example, for requests of 10 seconds, the log file size of the trans-

action processing is 40MB whereas that of the social graph is 114MB, which is

2.85 times bigger. This is because the encoding format of each workload’s re-

quest is different. For social graph workloads, clients send query statements, but

for transaction processing workloads, clients send encoded data using MySQL

command.

To minimize the performance interference (e.g., context switch) due to log-

ging operations, we allocate a separate core to inspect packets and preserve data

in the network layer. Table 6.2 shows the required number of cores on average

under different MySQL configurations. As can be seen, the proposed scheme

requires less than 25% of a single core to provide fault-tolerance for database

systems; the average number of cores required for transaction processing and

social graph workload is 0.22 and 0.12, respectively. In other words, the pro-

posed scheme guarantees fault-tolerance for database systems while using less

81



than 2% of the total CPU usage.

Correctness

To verify the correctness of recovery by the proposed scheme, we performed

the entire database comparison by performing select queries to each table. We

compared all the data stored in each table of the database as a result of normal

execution and all the data stored in each table of the database restored by the

log file generated by the proposed scheme, which is generated by inspecting

packets in the network layer. We performed row-by-row comparisons of all data

using the diff utility. The results are completely matched, which means the

proposed scheme ensures database correctness.

6.5 Summary

In this chapter, we propose an in-transit logging (ITLogging) scheme using deep

packet inspection technique. Our key idea is providing fault-tolerance without

any delay in the critical path by inspecting packets in the network at the des-

tination. ITLogging enables to log the important data with negligible perfor-

mance overhead by inspecting incoming packets in the network layer before

being processed. Our proposed scheme guarantees fault-tolerance by delivering

original requests mimicking clients on the target host system. The experimental

results demonstrate that ITLogging can improve workload performance while

providing fault-tolerance only with small amounts of computing resources.

82



Chapter 7

Discussion

7.1 Providing Data Durability for Storage and Database

Systems

We proposed three optimization schemes to provide data durability efficiently

on different software layers. First, for the storage layer, we presented a concur-

rent and robust end-to-end data integrity verification scheme by reordering I/O

operations and overlapping them with checksum computations. Second, on the

application layer, we presented an efficient backup and recovery scheme by ex-

ploiting write-ahead logging. Finally, we presented an in-transit logging scheme

that performs logging operations on the network layer by inspecting packets to

overcome the limitations of archiving log data. In this section, we will discuss

about how the proposed schemes can be integrated into a single system.

Suppose a scenario that transfers a large amount of data and uses a database

to organize the information for archiving them. First, we can consider schedul-

ing I/O operations with database system query processing operations. To pro-

83



vide robust and efficient data durability for storage and database systems, we

overlap and reorder I/O operations for storing data in storage systems while

processing queries for indexing data on the database system. Second, we may

consider delaying checksum computation within the database system itself after

data is stored in the storage device’s final destination. Database systems, such

as MySQL, have their own checksum computation to ensure data durability

within the system. We could delegate checksum computation to the database

system, allowing storage systems to focus on I/O operations in the correct order.

Putting them all together, we are able to provide data durability for storage and

database systems by delegating checksum computation to the database system,

scheduling I/O operations to perform integrity verification after data is stored

in the final destination, and overlapping them. Furthermore, by supporting log-

ging operations through packet inspection on the network layer, we are able to

support robust and efficient data durability on different software layers at the

same time.

7.2 Limitations

In previous chapters, we demonstrated how our schemes work to efficiently

provide data durability on different software layers. Although we address the

problems raised in previous chapters, such as long data processing times and

additional I/O operations, some limitations remain.

In the case of providing data durability for the storage layer, we utilize

idle CPU resources to reduce the entire data transfer time including integrity

verification. Our scheme requires at least three physical CPU cores to handle

each operation without interfering with each other in order to overlap I/O

operations with checksum computations. Our scheme involves more than three

84



dedicated physical CPU cores to handle operations efficiently, depending on

the number of concurrent verifiers and data sizes. For example, in the scenario

described in section 4.4, the maximum CPU utilization is 800% when eight

concurrent verifiers are launched, implying that we use eight physical CPU

cores at the same time. This is due to the fact that we divide and assign specific

data ranges to dedicated CPU cores for concurrent verification. In the future, we

expect that computational storage devices with built-in processors and memory

will allow us to offload checksum computations to storage devices, reducing the

number of CPU cores required and allowing them to be used for other purposes.

For the database systems, the proposed scheme for providing data durabil-

ity on the application layer successfully eliminates additional I/O operations for

backup and recovery. However, as previously stated, archiving log data degrades

system performance, and logging operations are still taking place on the criti-

cal path. To address the problem, we introduced an in-transit logging scheme

in Chapter 6. Although successfully demonstrating that our scheme allows us

to remove logging operations from the critical path, we do have some limita-

tions. Our scheme dedicates CPU cores to inspect incoming packets without

affecting system performance. Despite the fact that the number of CPU cores

required for inspection is small, core separation efforts are necessary. In the

future, we may consider employing programmable network interface cards to

delegate inspection of incoming network packets to overcome such limitations.

85



Chapter 8

Conclusion

In this dissertation, we presented three optimization schemes to efficiently pro-

vide data durability on different software layers: the storage, application, and

network. By leveraging idle resources and exploiting ready-to-use data includ-

ing write-ahead log and incoming packets, we efficiently provide data durability

for storage and database systems.

For the storage layer, we first explored the internal structure and operations

of flash-based storage devices and analyze the bottleneck of the data transfer

procedure including verification. We identify two problems: the internal op-

erations of the storage device are not sufficiently considered in existing data

integrity verification schemes and the checksum computation takes more than

50% of the time in the entire procedure. We presented a concurrent and robust

end-to-end data integrity verification scheme that employs idle CPU resources

to reorder I/O operations and parallelize checksum computations to provide

robust data durability without increasing data processing time. On the appli-

cation layer, we investigated existing database backup and recovery techniques

86



and identify that existing schemes require additional I/O operations for extract-

ing data from the database or copying the entire database files. We presented

an efficient database backup and recovery scheme by exploiting write-ahead

logging (WAL) to eliminate additional I/O operations. Archiving log data for

backup, on the other hand, still requires logging operations on the critical path

and introduces additional management overheads. To mitigate the overhead by

archiving log data, we introduced an in-transit logging scheme, inspired by the

fact that important data usually comes from external sources through the net-

work. We preserve important data in the network layer by inspecting incoming

packets and restore them by sending original requests through emulated clients.

Experimental results under realistic scenarios using several benchmarks show

that the proposed schemes efficiently provide data durability for storage and

database systems on different software layers by leveraging idle resources and

ready-to-used data.

Although we successfully provide data durability without increasing data

processing times or additional I/O operations, there are some limitations. As

aforementioned in section 7.2, the proposed schemes require additional com-

puting resources (i.e., higher average and total CPU utilization) and resource

management (i.e., core separation). One of the possible future research direc-

tions is offloading procedures for data durability to programmable hardware,

such as computational storage devices or programmable network interface cards

(a.k.a. SmartNIC), to reduce CPU overhead. Computational storage devices,

such as SmartSSD [99], enable storage functions to be offloaded to storage de-

vices without transferring data between storage devices and host systems. Re-

lying on built-in processors and memory, we expect that storage system to be

able to provide a higher level of robustness in procedures of integrity verification

without extra computing resource consumption. This allows the storage system

87



to concentrate on its main I/O operations rather than I/O and computation for

integrity verification, which is expected to improve system performance. Like

storage systems, database systems can also employ programmable hardware,

such as SmartNIC, to offload functions to ensure data durability without ad-

ditional CPU consumption or management. For example, the proposed scheme

that provides data durability on the network layer, in-transit logging, enables

filtering and storing incoming packets in the network device without separating

cores to inspect packets. We believe that adopting programmable hardware will

provide more strong data durability without requiring additional resources.

88



Bibliography

[1] A. S. Andrae, “Prediction studies of electricity use of global computing

in 2030,” International Journal of Science and Engineering Investigations,

vol. 8, no. 86, pp. 27–33, 2019.

[2] A. S. Andrae and T. Edler, “On global electricity usage of communication

technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[3] “What Does 11 Nines of Durability Really Mean? - Wasabi.”

https://wasabi.com/blog/11-nines-durability/, 2022 (accessed 10 October

2022).

[4] H. Kim, I. Hwang, J. Lee, H. Y. Yeom, and H. Sung, “Concurrent and

Robust End-to-End Data Integrity Verification Scheme for Flash-Based

Storage Devices,” IEEE Access, vol. 10, pp. 36350–36361, 2022.

[5] H. Kim, H. Y. Yeom, and Y. Son, “An efficient database backup and recov-

ery scheme using write-ahead logging,” in 2020 IEEE 13th International

Conference on Cloud Computing (CLOUD), pp. 405–413, IEEE, 2020.

[6] H. Kim and H. Y. Yeom, “In-Transit Logging: Fault-Tolerance with Almost

No Cost,” under review.

89



[7] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil, S. Yoon, and J. Cha, “Vssim:

Virtual machine based ssd simulator,” in 2013 IEEE 29th Symposium on

Mass Storage Systems and Technologies (MSST), pp. 1–14, 2013.

[8] D. He, F. Wang, H. Jiang, D. Feng, J. N. Liu, W. Tong, and Z. Zhang,

“Improving hybrid FTL by fully exploiting internal SSD parallelism with

virtual blocks,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 11, no. 4, pp. 1–19, 2014.

[9] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in

flash-memory-based solid-state drives: Analysis, mitigation, and recovery,”

arXiv preprint arXiv:1711.11427, 2017.

[10] W. Xie and Y. Chen, “A Cache Management Scheme for Hiding Garbage

Collection Latency in Flash-Based Solid State Drives,” in 2015 IEEE In-

ternational Conference on Cluster Computing, pp. 486–487, 2015.

[11] M. Wajahat, A. Yele, T. Estro, A. Gandhi, and E. Zadok, “Distribution

Fitting and Performance Modeling for Storage Traces,” in 2019 IEEE 27th

International Symposium on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS), pp. 138–151, 2019.

[12] M.-K. Seo and S.-H. Lim, “Deduplication flash file system with PRAM for

non-linear editing,” IEEE transactions on consumer electronics, vol. 56,

no. 3, pp. 1502–1510, 2010.

[13] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann,

“NVMalloc: Exposing an aggregate SSD store as a memory partition in

extreme-scale machines,” in 2012 IEEE 26th International Parallel and

Distributed Processing Symposium, pp. 957–968, 2012.

90



[14] S. Mittal and J. S. Vetter, “A survey of software techniques for using non-

volatile memories for storage and main memory systems,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1537–1550,

2015.

[15] D. Park and D. H. Du, “Hot data identification for flash-based storage

systems using multiple bloom filters,” in 2011 IEEE 27th Symposium on

Mass Storage Systems and Technologies (MSST), pp. 1–11, 2011.

[16] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Endurance enhancement of

flash-memory storage, systems: An efficient static wear leveling design,” in

2007 44th ACM/IEEE Design Automation Conference, pp. 212–217.

[17] M. Murugan and D. H. Du, “Rejuvenator: A static wear leveling algorithm

for NAND flash memory with minimized overhead,” in 2011 IEEE 27th

Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–12,

2011.

[18] G. Wu and X. He, “Delta-FTL: improving SSD lifetime via exploiting

content locality,” in Proceedings of the 7th ACM european conference on

Computer Systems, pp. 253–266, 2012.

[19] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of flash

memory failures in the field,” ACM SIGMETRICS Performance Evalua-

tion Review, vol. 43, no. 1, pp. 177–190, 2015.

[20] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-

ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD failures in

datacenters: What? when? and why?,” in Proceedings of the 9th ACM In-

ternational on Systems and Storage Conference, pp. 1–11, 2016.

91



[21] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H.

Siegel, and J. K. Wolf, “Characterizing flash memory: anomalies, observa-

tions, and applications,” in Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 24–33, 2009.

[22] “Percona XtraBackup - MySQL Database Backup Software.”

https://www.percona.com/software/mysql-database/percona-xtrabackup,

2022 (accessed 10 October 2022).

[23] “mysqldump.” https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html,

2022 (accessed 10 October 2022).

[24] “The Binary Log.” https://dev.mysql.com/doc/refman/8.0/en/binary-

log.html, 2022 (accessed 10 October 2022).

[25] “A thorough introduction to eBPF.” https://lwn.net/Articles/740157/,

2022 (accessed 10 October 2022).

[26] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architec-

ture for User-level Packet Capture.,” in USENIX winter, vol. 46, 1993.

[27] S. Ahmadian, F. Taheri, and H. Asadi, “Evaluating Reliability of SSD-

Based I/O Caches in Enterprise Storage Systems,” IEEE Transactions on

Emerging Topics in Computing, 2019.

[28] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characteri-

zation, mitigation, and recovery in flash-memory-based solid-state drives,”

Proceedings of the IEEE, vol. 105, no. 9, pp. 1666–1704, 2017.

[29] S. Jaffer, S. Maneas, A. Hwang, and B. Schroeder, “Evaluating file sys-

tem reliability on solid state drives,” in 2019 USENIX Annual Technical

Conference (USENIX ATC 19), pp. 783–798, 2019.

92



[30] “Globus.” https://www.globus.org/, 2022 (accessed 10 October 2022).

[31] S. Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, “Towards op-

timizing large-scale data transfers with end-to-end integrity verification,”

in 2016 IEEE International Conference on Big Data (Big Data), pp. 3002–

3007, 2016.

[32] E. Arslan and A. Alhussen, “A low-overhead integrity verification for big

data transfers,” in 2018 IEEE International Conference on Big Data (Big

Data).

[33] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes, and

E. Arslan, “Towards securing data transfers against silent data corrup-

tion,” in IEEE/ACM International Symposium in Cluster, Cloud, and Grid

Computing, IEEE/ACM, 2019.

[34] Z. Peterson and R. Burns, “Ext3cow: A time-shifting file system for reg-

ulatory compliance,” ACM Transactions on Storage (TOS), vol. 1, no. 2,

pp. 190–212, 2005.

[35] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,”

ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1–32, 2013.

[36] P. Huang, K. Zhou, H. Wang, and C. H. Li, “BVSSD: Build built-in ver-

sioning flash-based solid state drives,” in Proceedings of the 5th Annual

International Systems and Storage Conference, pp. 1–12, 2012.

[37] Y. Son, J. Choi, J. Jeon, C. Min, S. Kim, H. Y. Yeom, and H. Han, “SSD-

assisted backup and recovery for database systems,” in 2017 IEEE 33rd In-

ternational Conference on Data Engineering (ICDE), pp. 285–296, IEEE,

2017.

93



[38] C. Morrey and D. Grunwald, “Peabody: The time travelling disk,” in

20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and

Technologies, 2003.(MSST 2003). Proceedings., pp. 241–253, IEEE, 2003.

[39] Q. Yang, W. Xiao, and J. Ren, “Trap-array: A disk array architecture pro-

viding timely recovery to any point-in-time,” ACM SIGARCH Computer

Architecture News, vol. 34, no. 2, pp. 289–301, 2006.

[40] S. Subramanian, S. Sundararaman, N. Talagala, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau, “Snapshots in a Flash with ioSnap,” in Proceedings

of the Ninth European Conference on Computer Systems, pp. 1–14, 2014.

[41] K. Sun, S. Baek, J. Choi, D. Lee, S. H. Noh, and S. L. Min, “LTFTL:

Lightweight time-shift flash translation layer for flash memory based em-

bedded storage,” in Proceedings of the 8th ACM international conference

on Embedded software, pp. 51–58, 2008.

[42] G. Graefe, W. Guy, and C. Sauer, “Instant recovery with write-ahead log-

ging: Page repair, system restart, and media restore,” Synthesis Lectures

on Data Management, vol. 6, no. 5, pp. 1–85, 2014.

[43] T. Härder, C. Sauer, G. Graefe, and W. Guy, “Instant recovery with write-

ahead logging,” Datenbank-Spektrum, vol. 15, no. 3, pp. 235–239, 2015.

[44] T. Wang and R. Johnson, “Scalable logging through emerging non-volatile

memory,” Proceedings of the VLDB Endowment, vol. 7, no. 10, pp. 865–

876, 2014.

[45] M. Haubenschild, C. Sauer, T. Neumann, and V. Leis, “Rethinking log-

ging, checkpoints, and recovery for high-performance storage engines,” in

94



Proceedings of the 2020 ACM SIGMOD International Conference on Man-

agement of Data, pp. 877–892, 2020.

[46] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic durability

in non-volatile memory through hardware logging,” in 2017 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA),

pp. 361–372, IEEE, 2017.

[47] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexi-

ble and fast software supported hardware logging approach for nvm,” in

Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 178–190, 2017.

[48] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “NVWAL: Exploiting

NVRAM in write-ahead logging,” ACM SIGPLAN Notices, vol. 51, no. 4,

pp. 385–398, 2016.

[49] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware logging in

transaction systems,” Proceedings of the VLDB Endowment, vol. 8, no. 4,

pp. 389–400, 2014.

[50] K. Huang, Z. Shen, Z. Jia, Z. Shao, and F. Chen, “Removing Double-

Logging with Passive Data Persistence in LSM-tree based Relational

Databases,” in 20th USENIX Conference on File and Storage Technolo-

gies (FAST 22), pp. 101–116, 2022.

[51] C. Xu, S. Chen, J. Su, S.-M. Yiu, and L. C. Hui, “A survey on regular ex-

pression matching for deep packet inspection: Applications, algorithms,

and hardware platforms,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 4, pp. 2991–3029, 2016.

95



[52] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen, “A

survey of payload-based traffic classification approaches,” IEEE Commu-

nications Surveys & Tutorials, vol. 16, no. 2, pp. 1135–1156, 2013.

[53] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” IEEE communications surveys &

tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[54] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes,

and D. Sadok, “A survey on internet traffic identification,” IEEE commu-

nications surveys & tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[55] “Cilium - Linux Native, API-Aware Networking and Security for Contain-

ers.” https://cilium.io/, 2022 (accessed 10 October 2022).

[56] “Cilium.” https://github.com/cilium/cilium, 2022 (accessed 10 October

2022).

[57] “MAC and Audit policy using eBPF.” https://lwn.net/Articles/813057/,

2022 (accessed 10 October 2022).

[58] “Cloudflare architecture and how BPF eats the world..”

https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-

the-world/, 2022 (accessed 10 October 2022).

[59] “Open-sourcing Katran, a scalable network load balancer.”

https://engineering.fb.com/2018/05/22/open-source/open-sourcing-

katran-a-scalable-network-load-balancer/, 2022 (accessed 10 October

2022).

[60] “Katran.” https://github.com/facebookincubator/katran, 2022 (accessed

10 October 2022).

96



[61] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis, “Syrup: User-

defined scheduling across the stack,” in Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, pp. 605–620, 2021.

[62] M. Kogias, R. Iyer, and E. Bugnion, “Bypassing the load balancer without

regrets,” in Proceedings of the 11th ACM Symposium on Cloud Computing,

pp. 193–207, 2020.

[63] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “BMC: Accelerat-

ing Memcached using Safe In-kernel Caching and Pre-stack Processing,” in

18th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 21), pp. 487–501, 2021.

[64] Y. Zhong, H. Li, Y. J. Wu, I. Zarkadas, J. Tao, E. Mesterhazy, M. Makris,

J. Yang, A. Tai, R. Stutsman, et al., “XRP:In-Kernel Storage Functions

with eBPF,” in 16th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 22), pp. 375–393, 2022.

[65] A. Bijlani and U. Ramachandran, “Extension framework for file systems

in user space,” in 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pp. 121–134, 2019.

[66] Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman, A. Tai, and J. Yang,

“BPF for storage: an exokernel-inspired approach,” in Proceedings of the

Workshop on Hot Topics in Operating Systems, pp. 128–135, 2021.

[67] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,

vol. 2004, no. 124, p. 5, 2004.

[68] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,”

ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1–32, 2013.

97



[69] Y. Hu, S. Song, S. Xiao, Q. Xu, N. Xiao, and Z. Qin, “A dominating error

region strategy for improving the bit-flipping LDPC decoder of SSDs,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62,

no. 6, 2015.

[70] Y. Lee, L. Barolli, and S.-H. Lim, “Mapping granularity and performance

tradeoffs for solid state drive,” The journal of supercomputing, vol. 65,

no. 2, pp. 507–523, 2013.

[71] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal paral-

lelism of flash memory based solid state drives in high-speed data process-

ing,” in 2011 IEEE 17th International Symposium on High Performance

Computer Architecture, pp. 266–277.

[72] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh, “Durable write

cache in flash memory SSD for relational and NoSQL databases,” in Pro-

ceedings of the 2014 ACM SIGMOD international conference on Manage-

ment of data, pp. 529–540, 2014.

[73] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“End-to-end Data Integrity for File Systems: A ZFS Case Study.,” in

FAST, pp. 29–42, 2010.

[74] “XFS.” https://wiki.archlinux.org/index.php/XFS, 2022 (accessed 10 Oc-

tober 2022).

[75] “Samsung PM983 Product Brief.” https://samsungsemiconductor-

us.com/labs/pdfs/Samsung PM983 Product Brief.pdf, 2022 (accessed 10

October 2022).

98



[76] S. Bhattacharya, C. Mohan, K. W. Brannon, I. Narang, H.-I. Hsiao, and

M. Subramanian, “Coordinating backup/recovery and data consistency be-

tween database and file systems,” in Proceedings of the 2002 ACM SIG-

MOD international conference on Management of data, pp. 500–511, 2002.

[77] G. Amvrosiadis and M. Bhadkamkar, “Identifying trends in enterprise

data protection systems,” in 2015 USENIX Annual Technical Conference

(USENIX ATC 15), pp. 151–164, 2015.

[78] G. Amvrosiadis and M. Bhadkamkar, “Getting back up: Understanding

how enterprise data backups fail,” in 2016 USENIX Annual Technical Con-

ference (USENIX ATC 16), pp. 479–492, 2016.

[79] J. Kaiser, T. Süß, L. Nagel, and A. Brinkmann, “Sorted deduplication:

How to process thousands of backup streams,” in 2016 32nd Symposium

on Mass Storage Systems and Technologies (MSST), pp. 1–14, IEEE, 2016.

[80] B. Schwartz, P. Zaitsev, and V. Tkachenko, High performance MySQL:

optimization, backups, and replication. ” O’Reilly Media, Inc.”, 2012.

[81] Y. Allu, F. Douglis, M. Kamat, R. Prabhakar, P. Shilane, and R. Ugale,

“Can’t We All Get Along? Redesigning Protection Storage for Modern

Workloads,” in 2018 USENIX Annual Technical Conference (USENIX

ATC 18), pp. 705–718, 2018.

[82] A. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting file systems: A

survey of backup techniques,” in Joint NASA and IEEE Mass Storage

Conference, vol. 99, Citeseer, 1998.

[83] Y. Qin, B. Hoffmann, and D. J. Lilja, “Hyperprotect: Enhancing the per-

formance of a dynamic backup system using intelligent scheduling,” in

99



2018 IEEE 37th International Performance Computing and Communica-

tions Conference (IPCCC), pp. 1–8, IEEE, 2018.

[84] Y. Allu, F. Douglis, M. Kamat, P. Shilane, H. Patterson, and B. Zhu,

“Backup to the future: How workload and hardware changes continually

redefine data domain file systems,” Computer, vol. 50, no. 7, pp. 64–72,

2017.

[85] “MySQL 8.0: New Lock free, scalable WAL design.”

https://mysqlserverteam.com/mysql-8-0-new-lock-free-scalable-wal-

design/, 2022 (accessed 10 October 2022).

[86] “Samsung SSD 860 PRO.” https://semiconductor.samsung.com/consumer-

storage/internal-ssd/860pro/, 2022 (accessed 10 October 2022).

[87] A. Kopytov, “Sysbench: a system performance benchmark,”

http://sysbench.sourceforge.net/, 2004.

[88] J. M. Hellerstein, M. Stonebraker, J. Hamilton, et al., “Architecture of a

database system,” Foundations and Trends® in Databases, vol. 1, no. 2,

pp. 141–259, 2007.

[89] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “LogBase: A

Scalable Log-structured Database System in the Cloud,” Proceedings of

the VLDB Endowment, vol. 5, no. 10, 2012.

[90] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” ACM

SIGOPS operating systems review, vol. 47, no. 1, pp. 9–15, 2013.

[91] “MySQL.” https://www.mysql.com/, 2022 (accessed 10 October 2022).

[92] “RocksDB — A Persistent key-value store.” http://rocksdb.org/, 2022

(accessed 10 October 2022).

100



[93] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “OLTP

through the looking glass, and what we found there,” in Proceedings of the

2008 ACM SIGMOD international conference on Management of data,

pp. 981–992, 2008.

[94] H. Chen, C. Ruan, C. Li, X. Ma, and Y. Xu, “SpanDB: A Fast,Cost-

Effective LSM-tree Based KV Store on Hybrid Storage,” in 19th USENIX

Conference on File and Storage Technologies (FAST 21), pp. 17–32, 2021.

[95] “TPC-C Benchmark.” http://www.tpc.org/tpcc/, 2022 (accessed 10 Oc-

tober 2022).

[96] “tpcc-mysql.” https://github.com/Percona-Lab/tpcc-mysql, 2022 (ac-

cessed 10 October 2022).

[97] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,

“Linkbench: a database benchmark based on the facebook social graph,”

in Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, pp. 1185–1196, 2013.

[98] Y. Matsunobu, S. Dong, and H. Lee, “MyRocks: LSM-tree database stor-

age engine serving Facebook’s Social Graph,” Proceedings of the VLDB

Endowment, vol. 13, no. 12, pp. 3217–3230, 2020.

[99] “SmartSSD — SSD Card — Samsung Semiconductor Global.”

https://semiconductor.samsung.com/ssd/smart-ssd/, 2022 (accessed 10

October 2022).

101



요약

원격 시스템 간의 데이터 이동은 백업, 복제, 혹은 분석과 같은 다양한 목적으로

빈번하게 발생한다. 데이터는 하드웨어 오류 또는 시스템 충돌로 인해 전송 과정

에서손상되거나손실될수있다.많은시스템들은데이터손상을적시에감지하기

위해 무결성 검증 또는 주기적인 백업과 같은 데이터 내구성을 보장하기 위한 절

차를 제공한다. 이러한 절차들은 데이터 처리 시간을 지연시키거나 추가적인 I/O

작업을 필요로 한다.

본 논문에서는 데이터 내구성을 확보하는 과정에서 시스템 성능을 저하시키는

중복 작업을 제거하는 데 중점을 두어, 다양한 소프트웨어 계층 (저장장치, 응용,

그리고 네트워크 계층) 에서 데이터 내구성을 효율적으로 제공하기 위한 세 가지

최적화 기법들을 제안한다. 첫째, 저장장치 계층에서 데이터 내구성을 효율적으로

제공하기위해서,저장장치내부동작을고려한동시적이고안정적인종단간데이

터 무결성 검증 기법을 제시한다. 유휴 CPU 리소스를 활용하여 무결성 검증 계산

과정을 병렬화 하고 I/O 작업과 중첩시킴으로써 안정적인 무결성 검증을 위한

I/O 순서 조정으로 야기되는 오버헤드를 완화한다. 둘째, 응용 계층에서 데이터

내구성을 효율적으로 제공하기 위해서, 데이터베이스 시스템의 미리 쓰기 로깅

(Write-ahead logging, WAL) 을 활용한 효율적 백업 및 복구 기법을 제시한다.

백업 및 복구를 위해 로그 데이터를 보관함으로써 추가적인 I/O 작업을 대부분

제거할 수 있다. 반면, 로그 데이터를 유지하는 것은 로그 데이터 양이 증가함에

따라 관리 부담이 증가하게 되고, 또한 여전히 critical path 상에서 로깅 연산을

수행함으로써 시스템 성능을 저하시키게 된다. 이러한 한계점을 극복하기 위해서,

목적지 시스템의 네트워크 계층에서 패킷을 검사하여 중요한 데이터 로깅을 수행

하는 전송 중 로깅 (in-transit logging) 기법을 제시한다. 이 기법은 목적지의 로컬

클라이언트를 통해 원래의 요청들을 전달함으로써 내결함성 (fault-tolerance) 을

102



보장한다. 제안하는 기법들은 데이터 처리 시간 지연이나 추가적인 I/O 작업 없

이도 다양한 소프트웨어 계층에서 데이터 내구성을 제공할 수 있다.

제안하는기법들의효과를증명하기위해서실제멀티코어시스템에구현하여

성능을 평가하였다. 우리는 고성능 저장 장치가 장착된 시스템이 10 Gbps 로 연

결된 환경에서 제안하는 기법들의 성능을 평가하고 기존의 기법들과 성능 비교를

수행하였다. 실험 결과는 제안하는 기법들이 유휴 리소스와 즉시 사용할 수 있는

데이터들을 활용하여 스토리지, 응용 및 네트워크 계층에서 효율적으로 데이터

내구성을 제공하면서 더 나은 시스템 성능을 제공할 수 있음을 보여준다.

주요어:스토리지시스템,데이터베이스시스템,데이터내구성,무결성검증,미리

쓰기 로깅, 패킷 검사

학번: 2018-36618

103


	Chapter 1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Contributions
	1.4 Outline 

	Chapter 2 Background
	2.1 The Internal Structure and Operations of Flash-based SSD
	2.2 Data Integrity Verification Procedure
	2.3 Existing Database Backup and Recovery Schemes
	2.3.1 Physical Backup and Recovery 
	2.3.2 Logical Backup and Recovery

	2.4 Packet Inspection 

	Chapter 3 Related Work
	3.1 Data Corruption inside Flash-based SSD
	3.2 Data Integrity Verification 
	3.3 Backup and Recovery 
	3.4 Logging Optimization 
	3.5 Packet Inspection 
	3.6 eBPF 

	Chapter 4 Providing Data Durability for the Storage Layer 
	4.1 Overview 
	4.2 Motivation 
	4.3 Design and Implementation 
	4.3.1 Overall Architecture 
	4.3.2 Design and Implementation 

	4.4 Evaluation 
	4.4.1 Experimental Setup 
	4.4.2 Performance Results and Analysis 

	4.5 Summary 

	Chapter 5 Providing Data Durability in the Application Layer 
	5.1 Overview 
	5.2 Motivation 
	5.3 Design and Implementation 
	5.3.1 Overall Procedure 
	5.3.2 Design 
	5.3.3 Implementation 

	5.4 Evaluation 
	5.4.1 Experimental Setup 
	5.4.2 Performance Results and Analysis 

	5.5 Summary 

	Chapter 6 Providing Data Durability in the Network Layer 
	6.1 Overview 
	6.2 Motivation 
	6.3 Design and Implementation 
	6.3.1 Design 

	6.4 Evaluation 
	6.4.1 Experimental Setup 
	6.4.2 Performance Results and Analysis 

	6.5 Summary 

	Chapter 7 Discussion 
	7.1 Providing Data Durability for Storage and Database Systems 
	7.2 Limitations 

	Chapter 8 Conclusion 
	요약 


<startpage>13
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Overview 2
 1.3 Contributions 3
 1.4 Outline  4
Chapter 2 Background 6
 2.1 The Internal Structure and Operations of Flash-based SSD 6
 2.2 Data Integrity Verification Procedure 8
 2.3 Existing Database Backup and Recovery Schemes 10
  2.3.1 Physical Backup and Recovery  10
  2.3.2 Logical Backup and Recovery 10
 2.4 Packet Inspection  11
Chapter 3 Related Work 14
 3.1 Data Corruption inside Flash-based SSD 14
 3.2 Data Integrity Verification  15
 3.3 Backup and Recovery  16
 3.4 Logging Optimization  17
 3.5 Packet Inspection  18
 3.6 eBPF  19
Chapter 4 Providing Data Durability for the Storage Layer  20
 4.1 Overview  20
 4.2 Motivation  25
 4.3 Design and Implementation  26
  4.3.1 Overall Architecture  26
  4.3.2 Design and Implementation  27
 4.4 Evaluation  35
  4.4.1 Experimental Setup  35
  4.4.2 Performance Results and Analysis  36
 4.5 Summary  44
Chapter 5 Providing Data Durability in the Application Layer  45
 5.1 Overview  45
 5.2 Motivation  48
 5.3 Design and Implementation  50
  5.3.1 Overall Procedure  50
  5.3.2 Design  52
  5.3.3 Implementation  57
 5.4 Evaluation  59
  5.4.1 Experimental Setup  59
  5.4.2 Performance Results and Analysis  60
 5.5 Summary  64
Chapter 6 Providing Data Durability in the Network Layer  65
 6.1 Overview  65
 6.2 Motivation  68
 6.3 Design and Implementation  68
  6.3.1 Design  68
 6.4 Evaluation  77
  6.4.1 Experimental Setup  77
  6.4.2 Performance Results and Analysis  77
 6.5 Summary  82
Chapter 7 Discussion  83
 7.1 Providing Data Durability for Storage and Database Systems  83
 7.2 Limitations  84
Chapter 8 Conclusion  86
요약  102
</body>

