

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Optimizing Homomorphic Evaluation

Circuits via Search-based Method

프로그램 자동탐색 기술을 이용한 동형암호 회로 최적화에

대한 연구

FEBRUARY 2023

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Dongkwon Lee

Ph.D. DISSERTATION

Optimizing Homomorphic Evaluation

Circuits via Search-based Method

프로그램 자동탐색 기술을 이용한 동형암호 회로 최적화에

대한 연구

FEBRUARY 2023

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Dongkwon Lee

Optimizing Homomorphic Evaluation Circuits via

Search-based Method

프로그램 자동탐색 기술을 이용한 동형암호 회로

최적화에 대한 연구

지도교수 이광근

이 논문을 공학박사학위논문으로 제출함

2023 년 2 월

서울대학교 대학원

컴퓨터 공학부

이동권

이동권의 박사학위논문을 인준함

2022 년 12 월

위 원 장 허충길 (인)

부위원장 이광근 (인)

위 원 Bernhard Egger (인)

위 원 오학주 (인)

위 원 이우석 (인)

Abstract

Optimizing Homomorphic Evaluation

Circuits via Search-based Method

Dongkwon Lee

School of Computer Science Engineering

Collage of Engineering

The Graduate School

Seoul National University

In this dissertation we present a new and general method for optimizing

homomorphic evaluation circuits. Although fully homomorphic encryption (FHE)

holds the promise of enabling safe and secure third party computation, building

FHE applications has been challenging due to their high computational costs.

Domain-specific optimizations require a great deal of expertise on the underlying

FHE schemes, and FHE compilers that aims to lower the hurdle, generate

outcomes that are typically sub-optimal as they rely on manually-developed

optimization rules. In this dissertation, based on the prior work of FHE compilers,

we propose a method for automatically learning and using optimization rules

for FHE circuits. Our method focuses on reducing the maximum multiplicative

depth, the decisive performance bottleneck, of FHE circuits by combining

program synthesis, term rewriting, and equality saturation. It first uses program

synthesis to learn equivalences of small circuits as rewrite rules from a set of

training circuits. Then, we perform term rewriting on the input circuit to obtain

a new circuit that has lower multiplicative depth. Our rewriting method uses

the equational matching with generalized version of the learned rules, and its

soundness property is formally proven. Our optimizations also try to explore

i

every possible alternative order of applying rewrite rules by time-bounded

exhaustive search technique called equality saturation. Experimental results

show that our method generates circuits that can be homomorphically evaluated

1.08x – 3.17x faster (with the geometric mean of 1.56x) than the state-of-the-art

method. Our method is also orthogonal to existing domain-specific optimizations.

Keywords: Homomorphic Evaluation Circuit, Program Synthesis, Term Rewrit-

ing, Equality Saturation, Optimization, Search-based Method

Student Number: 2015-22908

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

1.1 Fully Homomorphic Encryption 1

1.2 Problem Definition . 4

1.2.1 Homomorphic Encryption 5

1.2.2 Boolean Circuit and Multiplicative Depth 7

1.2.3 Problem . 8

1.3 Search-based Optimization Method 9

1.3.1 Program Synthesis . 9

1.3.2 Term Rewriting and Equality Saturation 10

1.4 Contributions . 12

Chapter 2 Informal Description 14

Chapter 3 Algorithm 20

3.1 Preliminaries . 20

iii

3.2 Learning Rewrite Rules . 23

3.2.1 The Overall Algorithm . 23

3.2.2 Region Selection . 25

3.2.3 Synthesizing Replacement 26

3.2.4 Collecting and Simplifying Rewrite Rules 26

3.3 Optimization without Backtracking 27

3.3.1 Our Term Rewriting System 28

3.3.2 Optimizations . 31

3.4 Optimization with Backtracking Based on Equality Saturation . 34

3.4.1 E-graph Structure . 34

3.4.2 Equality Saturation Process 36

3.4.3 Tradeoff between Optimality and Cost 38

Chapter 4 Evaluation 40

4.1 Experimental Setup . 41

4.2 Effectiveness of Lobster . 44

4.3 Comparison to the Baseline . 49

4.4 Efficacy of Reusing Pre-Learned Rewrite Rules 50

4.5 Efficacy of Equality Saturation 53

4.6 Efficacy of Equational Rewriting 55

4.7 Sensitivity to Changes in a Time Limit 56

4.8 Sensitivity to Changes in a Training Set 57

Chapter 5 Related Work 59

Chapter 6 Conculsion 64

Appendices 75

Chapter A Learned Rewrite Rules 76

요약 115

iv

List of Figures

Figure 1.1 Secure third-party computation with private data. 1

Figure 1.2 Optimizing synthesis for homomorphic evaluation circuit 10

Figure 1.3 Semantic equivalence between E-graph and context-free-

grammar. 12

Figure 1.4 Overview of the system. 13

Figure 2.1 (a) The circuit cex of depth 5. (b) A circuit that has

depth 3 and the same semantics as cex 18

Figure 3.1 Simple example of E-graph. Each box means enode, and

dotted box means eclass. 35

Figure 3.2 Change of E-graph during a single iteration. Dotted box

means eclass. (a) ematch result for root enode. (b) add

subcircuit c1 and c2 to E-graph. (c) merge root node and

result enodes (c1 and c2) of add step. 37

Figure 3.3 Change of E-graph during iterations. Dotted box means

eclass. (a) initial E-graph. (b) after 1 iteration. (c) after

2 iterations. (d) saturated E-graph. 38

v

Figure 4.1 Main results comparing the optimization performance of

Lobster and Carpov et al. [15] – Speedups in overall

homomorphic evaluation time (left) and depth reduction

ratios (right). 45

Figure 4.2 Correlation plot of multiplicative depth and homomor-

phic evaluation time . 45

Figure 4.3 distribution of rule sizes and how often they were used

during optimization . 48

Figure 4.4 Comparison between on-the-fly synthesis and equality

saturation with learned rules 51

Figure 4.5 Impact of changing rewrite rules 52

Figure 4.6 Efficacy of Equality Saturation 54

Figure 4.7 Efficacy of equational rewriting 55

Figure 4.8 Comparison between the optimization results with 1h

and 12h of time limit. 56

Figure 4.9 Comparison between the optimization results with two-

fold cross validation and leave-one-out cross validation. . 58

vi

List of Tables

Table 3.1 Rules for C-matching . 33

Table 4.1 Characteristics of benchmarks from {medical [14], sort-

ing [17], bit-vector evaluation [38, 64], circuit [1]} algo-

rithm. ×Depth denotes the multiplicative depth. #AND

and Size give the number of AND operations and the cir-

cuit size, respectively. 43

Table 4.2 Detailed main results (comparison to Carpov etl al. [15]).

The timeout for optimization is set to 12 hours. #AND

↑ shows the ratio between the number of AND gates of

the optimized circuit and the original one. Eval. Time

shows homomorphic evaluation time (where ‘-’ means that

the depth and evaluation time is the same as the original). 46

Table 4.3 Detailed comparison results of single-path rewriting and

saturation-based rewriting. The timeout for optimization

is set to 12 hours. #AND ↑ shows the ratio between the

number of AND gates of the optimized circuit and the

original one. Eval. Time shows homomorphic evaluation

time (where ‘-’ means that the evaluation time is the same

as the original). 53

vii

Chapter 1

Introduction

1.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) [33] enables safe and secure third-party

computation with private data because it enables any computation on encrypted

data without the decryption key. Because the cloud can perform any computation

on encrypted data without learning about the data itself, the clients can safely

upload their encrypted data without trusting the software/hardware vendors of

the cloud.

Figure 1.1: Secure third-party computation with private data.

1

Figure 1.1 illustrates this scenario. User encrypts the private data using

private key first, and transfer it to the third-party. The third-party gets encrypted

result by performing homomorphic evaluation on encrypted data, and transfers

it to the user. User can decrypt the result using the same private key that

is used for encryption. In this scenario, the third-party can not identify any

private data during computation. Even if malicious hackers intercept the data

communication, they can not identify any private data since the user and the

third-party communicate with encrypted data only.

Problem

However, building FHE applications has been challenging at the moment because

of their high computational costs. Though building FHE applications itself does

not require much expertise thanks to off-the-shelf libraries of FHE schemes [35,

53, 34], when naively implemented, even with the best FHE schemes [10, 18],

FHE applications incur slowdown factors of orders of magnitudes compared to

their plaintext version. One key challenge is therefore reducing the costs of FHE

applications so that they become amenable to practical use.

Existing Approaches

There have been two approaches – domain-specific optimizations and optimizing

FHE compilers – for reducing the costs of FHE applications, but they are still

less than desirable.

Various domain-specific FHE optimization techniques have been successfully

developed, but developing such techniques requires a great deal of expertise on

the underlying FHE schemes. For example, optimizations such as rescaling [26],

data movement [44] and batching [46], and heuristics for encryption parameter

selection [28, 26] enable several orders of magnitude speedups in a wide range

of FHE applications (such as image recognition [26], statistical analysis [44],

sorting [17], bioinformatics [19], database [8], and static program analysis [43]).

2

Yet, such improvement requires a great deal of expertise in cryptography.

Lowering this hurdle of expertise is a goal of FHE compilers, which, equipped

with FHE optimization techniques, automatically transform conventional plain-

text programs into optimized FHE code. For example, Ramparts [4], Cingulata [16]

and Alchemy [24] take programs written in a high-level language (e.g., Julia,

C++, or a custom DSL) and transform them into arithmetic representations

which can be evaluated using a backend FHE scheme.

However, though the users do not have to concern about low-level details of

underlying schemes when writing applications, they need to write FHE-friendly

algorithms [14, 17, 19, 44] to achieve the desired efficiency.

For example, using well-known sorting algorithms such as quick-sort and

merge-sort for homomorphic evaluation leads to a significant performance degra-

dation.

The two main reasons are data dependency and different cost model. First,

since we can utilize data dependency to evaluate if-condition statement in plain-

text algorithms, there is no additional cost required for evaluating an if-condition

statement whose execution result can be varied by input data. According to the

evaluation result of conditional expression, it is enough to evaluate only one

branch. (i.e. we can utilize data dependency to evaluate if-condition statement).

However, in homomorphic algorithms, it requires much higher cost to evaluate

the if-condition statement. In homomorphic algorithms, since the decryption

values of ciphertexts can not be known in the process of homomorphic evaluation

for the condition expression, the if-condition statement must be translated into

arithmetized form that includes both branches’ homomorphic evaluation re-

sult [17]. Furthermore, in the case of homomorphic algorithms, it is necessary to

consider a new decisive performance factor multiplicative depth (Section 1.2.2).

Therefore, the performance of the homomorphic algorithm should be mea-

sured with a new cost model that takes the number of comparison operations

and the multiplicative depth into account.

3

Since the existing efficient sorting algorithms such as quick-sort and merge-

sort are based on a large number of comparison operations, FHE-friendly sorting

algorithms [17] have been proposed that minimizes the number of comparison

operations and multiplicative depth.

Furthermore, state-of-the-art compilers rely on hand-written optimization

rules whose findings require expertise and are likely to remain sub-optimal.

Designing specialized optimization rules for homomorphic compilers requires a

great deal of expertise on its code translation process. Furthermore, due to the

distinct cost model, it is hard to utilize the traditional compiler optimization

methods. Additionally, homomorphic encryption programs are basically boolean

circuits which are challenging for humans to reason about at a high level. Thus,

it is extremely difficult to overcome these obstacles and design new optimization

rules.

1.2 Problem Definition

Our Approach

In this dissertation, in the context of optimizing FHE compilation, we propose a

novel and general method for optimizing FHE boolean circuits that outperforms

existing automatic FHE optimization techniques. Our method focuses on reduc-

ing the number of nested multiplications and achieves sizeable optimizations

even for existing domain-specific manually optimized results.

Our setting of the optimization problem is simple. Let c be an arithmetic

code that can be evaluated using FHE schemes, which can be either generated

by a FHE compiler or manually written by a developer. Optimization is to

find a new circuit c′ of lower computational cost while guaranteeing the same

semantics as the original.

Because the decisive performance bottleneck in homomorphic computation

is the nested depth of multiplications [4, 16, 17, 59], we set the computation

4

cost to be measured using the maximum multiplicative depth, which is simply

the maximum number of sequential multiplications required to perform the

computation. For example, the circuit c(x1, x2, x3, x4, x5) = ((x1x2)x3)x4 + x5

has multiplicative depth 3. The lower the multiplicative depth is, the more

efficiently a circuit can be evaluated. For example, we can optimize c by replacing

it with c′(x1, x2, x3, x4, x5) = (x1x2)(x3x4) + x5 that has depth 2.

Although FHE scheme has been continuously improved from Gentry’s first

generation FHE scheme [33] to CKKS’ fourth generation FHE scheme [18],

still it is the same that the multiplicative depth is the decisive performance

bottleneck.

In the rest of this section, we formally define the problem of minimizing

the multiplicative depth of Boolean circuits. We first provide background on

homomorphic encryption (Section 1.2.1) and Boolean circuits (Section 1.2.2). In

Section 1.2.3, we formally state the problem.

1.2.1 Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme with binary plaintext space

Z2 = {0, 1} can be described by the interface:

Encpk : Z2 → Ω Decsk : Ω→ Z2

Addpk : Ω× Ω→ Ω Mulpk : Ω× Ω→ Ω

where pk is a public key, sk is a secret key, Ω is a ciphertext space (e.g. large

cardinality set such as Zq, i.e., integers modulo an integer q). For all plaintexts

m1,m2 ∈ Z2, the interface should satisfy the following algebraic properties:

Decsk(Addpk(Encpk(m1),Encpk(m2))) = m1 +m2,

Decsk(Mulpk(Encpk(m1),Encpk(m2))) = m1 ×m2.

Note that such a scheme is able to potentially evaluate all Boolean circuits as

addition and multiplication in Z2 correspond to XOR and AND operations.

5

As an instance, let us consider a simple symmetric version (where only a

secret key is used for both encryption and decryption) of the HE scheme [27]

based on approximate common divisor problems [37]:

• The secret key (sk) is a random integer p.

• For a plaintext m, Enc(m) outputs pq + 2r + m, where q and r are

randomly chosen integers such that |r| � |p|. r is a noise for ensuring

semantic security [49].

• For a ciphertext c̄, Dec(c̄) outputs ((c̄ mod p) mod 2).

• For ciphertexts c̄1 and c̄2, Add(c̄1, c̄2) outputs c̄1 + c̄2.

• For ciphertexts c̄1 and c̄2, Mul(c̄1, c̄2) outputs c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(m1) and c̄2 ← Enc(m2), we know each c̄i is of the

form c̄i = pqi + 2ri + mi for some integer qi and noise ri. Hence Dec(c̄i) =

((c̄i mod p) mod 2) = mi, if |2ri + mi| < p/2. Then, the following equations

hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) +m1 +m2︸ ︷︷ ︸
noiseAdd

c̄1 × c̄2 = p(pq1q2 + · · ·) + 2(2r1r2 + r1m2 + r2m1) +m1m2︸ ︷︷ ︸
noiseMult

Based on these properties, we can show that

Dec(c̄1 + c̄2) = m1 +m2 and Dec(c̄1 × c̄2) = m1 ·m2

if the absolute values of noiseAdd and noiseMult are less than p/2. Note that the

noise in the resulting ciphertext increases during homomorphic addition and

multiplication (twice and quadratically as much noise as before respectively).

If the noise becomes larger than p/2, the decryption result of the scheme will

be spoiled. As long as the noise is managed, the scheme is able to potentially

evaluate all Boolean circuits.

6

Because managing the noise growth is very expensive and the noise growth

induced by multiplication is much larger than that by addition, the performance

of homomorphic evaluation is often measured by the maximum multiplicative

depth of evaluated circuits. The maximum multiplicative depth influences pa-

rameters of a HE scheme. Minimizing the multiplicative depth results in not only

smaller ciphertexts but also less overall execution time. For example, to support

a large number of consecutive multiplications, the secret key p should also be

huge in the aforementioned scheme, and it increases overall computational costs.

Current FHE schemes are leveled (also called somewhat homomorphic) in that

for fixed encryption parameters they only support computation of a particular

depth.1

1.2.2 Boolean Circuit and Multiplicative Depth

Boolean Circuit

A Boolean circuit c ∈ C is inductively defined as follows:

c → ∧(c, c) | ⊕(c, c) | x | 0 | 1

where ∧ and ⊕ denote AND and XOR respectively, and x denotes an input

variable. The grammar is functionally complete because any Boolean functions

can be expressed using the grammar. For simplicity, we assume that circuits

have a single output value. We will often denote 1⊕ c or c⊕ 1 as ¬c. In addition,

we will use infix notation for ⊕ and ∧.

Multiplicative Depth

Let ` : C→ N be a function that computes the multiplicative depth of a circuit,

which is inductively defined as follows:

`(c) =


1 + maxi∈{1,2} `(ci), c = ∧(c1, c2)

maxi∈{1,2} `(ci), c = ⊕(c1, c2)

0, otherwise
1A leveled scheme may be turned into a fully homomorphic one by introducing a bootstrap-

ping operation [33], which is computationally heavy.

7

Critical Path

The input-to-output paths with the maximal number of AND gates are called

critical paths. A set of critical paths, denoted P(c), of a circuit c is a set of

strings over the alphabet of positive integers, which is inductively defined as

follows:

• If c = x or 0 or 1, P(c)
def
= {ε}, where ε is the empty string.

• If c = f(c1, c2) where f ∈ {∧,⊕}, then

P(c)
def
=

⋃
`(ci)=max1≤j≤2 `(cj)

{ip | p ∈ P(ci)}

A set of critical positions CP(c) consists of all prefixes of strings in P(c).

Example 1.2.1. Consider a circuit c(v1, v2, v3, v4) defined as

v1 ∧ (1⊕ (v4 ∧ (1⊕ (v2 ∧ v3)))).

The multiplicative depth `(c) of circuit c is 3 because there are three consecutive
AND operations performed on v2 and v3. The set P(c) of critical paths in c is

P(c) = {2p | p ∈ P(1⊕ (v4 ∧ (1⊕ (v2 ∧ v3))))}
= {22p | p ∈ P(v4 ∧ (1⊕ (v2 ∧ v3)))}
= {222p | p ∈ P(1⊕ (v2 ∧ v3))}
= {2222p | p ∈ P(v2 ∧ v3)}
= {22221, 22222}

The set CP(c) of critical positions is:

{ε, 2, 22, 222, 2222, 22221, 22222}.

Note that in order to decrease the overall multiplicative depth of a Boolean

circuit, all critical paths of the circuit must be rewritten. The depth of a critical

path can be reduced if we reduce the depth of a sub-circuit at a critical position.

1.2.3 Problem

Given a Boolean circuit c ∈ C whose input variables are x1, · · · , xn, we aim
to find a semantically equivalent circuit c′ ∈ C whose multiplicative depth is
smaller than c. Formally, our goal is to find c′ such that

∀xi. c(x1, · · · , xn) ⇐⇒ c′(x1, · · · , xn), `(c) > `(c′). (1.1)

In this dissertation, we propose to solve this problem by combining program

synthesis, term rewriting, and equality saturation.

8

1.3 Search-based Optimization Method

To achieve this critical optimization for homomorphic computation circuits

as much as possible, we combine three techniques: program synthesis, term

rewriting and equality saturation. Fig. 1.4 illustrates our approach.

1.3.1 Program Synthesis

Our method first automatically learns equivalences of small circuits from a set of

training circuits using the program synthesis technique and then uses the learned

equivalences to optimize unseen circuits. To learn such equivalences, we partition

each training circuit into multiple sub-parts and synthesize their equivalent

counterparts of smaller depth. Most of these machine-found optimization patterns

are what we can hardly imagine from human-devised optimization techniques.

(Section 4.2)

Program synthesis automatically synthesizes a program that satisfies a

given high-level specification. The standard formulation syntax-guided synthesis

(SyGuS [2]) employs a context-free grammar to describe the space of possible

programs (syntactic constraint) and a semantic specification in the form of a

logical formula (semantic constraint). A program synthesizer explores candidate

programs based on a given context-free-grammar until it finds a program that

meets the given semantic constraint. It employs various searching algorithms

such as top-down search [42], bottom-up search [3], and bi-directional search [41]

algorithm. It also utilize other techniques such as probabilistic models [42] and

abstract interpretation [62].

In this dissertation, we utilize a program synthesizer to optimize given

boolean circuit. We provide a context-free grammar that constrains an upper

bound of the multiplicative depth as a syntactic constraint, and the circuit

equivalence condition as a semantic constraint. Figure 1.2 illustrates this scenario.

Given these constraints, program synthesizer automatically finds a new circuit

that is equivalent to input circuit and has the smaller multiplicative depth,

9

Figure 1.2: Optimizing synthesis for homomorphic evaluation circuit

which we can call it optimized version of given boolean circuit.

In practice, however, since the search space is enormous, applying above

optimizing synthesis technique to large circuits in the real world is infeasible.

Instead, we partition each training circuit into multiple sub-parts and synthesize

their equivalent counterparts of smaller depth. Each of the found equivalences of

small circuits can be utilized as rewrite rules for further optimization process.

1.3.2 Term Rewriting and Equality Saturation

Next, armored with these automatically learned equivalences as rewrite rules,

we perform term rewriting on the input circuit to obtain a new circuit that

has lower multiplicative depth. Term rewriting [6] has been the most popular

approach for compiler optimizations [7, 15, 51]. According to the learned rewrite

rules, we repeatedly rewrite sub-parts of the homomorphic evaluation circuit for

equals that have lower multiplicative depths until we decrease the overall depth.

Rather than syntactic matching, we generalize what have been learned from

training circuits by giving flexibility to the rewriting procedure: our method is

based on a limited version of the equational matching that takes commutativity

into account rather than just the syntactic matching. Our rewriting method is

proven to be sound and terminating.

Moreover, by the equality saturation technique [56, 65] that has been widely

used in program optimization systems [67, 63, 47], we explore every possible

alternative order of applying rewrite rules (i.e. we obtain backtracking effect).

First, given an input program and rewrite rules, we efficiently express all

10

equivalent programs as a form of program grammar using a data structure called

E-graph [65] (saturation process).

E-graph structure represents a large set of expressions (programs). It is

defined as a triple of a set of enodes, a set of eclasses, and a set of edges. Each

enode contains a non-terminal operator (ex. +, /, ×) or terminal value (ex. 1, 2,

a). Eclass is a set of enodes. Edge connects an enode to an eclass. Each enode

represents a set of expressions that can be generated recursively by following

its children eclasses (detailed generation algorithm is available in Section 3.4).

Each eclass represents a set of all expressions that can be generated by enodes

inside it.

In saturation process, by repeatedly applying the learned rewrite rules, we

expand the E-graph so that it represents all equivalent programs. During this

process, expanded E-graph always maintain the invariance that all expressions

generated by enodes in the same eclass must be semantically equivalent. Detailed

expansion algorithm is available in Section 3.4.2.

We also obtain backtracking effect during the saturation process, since each

expansion step always add information to E-graph, whereas the traditional

term rewriting destructs the original form of rewritten expression. This allows

the saturated E-graph to represent every possible result that can be varied by

alternative order of applying rewrite rules.

Note that E-graph also can be interpreted as a program grammar, since the

process that each eclass/enode generates a set of expressions are the same with

how context-free-grammar generates a set of expressions from a nonterminal

symbol/production rule. Each of the eclasses corresponds to a nonterminal

symbol and each of enodes in that eclass corresponds to a production rule for

the nonterminal symbol. For example, Figure 1.3 shows the semantic equivalence

between E-graph and program grammar. Enode 1 and 2 can generate (a× 2)/2

and (2/2)× a, which also can be generated by first and second production rule

of S1 respectively.

11

Figure 1.3: Semantic equivalence between E-graph and context-free-grammar.

In this context, saturation process is a process of constructing a program

grammar that can generate all programs equivalent to the input program.

Next, from the saturated E-graph, we extract the optimal expression accord-

ing to a given cost function (extraction process). If the cost function is local

(the cost of a node is computable only with the costs of its children nodes), it is

well known that the least-cost circuit for that cost model can be easily extracted

from the E-graph [65].

In this dissertation, given an input boolean circuit and the learned rewrite

rules, we start with the initial E-graph that can generate the input circuit only.

Then we expand the E-graph by applying the learned rewrite rules (saturation

process). After saturation, since the multiplicative depth of the circuit is a

local cost function, circuits with the lowest multiplicative depth can be easily

extracted.

1.4 Contributions

We implement our method atop Cingulata [22], a widely-used FHE compiler

and evaluate our method on 25 FHE applications from diverse domains (statis-

tical analysis, sorting, medical diagnosis, low-level algorithms, etc). We learn

rewrite rules from a set of Cingulata-generated Boolean circuits and apply the

rules into other circuits.2 On average, our method generates Boolean circuits

2Although the dissertation targets Boolean circuits, the method can also be directly applied
to arithmetic circuits.

12

Figure 1.4: Overview of the system.

that can be homomorphically evaluated 1.08x – 3.17x faster (with the geometric

mean of 1.56x) than the state-of-the-art method [15].

• A novel general method for optimizing homomorphic evaluation circuits: we

first learn rewrite rules from a set of training Boolean circuits using program

synthesis and then perform term-rewriting with the equational matching

for generalized versions of the learned rewrite rules on a given new circuit.

The soundness property of this rewriting system are formally proven. We

combine equality saturation [56] with the existing term rewriting system

(Section 3.4) to obtain a backtracking effect. This saturation-based term

rewriting system outperforms our previous approach [40].

• Confirming the method’s effectiveness in a realistic setting : the method

outperforms existing automatic FHE optimization techniques, and even

shows sizeable optimizations for domain-specific manually optimized re-

sults.

13

Chapter 2

Informal Description

In this section, we illustrate our approach with examples. Our approach consists

of offline and online phases (Figure 1.4).

Offline Learning via Program Synthesis

In the offline phase, we use program synthesis to learn a set of rewrite rules

from training circuits. Suppose we have the circuit c in Example 1.2.1 in the

training set:

c
def
= v1 ∧ (¬(v4 ∧ (¬(v2 ∧ v3)))).

The depth of this circuit is 3 and we would like to find a semantically-equivalent

circuit c′ with a smaller depth (i.e. `(c′) ≤ 2). To do so, we formulate the task as

an instance of the syntax-guided synthesis (SyGuS) problem [?]. The formulation

comprises a syntactic specification, in the form of a context-free grammar that

constrains the space of possible programs, and a semantic specification, in the

form of a logical formula that defines a correctness condition. The syntactic

14

specification for c′ is the grammar:

S → d3

d3 → d2 ∧ d2 | d3 ⊕ d3 | d2

d2 → d1 ∧ d1 | d2 ⊕ d2 | d1

d1 → d0 ∧ d0 | d1 ⊕ d1 | d0

d0 → 0 | 1 | c1 | c2 | c3 | c4 | c5

where S denotes the start symbol, and each non-terminal symbol di denotes

circuits of multiplicative depth ≤ i. The semantic specification for c′ is given as

a logical formula:

∀v1, v2, v3, v4. c(v1, v2, v3, v4) ⇐⇒ c′(v1, v2, v3, v4)

which enforces c′ to be semantically equivalent to c. Given this SyGuS formula-

tion, an off-the-shelf program synthesizer (e.g. EUSolver [3], DUET [41]) is

able to find the following circuit c′:

c′
def
= ((¬(v3 ∧ v2)) ∧ (v1 ∧ v4))⊕ v1

which has multiplicative depth 2.

Once we obtain a pair (c, c′) of original and optimized circuits, we simplify

c and c′ by replacing sub-circuits that are equivalent modulo commutativity

with a new fresh variable. In this example, ¬(v2 ∧ v3) in c and ¬(v3 ∧ v2) in c′

are equivalent modulo commutativity and therefore we replace them by a new

variable x, which simplifies c and c′ into v1 ∧ (¬(v4 ∧x)) and (x∧ (v1 ∧ v4))⊕ v1,

respectively. Note that the simplified circuits are still semantically equivalent.

We replace sub-circuits with a variable after we check for equivalence using a

SAT solver.

The purpose of this simplification step is to generalize the knowledge and

maximize the possibility of applying the rewrite rule for optimization in the online

phase. However, care is needed not to over-generalize and destroy the syntactic

structures of the circuits. For example, if we aim to replace all semantically

15

equivalent sub-circuits with a new fresh variable, we would obtain x ⇐⇒ x,

which is useless.

In summary, the offline learning phase produces the following rewrite rule:

v1 ∧ (¬(v4 ∧ x))→ (x ∧ (v1 ∧ v4))⊕ v1. (2.1)

Online Optimization via Term Rewriting

In the online phase, we use the learned rewrite rule to optimize unseen circuits.

Suppose we want to optimize the following circuit whose multiplicative depth is

4:

((v5 ∧ v6) ∧ (¬((v7 ∧ v8) ∧ (¬((v8 ∧ v9) ∧ (v9 ∧ v7)))))). (2.2)

To optimize the circuit, we first compare it with the left-hand side of the learned

rewrite rule (i.e. v1 ∧ (¬(v4 ∧ x))), and find a substitution σ that makes the two

circuits equivalent. For example, our matching algorithm in Section 3 is able to

find the following substitution:

σ =


v1 7→ v5 ∧ v6

v4 7→ v7 ∧ v8

x 7→ (¬(v8 ∧ v9) ∧ (v9 ∧ v7))

 .

Note that σ(v1 ∧ (¬(v4 ∧ x))) is equivalent to the circuit in (2.2). Next, we

apply the substitution to the right-hand side of the rewrite rule, obtaining the

following optimized circuit:

(¬((v8 ∧ v9) ∧ (v9 ∧ v7)) ∧ ((v5 ∧ v6) ∧ (v7 ∧ v8)))⊕ (v5 ∧ v6).

whose multiplicative depth is 3. In our approach, the resulting circuit is guaran-

teed to be semantically equivalent to the original one in (2.2).

Scaling via Divide-and-Conquer

As described from the above, we obtain rewrite rules from a small circuit and

apply it into a new small circuit. In practice, however, real circuits are much

16

larger, and the aforementioned method using the SyGuS formulation is not

directly applicable. Even state-of-the-art SyGuS tools can only handle small

circuits because the search space for synthesis grows exponentially with the

maximum depth and number of input variables.

To address this scalability issue, we apply our approach in a divide-and-

conquer manner; we divide a circuit into pieces, find a replacement for each

piece, and finally compose them to form a final circuit. For example, consider

the circuit cex of depth 5, which is depicted in Figure 2.1(a) (the critical path is

highlighted in red):

cex
def
= ((((a ∧ b) ∧ c) ∧ d) ∧ e) ∧ f. (2.3)

We can divide the circuit into two pieces r1 and r2 through which a critical path

passes. By introducing two auxiliary variables, cex can be rewritten as r2 where

r2
def
= (r1 ∧ e) ∧ f, r1

def
= ((a ∧ b) ∧ c) ∧ d.

We separately reduce the depths of r1 and r2 in order. We first find a replacement

for r1. We can replace r1 of depth 3 by the following:

r′1
def
= (a ∧ b) ∧ (c ∧ d)

which has depth 2 and the same semantics as r1. Next, we find a replacement

for r2. We treat r1 in the definition of r2 as a special variable that has its own

depth 2. Considering the depth of r1, we replace r2 of depth 4 by

r′2
def
= r′1 ∧ (e ∧ f)

that has depth 3 and the same semantics as r2. Combining r′1 and r′2 produces

the final circuit of depth 3. We use this divide-and-conquer strategy in both of

our offline learning and online rewriting phases.

Backtracking via Equality Saturation

In rewriting input circuits, we may miss the global optimality because there

can be multiple targets to optimize and multiple rewrite rules to apply to each

17

Figure 2.1: (a) The circuit cex of depth 5. (b) A circuit that has depth 3 and
the same semantics as cex .

target. In this situation, optimization results can be varied depending on which

target is rewritten first, or which rewrite rule is applied first.

For example, suppose that we want to optimize circuit c0 = ((x1 ∧ x2) ∧

(x2 ⊕ x3)) ∧ x3 using the following learned rewrite rules.

rule (1) : ((v1 ∧ v2) ∧ v3) ∧ v4 → ((v1 ∧ v2) ∧ v4) ∧ ((v2 ⊕ v4)⊕ v3)

rule (2) : ((v1 ∧ v2) ∧ v3) ∧ v4 → (v1 ∧ v2) ∧ (v3 ∧ v4)

rule (3) : (v1 ⊕ v1) → 0

rule (4) : (v1 ∧ 0) → 0

We can apply both rule (1) and rule (2) using substitution σ = {v1 7→

x1, v2 7→ x2, v3 7→ (x2⊕x3), v4 7→ x3}. If we apply rule (1) first, we can optimize

c0 → c1 = ((x1 ∧ x2) ∧ x3) ∧ ((x2 ⊕ x3) ⊕ (x2 ⊕ x3)). In this case, we can

subsequently apply rule (3) and rule (4) and optimize c0 →∗ 0. Otherwise, we

can optimize c0 → c2 = (x1 ∧ x2) ∧ ((x2 ⊕ x3) ∧ x3). In this case, we can no

longer apply the rewrite rules and miss the opportunity of further optimizing

c0.

To address this rewrite order issue, we use the equality saturation tech-

nique [56] that obtains a fully backtracking effect within a given time limit. By

the technique we try to explore every possible rewriting sequences (e.g. we try

to explore both c0 →∗ 0 and c0 → c2).

Equality saturation consists of two processes: saturation process and ex-

traction process. First, in the saturation process, we express all possible result

18

circuits as a form of program grammar using a data structure named E-graph [65]

(e.g. we construct program grammar that can generate circuits c0, c1, c2 and

0). In the extraction process, we extract an optimal circuit that has the lowest

multiplicative depth from a saturated E-graph (e.g. we extract circuit 0 which

has the lowest multiplicative depth). Details of this equality saturation process

are in Section. 3.4.

19

Chapter 3

Algorithm

We first review (Section 3.1) key definitions and results borrowed from Baader

and Nipkow [6] that will be used in the rest of the dissertation. Then we present

the offline learning phase (Section 3.2), online optimization phase (Section 3.3)

based on term rewriting and backtracking system(Section 3.4) via equality

saturation.

3.1 Preliminaries

Term

A signature Σ is a set of function symbols, where each f ∈ Σ is associated

with a non-negative integer n, the arity of f (denoted arity(f)). For n ≥ 0,

we denote the set of all n-ary elements Σ by Σ(n). Function symbols of 0-arity

are called constants. Let X be a set of variables. The set TΣ,X of all Σ-terms

over X is inductively defined; X ⊆ TΣ,X and ∀n ≥ 0, f ∈ Σ(n). t1, · · · , tn ∈

TΣ,X . f(t1, · · · , tn) ∈ TΣ,X . We will denote Var(s) for s ∈ TΣ,X as a set of

variables in term s. Note the set C of circuits consists of terms over Σ =

{∧,⊕, 0, 1}.

20

Position

The set of positions of term s is a set Pos(s) of strings over the alphabet of

positive integers, which is inductively defined as follows:

• If s = x ∈ X, Pos(s)
def
= {ε}.

• If s = f(s1, · · · , sn), then Pos(s)
def
= {ε} ∪

⋃n
i=1{ip | p ∈ Pos(si)}.

The position ε is called the root position of term s. The size |s| of term s

is the cardinality of Pos(s). For p ∈ Pos(s), the subterm of s at position p,

denoted by s |p, is defined by induction on the length of p: (i) s |ε
def
= s and (ii)

f(s1, · · · , sn) |iq
def
= si |q. For p ∈ Pos(s), we denote by s[p← t] the term that is

obtained from s by replacing the subterm at position p by t. Formally,

• s[ε← t]
def
= t

• f(s1, · · · , sn)[iq ← t]
def
= f(s1, · · · , si[q ← s], · · · , sn).

Substitution

A TΣ,X -substitution is a function X → TΣ,X . The set of all TΣ,X -substitutions is

denoted by Sub(TΣ,X). Any TΣ,X -substitution σ can be extended to a mapping

σ̂ : TΣ,X → TΣ,X as follows: for x ∈ X, σ̂(x)
def
= σ(x) and for any non-variable

term s = f(s1, · · · , sn), σ̂(s)
def
= f(σ̂(s1), · · · , σ̂(sn)). With a slight of abuse of

notation, we denote σ̂ as just σ.

Term Rewriting

A Σ-identity (or simply identity) is a pair 〈s, t〉 ∈ TΣ,X × TΣ,X . Identities will

be written as s ≈ t. A term rewrite rule is an identity 〈l, r〉, written l→ r, such

that l 6∈ X and Var(r) ⊆ Var(l). A term rewriting system 〈Σ, E〉 consists of

a set Σ of function symbols and a set E of term rewrite rules over TΣ,X . We

will often identify such a system with its rule set E, leaving Σ implicit. The

21

rewrite relation →E on TΣ,X induced by a term rewriting system E is defined

as follows:

s→E t ⇐⇒ ∃l→ r ∈ E, p ∈ Pos(s), σ ∈ Sub(TΣ,X).

s |p= σ(l), t = s[p← σ(r)]

Example 3.1.1. Let E = {x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, 1 ∧ x ≈ x, x ∧ y ≈ y ∧ x}.
Then, 1 ∧ (a ∧ 1)→E (1 ∧ a) ∧ 1→E a ∧ 1→E 1 ∧ a→E a.

Equational Theory

Let ↔∗E denote the reflexive-transitive-symmetric closure of →E . The identity

s ≈ t is a semantic consequence of E (denoted E |= s ≈ t) iff s↔∗E t. And the

relation ≈E
def
= {〈s, t〉 ∈ TΣ,X ×TΣ,X | E |= s ≈ t} is called the equational theory

induced by E.

Example 3.1.2. Let C = {x ∧ y ≈ y ∧ x, x ⊕ y ≈ y ⊕ x}. Then, x ∧ (y ⊕
z)→C (y ⊕ z) ∧ x→C (z ⊕ y) ∧ x. The theory of commutativity for circuits is

≈C
def
= {〈s, t〉 ∈ C× C | C |= s ≈ t} (e.g. x ∧ (y ⊕ z) ≈C (z ⊕ y) ∧ x).

Example 3.1.3. Boolean ring theory is ≈R
def
= {〈s, t〉 ∈ C × C | R |= s ≈ t}

where

R =



x⊕ y ≈ y ⊕ x, x ∧ y ≈ y ∧ x,
(x⊕ y)⊕ z ≈ x⊕ (y ⊕ z),
(x ∧ y) ∧ z ≈ x ∧ (y ∧ z),
x⊕ x ≈ 0, x ∧ x ≈ x,
0⊕ x ≈ x, 0 ∧ x ≈ 0,

x ∧ (y ⊕ z) ≈ (x ∧ y)⊕ (x ∧ z),
1 ∧ x ≈ x


Boolean ring theory formalizes digital circuits. For any two circuits c1, c2,

c1 ↔∗R c2 means they are semantically equivalent [6].

Example 3.1.4. The original circuit c and its optimized version c′ in Section 2
are semantically equivalent because

c = v1 ∧ (1⊕ (v4 ∧ (¬(v2 ∧ v3))))
→R (v1 ∧ 1)⊕ (v1 ∧ (v4 ∧ (¬(v2 ∧ v3)))) x ∧ (y ⊕ z) ≈ (x ∧ y)⊕ (x ∧ z)
→R v1 ⊕ (v1 ∧ (v4 ∧ (¬(v2 ∧ v3)))) x ∧ y ≈ y ∧ x, 1 ∧ x ≈ x
→R v1 ⊕ ((v1 ∧ v4) ∧ (¬(v3 ∧ v2))) (x ∧ y) ∧ z ≈ x ∧ (y ∧ z)
→R ((v1 ∧ v4) ∧ (¬(v3 ∧ v2)))⊕ v1 x⊕ y ≈ y ⊕ x
→R ((¬(v3 ∧ v2)) ∧ (v1 ∧ v4))⊕ v1 = c′ x ∧ y ≈ y ∧ x

22

E-Matching

A substitution σ is a E-matcher of two terms s and t if σ(s) ≈E t. Given two

terms s and t, a E-matching algorithm computes {σ ∈ Sub(TΣ,X) | σ(s) ≈E t}.

Example 3.1.5. Given two terms s = x∧y and t = (a∧b)∧ (b∧a), C-matching
algorithm returns two substitutions which are {x 7→ a ∧ b, y 7→ b ∧ a} and
{x 7→ b ∧ a, y 7→ a ∧ b}.

3.2 Learning Rewrite Rules

In this section, we describe how to learn rewrite rules using the divide-and-

conquer approach described in Section 2. The method is inspired by the prior

work [29], which uses syntax-guided synthesis to automatically transform a

circuit into an equivalent and provably secure one.

3.2.1 The Overall Algorithm

The pseudocode is shown in Algo. 1. Here, c denotes an original training circuit,

θ denotes a threshold value for termination condition, n is an user-provided

predefined limit for region selection. The algorithm generates an optimized circuit

c′, and returns a set E of rewrite rules collected in the process of optimization.

Our algorithm repeatedly identifies a circuit region and synthesizes a re-

placement. To identify a circuit region, we randomly choose a critical path

and traverse the path from input-to-output. If the left and right children at a

position have different depths, we include both gates in fan-in and recurse on

the child of deeper depth. We repeat this process until the region size reaches a

predefined limit. Once we successfully synthesize a replacement, we can decrease

the overall depth if a unique critical path passes through the region. Otherwise,

we decrease the number of parallel critical paths by one.

Our method first initializes c′ to be the original circuit c, E to be the empty

set and the worklist w to be a set of critical positions, respectively (lines 1–3).

The loop (lines 4 – 13) repeats the process of selecting a region and synthesizing

a replacement. First, a critical position pos is chosen in the input-to-output

23

Algorithm 1 Synthesis-based Rule Learning

Input: c: input boolean circuit
Input: θ: threshold for termination condition
Input: n: predefined size limit for chosen regions
Output: E: a set of rewrite rules
1: c′ ← c
2: E ← ∅
3: w ← CP(c′)

4: while w 6= ∅ and |c′|
|c| < θ do

5: remove a pos from w
6: 〈r, σ〉 ← GetRegion(c′ |pos, n)
7: r′ ← Synthesize(r, `(r)− 1, σ)
8: if r′ 6= ⊥ then
9: E ← E ∪ {Normalize(r → r′)}

10: c′ ← c′[pos← σ(r′)]
11: w ← CP(c′)
12: end if
13: end while
14: return E

order (line 5). Given a subcircuit at pos, the GetRegion procedure is invoked to

obtain a circuit region r such that |r| ≤ n (line 6). The GetRegion procedure

substitutes some subterms of a given circuit with fresh variables and returns

the result along with the substitution. Section 3.2.2 will detail more on this

procedure. Next, we invoke a SyGuS solver to synthesize a replacement for r

(line 7). If a solution is found (line 8), we obtain a term rewrite rule r → r′. We

generalize the rule by invoking the Normalize procedure (Section 3.2.4), and

add it into the set E (line 9). The old region r is replaced with the new region

r′ (line 10). Because the replacement step may change the overall structure of

the current circuit, we recompute critical positions and update the worklist (line

11). This process is repeated as long as there is room for improvement, and the

ratio between the sizes of c′ and c does not exceed the threshold value θ (line 4).

The ratio between the circuit sizes is considered because the depth reduction

may not be beneficial if a new circuit c′ additionally performs a huge number

of AND/XOR operations. Although the multiplicative depth is the dominating

factor for homomorphic evaluation performance, the number of operations can

24

also have a non-trivial impact if it is enormous. The threshold value varies

depending on the underlying FHE schemes. In our evaluation, we set θ to be

3. The algorithm eventually returns the set E of rewrite rules (line 14), which

include all the transformations occurred while optimizing c into c′.

3.2.2 Region Selection

The GetRegion procedure for the region selection is shown in Algo. 2. The region

selection method is a heuristic based on our observation that replacing long and

narrow regions covering critical paths often leads to significant optimization

effects. If the given region size n is 1 or the given circuit region is a variable of

a constant (i.e., |c| = 1) (line 2), we just represent the given circuit region as a

fresh variable and return it along with the corresponding substitution (line 3).

Otherwise (i.e., |c| > 1), we first let c1 and c2 be the left and right child of c,

resp. (lines 5 – 6). If the depth of c1 (c2, resp.) is deeper than the other (line 7

(line 10, resp.)), we keep extending the region in c1 (c2, resp.) (line 8 (line 11,

resp.)), and substitute c2 (c1, resp.) with a fresh variable (line 9 (line 12, resp.)).

Algorithm 2 GetRegion

Input: c: input boolean circuit region
Input: n: predefined size limit for regions
Output: r: a circuit region
Output: σ: a substitution from variables to circuits
1: x←a new fresh variable
2: if n = 1 or |c| = 1 then
3: return 〈x, {x 7→ c}〉
4: end if
5: c1 ← c |1
6: c2 ← c |2
7: if `(c1) > `(c2) then
8: 〈r′, σ〉 ← GetRegion(c1, n− 1)
9: return 〈c[1← r′, 2← x], σ ∪ {x 7→ c2}〉

10: else
11: 〈r′, σ〉 ← GetRegion(c2, n− 1)
12: return 〈c[1← x, 2← r′], σ ∪ {x 7→ c1}〉
13: end if

Example 3.2.1. Consider the circuit cex in (2.3). GetRegion(cex , 5) returns
〈(r1 ∧ e) ∧ f, {r1 7→ ((a ∧ b) ∧ c) ∧ d}〉 (see Fig. 2.1(a)).

25

3.2.3 Synthesizing Replacement

Given a circuit region r, an upper bound n of desired multiplicative depths, and

a substitution σ, the function Synthesize returns a new semantically equivalent

region r′ of depth ≤ n.

For 1 ≤ i ≤ n, let xi denote one of the variables such that `(σ(xi)) = i. We

can formulate a SyGuS instance as follows. The syntactic specification for r′ is

S → dn

dn → dn−1 ∧ dn−1 | dn ⊕ dn | dn−1 | xn

dn−1 → dn−2 ∧ dn−2 | dn−1 ⊕ dn−1 | dn−2 | xn−1

...

d0 → 0 | 1 | x0

where S denotes the start symbol and each di represents circuits of multiplicative

depth ≤ i. The semantics specification for r′ enforces the equivalence of r and

r′:

∀x0, · · · , xn−1. r(x0, · · · , xn−1) ⇐⇒ r′(x0, · · · , xn−1).

When Synthesize fails to find a solution, it returns ⊥.

Example 3.2.2. After selecting the region r2 as in Example 3.2.1, we find a
replacement for r2 using the following formulation, hoping to reduce the depth
from 5 to 4. The syntactic specification for r′2 is

S → d4

d4 → d3 ∧ d3 | d4 ⊕ d4 | d3

d3 → d2 ∧ d2 | d3 ⊕ d3 | d2 | r1

d2 → d1 ∧ d1 | d2 ⊕ d2 | d1

d1 → d0 ∧ d0 | d1 ⊕ d1 | d0

d0 → 0 | 1 | e | f

and the semantics specification is the semantic equivalence with r2. Note that
r1 is producible from d3 because its depth is 3. Given this problem, a SyGuS
solver (e.g. EUSolver [3], DUET [41]) finds the solution r1 ∧ (e ∧ f) which
has depth 4.

3.2.4 Collecting and Simplifying Rewrite Rules

26

When we obtain a rewrite rule l→ r, we simplify it by invoking the Normalize

procedure (line 9 in Algo. 1). We normalize each rewrite rule l → r ∈ E as

follows:

• Let S = {(l |pl , r |pr) | pl ∈ Pos(l), pr ∈ Pos(r), l |pl≈C r |pr}.

• For each (l |pl , r |pr) ∈ S, we transform l→ r into l′ → r′ where l′ = σ(l),

r′ = σ(r), σ = {∀l |pi 7→ x,∀r |pj 7→ x} s.t. l |pi≈C l |pl , r |pj≈C r |pr ,

and x is a fresh variable. We transform the rule only if l′ is semantically

equivalent to r′.

We consider a term rewrite rule that cannot be further simplified by this

procedure normalized modulo commutativity.

Example 3.2.3. Suppose we want to normalize a rewrite rule:

((a ∧ b) ∧ (b ∧ a)) ∧ (a ∧ b)︸ ︷︷ ︸
l

→ (b ∧ a)︸ ︷︷ ︸
r

.

Note that l |11= l |2= (a ∧ b) ≈C r |1= l |12= (b ∧ a). If we replace the subterms
l |11, l |12, l |2, and r |1 with a fresh variable x, we obtain normalized rewrite
rule (x ∧ x) ∧ x→ x, which is semantics preserving.

Example 3.2.4. Suppose we want to normalize a rewrite rule:

(a ∧ b) ∧ a︸ ︷︷ ︸
l

→ (b ∧ a) ∧ b︸ ︷︷ ︸
r

.

Note that l |1= (a ∧ b) ≈C r |1= (b ∧ a). If we replace the subterms l |1 and r |1
with a fresh variable x, we would obtain x ∧ a → x ∧ b, which is undesirably
semantics-changing. In this case, we do not replace the subterms.

3.3 Optimization without Backtracking

Next, we describe our algorithm that uses the set E of (normalized) learned

rewrite rules to optimize unseen circuits.

27

3.3.1 Our Term Rewriting System

Our term rewriting system is based on the following relation →E,` induced by E

(learned rewrite rules) and ` (the function computing the multiplicative depth).

s→E,` t ⇐⇒ ∃l→ r ∈ E, p ∈ CP(s), σ ∈ Sub(C).

s |p≈C σ(l), `(σ(l)) > `(σ(r)), t = s[p← σ(r)].

Because our primary goal is to reduce the overall multiplicative depth, the above

rewrite relation differs from the ordinary relation in Section 3.1 in three aspects.

First, we rewrite critical paths by considering only critical positions CP(s)

of a given circuit s. Rewriting non-critical paths are not of our interest.

Second, we admit a rewrite step only if it decreases the depth of a critical

path. This condition is reflected in `(σ(l)) > `(σ(r)).

Lastly, we perform rewriting modulo commutativity to provide flexibility

to the rewriting procedure. This is for maximizing the possibility of applying

the learned rewrite rules for optimization. Instead of syntactically matching

a left-hand side of a rule with a subterm as in the ordinary rewrite relation,

each rewrite step requires C-matching, which is reflected in s |p≈C σ(l). Here, a

complication arises that there may be multiple C-matchers. In such a case, we

choose the one that can reduce depth.

Example 3.3.1. Recall the rewrite rule (2.1) in Section 2

v1 ∧ (¬(v4 ∧ x))︸ ︷︷ ︸
l

→ (x ∧ (v1 ∧ v4))⊕ v1︸ ︷︷ ︸
r

.

and the target circuit (2.2) of depth 4

(v5 ∧ v6) ∧ (¬((v7 ∧ v8) ∧ (¬((v8 ∧ v9) ∧ (v9 ∧ v7))))).

There are two substitutions that make l match with the target circuit: σ1 = {v1 7→
v5 ∧ v6, v4 7→ v7 ∧ v8, x 7→ (¬(v8 ∧ v9)∧ (v9 ∧ v7))} and σ2 = {v1 7→ v5 ∧ v6, v4 7→
(¬(v8 ∧ v9) ∧ (v9 ∧ v7)), x 7→ v7 ∧ v8}. Applying the substitutions into r gives us
two candidates for the replacement, which are

σ1(r) = (¬((v8 ∧ v9) ∧ (v9 ∧ v7)) ∧ ((v5 ∧ v6) ∧ (v7 ∧ v8)))⊕ (v5 ∧ v6),

σ2(r) = ((v7 ∧ v8) ∧ ((v5 ∧ v6) ∧ (¬(v8 ∧ v9) ∧ (v9 ∧ v7))))⊕ (v5 ∧ v6).

Note that σ1(r) has depth 3 whereas σ2(r) has depth 4. Because only σ1 can
reduce the depth, we choose σ1.

28

The following theorem ensures that our term rewriting system is semantics-

preserving and terminating.

Theorem 3.3.2 (Soundness). ∀c, c′ ∈ C. c→E,` c
′ ⇒ c ≈R c′.

Theorem 3.3.3 (Termination). →E,` is a terminating relation.

Before describing the proofs of Theorem 3.3.2 and 3.3.3, we begin with

preliminary concepts from Baader and Nipkow [6].

Definition 3.3.4. Let ≡ be a binary relation on TΣ,X .

1. The relation ≡ is closed under substitutions iff s ≡ t implies σ(s) ≡ σ(t)
for all s, t ∈ TΣ,X and substitutions σ.

2. The relation ≡ is compatible with Σ-context iff s ≡ s′ implies t[p← s] ≡
t[p← s′] for all t ∈ TΣ,X and positions p ∈ Pos(t).

Lemma 3.3.5. ≈R is closed under substitutions and compatible with Σ-context.

Proof. By Theorem 3.1.12 in Baader and Nipkow [6], for any set E of Σ-identities,
the relation ↔∗E is closed under substitutions. By Lemma 3.1.11 in Baader and
Nipkow [6], the relation ↔∗E is also compatible with Σ-context. Setting E = R
finishes the proof.

Lemma 3.3.6. For all s, t ∈ TΣ,X ,

s ≈C t =⇒ s ≈R t.

Proof. Straightforward from the fact that C ⊆ R.

Now we are ready to prove Theorem 3.3.2.

Proof. By the definition of s →E t and E, there exist (l ≈R r) ∈ E, p ∈
Pos(s), σ. such that s |p≈C σ(l), t = s[p← σ(r)].

s |p≈R σ(l) (By Lemma 3.3.6 and s |p≈C σ(l))
s[p← s |p] ≈R s[p← σ(l)] (By Lemma 3.3.5)
σ(l) ≈R σ(r) (By Lemma 3.3.5 and l ≈R r)
s[p← σ(l)] ≈R s[p← σ(r)] (By Lemma 3.3.5)

Therefore, s ≈R t.

Next, before describing the proof of termination, we define the following

strict orders between terms.

29

Definition 3.3.7. For all s, t ∈ TΣ,X ,

s � t ⇐⇒ (`(s) > `(t)) ∨ (`(s) = `(t) ∧ |CP(s)| > |CP(t)|).

Recall that by replacing an old circuit region compassing a critical path with

a new circuit region of smaller depth, we can either i) decrease the overall depth

if the critical path is unique, or ii) decrease the number of parallel critical paths,

which is reflected on the definition of �.

The following lemma tells us that the order � is compatible with Σ-context.

Lemma 3.3.8. Suppose we have s, t1, t2 ∈ TΣ,X such that s |p= t1 and `(t1) >
`(t2). Then,

∀p ∈ CP(s). s[p← t1] � s[p← t2].

Proof. • Case p = ε: s[p← t1] = t1 � t2 = s[p← t2].

• Case p = p′.1:

Suppose s |p′= ∧(t1, s2) which makes s |p= t1. By the fact p = p′.1 and
the definition of CP, `(t1) ≥ `(s2). There are two cases.

Case (1) `(t1) > `(s2):

`(∧(t1, s2)) = 1 + `(t1)
`(∧(t2, s2)) = 1 + max(`(t2), `(s2)) (By Def. of `)
`(t1) > `(t2) (By the premise)
`(t1) > `(s2) (By the case assumption)
∴ `(s[p← t1]) > `(s[p← t2])

Case (2) `(t1) = `(s2):

`(∧(t1, s2)) = 1 + `(s2)
`(∧(t2, s2)) = 1 + `(s2) (`(s2) = `(t1) > `(t2))
|CP(∧(t1, s2))| = |CP(t1)] CP(s2)| × 2 (By Def. of CP)
|CP(∧(t2, s2))| = |CP(s2)| × 2
CP(t1) 6= ∅
|CP(∧(t1, s2))| > |CP(∧(t2, s2))|

Note that CP(t1) 6= ∅ because otherwise, `(t1) = 0 > `(t2) ≥ 0 which leads
to a contradiction.

Therefore, `(s[p← t1]) = `(s[p← t2]) ∧ |CP(s[p← t1])| > |CP(s[p← t2])|.
The other case where s |p′= ⊕(t1, s2) can be proven similarly.

• Case p = p′.2: Similar to the above case.

30

Now we are ready to prove Theorem 3.3.3.

Proof. Straightforward from Lemma 3.3.8 and the fact that � is a strict order.

Intuitively, termination is enforced because every rewrite step decreases the

depth of a critical path. If the rewritten critical path is unique, we reduce the

overall multiplicative depth of the circuit. Otherwise, we reduce the number of

parallel critical paths. Because every circuit has at least one critical path of

non-negative depth, the rewriting procedure eventually terminates.

Using the rewrite relation →E,`, given a circuit c, we perform term rewriting

on c to obtain an optimized circuit c′ such that c
∗→E,` c

′. At each rewrite

step, we randomly choose a critical path and traverse the path to find a target

region to be replaced. The traversal order is randomly chosen between the

input-to-output and output-to-input orders. Similarly to Algo. 1, we stop the

rewriting procedure when there are so many additional AND/XOR gates in c′

that the depth reduction may not be beneficial.

3.3.2 Optimizations

In practice, we apply the following optimization techniques to the rewriting

procedure.

Prioritizing Large Rewrite Rules

In the case where multiple rewrite rules are applicable, we choose the largest

rule. The size of a rule l→ r is simply measured by |l|. This heuristic is based

on our observation that large rules are applicable less often than small rules,

but they expedite transformation by modifying a wider area.

Term Graph Rewriting

So far, we have presented our method as if circuits are represented as functional

expressions for ease of presentation. In practice, we cannot directly implement

this kind of conventional term rewriting based on strings or trees because of an

31

efficiency issue. For example, term rewrite rules such as (2.1) containing some

variable more often on its right-hand side than on its left-hand side can increase

the size of a term by a non-constant amount. This problem can be overcome by

creating several pointers to a subterm instead of copying it.

For efficiency, we conduct term graph rewriting [50] on circuits. Term graph

rewriting is a model for computing with graphs representing functional expres-

sions. Graphs allow sharing common subterms, which improves the efficiency of

conventional term rewriting in space and time. Thus, we represent circuits as

graphs and perform rewriting on the graphs by translating term rewrite rules

into suitable graph transformation rules. Term graph rewriting is sound with

respect to term rewriting in that every graph transformation step corresponds to

a sequence of applications of term rewrite rules. The interested reader is referred

to Plump [50] for more details about the soundness proof and the translation

method.

Bounded C-matching

From a performance perspective, the main weakness of our rewriting system

is that each rewrite step requires C-matching, which is known to be NP-

complete [39]. We limit the search space of C-matching algorithm by limiting

the number of applications of commutativity rules (see below for details).

E-Matching Algorithm Solving a matching problem for two terms s and t

is represented by S = {s ≈?
E t}. A conventional E-matching algorithm derives a

set of equations in solved form:

{x1 ≈E t1, · · · , xn ≈E tn}

where all xi’s are pairwise distinct.

Matching System The symbol ⊥ or a pair P ;S where

• P is a set of matching problems,

32

{s .
=

?
s} ∪ P ;S

P ;S [Trivial]

{f(s1, s2)
.
=

?
f(t1, t2)} ∪ P ;S

{s1
.
=

?
t1, s2

.
=

?
t2} ∪ P ;S [Decomposition]

{f(s1, s2)
.
=

?
f(t1, t2)} ∪ P ;S

{s2
.
=

?
t1, s1

.
=

?
t2} ∪ P ;S [C-Decomposition]

{f(s1, s2)
.
=

?
g(t1, t2)} ∪ P ;S

⊥ f 6= g
[Symbol Clash]

{f(s1, s2)
.
=

?
x} ∪ P ;S

⊥ [Symbol-Variable Clash]

{x .
=

?
t1} ∪ P ; {x .

= t2} ∪ S

⊥ t1 6= t2
[Merging Clash]

{x .
=

?
t} ∪ P ;S

P ; {x .
= t} ∪ S

x
.
= t′ 6∈ S where t 6= t′

[Variable Elimination]

Table 3.1: Rules for C-matching

• S is a set of equations in matched form.

• ⊥ represents failure (i.e., no matchers).

A matcher (or a solution) of a system P ;S returns a matcher that solves each

of the matching equations in P and S.

Table. 3.1 depicts an example of the matching rules when E = C.

The following algorithm matchs s to t.

1. Create an initial system is {s .
=? t}; ∅.

2. Apply successively the matching rules.

3. If the final system is ∅;S, return S.

4. If the final system is ⊥, then fail.

C-Matching Algorithm

33

Example 3.3.9. The followings show the process of finding C-matchers of
f(x, f(a, x)) and f(g(a), f(a, g(a))) where f and g are function symbols, and
the others are variables.

{f(x, y)
.
=?
C f(f(a, b), f(b, a))}; ∅ =⇒Decomposition

{x .
=?
C f(a, b); y

.
=?
C f(b, a)}; ∅ =⇒V.Elim

{y .
=?
C f(b, a)}; {x .

=C f(a, b)} =⇒V.Elim

∅; {x .
=C f(a, b), y

.
=C f(b, a)} =⇒V.Elim

The other way is

{f(x, y)
.
=?
C f(f(a, b), f(b, a))}; ∅ =⇒C−Decomposition

{x .
=?
C f(b, a); y

.
=?
C f(a, b)}; ∅ =⇒V.Elim

{y .
=?
C f(a, b)}; {x .

=C f(b, a)} =⇒V.Elim

∅; {x .
=C f(b, a), y

.
=C f(a, b)} =⇒V.Elim

Note that C-Decomposition and Decomposition transform the same system in
different ways. There may exist multiple matchers, and C-matching algorithm is
NP-complete [39].

To avoid the exponential complexity of C-matching algorithm, we bound the
number of applications of the C-Decomposition rule. This lead to incompleteness,
but does not harm the correctness of the matching algorithm.

3.4 Optimization with Backtracking Based on Equal-
ity Saturation

3.4.1 E-graph Structure

E-graph structure is defined as a triple of a set of enodes, a set of eclasses, and

a set of edges. Each enode contains a boolean operator (∧, ⊕) or boolean value

(0, 1, x). Eclass is a set of enodes. Edge connects an enode to an eclass.

The meaning of the E-graph is as follows. Each enode represents a set of

all expressions that can be generated in the following manner, and each eclass

represents a set of all expressions that can be generated by enodes inside it. All

E-graphs must have invariant that all expressions generated by enodes in the

same eclass must be semantically equivalent. If an enode is a boolean value,

it generates the constant expression itself. If an enode is a boolean operator,

it generates all expressions that can be made by choosing each child boolean

expression among the expressions that the corresponding child eclass represents.

34

Figure 3.1: Simple example of E-graph. Each box means enode, and dotted box
means eclass.

Figure 3.1 shows the concept of an E-graph. Let us illustrate how to generate

various expressions from eclass or enode, and show that the above invariant of E-

graph holds. Let ECi and ENi be the sets of expressions that can be generated by

eclass eci and enode i respectively. Since enode 1–3 respectively contain a boolean

value x1–x3, ECi = ENi = {xi}(1 ≤ i ≤ 3). Since enode 4 contains a boolean

operator ∧ and has two children eclasses ec1 and ec2, it can generate x1 ∧ x2 by

choosing x1 ∈ EC1 and x2 ∈ EC2 as two children expressions. Similarly, we get

EC5 = EN5 = {(x1 ∧ x2) ∧ x3}, EC6 = EN6 = {(x2 ⊕ x3) ⊕ (x2 ⊕ x3)}, and

EN7 = {((x1 ∧ x2) ∧ x3) ∧ ((x2 ⊕ x3) ⊕ (x2 ⊕ x3))}. In the same way, we get

EN8 = {((x1∧x2)∧(x2⊕x3))∧x3}. Since ecroot contains enodes 7 and 8, we get

ECroot = EN7 ∪EN8 = {((x1 ∧ x2)∧ x3)∧ ((x2⊕ x3)⊕ (x2⊕ x3)), ((x1 ∧ x2)∧

(x2 ⊕ x3))∧ x3}. Recall that two boolean expressions in ECroot are semantically

equivalent.

Note that E-graph also can be interpreted as a program grammar. Each

of the eclasses corresponds to a nonterminal symbol and each of enodes in

that eclass corresponds to a production rule for the nonterminal symbol. Every

E-graph corresponds to a particular context-free grammar.

In this context, equality saturation is a process of constructing a program

35

grammar that can generate all boolean circuits equivalent to the input circuit.

3.4.2 Equality Saturation Process

Equality saturation consists of two processes: saturation process and extraction

process. First, in the saturation process, we continually expand E-graph by

finding all circuits which are semantically equivalent to an initial circuit. We

call the E-graph saturated if we can not find any other equivalent circuits. In

the extraction process, we extract a circuit that has the lowest multiplicative

depth from a saturated E-graph.

Figure 3.2 and Figure 3.3 illustrates the saturation process. Same as Section 2,

we start with a term graph of the input boolean circuit ((x1∧x2)∧(x2⊕x3))∧x3

and following rewrite rules.

rule (1) : ((v1 ∧ v2) ∧ v3) ∧ v4 → ((v1 ∧ v2) ∧ v4) ∧ ((v2 ⊕ v4)⊕ v3)

rule (2) : ((v1 ∧ v2) ∧ v3) ∧ v4 → (v1 ∧ v2) ∧ (v3 ∧ v4)

rule (3) : (v1 ⊕ v1) → 0

rule (4) : (v1 ∧ 0) → 0

Then we explore optimized circuits that can be generated based on the rewrite

rules by an iteration of three steps: ematch, add, and merge. Figure 3.2 illustrates

the first iteration. In the ematch step, we find all enodes that can be rewritten

by a certain rule. An enode is said rewritable by a certain rule if it can generate

a circuit which can be rewritten by the rule. As the root enode can generate

circuit ((x1 ∧ x2) ∧ (x2 ⊕ x3)) ∧ x3 that can be rewritten by rule (1) and rule

(2), we get two rewritten circuits as a result of ematch step for the root enode

(Figure 3.2.(a)). In the add step, we add all rewritten circuits to the E-graph in a

recursive manner from bottom to top (Figure 3.2.(b)). Newly added enodes are

colored gray in Figure 3.2 and Figure 3.3. Note that each added rewritten circuit

corresponds to an enode. In the merge step, for each pair of rewritable enode

36

Figure 3.2: Change of E-graph during a single iteration. Dotted box means
eclass. (a) ematch result for root enode. (b) add subcircuit c1 and c2 to E-graph.
(c) merge root node and result enodes (c1 and c2) of add step.

and rewritten circuit, we merge the rewritable enode and newly added enode

(that corresponds to the rewritten circuit) as the same eclass (Figure 3.2.(c)). In

the second and third iteration, we expand E-graph by applying rewrite rule (3)

and rule (4) respectively (Figure 3.3.(c), Figure 3.3.(d)).1 As the root enode is

merged with the enode that contains 0, we can figure out that the initial circuit

is semantically equivalent to 0. More details of these three steps are described

in Willsey et al. [65].

We repeat the above three steps until no further changes are made (i.e.

E-graph is saturated). Since it is not guaranteed that an E-graph will end up

saturating, we give an appropriate amount of time limit (12 hours).

1More enodes are rewritable by rule (2), but we ruled out them in Figure 3.3 for clarity.

37

Figure 3.3: Change of E-graph during iterations. Dotted box means eclass. (a)
initial E-graph. (b) after 1 iteration. (c) after 2 iterations. (d) saturated E-graph.

In the extraction process, we extract the least-cost circuit from the saturated

E-graph for the given cost model. If the cost function is local (the cost of

a node is computable only with the costs of its children nodes), it is known

that the least-cost circuit for that cost model can be easily extracted from the

E-graph [65]. In our case, since the multiplicative depth of the circuit is a local

function, circuits with the lowest multiplication depth can be easily extracted.

3.4.3 Tradeoff between Optimality and Cost

In our single-path (i.e. without backtracking) term rewriting system defined in

Section 3.3, we can only explore limited optimization space due to termination

property and efficiency. To ensure termination, we selectively rewrite a target

circuit only when its multiplicative depth is reduced. For efficiency, we apply

rewrite rules only to a target circuit lying on critical paths. For these reasons,

we have to give up the guarantee to find a globally optimal circuit for efficient

and terminating rewriting procedures.

38

In a saturation-based rewriting system, the possibility of finding the globally

optimal circuit is enlarged. As we efficiently compress all possible result circuits

as a form of program grammar, we can explore an expansive space within a

practical time budget.

Although equality saturation is a time-consuming method in general, we

can successfully introduce it for our term rewriting system since most of the

homomorphic evaluation circuits have a relatively small scale.

39

Chapter 4

Evaluation

We implemented our method as a tool named Lobster1. This section evaluates

our Lobster system to answer the following questions:

Q1: How effective is Lobster for optimizing FHE applications from various

domains?

Q2: How does Lobster compare with existing general-purpose FHE optimiza-

tion techniques?

Q3: What is the benefit of reusing pre-learned rewrite rules?

Q4: What is the benefit of using equality saturation technique?

Q5: What is the benefit of the rule normalization and equational matching?

Q6: How long does Lobster take to obtain optimized circuits?

Q7: How sensitive is Lobster to changes in the training set for learning rewrite

rules?

1Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting

40

All of our experiments were conducted on Linux machines with Intel Xeon

2.6GHz CPUs and 256G of memory.

4.1 Experimental Setup

Implementation

Lobster comprises three pieces: (i) an offline rule learner, (ii) an online circuit

optimizer, and (iii) a homomorphic circuit evaluator. Lobster is written in

OCaml and RUST, and consists of about 3K lines of code.

The offline rule learner collects rewrite rules for online optimization. For

each of the benchmarks, we performed the offline learning algorithm (Algo. 1)

with a timeout of 1 week before online optimization. We use EUSolver [3]2 and

DUET [41]3, which are state-of-the-art open-source search-based synthesizers,

for the offline learning task. We use a timeout of one hour for synthesizing each

rewrite rule.

The online circuit optimizer transforms Boolean circuits generated by Cingulata [16],

an open-source FHE compiler, into depth-optimized ones. Cingulata first di-

rectly translates a given FHE application written in C++ into a Boolean circuit

representation, and then heuristically minimizes the circuit area by removing

redundancy using the ABC tool [12], which has been widely used for hardware

synthesis. Then, our optimizer performs the saturation-based rewriting procedure

on the resulting circuit. We used EGG [65] library to implement saturation-

based rewriting system. We used learned rewrite rules and commutativity as

equality rules, and did not use any eclass analysis.

Circuits optimized by the online optimizer are evaluated by our homomorphic

circuit evaluator built using HElib [35].4 When homomorphically evaluating

2In our previous work [40], we chose EUSolver among the general-purpose synthesizers
that participated in the 2019 SyGuS competition [55] since the tool performs best for our
optimization tasks.

3We could learn new rewrite rules using DUET that outperforms EUSolver for our
optimization tasks in most cases.

4We could not use the homomorphic circuit evaluator provided by Cingulata because it
crashed for some of our evaluation benchmarks, which are fairly sizeable circuits.

41

circuits, we set the security parameter to 128 which is usually considered large

enough. It means a ciphertext can be broken in the worst case time proportional

to 2128.

Benchmarks

Our benchmarks comprise 25 FHE applications written using the Cingulata

APIs shown in Table 4.1. We had initially collected 64 benchmarks from the

following four sources.

• Cingulata benchmarks – 9 FHE-friendly algorithms from diverse domains

(medical diagnosis, stream cipher, search, sort) [22].

• Sorting benchmarks – 4 privacy-preserving sorting algorithms (merge,

insertion, bubble, and odd-even) [17]. All the sorting algorithms can take

up to 6 encrypted 8-bit integers as input.

• Hacker’s Delight benchmarks – 26 homomorphic bitwise operations adapted

from Hacker’s Delight [64]5, a collection of bit-twiddling hacks. We include

these benchmarks because they can be potentially used as building blocks

for efficient FHE applications that perform computations over fixed-width

integers.

• EPFL benchmarks – 25 circuits from EPFL combinational benchmark

suite [1]. The circuits are intendedly suboptimal to test the ability of

circuit optimization tools.

Among these 64 candidate benchmarks, we ruled out 39 benchmarks that are

out of reach for homomorphic evaluation even with the state-of-the-art FHE

scheme [35], or which are likely depth-optimal based on empirical evidence.

Among the excluded 39 benchmarks, 18 benchmarks have the number of

AND/XORs greater than 10,000, or the multiplicative depth is larger than 100.

522 benchmarks used for program synthesis [38] + 4 excerpted from Hacker’s Delight [64]

42

Table 4.1: Characteristics of benchmarks from {medical [14], sorting [17], bit-
vector evaluation [38, 64], circuit [1]} algorithm. ×Depth denotes the multi-
plicative depth. #AND and Size give the number of AND operations and the
circuit size, respectively.

Our homomorphic circuit evaluator runs out of memory for these circuits. The

rest 21 benchmarks are such that (i) baseline optimizer [15] fails to reduce the

multiplicative depth, and (ii) we could not mine any rules from their circuit

representations even after 7 days of running the offline learner, because this

means that even the state-of-the-art synthesizer with practically unlimited time

cannot find any improvement.

43

Baseline

We compare Lobster to Carpov et al. [15], which also aims at minimizing the

multiplicative depth of circuits for homomorphic evaluation. The work is also

based on term rewriting, but only with two hand-written rewrite rules. The first

rule is based on AND associativity: (x∧y)∧z → x∧(y∧z). In a given circuit c, a

substitution σ such that σ((x∧y)∧z) is syntactically matched with a sub-circuit

of c is found. The matched part σ((x ∧ y) ∧ z) is replaced with σ(x ∧ (y ∧ z)) if

`(y) < `(x) and `(z) < `(x). This rewrite rule, when applied into a critical path,

reduces the depth by one from `(σ(x)) + 2 to `(σ(x)) + 1. The second rewrite

rule is based on XOR distributivity: (x⊕ y) ∧ z → (x ∧ z)⊕ (y ∧ z). This rule

does not affect the depth, but it can make the first rule applicable by clearing

XOR operators away. The two rewrite rules repeatedly rewrite critical paths

until a heuristic termination condition is satisfied. As the tool is not publicly

available, we reimplemented their algorithm.6

4.2 Effectiveness of Lobster

Optimization Effect

We evaluate Lobster on the benchmarks and compare it with Carpov et al. [15].

Both of the tools are provided circuits initially generated by Cingulata. We

aim to determine whether Lobster can learn rewrite rules from training circuits

and effectively generalize them for optimizing other unseen circuits. To this

end, we conduct leave-one-out cross validation; for each benchmark, we use

rewrite rules learned from the other remaining 24 benchmarks. Both of the tools

are given the timeout limit of 12 hours for the optimization tasks; in case of

exceeding the limit, we use the best intermediate results computed so far.

We measure Lobster’s reduction ratios of the multiplicative depth and

speedups in overall homomorphic evaluation time against the initial Cingulata-

6We use the “random” priority function because it slightly outperforms the “non-random”
heuristics according to the results in Carpov et al. [15].

44

Sp
ee

du
p

1.0

1.5

2.0

2.5

3.0

3.5

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l

dec i2c

int
2fl

oa
t

rou
ter

Lobster / Carpov et al

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12bar
ca

vlcctr
l
dec i2c

int
2fl

oa
t

rou
ter

Lobster / Carpov et al

Figure 4.1: Main results comparing the optimization performance of Lobster
and Carpov et al. [15] – Speedups in overall homomorphic evaluation time (left)
and depth reduction ratios (right).

Ev
al

ua
tio

n
Ti

m
e

0

5000

10000

15000

20000

Multiplicative depth
0 5 10 15 20 25 30 35 40 45

Figure 4.2: Correlation plot of multiplicative depth and homomorphic evaluation
time

generated circuits, and compared them with Carpov et al. [15]. The results are

summarized in Fig. 4.1. More detailed information can be found in Table 4.2.

Lobster is able to optimize 22 out of 25 benchmarks within the timeout limit.

Lobster achieves 1.08x – 5.43x speedups with the geometric mean of 2.05x.

The number of AND gates increases up to 1.9x more with the geometric mean of

1.31x. The depth reduction ratios range from 12.5% to 53.3% with the geometric

mean of 25.1%.

We next study the results in detail. Most notably, Lobster achieves 2.62x

45

Table 4.2: Detailed main results (comparison to Carpov etl al. [15]). The timeout
for optimization is set to 12 hours. #AND ↑ shows the ratio between the
number of AND gates of the optimized circuit and the original one. Eval.
Time shows homomorphic evaluation time (where ‘-’ means that the depth and
evaluation time is the same as the original).

and 1.60x speedups for the two Cingulata benchmarks cardio and dsort, respec-

tively. Recall that they are already carefully hand-tuned to be depth optimized.

This result shows that our method provides significant performance gains that

are complementary to those achieved by domain-specific optimizations. The

four sorting benchmarks also observe significant performance improvements. For

the four sorting benchmarks, we used single-path term rewriting of previous

Lobster [40], since EGG library failed to perform saturation task for circuits

that has multiplicative depth over 25. Lobster reduces the depth by 20% for

each of them. The osort benchmark shows a 3.17x speedup, and the other three

benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10

46

out of 12 observe improvements. The speedups for hd-04, hd-07, hd-08 and hd-10

are remarkable (3.8x, 2.6x, 2.4x and 3.3x, respectively). For the other bench-

marks, we observe 1.08x – 1.89x speedups. However, both of the two optimizers

fail to optimize the other 2 benchmarks, which are relatively simple. Based

on the fact that these small and tricky algorithms are designed to efficiently

perform computations on plaintexts, we suspect most of these benchmarks to

be depth-optimal.

As of the EPFL benchmarks, 6 out of 7 observe improvements. Both op-

timizers fail to optimize dec, which is relatively simple. For bar, we observe

1.51x speedup. For the other benchmarks (cavlc, ctrl, i2c, int2float and router),

Lobster achieves remarkable speedups (2.5x – 5.4x).

The number of AND gates increases 1.31x more on average. For the 4

sorting benchmarks ({m,i,b,o}sort), we observe nearly 2x increases. For the other

benchmarks, we observe up to 1.5x increases. These increases are acceptable

considering depth reduction ratio and speedup. The increases in the number of

XOR gates is similar, with the geometric mean of 1.2x.

In terms of time spent for the optimization, Lobster successfully optimizes

circuits better than Carpov et al. [15] within given time limit (12 hours).

Note that Fig. 4.2 shows that the depth reduction ratios are generally

proportional to performance improvements (but not exactly proportional since

the number of AND operations also influences the performance). This shows

that multiplicative depth reduction is a good proxy for speedup, and thus we

only measured depth reduction ratio rather than speedup in sub-experiments

(Section 4.4 – Section 4.8).

Learning Capability

We investigate the learned rewrite rules. From all the benchmarks, our rule

learner mines 502 rewrite rules. The rule sizes (the size of a rule l → r is

measured by |l|) range from 4 to 38. The average and median sizes are 14 and

47

13, respectively. Fig. 4.3 shows how often these rules were applied to reduce the

multiplicative depth during our single-path term rewriting. Relatively small-sized

rules (size 5 – 15) are most frequently used, but also the large-sized rules are

sometimes applied and optimize wide areas of the input boolean circuits.

Figure 4.3: distribution of rule sizes and how often they were used during
optimization

The machine-found optimization patterns are surprisingly aggressive. For

example, the following intricate rules enable to reduce the depth of a rewritten

path by 1 when applied once (we denote 1⊕ c as ¬c).

48

(v1 ∧ (v2 ∧ ((v3 ⊕ (v4 ∧ v5))⊕ (v6 ∧ v5))))

→ ((((v6 ⊕ v4) ∧ v5)⊕ v3) ∧ (v2 ∧ v1))

((¬((v1 ∧ (¬(v2 ⊕ v3)))⊕ (v2 ⊕ v3))) ∧ v4)

→ (((¬v2)⊕ v3) ∧ ((¬v1) ∧ v4))

(¬((¬((((v1 ⊕ v2) ∧ v3) ∧ v4) ∧ v5))⊕ v2))

→ ((((v2 ⊕ v1) ∧ v4) ∧ (v3 ∧ v5))⊕ v2)

((¬((v1 ⊕ (v2 ∧ v3))⊕ (v4 ∧ v3))) ∧ v5)

→ (((v2 ⊕ v4) ∧ (v5 ∧ v3))⊕ ((¬v1) ∧ v5))

((((v1 ⊕ v2)⊕ v3) ∧ (((v1 ⊕ v2) ∧ v3)⊕ (v1 ∧ v2)))∧

(((((v1 ⊕ v2) ∧ v3)⊕ (v1 ∧ v2)) ∧ ((v1 ⊕ v2) ∧ v3))⊕

(¬((v1 ⊕ v2) ∧ v3))))

→ ((v3 ∧ v1) ∧ v2)

Next, we investigate how long it takes to learn rewrite rules. The offline

learning algorithm (Algo. 1) is time consuming. The timeout limit for the offline

learning is set to 168 hours (i.e., 1 week), and we use intermediate results (rules

collected so far) when the budget expires. On average, the offline learning phase

for each benchmark takes 125 hours. For dsort, hd01, hd02, hd03, hd10, ctrl and

dec, the learning takes 1 – 46 hours. For router, it takes 129 hours. The other

benchmarks takes 168 hours (i.e., the learner is forced to stop when the time

budget expires).

Answer to Q1: Lobster can optimize 22 out of 25 realistic FHE applications.

(x2.26 speedup, 25.1% depth reduction).

4.3 Comparison to the Baseline

Fig. 4.1 shows that Lobster significantly outperforms the existing state-of-

the-art homomorphic circuit optimizer [15] in terms of both depth reduction

49

ratio and homomorphic evaluation time. Only 15 out of 25 benchmarks can

be optimized by Carpov et al. [15], whereas Lobster is able to optimize 22.

Compared to Carpov et al. [15], Lobster’s speedup is increased by up to 3.17x

with the geometric mean of 1.56x. The depth reduction ratio is increased by up

to 40.0% with the geometric mean of 13.8%.

We observe that Carpov et al. [15] needs relatively small amount of optimiza-

tion time than Lobster. It took 1 second – 25 minutes to optimize benchmarks

with the average of 2 minutes, whereas Lobster took 12 hours to optimize

each benchmark. This is because Carpov et al. [15] uses single-path rewriting

with two simple rewrite rules, whereas Lobster uses saturation-based rewriting

with total 502 rewrite rules.

We empirically observe that Carpov et al. [15] often falls into the basin of

local minima because its two rewrite rules can modify only a small area at a

time. On the contrary, Lobster often applies large rewrite rules and escapes

local optima.

Answer to Q2: Lobster outperforms existing FHE optimizer.

(x1.56 speedup, 13.8% depth reduction ratio)

4.4 Efficacy of Reusing Pre-Learned Rewrite Rules

We observe that reusing pre-learned rewrite rules significantly enhanced Lobster’s

scalability and exploration power.

To investigate the benefit for scalability, we compare Lobster to a simple

method that uses the offline rule learner as an on-the-fly optimizing synthesizer.

Since it does not use any pre-learned rewrite rules, it can not use saturation-

based rewriting. While performing single-path rewriting, it finds an optimized

version of sub-circuits using a program synthesizer rather than matching it with

pre-learned rewrite rules. The timeout limit for optimization is again set to 12

hours, and we use the best intermediate results when the budget expires.

50

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Synthesis-based Rewriting-based

Figure 4.4: Comparison between on-the-fly synthesis and equality saturation
with learned rules

Fig. 4.4 summarizes the results. The synthesis-based optimizer can opti-

mize only 14 benchmarks within the timeout limit. Furthermore, in all the 14

benchmarks, the depth reduction ratio is less than that of Lobster that reuses

pre-learned rewrite rules (geometric mean of 8.2% vs 25.1%). That is mainly due

to its limited scalability; if the synthesis-based optimizer is given 7 days, it can

achieve optimization effects similar to Lobster’s. Such enormous optimization

costs are mainly due to the inability to prove unrealizability (i.e., no solution) of

attempts of optimizing already depth-optimal circuit regions. In such cases, the

synthesizer wastes the timeout limit of 1 hour. On the contrary, Lobster can

avoid such situations by giving up cases beyond the reach of previously learned

rules.

To investigate the benefit for exploration power, we compare Lobster to a

simple version that only uses boolean ring theory (Example. 3.1.3) as rewrite

rules. Fig. 4.5 summarizes the results. The simple version of Lobster can

optimize only 6 benchmarks within the timeout limit. Furthermore, in all the 6

51

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt

mso
rt

iso
rt

bso
rt

os
ort

hd
01

hd
02

hd
03

hd
04

hd
05

hd
06

hd
07

hd
08

hd
09

hd
10

hd
11

hd
12 bar

ca
vlc ctr

l
dec i2c

int
2fl

oa
t
rou

ter

Boolean-ring theory Rules from EUSolver Rules from EUSolver + DUET

Figure 4.5: Impact of changing rewrite rules

benchmarks, the depth reduction ratio is less than that of Lobster that uses

pre-learned aggressive rewrite rules. This shows that Lobster can efficiently

escape local optima by applying pre-learned rewrite rules even though they can

be induced by boolean ring theory.

We also investigate that adding new rewrite rules can enhance exploration

power. We compare Lobster to a simple version that only uses 188 rewrite

rules learned by EUSolver rather than the whole 502 rewrite rules learned by

EUSolver and DUET. Fig. 4.5 summarizes the results. In five benchmarks,

the simple version’s depth reduction ratio is less than that of Lobster that

uses all rewrite rules. In the exceptional case of hd 01, the simple version can

reduce multiplicative depth by 1, whereas Lobster can not optimize it within

time limit. This is because full version of Lobster needs much more time to

perform each iteration step for equality saturation, since it uses nearly 3 times

more rewrite rules than the simple version. If the Lobster is given sufficient

amount of time limit, it can also optimize hd 01.

52

Table 4.3: Detailed comparison results of single-path rewriting and saturation-
based rewriting. The timeout for optimization is set to 12 hours. #AND ↑
shows the ratio between the number of AND gates of the optimized circuit and
the original one. Eval. Time shows homomorphic evaluation time (where ‘-’
means that the evaluation time is the same as the original).

Answer to Q3: Reusing learned rules enhances Lobster’s

scalability and exploration power.

(1 week vs 12 hour opt. time, 2.6% vs 23.7% vs 25.1% depth reduction)

4.5 Efficacy of Equality Saturation

We now evaluate the effectiveness of saturation-based rewriting, which we used

for online optimization. We compare Lobster to a previous version [40] that

uses single-path rewriting only.

We measure both version of the Lobster’s reduction ratios of the multiplica-

53

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Single-path Saturation-based

Figure 4.6: Efficacy of Equality Saturation

tive depth and speedups in overall homomorphic evaluation time. The results

are summarized in Fig. 4.6. More detailed information can be found in Table 4.3.

As we mentioned before, the four sorting benchmarks can only be optimized by

the single-path rewriting method. Except for the four sorting benchmarks, the

saturation-based rewriting method is able to optimize 3 benchmarks (hd03, hd05,

hd06) which can not be optimized by the single-path rewriting method. For the

8 benchmarks(dsort, hd04, hd11, hd12, bar, cavlc, ctrl, int2float), the saturation-

based rewriting method outperforms the single-path rewriting method in terms

of depth reduction ratio. This shows that the saturation-based rewriting method

can explore wider area of optimization results because it can store every possible

rewriting sequences (i.e. saturation-based rewriting obtains backtracking effect).

By contrary, for hd09 benchmark, the single-path rewriting method outperforms

the saturation-based rewriting method. This is because the single-path rewriting

method can explore deeper single rewriting path within given time limit, since

each iteration step for equality saturation needs much more time than single

critical path rewriting. If the saturation-based method is given sufficient amount

54

of time limit and memory storage, it can also optimize hd09 same with the

single-path rewriting method.

Answer to Q4: Equality saturation enhances Lobster’s

exploration power via backtracking.

(20.2% vs 25.1% depth reduction)

4.6 Efficacy of Equational Rewriting

We now evaluate the effectiveness of design choices made in Lobster– the rule

normalization and equational term rewriting. We compare Lobster with its

variant without the two techniques. In other words, the variant uses syntactic

matching instead of equational matching when conducting term rewriting and

applies the learned rules without the normalization process.

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

Syntactic matching Normalization + Equational matching

Figure 4.7: Efficacy of equational rewriting

Fig. 4.7 summarizes the results. The variant can optimize 16 benchmarks

(Lobster can optimize 22), and its depth reduction ratio is less than that

of Lobster in 12 benchmarks. In the exceptional case of hd 01, the variant

55

can reduce multiplicative depth by 1, whereas Lobster can not optimize it

within time limit. This is because of the difference of time cost for each iteration

step for equality saturation. Same as 4.4, Lobster can also optimize hd 01

if it is given sufficient amount of time limit. We conclude that overall, the

rule normalization and equational term rewriting play crucial roles in giving

flexibility to the rewriting procedure.

Answer to Q5: Equational matching enables flexible rewriting

and enhances exploration power.

(16 vs 22 optimized benchmarks, 17.6% vs 25.1% depth reduction)

4.7 Sensitivity to Changes in a Time Limit

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

dso
rt
mso

rt
iso

rt
bso

rt
os

ort
hd

01
hd

02
hd

03
hd

04
hd

05
hd

06
hd

07
hd

08
hd

09
hd

10
hd

11
hd

12 bar
ca

vlc ctr
l
dec i2c

int
2fl

oa
t

rou
ter

1 hour 12 hour

Figure 4.8: Comparison between the optimization results with 1h and 12h of
time limit.

We now investigate the effects of changing the time limit of online optimiza-

tion.

We compared Lobster with its variant that is given 1 hour of time limit.

56

Fig. 4.8 summarizes the results. Both of the tools can optimize 22 benchmarks

within time limit. In 4 sorting benchmarks ({m,i,b,o}sort) that use single-path

rewriting, Lobster significantly outperforms the variant. In the other bench-

marks that use saturation-based rewriting, Lobster slightly outperforms the

variant. This shows that most of the effective iteration steps for equality satura-

tion are performed within 1 hour, since each iteration step needs much more

time as the number of iteration grows. We conclude that the most appropriate

time limit for Lobster is 12 hours, but we can also get similar optimization

result with 1 hour of time limit in saturation-based rewriting.

Answer to Q6: Lobster takes less than 12 hour

to obtain practically saturated circuit.

4.8 Sensitivity to Changes in a Training Set

We now investigate the effects of changing the number of training programs. We

have conducted 2-fold cross validation; for each of four benchmark categories

(Cingulata, Sorting, HD, EPFL), we used rules learned from the smaller half

and applied them to the other larger half, and compare with the result of

leave-one-out cross validation. The 14 benchmarks on the x-axis in Fig. 4.9 are

testing benchmarks, and the other 11 benchmarks are training benchmarks.

As can be seen in Fig. 4.9 that summarizes the results, the smaller set

of training programs does not lead to significant performance degradation.

The cardio, hd05, hd06, hd09, hd12, cavlc, and int2float benchmarks observe

optimization effects less powerful than before, but the other benchmarks remain

the same. We conclude that overall, the performance of Lobster is not much

sensitive to changes in a given set of training programs.

Answer to Q7: Lobster is not critically sensitive to changes

in a given set of training circuits.

(11 vs 14 optimized benchmarks, 23.6% vs 29.0% depth reduction)

57

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

60%

Benchmarks

ca
rdio

mso
rt

iso
rt

bso
rt

hd
04

hd
05

hd
06

hd
09

hd
11

hd
12

ca
vlc i2c

int
2fl

oa
t
rou

ter

Two-fold cross validation Leave-one-out cross validation

Figure 4.9: Comparison between the optimization results with two-fold cross
validation and leave-one-out cross validation.

58

Chapter 5

Related Work

Existing FHE Compilers in comparison

Existing FHE compilers [16, 4, 24, 26, 45, 58, 25, 21, 23] use fixed, hand-tuned

optimization methods. These compilers allow programmers to easily write FHE

applications without detailed knowledge of the underlying FHE schemes. These

compilers also provide optimizations for reducing the multiplicative depth of the

compiled circuits. However, the optimization methods are hand-tuned, which

requires manual effort and is likely to be sub-optimal. In this dissertation, we

aimed to automatically generate optimization rules that can be used by existing

compilers.

• Cingulata [16] is an open-source compiler that translates high-level pro-

grams written in C++ into boolean circuits. It supports optimization of

circuits for reducing multiplicative depth based on hand-written rules.

Cingulata uses ABC [12], an open-source boolean circuit optimizer, but it

does not directly address our optimization problem [16]. Cingulata also

uses more advanced, yet hand-written, circuit optimization techniques

specially designed for minimizing multiplicative depth [15, 5]. In partic-

59

ular, the multi-start heuristic by Carpov et al. [15], which we used for

comparison with Lobster in Section 4, shows a significant reduction in

multiplicative depths for their benchmarks. However, we note that the

benchmark circuits used in Carpov et al. [15] are “intendedly suboptimal to

test the ability of optimization tools” [1]. By contrast, the benchmarks used

in this dissertation include circuits that are already carefully optimized

in terms of FHE evaluation as explained in Section 4.1, thereby leaving

relatively small room for depth reduction. We observe the heuristic in Car-

pov et al. [15] does not perform very well for such a hard optimization task.

• Ramparts [4] is an optimizing compiler for translating programs writ-

ten in Julia into circuits for homomorphic evaluation. It optimizes the

size and multiplicative depth of the circuits using symbolic execution

and hand-written rules. It automatically selects the parameters of FHE

schemes and the plain text encoding for input values and uses a number

of hand-written circuit optimization rules for reducing multiplicative depth.

• Alchemy [24] is a system that provides domain-specific languages and

a compiler for translating high-level plaintext programs into low-level

ones for homomorphic evaluation. The compiler automatically controls the

ciphertext size and noise by choosing FHE parameters, generating keys

and hints, and scheduling maintenance operations. The domain-specific

languages are statically typed and are able to check the safety conditions

that parameters should satisfy.

• CHET [26] is a domain-specific optimizing compiler for FHE applications

on neural network inference. It enables a number of optimizations auto-

matically, but they are hand-tuned and specific to tensor circuits, e.g.,

60

determining efficient tensor layout, selecting good encryption parameters,

etc. By contrast, our technique is domain-unaware and does not rely on a

limited set of hand-written rules.

• COPSE [45] is a domain-specific optimizing compiler for FHE applications

on decision forest inference. It vectorizes decision-forest inference models

(i.e. parallelizes operations performed during inference) to exploit cipher-

text packing technique and optimize FHE applications. This vectorizing

process also minimizes the multiplicative depth growth, but its method is

hand-tuned and specific to decision forest inference.

• HECO [58] is an optimizing compiler for translating programs written in

C-like domain specific language into low-level SEAL language for homo-

morphic evaluation. It optimizes the runtime and memory usage of the

SEAL programs using automatic SIMD batching algorithm. It exploits

potential SIMD parallelism by applying automatic batching rules.

• EVA [25] is an optimizing compiler for arithmetic FHE applications. It en-

ables a hand-tuned optimization specific to the CKKS FHE scheme by low-

ering the cost overhead caused by crypto operations (e.g. linearize, rescale,

relevel) that ensure the safety of homomorphic evaluations. EVAimproved

enhances usability of EVA by making its Python front-end more natural. It

also enables two new optimization rules, but still they are hand-tuned. By

contrast, our optimization framework is scheme-unaware and has a larger

potential for speedup since it aims to reduce the multiplicative depth of

FHE applications.

61

• Porcupine [23] is an optimizing compiler for arithmetic FHE applications.

Similar to ours, it uses program synthesis to optimize FHE applications.

However, it targets specific DSL named Quill rather than boolean circuits

and user has to provide hand-written sketch to successfully optimize target

applications.

Superoptimization

Similar to ours, existing superoptimizers [7, 13, 51, 52, 36] for traditional

programs are able to learn rewrite rules automatically. The major technical

difference, however, is that we use equational matching, rather than syntactic

matching, to maximize generalization.

Bansal and Aiken [7] present a technique for automatically constructing

peephole optimizers. Given a set of training programs, the technique learns a

set of replacement rules (i.e. peephole optimizers) using exhaustive enumeration.

The correctness of the learned rules is ensured by a SAT solver. The learned

rules are stored in an optimization database and used for other unseen programs

via syntactic pattern matching. Optgen [13] is also based on enumeration for

generating peephole optimization rules that are sound and complete up to a

certain size by generating all rules up to the size and checking the equivalence

by an SMT solver. Souper [51] is similar to Bansal and Aiken [7] but is based

on a constraint-based synthesis technique and targets a subset of LLVM IR.

STOKE [52, 36] uses a stochastic search based on MCMC to explore the space

of all possible program transformations for the x86-64 instruction set.

Program Synthesis

Over the last few years, inductive program synthesis has been widely used in

various application domains [29, 31, 66, 61, 54, 30, 32]. In this work, we use

inductive synthesis to minimize multiplicative depth of boolean circuits. To

our knowledge, this is the first application of program synthesis for efficient

homomorphic evaluation. Our work has been inspired by the prior work by

62

Eldib et al. [29], where syntax-guided synthesis and static analysis are used to

automatically transform a circuit into an equivalent and provably secure one

that is resistant to a side-channel attack.

Term Rewriting and Equality Saturation

Term rewriting [20, 9, 11, 57, 60] and equality saturation [56, 67, 65, 63, 47]

has been widely used in program transformation systems. The previous rewrite

techniques rely on hand-written rules that require domain expertise, whereas

this work uses automatically synthesized rewrite rules. For example, Chiba

et al. [20] presented a framework of applying code-transforming templates

based on term rewriting, where programs are represented by term rewriting

systems and transformed by a set of given rewrite rules (called templates).

Visser et al. [60] used term rewriting in ML compilers and presented a language

for writing rewriting strategies. Tate et al. [56] and Yang et al. [67] used

equality saturation(i.e. saturation-based term rewriting) with hand-tuned rewrite

rules to optimize C-like languages and trained DNN models respectively. In

this work, we focus on a different application domain of term rewriting (i.e.

homomorphic evaluation) and provide a novel idea of learning and using rewrite

rules automatically.

Similar to ours, Ruler [48] used equality saturation to automatically infer

rewrite rules for a given user-defined domain. Although Ruler found 35 rewrite

rules for the boolean circuit domain, we observed that the saturation-based

term rewriting with these 35 rewrite rules shows little optimization effect for

homomorphic evaluation. It just slightly outperforms an ablation of Lobster

used in Section 4.4 that uses boolean ring theory as rewrite rules (2.6% vs 3.3%).

This is because rewrite rules inferred by Ruler has no objective in mind to

reduce the multiplicative depth.

63

Chapter 6

Conculsion

In this dissertation, we presented a new method for optimizing FHE boolean cir-

cuits that does not require any domain expertise and manual effort. Our method

first uses program synthesis to automatically discover a set of optimization rules

from training circuits. Then, it performs equational term rewriting on the new,

unseen circuit based on the equality saturation to maximally leveraging the

learned rules. We demonstrated the effectiveness of our method with 25 FHE

applications from diverse domains. The results show that our method achieves

sizeable optimizations that are complementary to existing domain-specific opti-

mization techniques.

Though we target a specific kind of optimization tasks for homomorphic

evaluation in this dissertation, we believe our approach is potentially applicable

to other optimization tasks. Our method of synthesizing optimization rules and

exhaustively applying the combinations of the learned optimization rules in a

cost-effective way by the time-bounded equality saturation technique can be

beneficial to a broader class of optimization tasks.

64

Bibliography

[1] The epfl combinational benchmark suite. https://www.epfl.ch/labs/

lsi/page-102566-en-html/benchmarks/, 2015.

[2] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.

Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided

synthesis. In 2013 Formal Methods in Computer-Aided Design, FMCAD

’13, pages 1–8, Oct 2013.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumera-

tive program synthesis via divide and conquer. In Axel Legay and Tiziana

Margaria, editors, Tools and Algorithms for the Construction and Analysis

of Systems, TACAS ’17, pages 319–336, Berlin, Heidelberg, 2017. Springer

Berlin Heidelberg.

[4] David W. Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Mal-

ozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. Ramparts: A

programmer-friendly system for building homomorphic encryption applica-

tions. In Proceedings of the 7th ACM Workshop on Encrypted Computing

& Applied Homomorphic Cryptography, WAHC ’19, pages 57–68, New

York, NY, USA, 2019. ACM.

[5] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster homomorphic

encryption is not enough: improved heuristic for multiplicative depth mini-

65

mization of boolean circuits. Cryptology ePrint Archive, Report 2019/963,

2019. https://eprint.iacr.org/2019/963.

[6] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, New York, NY, USA, 1998.

[7] Sorav Bansal and Alex Aiken. Automatic generation of peephole su-

peroptimizers. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’06, pages 394–403, New York, NY, USA, 2006. ACM.

[8] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu.

Private database queries using somewhat homomorphic encryption. In

Michael Jacobson, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-

Naini, editors, Applied Cryptography and Network Security, pages 102–118,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[9] James M. Boyle, Terence J. Harmer, and Victor L. Winter. Modern

software tools for scientific computing. chapter The TAMPR Program

Transformation System: Simplifying the Development of Numerical Software,

pages 353–372. Birkhauser Boston Inc., Cambridge, MA, USA, 1997.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully

homomorphic encryption without bootstrapping. In Proceedings of the 3rd

Innovations in Theoretical Computer Science Conference, ITCS ’12, pages

309–325, New York, NY, USA, 2012. ACM.

[11] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco

Visser. Stratego/xt 0.17. a language and toolset for program transfor-

mation. Science of Computer Programming, 72(1):52 – 70, 2008. Special

Issue on Second issue of experimental software and toolkits (EST).

66

[12] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-

strength verification tool. In Proceedings of the 22Nd International

Conference on Computer Aided Verification, CAV ’10, pages 24–40, Berlin,

Heidelberg, 2010. Springer-Verlag.

[13] Sebastian Buchwald. Optgen: A generator for local optimizations. In Björn

Franke, editor, Compiler Construction, pages 171–189, Berlin, Heidelberg,

2015. Springer Berlin Heidelberg.

[14] S. Carpov, T. H. Nguyen, R. Sirdey, G. Constantino, and F. Martinelli.

Practical privacy-preserving medical diagnosis using homomorphic encryp-

tion. In 2016 IEEE 9th International Conference on Cloud Computing,

CLOUD ’16, pages 593–599, June 2016.

[15] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. A multi-start heuristic for

multiplicative depth minimization of boolean circuits. In Ljiljana Brankovic,

Joe Ryan, and William F. Smyth, editors, Combinatorial Algorithms, pages

275–286, Cham, 2018. Springer International Publishing.

[16] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A compila-

tion chain for privacy preserving applications. In Proceedings of the 3rd

International Workshop on Security in Cloud Computing, SCC ’15, pages

13–19, New York, NY, USA, 2015. ACM.

[17] Gizem S. Cetin, Yarkin Doroz, Berk Sunar, and Erkay Savas. Depth

optimized efficient homomorphic sorting. In Proceedings of the 4th

International Conference on Progress in Cryptology - Volume 9230, LAT-

INCRYPT ’15, pages 61–80, Berlin, Heidelberg, 2015. Springer-Verlag.

[18] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-

phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi

and Thomas Peyrin, editors, Advances in Cryptology, ASIACRYPT ’17,

pages 409–437, Cham, 2017. Springer International Publishing.

67

[19] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computa-

tion of edit distance. In Michael Brenner, Nicolas Christin, Benjamin John-

son, and Kurt Rohloff, editors, Financial Cryptography and Data Security,

pages 194–212, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[20] Yuki Chiba, Takahito Aoto, and Yoshihito Toyama. Program transfor-

mation by templates based on term rewriting. In Proceedings of the 7th

ACM SIGPLAN International Conference on Principles and Practice of

Declarative Programming, PPDP ’05, pages 59–69, New York, NY, USA,

2005. ACM.

[21] Sangeeta Chowdhary, Wei Dai, Kim Laine, and Olli Saarikivi. Eva improved:

Compiler and extension library for ckks. Cryptology ePrint Archive, Paper

2021/1505, 2021.

[22] Cingulata. https://github.com/CEA-LIST/Cingulata, 2019. CEA-LIST.

[23] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel, Vin-

cent T Lee, and Brandon Reagen. Porcupine: a synthesizing compiler for

vectorized homomorphic encryption. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design

and Implementation, pages 375–389, 2021.

[24] Eric Crockett, Chris Peikert, and Chad Sharp. Alchemy: A language

and compiler for homomorphic encryption made easy. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’18, pages 1020–1037, New York, NY, USA, 2018. ACM.

[25] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine,

and Madan Musuvathi. EVA: an encrypted vector arithmetic language and

compiler for efficient homomorphic computation. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, jun 2020.

68

[26] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,

Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Chet: An opti-

mizing compiler for fully-homomorphic neural-network inferencing. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’19, pages 142–156, New York,

NY, USA, 2019. ACM.

[27] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.

Fully homomorphic encryption over the integers. In EUROCRYPT 2010.

2010.

[28] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to

encrypted data with high throughput and accuracy. In Proceedings of

the 33rd International Conference on International Conference on Machine

Learning - Volume 48, ICML ’16, pages 201–210. JMLR.org, 2016.

[29] Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack coun-

termeasures for cryptographic circuits. In Swarat Chaudhuri and Azadeh

Farzan, editors, Computer Aided Verification, pages 343–363, Cham, 2016.

Springer International Publishing.

[30] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaud-

huri. Component-based synthesis of table consolidation and transforma-

tion tasks from examples. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

’17, pages 422–436, New York, NY, USA, 2017. ACM.

[31] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps.

Component-based synthesis for complex apis. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL ’17, pages 599–612, New York, NY, USA, 2017. ACM.

69

[32] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data struc-

ture transformations from input-output examples. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’15, pages 229–239, New York, NY, USA, 2015.

ACM.

[33] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

Proceedings of the Forty-first Annual ACM Symposium on Theory of

Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

[34] Heaan. https://github.com/snucrypto/HEAAN, 2019. SNU Crypto

Group.

[35] Helib. http://github.com/homenc/HElib, 2019. IBM Research.

[36] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified

synthesis: Automatically learning the x86-64 instruction set. In Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’16, pages 237–250, New York, NY, USA, 2016.

ACM.

[37] Nick Howgrave-Graham. Approximate Integer Common Divisors. In CaLC,

2001.

[38] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-

guided component-based program synthesis. In Proceedings of the 32Nd

ACM/IEEE International Conference on Software Engineering - Volume 1,

ICSE ’10, pages 215–224, New York, NY, USA, 2010. ACM.

[39] Deepak Kapur and Paliath Narendran. Matching, unification and complex-

ity. SIGSAM Bull., 21(4):6–9, November 1987.

[40] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. Optimizing

homomorphic evaluation circuits by program synthesis and term rewriting.

70

In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2020, page 503–518, New

York, NY, USA, 2020. Association for Computing Machinery.

[41] Woosuk Lee. Combining the top-down propagation and bottom-up enu-

meration for inductive program synthesis. Proc. ACM Program. Lang.,

5(POPL), January 2021.

[42] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating

search-based program synthesis using learned probabilistic models. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2018, page 436–449, New

York, NY, USA, 2018. Association for Computing Machinery.

[43] Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon. Static

analysis with set-closure in secrecy. In Sandrine Blazy and Thomas Jensen,

editors, Static Analysis, pages 18–35, Berlin, Heidelberg, 2015. Springer

Berlin Heidelberg.

[44] Wenjie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomorphic

encryption for statistical analysis of categorical, ordinal and numerical data.

IACR Cryptology ePrint Archive, 2016:1163, 2016.

[45] Raghav Malik, Vidush Singhal, Benjamin Gottfried, and Milind Kulkarni.

Vectorized secure evaluation of decision forests. In Proceedings of the

42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation, PLDI 2021, page 1049–1063, New York, NY,

USA, 2021. Association for Computing Machinery.

[46] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-

morphic encryption be practical? In Proceedings of the 3rd ACM Workshop

on Cloud Computing Security Workshop, CCSW ’11, pages 113–124, New

York, NY, USA, 2011. ACM.

71

[47] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva

Darulova, Dan Grossman, and Zachary Tatlock. Synthesizing structured cad

models with equality saturation and inverse transformations. Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, Jun 2020.

[48] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki,

Adam Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock.

Rewrite rule inference using equality saturation. Proc. ACM Program.

Lang., 5(OOPSLA), oct 2021.

[49] Goldreich Oded. Foundations of Cryptography: Volume 2, Basic

Applications. Cambridge University Press, New York, NY, USA, 1st edition,

2009.

[50] Detlef Plump. Essentials of term graph rewriting. Electronic Notes in

Theoretical Computer Science, 51:277 – 289, 2002. GETGRATS Closing

Workshop.

[51] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema,

Jubi Taneja, and John Regehr. Souper: A synthesizing superoptimizer.

CoRR, abs/1711.04422, 2017.

[52] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization.

In Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’13,

pages 305–316, New York, NY, USA, 2013. ACM.

[53] Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL,

2019. Microsoft Research, Redmond, WA.

[54] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Auto-

mated feedback generation for introductory programming assignments.

72

In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13, pages 15–26, New York,

NY, USA, 2013. ACM.

[55] The 6th syntax-guided synthesis competition. https://sygus.org/comp/

2019/, 2019. SyGuS-Comp 2019.

[56] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equal-

ity saturation: A new approach to optimization. In Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’09, pages 264–276, New York, NY, USA,

2009. ACM.

[57] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling

language definitions: The asf+sdf compiler. ACM Trans. Program. Lang.

Syst., 24(4):334–368, July 2002.

[58] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. Heco:

Automatic code optimizations for efficient fully homomorphic encryption,

2022.

[59] Alexander Viand and Hossein Shafagh. Marble: Making fully homomor-

phic encryption accessible to all. In Proceedings of the 6th Workshop

on Encrypted Computing & Applied Homomorphic Cryptography, WAHC

’18, pages 49–60, New York, NY, USA, 2018. ACM.

[60] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building pro-

gram optimizers with rewriting strategies. In Proceedings of the Third ACM

SIGPLAN International Conference on Functional Programming, ICFP ’98,

pages 13–26, New York, NY, USA, 1998. ACM.

[61] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly

expressive sql queries from input-output examples. In Proceedings of the

73

38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’17, pages 452–466, New York, NY, USA, 2017.

ACM.

[62] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using

abstraction refinement, 2017.

[63] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan

Suciu. Spores: Sum-product optimization via relational equality saturation

for large scale linear algebra, 2020.

[64] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd

edition, 2012.

[65] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary

Tatlock, and Pavel Panchekha. egg: Fast and extensible equality saturation.

Proceedings of the ACM on Programming Languages, 5(POPL):1–29, Jan

2021.

[66] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sql-

izer: Query synthesis from natural language. Proc. ACM Program. Lang.,

1(OOPSLA):63:1–63:26, October 2017.

[67] Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max

Willsey, Sudip Roy, and Jacques Pienaar. Equality saturation for tensor

graph superoptimization, 2021.

74

Appendices

75

Appendix A

Learned Rewrite Rules

(∧ (¬ 0) norm2)

→ norm2

(∧ (∧ norm2 y14) y15)

→ (∧ norm2 (∧ y15 y14))

(∧ (¬ (∧ n231 n223)) y14)

→ (⊕ (∧ (∧ y14 n223) n231) y14)

(¬ (∧ (∧ norm3 norm7) n379))

→ (¬ (∧ (∧ norm7 n379) norm3))

(∨ norm1 (∨ n174 (¬ n92)))

→ (∨ (⊕ n92 (¬ n174)) (∨ (¬ n92) norm1))

(¬ (∧ n171 (∧ n165 n134)))

→ (∨ (¬ n165) (¬ (∧ n134 n171)))

(∧ (∧ (¬ n237) n109) n235)

→ (∧ (⊕ n235 n237) (∧ n235 n109))

(∧ (∧ (∧ n301 n297) n290) n284)

→ (∧ (∧ n284 n297) (∧ n301 n290))

(¬ (∧ (¬ (∧ n236 n222)) y17))

76

→ (⊕ (¬ (∧ (∧ y17 n222) n236)) y17)

(∧ (∧ n481 (∧ n462 n457)) n476)

→ (∧ (∧ (∧ n476 n457) n481) n462)

(∧ (∧ (∧ n440 n449) n1206) n444)

→ (∧ (∧ (∧ n444 n440) n449) n1206)

(∧ (∧ (∧ n325 norm3) n322) i25)

→ (∧ (∧ norm3 (∧ i25 n322)) n325)

(⊕ (∧ (∧ n554 n390) i9) n618)

→ (⊕ (∧ (∧ n390 i9) n554) n618)

(∧ (⊕ (∧ n107 i13) n118) n117)

→ (⊕ (∧ (∧ n117 i13) n107) (∧ n117 n118))

(∧ (¬ (∧ norm3 i7)) (¬ i4))

→ (⊕ (∨ (¬ norm3) (∨ (¬ i7) i4)) i4)

(∧ n121 (¬ (∧ n116 (¬ n114))))

→ (⊕ (∧ n114 (∧ n116 n121)) (∧ n121 (¬ n116)))

(∧ n215 (∨ n174 (∨ norm3 norm7)))

→ (∧ n215 (∨ (∨ n174 norm3) norm7))

(∧ (∧ (∧ n449 n440) n1206) n444)

→ (∧ (∧ n449 (∧ n444 n440)) (⊕ n444 (⊕ n440 n1206)))

(∧ (¬ n290) (∧ norm3 (¬ n278)))

→ (∧ (¬ (∨ n278 n290)) norm3)

(∧ n297 (∧ (∧ n121 n120) n267))

→ (∧ (∧ n121 (∧ n120 n297)) (⊕ n267 (⊕ n121 n120)))

(∧ (∧ n98 n157) (∧ n155 n150))

→ (∧ (∧ n155 (∧ n98 n157)) (⊕ n150 (⊕ n155 n98)))

(∧ (¬ (∧ (∧ n459 n457) n734)) pi020)

→ (⊕ (∧ (∧ (∧ pi020 n459) n457) n734) pi020)

(∧ (∧ norm2 n893) (¬ (∧ n876 n824)))

→ (∧ (⊕ (∧ (∧ n824 n893) n876) n893) norm2)

77

(∧ (¬ (∧ n481 (∧ n462 n457))) pi082)

→ (⊕ (∧ (∧ (∧ pi082 n457) n481) n462) pi082)

(∧ (∧ n379 (¬ (⊕ n371 n373))) n376)

→ (∧ (⊕ (¬ n371) n373) (∧ n376 n379))

(∧ (∧ n441 (⊕ norm3 (¬ n218))) n225)

→ (∧ (⊕ (¬ norm3) n218) (∧ n225 n441))

(⊕ (∧ n107 (¬ (∧ n78 n63))) n125)

→ (⊕ (⊕ (∧ (∧ n107 n63) n78) n125) n107)

(∧ n261 (¬ (⊕ n215 (∧ n177 i23))))

→ (⊕ (∧ (∧ i23 n261) n177) (∧ (¬ n215) n261))

(∧ n199 (¬ (⊕ (∧ n195 norm4) norm4)))

→ (⊕ (∧ norm4 (∧ (¬ n195) n199)) n199)

(∧ n101 (¬ (∧ (∧ n85 n78) n74)))

→ (⊕ (∧ (∧ n74 n85) (∧ n78 n101)) n101)

(∧ (∧ (¬ n94) (¬ norm4)) (¬ n63))

→ (¬ (∨ norm4 (∨ n63 n94)))

(∧ (¬ (∧ n277 (∧ n271 n232))) i30)

→ (⊕ (∧ (∧ (∧ i30 n277) n271) n232) i30)

(∧ (∧ (∧ n1344 n384) (¬ norm4)) norm9)

→ (∧ (∧ norm9 (∧ n384 n1344)) (⊕ n1344 norm4))

(∧ norm1 (¬ (∧ (∧ n158 n150) n98)))

→ (∧ norm1 (¬ (∧ n150 (∧ n98 n158))))

(∧ (∧ n177 (∧ n171 n166)) (¬ n160))

→ (∧ (⊕ n160 (∨ n177 n171)) (∧ n166 (∧ n177 n171)))

(∧ n131 (∧ (¬ (∧ n114 n107)) norm4))

→ (∧ (⊕ (∧ (∧ n107 n131) n114) n131) norm4)

(∧ n327 (⊕ n325 (¬ (∧ n254 n207))))

→ (⊕ (∧ (∧ n327 n254) n207) (∧ (¬ n325) n327))

(∧ (¬ (∧ n104 (¬ (∧ n99 x11)))) x14)

78

→ (∨ (∧ (∧ x14 x11) n99) (∧ (¬ n104) x14))

(∧ (∧ (¬ (∧ n104 (¬ norm5))) x14) x15)

→ (∧ (∨ norm5 (¬ n104)) (∧ x15 x14))

(∧ n261 (¬ (∧ (¬ (∧ n254 n220)) n219)))

→ (∧ (⊕ (¬ (∧ (∧ n220 n219) n254)) n219) n261)

(∧ (⊕ (∧ (∧ y17 n222) n236) y17) n273)

→ (⊕ (∧ (∧ (∧ n273 n222) y17) n236) (∧ n273 y17))

(∧ (∧ (∧ n731 n447) n445) (∧ n659 n440))

→ (∧ (∧ (∧ (∧ n447 n445) n440) n659) n731)

(∧ (∧ (∧ n440 n459) n658) (∧ n457 n458))

→ (∧ (∧ (∧ n458 n459) n457) (∧ n440 n658))

(∧ (∧ (∧ n461 n478) (∧ n457 n458)) n447)

→ (∧ (∧ (∧ n447 n478) n458) (∧ n461 n457))

(∧ (∧ (∧ n480 n478) (∧ n462 n457)) n477)

→ (∧ (∧ (∧ n478 n457) n477) (∧ n480 n462))

(∧ (∧ (∧ (∧ n437 n443) n440) n450) n436)

→ (∧ (∧ (∧ (∧ n436 n437) n440) n443) n450)

(∧ (∧ (∧ (¬ op4) op3) (¬ op1)) op0)

→ (∧ (¬ (∨ op4 op1)) (∧ op0 op3))

(⊕ (⊕ n610 n609) (∧ (∧ n547 n322) i24))

→ (⊕ (⊕ (∧ (∧ i24 n322) n547) n610) n609)

(∧ (¬ (⊕ i15 (¬ i7))) (∧ norm5 norm11))

→ (∧ (∧ norm11 (⊕ i15 i7)) norm5)

(∧ (⊕ (⊕ n286 (∧ n269 n213)) n249) n193)

→ (⊕ (∧ (⊕ n286 n249) n193) (∧ (∧ n193 n213) n269))

(∧ (⊕ n333 (∧ (∧ n329 norm4) n317)) n151)

→ (∧ (⊕ (∧ norm4 (∧ n329 n317)) n333) n151)

(∧ (∧ n158 (∧ (¬ n148) (¬ n136))) n98)

→ (∧ (¬ (∨ n148 n136)) (∧ n98 n158))

79

(¬ (∧ (¬ (∧ n250 (∧ n205 n162))) n247))

→ (⊕ (¬ (∧ (∧ (∧ n247 n205) n250) n162)) n247)

(∧ (∧ n230 n209) (∧ n193 (∧ n152 n117)))

→ (∧ (∧ (∧ n152 n230) n117) (∧ n193 n209))

(∨ (∧ n177 norm2) (∧ n211 (∧ n177 n182)))

→ (∨ (∧ n177 norm2) (∧ n177 (∧ n182 n211)))

(∧ (¬ (∧ (¬ (∧ n356 n312)) n215)) n177)

→ (⊕ (∧ (∧ n177 n312) (∧ n356 n215)) (∧ n177 (¬ n215)))

(∧ (∧ (∧ (∧ norm4 n277) n272) n268) n263)

→ (∧ (∧ n272 norm4) (∧ n263 (∧ n277 n268)))

(∧ (¬ (∧ (∧ n94 n76) (¬ n72))) n19)

→ (⊕ (∧ n72 (∧ n94 (∧ n19 n76))) (∧ n19 (¬ (∧ n76 n94))))

(∧ n69 (¬ (∧ (¬ (∧ n41 n23)) n21)))

→ (∧ (∧ n69 (∨ n23 (¬ n21))) (∨ n41 (¬ n21)))

(∧ (∧ n149 n146) (¬ (∧ (¬ n141) n36)))

→ (⊕ (∧ n141 (∧ n149 (∧ n36 n146))) (∧ n149 (∧ n146 (¬ n36))))

(∧ (∧ (∧ n461 n457) (∧ n730 n733)) pi002)

→ (∧ (∧ n730 (∧ n457 n461)) (∧ n733 (∧ pi002 n461)))

(∧ (¬ (∧ n1596 (¬ (∧ n1590 n1587)))) n825)

→ (⊕ (∧ n1590 (∧ n1587 (∧ n825 n1596))) (∧ n825 (¬ n1596)))

(∧ n958 (¬ (∧ (¬ (∧ n939 n936)) pi028)))

→ (∧ (∧ n958 (∨ n939 (¬ pi028))) (¬ (∧ pi028 (⊕ n939 n936))))

(∧ n305 (⊕ (∧ (⊕ n264 norm4) n255) n255))

→ (∧ (∧ n255 n305) (⊕ n264 (¬ norm4)))

(∧ (∧ i12 i11) (∧ (∧ i11 i10) i9))

→ (∧ (∧ i9 i11) (∧ i10 i12))

(∧ (∧ (∧ i10 i9) (∧ i9 i8)) i11)

→ (∧ (∧ i11 i10) (∧ i9 i8))

(∧ (∧ (∧ (∧ n108 n99) n103) norm4) n110)

80

→ (∧ (∧ (∧ (∧ n110 n108) n99) n103) norm4)

(∧ (∧ n65 (∧ n157 n98)) (∧ n155 n150))

→ (∧ (∧ n155 (∧ n157 (∧ n65 n98))) (⊕ n150 (⊕ n157 (∧ n155 n65))))

(∧ norm1 (∧ (∧ (∧ n158 n150) n98) n65))

→ (∧ (∧ n65 (∧ n158 n98)) (∧ n150 norm1))

(∧ n178 (∧ n165 (∧ n152 (∧ n116 n103))))

→ (∧ (∧ (∧ n178 n103) (∧ n116 n152)) n165)

(∧ n199 (∧ (∧ n192 n165) (∧ n152 n117)))

→ (∧ (∧ (∧ (∧ n199 n192) n152) n117) n165)

(∧ n202 (∧ norm2 (∧ n114 (∧ n86 n74))))

→ (∧ (∧ n86 (∧ n114 n202)) (∧ n74 norm2))

(∧ n140 (∧ n136 (∧ norm3 (∧ n89 n75))))

→ (∧ (∧ n89 (∧ n136 n140)) (∧ n75 norm3))

(∧ (⊕ n333 (∧ (∧ n329 n326) n317)) n151)

→ (⊕ (∧ n151 (∧ n326 (∧ n329 n317))) (∧ n151 n333))

(⊕ norm1 (∧ (∧ (∧ n251 n248) n218) n215))

→ (⊕ (∧ n215 (∧ n248 (∧ n251 n218))) norm1)

(⊕ (∧ (∧ n93 n92) (¬ (∧ n125 x25))) n92)

→ (⊕ (∧ (∧ (∧ n93 x25) n92) n125) (∧ (¬ n93) n92))

(∧ (⊕ (∨ (¬ (∧ n121 n116)) n114) n121) x23)

→ (⊕ (∧ (∧ (∧ x23 n116) n121) (¬ n114)) (∧ (¬ n121) x23))

(∧ (¬ (∧ n121 (¬ (∧ n116 (¬ n114))))) x23)

→ (∧ (⊕ (∨ (¬ (∧ n121 n116)) n114) n121) x23)

(∧ (¬ (⊕ (∧ (∧ x17 n95) norm5) x17)) n94)

→ (⊕ (∧ (∧ (∧ n94 n95) x17) norm5) (∧ (¬ x17) n94))

(∧ (∧ (∧ n169 n149) n142) (¬ (∧ n108 x16)))

→ (∧ (⊕ (∧ (∧ x16 n149) n108) n149) (∧ n169 n142))

(⊕ (∧ (¬ (∨ n175 n153)) (∧ n19 n182)) n19)

→ (⊕ (∧ (∧ (∧ n19 n182) (¬ n175)) (¬ n153)) n19)

81

(∧ (¬ (∧ (∧ n182 (¬ n175)) (¬ n153))) n19)

→ (⊕ (∧ (¬ (∨ n175 n153)) (∧ n19 n182)) n19)

(∧ (¬ (∧ (¬ (∧ norm5 n468)) (¬ n1242))) n438)

→ (∨ (∧ (∧ n438 n468) norm5) (∧ n438 n1242))

(∧ (¬ (∧ (∧ (∧ n476 n457) n481) n462)) pi082)

→ (⊕ (∧ (∧ (∧ pi082 n476) n457) (∧ n481 n462)) pi082)

(∧ n1326 (¬ (⊕ (∧ (∧ pi082 n1285) n454) pi082)))

→ (⊕ (∧ (∧ (∧ pi082 n1326) n1285) n454) (∧ (¬ pi082) n1326))

(∧ (¬ (∧ (∧ (∧ n444 n440) n449) n1206)) pi082)

→ (⊕ (∧ (∧ (∧ (∧ pi082 n444) n440) n449) n1206) pi082)

(¬ (∧ (∧ (∧ (¬ norm5) n825) (¬ norm12)) n943))

→ (∨ (∨ (¬ (∧ n825 n943)) norm5) norm12)

(¬ (⊕ (∧ (∨ norm4 pi039) (⊕ pi026 pi027)) pi027))

→ (⊕ (∨ (∨ (⊕ (¬ pi027) pi026) pi039) norm4) pi026)

(∧ (¬ (∧ (∧ op3 (¬ op0)) op4)) (¬ op1))

→ (⊕ (∨ (¬ (∧ op3 op4)) (∨ op1 op0)) op1)

(∧ (¬ (∧ (¬ ct0) oc3)) (¬ (∧ ct0 oc1)))

→ (⊕ (¬ (∧ (⊕ oc1 oc3) ct0)) oc3)

(∧ (¬ (∧ (∧ (¬ n2287) (¬ n2285)) norm6)) n293)

→ (⊕ (∧ (¬ (∨ n2285 n2287)) (∧ norm6 n293)) n293)

(∧ (∧ (∧ n379 (¬ (⊕ n371 n373))) n376) i10)

→ (∧ (∧ (⊕ (¬ n373) n371) (∧ i10 n376)) n379)

(∧ (∧ (∧ n441 (⊕ norm4 (¬ n218))) n225) i9)

→ (∧ (∧ (⊕ (¬ norm4) n218) (∧ i9 n225)) n441)

(∧ (¬ (⊕ (⊕ n286 (∧ n269 n213)) n249)) n184)

→ (⊕ (∧ (⊕ (¬ n286) n249) n184) (∧ (∧ n184 n213) n269))

(∧ (¬ (∧ (¬ (∧ i7 (¬ i6))) norm6)) i8)

→ (⊕ (∧ (∨ (¬ i7) i6) (∧ norm6 i8)) i8)

(∧ (¬ (∧ n199 norm3)) (¬ (∧ n187 (¬ norm3))))

82

→ (⊕ (∨ (⊕ (¬ n187) n199) norm3) n199)

(∧ n218 (¬ (∧ (∧ n213 n212) (∧ n177 n85))))

→ (⊕ (∧ (∧ (∧ n212 n218) n85) (∧ n177 n213)) n218)

(∧ (¬ (∧ (∧ n261 n255) (∧ n237 n232))) i28)

→ (⊕ (∧ (∧ (∧ (∧ i28 n261) n237) n255) n232) i28)

(⊕ (∧ (⊕ n325 (¬ (∧ n254 n207))) n210) i63)

→ (⊕ (⊕ (∧ (∧ n210 n254) n207) (∧ (¬ n325) n210)) i63)

(⊕ n198 (¬ (∧ n194 (∧ n174 (∧ n114 n87)))))

→ (⊕ (¬ (∧ (∧ (∧ n114 n194) n87) n174)) n198)

(∧ (∧ n207 (∧ n204 n192)) (¬ (∧ n110 n184)))

→ (∧ (∧ n192 (⊕ n207 (¬ n204))) (⊕ n207 (∧ n110 (∧ n184 n207))))

(∧ (¬ (∧ (∧ (∧ n171 n134) n132) n112)) n130)

→ (∨ (∧ n130 (¬ (∧ n132 n171))) (∧ n130 (¬ (∧ n134 n112))))

(∨ (∧ x17 (¬ n95)) (∧ n107 (∧ x17 x15)))

→ (⊕ (∧ n107 (∧ x15 (∧ x17 n95))) (∧ x17 (¬ n95)))

(∧ (¬ (⊕ (⊕ n102 (∧ n87 n59)) n71)) i16)

→ (⊕ (∧ n87 (∧ i16 n59)) (∧ i16 (⊕ n102 (¬ n71))))

(∧ (¬ (∧ (¬ norm4) (¬ (∧ n156 n155)))) b3)

→ (⊕ (∧ norm4 (∧ n156 (∧ b3 n155))) (∧ b3 (⊕ norm4 (∧ n156 n155))))

(∧ (¬ (∧ (∧ n459 n457) (∧ n730 n733))) pi020)

→ (∨ (⊕ pi020 (∧ n730 (∧ pi020 n457))) (⊕ pi020 (∧ n733 (∧ pi020 n459))))

(∧ (¬ (∧ n1285 (∧ (∧ n436 n437) n452))) pi082)

→ (∨ (⊕ pi082 (∧ n1285 (∧ pi082 n437))) (⊕ pi082 (∧ n452 (∧ pi082 n436))))

(∧ (¬ (∧ n366 (¬ (∧ n361 (¬ norm6))))) n332)

→ (∧ (∧ n332 (∨ n361 (¬ n366))) (¬ (∧ n366 norm6)))

(∧ n263 (⊕ n245 (¬ (∧ (∧ n240 n230) n226))))

→ (⊕ (∧ (∧ n226 n240) (∧ n230 n263)) (∧ n263 (¬ n245)))

(∧ (¬ (∧ norm3 (¬ norm8))) (¬ (∧ n694 norm8)))

→ (⊕ (∨ norm8 norm3) (∨ n694 (¬ norm8)))

83

(∧ (¬ (∧ norm3 i1)) (¬ (∧ (¬ i1) i0)))

→ (⊕ (∧ i1 norm3) (∨ i1 (¬ i0)))

(∧ (⊕ (⊕ n324 n291) (¬ (∧ n254 norm5))) n215)

→ (⊕ (∧ norm5 (∧ n215 n254)) (∧ n215 (⊕ n291 (¬ n324))))

(∧ (¬ (∧ (∧ n135 (¬ n132)) (¬ n128))) norm6)

→ (⊕ (∧ (∨ n132 n128) (∧ n135 norm6)) (∧ (¬ n135) norm6))

(∧ (¬ (∧ (∧ op3 (¬ op0)) op4)) (¬ op1))

→ (⊕ (∧ (∨ op1 op0) (∧ op3 op4)) (⊕ op1 (¬ (∧ op3 op4))))

(∧ (¬ (∧ (¬ (∧ in1 oc2)) (¬ ct0))) oc1)

→ (⊕ (∧ oc2 (∧ in1 (¬ oc1))) (∨ (∧ oc1 ct0) (∧ oc2 in1)))

(∧ (¬ (∧ (¬ (∧ in0 (¬ oc2))) oc3)) oc1)

→ (∧ (⊕ oc3 (∨ oc2 (⊕ oc1 oc3))) (⊕ oc1 (∧ oc3 (¬ in0))))

(∧ (¬ (∧ (∧ n5162 norm4) (∧ n5157 norm10))) n264)

→ (∨ (⊕ n264 (∧ norm10 (∧ n264 n5162))) (⊕ n264 (∧ norm4 (∧ n264 n5157))))

(∧ (∧ (∧ (∧ (∧ n306 n263) n272) n277) n268) n305)

→ (∧ (∧ (∧ (∧ n306 n305) (∧ n277 n263)) n272) n268)

(¬ (∧ (¬ norm3) (¬ (∧ (¬ (∧ n127 n93)) n92))))

→ (∨ (⊕ (∧ (∧ n93 n92) n127) n92) norm3)

(∧ (∧ (∧ (∧ (∧ n306 n305) n277) n272) n268) n263)

→ (∧ (∧ (∧ (∧ (∧ n306 n263) n272) n277) n268) n305)

(¬ (∧ (⊕ (¬ (∧ (∧ n220 n219) n254)) n219) n261))

→ (⊕ (∧ (∧ (∧ n220 n261) n219) n254) (∨ (¬ n261) n219))

(¬ (∧ (⊕ (¬ (∧ (∧ n243 n248) n242)) n248) n252))

→ (⊕ (∧ (∧ (∧ n243 n248) n252) n242) (∨ (¬ n252) n248))

(∧ (∧ (∧ (∧ n306 n305) (∧ n277 n263)) n272) n268)

→ (∧ (∧ (∧ (∧ n306 n277) n268) (∧ n263 n305)) n272)

(¬ (∧ (¬ (∧ (∧ n68 (¬ n64)) (¬ norm7))) n20))

→ (⊕ (∨ (∨ (¬ (∧ n20 n68)) n64) norm7) n20)

(¬ (∧ (⊕ (¬ (∧ (∧ n20 n285) n271)) n20) n296))

84

→ (⊕ (∧ (∧ (∧ n20 n296) n285) n271) (∨ (¬ n296) n20))

(¬ (∧ (⊕ (∨ (¬ (∧ n37 n267)) n254) n267) n46))

→ (⊕ (∨ (¬ (∧ (∧ n46 n37) n267)) n254) (∧ (¬ n267) n46))

(∧ (∧ (∧ (¬ pi044) (¬ pi042)) (¬ pi040)) (¬ pi038))

→ (¬ (∨ (∨ pi038 pi042) (∨ pi044 pi040)))

(¬ (∧ (⊕ (∨ (¬ (∧ n821 n1032)) n1028) n821) n1041))

→ (⊕ (∨ (¬ (∧ (∧ n821 n1032) n1041)) n1028) (∧ (¬ n821) n1041))

(¬ (∧ (⊕ (∨ (¬ (∧ n825 n1533)) n1529) n825) n1539))

→ (⊕ (∨ (¬ (∧ (∧ n825 n1539) n1533)) n1529) (∧ (¬ n825) n1539))

(∧ (¬ (⊕ (¬ (∧ (∨ pi058 pi116) pi026)) pi058)) pi094)

→ (∧ (∧ (⊕ pi026 pi058) pi094) (∨ pi116 pi058))

(∧ (¬ (∧ n852 (∧ (∧ n848 n825) pi026))) (¬ n840))

→ (¬ (∨ (∧ (∧ (∧ n825 pi026) n852) n848) n840))

(¬ (∧ (¬ (∧ (∧ (¬ op4) (¬ op3)) op1)) op2))

→ (⊕ (∨ (¬ (∧ op2 op1)) (∨ op3 op4)) op2)

(¬ (∨ (∧ (⊕ oc1 ct1) in1) (¬ (∨ oc1 ct1))))

→ (⊕ (∨ (⊕ ct1 in1) (⊕ oc1 in1)) in1)

(⊕ (⊕ (⊕ n690 n689) (∧ (∧ n627 n322) i24)) n686)

→ (⊕ (⊕ (⊕ (∧ (∧ i24 n322) n627) n686) n689) n690)

(∧ (∧ (¬ (∨ n217 n168)) (∧ (¬ n120) n226)) i32)

→ (∧ (∧ (∧ i32 n226) (¬ n168)) (¬ (∨ n217 n120)))

(¬ (∧ (∧ (¬ (∧ (∧ n135 n133) n129)) norm6) n47))

→ (∨ (¬ (∧ norm6 n47)) (∧ (∧ n135 n129) n133))

(∧ (¬ (∧ (∧ n135 (¬ n132)) (¬ n128))) (¬ n47))

→ (⊕ (∨ (∨ (¬ n135) n47) (∨ n132 n128)) n47)

(∧ (⊕ (⊕ n286 (∧ n269 n213)) (∧ n248 n213)) n281)

→ (⊕ (∧ (⊕ n269 n248) (∧ n281 n213)) (∧ n281 n286))

(∧ n251 (¬ (⊕ (∧ (¬ norm5) n143) (∧ norm5 i25))))

→ (⊕ (∧ (∧ (⊕ i25 n143) n251) norm5) (∧ (¬ n143) n251))

85

(∧ (⊕ (⊕ n359 (⊕ n272 (∧ n253 n215))) n186) n157)

→ (⊕ (∧ (⊕ (⊕ n186 n272) n359) n157) (∧ (∧ n157 n215) n253))

(∧ (¬ (∧ (∧ norm4 i6) i7)) (¬ (∧ i6 i5)))

→ (⊕ (∨ (∨ (¬ i6) i5) (∧ norm4 i7)) i6)

(∧ (⊕ (∧ (∧ i6 i8) i7) i4) (∧ i7 i6))

→ (∧ (∧ (⊕ i8 i4) i6) i7)

(∧ (∧ n121 (¬ (∧ (¬ n115) n34))) (∧ norm6 i3))

→ (∧ (∧ (∧ i3 n121) norm6) (∨ (¬ n34) n115))

(∧ (¬ (⊕ n245 (¬ (∧ (∧ n240 n230) n226)))) n236)

→ (⊕ (∧ (∧ (∧ n230 n236) n240) n226) (∧ n236 n245))

(∧ n141 (∧ (∧ n103 (∧ n95 n80)) (∧ n114 n99)))

→ (∧ (∧ (∧ (∧ n99 n141) n114) (∧ n103 n95)) n80)

(∧ (∧ (∧ n158 (∧ (¬ n148) (¬ n136))) n98) n65)

→ (∧ (∧ (¬ (∨ n136 n148)) (∧ n65 n98)) n158)

(∧ (¬ (∧ (¬ i18) i17)) (¬ (∧ (¬ i17) i16)))

→ (⊕ (¬ (∨ (⊕ i16 i18) i17)) i18)

(∧ n199 (∧ (∧ n192 n165) (∧ n152 (∧ n116 n103))))

→ (∧ (∧ (∧ (∧ n199 n192) n103) (∧ n116 n152)) n165)

(∧ n180 (∧ (∧ n173 n142) (∧ n114 (∧ n86 n74))))

→ (∧ (∧ (∧ (∧ n180 n86) n74) (∧ n114 n173)) n142)

(¬ (∨ (∧ x17 (¬ n95)) (∧ n107 (∧ x17 x15))))

→ (⊕ (∧ n107 (∧ x15 (∧ x17 n95))) (∨ n95 (¬ x17)))

(∧ n272 (¬ (⊕ (∧ (¬ norm5) n120) (∧ norm5 i21))))

→ (⊕ (∧ norm5 (∨ i21 (¬ n272))) (∨ norm5 (∧ n272 (¬ n120))))

(¬ (∨ (∧ n349 (∧ n356 n374)) (∧ n374 (¬ n46))))

→ (⊕ (∧ n349 (∧ n374 (∧ n46 n356))) (∨ n46 (¬ n374)))

(∧ (¬ (⊕ (∧ b3 norm4) (¬ (∨ b3 b5)))) b4)

→ (⊕ (∧ norm4 (∧ b4 b3)) (∧ b4 (∨ b3 b5)))

(∧ (¬ n741) (¬ (∧ (∧ (∧ n734 n457) n461) pi002)))

86

→ (∨ (¬ (∨ n741 (∧ pi002 n457))) (¬ (∨ n741 (∧ n734 n461))))

(∧ (∧ (∧ (¬ pi044) (¬ pi042)) (¬ pi040)) (¬ pi038))

→ (∧ (¬ (∨ pi038 pi044)) (¬ (∨ pi042 pi040)))

(∧ (¬ (∧ (∧ (¬ pi052) (¬ pi051)) (¬ pi039))) pi027)

→ (⊕ (∧ pi027 (⊕ pi051 (∨ pi052 pi039))) (∧ (∨ pi052 pi039) (∧ pi027 pi051)))

(∧ (∧ (¬ n955) n825) (¬ (∧ (∧ n868 n821) pi116)))

→ (∧ (⊕ n955 (∨ n825 (⊕ pi116 (¬ n868)))) (⊕ n825 (∧ n868 (∧ pi116 (∧ n821

n825)))))

(∧ (∧ (¬ (∧ n753 n751)) n748) (¬ (∧ n744 pi082)))

→ (∧ (⊕ n748 (∧ n751 (∧ n753 n748))) (⊕ n748 (∧ n744 (∧ pi082 n748))))

(∧ (∧ i4 i3) (∧ (∧ i5 i4) (∧ i6 i5)))

→ (∧ (∧ i5 i6) (∧ i4 i3))

(∧ (∧ i24 i23) (∧ (∧ i26 i25) (∧ i25 i24)))

→ (∧ (∧ i24 i25) (∧ i26 i23))

(∧ (∧ (∧ (∧ n80 n95) (∧ n104 n116)) n131) n118)

→ (∧ (∧ n118 (∧ n80 n131)) (∧ n116 (∧ n104 n95)))

(∧ (∧ n156 n138) (¬ (∧ (¬ (∧ n151 n65)) i18)))

→ (∧ (∧ n156 (∧ n138 (∨ n65 (¬ i18)))) (⊕ (∧ n156 n138) (∧ i18 (¬ n151))))

(∧ (∧ n150 (∧ n65 (∧ n158 n98))) (⊕ n65 norm5))

→ (∧ (∧ n150 (∧ n158 (∧ n65 n98))) (⊕ n98 norm5))

(∧ n184 (∧ (∧ (∧ n178 n103) (∧ n116 n152)) n165))

→ (∧ (∧ (∧ (∧ n178 n184) n165) (∧ n103 n116)) n152)

(∧ (¬ (∧ (¬ i3) (¬ i2))) (¬ (∧ i4 i3)))

→ (⊕ (∧ i3 i4) (∨ i3 i2))

(∧ (¬ (∧ (¬ i1) (¬ i0))) (¬ (∧ i2 i1)))

→ (⊕ (∨ (⊕ i2 i0) i1) i2)

(∧ (¬ (⊕ i15 (¬ i7))) (∧ (∧ i17 i9) norm6))

→ (∧ (∧ i17 norm6) (∧ i9 (⊕ i15 i7)))

(∧ (¬ (∧ (∧ n120 (¬ n111)) (¬ n105))) (¬ n93))

87

→ (⊕ (∨ n93 (¬ (∨ n111 n105))) (∨ (∨ n93 n111) (∨ n120 n105)))

(∧ n180 (∧ (∧ n173 n142) (∧ n114 (∧ n86 n74))))

→ (∧ (∧ n86 (∧ n173 n180)) (∧ n74 (∧ n114 n142)))

(∧ n144 (∧ n136 (∧ (∧ n120 n104) (∧ n89 n75))))

→ (∧ (∧ n75 (∧ n120 n144)) (∧ n89 (∧ n104 n136)))

(∧ (¬ (∨ (¬ (∨ op4 op1)) (⊕ op3 op4))) op2)

→ (∧ (∧ op2 (⊕ op3 (¬ op4))) (⊕ op3 (∧ op1 (¬ op4))))

(¬ (∧ (¬ (∧ (∧ (¬ op4) (¬ op3)) op1)) op2))

→ (⊕ (∧ (∨ op3 op4) (∧ op2 op1)) (∨ op1 (¬ op2)))

(∧ n437 (¬ (∧ (¬ (∧ (¬ n411) (¬ n327))) n29)))

→ (⊕ (∧ (∨ n411 n327) (∧ n29 n437)) n437)

(∧ (¬ (∧ (∧ n306 n279) (¬ (∧ n275 oc1)))) n22)

→ (∨ (∧ n275 (∧ n22 (∧ n279 oc1))) (⊕ n22 (∧ n306 (∧ n22 n279))))

(∧ (¬ (∧ (¬ (∧ n1037 (¬ n1018))) n23)) (¬ n983))

→ (∧ (¬ (∨ n983 (∧ n23 (¬ n1037)))) (¬ (∧ n1018 n23)))

(∧ (¬ (⊕ (⊕ (∧ n203 (¬ norm6)) norm6) n188)) n264)

→ (⊕ (¬ (∧ n264 n188)) (∨ norm6 (∨ n203 (¬ n264))))

(∧ (¬ (∧ (¬ (∧ (¬ y10) (¬ y9))) y11)) (¬ y12))

→ (⊕ (∨ (¬ (∨ y9 y10)) (∨ (¬ y11) y12)) y12)

(∧ (¬ (∧ n150 (¬ (∧ (¬ (∧ n140 n130)) n36)))) n21)

→ (∧ (∨ (⊕ (∧ (∧ n36 n130) n140) n36) (¬ n150)) n21)

(∧ (¬ (∧ (∧ (¬ pi100) (¬ pi095)) (¬ pi097))) (¬ pi110))

→ (⊕ (∨ (∨ pi110 pi095) (∨ pi100 pi097)) pi110)

(∧ (∧ (¬ (∧ (¬ pi116) pi029)) pi058) (¬ (∧ pi116 pi097)))

→ (∧ (⊕ (¬ (∧ (⊕ pi097 pi029) pi116)) pi029) pi058)

(∧ (¬ (∧ (¬ (∧ (∧ n254 oc0) norm6)) (¬ n245))) n44)

→ (∨ (∧ (∧ (∧ n44 oc0) n254) norm6) (∧ n44 n245))

(¬ (∧ (¬ (∧ (¬ n995) (¬ (∧ (¬ n991) in0)))) n24))

→ (∧ (∨ (¬ (∧ n24 in0)) n991) (¬ (∧ n24 n995)))

88

(¬ (∧ (¬ (∧ s0 (¬ a109))) (¬ (∧ (¬ s0) norm8))))

→ (⊕ (∨ (⊕ norm8 a109) s0) a109)

(∧ (¬ (∧ (¬ s0) (¬ a108))) (¬ (∧ s0 (¬ a107))))

→ (⊕ (∧ (⊕ a107 a108) s0) a108)

(∧ (∧ (¬ (∧ norm4 n333)) n150) (¬ (∧ (¬ norm4) n336)))

→ (∧ (⊕ (∨ (⊕ (¬ n336) n333) norm4) n333) n150)

(∧ (∧ (∧ n251 (⊕ n247 (¬ n237))) n218) (∧ n214 n207))

→ (∧ (∧ (∧ (∧ n251 n218) n207) (⊕ (¬ n247) n237)) n214)

(∧ (∧ n251 (⊕ n247 (¬ (∧ (∧ n235 n232) n222)))) n218)

→ (∧ (∧ (⊕ (¬ (∧ (∧ n235 n222) n232)) n247) n218) n251)

(∧ n80 (∧ (¬ (⊕ (⊕ (⊕ n48 n45) i2) i10)) n53))

→ (∧ (⊕ (⊕ (⊕ (¬ i2) i10) n45) n48) (∧ n53 n80))

(∧ (¬ (⊕ (⊕ n199 (∧ n188 n152)) (∧ n175 n152))) n138)

→ (⊕ (∧ (⊕ n188 n175) (∧ n138 n152)) (∧ (¬ n199) n138))

(∧ (¬ (∧ (¬ (∧ i9 i7)) i8)) (¬ (∧ i7 i4)))

→ (⊕ (¬ (∧ (∧ (⊕ i4 i8) i7) (∨ i4 i9))) i8)

(¬ (∧ (¬ norm3) (¬ (∧ (∧ (∧ n308 n272) n268) n263))))

→ (∨ norm3 (∧ n263 (∧ n308 (∧ n272 n268))))

(∧ (∧ (∧ (∧ n300 n219) norm4) (∧ n289 n286)) (¬ n234))

→ (∧ (∧ (⊕ n234 n286) (∧ n300 n289)) (∧ norm4 (∧ n219 n286)))

(∧ (¬ (∧ (¬ (∧ (¬ y10) (¬ y9))) y11)) (¬ y12))

→ (⊕ (∧ (∨ y12 y11) (∨ y9 y10)) (∨ y9 (∨ y10 (¬ y12))))

(∧ (∧ (¬ (∧ n121 (¬ (∧ n116 (¬ n114))))) x23) x24)

→ (∧ (∧ x23 (¬ (∧ n114 n121))) (∧ x24 (∨ n116 (¬ n121))))

(¬ (∧ (∧ n272 (∧ n305 n306)) (∧ n263 (∧ n277 n268))))

→ (∨ (¬ (∧ n277 (∧ n272 n306))) (¬ (∧ n305 (∧ n268 n263))))

(∧ (∧ (∧ (∧ (∧ n169 n149) n142) (¬ norm6)) n132) n112)

→ (∧ (∧ (∧ n112 n149) (∧ n169 n142)) (∧ n132 (⊕ n112 norm6)))

(∧ (¬ (∧ (∧ norm4 n207) (¬ (∧ (¬ n197) n58)))) n37)

89

→ (∨ (∧ (⊕ n207 n197) (∧ n37 n58)) (⊕ n37 (∧ norm4 (∧ n37 n207))))

(∧ n68 (¬ (∨ (∧ norm4 (∧ n46 b3)) (∧ n46 n60))))

→ (∧ (⊕ n46 (∨ n60 (⊕ n46 n68))) (⊕ n68 (∧ norm4 (∧ n46 b3))))

(∧ (∧ (¬ (∧ norm4 n86)) n132) (¬ (∧ norm11 (¬ n123))))

→ (∧ (∨ n123 (¬ norm11)) (⊕ n132 (∧ norm4 (∧ n86 n132))))

(¬ (∨ (¬ (∨ n741 norm4)) (¬ (∨ n741 (∧ n734 n461)))))

→ (∨ n741 (∧ n734 (∧ n461 norm4)))

(¬ (∧ (∧ n821 (∨ n820 (¬ n1610))) (¬ (∧ n1610 n1604))))

→ (⊕ (∧ n1604 (∧ n1610 (∧ n821 n820))) (∨ (¬ n821) (∧ n1610 (¬ n820))))

(∧ (¬ (⊕ (∧ n481 (∧ n462 (∧ pi082 n457))) pi082)) n468)

→ (∧ (⊕ n468 (∧ (¬ n481) (∧ n468 pi082))) (⊕ pi082 (¬ (∧ n462 (∧ n457 pi082)))))

(∧ (¬ (∨ (∧ n856 (∧ n818 n820)) (∧ n818 norm6))) n819)

→ (∧ (⊕ n819 (∧ norm6 (∧ n819 n818))) (⊕ n819 (∧ n856 (∧ n820 n818))))

(∧ (¬ (∨ (¬ (∨ pi058 pi116)) (⊕ pi026 (¬ pi058)))) pi094)

→ (∧ (∧ pi094 (⊕ pi026 pi058)) (∨ pi116 (⊕ pi094 pi026)))

(∧ (¬ (∧ (¬ (∧ n950 n916)) (¬ (∧ n904 n846)))) n820)

→ (∨ (∧ n950 (∧ n820 n916)) (∧ n846 (∧ n820 n904)))

(∧ (∧ n65 norm2) (∧ n150 (¬ (∧ n177 (∧ n171 n166)))))

→ (∧ (∧ n150 (∧ n65 norm2)) (⊕ n65 (∧ n166 (∧ n171 n177))))

(¬ (∧ (∧ (∧ n104 (∧ n110 n108)) (∧ n95 n80)) n111))

→ (∨ (⊕ n104 (∨ n80 (⊕ n108 n104))) (¬ (∧ n95 (∧ n111 (∧ n108 n110)))))

(∧ n149 (¬ (∧ (¬ (∧ n133 n130)) (¬ (∧ n127 n117)))))

→ (⊕ (∧ (∧ n117 n130) (∧ n149 (∧ n127 n133))) (∧ n149 (⊕ (∧ n117 n127) (∧

n133 n130))))

(∧ (∧ (¬ n90) (¬ (∧ norm5 n58))) (∧ n55 (¬ n48)))

→ (∧ (¬ (∨ n48 n90)) (⊕ n55 (∧ norm5 (∧ n55 n58))))

(¬ (∧ (∧ n58 (∨ n63 (¬ n84))) (¬ (∧ n84 norm7))))

→ (⊕ (∧ norm7 (∧ n63 (∧ n84 n58))) (∨ (¬ n58) (∧ n84 (¬ n63))))

(∧ (∧ n110 n108) (¬ (∧ (¬ (∧ (¬ n101) op1)) n53)))

90

→ (∧ (∧ n108 (∨ op1 (⊕ n53 n110))) (⊕ n110 (∧ n101 (∧ n53 n110))))

(∧ (¬ (∨ n983 (∧ n23 (¬ n1037)))) (¬ (∧ n1018 n23)))

→ (∧ (¬ n983) (∨ (¬ n23) (∧ n1037 (¬ n1018))))

(∧ (¬ (∧ (¬ (∧ in1 in0)) oc3)) (¬ (∧ in0 oc0)))

→ (⊕ (∧ (∨ oc0 in1) (∧ in0 oc3)) (⊕ oc3 (¬ (∧ oc0 in0))))

(∧ n199 (¬ (⊕ (∧ n195 (⊕ norm5 n189)) (⊕ norm5 n189))))

→ (⊕ (∧ norm5 (∧ n199 (¬ n195))) (∧ n199 (∨ n195 (¬ n189))))

(∧ (∧ (∧ n251 (⊕ n247 (¬ norm5))) n218) (∧ n214 n207))

→ (∧ (⊕ n247 (⊕ n251 norm5)) (∧ n207 (∧ n214 (∧ n251 n218))))

(¬ (∧ (¬ (∧ (¬ s0) (¬ a80))) (¬ (∧ s0 norm8))))

→ (⊕ (∧ s0 norm8) (¬ (∨ s0 a80)))

(∧ (¬ (∧ s0 (¬ a77))) (¬ (∧ (¬ s0) (¬ a78))))

→ (⊕ (∧ a78 (¬ s0)) (∧ s0 a77))

(∧ (¬ (∧ (¬ n60) (¬ (∧ (¬ (∧ norm8 n48)) b3)))) n46)

→ (∧ (∨ (⊕ (∧ (∧ b3 n48) norm8) b3) n60) n46)

(∧ (¬ (∧ norm3 (∧ b4 b3))) (¬ (∧ (¬ b6) (¬ b4))))

→ (⊕ (∧ norm3 (∧ b4 b3)) (∨ b4 b6))

(∧ (¬ (∧ (∧ pi116 pi026) (¬ pi058))) (¬ (∧ pi058 (¬ pi026))))

→ (⊕ (¬ (∧ (∨ pi058 pi116) pi026)) pi058)

(¬ (∧ (¬ (∧ (¬ n346) (¬ (∧ (¬ n342) (¬ n334))))) n305))

→ (⊕ (∨ (¬ (∨ n342 n334)) (∨ (¬ n305) n346)) n305)

(¬ (∧ (¬ n808) (¬ (∧ (¬ (∧ (¬ n801) (¬ norm9))) oc0))))

→ (∧ (∨ norm9 (∨ n801 n808)) (∨ oc0 n808))

(∧ (∧ (¬ (∧ in1 oc2)) oc0) (¬ (∧ (¬ in1) (¬ oc2))))

→ (∧ (⊕ oc2 in1) oc0)

(¬ (∧ (¬ (∧ (¬ s0) (¬ a16))) (¬ (∧ s0 (¬ a15)))))

→ (⊕ (¬ (∧ (⊕ a15 a16) s0)) a16)

(∧ (¬ (⊕ (∧ n203 (¬ (⊕ n200 n197))) (⊕ n200 n197))) n188)

→ (∧ (⊕ (¬ n200) n197) (∧ (¬ n203) n188))

91

(∧ n388 (∧ n359 (⊕ (⊕ n271 (∧ n262 n215)) (∧ n253 n215))))

→ (∧ (⊕ (∧ (⊕ n253 n262) n215) n271) (∧ n359 n388))

(∧ (∧ (∧ n52 (¬ n47)) (¬ (∧ (∧ n30 n26) n23))) n22)

→ (∧ (¬ (∨ (∧ (∧ n23 n26) n30) n47)) (∧ n22 n52))

(∧ (∧ (¬ (∧ (¬ i9) i3)) i7) (¬ (∧ i9 (¬ i3))))

→ (∧ (⊕ (¬ i3) i9) i7)

(¬ (⊕ (¬ (∧ (∧ (∧ (⊕ n127 n133) n116) n104) n96)) n133))

→ (⊕ (∧ (∧ (⊕ n133 n127) n104) (∧ n116 n96)) n133)

(∧ (¬ n164) (∧ (∧ n151 n131) (∧ (¬ n115) (∧ n102 n85))))

→ (∧ (∧ (∧ (∧ n102 n131) n85) n151) (¬ (∨ n115 n164)))

(∧ (∨ (⊕ n92 (∧ n127 (∧ n92 n93))) (∧ n211 n182)) n177)

→ (∨ (∧ n177 (∧ n92 (¬ (∧ n93 n127)))) (∧ n211 (∧ n177 n182)))

(∧ (∧ x23 (¬ (∧ n114 n121))) (∧ x24 (∨ n116 (¬ n121))))

→ (∧ (⊕ x23 (∧ n114 (∧ n121 x23))) (∧ x24 (∨ n116 (⊕ n121 x23))))

(∧ (¬ (⊕ (∧ n114 (∧ n116 n121)) (∧ n121 (¬ n116)))) x23)

→ (⊕ (∧ n114 (∧ x23 (∧ n121 n116))) (∧ x23 (∨ n116 (¬ n121))))

(¬ (∧ n175 (⊕ (∧ n126 (∧ n92 n93)) (∧ n92 (¬ n93)))))

→ (⊕ (∧ n126 (∧ n93 (∧ n92 n175))) (∨ n93 (¬ (∧ n92 n175))))

(∧ (¬ (∧ n252 (¬ (∧ n248 (¬ (∧ n243 (¬ n241))))))) n220)

→ (∧ (∧ n220 (∨ n248 (¬ n252))) (∨ n241 (¬ (∧ n252 n243))))

(∧ n252 (¬ (⊕ (∧ n241 (∧ n243 n248)) (∧ n248 (¬ n243)))))

→ (⊕ (∧ n241 (∧ n243 (∧ n248 n252))) (∧ n252 (∨ n243 (¬ n248))))

(∧ (¬ (∧ (¬ (⊕ pi110 (∨ (∨ pi110 pi095) norm7))) n532)) n893)

→ (∧ (∧ n893 (¬ (∧ pi110 n532))) (∨ norm7 (∨ pi095 (¬ n532))))

(∧ (∧ (¬ (∧ (∧ n994 n873) pi097)) n892) (¬ (∧ norm7 pi029)))

→ (∧ (⊕ n892 (∧ norm7 (∧ pi029 n892))) (∧ n892 (¬ (∧ n994 (∧ pi097 n873)))))

(∧ (∧ (¬ n1001) n892) (¬ (∧ (¬ (∧ (¬ n995) n826)) pi029)))

→ (∧ (⊕ n892 (∧ n995 (∧ pi029 n892))) (¬ (∨ n1001 (∧ pi029 (¬ n826)))))

(∧ (∧ n1192 (¬ (∧ n1184 (¬ norm5)))) (¬ (∧ (¬ n1172) n446)))

92

→ (∧ (∨ (¬ n1184) norm5) (∧ n1192 (∨ n1172 (¬ n446))))

(∧ (∧ n1469 (¬ (∧ n1463 (¬ (∧ (¬ n1179) pi082))))) (¬ n1458))

→ (∧ (¬ (∨ n1458 (∧ n1463 n1179))) (∧ n1469 (∨ pi082 (¬ n1463))))

(∧ (¬ (⊕ (∧ n1452 (∧ n1449 n468)) (∧ n1449 (¬ n468)))) n447)

→ (⊕ (∧ n1452 (∧ n1449 (∧ n447 n468))) (∧ n447 (∨ n468 (¬ n1449))))

(∧ (∧ (∧ n458 (∧ n461 n478)) (∧ n440 (∧ n457 n658))) n449)

→ (∧ (∧ n461 (∧ n658 (∧ n478 n458))) (∧ n449 (∧ n440 n457)))

(¬ (∧ n1539 (¬ (∧ (¬ (∧ n1533 (¬ (∧ n1528 n818)))) n825))))

→ (∨ (∧ n1528 (∧ n1539 (∧ n825 n818))) (∨ (¬ n1539) (∧ n825 (¬ n1533))))

(∧ (¬ (∧ (∧ pi116 pi026) (¬ pi058))) (¬ (∧ pi058 (¬ pi026))))

→ (∨ (¬ (∨ pi058 pi116)) (⊕ pi026 (¬ pi058)))

(∧ n1539 (¬ (∨ (∧ n1528 (∧ n825 n818)) (∧ n825 (¬ n1533)))))

→ (∧ (⊕ n1539 (¬ (∨ n1533 (⊕ n825 n1539)))) (⊕ n1539 (∧ n1528 (∧ n825 n818))))

(∧ (∧ (∧ (¬ (∧ (¬ n953) n820)) n825) (¬ n945)) (¬ norm8))

→ (∧ (¬ (∨ n945 norm8)) (∧ n825 (∨ n953 (¬ n820))))

(∧ (¬ (∧ (⊕ norm4 (¬ norm10)) (¬ norm17))) (¬ (∧ norm17 norm10)))

→ (⊕ norm10 (∨ norm17 norm4))

(∧ (⊕ (∧ (∧ n109 i22) (¬ n233)) n109) (¬ (∧ n233 n111)))

→ (⊕ (∧ (∧ (⊕ n111 i22) n109) n233) (∧ (¬ i22) n109))

(⊕ (∧ n138 (∧ n139 (¬ n141))) (¬ (∨ n145 (∧ n138 n139))))

→ (⊕ (¬ n145) (∧ n139 (∧ n138 (⊕ n145 n141))))

(∧ n127 (∧ (∧ (∧ n114 n107) n106) (∧ n104 (∧ n95 n80))))

→ (∧ (∧ n80 (∧ n95 (∧ n107 n106))) (∧ (∧ n104 n107) (∧ n114 n127)))

(∧ (∧ (∧ n118 (∧ n80 n131)) (∧ n116 (∧ n104 n95))) n120)

→ (∧ (∧ (∧ n131 n80) (∧ n116 n95)) (∧ n120 (∧ n104 (∧ n131 n118))))

(∧ n149 (¬ (∧ (¬ (∧ (∧ n135 n133) norm6)) (⊕ n108 n125))))

→ (∨ (∧ norm6 (∧ n133 (∧ n135 n149))) (∧ n149 (⊕ n125 (¬ n108))))

(∧ (∧ n233 n202) (∧ (∧ n173 n142) (∧ n114 (∧ n86 n74))))

→ (∧ (∧ (∧ n86 n173) (∧ n233 n202)) (∧ (∧ n74 n114) (∧ n142 n202)))

93

(∧ (∧ n216 n202) (∧ (∧ n173 n142) (∧ n114 (∧ n86 n74))))

→ (∧ (∧ n74 (∧ n173 (∧ n86 n216))) (∧ (∧ n86 n114) (∧ n142 n202)))

(∧ (∧ n147 i23) (∧ n136 (∧ (∧ n120 n104) (∧ n89 n75))))

→ (∧ (∧ (∧ n89 n120) (∧ n136 n147)) (∧ (∧ n75 n104) (∧ n147 i23)))

(∧ (¬ (∧ (∧ (¬ op4) (¬ op3)) op1)) (¬ (∧ op4 op3)))

→ (∨ (¬ (∨ op4 op1)) (⊕ op3 op4))

(∧ (¬ (∨ (∧ (¬ n1138) (∧ n22 n29)) (∧ n22 n1158))) n1065)

→ (∧ (⊕ n1065 (∧ n1158 (∧ n1065 n22))) (∨ n1138 (¬ (∧ n29 n22))))

(∧ (¬ (∧ (¬ (∧ (¬ ct1) oc3)) oc0)) (¬ (∧ norm8 ct1)))

→ (⊕ (∧ ct1 (∨ oc0 norm8)) (∨ ct1 (∨ oc3 (¬ oc0))))

(∧ (¬ (∧ in1 (¬ ct2))) (¬ (∧ (∧ ct2 (¬ ct0)) in0)))

→ (⊕ (∧ (¬ ct2) (⊕ in0 in1)) (∨ (¬ in0) (∧ ct2 ct0)))

(∧ (¬ (∧ (¬ (∧ (∧ n740 n719) (¬ n698))) n22)) (¬ n660))

→ (∧ (¬ (∨ n660 (∧ n22 (¬ n740)))) (⊕ n22 (∨ n698 (¬ (∧ n719 n22)))))

(¬ (∧ (¬ (∧ (¬ (∧ (¬ (∧ norm8 n148)) n29)) n117)) n22))

→ (∨ (∧ norm8 (∧ n148 n117)) (∨ (¬ n22) (∧ n117 (¬ n29))))

(∧ (¬ (⊕ (∧ n203 (¬ (⊕ n200 n197))) (⊕ n200 n197))) n188)

→ (∧ (⊕ n200 (¬ n197)) (∧ n188 (¬ n203)))

(∧ (¬ (∧ (∧ (¬ n3653) n3652) (∧ (¬ n3648) (¬ n3646)))) n469)

→ (⊕ (⊕ n469 (∨ n3648 (∨ n3646 (∧ n469 n3652)))) (∨ (∨ n3648 n3646) (∧ n3653

(∧ n469 n3652))))

(¬ (∧ (¬ (∧ s0 (¬ a49))) (¬ (∧ (¬ s0) (¬ a50)))))

→ (⊕ (∧ a50 (¬ s0)) (¬ (∧ s0 a49)))

(∧ (¬ (∧ (∧ (¬ n5521) (¬ n5519)) (∧ n5517 (¬ n5514)))) n264)

→ (⊕ (⊕ n264 (∨ n5519 (∨ n5514 (∧ n264 n5517)))) (∨ (∨ n5519 n5514) (∧ n5521

(∧ n264 n5517))))

(∧ (∧ (¬ (∧ norm4 n279)) (¬ (∧ norm11 s1))) (∧ s3 n265))

→ (∧ (⊕ s3 (∧ norm4 (∧ s3 n279))) (⊕ n265 (∧ norm11 (∧ n265 s1))))

(∧ (¬ (∧ (∧ b3 (¬ b2)) (¬ b6))) (¬ (∧ b5 (¬ b3))))

94

→ (⊕ (∨ (⊕ (∨ b2 b6) b5) (¬ b3)) b5)

(∧ (¬ (∧ (¬ n741) (¬ (∧ (∧ (∧ n461 n457) n734) pi002)))) pi082)

→ (∧ (∨ (∧ (∧ (∧ pi002 n461) n457) n734) n741) pi082)

(∧ (¬ (∧ n883 (¬ (∧ n880 (¬ n863))))) (¬ (∧ (¬ n855) n820)))

→ (∧ (⊕ (∨ (¬ (∧ n883 n880)) n863) n883) (∨ (¬ n820) n855))

(∧ (¬ (∧ (∧ (¬ pi110) (¬ pi085)) (¬ pi096))) (¬ (∧ pi116 pi085)))

→ (⊕ (∨ (⊕ (∨ pi110 pi096) pi116) pi085) pi116)

(¬ (∧ (¬ (∧ n1041 (¬ (∧ (¬ (∧ n980 (¬ n950))) n25)))) n29))

→ (∨ (∧ (⊕ (∨ (¬ (∧ n25 n980)) n950) n25) n1041) (¬ n29))

(∧ (¬ (∧ (¬ (∧ in1 (¬ oc1))) ct1)) (¬ (∧ (¬ in1) oc1)))

→ (∨ (∧ (⊕ oc1 ct1) in1) (¬ (∨ oc1 ct1)))

(¬ (∧ (¬ (∧ (∧ (¬ n3919) (¬ n3917)) (∧ (¬ n3914) n3913))) n669))

→ (⊕ (∨ (∨ (¬ (∧ n669 n3913)) n3917) (∨ n3919 n3914)) n669)

(¬ (∧ (¬ (∧ (∧ n5538 (¬ n5535)) (∧ (¬ n5532) (¬ n5530)))) s6))

→ (⊕ (∨ (∨ (¬ (∧ s6 n5538)) n5535) (∨ n5532 n5530)) s6)

(⊕ (∧ n199 (¬ (⊕ (∧ n195 norm5) norm5))) (⊕ (∧ n195 norm5) norm5))

→ (⊕ (∧ norm5 (¬ (∨ n195 n199))) n199)

(∧ (∧ (¬ (∧ i8 (¬ i7))) (¬ i9)) (¬ (∧ (¬ i8) i7)))

→ (¬ (∨ (⊕ i7 i8) i9))

(¬ (∨ (∧ n130 (¬ (∧ n132 n171))) (∧ n130 (¬ (∧ n134 n112)))))

→ (∨ (∧ n171 (∧ n134 (∧ n112 n132))) (¬ n130))

(¬ (∧ (∧ n220 (∨ n248 (¬ n252))) (∨ n241 (¬ (∧ n252 n243)))))

→ (⊕ (∧ n241 (∧ n243 (∧ n252 (∧ n220 n248)))) (∨ (¬ n220) (∧ n252 (∨ n243 (¬

n248)))))

(∧ (⊕ (∧ n234 (∧ y17 (∧ y15 n222))) (∧ y17 (¬ n222))) n273)

→ (⊕ (∧ n234 (∧ n273 (∧ y15 (∧ y17 n222)))) (∧ n273 (∧ y17 (¬ n222))))

(∨ (∧ n182 (∧ n209 (∧ n114 n183))) (∧ n92 (∨ n126 (¬ n93))))

→ (∨ (∧ n209 (∧ n183 (∧ n182 n114))) (⊕ n92 (∧ (¬ n126) (∧ n93 n92))))

(¬ (∧ (∧ n179 (∨ n121 (¬ x23))) (∨ n114 (¬ (∧ n116 x23)))))

95

→ (⊕ (∧ n114 (∧ x23 (∧ n116 (∧ n179 n121)))) (∨ (¬ n179) (∧ x23 (∨ n116 (¬

n121)))))

(∧ (¬ (∧ (∧ x23 (∨ n116 (¬ n121))) (¬ (∧ n121 n114)))) n179)

→ (∧ (∧ n179 (∨ n121 (¬ x23))) (∨ n114 (¬ (∧ n116 x23))))

(∧ (¬ (∧ (∧ b3 (¬ b2)) (¬ b6))) (¬ (∧ b5 (¬ b3))))

→ (⊕ (∧ b3 (∨ b2 b6)) (¬ (∨ b3 b5)))

(∧ (¬ (∧ norm3 (∧ (¬ b7) (¬ b2)))) (¬ (∧ b7 (¬ b4))))

→ (⊕ (∧ norm3 (¬ (∨ b7 b2))) (∨ b4 (¬ b7)))

(∧ (¬ (∨ (∧ (¬ n256) (∧ n267 n285)) (∧ n285 (¬ n46)))) n20)

→ (∧ (∧ n20 (∨ n46 (¬ n285))) (∨ n256 (¬ (∧ n267 n285))))

(∧ (¬ (∧ (∧ n69 (∨ n23 (¬ n21))) (∨ n41 (¬ n21)))) n20)

→ (⊕ (∧ n69 (∧ n41 (∧ n20 (∧ n23 n21)))) (∧ n20 (∨ n21 (¬ n69))))

(∧ (⊕ (∧ n349 (∧ n374 (∧ n46 n356))) (∨ n46 (¬ n374))) n19)

→ (⊕ (∧ n349 (∧ n374 (∧ n356 (∧ n19 n46)))) (∧ n19 (∨ n46 (¬ n374))))

(∧ (¬ (∧ (¬ n252) (¬ (∧ (¬ (∧ (¬ n240) n232)) b2)))) n37)

→ (∧ (∧ n37 (∨ n252 b2)) (∨ n240 (∨ n252 (¬ n232))))

(¬ (∧ (∧ n1041 (∨ n1032 (¬ n821))) (¬ (∧ n1027 (∧ n821 n825)))))

→ (⊕ (∧ n1027 (∧ n825 (∧ n1041 (∧ n821 n1032)))) (∨ (¬ n1041) (∧ n821 (¬

n1032))))

(¬ (∧ (∧ n1025 (∨ n1018 (¬ n820))) (∨ n1004 (¬ (∧ n820 n1013)))))

→ (⊕ (⊕ n1004 (∨ (¬ n1025) (∧ n820 (¬ n1018)))) (∨ n1004 (∧ n1013 (∧ n1025 (∧

n820 n1018)))))

(¬ (∧ (∧ n291 (∨ n298 (¬ pi054))) (∨ (¬ pi054) (∧ n320 n309))))

→ (∨ (⊕ n291 (∨ n309 (¬ (∧ pi054 n291)))) (⊕ pi054 (∧ n320 (∧ pi054 n298))))

(∧ n883 (¬ (∧ (¬ (∧ (∧ n877 pi025) n869)) (¬ (∧ norm8 pi027)))))

→ (∨ (∧ n877 (∧ n869 (∧ pi025 n883))) (∧ norm8 (∧ pi027 n883)))

(∧ (∧ (¬ n1254) n384) (¬ (∧ (¬ (∧ (¬ n1247) (¬ n1242))) n438)))

→ (⊕ (∧ (∨ n1247 n1242) (∨ n1254 (∧ n438 n384))) (⊕ n384 (∧ n1254 (⊕ n384 (∨

n1247 n1242)))))

96

(∧ (∧ n1442 n1435) (¬ (∧ (¬ (∧ (¬ (∧ n1427 n735)) n1426)) pi082)))

→ (∧ (∧ (∧ n1442 n1435) (∨ n1426 (¬ pi082))) (∧ n1435 (¬ (∧ n735 (∧ pi082

n1427)))))

(¬ (∧ (¬ norm3) (¬ (∧ (¬ (∧ n837 (¬ (∧ n831 pi100)))) n821))))

→ (∨ (∧ n821 (∧ n831 (∧ n837 pi100))) (∨ norm3 (∧ n821 (¬ n837))))

(∧ (∧ (¬ (∧ (¬ (∨ pi039 pi051)) (∧ pi116 (¬ pi052)))) norm8) pi026)

→ (∧ (∧ pi026 norm8) (∨ (∨ pi052 pi039) (∨ pi051 (¬ pi116))))

(∧ (¬ (∧ (∧ n449 (∧ n444 n440)) (⊕ n444 (⊕ n440 n1206)))) pi082)

→ (⊕ (∧ n1206 (∧ n449 (∧ n440 (∧ pi082 n444)))) pi082)

(∧ n252 (⊕ (⊕ n244 n238) (¬ (∧ (∧ n240 (¬ n229)) (¬ n225)))))

→ (⊕ (∧ (∧ n240 n252) (¬ (∨ n225 n229))) (∧ n252 (⊕ n244 (¬ n238))))

(∧ (∧ n115 (¬ (∧ n104 n96))) (¬ (∧ (¬ (∧ n103 n96)) i19)))

→ (∧ (∧ n115 (∨ (¬ i19) (⊕ n103 n104))) (⊕ i19 (¬ (∧ n96 (⊕ i19 n104)))))

(∧ (∧ n203 n150) (¬ (∧ (¬ (∧ n171 n166)) (¬ (∧ n158 n150)))))

→ (∧ (⊕ (∧ (∧ (¬ n158) n171) n166) n158) (∧ n150 n203))

(∧ (¬ (∧ n133 (¬ (∧ n116 n105)))) (¬ (∧ n127 (∧ n116 n105))))

→ (⊕ (¬ (∧ (∧ (⊕ n127 n133) n105) n116)) n133)

(∧ (¬ (∧ n145 (¬ (∧ n139 n138)))) (¬ (∧ n141 (∧ n139 n138))))

→ (⊕ (∧ n138 (∧ n139 (¬ n141))) (¬ (∨ n145 (∧ n138 n139))))

(∧ (¬ (∧ (∧ n121 n297) n281)) (¬ (∧ n293 (¬ (∧ n281 n121)))))

→ (⊕ (∧ n121 (∧ n281 n297)) (∨ (¬ n293) (∧ n121 n281)))

(∧ (¬ (∧ (∧ n135 (¬ n132)) (¬ (∧ n127 (¬ n79))))) (¬ n47))

→ (⊕ (∨ n47 (¬ (∨ n132 (∧ n135 (¬ n127))))) (∨ (∨ n47 n132) (∧ n79 (∧ n135

n127))))

(∧ (∧ n120 (¬ (∧ n110 n108))) (¬ (∧ n104 (¬ (∧ n97 n85)))))

→ (∧ (⊕ n120 (∧ n108 (∧ n120 n110))) (⊕ n104 (¬ (∧ n85 (∧ n97 n104)))))

(¬ (∧ (∧ n29 (∨ n38 (¬ n105))) (¬ (∧ n105 (∧ n84 n88)))))

→ (⊕ (∧ n88 (∧ n105 (∧ n84 (∧ n29 n38)))) (∨ (¬ n29) (∧ n105 (¬ n38))))

(∧ (¬ (∧ oc3 oc0)) (¬ (∧ (¬ (∧ (¬ oc3) (¬ oc2))) in1)))

97

→ (⊕ (∧ oc3 (¬ (∨ in1 oc0))) (¬ (∨ oc3 (∧ in1 oc2))))

(∧ (¬ (∨ (¬ (∨ oc0 ct0)) (⊕ in1 (∧ oc0 (¬ oc2))))) in0)

→ (⊕ (∧ (∧ in0 ct0) (¬ (∨ in1 oc0))) (∧ in0 (∧ oc0 (⊕ in1 oc2))))

(∧ (¬ (∧ (¬ (∧ n1115 (¬ n1110))) in1)) (¬ (∧ (¬ n1103) n38)))

→ (∧ (⊕ in1 (∨ n1110 (¬ (∧ n1115 in1)))) (⊕ (∧ n1110 in1) (∨ n1103 (¬ n38))))

(∧ (¬ (∧ (¬ (∧ (∧ (¬ n453) oc1) (¬ n451))) (¬ norm9))) n24)

→ (∨ (∧ (∧ n24 oc1) (¬ (∨ n451 n453))) (∧ n24 norm9))

(∧ (∧ (¬ n682) (¬ n676)) (¬ (∧ (¬ (∧ n667 (¬ n663))) n38)))

→ (∧ (¬ (∨ n682 n676)) (⊕ n38 (∨ n663 (¬ (∧ n38 n667)))))

(∧ (¬ (∧ (¬ (∧ (¬ (∧ (¬ n939) n936)) (¬ n933))) n44)) n928)

→ (∧ (∧ n928 (¬ (∧ n933 n44))) (∨ n939 (¬ (∧ n936 n44))))

(¬ (∧ (¬ (∧ (∧ (¬ n3779) (¬ n3777)) (∧ n3775 (¬ n3772)))) n469))

→ (⊕ (⊕ n469 (¬ (∨ n3777 (∨ n3779 n3772)))) (∨ (∨ n3777 n3779) (∨ n3772 (∧

n469 n3775))))

(¬ (∧ (¬ (∧ (∧ n1159 (¬ n1137)) (∧ (¬ n1115) (¬ n1094)))) n469))

→ (⊕ (⊕ n469 (¬ (∨ n1137 (∨ n1115 n1094)))) (∨ (∨ n1137 n1115) (∨ n1094 (∧

n469 n1159))))

(¬ (∧ (¬ (∧ norm4 (¬ b6))) (¬ (∧ (∧ (¬ b9) b6) (¬ b4)))))

→ (⊕ (∨ norm4 b6) (∧ (∨ b4 b9) b6))

(¬ (∧ (¬ n355) (¬ (∧ (¬ (∧ (¬ (∧ n343 (¬ n340))) b4)) n335))))

→ (∨ (∧ (⊕ (∨ (¬ (∧ b4 n343)) n340) b4) n335) n355)

(∧ (¬ (∧ (∧ (¬ opext0) op4) opext1)) (∧ (¬ (∧ (¬ opext1) op4)) op3))

→ (⊕ (∧ (¬ (∧ opext1 opext0)) (∧ op3 op4)) op3)

(∧ (¬ (∧ (∧ ct0 (¬ oc0)) (¬ in1))) (¬ (∧ (⊕ oc2 in1) oc0)))

→ (∨ (⊕ (∧ (¬ oc2) oc0) in1) (¬ (∨ oc0 ct0)))

(¬ (∧ (¬ (∧ (¬ (∧ n595 (¬ n581))) (¬ (∧ (¬ n515) n22)))) n29))

→ (∧ (∨ (¬ (∧ n29 n595)) n581) (∨ (¬ (∧ n29 n22)) n515))

(∧ (∧ (¬ (∧ (¬ in1) (¬ in0))) ct0) (¬ (∧ (∧ in0 oc0) in1)))

→ (⊕ (∧ (∨ (¬ in0) oc0) (∧ in1 ct0)) (∧ in0 ct0))

98

(∧ (¬ (∧ (∧ s0 a14) (¬ s1))) (¬ (∧ (∧ (¬ s0) a13) s1)))

→ (∨ (⊕ (¬ (∧ s1 a13)) (∧ s0 a14)) (∧ s1 s0))

(∧ (¬ (∧ (∧ (¬ s0) a40) (¬ s1))) (¬ (∧ (∧ s0 a37) s1)))

→ (∨ (⊕ (¬ (∧ (⊕ a37 a40) s0)) a40) (⊕ s1 s0))

(⊕ (∧ (⊕ n359 (⊕ n271 (∧ n262 n215))) n186) (∧ (∧ n186 n215) n253))

→ (⊕ (∧ (∧ (⊕ n253 n262) n186) n215) (∧ (⊕ n359 n271) n186))

(∧ (∧ (¬ (∧ (¬ i6) i4)) i5) (¬ (∧ (∧ norm8 i6) (¬ i4))))

→ (⊕ (∧ (∧ (⊕ i4 i6) i5) (∨ norm8 i4)) i5)

(∧ (¬ (∧ (¬ (∧ i9 i5)) (∧ i8 i7))) (¬ (∧ (¬ i7) i5)))

→ (⊕ (∨ (¬ (∧ i7 i8)) (∧ i5 i9)) (∧ (¬ i7) i5))

(∧ (¬ (¬ (∨ (⊕ i7 i8) i9))) (¬ (∧ (¬ (∧ i8 i7)) i5)))

→ (∧ (⊕ (∨ (⊕ i8 i7) (⊕ i5 i9)) i5) (∨ (¬ i5) i7))

(∧ (⊕ (⊕ i38 i6) (∧ i37 i5)) (∧ (⊕ i37 i5) (∧ i36 i4)))

→ (∧ (∧ (⊕ i37 i5) (⊕ i6 i38)) (∧ i4 i36))

(∧ (¬ (⊕ norm3 (¬ (∧ i33 i1)))) (∧ (¬ (⊕ i33 (¬ i1))) norm13))

→ (∧ (∧ (⊕ i33 i1) norm3) norm13)

(∧ (∧ (∧ x23 (¬ (∧ n114 n121))) (∧ x24 (∨ n116 (¬ n121)))) x25)

→ (∧ (∨ (¬ n121) (∧ n116 (¬ n114))) (∧ x25 (∧ x23 x24)))

(∧ (¬ (⊕ (∧ n107 (∧ x17 (∧ x15 n95))) (∧ x17 (¬ n95)))) n94)

→ (⊕ (∧ n107 (∧ n94 (∧ x15 (∧ x17 n95)))) (∧ n94 (∨ n95 (¬ x17))))

(∧ (¬ (⊕ (∧ n349 (∧ n374 (∧ n46 n356))) (∧ n374 (¬ n46)))) n19)

→ (⊕ (∧ n349 (∧ n374 (∧ n356 (∧ n19 n46)))) (∧ n19 (∨ n46 (¬ n374))))

(∧ (∧ (∧ (¬ (∨ pi038 pi044)) (¬ (∨ pi042 pi040))) (¬ pi050)) (¬ pi046))

→ (∧ (¬ (∨ pi040 (∨ pi042 pi044))) (¬ (∨ pi046 (∨ pi038 pi050))))

(∧ n1603 (¬ (⊕ (∧ n1590 (∧ n1587 (∧ n825 n1596))) (∧ n825 (¬ n1596)))))

→ (⊕ (∧ (∧ n1590 n1587) (∧ n1603 (∧ n1596 n825))) (∧ n1603 (∨ n1596 (¬ n825))))

(∧ (¬ (⊕ (∧ n1163 (∧ n1165 (∧ n468 pi082))) (∧ n468 (¬ pi082)))) n1162)

→ (⊕ (∧ (∧ n1162 n1165) (∧ n1163 (∧ n468 pi082))) (∧ n1162 (∨ pi082 (¬ n468))))

(∧ (∧ n1230 n384) (¬ (∧ (¬ (∧ (¬ (∧ (¬ n1220) n468)) n1218)) n444)))

99

→ (∧ (∧ n1230 (∧ n384 (∨ n1218 (¬ n444)))) (∧ n384 (∨ n1220 (¬ (∧ n444

n468)))))

(∧ (¬ (⊕ (∧ (∧ pi082 n665) (∧ n656 n684)) (∧ n684 (¬ pi082)))) n384)

→ (⊕ (∧ (∧ n656 n665) (∧ n684 (∧ n384 pi082))) (∧ n384 (∨ pi082 (¬ n684))))

(∧ (¬ (⊕ (∧ n675 (∧ n451 (∧ pi082 n681))) (∧ n681 (¬ pi082)))) n672)

→ (⊕ (∧ (∧ n672 n451) (∧ n675 (∧ n681 pi082))) (∧ n672 (∨ pi082 (¬ n681))))

(∧ (¬ (⊕ (⊕ n244 n238) (¬ (∧ (∧ n240 (¬ n229)) (¬ n225))))) n236)

→ (⊕ (∧ (∨ n229 n225) (∧ n236 n240)) (∧ n236 (⊕ n238 (⊕ n244 n240))))

(∧ (∧ (¬ (∧ n727 (∧ (¬ n715) norm6))) (¬ (∧ (¬ n721) n719))) norm6)

→ (∧ (∧ (∨ (¬ n727) n715) (∨ (¬ n719) n721)) norm6)

(∧ (¬ (∧ (¬ (∧ n171 n166)) (¬ norm6))) (¬ (∧ (∧ n171 n177) n166)))

→ (⊕ (∧ n166 (∧ n171 n177)) (∨ (∧ n166 n171) norm6))

(∧ (∧ (∧ n213 n166) n211) (∧ (¬ (∧ n203 n150)) (¬ (∧ n171 n166))))

→ (∧ (∧ n166 (∧ (¬ n171) (∧ n213 n211))) (⊕ n171 (∨ (¬ n203) (⊕ n166 n150))))

(¬ (∧ (¬ (∧ n133 (¬ (∧ n116 n105)))) (¬ (∧ n127 (∧ n116 n105)))))

→ (⊕ (∧ (∧ (⊕ n127 n133) n105) n116) n133)

(∧ (⊕ (∧ n233 (∧ n109 i22)) (∧ n109 (¬ i22))) (¬ (∧ n233 n111)))

→ (⊕ (∧ n233 (∨ n111 (¬ n109))) (∨ n233 (∧ n109 (¬ i22))))

(∧ (⊕ (⊕ i14 i6) (∧ i13 i5)) (∧ (⊕ i13 i5) (∧ i12 i4)))

→ (∧ (∧ i12 (⊕ i13 i5)) (∧ i4 (⊕ i6 i14)))

(∧ (¬ (∧ (∧ op4 op3) op0)) (¬ (∧ (∧ (¬ op4) (¬ op3)) op1)))

→ (∨ (⊕ op3 (∧ op4 op0)) (⊕ op3 (∨ op4 (¬ op1))))

(∧ (¬ (∧ (∧ (¬ opext0) op4) opext1)) (∧ (¬ (∧ (¬ opext1) op4)) op3))

→ (⊕ (∧ (∧ op3 opext1) (∧ op4 opext0)) (∧ op3 (¬ op4)))

(∧ (¬ (∨ (⊕ op3 (∧ op4 op0)) (⊕ op3 (∨ op4 (¬ op1))))) op2)

→ (∧ (⊕ op1 (∧ op3 (⊕ op0 op1))) (∧ op2 (⊕ op3 (¬ op4))))

(¬ (∧ (∧ (¬ norm4) (¬ (∧ (¬ (∧ (¬ n672) n24)) n44))) (¬ n670)))

→ (∨ (∧ n44 (∨ n672 (¬ n24))) (∨ n670 norm4))

(∧ (¬ (∨ (∧ oc3 (¬ in0)) (⊕ oc2 (¬ (∧ ct0 in0))))) (¬ in1))

100

→ (∧ (⊕ in1 (∨ in0 (¬ oc3))) (⊕ (∧ ct0 in0) (∧ oc2 (¬ in1))))

(∧ (¬ (∧ (¬ norm4) (¬ (∧ (¬ (∧ (¬ n513) (¬ n476))) n22)))) n29)

→ (∨ (∧ n29 norm4) (∧ (∨ n476 n513) (∧ n29 n22)))

(∧ (∧ (¬ (∧ (¬ in1) (¬ in0))) ct0) (¬ (∧ (∧ in0 oc0) in1)))

→ (⊕ (∧ (∧ in1 in0) (∧ oc0 ct0)) (∧ ct0 (∨ in1 in0)))

(∧ (¬ (∧ (¬ (∨ n112 (∧ n24 (¬ n54)))) (¬ (∧ n24 n46)))) n23)

→ (⊕ (∧ n23 (⊕ n54 (∨ n24 (⊕ n54 n112)))) (∧ (∨ n112 n46) (∧ n23 (∧ n54

n24))))

(∧ (¬ (∧ (∧ (¬ s0) a89) (¬ s1))) (¬ (∧ (∧ s0 a86) s1)))

→ (∨ (⊕ s1 (∧ s0 a86)) (⊕ s1 (∨ s0 (¬ a89))))

(∧ (¬ (∧ (∧ s0 a14) (¬ s1))) (¬ (∧ (∧ (¬ s0) a13) s1)))

→ (∨ (⊕ s0 (¬ (∧ s1 a13))) (⊕ s0 (∧ a14 (¬ s1))))

(∧ (¬ (∧ (∧ in0 ct1) in1)) (¬ (∧ (∧ (¬ in1) (¬ ct0)) (¬ in0))))

→ (∨ (⊕ (∨ (⊕ ct0 ct1) in1) ct1) (⊕ in0 in1))

(∧ (∧ n373 (¬ n369)) (⊕ (∧ (¬ n369) (∧ n365 n325)) (¬ (∧ n365 n325))))

→ (∧ (¬ n369) n373)

(∧ (¬ (∧ n149 (¬ (∧ (¬ norm6) n126)))) (¬ (∧ n142 (∧ (¬ norm6) n126))))

→ (⊕ (∨ (¬ (∧ (⊕ n149 n142) n126)) norm6) n149)

(⊕ n212 (⊕ (∧ (¬ (⊕ (∧ n203 n202) n201)) n188) (⊕ (∧ n203 n202) n201)))

→ (⊕ (⊕ (∧ (∧ (¬ n188) n203) n202) (∨ n188 n201)) n212)

(⊕ (∧ n126 (∧ n93 (∧ n92 (¬ n174)))) (∨ n93 (¬ (∧ n92 (¬ n174)))))

→ (∨ (∧ n93 (¬ n126)) (∨ n174 (¬ n92)))

(∨ (⊕ n92 (∧ (¬ n126) (∧ n92 n93))) (∧ n183 (∧ (∧ n209 n114) n182)))

→ (∨ (∧ n182 (∧ n209 (∧ n114 n183))) (∧ n92 (∨ n126 (¬ n93))))

(∧ n222 (¬ (∧ (¬ (∧ (∧ n182 (¬ n175)) (¬ (∧ (¬ n151) n21)))) n19)))

→ (∧ (∧ n222 (∨ n151 (¬ (∧ n19 n21)))) (⊕ n222 (∧ n19 (∨ n175 (¬ n182)))))

(∧ (¬ (∧ (¬ (∧ b1 b0)) (∧ b4 b3))) (¬ (∧ (¬ b6) (¬ b4))))

→ (⊕ (⊕ b3 (∨ b4 (⊕ b6 b3))) (∧ (∧ b4 b0) (∧ b1 b3)))

(∧ (⊕ n819 (∧ (¬ n885) (∧ n819 n818))) (⊕ n819 (∧ n856 (∧ n820 n818))))

101

→ (⊕ (∧ n856 (∧ n885 (∧ n818 (∧ n820 n819)))) (∧ n819 (∨ n885 (¬ n818))))

(∧ n971 (¬ (∧ (∧ n958 (∨ n939 (¬ pi028))) (¬ (∧ pi028 (⊕ n939 n936))))))

→ (⊕ (∧ (∧ n936 n958) (∧ n971 (∧ n939 pi028))) (∧ n971 (∨ pi028 (¬ n958))))

(∧ (∧ (¬ n477) (¬ (∧ n149 (∧ n146 n132)))) (¬ (∧ (∧ n146 n145) n132)))

→ (∨ (¬ (∨ n477 (∨ n145 n149))) (¬ (∨ n477 (∧ n132 n146))))

(⊕ (∧ n138 (∧ n103 (∧ n96 n141))) (∨ (¬ n145) (∧ n138 (∧ n103 n96))))

→ (⊕ (¬ n145) (∧ n96 (∧ n138 (∧ n103 (⊕ n145 n141)))))

(∧ (¬ (∧ (∧ (¬ ct1) oc3) (∧ in0 (¬ oc0)))) (¬ (∧ (¬ in0) ct1)))

→ (∨ (⊕ ct1 (∨ oc0 (¬ in0))) (⊕ in0 (∧ oc3 (¬ ct1))))

(∧ (¬ (⊕ (∧ (¬ ct2) (⊕ in0 in1)) (∨ (¬ in0) (∧ ct2 ct0)))) oc1)

→ (⊕ (∧ (∧ oc1 in0) (∧ ct2 (¬ ct0))) (∧ oc1 (∧ in1 (¬ ct2))))

(∧ (∧ (¬ (∧ in1 in0)) (¬ ct1)) (∧ (¬ (∧ (¬ in1) oc0)) (¬ oc2)))

→ (∧ (¬ (∨ oc2 ct1)) (⊕ oc0 (¬ (∧ in1 (⊕ oc0 in0)))))

(∧ (¬ (∧ (∧ in0 ct1) in1)) (¬ (∧ (∧ (¬ in1) (¬ ct0)) (¬ in0))))

→ (∨ (⊕ in0 (∧ in1 ct1)) (⊕ in0 (∨ in1 ct0)))

(∧ (¬ (⊕ n379 (∧ n359 (⊕ n272 n254)))) (∧ (⊕ n359 (⊕ n272 n254)) n186))

→ (∧ (∧ n186 (¬ n379)) (⊕ n359 (⊕ n272 n254)))

(∧ (⊕ n150 (∧ n345 (∧ n326 n333))) (⊕ n150 (∧ n336 (¬ (∧ n345 n326)))))

→ (⊕ (∧ n326 (∧ n345 (∨ n333 (¬ n150)))) (∨ (∧ n326 n345) (∧ n150 (¬ n336))))

(∧ (∧ (¬ (∧ (∧ n345 n326) n333)) n150) (¬ (∧ (¬ (∧ n345 n326)) n336)))

→ (∧ (⊕ n150 (∧ n345 (∧ n326 n333))) (⊕ n150 (∧ n336 (¬ (∧ n345 n326)))))

(∧ (∧ (¬ (∧ pi021 pi008)) (¬ pi013)) (¬ (∧ (¬ (∧ (¬ pi021) (¬ pi008))) pi007)))

→ (¬ (∨ (⊕ (∧ (⊕ pi007 pi008) (⊕ pi021 pi008)) pi008) pi013))

(∧ (∧ (¬ (∧ (¬ (∧ (¬ pi110) (¬ pi096))) pi097)) (∧ (¬ pi100) (¬ pi095))) pi097)

→ (∧ (¬ (∨ (∨ pi110 pi096) (∨ pi100 pi095))) pi097)

(∧ (¬ (∧ (¬ (∧ s0 a120)) s1)) (¬ (∧ (¬ (∧ (¬ s0) a123)) (¬ s1))))

→ (∧ (⊕ (∧ (⊕ a123 a120) s0) a123) (⊕ (¬ s1) s0))

(∧ (¬ (∧ (¬ (∧ (¬ s0) a91)) s1)) (¬ (∧ (¬ (∧ s0 a92)) (¬ s1))))

→ (∧ (⊕ (∧ (⊕ a92 a91) s0) a91) (⊕ s1 s0))

102

(∧ (∧ norm2 (¬ (⊕ (∧ (¬ n215) (¬ n167)) (¬ (∧ (¬ n216) (¬ n119)))))) n225)

→ (∧ (⊕ (∨ n167 n215) (∨ n216 n119)) (∧ norm2 n225))

(¬ (∧ (∧ n135 (¬ (∧ (∧ n63 n130) norm6))) (¬ (∧ n127 (¬ (∧ norm6 n63))))))

→ (∨ (⊕ (∧ (∧ (⊕ n130 n127) n63) norm6) n127) (¬ n135))

(∧ (¬ (⊕ (∨ (¬ norm5) (∨ (¬ i7) i4)) i4)) (¬ (∧ (∧ i7 i4) norm5)))

→ (⊕ (∧ norm5 i7) i4)

(∧ (∧ (¬ (∧ (¬ i7) i6)) (¬ (∧ (¬ i5) i4))) (¬ (∧ (¬ i6) i5)))

→ (∧ (⊕ (∨ (⊕ i6 i4) (¬ i5)) i4) (∨ (¬ i6) i7))

(∧ (¬ (∧ (¬ i23) i22)) (∧ (¬ (∧ (¬ i22) i21)) (¬ (∧ (¬ i21) i20))))

→ (∧ (⊕ (¬ (∨ (⊕ i20 i22) i21)) i22) (∨ (¬ i22) i23))

(∧ (¬ (⊕ (∧ n241 (∧ n243 (∧ n248 n252))) (∧ n252 (∨ n243 (¬ n248))))) n220)

→ (⊕ (∧ n241 (∧ n220 (∧ n252 (∧ n243 n248)))) (∧ n220 (∨ (¬ n252) (∧ n248 (¬

n243)))))

(¬ (∧ (¬ (∧ (¬ (∧ n343 (¬ (∧ (¬ (∧ n337 (¬ n156))) b3)))) b4)) n335))

→ (∨ (∨ (¬ n335) (∧ b4 (¬ n343))) (∧ b3 (∧ b4 (∨ n156 (¬ n337)))))

(∧ (¬ (⊕ (∧ b5 (¬ (∨ b6 b3))) (∨ b4 (∨ b9 (¬ b6))))) (¬ b2))

→ (⊕ (∨ (∨ b2 b3) (∨ b6 (¬ b5))) (∨ (∨ b2 b4) (∨ b9 (¬ b6))))

(∧ (¬ (∧ (∧ b5 (¬ b3)) (¬ b6))) (¬ (∧ (∧ (¬ b9) b6) (¬ b4))))

→ (⊕ (∧ b5 (¬ (∨ b6 b3))) (∨ b4 (∨ b9 (¬ b6))))

(∧ (¬ (⊕ (∧ n256 (∧ n267 (∧ n46 n285))) (∧ n285 (∨ n267 (¬ n46))))) n20)

→ (⊕ (∧ n256 (∧ n285 (∧ n267 (∧ n20 n46)))) (∧ n20 (∨ (¬ n285) (∧ n46 (¬

n267)))))

(¬ (∧ (∧ (¬ n93) n76) (¬ (∧ (¬ (∧ (∧ n68 (¬ n64)) (¬ n44))) n20))))

→ (∨ (∧ n20 (⊕ n44 (∨ n64 (¬ n68)))) (∨ (∧ n20 n44) (∨ n93 (¬ n76))))

(∧ n1616 (¬ (⊕ (∧ n1604 (∧ n821 (∧ n1610 n820))) (∧ n821 (∨ n820 (¬ n1610))))))

→ (⊕ (∧ n1604 (∧ n1616 (∧ n1610 (∧ n820 n821)))) (∧ n1616 (∨ (¬ n821) (∧ n1610

(¬ n820)))))

(∧ n1041 (¬ (⊕ (∧ n1026 (∧ n821 (∧ n1032 n825))) (∧ n821 (∨ n825 (¬ n1032))))))

→ (⊕ (∧ n1026 (∧ n1032 (∧ n1041 (∧ n825 n821)))) (∧ n1041 (∨ (¬ n821) (∧ n1032

103

(¬ n825)))))

(∧ n1025 (¬ (⊕ (∧ n1004 (∧ n1013 (∧ n820 n1018))) (∧ n820 (∨ n1013 (¬ n1018))))))

→ (⊕ (⊕ n1004 (∧ n1025 (∨ n1018 (¬ n820)))) (∨ n1004 (∧ n1013 (∧ n1025 (∧

n1018 n820)))))

(∧ (∧ (¬ (∧ pi021 pi008)) (¬ pi013)) (¬ (∧ (¬ (∧ (¬ pi021) (¬ pi008))) pi007)))

→ (⊕ (∨ pi013 (∧ pi021 (⊕ pi007 pi008))) (∨ pi013 (¬ (∧ pi007 pi008))))

(∧ (¬ (∧ (¬ (∧ (¬ (∧ norm7 (¬ pi096))) pi097)) (∧ (¬ pi100) (¬ pi095)))) norm7)

→ (∨ (∧ pi097 (∧ pi096 norm7)) (∧ norm7 (∨ pi100 pi095)))

(∧ (∧ (¬ (∧ (¬ (∧ (¬ pi110) (¬ pi096))) pi097)) (∧ (¬ pi100) (¬ pi095))) pi097)

→ (∧ (¬ (∨ pi096 (∨ pi100 pi095))) (∧ pi097 (¬ (∨ pi110 pi095))))

(∧ (¬ (⊕ (∧ n483 (∧ n1218 (∧ n468 pi082))) (∧ n1218 (∨ pi082 (¬ n468))))) n444)

→ (⊕ (∧ n483 (∧ n444 (∧ n1218 (∧ pi082 n468)))) (∧ n444 (∨ (¬ n1218) (∧ n468

(¬ pi082)))))

(∧ (¬ (∧ (∧ i14 i13) (∧ i13 i12))) (¬ (∧ (∧ i12 i11) (∧ i13 i12))))

→ (∨ (¬ (∨ i11 i14)) (¬ (∧ i12 i13)))

(∧ (¬ (∧ (∧ i14 i13) (∧ i15 i14))) (¬ (∧ (∧ i16 i15) (∧ i15 i14))))

→ (¬ (∧ (∨ i16 i13) (∧ i14 i15)))

(∧ (∧ (∧ (∧ (¬ i17) (¬ i16)) (¬ i18)) (∧ (¬ i15) (¬ i12))) (¬ i19))

→ (∧ (¬ (∨ i18 (∨ i16 i15))) (¬ (∨ i19 (∨ i17 i12))))

(∧ norm1 (¬ (∧ (¬ (∧ n133 (¬ (∧ n116 n105)))) (¬ (∧ n127 (∧ n116 n105))))))

→ (∧ (⊕ (∧ (∧ (⊕ n127 n133) n105) n116) n133) norm1)

(¬ (⊕ (∧ n138 (∧ n103 (∧ n96 n141))) (∨ (¬ n145) (∧ n138 (∧ n103 n96)))))

→ (⊕ (∧ n96 (∧ n138 (∧ n103 n141))) (⊕ n145 (∧ n96 (∧ n138 (∧ n103 n145)))))

(∧ (¬ (⊕ norm3 (¬ (∧ i9 i1)))) (∧ (¬ (⊕ i9 (¬ i1))) (∧ i8 i0)))

→ (∧ (∧ i8 (⊕ i9 i1)) (∧ i0 norm3))

(∧ (∧ (¬ (⊕ (∧ (¬ n218) (⊕ n168 n120)) (∧ (¬ n168) (¬ n120)))) norm10) i27)

→ (∧ (∧ i27 norm10) (⊕ n218 (∧ (⊕ n120 n218) (⊕ n168 n218))))

(∧ (¬ (∧ n118 (⊕ (∧ (∧ op3 opext1) (∧ op4 opext0)) (∧ op3 (¬ op4))))) n53)

→ (∨ (⊕ n53 (∧ n118 (∧ n53 op3))) (∧ (∧ n53 op4) (¬ (∧ opext0 opext1))))

104

(∧ (¬ (⊕ (∧ oc3 (¬ (∨ in1 oc0))) (¬ (∨ oc3 (∧ in1 oc2))))) (¬ oc1))

→ (⊕ (∧ (∧ in1 oc2) (¬ (∨ oc1 oc3))) (∧ (∨ oc0 in1) (∧ oc3 (¬ oc1))))

(∧ n1063 (⊕ (∧ n1042 (∧ n1055 (∧ n22 n29))) (∨ (¬ n22) (∧ n1055 (¬ n29)))))

→ (⊕ (∧ n1042 (∧ n29 (∧ n1055 (∧ n22 n1063)))) (∧ n1063 (∨ (¬ n22) (∧ n1055

(¬ n29)))))

(∧ (¬ (∧ (¬ (∧ s0 a76)) s1)) (¬ (∧ (¬ (∧ (¬ s0) a79)) (¬ s1))))

→ (⊕ (∧ s1 (∧ s0 a76)) (∧ a79 (¬ (∨ s1 s0))))

(∧ (¬ (∧ (¬ (∧ (¬ s0) a95)) s1)) (¬ (∧ (¬ (∧ s0 a96)) (¬ s1))))

→ (⊕ (∧ s1 (∨ s0 a95)) (∧ s0 (∨ s1 a96)))

(∧ (∧ n450 (¬ (⊕ norm4 (¬ norm10)))) (⊕ (∧ (¬ (⊕ norm4 (¬ norm10)))

norm10) (¬ norm10)))

→ (∧ (⊕ norm10 norm4) n450)

(∧ (∧ n135 (¬ (∧ (∧ n63 n130) (¬ n77)))) (¬ (∧ n127 (¬ (∧ (¬ n77) n63)))))

→ (∧ (⊕ (∨ (¬ (∧ (⊕ n130 n127) n63)) n77) n127) n135)

(∧ (¬ (∧ (¬ (∧ i7 i6)) i9)) (¬ (∧ (∧ (¬ i9) i7) (¬ (∧ i6 i5)))))

→ (⊕ (¬ (∧ (∨ i5 i9) (∧ i6 i7))) (∨ i9 i7))

(∧ (¬ (∧ n133 (¬ (∧ n116 (∧ n104 n96))))) (¬ (∧ (∧ n127 n96) (∧ n104 n116))))

→ (⊕ (¬ (∧ (∧ (∧ (⊕ n127 n133) n116) n104) n96)) n133)

(∧ (∧ n203 (∧ n149 n137)) (¬ (∧ (¬ (∧ n171 n166)) (¬ (∧ n158 (∧ n149 n137))))))

→ (∧ (∨ (∧ n171 n166) n158) (∧ (∧ n137 n149) n203))

(∧ (¬ (∧ (∧ (¬ x13) (¬ x12)) (¬ (∧ (¬ (∧ (¬ x10) (¬ x9))) x11)))) x14)

→ (∨ (∧ (∨ x9 x10) (∧ x14 x11)) (∧ x14 (∨ x12 x13)))

(∧ (¬ (∧ (∧ b5 (¬ b4)) b3)) (¬ (∧ (∧ (¬ b6) b0) (∧ b4 (¬ b3)))))

→ (⊕ (∧ (∧ b4 b0) (¬ (∨ b3 b6))) (∨ b4 (¬ (∧ b3 b5))))

(¬ (∧ (¬ (∧ (¬ (∧ n376 (¬ (∧ (¬ (∧ (¬ n367) n332)) n301)))) pi054)) (¬ n326)))

→ (∧ (∨ n326 (∧ pi054 (∨ n301 (¬ n376)))) (∨ n326 (∨ n367 (¬ (∧ n332 n376)))))

(¬ (⊕ (¬ (∨ pi039 (∨ pi052 (∨ pi051 pi027)))) (∨ pi026 (¬ (∨ pi039 (∨ pi052

pi051))))))

→ (⊕ (¬ (∨ (∨ pi051 pi052) (∨ pi039 pi026))) (⊕ pi026 (∨ (∨ pi051 pi052) (∨

105

pi039 pi027))))

(∧ (¬ (⊕ (∧ (¬ norm5) i22) (∧ norm5 i6))) (⊕ (∧ (¬ norm5) i23) (∧ norm5

i7)))

→ (⊕ (∧ norm5 (∨ i6 (¬ i7))) (∨ norm5 (∧ i23 (¬ i22))))

(∧ (⊕ (∧ n166 (∧ n171 n177)) (∨ (∧ n166 n171) norm6)) (¬ (∧ (∧ n171 n166)

norm6)))

→ (∧ (¬ (∧ n166 (∧ n171 n177))) (⊕ norm6 (∧ n171 n166)))

(∧ (¬ (∧ n145 (¬ (∧ (∧ n103 n96) n138)))) (¬ (∧ n141 (∧ (∧ n103 n96) n138))))

→ (⊕ (∧ n138 (∧ n103 (∧ n96 n141))) (∨ (¬ n145) (∧ n138 (∧ n103 n96))))

(∧ (∧ n135 (¬ (∧ (∧ n63 n130) (¬ n77)))) (¬ (∧ n127 (¬ (∧ (¬ n77) n63)))))

→ (⊕ (∧ (∧ n127 n135) (∨ n77 (¬ n63))) (∧ n135 (∨ n77 (¬ (∧ n63 n130)))))

(∧ (∧ (⊕ (∧ (¬ n218) (⊕ n168 n120)) (∧ (¬ n168) (¬ n120))) (⊕ n218 n170)) i33)

→ (∧ (⊕ (∨ n168 n218) (∨ n120 (⊕ n168 n170))) (∧ i33 (⊕ n218 n170)))

(¬ (∧ (∧ (⊕ (∧ (¬ n218) (⊕ n168 n120)) (∧ (¬ n168) (¬ n120))) (¬ n219)) i33))

→ (∨ (⊕ n218 (∧ (⊕ n120 n218) (⊕ n168 n218))) (⊕ (∧ n168 n218) (∨ n219 (¬

i33))))

(∧ (¬ (∧ (¬ op4) op3)) (⊕ (∧ (∨ op3 op0) (∧ op1 op4)) (∧ op1 (¬ op4))))

→ (⊕ (∧ op1 (¬ (∨ op4 op3))) (∧ (∨ op0 op3) (∧ op4 op1)))

(∧ (¬ (∧ (∧ ct0 (¬ oc2)) (∧ (¬ in1) (¬ oc1)))) (¬ (∧ (∧ in1 norm11) oc1)))

→ (∨ (⊕ in1 (∨ oc1 (⊕ oc2 (¬ ct0)))) (⊕ (∨ in1 oc2) (∧ oc1 norm11)))

(∧ (∧ (¬ (∧ (¬ in1) oc1)) (¬ ct2)) (¬ (∧ (¬ (∧ (¬ in1) oc0)) (¬ oc1))))

→ (∧ (¬ (∨ ct2 (⊕ oc1 in1))) (⊕ ct2 (∨ in1 oc0)))

(∧ (¬ (∧ (∧ ct0 norm4) (∧ in1 in0))) (¬ (∧ (∧ (¬ in1) (¬ ct0)) (¬ in0))))

→ (∨ (∧ ct0 (⊕ in1 norm4)) (∨ (⊕ in0 ct0) (⊕ in1 ct0)))

(∧ (¬ (∨ (⊕ (∨ oc2 oc0) (∨ in0 in1)) (∨ (⊕ oc2 oc0) (⊕ in0 in1)))) ct0)

→ (∧ (∧ ct0 (⊕ in0 (¬ in1))) (¬ (∨ (⊕ oc0 in1) (⊕ oc2 in0))))

(⊕ (∧ (⊕ n150 (∧ n345 (∧ n326 n333))) (⊕ n150 (∧ n336 (¬ (∧ n345 n326))))) n335)

→ (⊕ (∧ n345 (∧ n326 (∧ n150 (⊕ n333 n336)))) (⊕ n335 (∧ n150 (¬ n336))))

(∧ (¬ (∧ (∧ (¬ ct1) ct0) (∧ in1 in0))) (¬ (∧ (∧ (¬ in1) (¬ ct0)) (¬ in0))))

106

→ (∨ (∨ (⊕ in0 ct0) (⊕ in1 ct0)) (∧ ct0 ct1))

(∧ (∧ (⊕ (⊕ n313 n273) norm4) (⊕ (∧ (⊕ n313 n273) norm4) (∧ (¬ n313) (¬

n273)))) n322)

→ (∧ (∧ norm4 n322) (¬ (∨ n313 n273)))

(∧ (∧ (∧ n387 (⊕ norm4 (¬ norm10))) (⊕ (∧ (¬ (⊕ norm4 (¬ norm10)))

norm10) (¬ norm10))) i26)

→ (∧ (¬ (∨ norm4 norm10)) (∧ i26 n387))

(∧ (¬ (∧ (¬ (∧ i8 i7)) i5)) (⊕ (∨ (∨ (¬ i6) i5) (∧ (¬ i8) i7)) i6))

→ (⊕ (¬ (∨ (∧ (⊕ i6 i8) i7) (⊕ i5 i8))) i8)

(∧ (⊕ (∧ (∨ (¬ i7) i6) (∧ (¬ i9) i8)) i8) (¬ (∧ (∧ i9 i7) (¬ i6))))

→ (∧ (⊕ (∧ (¬ i6) i7) i9) i8)

(∧ (¬ (∧ (¬ (⊕ (∧ n1176 (∧ n468 pi082)) (∧ n468 (¬ pi082)))) (¬ (∧ n1376

pi082)))) n437)

→ (⊕ (∧ (∨ n1176 n1376) (∧ n437 (∧ n468 pi082))) (∧ (∨ n468 n1376) (∧ n437 (⊕

n468 pi082))))

(∧ (¬ (∧ (∧ i11 i10) (∧ i9 i8))) (¬ (∧ (∧ i12 i11) (∧ (∧ i11 i10) i9))))

→ (∨ (∧ i11 (¬ (∧ i9 i10))) (¬ (∧ i11 (∨ i12 i8))))

(∧ (¬ (∧ (¬ (∧ (¬ i62) (¬ i30))) (¬ (∧ (¬ i61) (¬ i29))))) (¬ (∧ i61 i29)))

→ (⊕ (∨ (⊕ (∨ i30 i62) i29) (⊕ (¬ i29) i61)) i61)

(¬ (∧ (∧ n135 (¬ (∧ (∧ n63 n130) (¬ n77)))) (¬ (∧ n127 (¬ (∧ (¬ n77) n63))))))

→ (⊕ (∧ (∧ n63 n135) (¬ (∨ n77 n130))) (∨ (∨ n127 (¬ n135)) (∧ n63 (¬ n77))))

(∧ (∧ (¬ (∧ n342 (∧ n313 n303))) (¬ (∧ (∧ n362 n352) n318))) (∧ (¬ n2640) (¬

n2638)))

→ (∧ (¬ (∨ n2640 (∧ n313 (∧ n303 n342)))) (¬ (∨ n2638 (∧ n352 (∧ n362 n318)))))

(∧ (¬ (⊕ (∨ (¬ (∧ op3 op4)) (∨ op1 op0)) op1)) (¬ (∧ (¬ (∧ op4 (¬ op3))) op1)))

→ (∧ (∧ (⊕ op1 op3) op4) (∨ (¬ op0) op1))

(∧ (∧ (⊕ (⊕ n313 n273) norm4) (¬ (⊕ (∧ (⊕ n313 n273) norm4) (∧ (¬ n313) (¬

n273))))) n322)

→ (∧ (∧ (⊕ (⊕ norm4 n313) n273) n322) (∨ n313 n273))

107

(∧ (∧ (⊕ norm3 (⊕ n168 n120)) (¬ (⊕ (∧ norm3 (⊕ n168 n120)) (∧ (¬ n168) (¬

n120))))) n226)

→ (∧ (∧ (⊕ (⊕ norm3 n168) n120) n226) (∨ n168 n120))

(∧ (∧ (⊕ n216 (¬ n119)) (¬ (⊕ (∧ (¬ n215) (¬ n167)) (¬ (∧ (¬ n216) (¬

n119)))))) n225)

→ (∧ (∧ (⊕ (¬ n216) n119) n225) (⊕ (∨ n167 n215) n119))

(∧ (∧ (∧ n373 (¬ (⊕ norm5 (¬ norm12)))) (⊕ (∧ (¬ (⊕ norm5 (¬ norm12)))

norm12) (¬ norm12))) i24)

→ (∧ (∧ (⊕ norm5 norm12) i24) n373)

(∧ (¬ (∧ (⊕ (∧ (∨ y12 y11) (∨ y9 y10)) (∨ y9 (∨ y10 (¬ y12)))) (¬ y13))) y14)

→ (∨ (∧ y14 (∨ y12 y13)) (∧ (∨ y10 y9) (∧ y14 y11)))

(∧ (¬ (∧ (¬ norm4) (¬ (∧ n171 n166)))) (¬ (∧ norm4 (⊕ n158 (∧ n166 (∧ n171

(¬ n158)))))))

→ (∧ (⊕ (∧ n171 n166) norm4) (⊕ n158 (¬ (∧ n166 (∧ n158 n171)))))

(∧ (¬ (⊕ (∧ i3 i4) (∨ i3 i2))) (∧ (¬ (∧ (¬ i2) i1)) (¬ (∧ (¬ i1) i0))))

→ (∧ (⊕ i2 (¬ (∨ i1 (⊕ i0 i2)))) (⊕ i4 (¬ (∨ i3 (⊕ i2 i4)))))

(∧ (¬ (∧ (∧ (∧ opext0 op1) (¬ opext1)) (∧ op4 op3))) (¬ (∧ (∧ (¬ op4) op3) (¬

op1))))

→ (∨ (∧ op1 (∨ opext1 (¬ opext0))) (∨ (¬ op3) (⊕ op1 op4)))

(∧ (¬ (∧ (∧ ct0 (¬ oc2)) in0)) (¬ (∧ (¬ (⊕ (∧ in0 (¬ ct0)) (∨ in0 oc3))) oc2)))

→ (∨ (∧ oc3 (¬ in0)) (⊕ oc2 (¬ (∧ ct0 in0))))

(∧ (¬ (∧ (¬ (∧ (¬ (∧ ct1 (¬ oc2))) oc3)) (∧ (¬ in1) (¬ oc1)))) (¬ (∧ in1 oc2)))

→ (∨ (∧ oc3 (⊕ in1 (∨ oc2 (¬ ct1)))) (⊕ oc2 (∨ in1 (⊕ oc2 oc1))))

(∧ (∧ (⊕ (¬ n217) (⊕ n168 n120)) (⊕ (∧ (¬ n217) (⊕ n168 n120)) (∧ (¬ n168) (¬

n120)))) n226)

→ (∧ (¬ (∨ n217 n168)) (∧ (¬ n120) n226))

(∧ (⊕ (∧ (⊕ n313 n273) (⊕ n216 n192)) (∧ (¬ n313) (¬ n273))) (∧ (⊕ n313 n273)

(⊕ n216 n192)))

→ (∧ (⊕ n192 n216) (⊕ n313 n273))

108

(∧ (∧ (∧ (∧ i11 i10) (∧ i9 i8)) (∧ i8 i7)) (∧ (∧ i12 i11) (∧ (∧ i11 i10) i9)))

→ (∧ (∧ i9 (∧ i10 i7)) (∧ i11 (∧ i12 i8)))

(∧ (∧ (∧ i14 i13) (∧ i13 i12)) (∧ (∧ (∧ i12 i11) (∧ i13 i12)) (∧ (∧ i11 i10) i9)))

→ (∧ (∧ i9 (∧ i10 i14)) (∧ i11 (∧ i13 i12)))

(∧ (¬ (∧ (∧ i6 i7) (∧ i5 i4))) (¬ (∧ (∧ i4 i3) (∧ (∧ i5 i4) (∧ i6 i5)))))

→ (∨ (∧ i6 (¬ (∧ i5 i4))) (¬ (∧ i6 (∨ i3 i7))))

(∧ (∧ (∧ n202 n199) (∧ n149 n137)) (¬ (∧ (∨ (¬ n165) (¬ norm9)) (¬ (∧ n158 (∧

n149 n137))))))

→ (∧ (∨ n158 (∧ n165 norm9)) (∧ n137 (∧ n202 (∧ n149 n199))))

(∧ n203 (⊕ (∧ (∧ n117 n130) (∧ n149 (∧ n127 n133))) (∧ n149 (⊕ (∧ n117 n127)

(∧ n133 n130)))))

→ (∧ (∧ n149 n203) (∨ (∧ n130 n133) (∧ n117 n127)))

(∧ (¬ (∧ (∧ oc2 oc0) (∧ in0 in1))) (¬ (∧ (∧ (¬ in1) (¬ oc0)) (∧ (¬ in0) (¬

oc2)))))

→ (∨ (⊕ (∨ oc2 oc0) (∨ in0 in1)) (∨ (⊕ oc2 oc0) (⊕ in0 in1)))

(∧ (∧ n393 (⊕ (∧ n384 n369) n387)) (⊕ (∧ (⊕ (∧ n384 n369) n387) (∧ n384 n369))

(¬ (∧ n384 n369))))

→ (∧ (⊕ (∧ n369 n384) n387) n393)

(⊕ (⊕ (∧ n87 (∧ i16 n59)) (∧ i16 (⊕ n102 (¬ n71)))) (∧ (⊕ (⊕ n102 (∧ n87 n59))

n71) i8))

→ (⊕ (∧ n87 (∧ n59 (⊕ i8 i16))) (⊕ i16 (∧ (⊕ i8 i16) (⊕ n102 n71))))

(⊕ (∧ (¬ (⊕ (⊕ n199 (∧ n188 n152)) n176)) n156) (⊕ (∧ n188 (∧ i23 n152)) (∧ i23

(⊕ n199 n176))))

→ (⊕ (∧ n188 (∧ n152 (⊕ i23 n156))) (⊕ n156 (∧ (⊕ n176 n199) (⊕ i23 n156))))

(∧ (¬ (∧ (∧ n121 (∧ n120 n297)) (⊕ n267 (⊕ n121 n120)))) (¬ (∧ n293 (¬ (∧ (∧

n121 n120) n267)))))

→ (⊕ (¬ (∨ n293 (∧ n267 (∧ n121 n120)))) (∧ n267 (∧ n121 (∧ n120 (¬ n297)))))

(∧ (¬ (∧ (¬ (∧ (¬ i3) (¬ i2))) (¬ (∧ i4 i3)))) (⊕ (∧ i1 (¬ i2)) (∨ i1 (¬ i0))))

→ (∧ (⊕ i2 (¬ (∨ i1 (⊕ i0 i2)))) (⊕ i4 (¬ (∨ i3 (⊕ i2 i4)))))

109

(⊕ (∧ n199 (¬ (⊕ (∧ n195 (⊕ norm6 n189)) (⊕ norm6 n189)))) (⊕ (∧ n195 (⊕

norm6 n189)) (⊕ norm6 n189)))

→ (⊕ (∧ (¬ n199) (∨ n189 n195)) (∨ (∨ n195 n199) norm6))

(∧ (¬ (∧ (∧ (∧ (¬ pi052) (¬ pi039)) (¬ pi051)) (¬ pi027))) (¬ (⊕ (∨ (∨ pi026

pi051) (∨ pi052 pi039)) pi026)))

→ (⊕ (∧ (∨ (∨ pi051 pi052) pi039) (⊕ pi026 pi027)) pi027)

(∧ (∧ (¬ (∧ (¬ (∧ i7 i6)) (¬ i3))) i4) (¬ (∧ (∧ (⊕ (¬ i2) i6) i3) (∨ (¬ i6) i7))))

→ (∧ (∨ (∧ (⊕ i7 i3) i6) (∧ (⊕ i6 i2) i3)) i4)

(∧ (¬ (∧ (∧ (∧ (¬ pi052) (¬ pi039)) (¬ pi051)) (¬ pi027))) (¬ (⊕ pi026 (∨ (∨

pi026 pi051) (∨ pi052 pi039)))))

→ (⊕ (¬ (∨ pi039 (∨ pi052 (∨ pi051 pi027)))) (∨ pi026 (¬ (∨ pi039 (∨ pi052

pi051)))))

(∧ (∧ (∧ (∧ i14 i13) (∧ i15 i14)) (∧ (∧ i12 i11) (∧ i13 i12))) (∧ (∧ i16 i15) (∧ i15

i14)))

→ (∧ (∧ i14 (∧ i16 i12)) (∧ i15 (∧ i11 i13)))

(∧ (∧ (∧ (∧ i14 i13) (∧ i15 i14)) (∧ (∧ i17 i16) (∧ i16 i15))) (∧ (∧ i18 i17) (∧ i17

i16)))

→ (∧ (∧ i16 (∧ i18 i15)) (∧ i17 (∧ i14 i13)))

(∧ (∧ (¬ (∧ (¬ (∧ op1 (¬ op0))) (∧ op4 (¬ op3)))) (¬ op2)) (¬ (∧ (¬ (∧ op4 (¬

op1))) op3)))

→ (∧ (¬ (∨ op2 (∧ op0 (⊕ op3 op4)))) (⊕ (∨ op3 op2) (∨ op1 (¬ op4))))

(∧ (¬ (⊕ (∧ ct1 (∨ oc0 (¬ in1))) (∨ ct1 (∨ oc3 (¬ oc0))))) (¬ (∧ (¬ (∧ in1 ct1))

(¬ in0))))

→ (⊕ (∧ (∧ in0 oc0) (¬ (∨ ct1 oc3))) (∧ ct1 (⊕ in0 (∧ in1 (⊕ in0 oc0)))))

(∧ (¬ (∧ (∧ in1 oc1) ct0)) (¬ (∧ (¬ (∧ (¬ (∧ (¬ ct0) (¬ oc1))) oc2)) (∧ (¬ in1)

(¬ ct1)))))

→ (⊕ (∧ in1 (∧ oc1 ct0)) (∨ (∨ ct1 in1) (∧ oc2 (∨ oc1 ct0))))

(⊕ (∧ (¬ (⊕ (⊕ (∧ i16 i8) i7) i15)) (∧ (⊕ i16 i8) (∧ i17 i9))) (∧ (⊕ i16 i8) (∧ i17

i9)))

110

→ (∧ (∧ (⊕ i16 i8) (⊕ i15 i7)) (∧ i9 i17))

(⊕ (∧ n305 (⊕ (∧ (⊕ n264 n257) (¬ n254)) (¬ n254))) (∧ n305 (¬ (⊕ (∧ (⊕ n264

n257) (¬ n254)) (¬ n254)))))

→ n305

(⊕ (⊕ (∧ (⊕ n188 n175) (∧ n138 n152)) (∧ n138 (¬ n199))) (∧ (⊕ (⊕ n199 (∧

n188 n152)) (∧ n175 n152)) i18))

→ (⊕ (∧ (⊕ n188 n175) (∧ n152 (⊕ i18 n138))) (⊕ n138 (∧ n199 (⊕ i18 n138))))

(∧ (¬ (⊕ (∧ (∨ op1 op0) (∧ op3 op4)) (⊕ op1 (¬ (∧ op3 op4))))) (¬ (∧ (¬ (∧

op4 (¬ op3))) op1)))

→ (∧ (∧ op4 (⊕ op1 op3)) (⊕ op4 (∧ op3 op0)))

(∧ (¬ (∧ (¬ oc3) oc1)) (¬ (⊕ (∧ (∧ in1 oc2) (¬ (∨ oc1 oc3))) (∧ (∨ oc0 in1) (∧

oc3 (¬ oc1))))))

→ (⊕ (⊕ oc3 (∨ (∨ oc1 oc3) (∧ in1 oc2))) (∨ (∨ oc1 (¬ oc3)) (¬ (∨ oc0 in1))))

(∧ (¬ (⊕ (∨ pi013 (∧ pi021 (⊕ pi007 pi008))) (∨ pi013 (¬ (∧ pi007 pi008))))) (¬

(∧ (∧ (¬ pi021) (¬ pi008)) (¬ pi007))))

→ (⊕ (∧ (⊕ pi007 pi021) (⊕ pi008 pi013)) (∨ (∧ pi007 pi021) (∧ pi008 pi013)))

(∧ (¬ (∧ (∧ (∧ op3 (¬ op0)) op4) opext0)) (¬ (∧ (⊕ (∧ (∧ op3 opext1) (∧ op4

opext0)) (∧ op3 (¬ op4))) op0)))

→ (∨ (⊕ op0 (¬ (∧ op4 (⊕ op0 opext0)))) (¬ (∧ op3 (∨ opext1 (⊕ op0 op4)))))

(∧ (∧ (¬ (∧ (⊕ op3 op4) op2)) op1) (¬ (∧ (⊕ (∧ (∨ op3 op0) (∧ op1 op4)) (∧

op1 (¬ op4))) (¬ op2))))

→ (∧ (∨ op2 (¬ (∨ op3 op0))) (∧ op1 (⊕ op2 (⊕ op3 op4))))

(¬ (∧ (∧ (¬ (∧ (¬ (∨ op4 op1)) (∧ op0 op3))) (¬ op2)) (¬ (∧ (∧ (¬ (∧ (¬

opext0) op4)) op3) (∧ op1 op0)))))

→ (∧ (∨ op2 (∧ op0 op3)) (∨ (∧ op1 opext0) (∨ op2 (¬ op4))))

(∧ (¬ (⊕ (⊕ n379 (∧ n359 (⊕ n272 n254))) (∧ (⊕ n359 (⊕ n272 n254)) n186))) (∧

(⊕ (⊕ n359 (⊕ n272 n254)) n186) n157))

→ (∧ (⊕ n254 (⊕ n272 (⊕ n359 n186))) (∧ n157 (⊕ n379 (¬ (∧ n359 n186)))))

(∧ (⊕ (∧ (⊕ (⊕ n312 n288) (⊕ n167 n143)) norm6) (∧ (⊕ n312 n288) (⊕ n167

111

n143))) (∧ (⊕ (⊕ n312 n288) (⊕ n167 n143)) norm6))

→ (∧ (⊕ (⊕ (⊕ n288 n143) n312) n167) norm6)

(∧ (∧ (∧ norm3 norm7) (¬ (∧ (¬ (∧ b4 b1)) (¬ b0)))) (¬ (∧ (¬ (∧ (¬ (∧ b8 (¬

b4))) (¬ (∧ b4 b1)))) b0)))

→ (∧ (∧ norm3 (⊕ b0 (∧ b4 b1))) (∧ norm7 (∨ b4 (⊕ b0 b8))))

(∧ (¬ (⊕ (∧ (¬ (⊕ n148 n133)) i20) (∧ (⊕ n148 n133) i4))) (¬ (⊕ (∧ (¬ (⊕ n148

n133)) i21) (∧ (⊕ n148 n133) i5))))

→ (⊕ (∧ (∨ i21 i20) (⊕ n148 (¬ n133))) (¬ (∧ (⊕ n148 n133) (∨ i5 i4))))

(∧ (¬ (∧ (¬ (∨ op2 (∧ op0 (⊕ op3 op4)))) (⊕ (∨ op3 op2) (∨ op1 (¬ op4))))) (¬

(∧ (¬ (∧ op4 (¬ op3))) op2)))

→ (∨ (¬ (∨ op2 (⊕ op3 (∨ op1 (¬ op4))))) (∧ (∨ op2 op0) (∧ op4 (¬ op3))))

(∧ (¬ (∧ (¬ (∧ (∧ (¬ op4) (¬ op3)) op1)) op2)) (¬ (∧ (¬ (∧ (∧ op4 (⊕ op1 op3))

(⊕ op4 (∧ op3 op0)))) (¬ op2))))

→ (∧ (⊕ op3 (∨ op1 (∧ op3 op0))) (⊕ op2 (∨ op4 (∧ op2 op3))))

(¬ (∧ (¬ (∧ (∧ (¬ in0) ct0) (∧ in1 oc2))) (¬ (⊕ (∧ (∧ in0 ct0) (¬ (∨ in1 oc0)))

(∧ in0 (∧ oc0 (⊕ in1 oc2)))))))

→ (⊕ (∧ (∧ oc0 in0) (⊕ oc2 (∨ in1 ct0))) (∧ (∨ oc2 in0) (∧ ct0 (⊕ in1 in0))))

(¬ (∧ (¬ (∧ (∧ in1 in0) (¬ oc3))) (¬ (∧ (¬ (⊕ (∧ (∨ oc0 in1) (∧ in0 oc3)) (⊕

oc3 (¬ (∧ oc0 in0))))) (¬ ct1)))))

→ (∨ (∧ oc0 (∧ in0 (¬ ct1))) (⊕ oc3 (∨ (∧ ct1 oc3) (∧ in1 in0))))

(∧ (¬ (∧ (∧ (¬ pi021) (¬ pi008)) (∧ (¬ pi013) (¬ pi007)))) (¬ (⊕ (∧ (⊕ pi007

pi021) (⊕ pi008 pi013)) (∨ (∧ pi007 pi021) (∧ pi008 pi013)))))

→ (∧ (⊕ pi013 (⊕ pi007 (∨ pi008 pi021))) (⊕ (∨ pi013 pi021) (∨ pi008 pi007)))

(⊕ (∧ (⊕ (∧ (⊕ n313 n273) (⊕ n216 n192)) (∧ (¬ n313) (¬ n273))) (∧ (⊕ n313

n273) (⊕ n216 n192))) (¬ (∧ (⊕ n313 n273) (⊕ n216 n192))))

→ 1

(∧ (¬ (⊕ (∧ n207 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n153))) (⊕ (∧

n234 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n180)))

→ (⊕ (∧ (⊕ n200 n193) (∨ n153 (¬ n180))) (∨ (⊕ n200 n193) (∧ n234 (¬ n207))))

112

(∧ (¬ (⊕ (∧ n207 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n153))) (¬ (⊕ (∧

n234 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n180))))

→ (⊕ (¬ (∨ (⊕ n200 n193) (∨ n234 n207))) (∧ (⊕ n200 n193) (¬ (∨ n180 n153))))

(∧ (⊕ (∧ n222 (⊕ n200 (¬ n193))) (¬ (∧ (¬ (⊕ n200 (¬ n193))) n185))) (¬ (⊕ (∧

n214 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n189))))

→ (⊕ (¬ (∨ (⊕ n200 n193) (∨ n214 n222))) (∧ (⊕ n200 n193) (¬ (∨ n189 n185))))

(∧ (¬ (∧ (∧ (¬ (∧ (¬ oc3) (¬ oc0))) (¬ oc2)) (⊕ (∧ oc1 ct0) (∨ ct0 (¬ oc3)))))

(¬ (∧ (∧ (¬ ct0) oc0) (∧ (¬ oc3) (¬ oc1)))))

→ (∨ (⊕ oc0 (¬ (∧ oc3 (⊕ ct0 oc0)))) (⊕ oc2 (∧ (⊕ oc1 oc2) (⊕ ct0 oc2))))

(∧ (¬ (⊕ (∧ n203 (¬ (⊕ (∧ (¬ n199) (∨ n189 n195)) (∨ (∨ n195 n199) norm11))))

(⊕ (∧ (¬ n199) (∨ n189 n195)) (∨ (∨ n195 n199) norm11)))) n188)

→ (∧ (∧ n188 (¬ (∨ n203 n199))) (∨ n195 (⊕ n189 (¬ norm11))))

(∧ (¬ (⊕ (¬ (∧ (∧ (⊕ i4 i8) i7) (∨ i4 i9))) i8)) (¬ (∧ (∧ (¬ (∧ i9 i7)) i8) (¬ (∧

(¬ (∧ (¬ i9) (¬ i7))) (¬ i4))))))

→ (∧ (⊕ (∧ (⊕ i9 i7) i8) i4) (∨ (¬ i4) i7))

(∧ (¬ (⊕ (∧ n222 (⊕ n200 (¬ n193))) (¬ (∧ (¬ (⊕ n200 (¬ n193))) n185)))) (¬ (⊕

(∧ n214 (⊕ n200 (¬ n193))) (∧ (¬ (⊕ n200 (¬ n193))) n189))))

→ (⊕ (∧ (⊕ n200 n193) (∨ n189 (¬ n185))) (∨ (⊕ n200 n193) (∧ n222 (¬ n214))))

(¬ (∧ (¬ (∧ (¬ (∧ (¬ (∧ (¬ pi116) pi037)) (¬ (∧ pi058 (¬ pi026))))) (¬ (∧ (¬

pi116) pi058)))) (¬ (∧ (∧ pi094 (⊕ pi026 pi058)) (∨ pi116 (⊕ pi094 pi026))))))

→ (⊕ (∧ (⊕ pi026 pi037) (¬ (∨ pi116 pi058))) (∧ (⊕ pi026 pi058) (∨ pi094 (⊕

pi026 pi116))))

(∧ (∧ (¬ (⊕ (∧ (∨ op1 op0) (∧ op3 op4)) (⊕ op1 (¬ (∧ op3 op4))))) (¬ op2)) (¬

(⊕ (∧ op1 (¬ (∨ op4 op3))) (∧ (∨ op0 op3) (∧ op4 op1)))))

→ (∧ (¬ (∨ op2 (⊕ op1 (⊕ op4 op3)))) (⊕ (∧ op1 op3) (∧ op4 (¬ op0))))

(∧ (∧ (⊕ n364 (¬ n324)) (⊕ norm5 (¬ (∧ (¬ n364) (¬ n324))))) (⊕ (∧ (¬ (⊕

norm5 (¬ (∧ (¬ n364) (¬ n324))))) (∧ (¬ n364) (¬ n324))) (¬ (∧ (¬ n364) (¬

n324)))))

→ (∧ (¬ norm5) (∧ n324 n364))

113

(∧ (∧ (⊕ (⊕ norm4 norm9) norm14) (⊕ (∧ (⊕ norm4 norm9) norm14) (∧

norm4 norm9))) (⊕ (∧ (⊕ (∧ (⊕ norm4 norm9) norm14) (∧ norm4 norm9))

(∧ (⊕ norm4 norm9) norm14)) (¬ (∧ (⊕ norm4 norm9) norm14))))

→ (∧ (∧ norm14 norm4) norm9)

114

요약

본 논문에서는 탐색기반 기법을 통해 동형암호 회로를 최적화하는 새로운 방법론

을 제시한다. 완전동형암호 기술은 제3자에게 개인정보의 가공 및 보관을 위탁할

수 있게 해주는 차세대 기술이지만, 동형암호 프로그램의 매우 큰 계산비용이라

는 한계점 때문에 널리 쓰이지 못하고 있는 실정이다. 동형암호 상용화를 위해

다양한 방식으로 동형암호 프로그램 최적화가 이루어지고 있지만, 수동으로 동형

암호 프로그램의 성능을 최적화하는 것은 대체로 높은 수준의 전문성을 필요로

하고, 충분한 전문성을 갖추고 있다고 하더라도 매우 고된 과정이다. 또한 동형

암호 프로그램을 자동으로 최적화하는 동형 컴파일러 기술들은 대부분 수동으로

고안된 간단한 최적화 규칙에 의존하고 있기 때문에, 만족할만한 최적화 성능이

나오지않고있는실정이다.우리는프로그램합성기술을통해자동으로동형암호

회로의 최적화 규칙을 발굴하고 식 다시쓰기 및 동일식 모두탐색 기술을 이용해

이러한 규칙들을 효율적으로 적용하는 방법론을 제시한다. 우리의 방법론은 동형

암호 회로 성능을 결정짓는 가장 중요한 요인인 곱셈깊이를 줄이는 것에 집중한다.

먼저 프로그램 합성을 통해 학습대상 동형암호 프로그램의 작은 일부분과 똑같은

실행의미를 가지면서 곱셈깊이는 더 작은 새로운 프로그램을 찾아내고, 이 부분

프로그램 쌍을 일반화하여 하나의 최적화 규칙으로 학습한다. 학습한 최적화 규

칙은 식 다시쓰기 기술을 기반으로 한 E-매칭을 통해 입력으로 들어오는 최적화

대상 프로그램에 유연하게 적용되며, 이때 최적화의 안전성이 보장된다는 것이 증

명되어있다. 또한 우리의 최적화 방법론은 동일식 모두탐색 기술을 사용해 주어진

제한시간내에최적화규칙들을적용할수있는서로다른모든경우의수를탐색하

여보다최적에가까운결과를찾아낸다.널리쓰이는실제동형암호프로그램들에

대해 최적화를 적용해본 결과, 기존의 동형암호 최적화 방법론에 비해 최소 1.08

배에서 최대 3.17배까지 성능향상을 관측할 수 있었다.(기하평균 1.56배) 우리의

최적화 방법론은 기존의 수동 최적화 방법론을 통한 성능향상을 해치지 않으면서

추가로 적용가능하다는 강점이 있다.

115

주요어: 동형암호 회로, 프로그램 합성, 식 다시쓰기, 동일식 모두탐색, 최적화, 탐

색기반 기법

학번: 2015-22908

116

	Chapter 1 Introduction
	1.1 Fully Homomorphic Encryption
	1.2 Problem Definition
	1.2.1 Homomorphic Encryption
	1.2.2 Boolean Circuit and Multiplicative Depth
	1.2.3 Problem

	1.3 Search-based Optimization Method
	1.3.1 Program Synthesis
	1.3.2 Term Rewriting and Equality Saturation

	1.4 Contributions

	Chapter 2 Informal Description
	Chapter 3 Algorithm
	3.1 Preliminaries
	3.2 Learning Rewrite Rules
	3.2.1 The Overall Algorithm
	3.2.2 Region Selection
	3.2.3 Synthesizing Replacement
	3.2.4 Collecting and Simplifying Rewrite Rules

	3.3 Optimization without Backtracking
	3.3.1 Our Term Rewriting System
	3.3.2 Optimizations

	3.4 Optimization with Backtracking Based on Equality Saturation
	3.4.1 E-graph Structure
	3.4.2 Equality Saturation Process
	3.4.3 Tradeoff between Optimality and Cost

	Chapter 4 Evaluation
	4.1 Experimental Setup
	4.2 Effectiveness of Lobster
	4.3 Comparison to the Baseline
	4.4 Efficacy of Reusing Pre-Learned Rewrite Rules
	4.5 Efficacy of Equality Saturation
	4.6 Efficacy of Equational Rewriting
	4.7 Sensitivity to Changes in a TimeLimit
	4.8 Sensitivity to Changes in a TrainingSet

	Chapter 5 Related Work
	Chapter 6 Conclusion
	Appendices
	Chapter A Learned Rewrite Rules

	요약

<startpage>12
Chapter 1 Introduction 1
 1.1 Fully Homomorphic Encryption 1
 1.2 Problem Definition 4
 1.2.1 Homomorphic Encryption 5
 1.2.2 Boolean Circuit and Multiplicative Depth 7
 1.2.3 Problem 8
 1.3 Search-based Optimization Method 9
 1.3.1 Program Synthesis 9
 1.3.2 Term Rewriting and Equality Saturation 10
 1.4 Contributions 12
Chapter 2 Informal Description 14
Chapter 3 Algorithm 20
 3.1 Preliminaries 20
 3.2 Learning Rewrite Rules 23
 3.2.1 The Overall Algorithm 23
 3.2.2 Region Selection 25
 3.2.3 Synthesizing Replacement 26
 3.2.4 Collecting and Simplifying Rewrite Rules 26
 3.3 Optimization without Backtracking 27
 3.3.1 Our Term Rewriting System 28
 3.3.2 Optimizations 31
 3.4 Optimization with Backtracking Based on Equality Saturation 34
 3.4.1 E-graph Structure 34
 3.4.2 Equality Saturation Process 36
 3.4.3 Tradeoff between Optimality and Cost 38
Chapter 4 Evaluation 40
 4.1 Experimental Setup 41
 4.2 Effectiveness of Lobster 44
 4.3 Comparison to the Baseline 49
 4.4 Efficacy of Reusing Pre-Learned Rewrite Rules 50
 4.5 Efficacy of Equality Saturation 53
 4.6 Efficacy of Equational Rewriting 55
 4.7 Sensitivity to Changes in a TimeLimit 56
 4.8 Sensitivity to Changes in a TrainingSet 57
Chapter 5 Related Work 59
Chapter 6 Conclusion 64
Appendices 75
 Chapter A Learned Rewrite Rules 76
요약 115
</body>

