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Abstract

Optimizing Homomorphic Evaluation
Circuits via Search-based Method

Dongkwon Lee

School of Computer Science Engineering
Collage of Engineering

The Graduate School

Seoul National University

In this dissertation we present a new and general method for optimizing
homomorphic evaluation circuits. Although fully homomorphic encryption (FHE)

holds the promise of enabling safe and secure third party computation, building

FHE applications has been challenging due to their high computational costs.

Domain-specific optimizations require a great deal of expertise on the underlying
FHE schemes, and FHE compilers that aims to lower the hurdle, generate
outcomes that are typically sub-optimal as they rely on manually-developed
optimization rules. In this dissertation, based on the prior work of FHE compilers,
we propose a method for automatically learning and using optimization rules
for FHE circuits. Our method focuses on reducing the maximum multiplicative
depth, the decisive performance bottleneck, of FHE circuits by combining
program synthesis, term rewriting, and equality saturation. It first uses program
synthesis to learn equivalences of small circuits as rewrite rules from a set of
training circuits. Then, we perform term rewriting on the input circuit to obtain
a new circuit that has lower multiplicative depth. Our rewriting method uses
the equational matching with generalized version of the learned rules, and its

soundness property is formally proven. Our optimizations also try to explore



every possible alternative order of applying rewrite rules by time-bounded
exhaustive search technique called equality saturation. Experimental results
show that our method generates circuits that can be homomorphically evaluated
1.08x — 3.17x faster (with the geometric mean of 1.56x) than the state-of-the-art

method. Our method is also orthogonal to existing domain-specific optimizations.

Keywords: Homomorphic Evaluation Circuit, Program Synthesis, Term Rewrit-
ing, Equality Saturation, Optimization, Search-based Method
Student Number: 2015-22908
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Chapter 1

Introduction

1.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) [33] enables safe and secure third-party
computation with private data because it enables any computation on encrypted
data without the decryption key. Because the cloud can perform any computation
on encrypted data without learning about the data itself, the clients can safely

upload their encrypted data without trusting the software/hardware vendors of

the cloud.
2 Q-
= S2
= ==
. Q> ==
private data encrypted data
==

private encrypted data |
teey E— Homomorphic
t

User [ III I
encrypted L
\ I I I result encrypted result
decrypted result

3rd Party

Figure 1.1: Secure third-party computation with private data.



Figure 1.1 illustrates this scenario. User encrypts the private data using
private key first, and transfer it to the third-party. The third-party gets encrypted
result by performing homomorphic evaluation on encrypted data, and transfers
it to the user. User can decrypt the result using the same private key that
is used for encryption. In this scenario, the third-party can not identify any
private data during computation. Even if malicious hackers intercept the data
communication, they can not identify any private data since the user and the

third-party communicate with encrypted data only.

Problem

However, building FHE applications has been challenging at the moment because
of their high computational costs. Though building FHE applications itself does
not require much expertise thanks to off-the-shelf libraries of FHE schemes [35,
53, 34], when naively implemented, even with the best FHE schemes [10, 18],
FHE applications incur slowdown factors of orders of magnitudes compared to
their plaintext version. One key challenge is therefore reducing the costs of FHE

applications so that they become amenable to practical use.

Existing Approaches

There have been two approaches — domain-specific optimizations and optimizing
FHE compilers — for reducing the costs of FHE applications, but they are still
less than desirable.

Various domain-specific FHE optimization techniques have been successfully
developed, but developing such techniques requires a great deal of expertise on
the underlying FHE schemes. For example, optimizations such as rescaling [26],
data movement [44] and batching [46], and heuristics for encryption parameter
selection [28, 26] enable several orders of magnitude speedups in a wide range
of FHE applications (such as image recognition [26], statistical analysis [44],

sorting [17], bioinformatics [19], database [8], and static program analysis [43]).



Yet, such improvement requires a great deal of expertise in cryptography.
Lowering this hurdle of expertise is a goal of FHE compilers, which, equipped

with FHE optimization techniques, automatically transform conventional plain-

text programs into optimized FHE code. For example, RAMPARTS [4], CINGULATA [16]

and ALCHEMY [24] take programs written in a high-level language (e.g., Julia,
C++, or a custom DSL) and transform them into arithmetic representations
which can be evaluated using a backend FHE scheme.

However, though the users do not have to concern about low-level details of
underlying schemes when writing applications, they need to write FHE-friendly
algorithms [14, 17, 19, 44] to achieve the desired efficiency.

For example, using well-known sorting algorithms such as quick-sort and
merge-sort for homomorphic evaluation leads to a significant performance degra-
dation.

The two main reasons are data dependency and different cost model. First,
since we can utilize data dependency to evaluate if-condition statement in plain-
text algorithms, there is no additional cost required for evaluating an if-condition
statement whose execution result can be varied by input data. According to the
evaluation result of conditional expression, it is enough to evaluate only one
branch. (i.e. we can utilize data dependency to evaluate if-condition statement).
However, in homomorphic algorithms, it requires much higher cost to evaluate
the if-condition statement. In homomorphic algorithms, since the decryption
values of ciphertexts can not be known in the process of homomorphic evaluation
for the condition expression, the if-condition statement must be translated into
arithmetized form that includes both branches’ homomorphic evaluation re-
sult [17]. Furthermore, in the case of homomorphic algorithms, it is necessary to
consider a new decisive performance factor multiplicative depth (Section 1.2.2).

Therefore, the performance of the homomorphic algorithm should be mea-
sured with a new cost model that takes the number of comparison operations

and the multiplicative depth into account.



Since the existing efficient sorting algorithms such as quick-sort and merge-
sort are based on a large number of comparison operations, FHE-friendly sorting
algorithms [17] have been proposed that minimizes the number of comparison
operations and multiplicative depth.

Furthermore, state-of-the-art compilers rely on hand-written optimization
rules whose findings require expertise and are likely to remain sub-optimal.
Designing specialized optimization rules for homomorphic compilers requires a
great deal of expertise on its code translation process. Furthermore, due to the
distinct cost model, it is hard to utilize the traditional compiler optimization
methods. Additionally, homomorphic encryption programs are basically boolean
circuits which are challenging for humans to reason about at a high level. Thus,
it is extremely difficult to overcome these obstacles and design new optimization

rules.

1.2 Problem Definition

Our Approach

In this dissertation, in the context of optimizing FHE compilation, we propose a
novel and general method for optimizing FHE boolean circuits that outperforms
existing automatic FHE optimization techniques. Our method focuses on reduc-
ing the number of nested multiplications and achieves sizeable optimizations
even for existing domain-specific manually optimized results.

Our setting of the optimization problem is simple. Let ¢ be an arithmetic
code that can be evaluated using FHE schemes, which can be either generated
by a FHE compiler or manually written by a developer. Optimization is to
find a new circuit ¢ of lower computational cost while guaranteeing the same
semantics as the original.

Because the decisive performance bottleneck in homomorphic computation

is the nested depth of multiplications [4, 16, 17, 59], we set the computation



cost to be measured using the maximum multiplicative depth, which is simply
the maximum number of sequential multiplications required to perform the
computation. For example, the circuit ¢(x1, z2, x3, x4, 25) = ((x122)23)T4 + T5
has multiplicative depth 3. The lower the multiplicative depth is, the more
efficiently a circuit can be evaluated. For example, we can optimize ¢ by replacing
it with (x1, 29, 3,24, 25) = (r122)(x324) + x5 that has depth 2.

Although FHE scheme has been continuously improved from Gentry’s first
generation FHE scheme [33] to CKKS’ fourth generation FHE scheme [18],
still it is the same that the multiplicative depth is the decisive performance
bottleneck.

In the rest of this section, we formally define the problem of minimizing
the multiplicative depth of Boolean circuits. We first provide background on
homomorphic encryption (Section 1.2.1) and Boolean circuits (Section 1.2.2). In

Section 1.2.3, we formally state the problem.

1.2.1 Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme with binary plaintext space
Zs ={0,1} can be described by the interface:

Encpk 2 Lo —> Q Decsk Q- Zo

Addye i Q2 x Q= Q  Muly: QxQ—Q

where pk is a public key, sk is a secret key, € is a ciphertext space (e.g. large
cardinality set such as Zg, i.e., integers modulo an integer g). For all plaintexts

my, mg € Zg, the interface should satisfy the following algebraic properties:

Decgy, (Add,k (Encyr(ma), Encyr(me))) = my + ma,

Decsi, (Muly, (Encyr(m1), Encpr(m2))) = mi x mo.

Note that such a scheme is able to potentially evaluate all Boolean circuits as

addition and multiplication in Zsy correspond to XOR and AND operations.



As an instance, let us consider a simple symmetric version (where only a
secret key is used for both encryption and decryption) of the HE scheme [27]

based on approximate common divisor problems [37]:
e The secret key (sk) is a random integer p.

e For a plaintext m, Enc(m) outputs pq + 2r + m, where ¢ and r are
randomly chosen integers such that |r| < [p|. r is a noise for ensuring

semantic security [49].
e For a ciphertext ¢, Dec(¢) outputs ((¢ mod p) mod 2).
e For ciphertexts ¢; and ¢a, Add(¢y, é2) outputs ¢; + Co.
e For ciphertexts ¢; and ¢, Mul(¢p, ¢2) outputs ¢; X és.

For ciphertexts ¢; < Enc(m;) and ¢ < Enc(mg), we know each ¢; is of the
form ¢; = pgq; + 2r; + m; for some integer ¢; and noise ;. Hence Dec(¢;) =
((¢; mod p) mod 2) = my, if |2r; + m;| < p/2. Then, the following equations
hold:

ci+c = plgr+q2)+2(r1 +r2) +mp +mo
noiseadd
c1x 2 = p(pqige + )+ 2(2r1r2 + rima +rama) + mims
noisemuts

Based on these properties, we can show that
Dec(¢1 4 ¢2) = my + mg and Dec(é; x ¢2) = mq - ma2

if the absolute values of noiseagq and noisepye are less than p/2. Note that the

noise in the resulting ciphertext increases during homomorphic addition and

multiplication (twice and quadratically as much noise as before respectively).

If the noise becomes larger than p/2, the decryption result of the scheme will
be spoiled. As long as the noise is managed, the scheme is able to potentially

evaluate all Boolean circuits.



Because managing the noise growth is very expensive and the noise growth
induced by multiplication is much larger than that by addition, the performance
of homomorphic evaluation is often measured by the maximum multiplicative
depth of evaluated circuits. The maximum multiplicative depth influences pa-
rameters of a HE scheme. Minimizing the multiplicative depth results in not only
smaller ciphertexts but also less overall execution time. For example, to support
a large number of consecutive multiplications, the secret key p should also be
huge in the aforementioned scheme, and it increases overall computational costs.
Current FHE schemes are leveled (also called somewhat homomorphic) in that
for fixed encryption parameters they only support computation of a particular

depth.!

1.2.2 Boolean Circuit and Multiplicative Depth

Boolean Circuit
A Boolean circuit ¢ € C is inductively defined as follows:
c = Aec) | ®ee) |z ]0]1

where A and @ denote AND and XOR respectively, and = denotes an input
variable. The grammar is functionally complete because any Boolean functions
can be expressed using the grammar. For simplicity, we assume that circuits
have a single output value. We will often denote 1@ ¢ or ¢® 1 as —c. In addition,

we will use infix notation for @ and A.

Multiplicative Depth

Let £ : C — N be a function that computes the multiplicative depth of a circuit,
which is inductively defined as follows:

1+ max;eq 9y £(ci), c= A(c1,c2)
le) = max;e(y 2} £(¢i), c=®(c1,c2)

0, otherwise

1A leveled scheme may be turned into a fully homomorphic one by introducing a bootstrap-
ping operation [33], which is computationally heavy.

]
7 N =4



Critical Path

The input-to-output paths with the maximal number of AND gates are called
critical paths. A set of critical paths, denoted P(c), of a circuit ¢ is a set of
strings over the alphabet of positive integers, which is inductively defined as

follows:
elfc=zor0orl, Pc) def {€}, where € is the empty string.
o If ¢ = f(c1,c2) where f € {A, @}, then

Ple) = U f{ielpeP)
{(c;)=max1 < <2 £(c))
A set of critical positions CP(c) consists of all prefixes of strings in P(c).
Example 1.2.1. Consider a circuit c¢(v1,ve,vs,v4) defined as
Vi A (1D (va A (1D (v2 Awz)))).

The multiplicative depth €(c) of circuit ¢ is 3 because there are three consecutive
AND operations performed on ve and vs. The set P(c) of critical paths in c is

P(c) {2p|pePl @ (van (1@ (v2Av3))))}
{22p |p € P(ua A (1® (v2 Aws)))}

= {222p|pe P(1 & (v2 A v3))}

= {2222p|pe P(vaAv3)}

= {229221,22222}

The set CP(c) of critical positions is:
{€,2,22,222,2222 22221, 22222}.

Note that in order to decrease the overall multiplicative depth of a Boolean

circuit, all critical paths of the circuit must be rewritten. The depth of a critical

path can be reduced if we reduce the depth of a sub-circuit at a critical position.

1.2.3 Problem

Given a Boolean circuit ¢ € C whose input variables are x1,--- ,z,, we aim
to find a semantically equivalent circuit ¢’ € C whose multiplicative depth is
smaller than c¢. Formally, our goal is to find ¢’ such that

V. c(z1, - x,) <= (1, ,20),L(c) > ). (1.1)

In this dissertation, we propose to solve this problem by combining program

synthesis, term rewriting, and equality saturation.



1.3 Search-based Optimization Method

To achieve this critical optimization for homomorphic computation circuits
as much as possible, we combine three techniques: program synthesis, term

rewriting and equality saturation. Fig. 1.4 illustrates our approach.
1.3.1 Program Synthesis

Our method first automatically learns equivalences of small circuits from a set of
training circuits using the program synthesis technique and then uses the learned
equivalences to optimize unseen circuits. To learn such equivalences, we partition
each training circuit into multiple sub-parts and synthesize their equivalent
counterparts of smaller depth. Most of these machine-found optimization patterns
are what we can hardly imagine from human-devised optimization techniques.
(Section 4.2)

Program synthesis automatically synthesizes a program that satisfies a
given high-level specification. The standard formulation syntax-guided synthesis
(SyGuS [2]) employs a context-free grammar to describe the space of possible
programs (syntactic constraint) and a semantic specification in the form of a
logical formula (semantic constraint). A program synthesizer explores candidate
programs based on a given context-free-grammar until it finds a program that
meets the given semantic constraint. It employs various searching algorithms
such as top-down search [42], bottom-up search [3], and bi-directional search [41]
algorithm. It also utilize other techniques such as probabilistic models [42] and
abstract interpretation [62].

In this dissertation, we utilize a program synthesizer to optimize given
boolean circuit. We provide a context-free grammar that constrains an upper

bound of the multiplicative depth as a syntactic constraint, and the circuit

equivalence condition as a semantic constraint. Figure 1.2 illustrates this scenario.

Given these constraints, program synthesizer automatically finds a new circuit

that is equivalent to input circuit and has the smaller multiplicative depth,
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Figure 1.2: Optimizing synthesis for homomorphic evaluation circuit

which we can call it optimized version of given boolean circuit.

In practice, however, since the search space is enormous, applying above

optimizing synthesis technique to large circuits in the real world is infeasible.

Instead, we partition each training circuit into multiple sub-parts and synthesize
their equivalent counterparts of smaller depth. Each of the found equivalences of

small circuits can be utilized as rewrite rules for further optimization process.
1.3.2 Term Rewriting and Equality Saturation

Next, armored with these automatically learned equivalences as rewrite rules,
we perform term rewriting on the input circuit to obtain a new circuit that
has lower multiplicative depth. Term rewriting [6] has been the most popular
approach for compiler optimizations [7, 15, 51]. According to the learned rewrite

rules, we repeatedly rewrite sub-parts of the homomorphic evaluation circuit for

equals that have lower multiplicative depths until we decrease the overall depth.

Rather than syntactic matching, we generalize what have been learned from
training circuits by giving flexibility to the rewriting procedure: our method is
based on a limited version of the equational matching that takes commutativity
into account rather than just the syntactic matching. Our rewriting method is
proven to be sound and terminating.

Moreover, by the equality saturation technique [56, 65] that has been widely
used in program optimization systems [67, 63, 47], we explore every possible
alternative order of applying rewrite rules (i.e. we obtain backtracking effect).

First, given an input program and rewrite rules, we efficiently express all

1] O 1]
10 ~ = L
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equivalent programs as a form of program grammar using a data structure called
E-graph [65] (saturation process).

E-graph structure represents a large set of expressions (programs). It is
defined as a triple of a set of enodes, a set of eclasses, and a set of edges. Each
enode contains a non-terminal operator (ex. 4, /, x) or terminal value (ex. 1, 2,
a). Eclass is a set of enodes. Edge connects an enode to an eclass. Each enode

represents a set of expressions that can be generated recursively by following

its children eclasses (detailed generation algorithm is available in Section 3.4).

Each eclass represents a set of all expressions that can be generated by enodes
inside it.

In saturation process, by repeatedly applying the learned rewrite rules, we
expand the E-graph so that it represents all equivalent programs. During this
process, expanded E-graph always maintain the invariance that all expressions
generated by enodes in the same eclass must be semantically equivalent. Detailed
expansion algorithm is available in Section 3.4.2.

We also obtain backtracking effect during the saturation process, since each
expansion step always add information to E-graph, whereas the traditional
term rewriting destructs the original form of rewritten expression. This allows
the saturated E-graph to represent every possible result that can be varied by
alternative order of applying rewrite rules.

Note that E-graph also can be interpreted as a program grammar, since the
process that each eclass/enode generates a set of expressions are the same with
how context-free-grammar generates a set of expressions from a nonterminal
symbol/production rule. Each of the eclasses corresponds to a nonterminal
symbol and each of enodes in that eclass corresponds to a production rule for
the nonterminal symbol. For example, Figure 1.3 shows the semantic equivalence
between E-graph and program grammar. Enode 1 and 2 can generate (a x 2)/2
and (2/2) x a, which also can be generated by first and second production rule

of Sp respectively.
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Figure 1.3: Semantic equivalence between E-graph and context-free-grammar.

In this context, saturation process is a process of constructing a program
grammar that can generate all programs equivalent to the input program.

Next, from the saturated E-graph, we extract the optimal expression accord-
ing to a given cost function (extraction process). If the cost function is local
(the cost of a node is computable only with the costs of its children nodes), it is
well known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [65].

In this dissertation, given an input boolean circuit and the learned rewrite
rules, we start with the initial E-graph that can generate the input circuit only.
Then we expand the E-graph by applying the learned rewrite rules (saturation
process). After saturation, since the multiplicative depth of the circuit is a
local cost function, circuits with the lowest multiplicative depth can be easily

extracted.
1.4 Contributions

We implement our method atop CINGULATA [22], a widely-used FHE compiler
and evaluate our method on 25 FHE applications from diverse domains (statis-
tical analysis, sorting, medical diagnosis, low-level algorithms, etc). We learn
rewrite rules from a set of CINGULATA-generated Boolean circuits and apply the

rules into other circuits.? On average, our method generates Boolean circuits

2 Although the dissertation targets Boolean circuits, the method can also be directly applied
to arithmetic circuits.
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Figure 1.4: Overview of the system.

that can be homomorphically evaluated 1.08x — 3.17x faster (with the geometric

mean of 1.56x) than the state-of-the-art method [15].

e A novel general method for optimizing homomorphic evaluation circuits: we

first learn rewrite rules from a set of training Boolean circuits using program

synthesis and then perform term-rewriting with the equational matching

for generalized versions of the learned rewrite rules on a given new circuit.

The soundness property of this rewriting system are formally proven. We

combine equality saturation [56] with the existing term rewriting system

(Section 3.4) to obtain a backtracking effect. This saturation-based term

rewriting system outperforms our previous approach [40].

e Confirming the method’s effectiveness in a realistic setting : the method

outperforms existing automatic FHE optimization techniques, and even

shows sizeable optimizations for domain-specific manually optimized re-

sults.
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Chapter 2

Informal Description

In this section, we illustrate our approach with examples. Our approach consists

of offline and online phases (Figure 1.4).
Offline Learning via Program Synthesis

In the offline phase, we use program synthesis to learn a set of rewrite rules
from training circuits. Suppose we have the circuit ¢ in Example 1.2.1 in the
training set:

¢ = vy A (=(vg A (=(v2 A vs)))).

The depth of this circuit is 3 and we would like to find a semantically-equivalent
circuit ¢’ with a smaller depth (i.e. £(¢) < 2). To do so, we formulate the task as
an instance of the syntax-guided synthesis (SyGuS) problem [?]. The formulation
comprises a syntactic specification, in the form of a context-free grammar that
constrains the space of possible programs, and a semantic specification, in the

form of a logical formula that defines a correctness condition. The syntactic
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specification for ¢’ is the grammar:

S — d3

d3 — daNdy|ds®ds|dy
dy — diNdi|de®da|dy
di — doNdo|di®dy|do
do — 0|1l|ci]eales]ea]es

where S denotes the start symbol, and each non-terminal symbol d; denotes
circuits of multiplicative depth < 4. The semantic specification for ¢’ is given as

a logical formula:
/
Yoy, v, v3, V4. ¢(V1,V2,03,v4) <= ¢ (v1,V2,V3,04)

which enforces ¢’ to be semantically equivalent to c. Given this SyGuS formula-
tion, an off-the-shelf program synthesizer (e.g. EUSOLVER [3], DUET [41]) is

able to find the following circuit ¢’

o ((m(v3 Av2)) A (v1 Avg)) @ vy

which has multiplicative depth 2.

Once we obtain a pair (¢, c’) of original and optimized circuits, we simplify
¢ and ¢ by replacing sub-circuits that are equivalent modulo commutativity
with a new fresh variable. In this example, —(va A v3) in ¢ and —(vs A ve) in ¢
are equivalent modulo commutativity and therefore we replace them by a new
variable z, which simplifies ¢ and ¢ into v1 A (=(vg Ax)) and (z A (v1 Avg)) B vy,
respectively. Note that the simplified circuits are still semantically equivalent.
We replace sub-circuits with a variable after we check for equivalence using a
SAT solver.

The purpose of this simplification step is to generalize the knowledge and
maximize the possibility of applying the rewrite rule for optimization in the online
phase. However, care is needed not to over-generalize and destroy the syntactic

structures of the circuits. For example, if we aim to replace all semantically

15 A 8- 1—--“ =1

L



equivalent sub-circuits with a new fresh variable, we would obtain z <— =z,
which is useless.

In summary, the offline learning phase produces the following rewrite rule:

vi A (m(va Az)) = (A (v1 Avg)) Doy (2.1)
Online Optimization via Term Rewriting

In the online phase, we use the learned rewrite rule to optimize unseen circuits.
Suppose we want to optimize the following circuit whose multiplicative depth is
4:

((vs Awg) A (=((v7 Avs) A (=((vs Awg) A (vg Awr))))))- (2.2)
To optimize the circuit, we first compare it with the left-hand side of the learned
rewrite rule (i.e. v1 A (=(v4 A x))), and find a substitution o that makes the two

circuits equivalent. For example, our matching algorithm in Section 3 is able to

find the following substitution:

v1 = U5 A\ Vg
o= Vg — v7 Avg

x = (=(vg Awvg) A (vg Awr))

Note that o(v; A (—(vs A x))) is equivalent to the circuit in (2.2). Next, we
apply the substitution to the right-hand side of the rewrite rule, obtaining the

following optimized circuit:
(—((vg Awg) A (vg Avr)) A ((vs Awg) A (v7 Avg))) @ (vs A wg).

whose multiplicative depth is 3. In our approach, the resulting circuit is guaran-

teed to be semantically equivalent to the original one in (2.2).
Scaling via Divide-and-Conquer

As described from the above, we obtain rewrite rules from a small circuit and

apply it into a new small circuit. In practice, however, real circuits are much

]
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larger, and the aforementioned method using the SyGuS formulation is not
directly applicable. Even state-of-the-art SyGuS tools can only handle small
circuits because the search space for synthesis grows exponentially with the
maximum depth and number of input variables.

To address this scalability issue, we apply our approach in a divide-and-
conquer manner; we divide a circuit into pieces, find a replacement for each
piece, and finally compose them to form a final circuit. For example, consider
the circuit ¢, of depth 5, which is depicted in Figure 2.1(a) (the critical path is
highlighted in red):

def

Cex = (((@AD)ANe)Nd)Ne) A f. (2.3)

We can divide the circuit into two pieces r1 and r9 through which a critical path

passes. By introducing two auxiliary variables, c., can be rewritten as ro where

ry (rine)Nf, def ((anb) Ac)Nd.

We separately reduce the depths of 1 and 79 in order. We first find a replacement
for r1. We can replace 1 of depth 3 by the following:

) def (aAND) A (cAd)

which has depth 2 and the same semantics as r1. Next, we find a replacement
for ro. We treat r1 in the definition of ro as a special variable that has its own
depth 2. Considering the depth of rq, we replace 9 of depth 4 by

ry E A (enf)

that has depth 3 and the same semantics as ro. Combining 7 and r produces
the final circuit of depth 3. We use this divide-and-conquer strategy in both of

our offline learning and online rewriting phases.
Backtracking via Equality Saturation

In rewriting input circuits, we may miss the global optimality because there

can be multiple targets to optimize and multiple rewrite rules to apply to each

1] O 1]
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Figure 2.1: (a) The circuit ¢, of depth 5. (b) A circuit that has depth 3 and
the same semantics as cey.

target. In this situation, optimization results can be varied depending on which
target is rewritten first, or which rewrite rule is applied first.
For example, suppose that we want to optimize circuit ¢o = ((z1 A 22) A

(x2 ® x3)) A x3 using the following learned rewrite rules.

rule (1) ((vp Av2) Avz) Avg — ((v1 Av2) Avg) A ((v2 B va) D vs)
rule (2) ((vi Av2) Awvz) Avg —  (v1 Av2) A (v3 Avy)

rule (3) : (v®vy) — 0

rule (4) (v AO0) — 0

We can apply both rule (1) and rule (2) using substitution o = {v;
x1,v2 > T, U3 — (x2 D x3),v4 — x3}. If we apply rule (1) first, we can optimize
co = c1 = ((z1 A x2) Axsg) A ((z2 @ x3) B (x2 B x3)). In this case, we can
subsequently apply rule (3) and rule (4) and optimize ¢y —* 0. Otherwise, we
can optimize ¢y — ca = (z1 A x2) A ((z2 ® x3) A x3). In this case, we can no
longer apply the rewrite rules and miss the opportunity of further optimizing
Co-

To address this rewrite order issue, we use the equality saturation tech-
nique [56] that obtains a fully backtracking effect within a given time limit. By
the technique we try to explore every possible rewriting sequences (e.g. we try
to explore both ¢y —* 0 and ¢y — ¢2).

Equality saturation consists of two processes: saturation process and ex-

traction process. First, in the saturation process, we express all possible result

s 2] -2-t)) 8} 3
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circuits as a form of program grammar using a data structure named E-graph [65]
(e.g. we construct program grammar that can generate circuits cg, c1, ¢ and
0). In the extraction process, we extract an optimal circuit that has the lowest
multiplicative depth from a saturated E-graph (e.g. we extract circuit 0 which
has the lowest multiplicative depth). Details of this equality saturation process

are in Section. 3.4.
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Chapter 3

Algorithm

We first review (Section 3.1) key definitions and results borrowed from Baader
and Nipkow [6] that will be used in the rest of the dissertation. Then we present
the offline learning phase (Section 3.2), online optimization phase (Section 3.3)
based on term rewriting and backtracking system(Section 3.4) via equality

saturation.

3.1 Preliminaries

Term

A signature X is a set of function symbols, where each f € X is associated
with a non-negative integer n, the arity of f (denoted arity(f)). For n > 0,
we denote the set of all n-ary elements ¥ by ¥, Function symbols of 0-arity
are called constants. Let X be a set of variables. The set T% x of all ¥-terms
over X is inductively defined; X C Tx, x and Vn > 0, f € »(n), t1,--- ,tn €
Ty x. f(t1,--- ,tn) € Tx x. We will denote Var(s) for s € T, x as a set of
variables in term s. Note the set C of circuits consists of terms over ¥ =

{N,®,0,1}.

-1
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Position

The set of positions of term s is a set Pos(s) of strings over the alphabet of

positive integers, which is inductively defined as follows:

o If s=x2¢€ X, Pos(s) def {€e}.

o If s= f(s1,-++,8yn), then Pos(s) def {eyUU {ip | p € Pos(s;)}.

The position € is called the root position of term s. The size |s| of term s
is the cardinality of Pos(s). For p € Pos(s), the subterm of s at position p,
denoted by s |p, is defined by induction on the length of p: (i) s |ed§f s and (ii)
f(s1,-++ . 8n) \iqdéf si |q- For p € Pos(s), we denote by s[p < t] the term that is

obtained from s by replacing the subterm at position p by ¢. Formally,

o sle 1] ¢

o f(si, - sn)lig & 1] = fls1, -, silg ¢ ], sn).

Substitution

A T, x-substitution is a function X — 7% x. The set of all Tx; x-substitutions is
denoted by Sub(Tx. x). Any T% x-substitution o can be extended to a mapping
6 : T, x — Ty x as follows: for z € X, 6(z) - o(x) and for any non-variable
term s = f(s1, -+ ,8n), 6(8) et f(G(s1), -+ ,0(sn)). With a slight of abuse of

notation, we denote & as just o.
Term Rewriting

A Y-identity (or simply identity) is a pair (s,t) € Tx x x Ty x. Identities will
be written as s &~ ¢t. A term rewrite rule is an identity ([, r), written [ — r, such
that [ € X and Var(r) C Var(l). A term rewriting system (X, E/) consists of
a set X of function symbols and a set E of term rewrite rules over T x. We

will often identify such a system with its rule set E, leaving 3 implicit. The
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rewrite relation —g on 7%, x induced by a term rewriting system F is defined

as follows:

s—»pt <= dl—-rekEpecPos(s),oec Sub(lyx).

s lp=0(l),t = slp < o(r)]

Example 3.1.1. Let E={xA(yAz)= (xAy)Az,l \z=z, s Ny~yAzx}.
Then, 1N (aNl) =g (1ANa)ANl —=gpaAl =g lAa—ga.

Equational Theory

Let <% denote the reflexive-transitive-symmetric closure of — . The identity
s ~ t is a semantic consequence of E (denoted E |= s ~ t) iff s <3}, t. And the
relation ~p % {(s,t) € Ts, x xT% x | E |= s =t} is called the equational theory
induced by F.

Example 3.1.2. Let C = {z ANy yANz,o Dy =~ yDx}. Then, x A (y ®
z) =c (Yy® 2z) ANx —¢ (2D y) Az. The theory of commutativity for circuits is

e {(5,t) eCXC|ClEs~t} (eg 2 A(yo2) ~c (@ y) Az).

Example 3.1.3. Boolean ring theory is ~p'= {(s,t) e CxC | R E s~ t}

where

rPy~rydx, TNy~ yNz,
@y zrzd(y®2),
(ZAy)NzrzA(yAz),

R = r@x~0, TAT =T,
0z ~rc, 0Nz =0,

cA(y®z) = (xAy)®(zA2),

INz~a )

Boolean ring theory formalizes digital circuits. For any two circuits ¢y, ca,

c1 <5 c2 means they are semantically equivalent [6].

Example 3.1.4. The original circuit ¢ and its optimized version ¢’ in Section 2
are semantically equivalent because

c=uv1 A (1& (va A (=(v2 Av3))))

—r (V1 A1) & (v1 A (Vg A (2(v2 Avs)))) cAN(y@z)=(xAy)® (zA2)

—)va@(Ul/\(v4/\(—\(vg/\03)))) cANy~=yAhx, 1 Nx=zx
—r v1 B ((v1 Avg) A (=(v3 Av2))) (xAyY)ANz=zA(yAz)
—r (11 Avg) A (=(v3 Av2))) @ vy Thyxydr
=R ((m(vs Av2)) A (v Avy)) o =¢ TAYy~yAzT
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E-Matching

A substitution o is a E-matcher of two terms s and ¢ if o(s) =g t. Given two
terms s and ¢, a F-matching algorithm computes {o € Sub(Tx x) | o(s) =g t}.

Example 3.1.5. Given two terms s = x Ay and t = (aAb) A(bAa), C-matching
algorithm returns two substitutions which are {x — a A b,y — b A a} and
{z—bAa,y— aANb}.

3.2 Learning Rewrite Rules

In this section, we describe how to learn rewrite rules using the divide-and-
conquer approach described in Section 2. The method is inspired by the prior
work [29], which uses syntax-guided synthesis to automatically transform a

circuit into an equivalent and provably secure one.
3.2.1 The Overall Algorithm

The pseudocode is shown in Algo. 1. Here, ¢ denotes an original training circuit,
0 denotes a threshold value for termination condition, n is an user-provided
predefined limit for region selection. The algorithm generates an optimized circuit
c, and returns a set E of rewrite rules collected in the process of optimization.

Our algorithm repeatedly identifies a circuit region and synthesizes a re-
placement. To identify a circuit region, we randomly choose a critical path
and traverse the path from input-to-output. If the left and right children at a
position have different depths, we include both gates in fan-in and recurse on
the child of deeper depth. We repeat this process until the region size reaches a
predefined limit. Once we successfully synthesize a replacement, we can decrease
the overall depth if a unique critical path passes through the region. Otherwise,
we decrease the number of parallel critical paths by one.

Our method first initializes ¢’ to be the original circuit ¢, E to be the empty
set and the worklist w to be a set of critical positions, respectively (lines 1-3).
The loop (lines 4 — 13) repeats the process of selecting a region and synthesizing
a replacement. First, a critical position pos is chosen in the input-to-output

3 hy 1

i L, 1_..|i
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Algorithm 1 Synthesis-based Rule Learning

Input: c: input boolean circuit

Input: 6: threshold for termination condition
Input: n: predefined size limit for chosen regions
Output: E: a set of rewrite rules

1: ¢ ¢
2: B« 0
3: w <+ CP()
4: whilew;«é@and%<9do
5: remove a pos from w
6: (r,o) < GetRegion(c’ |pos,n)
7 r’ < Synthesize(r, {(r) — 1,0)
8: if v # 1| then
9: E <+ E U {Normalize(r — ')}
10: c <+ d[pos « o(r')]
11: w + CP()
12: end if
13: end while
14: return E

order (line 5). Given a subcircuit at pos, the GetRegion procedure is invoked to
obtain a circuit region r such that |r| <n (line 6). The GetRegion procedure
substitutes some subterms of a given circuit with fresh variables and returns
the result along with the substitution. Section 3.2.2 will detail more on this
procedure. Next, we invoke a SyGuS solver to synthesize a replacement for r
(line 7). If a solution is found (line 8), we obtain a term rewrite rule r — /. We
generalize the rule by invoking the Normalize procedure (Section 3.2.4), and
add it into the set E (line 9). The old region r is replaced with the new region
r’ (line 10). Because the replacement step may change the overall structure of
the current circuit, we recompute critical positions and update the worklist (line

11). This process is repeated as long as there is room for improvement, and the

ratio between the sizes of ¢’ and ¢ does not exceed the threshold value 6 (line 4).

The ratio between the circuit sizes is considered because the depth reduction
may not be beneficial if a new circuit ¢’ additionally performs a huge number
of AND/XOR operations. Although the multiplicative depth is the dominating

factor for homomorphic evaluation performance, the number of operations can

=1
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also have a non-trivial impact if it is enormous. The threshold value varies
depending on the underlying FHE schemes. In our evaluation, we set 8 to be
3. The algorithm eventually returns the set E of rewrite rules (line 14), which

include all the transformations occurred while optimizing ¢ into ¢’.
3.2.2 Region Selection

The GetRegion procedure for the region selection is shown in Algo. 2. The region
selection method is a heuristic based on our observation that replacing long and
narrow regions covering critical paths often leads to significant optimization
effects. If the given region size n is 1 or the given circuit region is a variable of
a constant (i.e., |¢| = 1) (line 2), we just represent the given circuit region as a
fresh variable and return it along with the corresponding substitution (line 3).
Otherwise (i.e., |¢| > 1), we first let ¢; and ¢z be the left and right child of ¢,
resp. (lines 5 — 6). If the depth of ¢; (c2, resp.) is deeper than the other (line 7
(line 10, resp.)), we keep extending the region in ¢; (cz2, resp.) (line 8 (line 11,

resp.)), and substitute ca (c1, resp.) with a fresh variable (line 9 (line 12, resp.)).

Algorithm 2 GetRegion

Input: c: input boolean circuit region
Input: n: predefined size limit for regions
Output: r: a circuit region
Output: o: a substitution from variables to circuits
x <—a new fresh variable
if n=1or|c|] =1 then

return (z, {z — c})
end if
Cl1 < C |1
Cy < C |2
if (c1) > ¢(c2) then

(r', o) < GetRegion(ci,n — 1)

return (c[l < 1,2 < z],0 U{x > c2})
else

(r',o) < GetRegion(cz,n — 1)

return {(c[l + 2,2+ r'],c U{x — c1})
: end if

== e
W e Q

Example 3.2.1. Consider the circuit ., in (2.3). GetRegion (cez, 5) returns
((rine)A fo{ri— ((aAb)ANc) Nd}) (see Fig. 2.1(a)).
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3.2.3 Synthesizing Replacement

Given a circuit region r, an upper bound n of desired multiplicative depths, and
a substitution o, the function Synthesize returns a new semantically equivalent
region ' of depth < n.

For 1 <i < n, let 2* denote one of the variables such that /(o (z*)) = i. We

can formulate a SyGuS instance as follows. The syntactic specification for 7/ is

S — d,
dp, — dn—l/\dn—l‘dn@dn|dn—1‘xn

dp—1 — dp—2 ANdp—2 | dp—1 @ dp—1 | dp—2 | gt

dy — 0|1]a°
where S denotes the start symbol and each d; represents circuits of multiplicative
depth < i. The semantics specification for 7’ enforces the equivalence of r and
/

T

Vol oo ™ (20, 2" = (20 Y.

When Synthesize fails to find a solution, it returns L.

Example 3.2.2. After selecting the region ro as in Fxample 3.2.1, we find a
replacement for ro using the following formulation, hoping to reduce the depth
from 5 to 4. The syntactic specification for rh is

S — d4

dy — d3/\d3’d4@d4’d3

ds — dQ/\dQ’dg@d3|d2|’r‘1
dy — dl/\dlldg@dgldl

dy — do/\do’dl@d1|d0

dy — 0|1]elf

and the semantics specification is the semantic equivalence with ro. Note that
r1 4s producible from ds because its depth is 3. Given this problem, a SyGuS
solver (e.g. EUSOLVER [3], DUET [41]) finds the solution ri A (e A f) which
has depth 4.

3.2.4 Collecting and Simplifying Rewrite Rules
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When we obtain a rewrite rule [ — r, we simplify it by invoking the Normalize
procedure (line 9 in Algo. 1). We normalize each rewrite rule | — r € E as

follows:
o Let S = {(l ’szr ’Pr) ’pl € POS(l),pT € POS(T),Z ‘Plzc r ’Pr}'

e For each (I |p,,7 |p,) € S, we transform | — r into I’ — 7’ where I’ = o (1),
= o(r), o = AVl |p;= x,Vr |p,= x} st Ly Uy, T p=e 7 lp,s
and z is a fresh variable. We transform the rule only if I’ is semantically

equivalent to 7.

We consider a term rewrite rule that cannot be further simplified by this

procedure normalized modulo commutativity.

Example 3.2.3. Suppose we want to normalize a rewrite rule:

((aANbD)AN(bBAa))A(anb)— (bAa).
——

l r

Note that | 11=1 |a= (a AN b) =¢c r |1=1|12= (b A a). If we replace the subterms
U1, 1|2, U2, and r |1 with a fresh variable x, we obtain normalized rewrite
rule (x A\ x) AN x — x, which is semantics preserving.

Example 3.2.4. Suppose we want to normalize a rewrite rule:

(anb)ANa— (bANa)AD.

l r

Note that I |1= (a ANb) =¢ 7 |1= (b Aa). If we replace the subterms 1 |1 and r |
with a fresh variable x, we would obtain x N a — x A b, which is undesirably
semantics-changing. In this case, we do not replace the subterms.

3.3 Optimization without Backtracking

Next, we describe our algorithm that uses the set E of (normalized) learned

rewrite rules to optimize unseen circuits.

1 3
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3.3.1 Our Term Rewriting System

Our term rewriting system is based on the following relation — g ¢ induced by E

(learned rewrite rules) and ¢ (the function computing the multiplicative depth).

s—=pyt < I —reEpelP(s),oe Sub(C).
s [pre (1), £(o(l)) > £(a(r)),t = s[p < o(r)].

Because our primary goal is to reduce the overall multiplicative depth, the above

rewrite relation differs from the ordinary relation in Section 3.1 in three aspects.

First, we rewrite critical paths by considering only critical positions CP(s)
of a given circuit s. Rewriting non-critical paths are not of our interest.

Second, we admit a rewrite step only if it decreases the depth of a critical
path. This condition is reflected in £(a (1)) > (o (r)).

Lastly, we perform rewriting modulo commutativity to provide flexibility
to the rewriting procedure. This is for maximizing the possibility of applying
the learned rewrite rules for optimization. Instead of syntactically matching
a left-hand side of a rule with a subterm as in the ordinary rewrite relation,
each rewrite step requires C-matching, which is reflected in s |,~¢ (). Here, a
complication arises that there may be multiple C-matchers. In such a case, we
choose the one that can reduce depth.

Example 3.3.1. Recall the rewrite rule (2.1) in Section 2

v A (m(vaANz)) = (2 A (v1 Avg)) Doy .

l r

and the target circuit (2.2) of depth 4

(vs Avg) A (=((v7 Awvg) A (—((vg Avg) A (vg A vr))))).

There are two substitutions that make | match with the target circuit: o1 = {v1 —
v5 A Vg, Vg — U7 Avg, & > (—(vs Avg) A (vg Avr))} and oo = {vy — v5 A vg, vg >
(=(vg Awg) A (vg Awr)), = — vr Avs}. Applying the substitutions into r gives us
two candidates for the replacement, which are

o1(r) = (=((vs Avg) A (vg Avr)) A ((vs Aws) A (v7 Avs))) & (vs A vs),
oa(r) = ((vr Aws) A ((vs Avg) A (=(vs Awg) A (vg Awr)))) @ (vs A ve).

Note that o1(r) has depth 3 whereas o2(r) has depth 4. Because only o1 can
reduce the depth, we choose o1 .
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The following theorem ensures that our term rewriting system is semantics-

preserving and terminating.
Theorem 3.3.2 (Soundness). Ve, € C. c gy = crg .

Theorem 3.3.3 (Termination). — g/ is a terminating relation.

Before describing the proofs of Theorem 3.3.2 and 3.3.3, we begin with

preliminary concepts from Baader and Nipkow [6].

Definition 3.3.4. Let = be a binary relation on Tx, x.

~—

1. The relation = is closed under substitutions iff s =t implies o(s) = o(t
for all s,t € Ts; x and substitutions o.

2. The relation = is compatible with X-context iff s = s’ implies t[p + s] =
tlp < &'] for all t € Tx, x and positions p € Pos(t).

Lemma 3.3.5. ~p is closed under substitutions and compatible with 3 -context.

Proof. By Theorem 3.1.12 in Baader and Nipkow [6], for any set E of ¥-identities,
the relation <+7 is closed under substitutions. By Lemma 3.1.11 in Baader and
Nipkow [6], the relation <+7}, is also compatible with X-context. Setting £ =R
finishes the proof. O

Lemma 3.3.6. For all s,t € Tx, x,
srRet = s~rt.

Proof. Straightforward from the fact that C C R. O

Now we are ready to prove Theorem 3.3.2.

Proof. By the definition of s —g ¢t and E, there exist (I =g r) € E,p €
Pos(s), 0. such that s |,~c o(l),t = s[p < o(r)].

s |prr o(l) (By Lemma 3.3.6 and s |[,~c o(l))

s[p s |p] =r slp < o(1)] (By Lemma 3.3.5)

o(l) =g o(r) (By Lemma 3.3.5 and [ =~z )

slp <= o(l)] =r slp - o(r)] (By Lemma 3.3.5)
Therefore, s ~g t. O

Next, before describing the proof of termination, we define the following

strict orders between terms.
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Definition 3.3.7. For all s,t € Ty, x,

st == (6(s) > 1)V (L(s) = £(t) A|CP(s)] > |CP(L)]).

Recall that by replacing an old circuit region compassing a critical path with
a new circuit region of smaller depth, we can either i) decrease the overall depth
if the critical path is unique, or ii) decrease the number of parallel critical paths,
which is reflected on the definition of >.

The following lemma tells us that the order > is compatible with X-context.

Lemma 3.3.8. Suppose we have s,t1,t2 € T x such that s [,=t; and ((t1) >
U(t2). Then,
Vp € CP(s). s[p < t1] = s[p < ta].

Proof. o Case p=e: s[p < ti1] =t1 > ta = s[p + ta].

e Casep=7p'.1:

Suppose s |y= A(t1, s2) which makes s |,= t;. By the fact p = p/.1 and
the definition of CP, ¢(t1) > £(s2). There are two cases.

Case (1) £(t1) > l(s2):

UN(t1,s2)) =1+ £(t1)

O(A(ta, s2)) = 1+ max(€(t2), £(s2)) (By Def. of ¢)
L(ty) > £(t2) (By the premise)
0(ty) > £(s2) (By the case assumption)

S A(sp = ta]) > L(s[p < t2])
Case (2) £(t1) = £(s2):

[(/\(tl, SQ)) = 1 + 6(52)

U(A(t2,52)) = 1+ £(s2) (£(s2) = £(t1) > L(t2))
CP(A(t1, 52))| = ICP(t1) & CP(s2)] x 2 (By Def. of CP)
‘CP(/\(t2782))| = |C7D(82)| X 2

CP(t1) #0

ICP (A1, 52))| > [CP(A(t2, 52))

Note that CP(t1) # () because otherwise, £(t1) = 0 > £(t2) > 0 which leads
to a contradiction.

Therefore, ¢(s[p < t1]) = £(s[p < t2]) A |CP(s[p < t1])| > |[CP(s[p « t2])|.

The other case where s |,;= ®(t1,s2) can be proven similarly.

e Case p = p’.2: Similar to the above case.
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Now we are ready to prove Theorem 3.3.3.

Proof. Straightforward from Lemma 3.3.8 and the fact that > is a strict order.
O

Intuitively, termination is enforced because every rewrite step decreases the
depth of a critical path. If the rewritten critical path is unique, we reduce the
overall multiplicative depth of the circuit. Otherwise, we reduce the number of
parallel critical paths. Because every circuit has at least one critical path of
non-negative depth, the rewriting procedure eventually terminates.

Using the rewrite relation — g 4, given a circuit ¢, we perform term rewriting
on ¢ to obtain an optimized circuit ¢ such that ¢ g, ¢/. At each rewrite
step, we randomly choose a critical path and traverse the path to find a target
region to be replaced. The traversal order is randomly chosen between the
input-to-output and output-to-input orders. Similarly to Algo. 1, we stop the
rewriting procedure when there are so many additional AND/XOR gates in ¢/

that the depth reduction may not be beneficial.
3.3.2 Optimizations

In practice, we apply the following optimization techniques to the rewriting

procedure.
Prioritizing Large Rewrite Rules

In the case where multiple rewrite rules are applicable, we choose the largest
rule. The size of a rule [ — r is simply measured by |I|. This heuristic is based
on our observation that large rules are applicable less often than small rules,

but they expedite transformation by modifying a wider area.
Term Graph Rewriting

So far, we have presented our method as if circuits are represented as functional
expressions for ease of presentation. In practice, we cannot directly implement

this kind of conventional term rewriting based on strings or trees because of an
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efficiency issue. For example, term rewrite rules such as (2.1) containing some
variable more often on its right-hand side than on its left-hand side can increase
the size of a term by a non-constant amount. This problem can be overcome by
creating several pointers to a subterm instead of copying it.

For efficiency, we conduct term graph rewriting [50] on circuits. Term graph
rewriting is a model for computing with graphs representing functional expres-
sions. Graphs allow sharing common subterms, which improves the efficiency of
conventional term rewriting in space and time. Thus, we represent circuits as
graphs and perform rewriting on the graphs by translating term rewrite rules
into suitable graph transformation rules. Term graph rewriting is sound with
respect to term rewriting in that every graph transformation step corresponds to
a sequence of applications of term rewrite rules. The interested reader is referred
to Plump [50] for more details about the soundness proof and the translation

method.
Bounded C-matching

From a performance perspective, the main weakness of our rewriting system
is that each rewrite step requires C-matching, which is known to be NP-
complete [39]. We limit the search space of C-matching algorithm by limiting

the number of applications of commutativity rules (see below for details).

E-Matching Algorithm Solving a matching problem for two terms s and ¢
is represented by S = {s %?E t}. A conventional F-matching algorithm derives a

set of equations in solved form:

{z1=pti, - ,zn = t,}

where all x;’s are pairwise distinct.

Matching System The symbol | or a pair P;.S where

e P is a set of matching problems,

]
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{s="s}uP;S
pP;S [Trivial]

(f(s1,82) = f(t1,t2)} U P;S
{s1="t1,50 =" 2} UP; S [Decomposition]

{f(s1,82) =" f(t1,t2)} UP; S
{s2 =" t1,50 =" t2} UP; S [C-Decomposition]

{f(s1,82) = gJ_(tl,tg)} UP;S fig

[Symbol Clash]

{f(s1,8) ="z} UP;S
L [Symbol-Variable Clash]

{z="t,}UP{z =t}US
1L

h#ts [Merging Clash]

{z =" t}UP;S

=t' ¢S where t £t
Pi{z=t}uUS * 7 5 where t #

[Variable Elimination]

Table 3.1: Rules for C-matching

e S is a set of equations in matched form.
e | represents failure (i.e., no matchers).

A matcher (or a solution) of a system P;.S returns a matcher that solves each
of the matching equations in P and S.
Table. 3.1 depicts an example of the matching rules when £ = C.

The following algorithm matchs s to t.

1. Create an initial system is {s =" ¢};0.

\V)

. Apply successively the matching rules.
3. If the final system is §); S, return S.
4. If the final system is L, then fail.

C-Matching Algorithm

1 3
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Example 3.3.9. The followings show the process of finding C-matchers of
f(z, f(a,z)) and f(g(a), f(a,g(a))) where f and g are function symbols, and

the others are variables.

{f( ) (f( ) (b a))} 0 = Decomposition
{z = c f(a,b) y =g £(b,0)};0 =>v.Elim
{y =G fb,a)} {z =c f(a,b)} =>v.gim
0;{z =¢ f(a,b),y =c f(b,a)} ==V.Elim

The other way is

{f(fL‘, y) i?g f(f(a7 b)a fgba a))}; 0 = C—Decomposition
{:L' iC’ f(b’ a); Yy iC’ f(a> b)},@ =V.Elim
{y =¢ f(a,D)}; {z =¢ f(b,0)} =veeim
0;{z =c f(b,a),y =c f(a,b)} =V Eim

Note that C-Decomposition and Decomposition transform the same system in
different ways. There may exist multiple matchers, and C-matching algorithm is
NP-complete [39].

To avoid the exponential complexity of C-matching algorithm, we bound the
number of applications of the C-Decomposition rule. This lead to incompleteness,
but does not harm the correctness of the matching algorithm.

3.4 Optimization with Backtracking Based on Equal-
ity Saturation

3.4.1 E-graph Structure

E-graph structure is defined as a triple of a set of enodes, a set of eclasses, and
a set of edges. Each enode contains a boolean operator (A, @) or boolean value
(0, 1, ). Eclass is a set of enodes. Edge connects an enode to an eclass.

The meaning of the E-graph is as follows. Each enode represents a set of
all expressions that can be generated in the following manner, and each eclass
represents a set of all expressions that can be generated by enodes inside it. All
E-graphs must have invariant that all expressions generated by enodes in the
same eclass must be semantically equivalent. If an enode is a boolean value,
it generates the constant expression itself. If an enode is a boolean operator,
it generates all expressions that can be made by choosing each child boolean

expression among the expressions that the corresponding child eclass represents.
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Figure 3.1: Simple example of E-graph. EachAbox means enode, and dotted box
means eclass.

Figure 3.1 shows the concept of an E-graph. Let us illustrate how to generate
various expressions from eclass or enode, and show that the above invariant of E-
graph holds. Let EC; and EN; be the sets of expressions that can be generated by
eclass ec; and enode 7 respectively. Since enode 1-3 respectively contain a boolean
value x1—x3, EC; = EN; = {x;}(1 < i < 3). Since enode 4 contains a boolean
operator A and has two children eclasses ec; and ecs, it can generate x1 A xo2 by
choosing 1 € EC1 and x9 € ECs as two children expressions. Similarly, we get
ECs = EN5 = {(x1 Nz2) Nx3}, ECe = ENg = {(x2 ® x3) ® (22 ® x3)}, and
EN7 = {((z1 ANz2) ANxs) A ((x2 @ x3) & (22 @ x3))}. In the same way, we get
ENg = {((z1Az2) A (2@ x3)) Axs}. Since ecpo0r contains enodes 7 and 8, we get
ECoot = ENyUENg = {((z1 ANx2) Aws) A ((z2 © 23) © (22 D 23)), (21 A22) A
(o ® x3)) A xs}. Recall that two boolean expressions in EC)y0 are semantically
equivalent.

Note that E-graph also can be interpreted as a program grammar. Each
of the eclasses corresponds to a nonterminal symbol and each of enodes in
that eclass corresponds to a production rule for the nonterminal symbol. Every
E-graph corresponds to a particular context-free grammar.

In this context, equality saturation is a process of constructing a program
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grammar that can generate all boolean circuits equivalent to the input circuit.
3.4.2 Equality Saturation Process

Equality saturation consists of two processes: saturation process and extraction
process. First, in the saturation process, we continually expand E-graph by
finding all circuits which are semantically equivalent to an initial circuit. We
call the E-graph saturated if we can not find any other equivalent circuits. In
the extraction process, we extract a circuit that has the lowest multiplicative
depth from a saturated E-graph.

Figure 3.2 and Figure 3.3 illustrates the saturation process. Same as Section 2,
we start with a term graph of the input boolean circuit ((z1 Ax2) A(x2@®x3)) Axs

and following rewrite rules.

((1}1 VAN ’1)2) A 7)3) A ((Ul A 1)2) A U4) A ((1)2 D U4) D U3)
(’1)1 A ’Ug) A (?}3 A ’1)4)
(v1 @ v1)

(7}1 A\ 0)

Ll

(1)

rule (2) : ((vi Awva) Avg) Awy
3)
(4)

Then we explore optimized circuits that can be generated based on the rewrite
rules by an iteration of three steps: ematch, add, and merge. Figure 3.2 illustrates
the first iteration. In the ematch step, we find all enodes that can be rewritten
by a certain rule. An enode is said rewritable by a certain rule if it can generate
a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 A x2) A (22 @ x3)) A 23 that can be rewritten by rule (1) and rule
(2), we get two rewritten circuits as a result of ematch step for the root enode
(Figure 3.2.(a)). In the add step, we add all rewritten circuits to the E-graph in a
recursive manner from bottom to top (Figure 3.2.(b)). Newly added enodes are
colored gray in Figure 3.2 and Figure 3.3. Note that each added rewritten circuit

corresponds to an enode. In the merge step, for each pair of rewritable enode

36 Sk



root : ((x; A xp)

O ®x3) Axs

ematch(roor)

rewritable by rule (1) €1 (04 AX) Axs) A (5 @ x3) D (x, D x3))

(@) .
.rewritable by rule (2) | 6 (5 AX) A (% @ x5) Ax3)
cy :A (X1 Axp) A ((xy @ x3) A X3))
X © x3) Axs
(b) .
@ X3) & (xz @3%) HAx
(©)

Figure 3.2: Change of E-graph during a single iteration. Dotted box means
eclass. (a) ematch result for root enode. (b) add subcircuit ¢; and ¢y to E-graph.
(c) merge root node and result enodes (c¢; and c2) of add step.

and rewritten circuit, we merge the rewritable enode and newly added enode
(that corresponds to the rewritten circuit) as the same eclass (Figure 3.2.(c)). In
the second and third iteration, we expand E-graph by applying rewrite rule (3)
and rule (4) respectively (Figure 3.3.(c), Figure 3.3.(d)).! As the root enode is
merged with the enode that contains 0, we can figure out that the initial circuit
is semantically equivalent to 0. More details of these three steps are described
in Willsey et al. [65].

We repeat the above three steps until no further changes are made (i.e.
E-graph is saturated). Since it is not guaranteed that an E-graph will end up

saturating, we give an appropriate amount of time limit (12 hours).

More enodes are rewritable by rule (2), but we ruled out them in Figure 3.3 for clarity.
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a
initial E-graph. (b) after 1 iteration. (c) after 2 iterations. (d) saturated E—gra[sh.)

In the extraction process, we extract the least-cost circuit from the saturated
E-graph for the given cost model. If the cost function is local (the cost of
a node is computable only with the costs of its children nodes), it is known
that the least-cost circuit for that cost model can be easily extracted from the
E-graph [65]. In our case, since the multiplicative depth of the circuit is a local

function, circuits with the lowest multiplication depth can be easily extracted.
3.4.3 Tradeoff between Optimality and Cost

In our single-path (i.e. without backtracking) term rewriting system defined in
Section 3.3, we can only explore limited optimization space due to termination
property and efficiency. To ensure termination, we selectively rewrite a target
circuit only when its multiplicative depth is reduced. For efficiency, we apply
rewrite rules only to a target circuit lying on critical paths. For these reasons,
we have to give up the guarantee to find a globally optimal circuit for efficient

and terminating rewriting procedures.
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In a saturation-based rewriting system, the possibility of finding the globally
optimal circuit is enlarged. As we efficiently compress all possible result circuits
as a form of program grammar, we can explore an expansive space within a
practical time budget.

Although equality saturation is a time-consuming method in general, we
can successfully introduce it for our term rewriting system since most of the

homomorphic evaluation circuits have a relatively small scale.
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Chapter 4

Evaluation

We implemented our method as a tool named LOBSTER'. This section evaluates

our LOBSTER system to answer the following questions:

Q1:

Q2:

Q3:
Q4:
Q5:
Q6:
QT:

How effective is LOBSTER for optimizing FHE applications from various

domains?

How does LOBSTER compare with existing general-purpose FHE optimiza-

tion techniques?

What is the benefit of reusing pre-learned rewrite rules?

What is the benefit of using equality saturation technique?

What is the benefit of the rule normalization and equational matching?
How long does LOBSTER take to obtain optimized circuits?

How sensitive is LOBSTER to changes in the training set for learning rewrite

rules?

!Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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All of our experiments were conducted on Linux machines with Intel Xeon

2.6GHz CPUs and 256G of memory.

4.1 Experimental Setup

Implementation

LOBSTER comprises three pieces: (i) an offline rule learner, (ii) an online circuit
optimizer, and (iii) a homomorphic circuit evaluator. LOBSTER is written in
OCaml and RUST, and consists of about 3K lines of code.

The offline rule learner collects rewrite rules for online optimization. For
each of the benchmarks, we performed the offline learning algorithm (Algo. 1)
with a timeout of 1 week before online optimization. We use EUSOLVER [3]? and
DUET [41]3, which are state-of-the-art open-source search-based synthesizers,
for the offline learning task. We use a timeout of one hour for synthesizing each
rewrite rule.

The online circuit optimizer transforms Boolean circuits generated by CINGULATA [16],
an open-source FHE compiler, into depth-optimized ones. CINGULATA first di-
rectly translates a given FHE application written in C++ into a Boolean circuit
representation, and then heuristically minimizes the circuit area by removing
redundancy using the ABC tool [12], which has been widely used for hardware
synthesis. Then, our optimizer performs the saturation-based rewriting procedure
on the resulting circuit. We used EGG [65] library to implement saturation-
based rewriting system. We used learned rewrite rules and commutativity as
equality rules, and did not use any eclass analysis.

Circuits optimized by the online optimizer are evaluated by our homomorphic

circuit evaluator built using HEIib [35].# When homomorphically evaluating

In our previous work [40], we chose EUSOLVER among the general-purpose synthesizers
that participated in the 2019 SyGuS competition [55] since the tool performs best for our
optimization tasks.

3We could learn new rewrite rules using DUET that outperforms EUSOLVER for our
optimization tasks in most cases.

*We could not use the homomorphic circuit evaluator provided by CINGULATA because it
crashed for some of our evaluation benchmarks, which are fairly sizeable circuits.
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circuits, we set the security parameter to 128 which is usually considered large
enough. It means a ciphertext can be broken in the worst case time proportional

to 2128,
Benchmarks

Our benchmarks comprise 25 FHE applications written using the CINGULATA
APIs shown in Table 4.1. We had initially collected 64 benchmarks from the

following four sources.

e CINGULATA benchmarks — 9 FHE-friendly algorithms from diverse domains

(medical diagnosis, stream cipher, search, sort) [22].

e Sorting benchmarks — 4 privacy-preserving sorting algorithms (merge,
insertion, bubble, and odd-even) [17]. All the sorting algorithms can take

up to 6 encrypted 8-bit integers as input.

e Hacker’s Delight benchmarks — 26 homomorphic bitwise operations adapted
from Hacker’s Delight [64]°, a collection of bit-twiddling hacks. We include
these benchmarks because they can be potentially used as building blocks
for efficient FHE applications that perform computations over fixed-width

integers.

e EPFL benchmarks — 25 circuits from EPFL combinational benchmark
suite [1]. The circuits are intendedly suboptimal to test the ability of

circuit optimization tools.

Among these 64 candidate benchmarks, we ruled out 39 benchmarks that are
out of reach for homomorphic evaluation even with the state-of-the-art FHE
scheme [35], or which are likely depth-optimal based on empirical evidence.

Among the excluded 39 benchmarks, 18 benchmarks have the number of

AND/XORs greater than 10,000, or the multiplicative depth is larger than 100.

522 benchmarks used for program synthesis [38] + 4 excerpted from Hacker’s Delight [64]
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Table 4.1: Characteristics of benchmarks from {medical [14], sorting [17], bit-
vector evaluation [38, 64], circuit [1]} algorithm. xDepth denotes the multi-
plicative depth. ##AND and Size give the number of AND operations and the
circuit size, respectively.

Name Description xDepth #AND Size
cardio medical diagnostic algorithm 10 109 318
dsort FHE-friendly direct sort 9 708 1464
msort merge sort 45 810 1525
isort insertion sort 45 810 1525
bsort bubble sort 45 810 1525
osort oddeven sort 25 702 1343
hd-01 isolate the rightmost 1-bit 6 87 118
hd-02 absolute value 6 76 229
hd-03 floor of average of two integers (a clever impl.) 5 27 64
hd-04 floor of average of two integers (a naive impl.) 10 75 159
hd-05 max of two integers 7 121 295
hd-06 min of two integers 7 121 295
hd-07 turn off the rightmost contiguous string of 1-bits 5 17 32
hd-08 determine if an integer is a power of 2 6 18 37
hd-09 round up to the next highest power of 2 14 134 236
hd-10 find first 0-byte 6 35 73
hd-11 the longest length of contiguous string of 1-bits 18 391 652
hd-12 number of leading 0-bits 16 116 232
bar barrel shifter 12 3141 5710
cavlc coding-cavlc 16 655 1219
ctrl ALU control unit 8 107 180
dec decoder 3 304 312
i2c i2¢ controller 15 1157 1987
int2float int to float converter 15 213 386
router lookahead XY router 19 170 277

Our homomorphic circuit evaluator runs out of memory for these circuits. The
rest 21 benchmarks are such that (i) baseline optimizer [15] fails to reduce the
multiplicative depth, and (ii) we could not mine any rules from their circuit
representations even after 7 days of running the offline learner, because this
means that even the state-of-the-art synthesizer with practically unlimited time

cannot find any improvement.
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Baseline

We compare LOBSTER to Carpov et al. [15], which also aims at minimizing the
multiplicative depth of circuits for homomorphic evaluation. The work is also
based on term rewriting, but only with two hand-written rewrite rules. The first
rule is based on AND associativity: (xAy)Az — xA(yAz). In a given circuit ¢, a
substitution ¢ such that o((x Ay) A z) is syntactically matched with a sub-circuit
of ¢ is found. The matched part o((z A y) A 2) is replaced with o(xz A (y A 2)) if
l(y) < £(x) and £(z) < £(x). This rewrite rule, when applied into a critical path,
reduces the depth by one from ¢(o(x)) + 2 to £(o(z)) + 1. The second rewrite
rule is based on XOR distributivity: (z @ y) Az = (z A 2) @ (y A z). This rule
does not affect the depth, but it can make the first rule applicable by clearing
XOR operators away. The two rewrite rules repeatedly rewrite critical paths
until a heuristic termination condition is satisfied. As the tool is not publicly

available, we reimplemented their algorithm.®

4.2 Effectiveness of Lobster
Optimization Effect

We evaluate LOBSTER on the benchmarks and compare it with Carpov et al. [15].
Both of the tools are provided circuits initially generated by CINGULATA. We
aim to determine whether LOBSTER can learn rewrite rules from training circuits
and effectively generalize them for optimizing other unseen circuits. To this
end, we conduct leave-one-out cross validation; for each benchmark, we use
rewrite rules learned from the other remaining 24 benchmarks. Both of the tools
are given the timeout limit of 12 hours for the optimization tasks; in case of
exceeding the limit, we use the best intermediate results computed so far.

We measure LOBSTER’s reduction ratios of the multiplicative depth and

speedups in overall homomorphic evaluation time against the initial CINGULATA-

5We use the “random” priority function because it slightly outperforms the “non-random”
heuristics according to the results in Carpov et al. [15].
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Figure 4.1: Main results comparing the optimization performance of LOBSTER
and Carpov et al. [15] — Speedups in overall homomorphic evaluation time (left)
and depth reduction ratios (right).

20000

15000

()
£
£
=
S 10000
©
32
S ®
w
5000
t TN :
®
¥
®
0
0 5 10 15 20 25 30 35 40 45

Multiplicative depth
Figure 4.2: Correlation plot of multiplicative depth and homomorphic evaluation
time

generated circuits, and compared them with Carpov et al. [15]. The results are
summarized in Fig. 4.1. More detailed information can be found in Table 4.2.
LOBSTER is able to optimize 22 out of 25 benchmarks within the timeout limit.
LOBSTER achieves 1.08x — 5.43x speedups with the geometric mean of 2.05x.
The number of AND gates increases up to 1.9x more with the geometric mean of
1.31x. The depth reduction ratios range from 12.5% to 53.3% with the geometric
mean of 25.1%.

We next study the results in detail. Most notably, LOBSTER achieves 2.62x
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Table 4.2: Detailed main results (comparison to Carpov etl al. [15]). The timeout
for optimization is set to 12 hours. #AND 1 shows the ratio between the
number of AND gates of the optimized circuit and the original one. Eval.
Time shows homomorphic evaluation time (where ‘-’ means that the depth and
evaluation time is the same as the original).

Original Carpov et al. LOBSTER
Name  xDepth Eval Time | XDepth #ANDT Eval. Time | xDepth #ANDT Eval. Time
cardio 10 17m 14s 9 x1.07 10m 08s 8 x1.12 6m 34s
dsort 9 10m 52s 8 x1.08 8m 29s 7 x1.33 6m 47s
msort 45  5h 20m 59s 41 x1.02  5h 00m 06s 36 x1.88  2h 40m 23s
isort 45  5h 20m 16s - - - 36 x1.88  2h 38m 53s
bsort 45  5h 21m 46s 41 x1.02  5h 06m 09s 36 x1.88  2h 32m 38s
osort 25 2h 16m 58s - - - 20 x1.91 43m 12s
hdo1 6 4m 36s - - - - - -
hdo2 6 4m 50s - - - - - -
hdo3 5 1m 08s - - - 4 x1.44 1m 03s
hdo4 10 9m 06s 9 x1.00 7m 36s 7 x1.31 2m 25s
hdos 7 6m 08s - - - 6 x1.52 4m 16s
hdoé6 7 6m 14s - - - 6 x1.54 4m 12s
hdo7 5 1m 02s - - - 3 x1.12 24s
hdo8 6 2m 18s 5 x1.00 1m 03s 5 x1.00 57s
hdo9 14 13m 03s 12 x1.10 9m 34s 11 x1.37 8m 48s
hd10 6 4m 24s 5 x1.03 2m 07s 5 x1.00 1m 20s
hd11 18 33m 31s 17 x1.00 28m 30s 14 x1.08 17m 42s
hd12 16 22m 31s 15 x1.00 18m 01s 14 x1.12 12m 26s
bar 12 56m 55s - - - 10 x0.89 37m 47s
cavlc 16 26m 35s 10 x1.20 15m 01s 9 x1.18 9m 37s
ctrl 8 3m 06s 6 x1.02 2m 44s 4 x1.19 1m 14s
dec 3 38s - - - - - -
i2c 15 51m 00s 9 x1.08 21m 38s 8 x1.21 15m 45s
int2float 15 15m 23s 9 x1.13 6m 30s 7 x1.21 2m 50s
router 19 37m 26s 10 x1.31 12m 34s 10 x1.38 11m 39s

and 1.60x speedups for the two CINGULATA benchmarks cardio and dsort, respec-
tively. Recall that they are already carefully hand-tuned to be depth optimized.
This result shows that our method provides significant performance gains that
are complementary to those achieved by domain-specific optimizations. The
four sorting benchmarks also observe significant performance improvements. For
the four sorting benchmarks, we used single-path term rewriting of previous
LOBSTER [40], since EGG library failed to perform saturation task for circuits
that has multiplicative depth over 25. LOBSTER reduces the depth by 20% for
each of them. The osort benchmark shows a 3.17x speedup, and the other three
benchmarks show 2.0x speedups. As of the Hacker’s Delight benchmarks, 10
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out of 12 observe improvements. The speedups for hd-04, hd-07, hd-08 and hd-10
are remarkable (3.8x, 2.6x, 2.4x and 3.3x, respectively). For the other bench-
marks, we observe 1.08x — 1.89x speedups. However, both of the two optimizers
fail to optimize the other 2 benchmarks, which are relatively simple. Based
on the fact that these small and tricky algorithms are designed to efficiently
perform computations on plaintexts, we suspect most of these benchmarks to
be depth-optimal.

As of the EPFL benchmarks, 6 out of 7 observe improvements. Both op-
timizers fail to optimize dec, which is relatively simple. For bar, we observe
1.51x speedup. For the other benchmarks (cavlc, ctrl, i2c, int2float and router),
LOBSTER achieves remarkable speedups (2.5x — 5.4x).

The number of AND gates increases 1.31x more on average. For the 4
sorting benchmarks ({m,i,b,0}sort), we observe nearly 2x increases. For the other
benchmarks, we observe up to 1.5x increases. These increases are acceptable
considering depth reduction ratio and speedup. The increases in the number of
XOR gates is similar, with the geometric mean of 1.2x.

In terms of time spent for the optimization, LOBSTER successfully optimizes
circuits better than Carpov et al. [15] within given time limit (12 hours).

Note that Fig. 4.2 shows that the depth reduction ratios are generally
proportional to performance improvements (but not exactly proportional since
the number of AND operations also influences the performance). This shows
that multiplicative depth reduction is a good proxy for speedup, and thus we
only measured depth reduction ratio rather than speedup in sub-experiments

(Section 4.4 — Section 4.8).
Learning Capability

We investigate the learned rewrite rules. From all the benchmarks, our rule
learner mines 502 rewrite rules. The rule sizes (the size of a rule | — r is

measured by |I|) range from 4 to 38. The average and median sizes are 14 and
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13, respectively. Fig. 4.3 shows how often these rules were applied to reduce the
multiplicative depth during our single-path term rewriting. Relatively small-sized
rules (size 5 — 15) are most frequently used, but also the large-sized rules are

sometimes applied and optimize wide areas of the input boolean circuits.
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Figure 4.3: distribution of rule sizes and how often they were used during

optimization

The machine-found optimization patterns are surprisingly aggressive. For
example, the following intricate rules enable to reduce the depth of a rewritten

path by 1 when applied once (we denote 1 @ ¢ as —¢).
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(v1 A (v2 A ((v3 B (V4 Aws)) B (v6 Avs))))
= (v ®vg) Nvs) Dws) A (v2a Avy))
(=((v1 A ((v2 @ 03)))  (v2 B v3))) A va)
= (((mv2) @ v3) A ((-v1) Avg))

—~

((=((((v1 © v2) Av) Ava) Avs)) S va))
= ((((v2 ®v1) Avg) A (v3 Awg)) @ v9)
((=((v1 & (v2 Aw3)) & (va Aws))) Aws)
— (((v2 @ vg) A (v5 Aw3)) @ ((—v1) Aws))
(1 @ v2) @oz) A (((1 B v2) Avs) & (v1 Avg)))A
(((((v1 ® v2) Avg) @ (v1 Ava)) A((v1 B v2) Avz))D
(=((v1 @ v2) Av3))))
— ((v3 Av1) Ave)

Next, we investigate how long it takes to learn rewrite rules. The offline
learning algorithm (Algo. 1) is time consuming. The timeout limit for the offline
learning is set to 168 hours (i.e., 1 week), and we use intermediate results (rules
collected so far) when the budget expires. On average, the offline learning phase
for each benchmark takes 125 hours. For dsort, hd01, hd02, hd03, hd10, ctrl and
dec, the learning takes 1 — 46 hours. For router, it takes 129 hours. The other
benchmarks takes 168 hours (i.e., the learner is forced to stop when the time

budget expires).

Answer to Q1: LOBSTER can optimize 22 out of 25 realistic FHE applications.

(x2.26 speedup, 25.1% depth reduction).

4.3 Comparison to the Baseline

Fig. 4.1 shows that LOBSTER significantly outperforms the existing state-of-

the-art homomorphic circuit optimizer [15] in terms of both depth reduction
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ratio and homomorphic evaluation time. Only 15 out of 25 benchmarks can
be optimized by Carpov et al. [15], whereas LOBSTER is able to optimize 22.
Compared to Carpov et al. [15], LOBSTER’s speedup is increased by up to 3.17x
with the geometric mean of 1.56x. The depth reduction ratio is increased by up
to 40.0% with the geometric mean of 13.8%.

We observe that Carpov et al. [15] needs relatively small amount of optimiza-
tion time than LOBSTER. It took 1 second — 25 minutes to optimize benchmarks
with the average of 2 minutes, whereas LOBSTER took 12 hours to optimize
each benchmark. This is because Carpov et al. [15] uses single-path rewriting
with two simple rewrite rules, whereas LOBSTER uses saturation-based rewriting
with total 502 rewrite rules.

We empirically observe that Carpov et al. [15] often falls into the basin of
local minima because its two rewrite rules can modify only a small area at a
time. On the contrary, LOBSTER often applies large rewrite rules and escapes

local optima.

Answer to Q2: LOBSTER outperforms existing FHE optimizer.

(x1.56 speedup, 13.8% depth reduction ratio)

4.4 Efficacy of Reusing Pre-Learned Rewrite Rules

We observe that reusing pre-learned rewrite rules significantly enhanced LOBSTER’s
scalability and exploration power.

To investigate the benefit for scalability, we compare LOBSTER to a simple
method that uses the offline rule learner as an on-the-fly optimizing synthesizer.
Since it does not use any pre-learned rewrite rules, it can not use saturation-
based rewriting. While performing single-path rewriting, it finds an optimized
version of sub-circuits using a program synthesizer rather than matching it with
pre-learned rewrite rules. The timeout limit for optimization is again set to 12

hours, and we use the best intermediate results when the budget expires.
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Figure 4.4: Comparison between on-the-fly synthesis and equality saturation
with learned rules

Fig. 4.4 summarizes the results. The synthesis-based optimizer can opti-
mize only 14 benchmarks within the timeout limit. Furthermore, in all the 14
benchmarks, the depth reduction ratio is less than that of LOBSTER that reuses
pre-learned rewrite rules (geometric mean of 8.2% vs 25.1%). That is mainly due
to its limited scalability; if the synthesis-based optimizer is given 7 days, it can
achieve optimization effects similar to LOBSTER’s. Such enormous optimization
costs are mainly due to the inability to prove unrealizability (i.e., no solution) of
attempts of optimizing already depth-optimal circuit regions. In such cases, the
synthesizer wastes the timeout limit of 1 hour. On the contrary, LOBSTER can
avoid such situations by giving up cases beyond the reach of previously learned
rules.

To investigate the benefit for exploration power, we compare LOBSTER to a
simple version that only uses boolean ring theory (Example. 3.1.3) as rewrite
rules. Fig. 4.5 summarizes the results. The simple version of LOBSTER can

optimize only 6 benchmarks within the timeout limit. Furthermore, in all the 6
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Figure 4.5: Impact of changing rewrite rules

benchmarks, the depth reduction ratio is less than that of LOBSTER that uses
pre-learned aggressive rewrite rules. This shows that LOBSTER can efficiently
escape local optima by applying pre-learned rewrite rules even though they can
be induced by boolean ring theory.

We also investigate that adding new rewrite rules can enhance exploration
power. We compare LOBSTER to a simple version that only uses 188 rewrite
rules learned by EUSOLVER rather than the whole 502 rewrite rules learned by
EUSOLVER and DUET. Fig. 4.5 summarizes the results. In five benchmarks,
the simple version’s depth reduction ratio is less than that of LOBSTER that
uses all rewrite rules. In the exceptional case of hd 01, the simple version can
reduce multiplicative depth by 1, whereas LOBSTER can not optimize it within
time limit. This is because full version of LOBSTER needs much more time to
perform each iteration step for equality saturation, since it uses nearly 3 times
more rewrite rules than the simple version. If the LOBSTER is given sufficient

amount of time limit, it can also optimize hd 01.
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Table 4.3: Detailed comparison results of single-path rewriting and saturation-
based rewriting. The timeout for optimization is set to 12 hours. ##AND 1
shows the ratio between the number of AND gates of the optimized circuit and
the original one. Eval. Time shows homomorphic evaluation time (where ‘-’
means that the evaluation time is the same as the original).

Original Single-path Saturation-based
Name XDepth Eval. Time | XDepth #AND T Eval. Time | XDepth #AND T Eval. Time
cardio 10 17m 14s 8 x1.06 7m 02s 8 x1.12 6m 34s
dsort 9 10m 52s 8 x1.12 8m 08s 7 x1.33 6m 47s
msort 45 5h 20m 59s 36 x1.88  2h 40m 23s - - -
isort 45  5h 20m 16s 36 x1.88  2h 38m 53s - - -
bsort 45  5h 21m 46s 36 x1.88  2h 32m 38s - - -
osort 25 2h 16m 58s 20 x1.91 43m 12s - - -
hdo1 6 4m 36s - - - - - -
hdo02 6 4m 50s - - - - - -
hdo3 5 1m 08s - - - 4 x1.44 1m 03s
hdo4 10 9m 06s 8 x1.04 3m 20s 7 x1.31 2m 25s
hdos 7 6m 08s - - - 6 x1.52 4m 16s
hdoé 7 6m 14s - - - 6 x1.54 4m 12s
hdo7 5 1m 02s 3 x0.76 24s 3 x1.12 24s
hdog 6 2m 18s 5 x1.00 1m 00s 5 x1.00 57s
hdo9 14 13m 03s 10 x1.32 7m 56s 11 x1.37 8m 48s
hd10 6 4m 24s 5 x1.03 1m 25s 5 x1.00 1m 20s
hd11 18 33m 31s 15 x1.00 21m 40s 14 x1.08 17m 42s
hd12 16 22m 31s 15 x1.00 17m 04s 14 x1.12 12m 26s
bar 12 56m 55s 11 x0.96 48m 19s 10 x0.89 37m 47s
cavlc 16 26m 35s 10 x1.02 13m 06s 9 x1.18 9m 37s
ctrl 8 3m 06s 5 x1.12 1m 18s 4 x1.19 1m 14s
dec 3 38s - - - - - -
i2c 15 51m 00s 8 x1.05 15m 59s 8 x1.21 15m 45s
int2float 15 15m 23s 8 x1.10 4m 09s 7 x1.21 2m 50s
router 19 37m 26s 10 x1.12 12m 31s 10 x1.38 11m 39s

Answer to Q3: Reusing learned rules enhances LOBSTER’s
scalability and exploration power.

(1 week vs 12 hour opt. time, 2.6% vs 23.7% vs 25.1% depth reduction)

4.5 Efficacy of Equality Saturation

We now evaluate the effectiveness of saturation-based rewriting, which we used
for online optimization. We compare LOBSTER to a previous version [40] that
uses single-path rewriting only.

We measure both version of the LOBSTER’s reduction ratios of the multiplica-
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Figure 4.6: Efficacy of Equality Saturation

tive depth and speedups in overall homomorphic evaluation time. The results
are summarized in Fig. 4.6. More detailed information can be found in Table 4.3.
As we mentioned before, the four sorting benchmarks can only be optimized by
the single-path rewriting method. Except for the four sorting benchmarks, the
saturation-based rewriting method is able to optimize 3 benchmarks (hd03, hd05,
hd06) which can not be optimized by the single-path rewriting method. For the
8 benchmarks(dsort, hd04, hd11, hd12, bar, cavlc, ctrl, int2float), the saturation-
based rewriting method outperforms the single-path rewriting method in terms
of depth reduction ratio. This shows that the saturation-based rewriting method
can explore wider area of optimization results because it can store every possible
rewriting sequences (i.e. saturation-based rewriting obtains backtracking effect).
By contrary, for hd09 benchmark, the single-path rewriting method outperforms
the saturation-based rewriting method. This is because the single-path rewriting
method can explore deeper single rewriting path within given time limit, since
each iteration step for equality saturation needs much more time than single

critical path rewriting. If the saturation-based method is given sufficient amount
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of time limit and memory storage, it can also optimize hd09 same with the

single-path rewriting method.

Answer to Q4: Equality saturation enhances LOBSTER’s
exploration power via backtracking.

(20.2% vs 25.1% depth reduction)

4.6 Efficacy of Equational Rewriting

We now evaluate the effectiveness of design choices made in LOBSTER- the rule
normalization and equational term rewriting. We compare LOBSTER with its
variant without the two techniques. In other words, the variant uses syntactic
matching instead of equational matching when conducting term rewriting and
applies the learned rules without the normalization process.

Syntactic matching Il Normalization + Equational matching
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Figure 4.7: Efficacy of equational rewriting

Fig. 4.7 summarizes the results. The variant can optimize 16 benchmarks
(LOBSTER can optimize 22), and its depth reduction ratio is less than that
of LOBSTER in 12 benchmarks. In the exceptional case of hd 01, the variant
o +~1] —
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can reduce multiplicative depth by 1, whereas LOBSTER can not optimize it
within time limit. This is because of the difference of time cost for each iteration
step for equality saturation. Same as 4.4, LOBSTER can also optimize hd 01
if it is given sufficient amount of time limit. We conclude that overall, the
rule normalization and equational term rewriting play crucial roles in giving

flexibility to the rewriting procedure.

Answer to Q5: Equational matching enables flexible rewriting

and enhances exploration power.

(16 vs 22 optimized benchmarks, 17.6% vs 25.1% depth reduction)

4.7 Sensitivity to Changes in a Time Limit
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Figure 4.8: Comparison between the optimization results with 1h and 12h of
time limit.
We now investigate the effects of changing the time limit of online optimiza-
tion.

We compared LOBSTER with its variant that is given 1 hour of time limit.

56 R e 1A

& e



Fig. 4.8 summarizes the results. Both of the tools can optimize 22 benchmarks
within time limit. In 4 sorting benchmarks ({m,i,b,0}sort) that use single-path
rewriting, LOBSTER significantly outperforms the variant. In the other bench-
marks that use saturation-based rewriting, LOBSTER slightly outperforms the
variant. This shows that most of the effective iteration steps for equality satura-
tion are performed within 1 hour, since each iteration step needs much more
time as the number of iteration grows. We conclude that the most appropriate
time limit for LOBSTER is 12 hours, but we can also get similar optimization

result with 1 hour of time limit in saturation-based rewriting.

Answer to Q6: LOBSTER takes less than 12 hour

to obtain practically saturated circuit.

4.8 Sensitivity to Changes in a Training Set

We now investigate the effects of changing the number of training programs. We
have conducted 2-fold cross validation; for each of four benchmark categories
(Cingulata, Sorting, HD, EPFL), we used rules learned from the smaller half
and applied them to the other larger half, and compare with the result of
leave-one-out cross validation. The 14 benchmarks on the x-axis in Fig. 4.9 are
testing benchmarks, and the other 11 benchmarks are training benchmarks.
As can be seen in Fig. 4.9 that summarizes the results, the smaller set
of training programs does not lead to significant performance degradation.
The cardio, hd05, hd06, hd09, hd12, cavlc, and int2float benchmarks observe
optimization effects less powerful than before, but the other benchmarks remain
the same. We conclude that overall, the performance of LOBSTER is not much

sensitive to changes in a given set of training programs.

Answer to Q7: LOBSTER is not critically sensitive to changes
in a given set of training circuits.

(11 vs 14 optimized benchmarks, 23.6% vs 29.0% depth reduction)
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Figure 4.9: Comparison between the optimization results with two-fold cross
validation and leave-one-out cross validation.
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Chapter 5

Related Work

Existing FHE Compilers in comparison

Existing FHE compilers [16, 4, 24, 26, 45, 58, 25, 21, 23] use fixed, hand-tuned
optimization methods. These compilers allow programmers to easily write FHE
applications without detailed knowledge of the underlying FHE schemes. These
compilers also provide optimizations for reducing the multiplicative depth of the
compiled circuits. However, the optimization methods are hand-tuned, which
requires manual effort and is likely to be sub-optimal. In this dissertation, we
aimed to automatically generate optimization rules that can be used by existing

compilers.

e Cingulata [16] is an open-source compiler that translates high-level pro-
grams written in C++ into boolean circuits. It supports optimization of
circuits for reducing multiplicative depth based on hand-written rules.
Cingulata uses ABC [12], an open-source boolean circuit optimizer, but it
does not directly address our optimization problem [16]. Cingulata also
uses more advanced, yet hand-written, circuit optimization techniques

specially designed for minimizing multiplicative depth [15, 5]. In partic-

59 AL



ular, the multi-start heuristic by Carpov et al. [15], which we used for
comparison with LOBSTER in Section 4, shows a significant reduction in
multiplicative depths for their benchmarks. However, we note that the
benchmark circuits used in Carpov et al. [15] are “intendedly suboptimal to
test the ability of optimization tools” [1]. By contrast, the benchmarks used
in this dissertation include circuits that are already carefully optimized
in terms of FHE evaluation as explained in Section 4.1, thereby leaving
relatively small room for depth reduction. We observe the heuristic in Car-

pov et al. [15] does not perform very well for such a hard optimization task.

RAMPARTS [4] is an optimizing compiler for translating programs writ-
ten in Julia into circuits for homomorphic evaluation. It optimizes the
size and multiplicative depth of the circuits using symbolic execution
and hand-written rules. It automatically selects the parameters of FHE
schemes and the plain text encoding for input values and uses a number

of hand-written circuit optimization rules for reducing multiplicative depth.

ALCHEMY [24] is a system that provides domain-specific languages and
a compiler for translating high-level plaintext programs into low-level
ones for homomorphic evaluation. The compiler automatically controls the
ciphertext size and noise by choosing FHE parameters, generating keys
and hints, and scheduling maintenance operations. The domain-specific
languages are statically typed and are able to check the safety conditions

that parameters should satisfy.

CHET [26] is a domain-specific optimizing compiler for FHE applications
on neural network inference. It enables a number of optimizations auto-

matically, but they are hand-tuned and specific to tensor circuits, e.g.,
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determining efficient tensor layout, selecting good encryption parameters,
etc. By contrast, our technique is domain-unaware and does not rely on a

limited set of hand-written rules.

COPSE [45] is a domain-specific optimizing compiler for FHE applications
on decision forest inference. It vectorizes decision-forest inference models
(i.e. parallelizes operations performed during inference) to exploit cipher-
text packing technique and optimize FHE applications. This vectorizing
process also minimizes the multiplicative depth growth, but its method is

hand-tuned and specific to decision forest inference.

HECO [58] is an optimizing compiler for translating programs written in
C-like domain specific language into low-level SEAL language for homo-
morphic evaluation. It optimizes the runtime and memory usage of the
SEAL programs using automatic SIMD batching algorithm. It exploits
potential SIMD parallelism by applying automatic batching rules.

EVA [25] is an optimizing compiler for arithmetic FHE applications. It en-
ables a hand-tuned optimization specific to the CKKS FHE scheme by low-
ering the cost overhead caused by crypto operations (e.g. linearize, rescale,
relevel) that ensure the safety of homomorphic evaluations. EVAiyproved
enhances usability of EVA by making its Python front-end more natural. It
also enables two new optimization rules, but still they are hand-tuned. By
contrast, our optimization framework is scheme-unaware and has a larger
potential for speedup since it aims to reduce the multiplicative depth of

FHE applications.
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e Porcupine [23] is an optimizing compiler for arithmetic FHE applications.

Similar to ours, it uses program synthesis to optimize FHE applications.

However, it targets specific DSL named Quill rather than boolean circuits
and user has to provide hand-written sketch to successfully optimize target

applications.
Superoptimization

Similar to ours, existing superoptimizers [7, 13, 51, 52, 36] for traditional
programs are able to learn rewrite rules automatically. The major technical
difference, however, is that we use equational matching, rather than syntactic
matching, to maximize generalization.

Bansal and Aiken [7] present a technique for automatically constructing

peephole optimizers. Given a set of training programs, the technique learns a

set of replacement rules (i.e. peephole optimizers) using exhaustive enumeration.

The correctness of the learned rules is ensured by a SAT solver. The learned
rules are stored in an optimization database and used for other unseen programs
via syntactic pattern matching. Optgen [13] is also based on enumeration for
generating peephole optimization rules that are sound and complete up to a
certain size by generating all rules up to the size and checking the equivalence

by an SMT solver. Souper [51] is similar to Bansal and Aiken [7] but is based

on a constraint-based synthesis technique and targets a subset of LLVM IR.

STOKE [52, 36] uses a stochastic search based on MCMC to explore the space

of all possible program transformations for the x86-64 instruction set.
Program Synthesis

Over the last few years, inductive program synthesis has been widely used in
various application domains [29, 31, 66, 61, 54, 30, 32]. In this work, we use
inductive synthesis to minimize multiplicative depth of boolean circuits. To
our knowledge, this is the first application of program synthesis for efficient

homomorphic evaluation. Our work has been inspired by the prior work by
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Eldib et al. [29], where syntax-guided synthesis and static analysis are used to
automatically transform a circuit into an equivalent and provably secure one

that is resistant to a side-channel attack.
Term Rewriting and Equality Saturation

Term rewriting [20, 9, 11, 57, 60] and equality saturation [56, 67, 65, 63, 47]
has been widely used in program transformation systems. The previous rewrite
techniques rely on hand-written rules that require domain expertise, whereas
this work uses automatically synthesized rewrite rules. For example, Chiba
et al. [20] presented a framework of applying code-transforming templates

based on term rewriting, where programs are represented by term rewriting

systems and transformed by a set of given rewrite rules (called templates).

Visser et al. [60] used term rewriting in ML compilers and presented a language
for writing rewriting strategies. Tate et al. [56] and Yang et al. [67] used
equality saturation(i.e. saturation-based term rewriting) with hand-tuned rewrite

rules to optimize C-like languages and trained DNN models respectively. In

this work, we focus on a different application domain of term rewriting (i.e.

homomorphic evaluation) and provide a novel idea of learning and using rewrite
rules automatically.

Similar to ours, Ruler [48] used equality saturation to automatically infer
rewrite rules for a given user-defined domain. Although Ruler found 35 rewrite
rules for the boolean circuit domain, we observed that the saturation-based
term rewriting with these 35 rewrite rules shows little optimization effect for

homomorphic evaluation. It just slightly outperforms an ablation of LOBSTER

used in Section 4.4 that uses boolean ring theory as rewrite rules (2.6% vs 3.3%).

This is because rewrite rules inferred by Ruler has no objective in mind to

reduce the multiplicative depth.
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Chapter 6

Conculsion

In this dissertation, we presented a new method for optimizing FHE boolean cir-
cuits that does not require any domain expertise and manual effort. Our method
first uses program synthesis to automatically discover a set of optimization rules
from training circuits. Then, it performs equational term rewriting on the new,
unseen circuit based on the equality saturation to maximally leveraging the
learned rules. We demonstrated the effectiveness of our method with 25 FHE
applications from diverse domains. The results show that our method achieves
sizeable optimizations that are complementary to existing domain-specific opti-
mization techniques.

Though we target a specific kind of optimization tasks for homomorphic
evaluation in this dissertation, we believe our approach is potentially applicable
to other optimization tasks. Our method of synthesizing optimization rules and
exhaustively applying the combinations of the learned optimization rules in a
cost-effective way by the time-bounded equality saturation technique can be

beneficial to a broader class of optimization tasks.
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Appendix A

Learned Rewrite Rules

(A (= 0) norms)
— norms
(A (A normsa y14) y15)
— (A norma (A Y15 y14))
(A (= (A na31 m203)) Y14)
= (& (A (A y1a n223) n231) Y1a)
(= (A (A norms normsy) nsqg))
— (= (A (A normz ngr) norms))
(V normy (V niza (- ng2)))
— (V (@ ng2 (— ni7a)) (V (— ng2) normy))
(= (A na71 (A nags n13a)))
= (V (= naes) (= (A ni13a na71)))
(A (A (= na37) n10g) n235)
— (A (D nass nasr) (A nass nigy))
(A (A (A m301 n297) n2g0) 1284)
= (A (A nasa m207) (A n301 M200))

(= (A (= (A n2se na22)) yi17))
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= (& (= (A (A Y17 n2a2) n236)) Yi7)
(A (A nag1 (A nag2 nas7)) n476)
= (A (A (A naze nas7) Mas1) nae2)
(A (A (A nago ma49) M1206) N444)
= (A (A (A na44 na40) Naa9) N1206)
(A (A (A ngas normg) nsaz) ias)
— (A (A norms (A i25 n322)) N32s)
(@ (A (A ns54 m300) 79) N61s)
= (@ (A (A nago i9) 1554) N618)
(A (@ (A nao7 413) n118) M17)
= (& (A (A na17 i13) nio7) (A ni7 n1g))
(A (= (A normg i7)) (= ia))
= (& (V (= normg) (V (= i7) i4)) ia)
(A n121 (= (A n1e (= n114))))
— (@ (A n11a (A ni1e n121)) (A ni21 (4 n1ig)))
(A na1s (V ni7a (V norms norms)))
— (A n215 (V (V ni7g norms) normy))
(A (A (A nadg Mas0) M1206) N444)
— (A (A naag (A n444 M1440)) (D nags (D n440 M1206)))
(A (= m290) (A normsg (= nars)))
— (A (= (V nars nago)) norms)
(A 297 (A (A ni21 n120) naer))
— (A (A maz1 (A nago n297)) (€ naer (S niz1 ni20)))
(A (A ngs m157) (A nass n150))
— (A (A nass (A ngg nis7)) (B niso (@ niss neg)))
(A (= (A (A nas9 nas7) n734)) Piozo)
= (& (A (A (A pioo mas9) nast) n73a) piozo)
(A (A norma nge3) (= (A ngze n824)))

— (A (@ (A (A ngaa nge3) ngre) Ngyz) NOTMy)
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(A (= (A nas1 (A nae2 mas7))) Piose)
= (@& (A (A (A pios2 nas7) Nus1) Nuez) Pios2)
(A (A n379 (= (@ n3r1 nars))) nare)
— (A (@ (= n3r1) narz) (A naze n3r9))
(A (A naar (© normg (- nais))) n22s)
— (A (® (= norms) naig) (A naas n441))
(@ (A nio7 (= (A n7s m63))) n12s)
= (@ (& (A (A n1o7 me3) n78) Ma25) N07)
(A n2e1 (= (® na1s (A narr ia3))))

— (@ (A (A da3 nae1) nar7) (A (= n215) n261))
(A n1g9 (= (& (A nigs normy) normy)))
— (& (A normy (A (= ni195) n199)) N199)

(A nio1 (= (A (A ngs n7s) n74)))
= (@ (A (A n74 ng5) (A n7s n101)) n101)
(A (A (= nga) (= normy)) (= ne3))
= (= (V normy (V ngs ngs)))
(A (= (A marr (A nar1 n232))) i30)
— (& (A (A (A 30 m277) na71) n232) ds0)
(A (A (A ni3aq n3ga) (4 normy)) normg)
— (A (A normg (A n3ga n1344)) (S n1344 nOTMY))
(A normy (= (A (A niss niso) ngs)))
— (A normy (= (A niso (A ngg niss))))
(A (A naz7 (A nar1 naes)) (- n160))
— (AN (@ nieo (V nirr ni71)) (A nies (A nirr nir)))
(A n131 (A (= (A ni1a nior)) normy))
= (A (@ (A (A n1o7 n131) N114) N131) NOTMY)
(A 327 (& n32s (- (A n2s4 noor))))
— (& (A (A naar nasa) naor) (A (= n325) n3ar))

(A (= (A n1oa (= (A ngg 211)))) 214)
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= (V (A (A 214 711) n99) (A (= n104) T14))
(A (A (= (A naos (= norms))) z14) 215)
— (A (V norms (= nioa)) (A 15 T14))
(A n2e1 (= (A (= (A n2ssa m220)) n219)))

= (A (@ (= (A (A nazo n219) n254)) N219) N261)
(A (@ (A (A Y17 m202) m23e) Yy17) Nars)
= (& (A (A (A nars n222) yi7) nase) (A nors yir))

(A (A (A n731 maar) naas) (A nese M440))

= (A (A (A (A naa7 Maas) Maso) Me59) M731)
(A (A (A naso nasg) ness) (A nast nass))

= (A (A (A nass nas9) nast) (A naso ness))
(A (A (A nap1 mazs) (A NasT Nasg)) Naar)

)
(
= (A (A (A naaz nazs) nass) (A nae1 nasr))
(A (A (A nago mazs) (A nue Mas7)) Nazr)
)

— (A (A (A nazg nas7) narr) (A nago Nae2))
(A (A (A (A nagz naa3) maso) nas0) Nase)
= (A (A (A (A n436 ma37) Mag0) M443) Mas0)
(A (A (A (= opa) ops) (= op1)) opo)
= (A (= (V ops op1)) (A opo ops))
(@ (© ne10 M609) (A (A N547 N322) P24))
= (® (& (A (A 124 n322) M547) N610) M609)
(A (= (& i15 (— i7))) (A norms normay))
— (A (A normqy (@ i15 i7)) norms)
(A (@ (D nase (A nase m213)) N2d9) N193)
— (@ (A (D n2se n2d9) n193) (A (A 1193 N213) N269))
(A (© na333 (A (A ng29 normy) nzi7)) nisi)
= (A (& (A normy (A nazg n317)) M333) M151)
(A (A niss (A (= naas) (7 n136))) nos)

— (A (= (V n1g n136)) (A ngg nisg))

79 / H ol B



(= (A (= (A n2s0 (A n205 1162))) 1247))
= (® (= (A (A (A n24a7 naos) n250) N162)) N247)
(A (A na3p n209) (A nigg (A nis2 nii7)))
= (A (A (A nas2 naso) na1r) (A nigs naog))
(V (A ni77 norma) (A nair (A nizr nisz)))
— (V (A nigr norma) (A nirr (A niga n211)))
(A (= (A (= (A n3s6 n312)) n215)) n177)
= (@& (A (A nar7 nz12) (A nsse n215)) (A nizr (4 n2is)))
(

_)

A (A (A (A normy marr) nara) nags) m263)
(A (A nar2 norma) (A naes (A n2r7 nogs)))
(A (= (A (A nga mrg) (= nr2))) nao)
— (& (A n7a (A nga (A nig n7g))) (A nig (5 (A nze ngs))))
(A ngy (= (A (= (A nar ng3)) nai)))
— (A (A ngy (V na (7 n21))) (V nar (- n21)))
(A (A n149 n1ag) (= (A (= n14a1) n36)))
= (& (A naar (A naag (A n3e n1as))) (A naag (A e (- nse))))
(A (A (A nae1 mas7) (A 730 n733)) Pioo2)
= (A (A n730 (A nas7 nae1)) (A nrsz (A piooz nae1)))
(A (= (A ns9e (= (A n1s90 M1587)))) Ns2s)
= (® (A n1s00 (A nassy (A ns2s n1s96))) (A ns2s (7 n1596)))
(A ngss (= (A (= (A nosg n936)) Piozs)))
= (A (A ngss (V nosg (= pios))) (= (A piozs (D nosg noss))))
(A n305 (© (A (® n2ea moTmy) M255) M255))

— (A (A nass n305) (D naea (— normy)))

(A (Adrg d11) (A (A d11 d10) d9))

— (A (A dg i11) (A d10 i12))
(A (A (A d10 19) (A dg ig)) i11)
— (A (A 211 110) (A dg 1))

(A (A (A (A niog ngg) n103) norma) nito)
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— (A (A (A (A n110 niog) ngg) N103) NOTMy)
(A (A mes (A nasT nos)) (A niss nis0))
= (A (A nwss (An
(A mormy (A (A (A nass naso) mos) Mes))
— (A (A ngs (A nisg ngg)) (A nisp normy))
(A 17 (A nags (A nis2 (A niie 1n103))))
= (A (A (A na7g naoz) (A ni1e nis2)) nies)
(A n1gg (A (A m192 naes) (A nis2 n117)))
= (A (A (A (A n1gg m192) M152) M117) N165)
(A n202 (A normg (A ni14 (A nge n74))))
— (A (A ngg (A ni14 n202)) (A n7g norms))
(A n140 (A n1se (A norms (A ngg nzs))))
= (A (A ngg (A mize n140)) (A n7s norms))
(A (® n3s3 (A (A n329 m326) m317)) N1s1)
= (& (A nmas1 (A n326 (A n329 n317))) (A n151 n333))
(@ normy (A (A (A nasi naag) n2ig) N2is))
= (® (A na15 (A nass (A nasi nais))) normy)
(@ (A (A ng3 ng2) (= (A nizs T25))) no2)
— (& (A (A (A ngg m25) ng2) n12s) (A (— n93) ng2))
(A (@ (V (= (A n121 n116)) M114) M121) T23)
= (® (A (A (A 223 n116) m121) (2 n114)) (A (2 na21) 223))
(A (= (A a1 (= (A nate (7 m114))))) @23)
= (A (@ (V (= (A n121 n116)) N114) M121) T23)
(A (= (® (A (A 217 ngs) norms) x17)) ng4)
— (& (A (A (A nga ngs) x17) norms) (A (= x17) nga))
(A (A (A ni6g m149) n1az) (= (A nios 216)))
= (A (& (A (A 716 N149) M10s) N149) (A 169 N142))
(@ (A (= (V n175 m153)) (A n1g n1s2)) n1g)

= (& (A (A (A n19 nas2) (= na7s)) (= nass)) nag)
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(A (= (A (A s (7 mars)) (2 m1s3))) mag)
— (& (A (= (V n175 n153)) (A ni1g n1s2)) nig)
(A (= (A (= (A norms naes)) (= n1242))) nass)
= (V (A (A nags naes) norms) (A nass ni1242))
(A (= (A (A (A naze nasr) nas1) naez)) Pios2)
= (@ (A (A (A piose naze) nas7) (A nust nae2)) Pios2)
(A nis26 (= (& (A (A piosz ni2s5) Nasa) Piosz)))
— (@ (A (A (A pios2 n1326) M1285) Nasa) (A (7 pios2) 11326))
(A (= (A (A (A n44a Mag0) Maa9) M1206)) Plos2)
= (& (A (A (A (A pios2 Maaa) Maso) M4a9) M1206) Pios2)
(= (A (A (A (5 morms) ngas) (- normiyz)) ngss))
— (V (V (= (A ngas ngag)) norms) normiz)

(= (& (A (V normy piogg) (@ pioze piozr)) piozr))
= (& (V (V (& (= piozar) piozs) Piosg) norma) pioze)
(A (= (A (A ops (= opo)) opa)) (= op1))
= (& (V (= (A ops opa)) (V op1 opo)) op1)

(A (= (A (= eto) ocs)) (= (A cto ocr)))
= (® (= (A (® ocy ocs) cty)) ocs)

(A (= (A (A (= nazsr) (= n22ss)) norme)) n2g3)
= (® (A (= (V n2a85 n22s7)) (A norme nagsz)) naos)
(A (A (A ngrg (- (D nar1 nars))) nare) i10)
= (A (A (® (= na73) nar1) (A 10 n376)) N379)

(A (A (A naar (® normy (— n21s))) nazs) io)

— (A (A (® (- normy) naig) (A ig n2es)) naar)

(A (= (@ (® nase (A n2so 1213)) N249)) N184)
= (& (A (® (= nase) n249) n18a) (A (A n1sa n213) N269))
(A (= (A (= (A ig (i) normg)) is)

— (& (A (V (= i7) d6) (A norms ig)) is)

(A (= (A n1gg morms)) (= (A nigz (= norms))))
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= (& (V (® (= n1sr) n199) norms) nigg)
(A na1s (= (A (A n213 n212) (A n177 185))))
= (& (A (A (A n212 n218) nss) (A narr n213)) nais)
(A (= (A (A n261 nass) (A nasy n2s2))) dos)
— (@& (A (A (A (A dgs n261) m237) M255) M232) d28)
(@ (A (@ n325 (= (A n2sa n207))) M210) 763)
= (@ (@ (A (A na10 n254) n207) (A (7 n325) N210)) 763)
(& nags (= (A naga (A naza (A ni1a ng7)))))
= (@ (= (A (A (A n114 n194) M87) N174)) N108)
(A (A m207 (A m204 n192)) (5 (A n110 1184)))
= (A (A nag2 (® noor (- n204))) (D n207 (A 110 (A nisa n207))))
(A (= (A (A (A nam naga) nis2) nii2)) niso)
= (V (A naso (= (A nig2 n171))) (A naso (= (A niza na12))))
(V (A z17 (= n95)) (A nio7 (A 217 215)))
= (@ (A nio7 (A 215 (A 217 n95))) (A 217 (= 195)))
(A (= (& (& nio2 (A nsr nsg)) nr1)) ite)
= (@ (A nsr (A d16 n59)) (A 16 (D n102 (- n71))))
(A (= (A (= normy) (= (A nise n1ss)))) b3)
— (® (A normy (A nise (A b3 niss))) (A bg (& normy (A nise n1ss))))
(A (= (A (A nasg nas7) (A n730 n733))) Pio2o)
— (V (& pio2o (A n730 (A piogo nas7))) (© pioo (A 1733 (A piogo nase))))
(A (= (A nazss (A (A nase nagr) nas2))) Piose)
= (V (@ pios2 (A ni2ss (A pios2 nasr))) (O pios2 (A nas2 (A pios2 nase))))
(A (= (A mses (= (A n3er (= norms))))) nasa)
= (A (A n332 (V nser (7 n3e6))) (= (A nses norme)))
(A n263 (@ n2ss (= (A (A na24a0 n230) n226))))
= (@ (A (A n26 n2do) (A n2so n263)) (A n263 (7 n245)))
(A (= (A normg (= norms))) (= (A nega norms)))
— (& (V normg norms) (V nega (- norms)))
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(A (= (A normg 1)) (= (A (= 41) d0)))
— (® (A i1 norms) (Vi1 (- ip)))
(A (@ (® n324 n291) (— (A noss norms))) nais)
= (@& (A norms (A nais n2sa)) (A n215 (D n201 (7 n324))))
(A (= (A (A nass (= nas)) (= nazs))) norms)
— (& (A (V n132 n12g) (A nigs normeg)) (A (= niss) norms))
(A (= (A (A op3 (= opo)) opa)) (= op1))
= (& (A (V op1 opo) (A op3 opa)) (@ op1 (= (A ops ops))))
(A (= (A (= (A ing ocp)) (= cto))) oct)
— (® (A oca (Ainy (—ocr))) (V (A ocy ctp) (A ocg ing)))
(A (= (A (= (Aing (= 0c2))) oc)) oct)
— (A (® ocs (V ocz (& ocy ocs))) (B oc1 (A ocg (= ing))))
(A (= (A (A ns162 nOrMma) (A n5157 NOTMA0))) T264)
— (V (& nass (A normig (A noea nsi62))) ( noea (A norma (A noea ns157))))
(A (A (A (A (A n306 m263) nara) M2r7) M26s) N305)
= (A (A (A (A nsos m305) (A narr m2e3)) nar2) naes)
(= (A (= norms) (= (A (= (A 127 n93)) n92))))
(® (A (A ng3 ng2) ni27) ng2) norms)
(A (A n306 n305) M277) M2T2) N2Es) M263)
A (A (A n3o m263) m2r2) Nar7) N268) M305)
(= (A (® (= (A (A n22o n219) n254)) N219) N261))
= (& (A (A (A naz0 n261) n219) N254) (V (7 n261) n21g))
(= (A (® (= (A (A naag m248) M242)) N24s) Na52))
(A (A n243 n24s) n2s2) n242) (V (- nas2) noas))
A (A (A n306 m305) (A m2r7 n2e3)) narz) n2es)
(A (A (A n3o6 mar7) naes) (A naes n305)) n2r2)
(= (A (= (A (A meg (= m64)) (= normz))) nao))
— (& (V (V (= (A n20 nes)) nes) norms) nag)
(= (A (@ (= (A (A n2o nags) nar1)) m20) n2os))
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= (@ (A (A (A nao nags) nass) nar1) (V (= n206) 120))
(= (A (& (V (= (A na7 naer)) n2s4) n267) N46))
—= (® (V (= (A (A nag n37) naer)) nasa) (A (7 nasr) nag))
(A (A (A (= pioas) (7 ploaz)) (7 pioao)) (— pioss))
= (= (V (V pioss pioaz) (V pioaa Pioao)))
(V (= (A ns21 m1032)) M1028) M821) M1041))
(

A Mga1 M1032) M1041

)

)
n1529) N825) 1N1539))

)

—~ o~

)

)

V (= (A ns2s n1533)

A Mgas N1539) N1533)

(= (A (V pioss pit6) Pioze)) Pioss)) Piosa)
(A (A (@ pioze Pioss) Pioga) (V Pitie Pioss))

(A (= (A ngs2 (A (A ngas msas) piozes))) (= ms40))
= (= (V (A (A (A ns2s pioge) mss2) Nsas) Nsao))
(= (A (= (A (A (= opa) (- op3)) op1)) op2))

— (® (V (= (A op2 op1)) (V ops opy)) op2)

(= (V (A (B ocy ct1) ina) (= (V oci ctr))))

— (& (V (& cty ing) (& ocy iny)) ing)

(D (@ (D ne90 nes9) (A (A near n322) i24)) Nese)
= (© (@ (@ (A (A d24 m322) n627) N686) M689) M690)
(A (A (= (V n217 n1gs)) (A (= mi120) n226)) i32)
— (A (A (A dz2 nage) (— naes)) (— (V nai7 nazo)))
(= (A (A (= (A (A nass na133) nigg)) norme) nar))
= (V (= (A norme naz)) (A (A nigs ni2g) niss))
(A (= (A (A nags (mnas2)) (7 nags))) (& nar))
= (& (V (V (= nags) nar) (V nis2 ni2s)) nar)

(A (& (® nase (A naee n213)) (A n2s n213)) N2s1)
— (@ (A (D n269 naas) (A nas1 na13)) (A nasi nase))
(A mast (= (& (A (= norms) niaz) (A norms iss))))

— (@ (/\ (/\ (@ 195 71143) 71251) ’I’LOT"ITL5) (/\ (—| 71143) n251))
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(A (D (@ n3s9 (D narz (A na2s3 n215))) Niss) Nis7)
— (& (A (® (@ nige nar2) n359) nis7) (A (A nis7 n21s) Nas3))
(A (= (A (A normy ie) i7)) (= (A 6 i5)))

— (& (V (V (mig) i5) (A normy ir)) is)

(A (& (A (A s ig) i) i) (A i7 i6))

— (N (A (@ 13 1) i) i7)

(A (A ma21 (= (A (= na1s) 134))) (A norme i3))

— (A (A (A i3 ni21) normg) (V (7 ngq) ni1s))

(A (= (@ nass (= (A (A n20 n23o) n226)))) n236)
= (& (A (A (A n230 n23e) n240) N226) (A m236 N245))
(A n1a1 (A (A n103 (A nos mso)) (A 1114 n9g)))
= (A (A (A (A ngg m141) m114) (A n103 195)) T80)
(A (A (A nass (A (= naas) (— nase))) nos) nes)
= (A (A (= (V nase n1as)) (A nes nos)) niss)

(A (= (A (miag) da7)) (= (A (= ia7) da6)))
= (® (= (V (@ i16 118) 717)) 418)

(A m199 (A (A m192 n165) (A nas2 (A 1116 1103))))
= (A (A (A (A n19g m192) n103) (A 1116 N152)) T165)
(A n1so (A (A n173 n1az) (A ni1a (A nse n74))))
= (A (A (A (A naso mse) n7a) (A 114 m173)) N142)
(= (V (A 217 (7 ngs)) (A naor (A 217 715))))
= (@ (A nao7 (A 215 (A 217 n95))) (V ngs (= 17)))
(A nar2 (= (® (A (= norms) niz) (A norms is))))
— (& (A norms (V iz (= n2r2))) (V norms (A nara (- n120))))
(= (V (A n3a9 (A n356 n374)) (A n37a (7 146))))

— (& (A n3a9 (A naza (A nae n3s6))) (V nae (- na7a)))
(A (= (& (A bg norma) (= (V bs bs5)))) ba)

— (& (A normy (A by b3)) (A by (V b3 bs5)))

(A (= n7a1) (= (A (A (A ngsa nas7) naet) pioo2)))
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= (V (= (V n7a1 (A piooz nas7))) (= (V nzar (A n73a nae1))))
(A (A (A (= pioas) (= pioaz)) (7 Pioao)) (- pioss))
— (A (= (V pioss pioaa)) (= (V pioaz pioso)))
(A (= (A (A (= pios2) (= piost)) (— pios))) piozr)
— (@ (A piozr (® pios1 (V piosz2 piosg))) (A (V pios2 Piose) (A piozr piosi)))
(A (A (= ngs5) ns2s) (7 (A (A nses ns21) pitie)))
= (A (B ngss (V nsas (D pitie (7 nses)))) (B nsas (A nses (A pitie (A nsa

)

(A (A (= (A ngs3 nrs1)) nrag) (4 (A n7aa piog2)))

)
ng2s))))
= (A (& n7as (A nzs1 (A nrss n7as))) (8 nrag (A nraa (A pios2 nras))))
(A (A igig) (A (A s da) (A e i5)))

— (A (A 15 d6) (A ig i3))

(A (A dgq d23) (A (A dae d25) (A 25 124)))

— (A (A d24 t25) (A d26 123))

(A (A (A (A nso m95) (A o4 116)) 1131) N11s)

— (A (A n11s (A ngo n131)) (A naie (A n1oa n95)))

(A (A nase mass) (= (A (= (A nis1 nes)) i1s)))
= (A (A nase (A nass (V ngs (7 i18)))) (D (A nase niss) (A i1s (= n1s51))))
(A (A niso (A nes (A niss ngg))) (@ nes norms))
= (A (A nis0 (A niss (A nes ngg))) (@ ngg norms))

(A n1sa (A (A (A nazs n103) (A ni1e n152)) n165))
= (A (A (A (A nars nisa) nies) (A 103 na16)) n1s2)

(A (= (A (=23) (m22))) (= (A ia d3)))
= (® (A iz iq) (Vi3 i2))

(A (= (A (1) (=d0))) (= (Adg in)))
= (& (V (& iz d0) i1) i2)

(A (= (@ d15 (m27))) (A (A 117 ig) norms))

— (A (A d17 normg) (A g ( 115 i7)))

(A (= (A (A n1go (= n111)) (7 naos))) (- nes))
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= (& (V no3 (= (V n111 n105))) (V (V no3 na11) (V nigo nios)))
(A n1so (A (A ni73 n1a2) (A ni1a (A nge n74))))
— (A (A nge (A n173 n1so)) (A n7a (A n114 n142)))
(A n1aa (A nase (A (A n120 n1oa) (A nsg n75))))
= (A (A n7s (A ni20 n1aa)) (A nso (A nioa nass)))
(A (= (V (= (V ops op1)) (& op3 opa))) op2)
— (A (A op2 (& ops (= 0pa))) (B ops (A op1 (= 0opa))))
(= (A (= (A (A (= opa) (= 0op3)) op1)) op2))
— (& (A (V op3 opa) (A op2 op1)) (V op1 (= 0p2)))
(A g7 (= (A (= (A (2 nan) (= nazr))) n2o)))
= (& (A (V na11 n32r) (A n2g nagr)) nasr)
(A (= (A (A n3os m2rg) (— (A nars ocr)))) noz)
= (V (A nazs (A naz (A narg oc1))) (© naz (A nzo6 (A n22 n279))))
(A (= (A (= (A ma037 (= n1018))) m23)) (= ngs3))
= (A (= (V ngs3 (A n2z (= n1037)))) (= (A n101s 123)))
(A (= (® (& (A n203 (— normg)) norme) niss)) noes)
— (® (= (A n264 n1sg)) (V normg (V n2o3 (- 1264))))
(A (= (A (= (A (2 y10) (799))) y11)) (2 912))
= (& (V (= (Vv y10) (V (7 y11) 912)) v12)
(A (= (A maso (= (A (= (A n1g0 m130)) n36)))) n21)
= (A (V (@ (A (A nge m130) M140) n36) (7 n1s0)) N21)
(A (= (A (A (= piroo) (= piogs)) (= pioer))) (= pitio))
= (& (V (V pit1o piogs) (V pitoo Piogr)) Pito)

(A (A (= (A (= pitie) Pioze)) pioss) (— (A pitie Piogr)))
— (A (@ (= (A (D piogr Piozo) Pitie)) Piozo) Pioss)
(A (= (A (= (A (A n2sa ocg) norme)) (= n24s))) naa)
— (V (A (A (A nag oc) nasa) norme) (A naa noas))
(= (A (= (A (7 n995) (= (A (= ngor) ing)))) n2a))

= (A (V (= (A n2q ino)) nog1) (— (A n24 nggs)))
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(= (A (= (A so (= a109))) (= (A (= s0) norms))))
— (@& (V (® normsg aig9) So) @109)
(A (= (A (= s0) (= a108))) (= (A so (= aio7))))
— (@ (A (® a107 a108) s0) a108)
(A (A (= (A normy nas3)) niso) (= (A (7 norma) nsse)))

A (® (V (D (= nase) nas3) normy) nass) niso)

(=

= ( )

A (A n2s1 (@ nag7 (= n237))) n21s) (A n214 n207))
( (@

(A (
= (A (A (A (A nast n2is) n2o7) (B (- noar) nasr)) naia)
(A (A mas1 (D naar (= (A (A nass n2s2) n222)))) nais)
= (A (A (® (= (A (A n2ss naza) nase)) naar) n2is) n2s1)

(A ngo (A (= (@ (& (D nag nus) i2) 110)) n53))
— (A (® (& (& (= 42) i10) nas) nug) (A ns3 ngo))
(A (= (@ (® n1gg (A niss ni152)) (A ni7s n1s2))) nass)
= (® (A (® niss n175) (A nass nis2)) (A (= n199) n3s))
(A (= (A (= (Mg dr)) is)) (= (A dg i4)))
= (& (= (A (A (® iads) i7) (V ia dg))) is)
(= (A (= normg) (= (A (A (A n3os n2r2) noes) n263))))
— (V normg (A naes (A nzos (A nara naes))))
(A (A (A (A n3oo n219) mormy) (A nagg nases)) (- n23a))
= (A (A (D na2sq nase) (A n3oo0 n289)) (A normy (A n2ig n2s6)))
(A (= (A (= (A (= 910) (5 99))) y11)) (- w12))
= (& (A (Vyiz y11) (V yo y10)) (V 5o (V y10 (7 912))))
(A (A (= (A nazr (= (A e (7 n114))))) T23) 24)
= (A (A w23 (0 (A na1a n121))) (A 221 (V ni6 (5 n121))))
(= (A (A nar2 (A nsos o)) (A n2e3 (A narr naes))))
= (V (= (A n2r7 (A nar2 n306))) (4 (A n3os (A n2es n2es))))
(A (A (A (A (A nieg n14ag) n142) (— norme)) niz2) nii2)
= (A (A (A n112 naag) (A migg na2)) (A nas2 (& nuiz norms)))

(A (= (A (A normy n2or) (= (A (= n1g7) nss)))) nar)
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— (V (A (@ nao7 n197) (A n3z nsg)) (B ng7r (A normy (A ngy nogr))))
(A neg (= (V (A normy (A nag b3)) (A nas neo))))
= (A (® nas (V neo (B nas nes))) (B nes (A norma (A nag bs))))
(A (A (= (A normy ngg)) masz) (= (A normay (= n123))))
— (A (V n123 (7 normiy)) (& nise (A normy (A nge ni32))))
(= (V (= (V n7ar normy)) (= (V n7a1 (A n7sa nae1)))))
— (V a1 (A n73a (A nuer normy)))
(= (A (A ns21 (V ns20 (7 n1610))) (7 (A n1610 n1604))))
— (@ (A n1eoa (A nie10 (A ns21 ns20))) (V (= ns21) (A nigro (= 1820))))
(A (= (& (A nust (A nas2 (A piosz nas7))) Pios2)) naes)
— (A (D nues (A (7 nas1) (A naes piosz))) (D piose (7 (A nas2 (A nas7 pios2)))))
(A (= (V (A ngse (A ngis ng20)) (A ngig norms))) ngig)
= (A (& ng1g (A norme (A nsig nsis))) (& nsig (A nsse (A ng20 ns818))))
(A (= (V (= (V pioss pitie)) (© pioze (- Pioss)))) Pioga)
= (A (A pioga (D pioze Pioss)) (V pitie (D piooa pioge)))
(A (= (A (= (A ngs0 ngte)) (— (A ngos nsas)))) ms20)
= (V (A nos0 (A m820 n916)) (A ngas (A 820 1904)))
(A (A mgs morma) (A niso (= (A nirr (A ni71 nies)))))
— (A (A naso (A nes norma)) (@ nes (A nies (A nir1 nirr))))
(= (A (A (A n104 (A m110 n108)) (A M95 M80)) 1111))
= (V (® n104 (V ngo (D n10s n104))) (4 (A 195 (A n111 (A n10s n110)))))
(A n1gg (= (A (= (A nass n130)) (= (A n127 n117)))))
= (& (A (A n117 naso) (A naag (A iz nass))) (A nisg (& (A narz nagr) (A
n133 N130))))
(A (A (= ngo) (= (A morms mss))) (A ns5 (= nas)))
= (A (= (V nas ngo)) (B nss (A norms (A nss nsg))))
(= (A (A msg (V ngz (2 184))) (= (A nga normy))))
— (& (A normz (A ngs (A nga nss8))) (V (— nss) (A nsa (
)

(A (A n110 naos) (= (A (= (A (= n101) op1)) ns3)

= n63))))
)
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= (A (A n1os (V opr (@ ns3 n110))) (€ n11o (A nio1 (A 153 n110))))
(A (= (V nosg (A na3 (= n1037)))) (7 (A n1o1s n23)))
= (A (= ngs3) (V (= n23) (A nios7 (= n1018))))
(A (= (A (= (A ing ing)) ocs)) (= (A ing oco)))
— (@ (A (V ocg iny) (A ing ocz)) (@ ocs (— (A ocg ing))))
(A n1g9 (= (D (A ni1gs (D norms nigg)) (& norms nisg))))
— (® (A norms (A nigg (= n195))) (A n1g9 (V n195 (7 M1s9))))
(A (A (A n2s1 (D n2ar (- norms))) n2is) (A n214 n207))
= (A (® n2ar (@ nas1 norms)) (A n2o7 (A n214 (A n2s1 nais))))
(= (A (= (A (= 50) (= aso))) (= (A 89 norms))))
— (& (A so normg) (= (V so aso)))
(A (= (A so (= ar))) (= (A (= s0) (— azs))))
= (@ (A ars (= 50)) (A s0 ar7))
(A (= (A (= m60) (7 (A (2 (A normsg nug)) bs)))) nae)
— (A (V (® (A (A bz ngg) normg) bs) nego) nag)
(A (= (A normg (A b b3))) (= (A (= b6) (= b4))))
— (® (A normg (A by b3)) (V by bg))
(A (= (A (A pitie piozs) (— pioss)))
— (& (= (A (V pioss pit6) Pioe)) Pioss)
(= (A (= (A (7 nsae) (7 (A (2 n3a2) (7 1334))))) n305))
= (& (V (= (V n3a2 n334)) (V (7 n305) n346)) 1305)
(= (A (= msog) (= (A (= (A (= ngo1) (- normg))) oco))))
— (A (V normg (V ngo1 nsos)) (V oco nsos))
(A (A (= (Aing oca)) oco) (= (A (= in1) (7 0c2))))
— (A (@ ocg iny) ocp)
(= (A (= (A (= 50) (— a16))) (= (A s0 (= ai15)))))
= (& (= (A (& a15 a16) S0)) a16)
(A (= (® (A n203 (= (@ n200 197))) (D n200 M197))) Nss)

— (A (@ (= n200) n197) (A (= n203) N1ss))

= (A pioss (— pios))))

(
)
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(A n3ss (A nase (© (® nar (A naez n215)) (A n2s3 n2is))))
— (A (@ (A (D nas3 n2e2) n215) nart) (A n3sg n3ss))
(A (A (A ms2 (7 ma7)) (= (A (A ngo n2g) n23))) noa)
= (A (= (V (A (A n23 ngg) n30) naz)) (A 122 ns2))
(A (A (= (A (—ig) 13)) 47) (= (A ig (—43))))
= (A (& (—is) i) i7)
(= (@ (= (A (A (A (® ni27 mags) nu ) n104) N96)) N133))
= (@& (A (A (® nusg maar) nioa) (A 1116 no6)) n133)
(A (= n164) (A (A n1s1 m131) (A (= n115) (A n1o2 nss))))
= (A (A (A (A n1o2 nag1) nss) nas1) (7 (V ni1s nies)))
(A (V (& no2 (A niar (A no2 nos))) (A nai1 nis2)) nirr)
= (V (A narr (A ng2 (= (A ng3 m127)))) (A na11 (A ni7r nis2)))
(A (A 223 (= (A m114 m121))) (A 224 (V n116 (7 M121))))
= (A (® w23 (A n11a (A nag1 @23))) (A 221 (V n116 (O na21 723))))
(A (= (@ (A n11a (A n11e n121)) (A n121 (- n116)))) 23)
= (& (A n11a (A w23 (A na21 nae))) (A @23 (V nae (- n121))))
(= (A nazs (© (A n12e (A ng2 n93)) (A no2 (— no3)))))
= (@ (A na1ze (A nog (A no2 ni7s))) (V oz (= (A ne2 n175))))
(A (= (A mas2 (= (A n2ag (7 (A n2az (7 n241))))))) n2zo)
= (A (A nago (V nasg (7 n2s2))) (V n2a1 (7 (A nas2 n2a3))))
(A nas2 (= (O (A n2a1 (A na2az naag)) (A nass (7 1243)))))
— (® (A naar (A naag (A naag n2s2))) (A nase (V noaz (- naug))))
(A (= (A (= (@ pirro (V (V pitio piogs) normzr))) nss2)) nse3)
— (A (A nsgs (= (A pitio n532))) (V normy (V pigs (- ns32))))
(A (A (= (A (A ngga ngrs) Piogr)) nggz) (— (A normy pigg)))
= (A (@ nso2 (A normy (A piog m892))) (A nse2 (= (A ngga (A pioer ns73)))))
(A (A (= na001) mse2) (— (A (= (A (= nogs) ns26)) piog)))
— (A (D nsoz (A nggs (A piozg ms92))) (= (V naoor (A piozg (— ns26)))))
(A (A n11gz (= (A naisa (7 morms)))) (= (A (= na172) nase)))
02 = A L-tjj &



= (A (V (= n1184) norms) (A ni1g2 (V niirz (7 nage))))
(A (A naaee (— (A naaes (4 (A (7 na179) Pios2))))) (7 naass))
= (A (= (V n1ass (A 11463 11179))) (A 11469 (V pios2 (- n1463))))
(A (= (® (A n1as2 (A n1449 Naes)) (A na4ag (7 Naes)))) 1447)
— (& (A nuas2 (A n1aag (A naar naes))) (A naar (V nass (4 n1449))))
(A (A (A nass (A nap1 nazs)) (A nago (A Nas7 M658))) Md49)
= (A (A naer (A ness (A nars nass))) (A nasg (A naao nas7)))
(= (A mas39 (— (A (= (A nasss (& (A nasas nsis)))) ns2s))))
— (V (A nasas (A nis39 (A ns2s n818))) (V (= nasse) (A ns2s (- 11533))))
(A (= (A (A pirie pioze) (- pioss))) (= (A pioss (- pioe))))
= (V (= (V pioss pit1e)) (© pioze (- pioss)))
(A n1s39 (= (V (A nises (A ns2s nsis)) (A ns2s (- n1533)))))
— (A (® nassg (7 (V nasss (S nsas n1s39)))) (S niss (A nisas (A ns2s nsis))))
(A (A (A (= (A (= n953) m820)) 1825) (7 noas)) (= norms))
= (A (= (V noas norms)) (A nsas (V ngs3 (- ns20))))
(A (= (A (@ normy (= normyg)) (= normar))) (= (A normaz normao)))
— (& normyg (V normiy normy))
(A (@ (A (A nigg d22) (7 n233)) n109) (= (A n2s3 n111)))
— (® (A (A (@ ni11 i22) n109) N233) (A (7 i22) niog))
(@ (A nass (A nigg (— m141))) (= (V n1as (A nisg n13g))))
— (@ (= nuas) (A nizg (A nisg (D nias ni4r))))
(A na2z (A (A (A n11a n107) n106) (A 1104 (A 195 1180))))
= (A (A nso (A ngs (A o7 naos))) (A (A nioa naor) (A nia nazr)))
(A (A (A n11g (A ngo n131)) (A nite (A nioa ngs))) ni20)
= (A (A (A naz1 ngo) (A na16 nos)) (A 1120 (A 104 (A 131 n11s))))
(A niag (= (A (= (A (A nags nags) norms)) (& nios n12s))))
= (V (A normg (A nigs (A nigs n14g))) (A nigg (& nizs (- nios))))
(A (A m233 n202) (A (A n173 n1a2) (A n11a (A nge n74))))
= (A (A (A nge na73) (A nasg n202)) (A (A 174 n114) (A 142 m202)))
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(A (A 216 m202) (A (A na73 n1a2) (A na1a (A nge n74))))
= (A (A nra (A nazs (A nge m216))) (A (A nge n114) (A 1142 n202)))
(A (A maa7 i23) (A nage (A (A 120 n1oa) (A nge n75))))
= (A (A (A ngg mi20) (A nase maaz)) (A (A nzs nioa) (A niar do3)))

(A (= (A (A (= opa) (= op3)) op1)) (= (A opa ops3)))
— (V (= (V ops op1)) (& ops ops))
(A (= (V (A (= n113s) (A n22 n29)) (A naz n11ss))) 11065)
— (A (@ n1065 (A n1158 (A 11065 1n22))) (V n1138 (7 (A ngg n22))))
(A (= (A (= (A (= etr) oc3)) oco)) (= (A normsg ctr)))
— (& (A ct1 (V ocog normg)) (V ¢ty (V ocs (= 0cy))))
(A (= (Aing (= ctz))) (2 (A (A ety (= cto)) ino)))
— (® (A (= cta) (B ing ing)) (V (= ing) (A cta cto)))
(A (= (A (= (A (A n7a0 n719) (— M698))) N22)) (— M660))
= (A (= (V ngeo (A n22 (= n740)))) (& n2z (V neos (= (A nrig n22)))))
(= (A (= (A (= (A (= (A norms nuas)) na9)) nair)) nez))
— (V (A normg (A nigs n117)) (V (= n22) (A n117 (= nag))))
(A (= (® (A n203 (— (@ n200 197))) (D 1200 M197))) N1ss)
= (A (@ n200 (= n197)) (A nass (= 1203)))
(A (= (A (A (= n3es3) n3652) (A (7 n364as) (7 M3646)))) M469)
— (© (D naeo (V 13648 (V 13646 (A 460 13652)))) (V (V 13648 13646) (A 13653
(A nag n3652))))
(= (A (= (A so (7 ag9))) (= (A (= 50) (= az0)))))
= (& (A aso (7 50)) (7 (A s0 asg)))
(A (= (A (A (= ms521) (7 15519)) (A Ms517 (7 M5514)))) N264)
— (D (@ naea (V ns519 (V 5514 (A 1264 M5517)))) (V (V 15519 M5514) (A 15521
(A na64 M5517))))
(A (A (= (A normy narg)) (— (A normay s1))) (A s3 nges))
— (A (& s3 (A normy (A s3 na2rg))) (B naes (A normir (A naes s1))))
(A (= (A (A b3 (702)) (—b6))) (= (A bs (= D3))))
04 = A L-tjj &



= (& (V (® (V b2 bg) bs) (= b3)) bs)
(A (= (A (= n7a1) (= (A (A (A nag1 nas7) 734) Piooz)))) Pios2)
= (A (V (A (A (A piooz nae1) Mas7) N734) M7a1) Pios2)
(A (= (A nsss (= (A nsso (— nse3))))) (= (A (= nsss) ns20)))
— (A (& (V (= (A nss3 nsso)) nses) nsss) (V (- ns20) nsss))
(A (= (A (A (= pitno) (= pioss)) (= piogs))) (= (A pitie pioss)))
= (& (V (& (V pi1no piogs) Pit16) Pioss) Pi1ie)
(= (A (= (A naoar (= (A (= (A ngso (= ngs0))) n2s)))) n29))
= (V (A (@ (V (= (A nas noso)) noso) m25) n1041) (- naog))
(A (= (A (= (Adng (2 0c1))) ctr)) (= (A (7 ina) ocy)))
— (V (A (@ oct cty) iny) (= (V ocy ctr)))
(= (A (= (A (A (7 n3919) (= 13917)) (A (= n3914) N3913))) M669))
= (& (V (V (= (A nesy m3913)) n3917) (V N3919 1:3914)) Ne69)
(= (A (= (A (A nss38 (7 m5535)) (A (7 ms532) (7 M5530)))) S6))
= (@ (V (V (= (A s6 n5538)) ns535) (V M5532 M5530)) S6)
(® (A n1gg (= (& (A nygs norms) norms))) (& (A nigs norms) norms))
= (@ (A norms (= (V ni95 n199))) M199)
(A (A (= (Vg (md7)) (mdg)) (= (A (= i8) 7))
= (= (V (D i7 ig) 19))
(= (V (A n13o (= (A n132 n171))) (A n1zo (= (A na3a n112)))))
— (V (A nir1 (A nisa (A niiz2 nis2))) (4 niso))
(= (A (A nazo (V naas (= ma52))) (V naar (& (A nas2 1243)))))
= (& (A n2a1 (A n2a3 (A nzs2 (A nazo n24s)))) (V (= n220) (A nase (V nags (-
n21s)))))
(A (® (A nasa (A yar (A y1s n222))) (A yi7 (= naze))) nars)
= (@ (A nass (A nazs (A Y15 (A Y17 n222)))) (A nazs (A y17 (= n222))))
(V (A nis2 (A n209 (A n114 nass))) (A no2 (V nige (- no3))))
= (V (A naog (A nisg (A nis2 n114))) (D ng2 (A (= n126) (A 193 n92))))
(= (A (A nagg (V nag1 (5 223))) (V na1a (7 (A nie 223)))))
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= (& (A n11a (A @23 (A 116 (A na7g n121)))) (V (= naze) (A 223 (V naie (-
n121)))))
(A (= (A (A 223 (V na1e (— m121))) (7 (A n121 na14)))) naro)
= (A (A nazg (V naa1 (7 223))) (V na1a (= (A nae 223))))
(A (= (A (A b3 (7 52)) (7 b6))) (= (A bs (= b3))))
— (& (A b3 (Vb2 bs)) (= (V b3 b5)))
(A (= (A normg (A (= b7) (= b2)))) (= (A b7 (= b4))))
— (& (A normg (= (V b7 b2))) (V ba (= 7))
(A (= (V (A (= n2s6) (A m2e7 m2s5)) (A nass (7 nag)))) n2o)
— (A (A n2o (V nug (7 n2ss))) (V nase (7 (A n2er noss))))
(A (= (A (A ngg (V ngs (= n21))) (V nar (= n21)))) nao)
— (& (A neg (A nar (A ngo (A n2g n21)))) (A ngo (V nat (— neg))))
(A (® (A ngag (A naza (A nae n3s6))) (V nae (7 n37a))) nag)
= (@ (A n3a9 (A naza (A n3se (A 119 n4e)))) (A nag (V nae (- n37a))))
(A (= (A (7 n252) (= (A (= (A (7 n240) n232)) b2)))) nar)
— (A (A nz7 (V nzs2 b2)) (V n210 (V n2s2 (7 n232))))
(= (A (A n1oa1 (V naos2 (— ms21))) (& (A n1027 (A ns21 ns2s5)))))
— (@ (A n1o27 (A ngas (A n1oa1 (A ns21 n1032)))) (V (= naoa1) (A ns21 (-
n1032))))
(= (A (A n1o25 (V nio1s (7 ms20))) (V n1004 (7 (A ns20 m1013)))))
— (& (® n1ooa (V (— n1025) (A ng2o (7 n1018)))) (V n10oa (A 11013 (A 11025 (A
ng20 11018)))))
(= (A (A maor (V mags (- piosa))) (V (= piosa) (A ns20 m309))))
= (V (& nao1 (V n309 (— (A piosa m201)))) (& piosa (A na20 (A piosa n2os))))
(A ngsz (= (A (= (A (A nsz7 piozs) nses)) (— (A norms pioar)))))
— (V (A ngrz (A nsey (A piozs nss3))) (A norms (A pioar nsss)))
(A (A (= maasa) msga) (2 (A (2 (A (= na2a) (5 11242))) nazs)))
= (@ (A (V ni1247 n1242) (V n125a (A 1438 n384))) (D n3sa (A niasa (D nagsa (V
n1247 M1242)))))
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(A (A n1aa2 m1435) (= (A (= (A (= (A n1a27 n735)) 11426)) Pios2)))
= (A (A (A n1aa2 m1ass) (V naaze (7 pios2))) (A naass (4 (A nrss (A piose
n127)))))
(= (A (= norm3) (= (A (= (A nszr (= (A ns31 pitoo)))) ns21))))
= (V (A nsa1 (A ns31 (A ns3r pitoo))) (V norms (A nsa1 (- nssr))))
(A (A (= (A (= (V piogg pios1)) (A pitie (= pios2)))) norms) pioze)
— (A (A pioze norms) (V (V pios2 piosg) (V pios1 (— pitie))))
(A (= (A (A nagg (A nagg ma40)) (D naga (S nago n1206)))) Pios2)
= (& (A n1206 (A naag (A nago (A piosa M4as)))) pios2)
(A ngsz (& (B n2aa n2ss) (7 (A (A n2ao (7 n229)) (7 n225)))))
— (@ (A (A n240 nas2) (7 (V naz5 n229))) (A n2s2 (B 244 (7 n23s))))
(A (A mas (5 (A m0a ngs))) (= (A (= (A naos ng6)) i19)))
= (A (A nats (V (= d19) (D 1103 n104))) (@ 19 (= (A ngs (D i19 N104)))))
(A (A m203 n1so) (= (A (= (A naz1 naes)) (- (A nass n1s0)))))
= (A (@ (A (A (= nass) nar1) naes) nass) (A niso n203))
(A (= (A magz (= (A na1e m105)))) (7 (A gz (A naie n10s))))
= (@ (= (A (A (® n127 n133) n1os) n116)) M133)
(A (= (A n1as (= (A na3g m13s)))) (= (A 141 (A n13g n13g))))
= (@ (A mags (A magg (7 n1a1))) (5 (V naas (A niss nisy))))
(A (= )

(A (A 121 n297) n2g1)) (7 (A na2g3 (— (A nagt n121)))))

(
— (@ (A n121 (A n2s1 n297)) (
(A (= (A (A nags (—nas2)) (- (

— (& (V nar (= (V niz2 (A niss (- nizr

(
V (= n203) (A n121 nas1)))
A niz7 (7 179))))) (- nag))
) (V (V naz niz2) (A nrg (A nigs
ni27))))

(A (A mazo (= (A 110 nios))) (7 (A nios (7 (A ngr nss)))))
— (A (& nizo (A naos (A n120 m110))) (S n1oa (4 (A ngs (A nor n104)))))

(= (A (A ngg (V m3g (— n10s))) (7 (A nios (A 184 n8s)))))
= (@ (A nss (A n1os (A nsa (A n29 n3g)))) (V (7 n2g) (A nios (7 n3s))))

(A (= (A ocs oc)) (= (A (= (A (mocz) (- 0c2))) ina)))
; PR



= (@ (A ocg (— (Ving ocp))) (= (V ocs (A ing oc2))))
(A (= (V (= (V oy cto)) (B iny (A oco (7 0c2))))) ing)
= (® (A (A ing cto) (= (Ving ocp))) (A ing (A ocy (® ing ocy
(A (= (A (= (A nanas (7 n110))) ina)) (= (A (7 na103) n38))
= (A (@ iny (V na11o (7 (A ni1is in1)))) (@ (A niiio in1) (V naios (— nss))))
(A (= (A (= (A (A (2 nas3) ocr) (2 nast))) (7 normy))) nag)
= (V (A (A n2a oc1) (= (V nast nas3))) (A naa normy))
(A (A (= nes2) (7 ne76)) (7 (A (7 (A nest (- nee3))) nss)))
= (A (= (V nes2 ner6)) (D n3s (V ness (— (A nss ng67)))))
(A (= (A (= (A (= (A (5 no39) mose)) (— no33))) 1aa)) ngos)
— (A (A ngzs (= (A moz3 naa))) (V ngze (— (A noese m44))))
(= (A (= (A (A (= n3779) (= m3777)) (A mg77s (= n372)))) Nago))
= (® (& naey (= (V ngrrr (V ngrrg narr2)))) (V (V ngrrr narrg) (V narre (A
n469 N3775))))
(= (A (= (A (A n11se (= na1s7)) (A (= na11s) (2 11094)))) N469))

— (& (& naso (= (V nusr (V niiis n109a)))) (V (V ni1sr nins) (V nigga (A

)))
)

)
)

n469 N1159))))
(= (A (= (A normy (= bg))) (= (A (A (7 bg) be) (—b4)))))
= (@ (V normy bg) (A (V by by) bg))

(= (A (= n3s5) (= (A (= (A (5 (A nzag (7 n340))) ba)) n3ss))))

= (V (A (@ (V (= (A b n343)) n340) ba) n335) n355)
(A (= (A (A (= opexty) ops) opexty)) (A (= (A (— opexty) ops)) ops))
— (& (A (= (A opexty opexty)) (A ops opa)) ops)
(A (= (A (A eto (= oco)) (—ina))) (= (A (8 ocy in1) ocp)))
— (V(® (A (— oc2) ocy) ing) (= (V ocy ctp)))

(= (A (= (A (= (A nsgs (7 mss1))) (7 (A (7 m515) m22)))) M29))
= (A (V (= (A n2g msg5)) msst) (V (2 (A ngg maz)) ms15))
(A (A (= (A (mina) (2ing))) cto) (= (A (A ing ocg) in1)))

— (® (A (V (—ing) ocg) (A ing ctg)) (A ing cto))
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(A (= (A (A so ara) (7 51))) (= (A (A (7 80) a13) s1)))
= (V (@ (= (A s1a13)) (A so a1a)) (A s150))

(A (= (A (A (= 50) ago) (= 51))) (= (A (A 50 asr) s1)))
= (V (@ (= (A (@ as7 ago) s0)) aso0) (© 51 50))

(@ (A (D nss9 (D narr (A nae2 n215))) nase) (A (A nise n215) 1253))
= (& (A (A (D nas3 n2g2) n1se) n215) (A (D n3se n271) n1se))
(A (A (= (A (m6) ia)) i5) (= (A (A norms i) (- 14))))
= (@ (A (AN (D iq i6) i5) (V normg ig)) is)

(A (= (A (= (Adg ds)) (Ads i7))) (= (A (mir) i5)))
= (& (V (= (N7 dg)) (A s dg)) (A (d7) i5))

(A (= (= (V (B 17 18) 19))) (— (A (7 (A s i) i5)))
= (A (@ (V (B is i7) (® i5 19)) i5) (V (7 i5) i7))

(A (& (@ izs i6) (A a7 i5)) (A (D ds7 15) (A is6 14)))

— (N (N (D g7 is5) (D 6 i3g)) (A i4 i36))

(A (= (@& normg (= (Adsz i1)))) (A (= (@ is3 (= 1)) normas))
— (A (A (@ i33 i1) norms) normas)

(A (A (A 23 (= (A 114 m121))) (A T24 (V 1116 (7 M121)))) T25)
= (A (V (= n121) (A n1ie (- n114))) (A 225 (A 223 24)))

(A (= (& (A n1or (A 217 (A 215 195))) (A 217 (7 N95)))) NYa)
= (® (A n1o7 (A nga (A 215 (A T17 n95)))) (A noa (V nos (= 717))))
(A (= (D (A n3a9 (A n37a (A nae n356))) (A n37a (7 n46)))) n19)
= (D (A n3a9 (A nz7a (A n3se (A 119 n4g)))) (A nag (V 14 (- n374))))

(A (A (A (= (V pioss pioaa)) (— (V pioaz Piodo))) (= pioso)) (— Pioss))

)
)

= (A (= (V piogo (V pioaz pioas))) (= (V pioas (V pioss pioso))))
(A n16o3 (= (B (A nasgo (A mass7 (A nsas n1s96))) (A nsas (7 n1sge)))))
— (@ (A (A n1s90 n1s87) (A 11603 (A 1596 T825))) (A 1603 (V nase6 (- ns25))))
(A (= (& (A n11es (A n1ies (A naes pios2))) (A naes (— piosz)))) niiez)
= (& (A (A n1162 n11es) (A 1163 (A naes Pios2))) (A nite2 (V pios2 (7 n46s))))
(A (A m1230 m3s4) (= (A (= (A (= (A (7 na220) n468)) N1218)) N4da)))
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= (A (A nazso (A nasa (V ni21s (7 1444)))) (A nzsa (V na220 (5 (A naas
n46s)))))
(A (= (® (A (A pios2 mess) (A nese nesa)) (A nesa (- piosz)))) n3sa)
— ngs4))))
(A (= (& (A ners (A nas1 (A piosz mes1))) (A nest (— pios2)))) ner2)
— (& (A (A ner2 nas1) (A ners (A nest pios2))) (A ner2 (V pios2 (= n6s1))))
(A (= (& (& n2aa nass) (= (A (A n2a0 (7 n229)) (7 m225))))) M236)
= (@& (A (V n229 nazs) (A nage n240)) (A n2se (O n2ss (B n244 n240))))
(A (A (= (A nzar (A (2 nmis) normg))) (7 (A (= n721) n719))) norme)
— (A (AN (V (= nr2r) n7is) (V (= nr1g) nr21)) norme)
(A (= (A (= (A ma71 maes)) (7 morme))) (= (A (A nam narr) naes)))
= (@ (A n1es (A nar1 narr)) (V (A nies na71) norme))
(A (A (A n213 nies) m211) (A (7 (A 203 naso)) (7 (A nam nage))))
— (A (A naes (A (= nar1) (A nais n2n))) (® naz (V (= n203) (D naes n150))))
(= (A (= (A gz (= (A nai6 m105)))) (= (A nazz (A nie nos)))))
= (& (A (A (@ n127 n133) n105) N116) M133)
(A (& (A masz (A ni1gg 722)) (A n1og (7 i22))) (= (A na33 n111)))
= (D (A nasz (V 111 (2 n109))) (V nasz (A niog (- i22))))
(A (& (D 14 76) (A 13 15)) (A (D d13 i5) (A 112 4)))
= (A (N 12 (D 113 75)) (A da (D i6 114)))
(A (= (A (A opa ops) opo)) (= (A (A (= opa) (= op3)) op1)))
— (V (& op3 (A ops opo)) (& op3 (V ops (= op1))))
(A (= (A (A (= opeato) ops) opext1)) (A (= (A (= opexti) opa)) ops))
— (@& (A (A ops opexty) (A ops opexty)) (A ops (- ops)))
(A (= (V (@ op3 (A opa opo)) (® ops (V opa (= 0p1))))) op2)
— (A (& op1 (A ops (& opo op1))) (A op2 (© op3 (= 0p4))))
(= (A (A (= normy) (= (A (= (A (7 ner2) n24)) 144))) (5 n670)))
— (V (A nag (V ngrz2 (4 n24))) (V ngro normy))
(A (= (V (A ocz (ming)) (& oca (= (A cto ing))))) (= ina))
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)

— (@ (A (A nes6 ne65) (A nesa (A n3sa Pios2))) (A n3ss (V piose
)
)

)
(
)
(



= (A (@ iy (Ving (7 oc3))) (@ (A cto ing) (A ocz (1 in1))))
(A (= (A (= normy) (= (A (7 (A (7 n513) (5 1a76))) N122)))) N29)
— (V (A nag normy) (A (V ngze ns13) (A nog naz)))
(A (A (= (A (ming) (ming))) cto) (= (A (A ing oco) in1)))
— (® (A (Aing ing) (A ocg cty)) (A cto (V ing ing)))
(A (= (A (= (V 12 (A nag (5 154)))) (5 (A n2g nag)))) n23)
— (@ (A n23 (O nsa (V naa (O nsa n112)))) (A (V 1112 nae) (A nas (A nsa
n24))))
(A (= (A (A (= s0) aso) (= s1))) (= (A (A s0 ase) 1))
— (V (@ s1 (A 50 ase)) (@ s1 (V so (= asy))))
(A (= (A (A so ara) (7 51))) (= (A (A (7 80) a13) s1)))
= (V (& 50 (= (A s1.a13))) (B 50 (A awa (7 51))))
(A (= (A (Ning ctr) ina)) (= (A (A (2 ing) (2 cto)) (- ino))))
= (V (& (V (& cto ct1) iny) ct1) (& ing ing))
(A (A 373 (7 n369)) (© (A (= n3e9) (A nses na2s)) (7 (A nses n325))))
— (A (= nae9) nar3)
(A (= (A nagg (= (A (= norms) niz)))) (= (A sz (A (- norme) niz))))
= (& (V (= (A (® n14g n142) N126)) NOTMEG) N149)
(® n212 (& (A (= (® (A n203 n202) N201)) 11ss) (D (A n203 n202) 1201)))
= (© (@ (A (A (= nass) n2o3) n2o2) (V niss nao1)) n212)
(@ (A nize (A noz (A noz (= n17a)))) (V noz (= (A nea (= n1ma)))))
— (V (A ngg (= maze)) (V nara (= no2)))
(V (& ng2 (A (= m126) (A no2 n93))) (A nass (A (A ngog n114) n1s2)))
— (V (A nis2 (A n209 (A n114 n1s3))) (A ng2 (V nize (7 no3))))
(A m2zz (= (A (= (A (A sz (= nazs)) (5 (A (7 nas1) n2t)))) nag)))
= (A (A naza (V nast (5 (A nig n21)))) (© n2a2 (A nig (V nazs (- nis2)))))
(A (= (A (= (A b1 bo)) (A bab3))) (= (A (= bs) (—04))))
— (@ (B b3 (V ba (B b b3))) (A (A ba bo) (A b1 b3)))
(A (& ns19 (A (= nsss) (A nsig nsis))) (& nsig (A ngse (A ns20 ns1s))))
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— (@ (A nsse (A nsss (A nsis (A ns20 n819)))) (A nsig (V nsss (- nsis))))
(A ngz1 (= (A (A ngss (V ngszg (— pioas))) (— (A piozs (D n939 n936))))))
— (@ (A (A noze noss) (A ngr1 (A ngsg pioss))) (A nort (V pioes (= ngss))))
(A (A (= nazr) (= (A naag (A nage nas2)))) (5 (A (A n1a6 n14s) n132)))
= (V (= (V narz (V nias n1ag))) (7 (V nazz (A nagz nas))))

(® (A niss (A n103 (A ngs n141))) (V (= naas) (A nazs (A n1o3 nge))))
= (@ (= n1as) (A nos (A niss (A n1os (O 1145 N141)))))

(A (= (A (A (= eth) ocs) (Aing (= 0cg)))) (— (A (= ing) cti)))
= (V (& ety (V ocg (7 in0))) (B ing (A ocg (- ctr))))

(A (= (® (A (= ct2) (@ ing ing)) (V (= ing) (A cta cto)))) ocr)
= (@& (A (A ocy ing) (A cta (= cto))) (A oct (A iny (= ct2))))

(A (A (= (A inging)) (= ctr)) (A (= (A (= in) oc)) (= ocz)))
= (A (= (V oca ctr)) (& oco (= (A int (& ocg ing)))))

(A (= (A (ANing ctr) ina)) (= (A (A (2 ing) (2 cto)) (- ino))))
— (V (@ ing (A ing ct1)) (D ing (V iny cto)))
(A (= (@ n379 (A n359 (D nar2 n254)))) (A (D n3s (O nar2 nasa)) Nise))
— (A (A ni1ge (— n379)) (D n359 (D n272 N254)))
(A (@ n1s0 (A n3as (A ns2e 1333))) (S n1s0 (A nsze (7 (A n3as n326)))))
— (& (A n3a6 (A ngas (V n3sz (4 n1s0)))) (V (A naze n3as) (A niso (4 nsse))))
(A (A (= (A (A n3as m326) m333)) m150) (7 (A (5 (A 1345 1326)) 1336)))
= (A (@ naso (A nzas (A n326 n333))) (S nas0 (A naze (7 (A n3as n326)))))
(A (A (= (A pioz1 picos)) (= piois)) (= (A (= (A (= pio21) (= pioos))) Pioor)))
— (= (V (& (A (@ pioor pioos) (D pio21 Pioos)) Ploos) Pio13))
(A (A (= (A (= (A (= pino) (7 piogs))) piosr)) (A (7 pitoo) (= Piogs))) pioor)
— (A (= (V (V pi11o piogs) (V Pitoo Piogs))) Piogr)
(A (= (A (= (A so a120)) s1)) (= (A (= (A (= s0) a123)) (7 51))))
— (A (® (A (@ a123 a120) s0) a123) (B (— s1) s0))
(A (= (A (= (A (= 50) ag1)) 51)) (= (A (= (A so ag2)) (= 51))))
= (A (@ (A (D agz ag1) so) ag1) (& s1 50))
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(= (& (A (= na15) (7 nae7)) (5 (A (7 n216) (7 n119)))))) n22s)
= (A (® (V nier n21s) (V n21e n119)) (A normsa nags))
(= (A (A nes nizo) norms))) (= (A nizz (= (A normeg nes))))))

= (V (& (A (A (& nigo maar) nes) norme) nizr) (- nass))

(A (= (® (V (= norms) (V (7 d7) 44)) ia)) (= (A (A i7 ia) norms)))
— (@ (A norms i7) i4)
(A (A (= (A (i7) i6)) (= (A (md5) 44))) (0 (A (2 d6) 15)))
= (N (@ (V (B ig 1a) (—i5)) 1) (V (7 46) i7))
(A (= (A (7i23) d22)) (A (= (A (7 i22) d21)) (= (A (7 i21) i20))))

= (A (@ (7 (V (D igo 122) i21)) 122) (V (7 422) 123))

(A (= (& (A n2a1 (A n2az (A nags n252))) (A nas2 (V naas (7 n248))))) m220)
— (@ (A n2a1 (A nazo (A nasz (A naag n2ag)))) (A nazo (V (= n2s2) (A nass (=
n243)))))

(= (A (= (A (= (A ngaz (= (A (= (A nsgr (2 nase))) b3)))) ba)) nsss))
= (V (V (= n33s5) (A ba (= n3az))) (A b3 (A ba (V muse (7 n3sr)))))

(A (= (& (A bs (= (V bg b3))) (V ba (V by (—b6))))) (—b2))

— (@& (V (V b2 b3) (V bs (= 05))) (V (V b2 ba) (V by (= b6))))

(A (= (A (A bs (703)) (7 06))) (= (A (A (= bg) b6) (= 04))))

— (& (A bs (= (V b6 b3))) (V ba (V by (= bg))))

(A (= (@ (A n2se (A nger (A nae nags))) (A nags (V naer (7 n4e))))) n2o)
= (® (A nase (A nass (A naer (A n20 n4g)))) (A n2o (V (= nass) (A ngg (4
n267)))))

(= (A (A (7 m93) n76) (2 (A (2 (A (A nes (7 nea)) (7 144))) 120))))
= (V (A n20 (& naa (V nea (7 nes)))) (V (A n20 nas) (V ngs (= n76))))
(A nie16 (= (@ (A n160a (A ns21 (A nagro ms20))) (A nsar (V ns20 (7 n1610))))))
— (@ (A n1e0a (A n1616 (A 610 (A 1820 1821)))) (A 11616 (V (= ns21) (A 11610
(= n820)))))
(A n1oa1 (4 (& (A nio26 (A ngar (A nio32 nses))) (A nger (V ngas (— n1032))))))
— (@ (A n1026 (A n1032 (A n1oa1 (A ngas ns21)))) (A nioar (V (= ns21) (A nios2
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(— ng25)))))

(A n1025 (4 (& (A n100a (A 1013 (A ns20 n1018))) (A ns20 (V 11013 (7 n1018))))))
— (® (@ n1004 (A n1025 (V nio1g (— n820)))) (V 11004 (A nio1z (A nio2s (A
n1018 1820)))))

(A (A (= (A pioa1 pioos)) (= piois)) (— (A (= (A (= pio21) (- Pioos))) pioor)))
= (@ (V piors (A pio21 (D pioor Picos))) (V piois (= (A pioor picos))))

(A (= (A (= (A (= (A normz (= piogs))) Piogr)) (A (= piroo) (— piogs)))) norms)
— (V (A piggr (A piogs normz)) (A normz (V pitoo piogs)))

(A (A (= (A (= (A (2 pivio) (2 piogs))) pioor)) (A (= pitoo) (= piogs))) piogr)
= (A (= (V piogs (V piroo piogs))) (A piogr (= (V pitio piogs))))

(A (= (& (A nas3 (A ni21s (A naes piosz))) (A ni2is (V pios2 (7 naes))))) naaa)
= (D (A nags (A nada (A 1218 (A piosa naes)))) (A naas (V (= n121s) (A naes
(= pios2)))))

(A (= (A (Avdng ia3) (A das d12))) (7 (A (A ez 211) (A 13 412))))
= (V (= (Viw i14)) (5 (A 12 113)))

(A (= (A (A iag das) (Adas d1a))) (5 (A (A dae das) (A dis 114)))
= (7 (A (Viag 113) (A i 115)))

(A (A (A (A (mdag) (mdag)) (7)) (A (7das) (2 dn2))) (7 iag))

— (A (= (Vias (Va6 115))) (7 (Vdrg (V i17 412))))
(A normy (= (A (= (A nagg (= (A ni1e mos)))) (= (A nazr (A nate n10s))))))
= (A (@ (A (A (@ ni127 na33) n105) N116) N133) MOTMY)

(= (@ (A nass (A n1os (A ngs n141))) (V (= n145) (A nass (A 1103 n96)))))
= (@ (A nge (A nizs (A n103 n141))) (@ nags (A noe (A nazs (A n1o3 n145)))))
(A (= (& norms (= (Adg i1)))) (A (7 (@49 (= 41))) (A is do)))

— (A (N ig (® ig i1)) (A ip norms))

(A (A (= (8 (A (= n21s) (8 nies ni20)) (A (7 naes) (7 1120)))) normag) izr)
= (A (A 27 normig) (© nais (A (® nizo n21s) (S nies n218))))

(A (= (A n1s (@ (A (A ops opexty) (A ops opexty)) (A ops (= opa))))) nss3)
= (V (® ns3 (A na1s (A nsz 0ps))) (A (A ns3 opa) (- (A opexty opexty))))
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(A (= (@ (A ocg (= (Viny ocp))) (= (V ocg (A ing ocz))))) (= ocr))
— (@ (A (A ing ocg) (= (V ocy ocz))) (A (V ocy ing) (A ocs (= ocr))))
(A n1063 (© (A naoaz (A naoss (A na2 n2g))) (V (= n22) (A nioss (— n29)))))
= (& (A n1oaz2 (A n2g (A n1os5 (A n22 n1063)))) (A n1oss (V (7 n22) (A n1oss
(— n29)))))
(A (= (A (= (A s aze)) s1)) (= (A (= (A (= s0) aro)) (= 51))))
= (& (A s1 (A so are)) (A aze (7 (V s150))))
(A (= (A (= (A (=80) ags)) 51)) (= (A (= (A so ags)) (7 51))))
— (& (A s1 (V s ags)) (A so (V s1 ags)))
(A (A naso (= (& normy (= normyg)))) (& (A (= (& normy (= normyg)))
normaig) (— normyg)))
— (A (® normig normy) n4so)
(A (A mass (= (A (A nes mago) (7 nrr)))) (2 (A nazz (= (A (2 n77) nes)))))
= (A (@ (V (= (A (® nizo0 na2r) ne3)) nrr) nisr) niss)
(A (= (A (= (A iz dg)) dg)) (= (A (A (= dg) d7) (= (A s i5)))))
— (@ (= (A (Vi5 dg) (A g i7))) (V ig i7))
(A (= (A nass (= (A n11e (A n1oa mo6))))) (5 (A (A n127 ngs) (A n104 n116))))
= (@& (= (A (A (A (D n127 n133) N116) N104) No6)) N133)
(A (A 203 (A n1ag n137)) (= (A (= (A nart naes)) (— (A nasg (A niag n137))))))
= (A (V (A n171 n1e6) mass) (A (A nasz niag) n203))
(A (= (AN (5 213) (5 212) (2 (A (5 (A (5 210) (5 20))) 711)))) T14)
— (V (A (V xg z19) (A 214 211)) (A 214 (V T12 713)))
(A (= (A (A b5 (= 04)) b3)) (= (A (A (= 6) bo) (A ba (= D3)))))
= (@ (A (A babo) (= (VD3 bg))) (Vba (= (A D3 D5))))
(= (A (= (A (= (A ngzs (= (A (7 (A (7 nger) m3s2)) m3o1)))) piosa)) (- ms26)))
— (A (V n3a6 (A piosa (V nzor (7 naze)))) (V naze (V nger (— (A nss2 nre)))))
(= (& (= (V piogg (V pios2 (V pios1 piozr)))) (V pioze (= (V piosg (V pios2
pios1))))))
= (& (= (V (V pios1 pios2) (V piosg Pioze))) (& piozs (V (V pios1 pios2) (V
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Pio39 pio27))))
(A (= (& (A (= norms) i22) (A norms ig))) (& (A (= norms) isg) (A norms
i7)))
— (& (A norms (V ig (7)) (V norms (A iag (— i22))))

(A (@ (A n1ge (A ni71 narr)) (V (A nige niri) norme)) (= (A (A ni71 nies)

normg)))
— (A (= (A nige (A 71 narr))) (€ norme (A nari nies)))

(A (= (A ngs (= (A (A n103 no6) m138)))) (7 (A n1ar (A (A nios nos) niss))))
— (@ (A nass (A n1o3 (A nge n141))) (V (= n145) (A nass (A nios n96))))
(A (A mags (= (A (A nes niso) (4 nrr)))) (7 (A gz (= (A (= n77) nes)))))
= (& (A (A naa7 nass) (V nrr (2 ne3))) (A nass (V nrz (= (A nes n1so)))))
(A (A (@ (A (= n218) (@ naes n120)) (A (= maes) (7 n120))) (D n21s naro)) 433)
— (A (& (V nies n2is) (V nizo (© nies ni7o))) (A dzz (S n2is nivo)))

(= (A (A (@ (A (= n2ig) (@ nies nazo)) (A (7 naes) (7 1a20))) (7 n219)) is3))

— (V (® na1s (A (@ ni12o0 n218) (B nies n218))) (B (A nies n2ig) (V naig (-

i33))))
(A (= (A (= opa) op3)) (& (A (V op3 opo) (
— (& (A op1 (= (V opa op3))) (A (V opo ops) (A ops op1)))

(A (= (A (A cto (= oc2)) (A (=) (= 0c1)))) (= (A (A ing normar) oci)))
— (V (& ing (V oc1 (& oca (— ctp)))) (B (V ing ocz) (A oci normay)))
(A (A (= (A (mina) oc1)) (= etz)) (= (A (= (A (= in1) o)) (= 0c1))))

— (A (= (V etz (B ocy iny))) (& cta (V ing ocp)))
(A (= (A (A cto norma) (A ing ing))) (= (A (A (= in1) (= cto)) (= ing))))
— (V (A cty (@ ing normy)) (V (& ing cto) (B iny ctp)))

A op1 ops)) (A op1 (= opa))))

)
(

(A (= (V (& (V oca ocg) (V ing int)) (V (B oc ocy) (@ ing iny)))) ct

— (A (A cto (@ ing (= 1m))) (= (V (® ocg in1) (D ocy ing))))

(& (A (@ naso (A n3as (A maze n333))) (© naso (A nase (7 ( )
— (@ (A n3a5 (A 326 (A niso (© nass n336)))) (© nass (A niso (- nsse))))
(A (= (A (A (= ety) cto) (Aing ing))) (= (A (A (ming) (= cto)) (7 ino))))
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— (V (V (& ing cto) (& iny cto)) (A cto ctr))
(A (A (& (® nz13 nar3) normy) (& (A (B naiz nazs) norma) (A (- naz13) (&
n23)))) nazz)
— (A (A normy nze2) (= (V ngi3 nars)))
(A (A (A ngsy (& normy (- normap))) (& (A (= (& normy (= normap)))
normig) (= normaip))) ize)
= (A (= (V normy normag)) (A iz n3s7))
(A (= (A (= (Nigin) ds) (& (V (V (—ig) i5) (A (—d8) i7)) i6))
= (@ (= (V (A (D g 1s) i7) (© 45 18))) is)
(A (& (A (V (=i7) i6) (A (—ig) 18)) i8) (= (A (A dg i7) (7 46))))
= (AN (& (A (—16) ir) dg) is)
(A (= (A (= (@ (A n1rre (A naes pios2)) (A naes (- pios2)))) (= (A nisze
Pios2)))) naz7)
= (& (A (V n1176 n1376) (A nagz (A naes pios2))) (A (V naes n1376) (A nagz (@
naes Piosz))))
(A (= (A (Avinn da0) (Adg ig))) (= (A (A i1z i11) (A (A dn 410) 79))))
= (V (A (2 (Adg i10))) (7 (A dun (V i12 48))))
(A (= (A (= (A (is2) (7ds0)) (2 (A (mie1) (7429))))) (= (A der i29)))
— (B (V (B (Visg ig2) i29) (B (— d29) i61)) P61)
(= (A (A mass (= (A (A nes nizo) (7 n77)))) (7 (A nazr (5 (A (2 nrr) nes))))))
— (& (A (A ne3 n13s) (= (V nrr naso)))

(V (V ni27 (- n1ss)) (A ne3 (- n77))))
(A (A (= (A nsaz (A nz13 n303))) (7 (A (

)

) (=

v )
A nze2 n352) n318))) (A (= ngea0) (—

12638 )

/—\\/

= (A (= (V n2640 (A 313 (A 1303 m342)))) (5 (V n2638 (A 352 (A n3e2 n318)))))
(A (= (® (V (= (A ops opa)) (V op1 opo)) op1)) (= (A (= (A opa (= op3))) op1)))
— (A (A (@ op1 op3) ops) (V (= opo) op1))
(A (A (@ (D n3i3 narg) normy) (- (® (A (® nzi3 narg) normy) (A (- nz13) (-
n273))))) ns22)
= (A (A (® (® normy ngi13) nars) na2z) (V naiz n2r3))
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(A (A (@ norms (D nies n120)) (7 (@ (A norms (B nies n120)) (A (- nieg) (—
n120))))) n226)
= (A (A (D (@ normg nies) ni120) n226) (V Ni6s n120))
(A (A (& n216 (— n119)) (= (B (A (= n215) (= naer)) (5 (A (= n2i6) (4
n119)))))) n22s)
— (A (A (® (= nai6) n119) n2s) (B (V nier n2is) ni1g))
(A (A (A ngzs (= (@ norms (- normaz)))) (@ (A (= (S norms (= normaz)))
normiz) (- normia))) isq)
— (A (A (® norms normia) isg) n3r3)
(A (= (A (& (A (V yr2 y11) (V 99 y10)) (V yo (V y10 (7 y12)))) (5 ¥13))) Y14)
= (V (A y1a (V y12 y13)) (A (V y10 99) (A Y14 y11)))
(A (= (A (= normy) (= (A n171 n166)))) (= (A normy (B niss (A nies (A nim
(— n158)))))))
= (A (& (A ni71 naes) norma) (© niss (= (A nies (A n1ss ni71)))))
(A (= (@ (Nigia) (Vi i) (A (2 (A (md2) i) (= (A (7 i) d0))))
= (A (@ d2 (0 (Vir (Do 12)))) (D ia (= (Vig (B 12 44)))))
(A (= (A (A (A opeato opr) (= opeaty)) (A ops ops))) (— (A (A (= ops) ops) (=
op1))))
— (V (A op1 (V opexty (= opextg))) (V (= ops) (@ op1 opa)))
(A (= (A (A et (7 0c2)) ing)) (= (A (= (B (Aing (= cto)) (V ing ocs))) ocz)))
— (V (A ocz (= ing)) (© oca (= (A cto ing))))
(A (= (A (= (A (= (A eta (= 0e2))) ocs)) (A (—ina) (= ocr)))) (= (A ing ocz)))
— (V (A ocg (@ iny (V ocy (7 ctr)))) (@ oca (Ving (B ocy ocy))))
(A (A (@ (= na1r) (® naes n120)) (@ (A (2 nair) (@ naes nazo)) (A (= naes) (-
n120)))) 1226)
= (A (= (V n217 nies)) (A (- ni20) n2ze))
(A (@ (A (B n313 nars) (© naie n192)) (A (- n313) (7 n2r3))) (A (D nazis nars)
(® na216 n192)))

— (A (& n192 n216) (B n313 n2r3))
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(A (AN (A (A d11 d10) (A dg ig)) (Ads i7)) (A (A d12 911) (A (A 411 t10) 99)))
S (A (A dg (A d1 i7) (A i (A iz i8)))
(A (N (A dra d1g) (A dag i12)) (A (A (A da2 411) (A 13 412)) (A (A @11 410) 9)))
— (A (Adg (A d10 114)) (A d11 (A 13 112)))
(A (= (A (N ir) (A is da))) (= (A (Adaig) (A (A ds ia) (A6 i5)))))
= (V (A6 (= (A s ia))) (= (Ads (Vi3 i7))))
(A (A (A n202 nagg) (A naag magr)) (— (A (

n149 M37))))))

V (= n165) (— normg)) (= (A niss (A

— (A (V nass (A nies normg)) (A nizz (A n202 (A n1ag n199))))
(A m203 (B (A (A na1r naso) (A naag (A nagr nass))) (A naag (& (A nair nizr)
(A m133 n130)))))
— (A (A n1a9 n203) (V (A n130 n133) (A n117 ni2r)))
(A (= (A (A ocz 0cg) (A ing ina))) (= (A (A (ming) (= oco)) (A (= ing) (=
0cz)))))
— (V (® (V oca ocy) (V ing ing)) (V (& ocy ocp) (D ing iny)))
(A (A n3e3 (B (A nzsa nseo) nast)) (& (A (D (A ngsa n3ey) nast) (A nasa n369))
(= (A m384 m369))))
— (A (D (A n3e9 n3sa) n3s7) N393)
(@ (& (A ns7 (Ad16 m59)) (A d16 (© n102 (7 n71)))) (A (B (D n1o2 (A nsr n59))
nr1) ig))
= (@ (A ns7 (A nsg (D is 116))) (D i16 (A (D is i16) (D n1o2 n71))))
(@ (A (= (@ (® nigg (A nigs nis2)) nive)) nise) (B (A nisg (A dag nis2)) (A dog
(® n199 n176)))
= (@ (A nass (A nus2 (D i23 n1s6))) (S nase
(A (= (A (A nazn (A nago m297)) (B nae7 (© na21 n120)))) (2 (A n2e3 (= (A (A

)
(A (D ni7e n1gg) (B 23 n1s6))))
n121 7”5120) 71267)))))

— (@ (= (V n2g3 (A nger (A n121 n120)))) (A n2e7 (A 121 (A ni2o (- n297)))))
(A (= (AN (= (A (md3) (md2) (0 (Adaiz))) (@ (Adr (miz)) (Vir (7o)
= (N (@2 (= (Vir (80 2)))) (B s (= (Vi3 (D 12 44)))))
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(@ (A n1gg (= (D (A ni1gs (© normeg nisg)) (S norme nisg)))) (& (A nigs (©
norme nigg)) (€& norme nigg)))
— (® (A (= n1gg) (V nigy nigs)) (V (V nigs nigg) norms))
(A (= (A (A (A (= pios2) (— piose)) (- pios1)) (7 piozr))) (5 (@ (V (V pioze
pios1) (V Pios2 Piosg)) Piozs)))
= (@ (A (V (V pios1 pios2) pioso) (© pioge Piozr)) pioar)
(A (A (= (A (2 (Nirds)) (723))) da) (= (A (A (B (—12) i6) i3) (V (7 i6) i7))))
= (A (V (A (@ 7 i3) i6) (A (D dg 12) i3)) 1a)
(A (= (A (A (A (= piosz) (7 pios)) (- piost)) (= pioar))) (= ( pioze (V (V
Ppioze pios1) (V Pios2 Piosg)))))
— (& (= (V piogg (V pios2 (V pios1 pio2r)))) (V pioze (— (V piosy (V piose
pios1)))))
(A (A (A (Adrgdag) (A das 1)) (A (A daz d11) (A das d12))) (A (A da 415) (A s
i14)))
— (A (A t1a (A d1e 112)) (A d1s (A 11 i13)))
(A (A (A (A dag dag) (A das d14)) (A (A da7 d16) (A d16 715))) (A (A d1s i17) (A d1r
i16)))
— (A (A t16 (A d1g 15)) (A 17 (A 14 013)))
(A (A (= (A (= (A opr (= opo))) (A opa (= 0p3)))) (= op2)) (= (A (= (A ops (=
op1))) ops3)))
— (A (= (V op2 (A opo (@ op3 op4)))) (® (V ops op2) (V op1 (- 0ps))))
(A (= (@ (A ety (Vocy (ming))) (V ety (Vocs (= 0cg))))) (= (A (= (Adng cty))
(= in9))))

— (& (A (A ing oc) (= (V ety ocs))) (A ety (@ ing (A ing (@ ing ocp)))))
(A (= (A (Aing ocr) cto)) (= (A (= (A (= (A (= cto) (7 0c1))) oca)) (A (= ing)
(= ct1)))))

— (& (N ing (A ocy cto)) (V (V ctr ing) (A oca (V ocy ctp))))

(@ (A (— (@ (@ (A i1 i8) i7) 115)) (A (D 116 i8) (A i17 d9))) (A (B 16 8) (A P17
i9)))
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— (N (A (D 16 18) (D i15 7)) (A d9 i17))
(@ (A n305 (B (A (D n2ea nas7) (— n254)) (7 n254))) (A 1305 (4 (D (A (© naea
nost) (7 n2sa)) (- n2s4)))))
— 1305
(@ (® (A (® niss ni7s) (A nass nis2)) (A niss (7 n1g9))) (A (& (B nagy (A
niss n152)) (A 1175 n152)) 718))
= (& (A (& niss nars) (A nas2 (@ d1s nass))) (D nass (A nigg (B i1s niss))))
(A (= (@ (A (V op1 opo) (A ops opa)) (& op1 (= (A ops opa))))) (= (A (= (A
ops (= 0p3))) op1)))
— (A (A ops (@ op1 op3)) (& opa (A op3 opo)))
(A (= (A (= 0c3) oct)) (= (@ (A (A dng ocg) (= (V oct oc3))) (A (V oco ing) (A
ocg (— 0c1))))))
= (® (@ ocs (V (V oc1 oc3) (A ing ocg))) (V (V ocy (— oc3)) (= (V ocg iny))))
(A (= (& (V piois (A pio21 (© pioor Picos))) (V piors (= (A picor Picos))))) (—
(A (A (= pio21) (= pioos)) (= picor))))

— (& (A (D pioor pio21) (D pioos Pio1s)) (V (A pioor Pio21) (A pioos piois)))
(A (= (A (A (A ops (= opo)) opa) opexto)) (= (A (& (A (A ops opexty) (A opa
opexty)) (A ops (= opa))) opo)))
= (V(® opo (= (A ops (& opo opexto)))) (= (A ops (V opexty (@ opo 0p4)))))
(A (A (= (A (@ ops opa) op2)) op1) (= (A (@ (A (V op3 opo) (A op1 opa)) (A
op1 (= op4))) (= op2))))

— (A (V op2 (= (V op3 opo))) (A op1 (& op2 (S op3 op4))))

(= (A (A (= (A (= (V opa op1)) (A opo 0p3))) (— op2)) (= (A (A (= (A (=
opexty) opa)) ops) (A op1 opo)))))

— (A (V opa (A opo ops)) (V (A opr opexty) (V op2 (— opa))))

(A (= (@ (® n3r9 (A n3s9 (D nara n254))) (A (© n3s9 (D nara n254)) N1ss))) (A
(@ (@ n3s9 (@ nor2 n2s4)) Nige) N157))

— (A (D n2sa (D nar2 (© n3s9 n1ss))) (A n1s7 (© n3re (4 (A n3s9 n1s6)))))
(A (@ (A (® (D nz12 nass) (D nie7 n1a3)) normg) (A (S nz12 nass) (O nier
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n143))) (A (@ (@ nz12 nags) (D nie7 n143)) norme))
= (A (® (D (D na2ss n143) n312) N167) NOTME)
(A (A (A mormg normg) (= (A (= (A ba b1)) (= b0)))) (= (A (= (A (= (A bs (=
b1))) (= (A ba 1)))) bo)))
— (A (A normsg (@ by (A by b1))) (A normy (V by (@ by bg))))
(A (= (& (A (= (D n1as nass)) d20) (A (@ nuas masz) i) (7 (B (A (7 (D nasg
n133)) i21) (A (B niag nis3) i5))))
= (& (A (Vid21 d20) (D naas (— n133))) (7 (A (D naas mas3) (V is i4))))
(A (= (A (= (V opa (A opo (& ops opa)))) (& (V ops op2) (V op1 (= op4))))) (=
(A (= (A ops (= 0ps))) op2)))
= (V (= (V op2 (& ops (V op1 (7 0p4))))) (A (V op2 opo) (A ops (= op3))))
(A (= (A (= (A (A (= 0pa) (= 0p3)) op1)) op2)) (= (A (= (A (A opa (€ opr ops))
(& opa (A op3 opo)))) (= 0p2))))
— (A (@ ops (V op1 (A ops opo))) (& op2 (V opa (A opz 0ps))))
(= (A (= (A (A (ming) cto) (A ing ocz))) (= (& (A (A ing cto) (= (V in1 ocp)))
(A ing (A oco (& iny oc2)))))))

— (@ (A (A ocg ing) (@ oca (V iy cto))) (A (V ocg ing) (A cto (© ing ing))))
(= (A (= (A (A ing ing) (5 oc3))) (= (A (5 (B (A (Voco ing) (A ing ocs)) (®
ocg (= (A ocp inp))))) (= ct1)))))

— (V (A oco (Aing (= ct1))) (@ ocz (V (A ety ocz) (A iny ing))))

(A (= (A (A (= ploar) (= pioos)) (A (= piois) (= pioor)))) (= (® (A (@ pigor
pio21) (® pioos Pio1s)) (V (A pioor pio21) (A Pioos Piois)))))
= (A (® piois (@ pioor (V pioos pio21))) (& (V pio1s pioz1) (V pioos pioor)))
(@ (A (& (A (D n313 nar3) (D n21e n192)) (A (7 n313) (7 n2r3))) (A (D nas
nar3) (O n216 n192))) (= (A (@ n313 n273) (D naie n192))))

—1
(A (= (® (A n207 (D n200 (7 m193))) (A (= (@ n200 (— n193))) 1153))) (B (A
n234 (@ n20o (7 n193))) (A (= (@ naoo (- n193))) M180)))

— (& (A (& n200 m193) (V mas3 (7 niso))) (V (@ naoo nags) (A nesa (7 n2o7))))
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(A (= (® (A n2o7 (@ n200 (7 1193))) (A (= (B 200 (7 n193))) nas3))) (4 (B (A
na3a (O n200 (7 1193))) (A (= (D n200 (7 n193))) n1s0))))

= (@ (= (V (@ naoo m193) (V na3a m207))) (A (© n200 193) (= (V 110 n153))))

(A (@ (A naz2 (® ma00 (7 1193))) (7 (A (= (B n200 (7 n193))) nass))) (4 (@ (A
n214 (@ n200 (- n193))) (A (= (D n2oo (- n193))) n189))))

= (@ (= (V (@ naoo n193) (V na1a m222))) (A (© n200 1193) (7 (V n1s9 n1ss))))

(A (= (A (A (= (A (m0e3) (7 0c0))) (7 0c2)) (@ (A ocr cto) (V cto (1 oc3)))))

(= (A (A (= cto) oco) (A (= ocz) (= oc1)))))

— (V (® ocp (= (A ocz (@ cty ocp)))) (B oca (A (B oc1 oca) (B ctoy oc2))))
(A (= (& (A n2s (= (& (A (7 n1g9) (V nagg nags)) (V (V nigs nigg) normar))))
(& (A (= n1g9) (V n1sg n195)) (V (V nigs nigg) normaii)))) niss)

— (A (A nass (= (V n203 n199))) (V n1gs (@ nise (- norman))))

AN (=@ (= (NN (® g dg) i) (Vi ig))) ig)) (= (A (A (= (A g i7)) ds) (= (A
(= (A (mdg) (mi7))) (—44))))))
= (A (® (A (& g i7) dg) ia) (V (- da) i7))

(A (= (® (A maz2 (® n2oo (7 n193))) (7 (A (2 (@ n200 (7 n193))) nass)))) (- (@

(A n21a (© n200 (- 1103))) (A (= (D
= (@ (A (® n200 n193) (V n1gg (— n1s5))) (V (@ n200 m193) (A n2za (7 n214))))
(= (A (= (A (= (A (= (A (= pinie) piosr)) (= (A pioss (7 Pioze))))) (= (A (=

Pi116) Pioss)))) (7 (A (A piogs (D pioze Pioss)) (V pitte (D piogs Pioze))))))

1200 (_‘ 71193))) n189))))

)
(=
(
(

— (@ (A (@ pioge pios7) (— (V pitie pioss))) (A (D piozs pioss) (V pigoa (D
Pio26 Pi116))))
(A (A (= (& (A (V op1 opo) (A ops opa)) (& op1 (= (A ops opa))))) (= op2)) (=
(@ (A op1 (= (V opa ops))) (A (V opg op3) (A ops op1)))))
= (A (= (V op2 (& op1 (B ops 0p3)))) (& (A opy ops) (A ops (= opo))))
(A (A (® nges (7 n324)) (® norms (= (A (7 nsea) (7 1324))))) (@ (A (- (@
norms (= (A (7 n364) (7 1324))))) (A (7 n3ea) (7 n324))) (7 (A (= nses) (5

n324)))))

— (/\ (—| ’I’LOT"ITL5) (/\ Nn324 n364))

113 ; H “._, 1_'.” <1811



(A (A (@ (® normy normg) normis) (& (A (& normy normg) normaiy) (A
normyg normyg))) (& (A (& (A (& normy normg) normas) (A normy normg))
(A (® normyg normg) normis)) (= (A (& normy normg) normiy))))

— (A (A normag normy) normg)

- s g kg
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