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Abstract

Parameter-Efficient Knowledge
Distillation on Transformer

Hyojin Jeon
Department of Computer Science & Engineering
The Graduate School

Seoul National University

How can we obtain a small and computationally efficient transformer model, main-
taining the performance of a large model? Transformers have shown significant per-
formance in recent years. However, their large model size, expensive computation
cost, and long inference time prohibit them to be deployed on resource-restricted
devices. Existing transformer compression methods have mainly focused on only re-
ducing an encoder although a decoder takes up most of their long inference time.
In this paper, we propose PET (Parameter-Efficient Knowledge Distillation on Trans-
former), an efficient transformer compression method reducing the size of both the
encoder and decoder. PET improves the knowledge distillation of the Transformer,
designing an efficient compressed structure of both the encoder and decoder and en-
hancing the performance of the small model through an efficient pre-training task.
Experiments show that PET succeeds in obtaining memory and time efficiencies by

81.20% and 45.20%, respectively, minimizing accuracy drop below 1%p. It outperforms



the competitors for various datasets in machine translation tasks.
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Chapter 1

Introduction

How can we compress a large Transformer model into a smaller model, maintaining the
original performance? Transformers [1] have achieved state-of-the-art performance
in the field of Natural Language Processing (NLP). They have shown their potential to
be utilized in a variety of practical applications such as language modeling, transla-
tion, and question-and-answering. These days, those applications run in various en-
vironments including mobile devices. Most mobile devices have restricted resources.
They have limited memory and poor computation abilities. Also, low energy con-
sumption and fast inference speed are important in the real world. On the contrary,
enlarging a language model and improving its performance has been the main trend
in NLP for the last few years. More and more large models have been introduced and
achieved top performance. Latest models, such as GPT-3 [2] and Megatron-Turing
NLG [3] have more than hundreds of billions of parameters. Despite their remark-
able performance, their excessive memory usage, energy consumption, and long in-
ference time prohibit them to be deployed to resource-limited devices or real-world
applications. Therefore, an efficient transformer compression method is required.
Recently, several transformer compression methods have been proposed. How-
ever, most studies have mainly focused on compressing the encoder, including BERT [4]
compression. (e.g., DistilBERT [5], TinyBERT [6], MobileBERT [7], Pea-KD [8] and
SensiMix [9]) Translation, speech recognition, and speech translations are based on

both transformer encoder and decoder. Moreover, the decoder mainly contributes to



a model’s long inference time and takes more than half of the entire model size. it is
not easy to directly apply existing BERT compression methods to compressing the
decoder since the encoder and decoder have different architectures and properties.
In most cases, significant accuracy loss is inevitable. Therefore, we need an efficient
and flexible transformer compression method that shrinks the size of the encoder and
decoder simultaneously.

In this thesis, we propose PET (Parameter-Efficient Knowledge Distillation on
Transformer), an accurate transformer compression method that reduces the model
size, computational cost, and inference time while conserving the accuracy of the
original model. Especially, PET compresses the size of both the encoder and decoder
simultaneously. PET improves a knowledge distillation on transformer optimizing
the entire process: a student model design, initialization, and training. PET finds effi-
cient pairs of modules for the encoder and decoder, respectively, and shares them to
compress the model size minimizing an accuracy loss. PET succeeds in pre-training
a student model more efficiently and enhances the model’s accuracy. Moreover, PET
shows a method to improve the model accuracy in training by optimizing the student
model’s shared layers with the most efficient parameters.

Our main contributions are as follows:

+ Algorithm. We propose PET, an efficient transformer compression method
that reduces the size of both encoder and decoder maintaining the original
performance. It optimizes the entire process of knowledge distillation: a student

model construction, initialization, and training.

+ Generality. The proposed PET does not require additional model structure or
expensive training to be applied to other tasks. It can be easily used in various

transformer-based models.



Table 1: Table of the symbols.

Symbol Description

X Vector
X i-th element of x
L; i-th Layer
Qf?elf, K,-SEH,ViSelf Query, key, and value matrices of the self-attention sub-layer in the
i-th layer

Q7"¢, K¢, V' Query, key, and value matrices of the encoder-decoder-attention
sub-layer in the i-th layer
Jio Js teacher and student model

+ Performance. The proposed PET achieves memory, computation, and infer-
ence time improvements by up to 81.20%, 80.16%, and 45.20%, while minimizing
accuracy drop under 1%p. Extensive experiments on multiple real-world lan-
guage datasets show that PET consistently achieves superior performance than
other baselines.

The rest of the thesis is organized as follows. In Chapter 2, we explain the trans-
former and multi-head attention mechanism and review existing transformer com-
pression methods based on knowledge distillation. In Chapter 3, we describe the pro-
posed algorithm PET in detail. After showing experimental results in Chapter 4, we
conclude in Chapter 5. The symbols frequently used in this thesis are summarized in

Table 1.



Chapter 2

Background and Related Works

In this chapter, we first explain the architecture of the transformer and its output
structure. We describe how encoder and decoder are different in terms of their ar-
chitecture and the input information they process (Section 2.1). We then review the
transformer compression algorithms based on knowledge distillation. We classify
them into three categories according to their compression targets: encoder-only, decoder-

only, and encoder-decoder (Section 2.2).

2.1 Transformers

Transformer [1] was introduced for sequence-to-sequence tasks such as summariza-
tion, and translation. It maps source and target sequences, like translating a source
to a target language. A transformer consists of an encoder and a decoder. The en-
coder and decoder are both a stack of identical layers where several sub-layers exist,
including multi-head attention and fully-connected feed-forward layer. You can see

the architecture of the transformer in Figure 1.

2.1.1 The Architecture of Transformer

The encoder takes an input source sequence, encodes its hidden representation, and
feeds it to a decoder. Multi-head attention in each encoder layer, called self-attention,
uses query, key, and value generated from previous encoder states. The decoder re-

ceives the encoded source information from the encoder and target information from



previous decoder states to generate a target sequence. In other words, the decoder
processes two types of data, source, and target, while the encoder processes just a
single type of source data. There are two types of multi-head attention in each de-
coder layer. The first multi-head attention is self-attention. Like the same one in the
encoder, it handles only a single type of information from the target sequence. It
takes the query, key, and value generated from the previous decoder states. The sec-
ond multi-head attention is encoder-decoder attention. As its name says, it attends to
not only the states of the previous decoder but also the output of the encoder. Its key
and value are from the encoder, whereas the query is from the decoder. As a result,
the decoder processes two types of dissimilar information from a source and target

sequence.

2.1.2 The Output Structure of Transformer

The output structure of the transformer is illustrated in Figure 2. The final output of
the transformer is a three-dimensional tensor. Each dimension represents the number
of sequences in a batch, the number of tokens in each sentence, and the number of
the target vocabulary. The model predicts the probability for each token over the
entire target vocabulary. In Figure 2, p; is the prediction probability of the token i.
The vocabulary of the largest probability is regarded as the predicted answer to the

token i and compared with the target label y;.

2.1.3 Multi-head Attention

Multi-Head Attention (MHA) implements /& heads where each computes in parallel.
MHA jointly attends to information from different subspaces with those heads. A

detailed computation of MHA is as follows:



Given query Q, key K, value V,

MultiHead(Q,K,V) = concat(head,,...,head;)

(QVVIQ\)/(g‘/VzK)T)(VVVZV) (2.1)
k

Attention(QWiQ,KWiK, VW) = softmax(

where head; = Attention(QWiQ,K wk, VVI’iV), h is the number of the attention heads,

dy is a scaling factor, and W, is the projection matrices.

2.2 Knowledge Distillation on Transformers

Knowledge distillation (KD) [10] transfers knowledge of a large and well-trained
teacher model to a smaller student model to enhance the performance of the smaller
model. Utilizing the knowledge of a trained model to improve a compressed model
is a widely known and efficient approach for the compression of various models as
well as Transformers, such as Convolution Neural Networks (e.g., FALCON [11]) and
Graph Convolution Networks (e.g., MustaD [12]). The overall process of KD is as fol-
lows: given a large and well-trained teacher model, first, we construct a small student
model and initialize it. Then, we train the student model using the predictions of the
teacher model in addition to the true labels for the target. In this section, we review
transformer compression methods based on knowledge distillation. We classify them
according to their compression targets, whether they compress only an encoder or
decoder, or both encoder and decoder. Also, we focus on how each method constructs

and initializes the smaller student model.



2.2.1 Knowledge Distillation on Transformer Encoders

Knowledge Distillation on BERT falls into this category. Patient KD [13] extracts
knowledge from the intermediate layers as well as the final prediction. It initializes
the student model by taking some layers of the teacher. DistillBERT [5] introduces
a triple loss combining task, distillation, and cosine-distance losses. It initializes the
student model by taking one of the two layers of the teacher. TinyBERT [6] distills
transformer (attention matrices and hidden states), embedding and prediction layer
at two-stage learning: general and task-specific distillation. They initialize a student
model for task-specific distillation with another student model trained at task-general
distillation. MobileBERT [7] requires a specially designed teacher model equipped
with an inverted-bottleneck structure to distill the knowledge to train the student
model. Pea-KD [8] proposes a layer-sharing and shuffling query and key matrices
of the encoder to enlarge an insufficient capacity of the student model. It generates
four new labels for given binary classification tasks using the teacher’s predictions.
It initializes the student model by pre-training with those new labels to help them
learn the teacher’s high-level knowledge. During pre-training, the student model of
Pea-KD uses a classification layer with an output size of four to classify those four
generated labels. In the KD process, the main learning objective, the student model
has to classify binary classes. Thus, it changes its pre-trained classification layer with
a smaller output size of two. Pea-KD does not use the entire pre-trained parameters
and replaces the last classification layers with non-pre-trained ones. Pea-KD has lim-
itations in that it pre-trains extra parameters to be removed and does not initialize
the exact classification layer used in the KD process. How we address this challenge

is described in Chapter 3 (Section 3.2).



2.2.2 Knowledge Distillation on Transformer Decoders

Knowledge Distillation on GPT falls into this category. However, as mentioned in
Chapter 1, much fewer works have been proposed compared to knowledge distilla-
tion on encoders. KnGPT2 [14] compresses the embedding and transformer layers
of GPT-2, using Kronecker decomposition. It uses KD to compensate for the perfor-
mance drop of the compressed model. However, a large computation cost remains
during decomposition. CAN [15] compresses self-attention and cross-attention us-
ing simplified matrix multiplication. Although it addresses the transformer neural
machine translation model consisting of an encoder and decoder, it only addresses
decoder compression. Moreover, it makes encoder deeper (from 6 to 12 layers) to
compensate for the accuracy loss caused by reducing the size of the decoder. There-

fore, there remains room for compressing the entire model.

2.2.3 Knowledge Distillation on Transformer Encoders and

Decoders

Weight Distillation [16] transfers knowledge in parameters of the teacher model
through a parameter generator. It generates parameters of the student by weight
grouping and projection. It consists of two phases: generating parameters of the stu-
dent model and training the generated student model. It requires training both param-
eter generator and student model sequentially. Thus, about twice the computational
cost for the training is inevitable. PET does not use the additional parameters for
generating a smaller model and maximizes its training efficiency by training only the
exact parameters of the target compression model. Once a target compression model

is generated, PET does not transform its structure or replaces its components.
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Figure 1: The model architecture of the transformer [1]. Transformer consists of
N layers of encoder and decoder. The encoder (left) takes a input source sequence and
feeds the output to a decoder. The decoder (right) takes an output from the encoder as
well as states of the previous decoder layer and returns the final output of the entire
model.
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Figure 2: The model output structure of the transformer. The final output of the
transformer is a tensor of three dimensions. Each dimension represents the number
of sequences in a batch, the number of tokens for each sentence, and the number of
target vocabulary. p; is the prediction probability of the model for token i. y; is the
target label for the token i.
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Chapter 3

Proposed Method

In this chapter, we propose PET, an efficient model compression method improving
the knowledge distillation of the transformer. Given a large and well-trained trans-
former model and NLP task, PET returns a compact transformer model which is
small, computationally efficient, and fast while preserving the performance of the
large model. To use each parameter more efficiently, we propose a compressed model
architecture, a model initialization method before training, and an attention head
sampling method during training. In other words, we succeed in optimizing every
step of the KD.

We attend to the following challenges to improve the KD of the transformer:

1. How can we compress both the encoder and decoder efficiently?
2. How can we initialize a student model that well adapts to a challenging task?

3. How can we improve an accuracy of the model maintaining its reduced size?
Our main ideas to solve those challenges are as follows:

1. Find replaceable pairs of modules to be shared
To construct a student model with fewer parameters maintaining the accuracy
of the given large model, we find replaceable pairs of the modules in each en-
coder and decoder, and share their parameters of them. Replaceable pair indi-
cates that the paired modules are robust to parameter sharing. The exploring

targets of PET are layers, query, key, and value matrices (Sections 3.1).

11



2. Warm-up the student with a simplified task without a model transformation
To efficiently initialize a student model to make it well adapts to the given
complicated task with fewer parameters, PET pre-trains the student with an
easier task before the KD process. To pre-train the model using the simplified
task with fewer classes than those of the original one, we propose a training
method that does not require modifying the model structure and improves the

pre-training effectiveness (Sections 3.2).

3. Sample different attention heads by layers from the extended head pool
To further optimize the compressed model, PET enlarges the size of the atten-
tion layers with more attention heads and samples efficient heads by layers

(Section 3.3).

The overall process of PET is as follows: Given a well-trained teacher model and NLP
tasks, first, we construct a smaller student model using parameter-sharing according
to replaceable pair. Once the parameter-shared model is constructed, we initialize the
student model by pre-training with simplified task. Then, we train the well-initialized
model with the original tasks. We optionally apply layer-wise attention head sam-
pling for more accuracy gain. We first describe a small student model construction
method of PET in Section 3.1. Then, we describe the pre-training process of PET in
Sections 3.2. Finally, in Section 3.3, we describe the training process of PET to obtain

a more efficient compressed model.

12



3.1 Finding Replaceable Pairs in Encoder and De-

coder

How can we construct an efficient small student model compressing both the trans-
former encoder and decoder? The motivation of replaceable pair is that there will be a
fixed parameter-pair that will not degrade accuracy when shared. We regard this pair
as replaceable pair, a module pair robust to parameter sharing, and explore it in each
encoder and decoder considering the different architectures and inputs of them. We
find pairs for layers and query, key, and value matrices in attention sub-layers. In the
case of the four-layered model, we find that a set of the layer pairs { (L, L3), (L2,L4)}
is the best compared to others such as {(L;,L,), (L3, La)}, {(L2,L3,L4)}, etc. Thus, we
share L;-L3; and L,-L4 in each encoder and decoder. For matrices, we find different
pairs of query, key, and value matrices in the encoder and decoder, respectively. First,
in the encoder, we make pairs with query and key matrices in each layer replaceable
pairs. In Figure 3, Q5! K5, 05°1f and K3 are replaced by their paired matrices,
K3 03l g5l and Q57! respectively.

Next, in the decoder, making the same pairs as the ones in the encoder degrades
the accuracy significantly. This is because, unlike the encoder, query and key matrices
are dissimilar in the decoder; as query and key are containing different information
such as source and target language. Thus, if we share the query and key as we do in the
encoder, two different contents of information conflict and disturb the model training.
Thus, we explore more similar matrices that can be shared without those problems:
queries in self-attention and encoder-decoder attention. Those matrices conserve the
accuracy when shared and reduce the number of parameters of the model. In Figure 4,

we illustrate the layer and matrix replaceable pairs on the left side. Those pairs are

13
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Figure 3: The example of the encoder of PET with four layers. 05 K?°!f and
erlf are query, key, value matrices of the self-attention in the i-th en-
coder layer. The left figure illustrates an uncompressed encoder, and the en-
coder of PET is on the right side. Note that the matrix replaceable pairs of
{(Qielf’KSSelf) (Qself Kjelf) (Kself Qself) (nglf,Qielf)} are also shared.

shared on the right. The matrix replaceable pairs of Q5!f and Q°"° in the left compress
to a Q°" in the right. In conclusion, considering that the encoder and decoder shown
different replaceable pairs and those pairs are the most similar in the encoder and
decoder, it important to design a compression rule differently for the encoder and
decoder, and consider the similarity between the modules when finding the efficient

matrix replaceable pairs.

3.2 Warm up with Simplified Task

To initialize the student that well adapts to challenging tasks efficiently, we propose a

pre-training method to warm up the student model with a simplified task. Sequence-
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Figure 4: The example of the decoder of PET with four layers. 05 K3, and
Vel are query, key, value matrices of the self-attention sub-layer in the i-th decoder
layer. Similarly, Qf"¢,K7¢, and V" are those of the encoder-decoder attention sub-
layer in the i-th decoder layer. We share (L;,L3) and (Ly,Ls). For the decoder, Q5!
and Q5 are shared and we denote the shared matrix as Q3"

to-sequence tasks can be reduced to a multi-classification task, classifying each token
over the target vocabulary. These tasks usually have a lot of classes equal to the size
of the target vocabulary. In our case, the student model has to classify each token
into 3-40K classes. It is too challenging for a student model with a small number of
parameters to classify that many classes. We make the student well prepared for the

KD and its complicated task by pre-training it with an easier task that is less chal-
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lenging enough for its small learning capacity.

In other words, we make a student model learn the knowledge step by step, starting
with a much easier task and then solving difficult tasks.

However, there is one more challenge to be solved to enhance the pre-training per-
formance. As we generate an easier task of classifying small number of classes, the
output size of the model and the number of classes become different. Thus, it is im-
possible to obtain the prediction probabilities of the student model for the generated
task. We solves it efficiently by modeling the prediction of the student.

The proposed method is different from the initialization methods in [8], in terms
of their pursuits. simplified task addresses multi-classification tasks that are too com-
plicated for the student to be trained with, thus, we simplify difficult tasks by reducing
the number of classes from large to small. However, [8] addresses binary classifica-
tion task where the student gets too simple information for the student to be trained
with, therefore, it enlarges the number of classes giving more information at the pre-
training step. We relieve the student with a fewer number of classes whereas [8] bur-
dens the model with more information. Furthermore, we additionally covers how to
pre-train the student model with the generated pre-training dataset more efficiently.

Warming up with a simplified task consists of two steps: generating pre-training
labels of the simplified task and modeling the prediction probabilities of the student

model for generated labels. We describe each step at Section 3.2.1 and 3.2.2.

3.2.1 Simplified task by Reducing the Number of Target
Classes
To generate an easier task, we reduce the number of classes that the model has to

classify. In [8], it uses the teacher’s prediction of the original task to generate the pre-

16



Table 2: The label assigning rules for the teacher’s predictions. We classify the
prediction of the teacher into four classes.

Class ‘ Condition
Confidently correct argmax(f;(x;)) = y; and max(f;(x;)) > €
Correct, but not confident | argmax(f;(x;)) = y and max(f;(x;)) < €
Confidently wrong argmax(f;(x;)) # y; and max(f;(x;)) > €
Wrong, but not confident | argmax(f;(x;)) # y; and max(f;(x;)) < &

training dataset. We use the same approach, modifying it for sequence-to-sequence
tasks. We classify the teacher’s prediction f;(x;) of each token x; into four classes.
The detailed rule for assigning a label for each data instance is described in Table 2.
yi is the target label for the token x; and € is the hyper-parameter for the model’s

confidence in its answer.

3.2.2 Modeling the Prediction Probabilities to Simplified
Task Labels

We pre-train the student model with the generated pre-training dataset in Section 3.2.1.

However, there is one more challenge. The output size of the student model does not
match the number of classes because we reduce it to four. Figure 5 shows this mis-
match. It is not possible to obtain the prediction probability of the student model
for simplified task labels. There are two naive solutions to solve this: reduce the out-
put size of the model from the number of target classes to 4, or adopt an additional
projection layer that maps the output vector of the model into 4-dimensional space.
These two naive solutions still have limitations in that they change the structure of
the model by reducing the output layer size or applying an additional layer. They use
different model structures for pre-training and KD and fail to efficiently leverage the

pre-trained parameters in KD. That is, they use modified pre-trained knowledge as

17



they use different student model structures in KD from the one in the pre-training
process. To use the student model as it pre-trained without any modification in its
structure and maximize the effect of the pre-training, we model the prediction prob-
abilities to the simplified labels: confidently correct, correct but not confident, confi-
dently wrong, and wrong but not confident. How we compute P(confidently correct)

is as follows:

P(confidently correct) = P(confident | correct)P(correct) (3.1)

We define P(confident | correct) and P(correct) as follows:

P(confident | correct) = max(o(fy(x;)))

(3.2)
P(correct) = fy(xi)y,
where G is the activation function.
Then, we get P(confidently correct) as follows:
P(confidently correct) = max(c(fs(x;))) fs(xi)y; (3.3)

P(correct, but not confident), P(confidently wrong), P(wrong, but not confident)

follows the same rule. Because we model the prediction and do not modify the struc-
ture of the model in pre-training, we can directly use the same structure in KD with-
out any modification. The right side of Figure 5 shows this. PET does not require an
additional process for KD, such as replacing the classification layer or detaching the

projection layer as naive solutions do.
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Figure 5: The example of the pre-training method PET with four layers. The
number of simplified labels is much smaller than the output size of the model (In
this case, 4 vs. 6632). Instead of modifying the model’s structure to match the output
size of the model with the size of the simplified labels, we model predictions of the
model to the simplified labels. As we do not modify the structure, we can use the
same parameters in the KD process.

3.3 Layer-wise Attention Head Sampling

To further improve the accuracy of the compressed model, we propose a method to
optimize each shared layer with efficient attention heads. As we mentioned in Sec-
tion 2.1, outputs of each attention head are concatenated to generate the final out-
put of the multi-head-attention. We select more efficient heads among them by layer
and compose each multi-head attention layer with the most accurate set of attention
heads. Each layer becomes more optimized maintaining the number of parameters of

the entire model. We find that if we use different heads between the shared layers,
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Figure 6: The example of the layer-wise attention head sampling. Wider stu-
dent (Left) has eight attention heads where the size is equal to that of the tar-
get student. We sample four efficient heads per layer and construct a new target
model (Right). Un-sampled attention heads are erased with an X mark, and only half
of the heads move to the target student on the right.

the expressiveness of the model increases. However, there is a trade-off between the
model size and accuracy gain when we select different heads in shared layers. If ev-
ery shared layer select different heads from those in their paired layers, the number
of the parameters remains the same for the worst case. Therefore, we use the idea of
layer-wise attention head sampling as an optional technique for the proposed method,
when the high accuracy is essential even with the possibility that the compression
rate may be low.

In Figure 6, our compression target model is a four layer transformer model with
four attention heads for all multi-head attention layers. We first train a wider student
with more than four attention heads (in this case, eight heads). We apply replaceable
pair and simplified task to train an accurate wider student. The wider student has
the same size of attention heads as one of the target model’s attention heads. We
sample four heads by layers according to the magnitude of each head and fine-tune

the sampled target model.

20



Chapter 4

Experiments

We perform experiments to answer the following questions:
Q1. Translation accuracy. How accurate is PET compared to the competitors?
(Section 4.2)

Q2. Translation speed. How fast is PET compared to the competitors? (Section 4.3)

Q3. Effectiveness of each module. How do replaceable pair, simplified task, and
layer-wise attention head sampling affect the accuracy of PET? (Sections 4.4,

4.5, and 4.6)

Q4. Sensitivity analysis. How much does the beam size affect the accuracy of

PET? (Section 4.7)

4.1 Experimental Settings

4.1.1 Dataset

We evaluate PET on neural machine translation tasks with four datasets, IWSLT 14
DE« EN, and WMT’17 EN«+{FI, LV}. Detailed statistics of these datasets are sum-
marized in Table 3. We download and preprocess IWSLT 14 following the implemen-
tation of Fairseq [17]. For WMT17 datasets, we use the official preprocessed version
from WMT17 website!, and apply the same preprocessing rule as we use for IWSLT 14

dataset.
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Table 3: The summary of the datasets.

Dataset ’ Lang. #classes #sent. #tokens
worupeon | B P
e | B GE  a
wromons | B B0 DN o

4.1.2 Competitors

We compare PET with three competitors, Transformer-base [1], Patient KD [13], and
CAN [15]. Transformer-base is a compression target for PET and other competitors
(baseline). We implement PET and other competitors based on the open-source im-

plementation [17] of the Transformer model.

4.1.3 Evaluation Metric

We use the BLEU score as an evaluation metric for accuracy, and sentence throughput
for inference speed. Sentence throughput represents how many sentences the model
process per second, and compression rate represents how many parameters are left
compared to the original model. We include only the parameters in the transformer
layer except those of the embedding layers to compute the compression rate. We run
our experiments on a single machine with GeForce RTX 3090. For a fair comparison of

inference speed, we have a break between each experiment to cool down the machine.

'http://dl.fbaipublicfiles.com/fairseq/data/iwslt14
Zhttps://data.statmt.org/wmt17/translation-task /preprocessed
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Figure 7: The translation accuracy and speed of the IWSLT’14 DE<EN. PET
shows the best BLEU performance in terms of both accuracy and inference speed. Es-
pecially, PET shows consistently high accuracy to the compression rate, while others
show a significant accuracy drop as the number of the remaining parameters goes
down.

4.2 Translation Accuracy of PET

We compare the translation accuracy of PET and competitors (Transformer, Patient-
KD, and CAN). We set the model size the same to PET, Patient KD, and CAN. If it is
difficult to compress the model size exactly the same, we set the size of PET smaller
than others. Then we compare the BLEU score for each dataset.

Figure 7 (a) shows the comparison results for the accuracy of IWSLT 14 DE-EN,
translating German to English. PET achieves the best BLEU score with the same or
even less number of parameters. PET reduces the size of the transformer base model
to 9.52% with an accuracy drop under 1%p (BLEU score loss: 0.27). Table 4 shows
the Comparison of the BLEU score on the entire dataset. For all language pairs, PET

achieves the best accuracy with the same or smaller size of the model. As we can see

23



Table 4: Comparison of the BLEU score [%]. ABLEU denotes the accuracy drop
of the BLEU score compared to the baseline model. PET achieves the highest BLEU

score with the same or smaller model size, for all datasets.

Task ‘ Model ‘ Comp. rate (%) BLEU ABLEU
Baseline 100  34.63 -
Patient-KD 9.88 33.24 1.39
; 2
IWSLT'14 DEEN CAN 9.52 31.15 3.48
PET (proposed) 9.51 34.36 0.27
Baseline 100  29.41 -
Patient-KD 9.60 27.50 2.47
, 2
IWSLT14 EN=DE™ | o\ N 1045  26.94 1.91
PET (proposed) 9.50 28.71 0.70
Baseline 100  14.76 -
Patient-KD 23.55 11.76 3.00
) 3
WMT'17 EN—FI CAN 23.29 11.64 3.12
PET (proposed) 23.28 12.23 2.53
Baseline 100  17.04 -
Patient-KD 7.13 13.63 3.41
, 3
WMT17 EN=LV CAN 5.79 13.35 5.01
PET (proposed) 4.97 15.03 2.29

in the case of translating English to Latvian, which has the largest number of target
classes, the compressed models tend to have more difficulties in processing a classifi-
cation task with a larger number of classes. PET shows it is robust to challenging tasks
and datasets with many classes. This is because it is pre-trained with simplified task
and made well-adapt to complicate tasks classifying over 30K number of classes. In

summary, PET is an accurate and memory-efficient transformer compression method.
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4.3 Translation Speed of PET

We compare the translation speed of PET and competitors on IWSLT 14 DE<+EN
dataset. Figure 7(b) shows the results. We fix the size of the compression model the
same as Figure 7(a) and compare the inference speed. PET shows the fastest perfor-
mance processing 45.15% more sentences than baseline with only 0.27%p of accuracy
drop and 10.19% faster than the slowest one with 1.12%p better accuracy. In summary,

PET is an accurate and fast transformer compression method.

4.4 Effectiveness of Replaceable Pair

To verify the effect of the replaceable pair on the model accuracy, we evaluate the
performance of PET on IWSLT 14 DE-EN with different sets of replaceable pair in
the decoder. We fix the model size and change the pair sets of replaceable pair, and
compare the BLUE score. Table 5 shows proposed replaceable pair achieves the best
BLEU score with the same model size. How we pair the matrices have a significant
influence on the accuracy. Unlike replaceable pair of {(Q%®!f, K5°1f)} enhance the
performance of the encoder when shared, sharing those pairs ruin the performance
of the decoder. This is because as we mentioned in 2.1, query and key contain differ-
ent information about the source and target sequence. Therefore, sharing queries and
keys disturbs the model learning by mixing different properties of data, like mixing
two different languages and forcing the student to learn both of them simultaneously
in translation tasks. In conclusion, it is important to compress the encoder and de-
coder, respectively considering their different properties such as similarities between

modules.
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Table 5: Comparison of the BLEU score [%] according to various replaceable
pair. ABLEU is the accuracy drop of the BLEU score compared to the proposed PET.
The accuracy of the model changes according to shared modules, and the proposed
pair preserve the performance of the decoder the most. Accuracy loss from sharing
0% and K5 is serious unlike it was efficient for the encoder.

Set of pairs | BLEU ABLEU
{(@°**, 0°)} (proposed) | 3469 :
{(Q°eE, Koe1f)} | 31.02 3.67
{(K®e1E, yselt) (gene, yenc)) ‘ 34.02 0.49

Table 6: Comparison of the BLEU score [%] according to w./w.o., simplified
task pre-training. ABLEU is the accuracy drop of the BLEU score compared to the
proposed PET. The accuracy of the model increase for PET with simplified train-
ing. Pre-training with a simplified task makes the student model warmed up for the
teacher’s challenging task.

Condition | BLEU ABLEU

PET with simplified task pre-training (proposed) ‘ 34.69 -

PET without simplified task pre-training ‘ 34.39 -0.3

4.5 Effectiveness of Simplified Task

To evaluate how simplified task pre-training enhances the accuracy, we did two ex-
periments. First, we evaluate how much simplified task affects the student model’s
accuracy. We compare the BLEU score of the model with and without simplified task
pre-training. We set the other conditions identically. Table 6 shows that the student
model well-adapt to the original challenging task at the KD process after being trained
with an easier task. By learning simplified task, they can be efficiently initialized and
on a better starting point.

Second, to verify how efficient our pre-training method is, we compare PET with
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Table 7: Comparison of the BLEU score [%] according to pre-training meth-
ods. Pre-training method of PET succeeds in achieving the best BLUE score, by mak-
ing the student model fully leverage the pre-trained parameters at the KD.

Model | Method | BLEU (%)
PET (proposed) ‘ Compute the model predictions ’ 34.69
Reduce the dimension of the output layer 33.19

Nai luti s oot
alve SOTHONS | 1se an additional projection layer 34.29

naive solutions requiring the model structure modification. Given a simplified task
of classifying only four classes for pre-training, German to English translation task
classifying each token into 6632 classes, and the student model with the output size
of 6632, PET and naive solutions pre-train the student with the simplified task to
improve the accuracy of the student for the challenging task. We compare the BLEU
score of each student model pre-trained by PET and naive solutions, respectively.
Table 7 shows the results. As we proposed, learning simplified task without modifying
the model architecture improves the pre-training performance. The student uses the

pre-trained knowledge more efficiently in the KD process and obtains better accuracy.

4.6 Effectiveness of Layer-wise Attention Head Sam-
pling

To evaluate how layer-wise attention head sampling enhances the accuracy, we com-
pare the BLEU score of the model with and without layer-wise attention head sam-
pling. Tables 8 shows the results. layer-wise attention head sampling optimizes the
model by sampling efficient attention heads with the same number of the parame-
ters which participates in the model prediction. Note that we mark the pruned heads

as zero. Therefore, the actual number of the parameters of the PET with layer-wise
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attention head sampling model are slightly more than that of the vanilla PET model.

Table 8: Comparison of the BLEU score [%] according to use of layer-wise at-
tention head sampling. ABLEU is the accuracy drop in terms of BLEU score com-
pared to the proposed PET. PET with layer-wise attention head sampling achieves
better performance than vanilla PET. Layer-wise attention head sampling optimizes
each layer of the student model by sampling the most efficient attention heads for
each layer and succeeds in improving the accuracy.

Model | BLEU ABLEU
PET | 34.69 -
PET + layer-wise attention head sampling ‘ 34.90 0.21

4.7 Sensitivity Analysis

To analyze how the accuracy change according to the beam size, we compare the
BLEU score with different beam sizes. We use the WMT 17 EN<LV dataset. Trans-
lating English to Latvian is regarded as the most challenging task in our experiments
in that it has the largest number of classes. Figure 8 shows the results. As the beam
size decrease from 10 to 1, PET shows consistent accuracy while others show signif-
icant fluctuations in their accuracy. Especially with the beam size decreasing from 5
to 1, other methods show considerable degradations in their BLEU scores. However,
PET slightly loses its accuracy. Even the uncompressed model shows more varying
performance than PET. In conclusion, PET is robust to the beam sizes and shows a

consistent performance.
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Chapter 5

Conclusion

We propose PET, an efficient transformer compression method reducing both the en-
coder and decoder. PET finds pairs of layers and matrices that are robust to parameter-
sharing, and reduces the size of the model minimizing the accuracy loss. PET pro-
poses a method to pre-train the student model more efficiently without modifying the
structure of the model, and improves the pre-training performance. PET succeeds in
achieving the memory efficiency and speed gain by up to 81.20% and 45.20%, respec-
tively, with a small accuracy drop under 1%p for the English to German and German
to English translation model. For future work, we will validate PET on various tasks
including speech translation and multilingual translation. We will also study more

delicate rules for sampling the attention heads.
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