

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

파라미터효율적인트랜스포머지식증류

Parameter-E󰎏cient Knowledge Distillation on
Transformer

2023년 2월

서울대학교대학원

컴퓨터공학부

전효진

파라미터효율적인트랜스포머지식증류

Parameter-E󰎏cient Knowledge Distillation on
Transformer

지도교수강유

이논문을공학석사학위논문으로제출함

2022년 11월

서울대학교대학원

컴퓨터공학부

전효진

전효진의석사학위논문을인준함

2022년 12월

위 원 장 문봉기 (인)

부 위 원 장 강 유 (인)

위 원 이상구 (인)

Abstract

Parameter-E󰎏cient Knowledge
Distillation on Transformer

Hyojin Jeon
Department of Computer Science & Engineering

󰓃e Graduate School
Seoul National University

How can we obtain a small and computationally e󰎏cient transformer model, main-

taining the performance of a large model? Transformers have shown signi󰎓cant per-

formance in recent years. However, their large model size, expensive computation

cost, and long inference time prohibit them to be deployed on resource-restricted

devices. Existing transformer compression methods have mainly focused on only re-

ducing an encoder although a decoder takes up most of their long inference time.

In this paper, we propose PET (Parameter-E󰎏cient Knowledge Distillation on Trans-

former), an e󰎏cient transformer compression method reducing the size of both the

encoder and decoder. PET improves the knowledge distillation of the Transformer,

designing an e󰎏cient compressed structure of both the encoder and decoder and en-

hancing the performance of the small model through an e󰎏cient pre-training task.

Experiments show that PET succeeds in obtaining memory and time e󰎏ciencies by

81.20% and 45.20%, respectively, minimizing accuracy drop below 1%p. It outperforms

i

the competitors for various datasets in machine translation tasks.

Keywords : Model Compression, Transformer, Knowledge Distillation

Student Number : 2021-24350

ii

Contents

I. Introduction . 1

II. Background and Related Works . 4

2.1 Transformers . 4

2.1.1 󰓃e Architecture of Transformer 4

2.1.2 󰓃e Output Structure of Transformer 5

2.1.3 Multi-head A󰿣ention . 5

2.2 Knowledge Distillation on Transformers 6

2.2.1 Knowledge Distillation on Transformer Encoders 7

2.2.2 Knowledge Distillation on Transformer Decoders 8

2.2.3 Knowledge Distillation on Transformer Encoders and Decoders 8

III. Proposed Method . 11

3.1 Finding Replaceable Pairs in Encoder and Decoder 13

3.2 Warm up with Simpli󰎓ed Task . 14

3.2.1 Simpli󰎓ed task by Reducing the Number of Target Classes . . 16

3.2.2 Modeling the Prediction Probabilities to Simpli󰎓ed Task Labels 17

3.3 Layer-wise A󰿣ention Head Sampling 19

IV. Experiments . 21

4.1 Experimental Se󰿣ings . 21

4.1.1 Dataset . 21

4.1.2 Competitors . 22

iii

4.1.3 Evaluation Metric . 22

4.2 Translation Accuracy of PET . 23

4.3 Translation Speed of PET . 25

4.4 E󰎎ectiveness of Replaceable Pair . 25

4.5 E󰎎ectiveness of Simpli󰎓ed Task . 26

4.6 E󰎎ectiveness of Layer-wise A󰿣ention Head Sampling 27

4.7 Sensitivity Analysis . 28

V. Conclusion . 30

References . 31

Abstract in Korean . 33

iv

List of Figures

Figure 1. 󰓃e model architecture of the transformer. 9

Figure 2. 󰓃e model output structure of the transformer. 10

Figure 3. 󰓃e example of the encoder of PET with four layers. 14

Figure 4. 󰓃e example of the decoder of PET with four layers. 15

Figure 5. 󰓃e example of the pre-training method of PET with four layers. 19

Figure 6. 󰓃e example of the layer-wise a󰿣ention head sampling. 20

Figure 7. 󰓃e translation accuracy and speed of the IWSLT’14 DE↔EN. . 23

Figure 8. 󰓃e translation accuracy according to the beam size. 29

v

List of Tables

Table 1. Table of the symbols. 3

Table 2. 󰓃e label assigning rules for the teacher’s predictions. 17

Table 3. 󰓃e summary of the datasets. 22

Table 4. Comparison of the BLEU score . 24

Table 5. Comparison of the BLEU score according to various replaceable

pair. 26

Table 6. Comparison of the BLEU score according to w./w.o., simpli󰎓ed

task pre-training. 26

Table 7. Comparison of the BLEU score according to pre-training methods. 27

Table 8. Comparison of the BLEU score according to use of layer-wise at-

tention head sampling. 28

vi

Chapter 1

Introduction

How can we compress a large Transformer model into a smaller model, maintaining the

original performance? Transformers [1] have achieved state-of-the-art performance

in the 󰎓eld of Natural Language Processing (NLP).󰓃ey have shown their potential to

be utilized in a variety of practical applications such as language modeling, transla-

tion, and question-and-answering. 󰓃ese days, those applications run in various en-

vironments including mobile devices. Most mobile devices have restricted resources.

󰓃ey have limited memory and poor computation abilities. Also, low energy con-

sumption and fast inference speed are important in the real world. On the contrary,

enlarging a language model and improving its performance has been the main trend

in NLP for the last few years. More and more large models have been introduced and

achieved top performance. Latest models, such as GPT-3 [2] and Megatron-Turing

NLG [3] have more than hundreds of billions of parameters. Despite their remark-

able performance, their excessive memory usage, energy consumption, and long in-

ference time prohibit them to be deployed to resource-limited devices or real-world

applications. 󰓃erefore, an e󰎏cient transformer compression method is required.

Recently, several transformer compression methods have been proposed. How-

ever, most studies havemainly focused on compressing the encoder, including BERT [4]

compression. (e.g., DistilBERT [5], TinyBERT [6], MobileBERT [7], Pea-KD [8] and

SensiMix [9]) Translation, speech recognition, and speech translations are based on

both transformer encoder and decoder. Moreover, the decoder mainly contributes to

1

a model’s long inference time and takes more than half of the entire model size. it is

not easy to directly apply existing BERT compression methods to compressing the

decoder since the encoder and decoder have di󰎎erent architectures and properties.

In most cases, signi󰎓cant accuracy loss is inevitable. 󰓃erefore, we need an e󰎏cient

and 󰎐exible transformer compression method that shrinks the size of the encoder and

decoder simultaneously.

In this thesis, we propose PET (Parameter-E󰎏cient Knowledge Distillation on

Transformer), an accurate transformer compression method that reduces the model

size, computational cost, and inference time while conserving the accuracy of the

original model. Especially, PET compresses the size of both the encoder and decoder

simultaneously. PET improves a knowledge distillation on transformer optimizing

the entire process: a student model design, initialization, and training. PET 󰎓nds e󰎏-

cient pairs of modules for the encoder and decoder, respectively, and shares them to

compress the model size minimizing an accuracy loss. PET succeeds in pre-training

a student model more e󰎏ciently and enhances the model’s accuracy. Moreover, PET

shows a method to improve the model accuracy in training by optimizing the student

model’s shared layers with the most e󰎏cient parameters.

Our main contributions are as follows:

• Algorithm. We propose PET, an e󰎏cient transformer compression method

that reduces the size of both encoder and decoder maintaining the original

performance. It optimizes the entire process of knowledge distillation: a student

model construction, initialization, and training.

• Generality. 󰓃e proposed PET does not require additional model structure or

expensive training to be applied to other tasks. It can be easily used in various

transformer-based models.

2

Table 1: Table of the symbols.

Symbol Description

x Vector
xi i-th element of x
Li i-th Layer

Qself
i , Kself

i ,V self
i 󲪞ery, key, and value matrices of the self-a󰿣ention sub-layer in the

i-th layer
Qenc

i , Kenc
i , V enc

i 󲪞ery, key, and value matrices of the encoder-decoder-a󰿣ention
sub-layer in the i-th layer

ft , fs teacher and student model

• Performance. 󰓃e proposed PET achieves memory, computation, and infer-

ence time improvements by up to 81.20%, 80.16%, and 45.20%, while minimizing

accuracy drop under 1%p. Extensive experiments on multiple real-world lan-

guage datasets show that PET consistently achieves superior performance than

other baselines.

󰓃e rest of the thesis is organized as follows. In Chapter 2, we explain the trans-

former and multi-head a󰿣ention mechanism and review existing transformer com-

pression methods based on knowledge distillation. In Chapter 3, we describe the pro-

posed algorithm PET in detail. A󰎗er showing experimental results in Chapter 4, we

conclude in Chapter 5.󰓃e symbols frequently used in this thesis are summarized in

Table 1.

3

Chapter 2

Background and Related Works

In this chapter, we 󰎓rst explain the architecture of the transformer and its output

structure. We describe how encoder and decoder are di󰎎erent in terms of their ar-

chitecture and the input information they process (Section 2.1). We then review the

transformer compression algorithms based on knowledge distillation. We classify

them into three categories according to their compression targets: encoder-only, decoder-

only, and encoder-decoder (Section 2.2).

2.1 Transformers

Transformer [1] was introduced for sequence-to-sequence tasks such as summariza-

tion, and translation. It maps source and target sequences, like translating a source

to a target language. A transformer consists of an encoder and a decoder. 󰓃e en-

coder and decoder are both a stack of identical layers where several sub-layers exist,

including multi-head a󰿣ention and fully-connected feed-forward layer. You can see

the architecture of the transformer in Figure 1.

2.1.1 󰓃e Architecture of Transformer

󰓃e encoder takes an input source sequence, encodes its hidden representation, and

feeds it to a decoder. Multi-head a󰿣ention in each encoder layer, called self-a󰿣ention,

uses query, key, and value generated from previous encoder states. 󰓃e decoder re-

ceives the encoded source information from the encoder and target information from

4

previous decoder states to generate a target sequence. In other words, the decoder

processes two types of data, source, and target, while the encoder processes just a

single type of source data. 󰓃ere are two types of multi-head a󰿣ention in each de-

coder layer. 󰓃e 󰎓rst multi-head a󰿣ention is self-a󰿣ention. Like the same one in the

encoder, it handles only a single type of information from the target sequence. It

takes the query, key, and value generated from the previous decoder states. 󰓃e sec-

ond multi-head a󰿣ention is encoder-decoder a󰿣ention. As its name says, it a󰿣ends to

not only the states of the previous decoder but also the output of the encoder. Its key

and value are from the encoder, whereas the query is from the decoder. As a result,

the decoder processes two types of dissimilar information from a source and target

sequence.

2.1.2 󰓃e Output Structure of Transformer

󰓃e output structure of the transformer is illustrated in Figure 2. 󰓃e 󰎓nal output of

the transformer is a three-dimensional tensor. Each dimension represents the number

of sequences in a batch, the number of tokens in each sentence, and the number of

the target vocabulary. 󰓃e model predicts the probability for each token over the

entire target vocabulary. In Figure 2, pi is the prediction probability of the token i.

󰓃e vocabulary of the largest probability is regarded as the predicted answer to the

token i and compared with the target label yi.

2.1.3 Multi-head Attention

Multi-Head A󰿣ention (MHA) implements h heads where each computes in parallel.

MHA jointly a󰿣ends to information from di󰎎erent subspaces with those heads. A

detailed computation of MHA is as follows:

5

Given query Q, key K, value V ,

MultiHead(Q,K,V) = concat(head1, . . . ,headh)

Attention(QW Q
i ,KW K

i ,VWV
i) = softmax(

(QW Q
i)(KW K

i)T
√

dk
)(VWV

i)

(2.1)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i), h is the number of the a󰿣ention heads,

dk is a scaling factor, and Wi is the projection matrices.

2.2 Knowledge Distillation on Transformers

Knowledge distillation (KD) [10] transfers knowledge of a large and well-trained

teacher model to a smaller student model to enhance the performance of the smaller

model. Utilizing the knowledge of a trained model to improve a compressed model

is a widely known and e󰎏cient approach for the compression of various models as

well as Transformers, such as Convolution Neural Networks (e.g., FALCON [11]) and

Graph Convolution Networks (e.g., MustaD [12]).󰓃e overall process of KD is as fol-

lows: given a large and well-trained teacher model, 󰎓rst, we construct a small student

model and initialize it.󰓃en, we train the student model using the predictions of the

teacher model in addition to the true labels for the target. In this section, we review

transformer compression methods based on knowledge distillation. We classify them

according to their compression targets, whether they compress only an encoder or

decoder, or both encoder and decoder. Also, we focus on how each method constructs

and initializes the smaller student model.

6

2.2.1 Knowledge Distillation on Transformer Encoders

Knowledge Distillation on BERT falls into this category. Patient KD [13] extracts

knowledge from the intermediate layers as well as the 󰎓nal prediction. It initializes

the student model by taking some layers of the teacher. DistillBERT [5] introduces

a triple loss combining task, distillation, and cosine-distance losses. It initializes the

student model by taking one of the two layers of the teacher. TinyBERT [6] distills

transformer (a󰿣ention matrices and hidden states), embedding and prediction layer

at two-stage learning: general and task-speci󰎓c distillation. 󰓃ey initialize a student

model for task-speci󰎓c distillationwith another student model trained at task-general

distillation. MobileBERT [7] requires a specially designed teacher model equipped

with an inverted-bo󰿣leneck structure to distill the knowledge to train the student

model. Pea-KD [8] proposes a layer-sharing and shu󰎒ing query and key matrices

of the encoder to enlarge an insu󰎏cient capacity of the student model. It generates

four new labels for given binary classi󰎓cation tasks using the teacher’s predictions.

It initializes the student model by pre-training with those new labels to help them

learn the teacher’s high-level knowledge. During pre-training, the student model of

Pea-KD uses a classi󰎓cation layer with an output size of four to classify those four

generated labels. In the KD process, the main learning objective, the student model

has to classify binary classes.󰓃us, it changes its pre-trained classi󰎓cation layer with

a smaller output size of two. Pea-KD does not use the entire pre-trained parameters

and replaces the last classi󰎓cation layers with non-pre-trained ones. Pea-KD has lim-

itations in that it pre-trains extra parameters to be removed and does not initialize

the exact classi󰎓cation layer used in the KD process. How we address this challenge

is described in Chapter 3 (Section 3.2).

7

2.2.2 Knowledge Distillation on Transformer Decoders

Knowledge Distillation on GPT falls into this category. However, as mentioned in

Chapter 1, much fewer works have been proposed compared to knowledge distilla-

tion on encoders. KnGPT2 [14] compresses the embedding and transformer layers

of GPT-2, using Kronecker decomposition. It uses KD to compensate for the perfor-

mance drop of the compressed model. However, a large computation cost remains

during decomposition. CAN [15] compresses self-a󰿣ention and cross-a󰿣ention us-

ing simpli󰎓ed matrix multiplication. Although it addresses the transformer neural

machine translation model consisting of an encoder and decoder, it only addresses

decoder compression. Moreover, it makes encoder deeper (from 6 to 12 layers) to

compensate for the accuracy loss caused by reducing the size of the decoder. 󰓃ere-

fore, there remains room for compressing the entire model.

2.2.3 KnowledgeDistillation onTransformerEncoders and
Decoders

Weight Distillation [16] transfers knowledge in parameters of the teacher model

through a parameter generator. It generates parameters of the student by weight

grouping and projection. It consists of two phases: generating parameters of the stu-

dentmodel and training the generated studentmodel. It requires training both param-

eter generator and student model sequentially. 󰓃us, about twice the computational

cost for the training is inevitable. PET does not use the additional parameters for

generating a smaller model and maximizes its training e󰎏ciency by training only the

exact parameters of the target compression model. Once a target compression model

is generated, PET does not transform its structure or replaces its components.

8

Figure 1:󰓃emodel architecture of the transformer [1]. Transformer consists of
N layers of encoder and decoder.󰓃e encoder (le󰎗) takes a input source sequence and
feeds the output to a decoder.󰓃e decoder (right) takes an output from the encoder as
well as states of the previous decoder layer and returns the 󰎓nal output of the entire
model.

9

decoder dim
(#target sequence voca)

batch size
(#sequences)

#target
tokens

batch size
(#sequences)

#target
tokens

< model output > < target label >
: prediction probability for token i
: target label for token i

Figure 2:󰓃e model output structure of the transformer.󰓃e 󰎓nal output of the
transformer is a tensor of three dimensions. Each dimension represents the number
of sequences in a batch, the number of tokens for each sentence, and the number of
target vocabulary. pi is the prediction probability of the model for token i. yi is the
target label for the token i.

10

Chapter 3

Proposed Method

In this chapter, we propose PET, an e󰎏cient model compression method improving

the knowledge distillation of the transformer. Given a large and well-trained trans-

former model and NLP task, PET returns a compact transformer model which is

small, computationally e󰎏cient, and fast while preserving the performance of the

large model. To use each parameter more e󰎏ciently, we propose a compressed model

architecture, a model initialization method before training, and an a󰿣ention head

sampling method during training. In other words, we succeed in optimizing every

step of the KD.

We a󰿣end to the following challenges to improve the KD of the transformer:

1. How can we compress both the encoder and decoder e󰎏ciently?

2. How can we initialize a student model that well adapts to a challenging task?

3. How can we improve an accuracy of the model maintaining its reduced size?

Our main ideas to solve those challenges are as follows:

1. Find replaceable pairs of modules to be shared

To construct a student model with fewer parameters maintaining the accuracy

of the given large model, we 󰎓nd replaceable pairs of the modules in each en-

coder and decoder, and share their parameters of them. Replaceable pair indi-

cates that the paired modules are robust to parameter sharing. 󰓃e exploring

targets of PET are layers, query, key, and value matrices (Sections 3.1).

11

2. Warm-up the student with a simpli󰎓ed task without a model transformation

To e󰎏ciently initialize a student model to make it well adapts to the given

complicated task with fewer parameters, PET pre-trains the student with an

easier task before the KD process. To pre-train the model using the simpli󰎓ed

task with fewer classes than those of the original one, we propose a training

method that does not require modifying the model structure and improves the

pre-training e󰎎ectiveness (Sections 3.2).

3. Sample di󰎎erent a󰿣ention heads by layers from the extended head pool

To further optimize the compressed model, PET enlarges the size of the a󰿣en-

tion layers with more a󰿣ention heads and samples e󰎏cient heads by layers

(Section 3.3).

󰓃e overall process of PET is as follows: Given a well-trained teacher model and NLP

tasks, 󰎓rst, we construct a smaller student model using parameter-sharing according

to replaceable pair. Once the parameter-shared model is constructed, we initialize the

student model by pre-training with simpli󰎓ed task.󰓃en, we train the well-initialized

model with the original tasks. We optionally apply layer-wise a󰿣ention head sam-

pling for more accuracy gain. We 󰎓rst describe a small student model construction

method of PET in Section 3.1. 󰓃en, we describe the pre-training process of PET in

Sections 3.2. Finally, in Section 3.3, we describe the training process of PET to obtain

a more e󰎏cient compressed model.

12

3.1 Finding Replaceable Pairs in Encoder and De-
coder

How can we construct an e󰎏cient small student model compressing both the trans-

former encoder and decoder?󰓃e motivation of replaceable pair is that there will be a

󰎓xed parameter-pair that will not degrade accuracy when shared. We regard this pair

as replaceable pair, a module pair robust to parameter sharing, and explore it in each

encoder and decoder considering the di󰎎erent architectures and inputs of them. We

󰎓nd pairs for layers and query, key, and value matrices in a󰿣ention sub-layers. In the

case of the four-layered model, we 󰎓nd that a set of the layer pairs {(L1,L3),(L2,L4)}

is the best compared to others such as {(L1,L2),(L3,L4)}, {(L2,L3,L4)}, etc.󰓃us, we

share L1-L3 and L2-L4 in each encoder and decoder. For matrices, we 󰎓nd di󰎎erent

pairs of query, key, and value matrices in the encoder and decoder, respectively. First,

in the encoder, we make pairs with query and key matrices in each layer replaceable

pairs. In Figure 3, Qself
3 ,Kself

3 ,Qself
4 and Kself

4 are replaced by their paired matrices,

Kself
1 ,Qself

1 ,Kself
2 and Qself

2 , respectively.

Next, in the decoder, making the same pairs as the ones in the encoder degrades

the accuracy signi󰎓cantly.󰓃is is because, unlike the encoder, query and keymatrices

are dissimilar in the decoder; as query and key are containing di󰎎erent information

such as source and target language.󰓃us, if we share the query and key aswe do in the

encoder, two di󰎎erent contents of information con󰎐ict and disturb themodel training.

󰓃us, we explore more similar matrices that can be shared without those problems:

queries in self-a󰿣ention and encoder-decoder a󰿣ention.󰓃ose matrices conserve the

accuracy when shared and reduce the number of parameters of the model. In Figure 4,

we illustrate the layer and matrix replaceable pairs on the le󰎗 side. 󰓃ose pairs are

13

Query Key Value
Matrix pairsLayer

pairs

Query Key Value

Finding replaceable pairs
 in the encoder

Sharing parameters
of each replaceable pair

Figure 3: 󰓃e example of the encoder of PET with four layers. Qself
i ,Kself

i ,and
V self

i are query, key, value matrices of the self-a󰿣ention in the i-th en-
coder layer. 󰓃e le󰎗 󰎓gure illustrates an uncompressed encoder, and the en-
coder of PET is on the right side. Note that the matrix replaceable pairs of
{(Qself

1 ,Kself
3),(Qself

2 ,Kself
4),(Kself

1 ,Qself
3),(Kself

2 ,Qself
4)} are also shared.

shared on the right.󰓃e matrix replaceable pairs of Qself and Qenc in the le󰎗 compress

to a Qsh in the right. In conclusion, considering that the encoder and decoder shown

di󰎎erent replaceable pairs and those pairs are the most similar in the encoder and

decoder, it important to design a compression rule di󰎎erently for the encoder and

decoder, and consider the similarity between the modules when 󰎓nding the e󰎏cient

matrix replaceable pairs.

3.2 Warm up with Simpli󰎓ed Task

To initialize the student that well adapts to challenging tasks e󰎏ciently, we propose a

pre-training method to warm up the student model with a simpli󰎓ed task. Sequence-

14

Query Key Value
Matrix
pairs

Layer
pairs

Finding replaceable pairs
 in the decoder

Query Key Value

Sharing replaceable pairs
 in the decoder

Figure 4: 󰓃e example of the decoder of PET with four layers. Qself
i ,Kself

i , and
V self

i are query, key, value matrices of the self-a󰿣ention sub-layer in the i-th decoder
layer. Similarly, Qenc

i ,Kenc
i , and V enc

i are those of the encoder-decoder a󰿣ention sub-
layer in the i-th decoder layer. We share (L1,L3) and (L2,L4). For the decoder, Qself

i
and Qenc

i are shared and we denote the shared matrix as Qsh
i .

to-sequence tasks can be reduced to a multi-classi󰎓cation task, classifying each token

over the target vocabulary. 󰓃ese tasks usually have a lot of classes equal to the size

of the target vocabulary. In our case, the student model has to classify each token

into 3-40K classes. It is too challenging for a student model with a small number of

parameters to classify that many classes. We make the student well prepared for the

KD and its complicated task by pre-training it with an easier task that is less chal-

15

lenging enough for its small learning capacity.

In other words, we make a student model learn the knowledge step by step, starting

with a much easier task and then solving di󰎏cult tasks.

However, there is one more challenge to be solved to enhance the pre-training per-

formance. As we generate an easier task of classifying small number of classes, the

output size of the model and the number of classes become di󰎎erent. 󰓃us, it is im-

possible to obtain the prediction probabilities of the student model for the generated

task. We solves it e󰎏ciently by modeling the prediction of the student.

󰓃e proposed method is di󰎎erent from the initialization methods in [8], in terms

of their pursuits. simpli󰎓ed task addresses multi-classi󰎓cation tasks that are too com-

plicated for the student to be trainedwith, thus, we simplify di󰎏cult tasks by reducing

the number of classes from large to small. However, [8] addresses binary classi󰎓ca-

tion task where the student gets too simple information for the student to be trained

with, therefore, it enlarges the number of classes giving more information at the pre-

training step. We relieve the student with a fewer number of classes whereas [8] bur-

dens the model with more information. Furthermore, we additionally covers how to

pre-train the student model with the generated pre-training dataset more e󰎏ciently.

Warming up with a simpli󰎓ed task consists of two steps: generating pre-training

labels of the simpli󰎓ed task and modeling the prediction probabilities of the student

model for generated labels. We describe each step at Section 3.2.1 and 3.2.2.

3.2.1 Simpli󰎓ed task by Reducing the Number of Target
Classes

To generate an easier task, we reduce the number of classes that the model has to

classify. In [8], it uses the teacher’s prediction of the original task to generate the pre-

16

Table 2:󰓃e label assigning rules for the teacher’s predictions.We classify the
prediction of the teacher into four classes.

Class Condition

Con󰎓dently correct argmax(ft(xi)) = yi and max(ft(xi))≥ ε1
Correct, but not con󰎓dent argmax(ft(xi)) = yi and max(ft(xi))≤ ε1
Con󰎓dently wrong argmax(ft(xi)) ∕= yi and max(ft(xi))≥ ε2
Wrong, but not con󰎓dent argmax(ft(xi)) ∕= yi and max(ft(xi))≤ ε2

training dataset. We use the same approach, modifying it for sequence-to-sequence

tasks. We classify the teacher’s prediction ft(xi) of each token xi into four classes.

󰓃e detailed rule for assigning a label for each data instance is described in Table 2.

yi is the target label for the token xi and ε is the hyper-parameter for the model’s

con󰎓dence in its answer.

3.2.2 Modeling the Prediction Probabilities to Simpli󰎓ed
Task Labels

Wepre-train the studentmodelwith the generated pre-training dataset in Section 3.2.1.

However, there is one more challenge.󰓃e output size of the student model does not

match the number of classes because we reduce it to four. Figure 5 shows this mis-

match. It is not possible to obtain the prediction probability of the student model

for simpli󰎓ed task labels.󰓃ere are two naı̈ve solutions to solve this: reduce the out-

put size of the model from the number of target classes to 4, or adopt an additional

projection layer that maps the output vector of the model into 4-dimensional space.

󰓃ese two naı̈ve solutions still have limitations in that they change the structure of

the model by reducing the output layer size or applying an additional layer.󰓃ey use

di󰎎erent model structures for pre-training and KD and fail to e󰎏ciently leverage the

pre-trained parameters in KD. 󰓃at is, they use modi󰎓ed pre-trained knowledge as

17

they use di󰎎erent student model structures in KD from the one in the pre-training

process. To use the student model as it pre-trained without any modi󰎓cation in its

structure and maximize the e󰎎ect of the pre-training, we model the prediction prob-

abilities to the simpli󰎓ed labels: con󰎓dently correct, correct but not con󰎓dent, con󰎓-

dentlywrong, andwrong but not con󰎓dent. Howwe computeP(confidently correct)

is as follows:

P(confidently correct) = P(confident | correct)P(correct) (3.1)

We de󰎓ne P(confident | correct) and P(correct) as follows:

P(confident | correct) = max(σ(fs(xi)))

P(correct) = fs(xi)yi

(3.2)

where σ is the activation function.

󰓃en, we get P(confidently correct) as follows:

P(confidently correct) = max(σ(fs(xi))) fs(xi)yi
(3.3)

P(correct, but not confident), P(confidently wrong), P(wrong, but not confident)

follows the same rule. Because we model the prediction and do not modify the struc-

ture of the model in pre-training, we can directly use the same structure in KD with-

out any modi󰎓cation. 󰓃e right side of Figure 5 shows this. PET does not require an

additional process for KD, such as replacing the classi󰎓cation layer or detaching the

projection layer as naı̈ve solutions do.

18

Objective KD

Classification layer

Layer 4

Layer 3

Layer 2

Layer 1

Transformer

6632

6632

4

6632

Classification layer

Layer 4

Layer 3

Layer 2

Layer 1

Transformer

Proposed

6632

Classification layer

Layer 4

Layer 3

Layer 2

Layer 1

Transformer

4

4

Different
size

Modeling
prediction

Simplified
label

Model
output

Original
label

Figure 5: 󰓃e example of the pre-training method PET with four layers. 󰓃e
number of simpli󰎓ed labels is much smaller than the output size of the model (In
this case, 4 vs. 6632). Instead of modifying the model’s structure to match the output
size of the model with the size of the simpli󰎓ed labels, we model predictions of the
model to the simpli󰎓ed labels. As we do not modify the structure, we can use the
same parameters in the KD process.

3.3 Layer-wise Attention Head Sampling

To further improve the accuracy of the compressed model, we propose a method to

optimize each shared layer with e󰎏cient a󰿣ention heads. As we mentioned in Sec-

tion 2.1, outputs of each a󰿣ention head are concatenated to generate the 󰎓nal out-

put of the multi-head-a󰿣ention. We select more e󰎏cient heads among them by layer

and compose each multi-head a󰿣ention layer with the most accurate set of a󰿣ention

heads. Each layer becomes more optimized maintaining the number of parameters of

the entire model. We 󰎓nd that if we use di󰎎erent heads between the shared layers,

19

Target student with 4 heads

Shared
layer
pairs

Head
sampling

Sampled attention heads

Wider student with 8 heads

Figure 6: 󰓃e example of the layer-wise attention head sampling. Wider stu-
dent (Le󰎗) has eight a󰿣ention heads where the size is equal to that of the tar-
get student. We sample four e󰎏cient heads per layer and construct a new target
model (Right). Un-sampled a󰿣ention heads are erased with an X mark, and only half
of the heads move to the target student on the right.

the expressiveness of the model increases. However, there is a trade-o󰎎 between the

model size and accuracy gain when we select di󰎎erent heads in shared layers. If ev-

ery shared layer select di󰎎erent heads from those in their paired layers, the number

of the parameters remains the same for the worst case.󰓃erefore, we use the idea of

layer-wise a󰿣ention head sampling as an optional technique for the proposedmethod,

when the high accuracy is essential even with the possibility that the compression

rate may be low.

In Figure 6, our compression target model is a four layer transformer model with

four a󰿣ention heads for all multi-head a󰿣ention layers. We 󰎓rst train a wider student

with more than four a󰿣ention heads (in this case, eight heads). We apply replaceable

pair and simpli󰎓ed task to train an accurate wider student. 󰓃e wider student has

the same size of a󰿣ention heads as one of the target model’s a󰿣ention heads. We

sample four heads by layers according to the magnitude of each head and 󰎓ne-tune

the sampled target model.

20

Chapter 4

Experiments

We perform experiments to answer the following questions:

Q1. Translation accuracy. How accurate is PET compared to the competitors?

(Section 4.2)

Q2. Translation speed.How fast is PET compared to the competitors? (Section 4.3)

Q3. E󰎎ectiveness of each module. How do replaceable pair, simpli󰎓ed task, and

layer-wise a󰿣ention head sampling a󰎎ect the accuracy of PET? (Sections 4.4,

4.5, and 4.6)

Q4. Sensitivity analysis. How much does the beam size a󰎎ect the accuracy of

PET? (Section 4.7)

4.1 Experimental Settings

4.1.1 Dataset

We evaluate PET on neural machine translation tasks with four datasets, IWSLT’14

DE↔ EN, and WMT’17 EN↔{FI, LV}. Detailed statistics of these datasets are sum-

marized in Table 3. We download and preprocess IWSLT’14 following the implemen-

tation of Fairseq [17]. For WMT17 datasets, we use the o󰎏cial preprocessed version

fromWMT17website1, and apply the same preprocessing rule aswe use for IWSLT’14

dataset.

21

Table 3:󰓃e summary of the datasets.

Dataset Lang. #classes #sent. #tokens

IWSLT’14 DE↔EN1 DE 8.85K 1.60M 40.36M
EN 6.63K 8.89M 39.49M

WMT’17 EN↔FI2 EN 19.62K 10.80M 60.52M
FI 3.54K 10.80M 52.65M

WMT’17 EN↔LV2 EN 23.57K 3.96M 63.05M
LV 39.39K 3.96M 57.31M

4.1.2 Competitors

We compare PET with three competitors, Transformer-base [1], Patient KD [13], and

CAN [15]. Transformer-base is a compression target for PET and other competitors

(baseline). We implement PET and other competitors based on the open-source im-

plementation [17] of the Transformer model.

4.1.3 Evaluation Metric

We use the BLEU score as an evaluationmetric for accuracy, and sentence throughput

for inference speed. Sentence throughput represents how many sentences the model

process per second, and compression rate represents how many parameters are le󰎗

compared to the original model. We include only the parameters in the transformer

layer except those of the embedding layers to compute the compression rate. We run

our experiments on a singlemachinewith GeForce RTX 3090. For a fair comparison of

inference speed, we have a break between each experiment to cool down themachine.
1http://dl.fbaipublicfiles.com/fairseq/data/iwslt14
2https://data.statmt.org/wmt17/translation-task/preprocessed

22

http://dl.fbaipublicfiles.com/fairseq/data/iwslt14
https://data.statmt.org/wmt17/translation-task/preprocessed

(a) Accuracy and compression rate (b) Accuracy and inference speed

Figure 7: 󰓃e translation accuracy and speed of the IWSLT’14 DE↔EN. PET
shows the best BLEU performance in terms of both accuracy and inference speed. Es-
pecially, PET shows consistently high accuracy to the compression rate, while others
show a signi󰎓cant accuracy drop as the number of the remaining parameters goes
down.

4.2 Translation Accuracy of PET

We compare the translation accuracy of PET and competitors (Transformer, Patient-

KD, and CAN). We set the model size the same to PET, Patient KD, and CAN. If it is

di󰎏cult to compress the model size exactly the same, we set the size of PET smaller

than others. 󰓃en we compare the BLEU score for each dataset.

Figure 7 (a) shows the comparison results for the accuracy of IWSLT’14 DE-EN,

translating German to English. PET achieves the best BLEU score with the same or

even less number of parameters. PET reduces the size of the transformer base model

to 9.52% with an accuracy drop under 1%p (BLEU score loss: 0.27). Table 4 shows

the Comparison of the BLEU score on the entire dataset. For all language pairs, PET

achieves the best accuracy with the same or smaller size of the model. As we can see

23

Table 4: Comparison of the BLEU score [%]. △BLEU denotes the accuracy drop
of the BLEU score compared to the baseline model. PET achieves the highest BLEU
score with the same or smaller model size, for all datasets.

Task Model Comp. rate (%) BLEU △BLEU

IWSLT’14 DE→EN2

Baseline 100 34.63 -
Patient-KD 9.88 33.24 1.39
CAN 9.52 31.15 3.48
PET (proposed) 9.51 34.36 0.27

IWSLT’14 EN→DE2
Baseline 100 29.41 -
Patient-KD 9.60 27.50 2.47
CAN 10.45 26.94 1.91
PET (proposed) 9.50 28.71 0.70

WMT’17 EN→FI3
Baseline 100 14.76 -
Patient-KD 23.55 11.76 3.00
CAN 23.29 11.64 3.12
PET (proposed) 23.28 12.23 2.53

WMT’17 EN→LV3

Baseline 100 17.04 -
Patient-KD 7.13 13.63 3.41
CAN 5.79 13.35 5.01
PET (proposed) 4.97 15.03 2.29

in the case of translating English to Latvian, which has the largest number of target

classes, the compressed models tend to have more di󰎏culties in processing a classi󰎓-

cation taskwith a larger number of classes. PET shows it is robust to challenging tasks

and datasets with many classes. 󰓃is is because it is pre-trained with simpli󰎓ed task

and made well-adapt to complicate tasks classifying over 30K number of classes. In

summary, PET is an accurate andmemory-e󰎏cient transformer compressionmethod.

24

4.3 Translation Speed of PET

We compare the translation speed of PET and competitors on IWSLT’14 DE↔EN

dataset. Figure 7(b) shows the results. We 󰎓x the size of the compression model the

same as Figure 7(a) and compare the inference speed. PET shows the fastest perfor-

mance processing 45.15% more sentences than baseline with only 0.27%p of accuracy

drop and 10.19% faster than the slowest one with 1.12%p be󰿣er accuracy. In summary,

PET is an accurate and fast transformer compression method.

4.4 E󰎎ectiveness of Replaceable Pair

To verify the e󰎎ect of the replaceable pair on the model accuracy, we evaluate the

performance of PET on IWSLT’14 DE-EN with di󰎎erent sets of replaceable pair in

the decoder. We 󰎓x the model size and change the pair sets of replaceable pair, and

compare the BLUE score. Table 5 shows proposed replaceable pair achieves the best

BLEU score with the same model size. How we pair the matrices have a signi󰎓cant

in󰎐uence on the accuracy. Unlike replaceable pair of {(Qself, Kself)} enhance the

performance of the encoder when shared, sharing those pairs ruin the performance

of the decoder.󰓃is is because as we mentioned in 2.1, query and key contain di󰎎er-

ent information about the source and target sequence.󰓃erefore, sharing queries and

keys disturbs the model learning by mixing di󰎎erent properties of data, like mixing

two di󰎎erent languages and forcing the student to learn both of them simultaneously

in translation tasks. In conclusion, it is important to compress the encoder and de-

coder, respectively considering their di󰎎erent properties such as similarities between

modules.

25

Table 5: Comparison of the BLEU score [%] according to various replaceable
pair.△BLEU is the accuracy drop of the BLEU score compared to the proposed PET.
󰓃e accuracy of the model changes according to shared modules, and the proposed
pair preserve the performance of the decoder the most. Accuracy loss from sharing
Qself, and Kself is serious unlike it was e󰎏cient for the encoder.

Set of pairs BLEU △BLEU

{(Qself, Qenc)} (proposed) 34.69 -

{(Qself, Kself)} 31.02 3.67

{(Kself, V self), (Kenc, V enc)} 34.02 0.49

Table 6: Comparison of the BLEU score [%] according to w./w.o., simpli󰎓ed
task pre-training.△BLEU is the accuracy drop of the BLEU score compared to the
proposed PET. 󰓃e accuracy of the model increase for PET with simpli󰎓ed train-
ing. Pre-training with a simpli󰎓ed task makes the student model warmed up for the
teacher’s challenging task.

Condition BLEU △BLEU

PET with simpli󰎓ed task pre-training (proposed) 34.69 -

PET without simpli󰎓ed task pre-training 34.39 -0.3

4.5 E󰎎ectiveness of Simpli󰎓ed Task

To evaluate how simpli󰎓ed task pre-training enhances the accuracy, we did two ex-

periments. First, we evaluate how much simpli󰎓ed task a󰎎ects the student model’s

accuracy. We compare the BLEU score of the model with and without simpli󰎓ed task

pre-training. We set the other conditions identically. Table 6 shows that the student

model well-adapt to the original challenging task at the KD process a󰎗er being trained

with an easier task. By learning simpli󰎓ed task, they can be e󰎏ciently initialized and

on a be󰿣er starting point.

Second, to verify how e󰎏cient our pre-training method is, we compare PETwith

26

Table 7: Comparison of the BLEU score [%] according to pre-training meth-
ods. Pre-training method of PET succeeds in achieving the best BLUE score, by mak-
ing the student model fully leverage the pre-trained parameters at the KD.

Model Method BLEU (%)

PET (proposed) Compute the model predictions 34.69

Naı̈ve solutions Reduce the dimension of the output layer 33.19
Use an additional projection layer 34.29

naı̈ve solutions requiring the model structure modi󰎓cation. Given a simpli󰎓ed task

of classifying only four classes for pre-training, German to English translation task

classifying each token into 6632 classes, and the student model with the output size

of 6632, PET and naı̈ve solutions pre-train the student with the simpli󰎓ed task to

improve the accuracy of the student for the challenging task. We compare the BLEU

score of each student model pre-trained by PET and naı̈ve solutions, respectively.

Table 7 shows the results. Aswe proposed, learning simpli󰎓ed taskwithoutmodifying

the model architecture improves the pre-training performance. 󰓃e student uses the

pre-trained knowledgemore e󰎏ciently in the KD process and obtains be󰿣er accuracy.

4.6 E󰎎ectiveness of Layer-wiseAttentionHead Sam-
pling

To evaluate how layer-wise a󰿣ention head sampling enhances the accuracy, we com-

pare the BLEU score of the model with and without layer-wise a󰿣ention head sam-

pling. Tables 8 shows the results. layer-wise a󰿣ention head sampling optimizes the

model by sampling e󰎏cient a󰿣ention heads with the same number of the parame-

ters which participates in the model prediction. Note that we mark the pruned heads

as zero. 󰓃erefore, the actual number of the parameters of the PET with layer-wise

27

a󰿣ention head sampling model are slightly more than that of the vanilla PET model.

Table 8: Comparison of the BLEU score [%] according to use of layer-wise at-
tention head sampling.△BLEU is the accuracy drop in terms of BLEU score com-
pared to the proposed PET. PET with layer-wise a󰿣ention head sampling achieves
be󰿣er performance than vanilla PET. Layer-wise a󰿣ention head sampling optimizes
each layer of the student model by sampling the most e󰎏cient a󰿣ention heads for
each layer and succeeds in improving the accuracy.

Model BLEU △BLEU

PET 34.69 -

PET + layer-wise a󰿣ention head sampling 34.90 0.21

4.7 Sensitivity Analysis

To analyze how the accuracy change according to the beam size, we compare the

BLEU score with di󰎎erent beam sizes. We use the WMT’17 EN↔LV dataset. Trans-

lating English to Latvian is regarded as the most challenging task in our experiments

in that it has the largest number of classes. Figure 8 shows the results. As the beam

size decrease from 10 to 1, PET shows consistent accuracy while others show signif-

icant 󰎐uctuations in their accuracy. Especially with the beam size decreasing from 5

to 1, other methods show considerable degradations in their BLEU scores. However,

PET slightly loses its accuracy. Even the uncompressed model shows more varying

performance than PET. In conclusion, PET is robust to the beam sizes and shows a

consistent performance.

28

3.17 %

1.86 %

4.88 %

10.22 %

Figure 8:󰓃e translation accuracy according to the beam size. PET shows slight
changes in the BLEU score, while the other competitors show signi󰎓cant 󰎐uctuations
in the accuracy.

29

Chapter 5

Conclusion

We propose PET, an e󰎏cient transformer compression method reducing both the en-

coder and decoder. PET 󰎓nds pairs of layers andmatrices that are robust to parameter-

sharing, and reduces the size of the model minimizing the accuracy loss. PET pro-

poses a method to pre-train the student model more e󰎏ciently without modifying the

structure of the model, and improves the pre-training performance. PET succeeds in

achieving the memory e󰎏ciency and speed gain by up to 81.20% and 45.20%, respec-

tively, with a small accuracy drop under 1%p for the English to German and German

to English translation model. For future work, we will validate PET on various tasks

including speech translation and multilingual translation. We will also study more

delicate rules for sampling the a󰿣ention heads.

30

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “A󰿣ention is all you need,” in Advances in Neural Informa-

tion Processing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

[2] Z. Wang, M. Li, R. Xu, L. Zhou, J. Lei, X. Lin, S. Wang, Z. Yang, C. Zhu, D. Hoiem,
S. Chang, M. Bansal, and H. Ji, “Language models with image descriptors are
strong few-shot video-language learners,” CoRR, vol. abs/2205.10747, 2022.

[3] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu,
S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zheng, R. Child, R. Y. Aminabadi,
J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston, S. Tiwary, and B. Catanzaro,
“Using deepspeed and megatron to train megatron-turing NLG 530b, A large-
scale generative language model,” CoRR, vol. abs/2201.11990, 2022.

[4] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,” in NAACL-HLT (1),
pp. 4171–4186, Association for Computational Linguistics, 2019.

[5] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter,” CoRR, vol. abs/1910.01108, 2019.

[6] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu, “Tinybert:
Distilling BERT for natural language understanding,” in Findings of the Associ-

ation for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November

2020, pp. 4163–4174, Association for Computational Linguistics, 2020.

[7] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: a compact task-
agnostic BERT for resource-limited devices,” inACL, pp. 2158–2170, Association
for Computational Linguistics, 2020.

[8] I. Cho and U. Kang, “Pea-kd: Parameter-e󰎏cient and accurate knowledge distil-
lation,” CoRR, vol. abs/2009.14822, 2020.

31

[9] T. Piao, I. Cho, and U. Kang, “Sensimix: Sensitivity-aware 8-bit index & 1-bit
value mixed precision quantization for bert compression,” PLOS ONE, vol. 17,
pp. 1–22, 04 2022.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” 2015.

[11] J.-G. Jang, C. 󲪞an, H. D. Lee, and U. Kang, “Falcon: Lightweight and accurate
convolution,” 2019.

[12] J. Kim, J. Jung, and U. Kang, “Compressing deep graph convolution network
with multi-staged knowledge distillation,” PLOS ONE, vol. 16, pp. 1–18, 08 2021.

[13] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowledge distillation for BERT
model compression,” in Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November

3-7, 2019, pp. 4322–4331, Association for Computational Linguistics, 2019.

[14] A. Edalati, M. S. Tahaei, A. Rashid, V. P. Nia, J. J. Clark, and M. Rezagholizadeh,
“Kronecker decomposition for GPT compression,” in ACL (2), pp. 219–226, As-
sociation for Computational Linguistics, 2022.

[15] Y. Li, Y. Lin, T. Xiao, and J. Zhu, “An e󰎏cient transformer decoder with com-
pressed sub-layers,” in AAAI, pp. 13315–13323, AAAI Press, 2021.

[16] Y. Lin, Y. Li, Z. Wang, B. Li, Q. Du, T. Xiao, and J. Zhu, “Weight distillation:
Transferring the knowledge in neural network parameters,” in ACL/IJCNLP (1),
pp. 2076–2088, Association for Computational Linguistics, 2021.

[17] M. O󰿣, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli,
“fairseq: A fast, extensible toolkit for sequence modeling,” in Proceedings of

NAACL-HLT 2019: Demonstrations, 2019.

32

요 약

어떻게하면큰모델의성능을유지하면서작은크기의효율적인연산량을가진트랜

스포머모델을구할수있을까?트랜스포머모델은지난몇년간자연어처리,컴퓨터

비전 등 다양한 분야에 걸쳐 뛰어난 성과를 보여주고 있다. 최근 연구의 주요 추세

는모델의크기를늘려모델의성능을높이는것이나,모델의크기를무한정늘리는

것은 현실적인 측면에서 바람직하지 않다. 실제 서비스에 기술이 적용되기 위해선

높은성능뿐만아니라메모리효율,빠른추론속도,에너지소모량등에대한고려

가필요하며,대부분모델의크기가큰경우이를만족하기어렵다.따라서큰모델의

성능을유지하면서작고빠른모델을얻기위한효과적인트랜스포머모델압축기

술이필요하다.

기존의 트랜스포머 압축 연구들은 트랜스포머 인코더 기반 모델에 대한 것이 대부

분으로, BERT 압축이 대표적이다. 기존의 인코더 압축 기법을 기계 번역 모델 등

인코더와디코더가혼재하는모델에적용할경우정확도가크게손실되었다.디코더

는동일임베딩사이즈와레이어수의인코더보다크기가크며,긴추론시간의주요

원인이므로,실용적인트랜스포머모델을만들기위해선디코더압축이필수적이다.

이논문에서는트랜스포머의인코더와디코더를모두압축하기위한 PET (Parameter-

E󰎏cient Knowledge Distillation on Transformer)를제안한다.제안기법은효과적인

모델구조설계와초기화기법의개선을통해트랜스포머지식증류기법의성능을

높였다.또한,추가적인최적화기법을제안하여압축모델의정확도를더욱높이는

데에성공하였다.실험을통해제안기법이다양한기계번역데이터셋에서경쟁모

델보다우수한성능을보이는것을확인하였고,독일어영어번역데이터셋에서는

원본모델보다 18.30% (임베딩레이어제외시 9.51%)의파라미터수로 45.2%빠르면

33

서정확도감소를 1% p이내로줄이는데성공하였다.

주요어 : 모델압축,트랜스포머,지식증류

학번 : 2021-24350

34

감사의글

많은분들의격려와도움으로이논문을완성할수있었기에이자리를빌려감

사의말씀을전합니다.
먼저 , 2년동안많은배움과경험의기회를주신강유교수님께진심으로감사드립
니다.교수님의연구에대한열정,철저한자기관리를보며평생을간직할배움을얻
었고,졸업후에도이를되새기며더욱성장하도록하겠습니다.또한바쁘신중에도
귀한시간을내어학위논문심사에참여해주신문봉기교수님과이상구교수님께도

깊이감사드립니다.
2년간동고동락했던데이터마이닝연구실선배님,동료,후배,행정원선생님께도
감사의인사를전합니다.어려움이생길때다자신의일처럼도와주고,항상서로를
응원해주는연구실분위기덕에행복한연구실생활을할수있었습니다.앞으로도
연구실에좋은일만가득하길진심으로기원합니다.
대학원진학후바쁘다는핑계로연락도잘못했는데항상저를생각해주고응원해

주는친구들에게미안하고고맙다는인사를전합니다.친구들이보내준많은응원과
사랑,신뢰에보답하겠습니다.
많은의지와힘이되고있는덩어리에게정말고맙고사랑한다는말을전합니다.저
또한언제나의지할수있는든든한버팀목이되겠습니다.마지막으로저를항상믿
어주고응원해주는우리가족,너무나사랑합니다.엄마,아빠의딸이라서,지현이의
언니라서자랑스럽고,감사하며행복합니다.모두고맙습니다.

	I. Introduction
	II. Background and Related Works
	* 2.1 Transformers
	* 2.1.1 The Architecture of Transformer
	* 2.1.2 The Output Structure of Transformer
	* 2.1.3 Multi-headAttention

	* 2.2 Knowledge Distillation on Transformers
	* 2.2.1 Knowledge Distillation on Transformer Encoders
	* 2.2.2 Knowledge Distillation on Transformer Decoders
	* 2.2.3 Knowledge Distillation on Transformer Encoders and Decoders

	III. Proposed Method
	* 3.1 Finding Replaceable Pairs in Encoder and Decoder
	* 3.2 Warmup with Simplified Task
	* 3.2.1 Simplified task by Reducing the Number of Target Classes
	* 3.2.2 Modeling the Prediction Probabilities to Simplified Task Labels

	* 3.3 Layer-wise Attention Head Sampling
	IV. Experiments
	4.1 Experimental Settings
	4.1.1 Dataset
	4.1.2 Competitors
	4.1.3 Evaluation Metric

	* 4.2 Translation Accuracy of PET
	* 4.3 Translation Speed of PET
	* 4.4 Effectiveness of Replaceable Pair
	* 4.5 Effectiveness of Simplified Task
	* 4.6 Effectiveness of Layer-wise Attention Head Sampling
	* 4.7 Sensitivity Analysis

	V. Conclusion
	References
	Abstract in Korean

<startpage>10
I. Introduction 1
II. Background and Related Works 4
* 2.1 Transformers 4
 * 2.1.1 The Architecture of Transformer 4
 * 2.1.2 The Output Structure of Transformer 5
 * 2.1.3 Multi-headAttention 5
* 2.2 Knowledge Distillation on Transformers 6
 * 2.2.1 Knowledge Distillation on Transformer Encoders 7
 * 2.2.2 Knowledge Distillation on Transformer Decoders 8
 * 2.2.3 Knowledge Distillation on Transformer Encoders and Decoders 8
III. Proposed Method 11
* 3.1 Finding Replaceable Pairs in Encoder and Decoder 13
* 3.2 Warmup with Simplified Task 14
 * 3.2.1 Simplified task by Reducing the Number of Target Classes 16
 * 3.2.2 Modeling the Prediction Probabilities to Simplified Task Labels 17
* 3.3 Layer-wise Attention Head Sampling 19
IV. Experiments 21
 4.1 Experimental Settings 21
 4.1.1 Dataset 21
 4.1.2 Competitors 22
 4.1.3 Evaluation Metric 22
 * 4.2 Translation Accuracy of PET 23
 * 4.3 Translation Speed of PET 25
 * 4.4 Effectiveness of Replaceable Pair 25
 * 4.5 Effectiveness of Simplified Task 26
 * 4.6 Effectiveness of Layer-wise Attention Head Sampling 27
 * 4.7 Sensitivity Analysis 28
V. Conclusion 30
References 31
Abstract in Korean 33
</body>

