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Abstract 

 

Positive-Unlabeled  

node classification under sparse 

labels with Mixup based GNNs 
 

Hangyeol Hong 

Department of Computer Science and Engineering 

The Graduate School 

Seoul National University 

 

Recently, semi-supervised learning has gained substantial interest 

due to the sparsity of real-world datasets. This is general to graph-

structured data, where few labeled nodes are available during training. 

In this paper, we integrate Positive-Unlabeled (PU) learning [1, 2, 

3] with Graph Neural Networks (GNNs) to address binary node 

classification utilizing plentiful unlabeled nodes. Specifically, PU 

learning aims to excavate potential positive and negative interactions 

between nodes by using only positive labeled nodes and unlabeled 

nodes. Here, we propose a novel framework named Positive-

Unlabeled node classification with Mixup-based GNNs (PUM-GNN). 

It addresses limited labeled cases and gives supervision to the PU 

learning using Mixup regularization [4, 5]. Mixup is a promising study 

in image data augmentation but has not been studied much in GNNs 

because of the irregularity of the graph. We use Mixup in the 
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embedding space to not only augment data but also transform the 

marginal pseudo-negative instances into partially positive 

augmented instances, and improve the imprecise supervision within 

unlabeled instances. We conduct experiments using various positive 

label ratios and found that PUM-GNN not only reduces over-fitting 

but also outperforms state-of-the-art methods under sparse labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keyword: Semi-supervised learning, Graph Neural Networks, 

Regularization, Data augmentation, Node classification 

Student Number: 2021-26464 



 

 iii 

Table of Contents 

 
Chapter 1. Introduction  .................................................................... 1 

 

Chapter 2. Related Work  .................................................................. 4 

2.1 Graph-based PU learning .............................................. 4 

2.2 Mixup for graph data ...................................................... 5 

 

Chapter 3. Problem Definition ........................................................... 6 

 

Chapter 4. Methodology ..................................................................... 8 

4.1 GNN ................................................................................. 9 

4.2 Mixup strategy ................................................................ 9 

4.2.1 Mixup between 𝑋𝑃 and 𝑋𝑈 ................................ 10 

4.2.2 Mixup between 𝑋𝑃 (𝑋𝑈) and 𝑋𝑃 (𝑋𝑈) ................ 11 

4.3 Optimization .................................................................. 12 

4.3.1 Original PU classifications ............................... 12 

4.3.2 PUM-GNN classifications ............................... 12 

 

Chapter 5. Experiment  ................................................................... 15 

5.1 Dataset .......................................................................... 15 

5.2 Baselines ....................................................................... 16 

5.2.1 positive-unlabeled ........................................... 16 

5.2.2 positive-negative ............................................. 17 

5.3 Implementation Details ................................................ 18 

5.4 Experimental Results ................................................... 19 

5.4.1 Node classification performance (RQ1) ......... 19 

5.4.2 Effect of 𝜋𝑃 (RQ2) ........................................... 25 

5.4.3 Analysis of negative-prediction preference 

(RQ3) ................................................................................... 27 

5.4.4 Analysis of training session (RQ4) ................. 29 

5.4.5 Parameter sensitivity (RQ5) ............................ 32 

 

Chapter 6. Conclusion  .................................................................... 35 

 

Bibliography ..................................................................................... 36 

 

초록  .................................................................................................. 41 

  



 

 iv 

List of Figures 

 
Figure 3.1 Positive-Unlabeled classification with 𝝅𝑷 ..................... 7 

 

Figure 4.1 Overview of PUM-GNN .................................................. 8 

 

Figure 4.2 Mixup strategy of PUM-GNN....................................... 10 

 

Figure 5.1 Analysis of false negatives and true positives ............. 28 

 

Figure 5.2 The training curves of PU-GCN and PUM-GCN ........ 30 

 

Figure 5.3 t-SNE visualization of trained embedding ................... 31 

 

Figure 5.4 Parameter analysis with respect to # of layers .......... 33 
 

 

List of Tables 

 
Table 5.1 Dataset ............................................................................. 16 

 

Table 5.2 Node classification performance under PU labels ......... 20 

 

Table 5.3 Node classification performance under PN labels ......... 23 

 

Table 5.4 Node classification performance under reversed 𝝅𝑷 .... 26 

 

Table 5.5 Node classification performance under different α values

 .......................................................................................................... 34



 

 １ 

Chapter 1. Introduction 
 

 

Graph Neural Networks (GNNs) have shown great advantages in 

graph-structured data. By mapping non-regular data into nodes 

and edges, GNNs tackle various challenges using graph topology. 

For example, molecular prediction, anomaly detection, 

recommender system, and link prediction is the common problem 

that GNNs can solve. However, due to the labeling cost, real-world 

data has low data sparsity. For example, in the recommender 

system, users cannot rate all vast items, so we're only given a few 

rated items from users and predict the relevance between the 

majority of unlabeled items and users. According to this property of 

data, most existing GNNs approaches are based on semi-

supervised learning that utilizes several unlabeled nodes, including 

GCN [6], GAT [7], and so on. Learning from a limited amount of 

labeled data is a longstanding challenge in modern machine learning 

[8]. To tackle these issues, Positive-Unlabeled (PU) learning [9], 

a kind of semi-supervised learning, has arisen. It deals with binary 

classification where only P and U data are available. 

In this paper, we study graph-based PU learning, which is a 

common situation in the real world. Suppose there are 100 fraud 

users out of 1,000 users. Then is it true that the remaining 900 

users are normal users? The answer is NO. 900 users are 

unlabeled, which can be potentially positive or negative, and cannot 
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be affirmed as negative. Therefore, our goal is 1) to propose a GNN 

framework under PU labels to achieve good performance where 

there are many unlabeled nodes. Instead of taking the unlabeled 

samples as negative, PU learning learns a binary classifier in the 

absence of explicitly labeled negative samples. Therefore, it can be 

helpful in many real-world where only one type of label is often 

abundant. 

There are two categories of PU learning, which differ in how 

unlabeled (U) data is handled. As a first category, reliable negative 

mining approaches choose data close to negative (N) from U and 

then perform supervised learning using P and N [10]. On the other 

hand, the second category regards U as weighted N [11, 31]. There 

are some limitations of existing PU methods. Since negative data is 

selected heuristically in the first category, the performance heavily 

relies on the heuristics. And the second one needs to determine the 

weight, which is computationally expensive. To avoid tuning the 

weights, cost-sensitive PU learning [2, 3, 30] comes out as a 

subcategory of the second category. Cost-sensitive PU learning 

utilizes risk estimators which can reduce bias for PU classification. 

Specifically, [2] proposes an unbiased risk estimator, and Kiryo [3] 

proposes a non-negative risk estimator which can reduce over-

fitting. 

However, since these methods classify U as N, they may suffer 

from a negative-prediction preference. As the decision boundary is 

biased toward positive (P), the number of incorrectly classified P 

increases. To deal with this issue, we consider a data 
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augmentation-based regularizer, Mixup [4]. Mixup linearly 

interpolates randomly selected samples and their label pair and adds 

it to the training set. Flexible decision boundaries can be obtained 

by expanding the training distribution, and it can also generalize the 

model by reducing over-fitting. In this paper, we focus on marginal 

pseudo-negative instances [12], whose ground truth is positive but 

predicted by negative. We supervise those samples to be positive 

by mixing between them rather than random sampling. Therefore, 

our other goal is 2) to give supervision to those misclassified P 

while augmenting data. 

Putting these goals together, we propose Positive-Unlabeled 

node classification with Mixup-based GNNs, namely PUM-GNN. 

PUM-GNN transforms the marginal pseudo-negative instances into 

augmented instances that are partially positive, so that learned 

boundary moves to fully supervised ones.  

The main contributions of this paper are summarized below: 

● We propose a novel GNN framework called PUM-GNN and 

formulate the node classification under PU labels, which can 

address a label sparsity issue. 

● We apply Mixup, which is commonly used in image 

classification, to the graph domain, and propose a new Mixup 

strategy that can both augment data and refine supervision. 

● We experiment with various label ratios, and the result 

shows that PUM-GNN can enhance the performance of PU 

classification and can beat PN classification. 
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Chapter 2. Related Work 
 

 

2.1 Graph-based PU learning 
 

There have been several studies that apply PU learning to GNNs. 

Wu et al [13] study positive-unlabeled node classification task for 

the first time. They propose LSDAN (long-short distance 

aggregated networks), which addresses the limitations of GAT and 

captures long-distance relationships with a target node using a 

higher-order adjacency matrix. It also employs two PU risk 

estimators and the utilizes outputs of the model to achieve 

optimized PU graph learning. 

Zhou et al propose PURE [14], a novel approach for positive-

unlabeled recommender systems under GAN [15] framework. The 

generator of PURE continuously generates a fake item(user) that 

might be relevant to the user(item) to fool the discriminator. PURE 

trains an unbiased positive-unlabeled discriminator which assigns 

low scores to items/users that have not been rated. 

Yoo et al address more practical graph-based PU learning and 

propose GRAB [16]. It considers PU classification without class 

prior 𝜋𝑃, which is not given in the real-world. GRAB models a 

graph as a Markov network and iteratively estimates 𝜋𝑃 using the 

graph topology and the node feature vector. 
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2.2 Mixup for graph data 
 

Mixup [4] was first proposed in the field of computer vision and has 

been actively studied until now. Despite the advantages of data 

augmentation, Mixup has not been applied much to graph data 

because it has irregular topology and connectivity. Nevertheless, 

there have been novel attempts at this topic.  

Wang et al [17] propose a novel Mixup method for graph data. 

To deal with the irregularity and non-linearity of graph data, they 

propose the two-branch Mixup graph convolution to mix nodes' 

features and topology.  

SubMix [18] generalizes CutMix [19] to the graph domain, 

which creates a new graph while preserving the core structure of 

the graph. It considers the adjacency matrix as an image and pastes 

a random patch of the matrix which has been cut to another matrix. 

In the recommendation system problem, a fundamental challenge 

is to find a negative signal from implicit feedback. To address this 

challenge, MixGCF [20] aims to create hard negative items through 

embedding mixup, rather than sampling raw negatives from data. 
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Chapter 3. Problem Definition 
 

 

In this paper, we study a node classification task using a set of 

positive and unlabeled samples. Let x ∈  ℝd, d ∈  ℕ be the input 

variable and y ∈ {+1, 0} be the label (+1: positive, 0: negative), and 

𝑝(𝑥, 𝑦) be the true underlying joint distribution of (𝑥, 𝑦). PU dataset  

𝒳𝑃𝑈 consists of two independent datasets uniformly sampled from 

𝑝(𝑥, 𝑦): an incomplete set of 𝒳𝑃 of 𝑛𝑝 data-points with positive 

label and a set of 𝒳𝑈 of 𝑛𝑢 unlabeled samples: 

 

𝒳𝑃  = {𝑥𝑖
𝑃}

𝑖=1

𝑛𝑝   ~  𝑝(𝑥 | 𝑦 = 1);   𝒳𝑈 = {𝑥𝑖
𝑈}

𝑖=1

𝑛𝑢   ~  𝑝(𝑥);   𝒳𝑃𝑈 =  𝒳𝑃 ∪ 𝒳𝑈. 

 

Let 𝑀 = 𝑛𝑝 + 𝑛𝑢 be the size of 𝒳𝑃𝑈. In the real world, each user 

would rate a small number of nodes on average. Therefore, we set 

the class prior probability 𝜋𝑃 = p(𝑦 =  +1)  to fall within the range of 

[0.2,   0.4] which means the true distribution of the positive samples 

is sparse. 

 

Assumption 1 (Known class prior). 

Throughout the paper, we assume 𝜋𝑃 is either known or can be 

efficiently estimated from 𝒳𝑃𝑈 via mixture proportion estimation 

algorithm [21, 22, 23, 24]. This assumption is dominant in most 

cost-sensitive PU learning algorithms [1, 2, 3, 14].  
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Figure 3.1: Positive-Unlabeled classification with 𝝅𝑷. 
 

We can estimate the number of positive samples in a set of 

unlabeled samples using 𝜋𝑃. For example, as shown in Figure 3.1, 

we can see that 𝜋𝑃 ∗ |𝒳𝑈|  = 0.2 ∗ 10 = 2 samples in 𝒳𝑈 are P. Based 

on this information, PU learning task is thus to train a classifier 𝑓 

using only PU observations and knowledge of 𝜋𝑃. 

 

Definition (Node classification problem). 

Given: set of nodes 𝒩 = {𝑛1, 𝑛2, … , 𝑛𝑀}, set of node features ℱ =

{𝑥1, 𝑥2, … , 𝑥𝑀}, label set of nodes ℒ =  {+1, −1, … , +1} (+1: positive, 

−1: unlabeled), class prior probability 𝜋𝑃, adjacency matrix 𝑨. 

Output: the estimated label of the unlabeled nodes 
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Chapter 4. Methodology 
 

 

In this section, we introduce the proposed PUM-GNN for graph-

based PU learning. After running GNNs, we apply Mixup [4] in the 

embedding space to regularize the model and produce partially 

positive nodes to add more supervision. Then we optimize our PU 

loss function. Figure 4.1 shows the overall process of PUM-GNN.  

 

 

Figure 4.1: Overview of PUM-GNN. 

 

We first introduce the common architecture of GNNs in section 

4.1 and describe our Mixup strategy in section 4.2. Finally, in 

section 4.3, we introduce PUM-GNN optimization compared with 

the original PU optimization strategy. 



 

 ９ 

4.1 GNN 
 

We define a graph as 𝐺 = (𝑉, 𝐸) where 𝑉 denotes the set of nodes, 

and 𝐸 is the set of edges. Each node 𝑖 belonging to 𝑉 has an initial 

feature vector 𝑥𝑖 and its neighborhood is defined as 𝑁(𝑖) =

{𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸}. GNNs obtain the node representations ℎ𝑖
(𝑙)

 at layer 

𝑙 through the message passing mechanism described as below: 

𝑚𝑖
(𝑙)

 =  𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ𝑗
(𝑙−1)

| 𝑗 ∈ 𝑁(𝑖)}),             (1) 

where 𝑚𝑖
(𝑙)

 is the aggregated message vector at layer 𝑙 and 

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 is a function that aggregates neighbors' information. At 

the input layer (𝑙 = 0), nodes' representations are initialized to 𝑥𝑖. 

After aggregating the representations of the neighborhood nodes, 

node 𝑖's representation at 𝑙-th layer is updated as follows. 

ℎ𝑖
(𝑙)

= 𝑈𝑃𝐷𝐴𝑇𝐸 (ℎ𝑖
(𝑙−1)

, 𝑚𝑖
(𝑙)

, 𝑊(𝑙)).              (2) 

In equation (2), 𝑊(𝑙) denotes the weight matrix at layer 𝑙. 

Finally, we can use ℎ𝑖
(𝑙)

 as the embedding of node 𝑖. 

 

4.2 Mixup strategy 
 

Mixup [4, 5] produces the synthetic sample (�̃�, �̃�) by linearly 

interpolating samples (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), where 𝑥 denotes the input 

feature and 𝑦 denotes the label. 

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗,    (3) 

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗.     (4) 
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In equation (3) and (4), 𝜆 is drawn from Beta distribution [25] 

(𝜆 ~ 𝛽(𝛼, 𝛼), 𝛼 ∈ (0, ∞)). Mixup usually picks two random images from 

the same mini-batch and linearly interpolates them. 

In our work, we focus on not only the data augmentation effect 

of Mixup but also the supervision correction through the mixing of 

certain samples. Unlike previous studies that randomly select 

samples, we carefully select mixup partners to improve the 

imprecise supervision within 𝒳𝑈. Figure 4.2 shows the Mixup 

strategy of our method. 

 

Figure 4.2: Mixup strategy of PUM-GNN. 
 

 

 

4.2.1 Mixup between 𝒳𝑃 𝑎𝑛𝑑 𝒳𝑈. 

 

When mixing between 𝒳𝑃 and 𝒳𝑈, we first estimate unlabeled 

instances whose ground truth is positive but incorrectly classified 

as negative. We define these samples as potential positive samples, 

called candidate mixup pool 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (⊂  𝒳𝑈). We build 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
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using the idea of graph convolution in homophilic graph. In the 

homophilic graph, nodes of the same label tend to be connected, so 

their embeddings are trained to be similar to each other. Therefore, 

we measure the similarity of trained embedding between 𝒳𝑃 and 

𝒳𝑈. Top-𝑘 unlabeled samples with high similarity to positive nodes 

are selected to build 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. To measure relativeness between 

samples, we use cosine similarity which is often used as a distance 

metric function. 

𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = {𝑥 | 𝑥 ∈  𝒳𝑈,   𝑡𝑜𝑝 − 𝑘 (𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑝, 𝑥))} (5) 

 

We also randomly select positive embeddings from 𝒳𝑃 paired 

with 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. To produce partially positive embedding, we define 

𝜆 to guarantee that the mixed sample �̃� is closer to positive sample 

𝑥𝑖 than the unlabeled sample 𝑥𝑗. Consequently, (�̃�, �̃�) is assigned to 

partially positive set (𝒳𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
′ ). 

 

4.2.2 Mixup between 𝒳𝑃 (𝒳𝑈) 𝑎𝑛𝑑 𝒳𝑃 (𝒳𝑈). 

 

After mixing between 𝒳𝑃 and 𝒳𝑈, the rest in 𝒳𝑃 and 𝒳𝑈 are mixed 

in each set to obtain a new embedding set 𝒳𝑃
′  and 𝒳𝑈

′  with an 

extended training distribution. 

To sum up, the overall mixup partner selection is formulated as 

follows: 

(𝑥𝑖, 𝑦𝑖) = {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝒳𝑃),   𝑖𝑓 (𝑥𝑗, 𝑦𝑗) ∈  𝒳𝑃 ∪  𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝒳𝑈),   𝑖𝑓 (𝑥𝑗, 𝑦𝑗) ∈  𝒳𝑈  \  𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

 (6) 
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4.3 Optimization 
 

4.3.1 Original PU optimization 
 

 

Let 𝑥 be an input node variable and 𝑝(𝑥) be the joint distribution of 

nodes. Then, 𝑝(𝑥) can be rewritten as follows using the law of the 

total probability: 

𝑝(𝑥) = 𝜋𝑃𝑝𝑝(𝑥) + (1 − 𝜋𝑃)𝑝𝑛(𝑥),        (7) 

where 𝜋𝑃 = 𝑝(𝑦 =  +1) is a positive class prior probability. 

Equation (7) means probability 𝜋𝑃 of unlabeled samples is positive 

and (1 − 𝜋𝑃) is negative. 𝑝𝑝(𝑥) = 𝑝(𝑥 | 𝑦 =  +1) is a marginal 

distribution from which positive samples are drawn and 𝑝𝑛(𝑥) =

𝑝(𝑥 | 𝑦 = 0) is a marginal distribution from which negative samples 

are drawn. 

To train the model, let 𝑙 be the loss function, then 𝑙(𝑦′, 𝑦) 

measures the loss for predicted output 𝑦′ and ground truth 𝑦. Given 

a set of representations 𝒪𝐿 = {𝑜1
𝐿, 𝑜2

𝐿 , … , 𝑜𝑀
𝐿 }, 𝑜𝑖

𝐿 ∈  ℝ2 where 𝐿 is final 

layer and 𝑜𝑖 is feature representation of node 𝑖 after running 

GNNs. Let mapping function 𝑓 ∶  𝒪 →  𝒴, to classify 𝑜𝑖 into 𝒴 =

{+1, 0}. 𝑓(𝑜𝑖) maps the final representation of node 𝑖 in the range 

(0, 1). Then, the binary risk minimizer for the classifier can be 

learned as: 

𝑅(𝑓) =  𝔼[𝑙(𝑓(𝑜), 𝑦)] =  𝜋𝑃𝑅𝑝
+(𝑓) + (1 − 𝜋𝑃)𝑅𝑛

−(𝑓), (8) 

where 𝑅𝑝
+(𝑓) =  𝔼𝑝𝑝(𝑥)[𝑙(𝑓(𝑜), +1)] is the risk of samples with a 

positive label (𝑦 =  +1) and 𝑅𝑛
−(𝑓) =  𝔼𝑝𝑛(𝑥)[𝑙(𝑓(𝑜), 0)] is the risk of 

samples with a negative label (𝑦 = 0). In practice, we can 
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approximate 𝑅𝑝
+(𝑓) using the observed positive samples, but 𝑅𝑛

−(𝑓)  

is unknown because negative data is unavailable during a training 

phase. 

PU learning treats the unobserved samples directly as unlabeled 

samples, not negative samples. 𝑅𝑛
−(𝑓) can be estimated via equation 

(8) because we assume that both unlabeled and total data follow the 

same distribution. Following [3], we express 𝑝𝑢(𝑥) as 𝜋𝑃𝑝𝑝(𝑥) +

(1 − 𝜋𝑃)𝑝𝑛(𝑥). Then, 𝑅𝑛
−(𝑓) can be expressed as follows: 

(1 − 𝜋𝑃)𝑅𝑛
−(𝑓) = 𝑅𝑢

−(𝑓) − 𝜋𝑃𝑅𝑝
−(𝑓),   (9) 

where 𝑅𝑢
−(𝑓) is the risk of unlabeled samples with a negative 

label and 𝑅𝑝
−(𝑓) is the risk of positive samples with a negative label. 

Thus, the final risk minimization is as follows: 

𝑅(𝑓) = 𝜋𝑃𝑅𝑝
+(𝑓) −  𝜋𝑃𝑅𝑝

−(𝑓)  +  𝑅𝑢
−(𝑓).  (10) 

 

4.3.2 PUM-GNN optimization 
 

Equation (10) computes loss for positive samples (1st term), and 

negative ones (2nd, 3rd term). In our method, we produce a new 

embedding set in section 4.2. Using this, the loss function for 

PUM-GNN is as follows: 

𝑅(𝑓) = 𝜋𝑃𝑅𝑝′
+ (𝑓) + 𝑅𝑝𝑝

𝜆 (𝑓) − 𝜋𝑃𝑅𝑝′
− (𝑓) +  𝑅𝑢′

− (𝑓),    (11) 

where 𝑅𝑝′(𝑓) calculates loss from 𝒳𝑃
′  and 𝑅𝑢′(𝑓) from 𝒳𝑈

′ . 

𝑅𝑝𝑝
𝜆 (𝑓) calculates the risk of 𝒳𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

′  with soft label 𝜆. 

In this paper, we use a sigmoid activation function 𝑓(𝑥) =

1

1+exp(−𝑥)
 to map the input 𝑥. Binary cross entropy is used for loss 
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function 𝑙(𝑦′, 𝑦) of each sample, which is defined as: 

𝑙(𝑦𝑖
′, 𝑦𝑖) =  −[𝑦𝑖 ⋅ log(𝑦𝑖

′) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦𝑖
′)]. (12) 
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Chapter 5. Experiment 
 

 

5.1 Dataset 
 

We employ three datasets in our experiments. The basic 

information for each dataset is reported in Table 5.1. Cora, 

Citeseer, and PubMed [26] are citation networks, which is 

commonly used for node classification. On all datasets, each node 

represents scientific publications classified according to the 

research category it belongs to. Each publication in these datasets 

is described by word vectors which contain their textual contents. 

The nodes in datasets are classified into multiple classes. 

Therefore, following [16], we treat one class with the largest 

number of nodes as positive and the rest as negative for binary 

classification. Under this setting, we calculate positive class prior 

𝜋𝑃. The resulting number of positive and negative nodes, and class 

prior 𝜋𝑃 are summarized in Table 5.1. 
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Table 5.1: Dataset 

Name Cora Citeseer PubMed 

# of nodes 2,708 3,327 19,717 

# of edges 10,556 9,104 88,648 

# of features 1,433 3,703 500 

# of classes 7 6 3 

# of pos 818 701 7,875 

# of neg 1,890 2,626 11,842 

𝜋𝑃 0.3 0.213 0.397 

 

 

5.2 Baselines 
 

We perform binary node classification under not only PU labels, but 

also PN (supervised) labels. For each case, the baseline below was 

used. 

 

5.2.1 positive-unlabeled 
 

Since PUM-GNN is the first paper to apply PU learning and Mixup 

to GNNs, we compare with/without our Mixup strategy. For the 

variants of PUM-GNN, we use three base models – MLP, GCN, and 

GAT. 

● PU-GNN is a basic model for graph-based PU learning. 

Unbiased risk estimator [2] is utilized for GNN. 
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● PU-GNN-M simply mixes embedding from each of 𝒳𝑃 and 

𝒳𝑈. 

● PUM-GNN utilizes a partially positive set and also randomly 

mixed embedding from each of 𝒳𝑃 and 𝒳𝑈 (proposed method). 

 

5.2.2 positive-negative 
 

To verify the effectiveness of PUM-GNN compared to supervised 

methods, we utilize SOTA GNNs and regularization methods. They 

are trained on fully supervised datasets. For regularization methods, 

we use GCN [6] as a base model. The details of baseline methods 

are presented below. 

● MLP is a fully-connected feed-forward neural network 

without using an edge connection. 

● GCN [6] integrates the structure and feature information of 

nodes using the adjacency matrix. 

● GAT [7] uses the attention mechanism to learn the different 

strengths between the ego node and each neighboring node. 

● GIN [27] adopts an injective mapping function to aggregate 

neighbors' information to learn more powerful 

representations. 

● DropEdge [28] simply drops edges by random to improve 

generalization in deep GCNs. 

● P-reg [29] adopts graph Laplacian regularization to provide 

extra supervision signal and simply simulate a deep GCN.  
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● Mixup-conv [17] first mixes two node features and 

performs graph convolution under each topology. Two 

aggregated messages are mixed to obtain the node's final 

representations. 

 

5.3 Implementation details 
 

We implement PUM-GNN by using PyTorch and torch_geometric 

with Adam optimizer. When calculating the positive-unlabeled risk 

of Equation (11), we employ BCELoss. The 𝛼 value of the beta 

distribution is fixed at 4.0, to obtain a value that is skewed to the 

center value. Also, we fix the size of candidate mixup pool 

𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to |𝒳𝑃| ∗ 10%, and choose positive label ratio 𝑟 from 

{10%, 30%, 50%, 70%, 90%}. For each dataset, we randomly select 𝑟% 

from 𝒳𝑃 as a positive training set, and the rest positive nodes and 

negative nodes as an unlabeled training set. If 𝑟 is high (low), it 

means more (fewer) positive samples are used during training. The 

training session is repeated for 300 epochs, and every training, 

model is updated with a newly obtained training set via Mixup. 
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5.4 Experimental results 
 

In this section, we perform various experiments to answer the 

following research questions. 

● RQ1: How accurate is PUM-GNN compared to baseline 

methods under both PN and PU label cases? How do the 

results change with different ratios of positive training 

nodes? 

● RQ2: Does PUM-GNN also perform well when 𝜋𝑃 is high 

(more positive nodes and fewer unlabeled nodes)? 

● RQ3: Does PUM-GNN alleviate the negative-prediction 

problem of PU learning? 

● RQ4: Does PUM-GNN distinguish unlabeled nodes well and 

enable stable learning during training? 

● RQ5: How does the accuracy of PUM-GNN change with 

different hyperparameters for the classifier? 

 

5.4.1 Node classification performance (RQ1) 
 

We vary 𝑟 to adjust the positive label ratio and the results of 

average node classification performance (F1 score) are reported in 

Table 5.2. The best result is bolded, and the second-best is 

underlined. 
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Table 5.2: Node classification performance under PU labels, 

showing average F1 score.  

 

 

 

Cora (𝜋𝑃 = 0.3) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

 PU-MLP 0.7179 0.5921 0.0914 

MLP PU-MLP-M 0.7183 0.5242 0.0914 

 PUM-MLP 0.7532 0.6181 0.1116 

 PU-GCN 0.8529 0.6616 0.0819 

GCN PU-GCN-M 0.8698 0.6560 0.0706 

 PUM-GCN 0.8785 0.8506 0.1140 

 PU-GAT 0.8724 0.7655 0.2258 

GAT PU-GAT-M 0.8614 0.7918 0.2590 

 PUM-GAT 0.8902 0.8652 0.2714 

Citeseer (𝜋𝑃 = 0.213) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

 PU-MLP 0.6996 0.4503 0.0438 

MLP PU-MLP-M 0.6975 0.4333 0.0580 

 PUM-MLP 0.7075 0.5168 0.0979 

 PU-GCN 0.7715 0.5361 0.0584 

GCN PU-GCN-M 0.7826 0.5758 0.1389 

 PUM-GCN 0.7865 0.7619 0.1686 

 PU-GAT 0.7722 0.6301 0.2013 

GAT PU-GAT-M 0.7638 0.6359 0.2484 

 PUM-GAT 0.7761 0.7311 0.2757 
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Generally, PUM-GNN shows the best performance on all 

datasets, and PU-GNN-M shows the second best. Also, we can see 

that Mixup-based methods are better than the basic PU model, 

which shows the regularization effect of Mixup. Mixup extends the 

training distribution by linearly interpolating features, which lead to 

that of the associated targets. It has been demonstrated to get 

better representation and higher generalization ability [4]. 

In addition, it shows that the smaller 𝑟 and more unlabeled 

nodes, the greater the performance improvement of the PUM-GNN. 

When 𝑟 = 90%, the performance improvement is 2 ~ 4%, 𝑟 = 10% 

results in a much larger performance improvement of 25 ~ 30%  

than the basic PU model, PU-GNN. This is because adding new 

supervision is more effective in situations where labels are limited. 

From the model perspective, MLP does not use edge connections 

PubMed (𝜋𝑃 = 0.397) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

 PU-MLP 0.8362 0.7782 0.5211 

MLP PU-MLP-M 0.8449 0.7968 0.6137 

 PUM-MLP 0.8463 0.8227 0.6591 

 PU-GCN 0.8550 0.7697 0.4097 

GCN PU-GCN-M 0.8556 0.8128 0.5201 

 PUM-GCN 0.8663 0.8327 0.6397 

 PU-GAT 0.8683 0.8255 0.7362 

GAT PU-GAT-M 0.8664 0.8342 0.7555 

 PUM-GAT 0.8728 0.8357 0.7879 
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and fails to capture embedding similarities, thus resulting in minimal 

performance improvements over other models. In general, GAT [7] 

has better performance than GCN [6], and the same results came 

out when PU learning was applied. We can conclude that producing 

a new training set and adding partially positive samples based on 

embedding similarity is helpful in PU learning. 

 

Also, we experiment with the original binary labels to compare 

PUM-GNN with SOTA GNN and regularization methods. In this 

section, we want to find whether PUM-GNN can beat other 

methods which are trained on fully supervised datasets. As we can 

see in Table 5.3, in Cora and Citeseer network, PUM-GCN and 

PUM-GAT show similar results with others when 𝑟 is more than 

80%. Especially, when 𝑟 = 90%, PUM-GAT and PUM-GCN can 

beat other promising comparison methods. The second-best 

method on both datasets was graph regularizer P-reg [29], which 

shows the importance of regularization during training. However, 

when the graph size is large, Mixup-conv [17], which applies 

Mixup both in feature space and embedding space, shows the best 

result. If the graph is large, mixing the final representation is not 

enough, and additional work is needed in the convolution process.  

Therefore, when there are limited labeled nodes during training, 

we can transform the problem into a PU learning task which can 

result in a similar performance to supervised methods using only at 

least 80% of the positive samples. 
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Table 5.3: Node classification performance under PN labels, 

showing average F1 score. 

 

  

 Cora (𝜋𝑃 = 0.3) 

MLP 0.7477 

GCN 0.8742 

GAT 0.8580 

GIN 0.8564 

DropEdge 0.8643 

P-reg 0.8821 

Mixup-conv 0.8746 

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90% 

PUM-MLP 0.7018 0.7193 0.7532 

PUM-GCN 0.8531 0.8554 0.8785 

PUM-GAT 0.8683 0.8784 0.8902 
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 Citeseer (𝜋𝑃 = 0.213) 

MLP 0.6923 

GCN 0.7619 

GAT 0.7752 

GIN 0.7521 

DropEdge 0.7613 

P-reg 0.7854 

Mixup-conv 0.7721 

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90% 

PUM-MLP 0.6552 0.7097 0.7075 

PUM-GCN 0.7633 0.7716 0.7865 

PUM-GAT 0.7519 0.7566 0.7761 

 PubMed (𝜋𝑃 = 0.397) 

MLP 0.8725 

GCN 0.8654 

GAT 0.8787 

GIN 0.8540 

DropEdge 0.8641 

P-reg 0.8584 

Mixup-conv 0.8810 

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90% 

PUM-MLP 0.8276 0.8237 0.8463 

PUM-GCN 0.8468 0.8441 0.8663 

PUM-GAT 0.8609 0.8581 0.8728 
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5.4.2 Effect of 𝝅𝑷(RQ2) 
 

In section 5.4.1, we investigate the performance of PUM-GNN 

under various 𝑟. Since the main challenge of machine learning is to 

achieve superior performance with a limited number of data, we 

focus on the results of PUM-GNN where 𝜋𝑃 is small (0.2 ~ 0.4) to 

address the label sparsity issue. 

In this section, we want to answer the question: how PUM-GNN 

performs under reversed 𝜋𝑃? For the experiment, we flip the label 

when binarizing the dataset, so that 𝜋𝑃 is set to a slightly larger 

value (0.6 ~ 0.7). The results of average node classification 

performance (F1 score) under reversed 𝜋𝑃 are described in Table 

5.4. Similar to section 5.4.1, PUM-GNN performs the best and 

second best over three datasets except in PubMed, 𝑟 = 90%. This 

shows the strength of PUM-GNN that produces consistent results 

regardless of 𝜋𝑃. 
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Table 5.4: Node classification performance under reversed 𝜋𝑃, 

showing average F1 score. 

 

Cora (𝜋𝑃 = 0.7) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

MLP 

PU-MLP 0.8634 0.6902 0.2646 

PUM-MLP 0.8898 0.7759 0.4202 

  GCN 
PU-GCN 0.9326 0.7697 0.2431 

PUM-GCN 0.9415 0.8522 0.4582 

GAT 
PU-GAT 0.9290 0.7883 0.4033 

PUM-GAT 0.9518 0.8988 0.5478 

Citeseer (𝜋𝑃 = 0.787) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

  MLP 
PU-MLP 0.9075 0.7486 0.2044 

PUM-MLP 0.9281 0.7914 0.4094 

GCN 
PU-GCN 0.9255 0.7516 0.2252 

PUM-GCN 0.9435 0.8386 0.3547 

GAT 
PU-GAT 0.9245 0.7243 0.2780 

PUM-GAT 0.9437 0.8472 0.4448 

PubMed (𝜋𝑃 = 0.603) 

Base model  𝑟 = 90% 𝑟 = 50% 𝑟 = 10% 

MLP 
PU-MLP 0.8888 0.8150 0.6068 

PUM-MLP 0.8890 0.8906 0.8230 

GCN 
PU-GCN 0.8982 0.8203 0.5209 

PUM-GCN 0.9065 0.9072 0.8192 

GAT 
PU-GAT 0.9117 0.9020 0.7038 

PUM-GAT 0.9002 0.9027 0.8843 
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5.4.3 Analysis of negative-prediction preference 

(RQ3) 
 

 

PU learning learns a binary classifier without any labeled negative 

data. Especially, cost-sensitive PU approaches [1, 2, 3] classify 

unlabeled samples to weighted N. Therefore, they tend to predict 

unlabeled samples as N. This problem is crucial in the real world, 

where it is important to correctly distinguish unlabeled samples 

containing potential P and N. In our method, we prevent this 

problem with our new Mixup strategy. It transforms misclassified P 

samples into augmented samples that are partially positive, so that 

learned boundary moves to the fully supervised ones. 

To find whether PUM-GNN can mitigate the negative-

prediction preference of PU learning, we analyze the false negative 

and true positive of test data. In Figure 5.1, PUM-GCN shows 

fewer false negatives (orange) and more true positives (green) 

than PU-GCN in all datasets. In Cora and Citeseer, when 𝑟 =

30% ~ 70%, improvement was large. In PubMed, which has a large 

graph size, small 𝑟 gives more improvement. These results imply 

that our method benefits the supervision correction within marginal 

pseudo-negative instances. Thus, we can conclude that PUM-GNN 

can alleviate the negative-prediction preference of PU learning. 
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Figure 5.1: Analysis of false negatives and true positives. 
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5.4.4 Analysis of training session (RQ4) 
 

In this section, we study the effects of PUM-GCN during training. 

We show the test loss of PU-GCN and PUM-GCN during 

training in Figure 5.2 on the Cora (up) and Citeseer (down) 

networks. As we can see, for both methods, the loss decreases in 

the beginning. However, PUM-GCN significantly reduces the loss 

as training progresses and helps GCN [6] to converge to a lower 

loss. This shows that our method can regularize GCN to enable 

stable training and reduce over-fitting. 
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Figure 5.2: The training curves of PU-GCN and PUM-GCN. 

(up: Cora, down: Citeseer) 

  

PUM-GCN 

PUM-GCN 
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It is important for PU learning to successfully perform binary 

classification without any negative data. In cost-sensitive PU 

learning, 𝒳𝑃 is well classified but to distinguish 𝒳𝑈 well is the 

challenge. To check the discriminative ability of PUM-GNN, we 

present t-SNE visualization of trained node representations 

obtained by PU-GCN and PUM-GCN in Figure 5.3. 

 

 

 

Figure 5.3: t-SNE visualization of trained embedding.  

(up: PU-GCN, down: PUM-GCN) 
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Node representations of positive class (green), are 

discriminative compared to unlabeled ones in both methods. 

However, there is a significant difference in distinguishing unlabeled 

nodes. Without applying our Mixup strategy (up), node 

representations of positive (blue) and negative (purple) that belong 

to 𝒳𝑈 are hardly distinguishable. In contrast, those representations 

obtained by PUM-GCN (down) are easily distinguished. These 

highly discriminative representations eventually lead to better label 

predictions than less discriminative ones. 

 

 

5.4.5 Parameter Sensitivity (RQ5) 
 

We investigate the performance of PUM-GNN with different values 

of hyper-parameters. We first tune the number of GCN [6] layers. 

Figure 5.4 shows that when the number of layers is 1, the F1 score 

is the lowest. In general, when the number of layers is 2 ~ 4, the 

ego node aggregates deeper information and the performance is 

excellent. Even if the number of layers increases, there is no 

significant performance difference up to 0.05, and shows stable 

results. 
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Figure 5.4: Parameter analysis with respect to # of layers. 

 

We also evaluate how sensitive PUM-GNN is to the selection of 

Mixup weight 𝜆. Therefore, we differ hyper-parameter value: 𝛼, 

which controls the Beta distribution and plot the experimental 

results of PUM-GCN with 𝑟 = 0.5 in Table 5.5. The smaller the 𝛼, 

the more skewed the distribution is formed at both ends, and when 

the 𝛼 is large, the distribution is concentrated in the center. 

As we can see, when 𝛼 is more than 1, the performance is good. 

We think the reason is that if 𝛼 is 1 or higher, 𝜆 is chosen close to 

0.5, so two data are evenly mixed. However, if 𝛼 is less than 1, 

distribution is biased to both ends and particular data has a big 

impact on the mixed result. Empirically, we choose 𝛼 = 4.0 as the 

default setting. 

 

 



 

 ３４ 

Table 5.5: Node classification performance under different 𝛼 

values. 

𝛼 Cora Citeseer PubMed 

0.2 0.5922 0.7820 0.8411 

0.5 0.6547 0.8208 0.8467 

1.0 0.6607 0.8553 0.8515 

2.0 0.6926 0.8599 0.8521 

4.0 0.6872 0.8690 0.8534 

5.0 0.6757 0.8617 0.8532 
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Chapter 6. Conclusion 
 

 

In this paper, we propose PUM-GNN, a novel graph-based PU 

learning method utilizing Mixup [4, 5] strategy. After running 

GNNs, PUM-GNN finds candidate unlabeled nodes which are close 

to positive but easily misclassified to negative. It then mixes 

candidate nodes with positive ones to produce partially positive 

nodes with label 𝜆. Also, it mixes the rest P and U nodes 

individually to make a new training set. In this way, PUM-GNN can 

not only regularizes the model but also gives more supervision to 

positive-unlabeled classification. We found PUM-GNN can 

increase performance in positive-unlabeled classification, and even 

in positive-negative classification. We experiment with various 

positive label ratios to show the advantage of PUM-GNN which is 

strong in label sparsity. 
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초록 

 

믹스업 기반의 그래프 신경망을 

사용한 희소 라벨에서의  

양성-비라벨 노드 분류 

 

홍한결 

컴퓨터공학부 

서울대학교 대학원 

  

 

최근, 준지도학습은 실제 데이터 세트의 희소성으로 인해 상당한 

관심을 얻고 있다. 훈련 중에 라벨이 지정된 노드가 부족한 그래프 

데이터에서 데이터 희소성은 일반적인 문제이다. 본 논문에서는 양성-

비라벨 (PU) 학습 방법을 그래프 신경망에 적용하여, 라벨이 지정되지 

않은 많은 양의 노드를 학습에 활용하는 이진 노드 분류를 다룬다. 

특히, 양성-비라벨 학습 방법은 양성 노드와 라벨이 없는 노드만을 

사용해서 노드 간의 잠재적인 긍정적 및 부정적 상호 작용을 발굴하는 

것을 목표로 한다. 본 논문은 믹스업 (Mixup) 기반의 그래프 신경망 

(PUM-GNN) 이라는 새로운 프레임워크를 제안한다. 이 방법은 

라벨링된 데이터가 적은 사례를 다루고, 믹스업 정규화를 사용하여 

양성-비라벨 학습을 지도한다. 믹스업은 이미지 데이터 분류에서 

유망한 연구이지만, 그래프 신경망 분야에서는 그래프의 불규칙성으로 
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인해 많이 연구되지 않았다. 우리는 임베딩 공간에서 믹스업을 사용하여 

데이터를 증강시킬 뿐만 아니라 주변 의사 음성 인스턴스를 부분 긍정 

라벨을 갖는 새로운 인스턴스로 변환하고, 라벨이 지정되지 않은 

인스턴스 내의 부정확한 지도를 개선한다. 우리는 긍정 라벨 비율을 

다양하게 조절하며 실험을 수행했고, 제안 모델이 과적합을 줄일 뿐만 

아니라 희소 라벨에서 최첨단 방법을 능가한다는 것을 확인했다. 
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