

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Positive-Unlabeled

node classification under sparse

labels with Mixup based GNNs

믹스업 기반의 그래프 신경망을 사용한

희소 라벨에서의 양성-비라벨 노드 분류

 2023년 2월

서울대학교 대학원

컴퓨터공학부

홍 한 결

Positive-Unlabeled

node classification under sparse

labels with Mixup based GNNs

지도 교수 권 태 경

이 논문을 공학석사 학위논문으로 제출함

2022년 11월

서울대학교 대학원

컴퓨터공학부

홍 한 결

홍한결의 공학석사 학위논문을 인준함

 2022년 11월

위 원 장 이 광 근 (인)

부위원장 권 태 경 (인)

위 원 허 충 길 (인)

 i

Abstract

Positive-Unlabeled

node classification under sparse

labels with Mixup based GNNs

Hangyeol Hong

Department of Computer Science and Engineering

The Graduate School

Seoul National University

Recently, semi-supervised learning has gained substantial interest

due to the sparsity of real-world datasets. This is general to graph-

structured data, where few labeled nodes are available during training.

In this paper, we integrate Positive-Unlabeled (PU) learning [1, 2,

3] with Graph Neural Networks (GNNs) to address binary node

classification utilizing plentiful unlabeled nodes. Specifically, PU

learning aims to excavate potential positive and negative interactions

between nodes by using only positive labeled nodes and unlabeled

nodes. Here, we propose a novel framework named Positive-

Unlabeled node classification with Mixup-based GNNs (PUM-GNN).

It addresses limited labeled cases and gives supervision to the PU

learning using Mixup regularization [4, 5]. Mixup is a promising study

in image data augmentation but has not been studied much in GNNs

because of the irregularity of the graph. We use Mixup in the

 ii

embedding space to not only augment data but also transform the

marginal pseudo-negative instances into partially positive

augmented instances, and improve the imprecise supervision within

unlabeled instances. We conduct experiments using various positive

label ratios and found that PUM-GNN not only reduces over-fitting

but also outperforms state-of-the-art methods under sparse labels.

Keyword: Semi-supervised learning, Graph Neural Networks,

Regularization, Data augmentation, Node classification

Student Number: 2021-26464

 iii

Table of Contents

Chapter 1. Introduction .. 1

Chapter 2. Related Work .. 4

2.1 Graph-based PU learning .. 4

2.2 Mixup for graph data .. 5

Chapter 3. Problem Definition ... 6

Chapter 4. Methodology ... 8

4.1 GNN ... 9

4.2 Mixup strategy .. 9

4.2.1 Mixup between 𝑋𝑃 and 𝑋𝑈 10

4.2.2 Mixup between 𝑋𝑃 (𝑋𝑈) and 𝑋𝑃 (𝑋𝑈) 11

4.3 Optimization .. 12

4.3.1 Original PU classifications 12

4.3.2 PUM-GNN classifications 12

Chapter 5. Experiment ... 15

5.1 Dataset .. 15

5.2 Baselines ... 16

5.2.1 positive-unlabeled ... 16

5.2.2 positive-negative ... 17

5.3 Implementation Details .. 18

5.4 Experimental Results ... 19

5.4.1 Node classification performance (RQ1) 19

5.4.2 Effect of 𝜋𝑃 (RQ2) ... 25

5.4.3 Analysis of negative-prediction preference

(RQ3) ... 27

5.4.4 Analysis of training session (RQ4) 29

5.4.5 Parameter sensitivity (RQ5) 32

Chapter 6. Conclusion .. 35

Bibliography ... 36

초록 .. 41

 iv

List of Figures

Figure 3.1 Positive-Unlabeled classification with 𝝅𝑷 7

Figure 4.1 Overview of PUM-GNN .. 8

Figure 4.2 Mixup strategy of PUM-GNN....................................... 10

Figure 5.1 Analysis of false negatives and true positives 28

Figure 5.2 The training curves of PU-GCN and PUM-GCN 30

Figure 5.3 t-SNE visualization of trained embedding 31

Figure 5.4 Parameter analysis with respect to # of layers 33

List of Tables

Table 5.1 Dataset ... 16

Table 5.2 Node classification performance under PU labels 20

Table 5.3 Node classification performance under PN labels 23

Table 5.4 Node classification performance under reversed 𝝅𝑷 26

Table 5.5 Node classification performance under different α values

 .. 34

 １

Chapter 1. Introduction

Graph Neural Networks (GNNs) have shown great advantages in

graph-structured data. By mapping non-regular data into nodes

and edges, GNNs tackle various challenges using graph topology.

For example, molecular prediction, anomaly detection,

recommender system, and link prediction is the common problem

that GNNs can solve. However, due to the labeling cost, real-world

data has low data sparsity. For example, in the recommender

system, users cannot rate all vast items, so we're only given a few

rated items from users and predict the relevance between the

majority of unlabeled items and users. According to this property of

data, most existing GNNs approaches are based on semi-

supervised learning that utilizes several unlabeled nodes, including

GCN [6], GAT [7], and so on. Learning from a limited amount of

labeled data is a longstanding challenge in modern machine learning

[8]. To tackle these issues, Positive-Unlabeled (PU) learning [9],

a kind of semi-supervised learning, has arisen. It deals with binary

classification where only P and U data are available.

In this paper, we study graph-based PU learning, which is a

common situation in the real world. Suppose there are 100 fraud

users out of 1,000 users. Then is it true that the remaining 900

users are normal users? The answer is NO. 900 users are

unlabeled, which can be potentially positive or negative, and cannot

 ２

be affirmed as negative. Therefore, our goal is 1) to propose a GNN

framework under PU labels to achieve good performance where

there are many unlabeled nodes. Instead of taking the unlabeled

samples as negative, PU learning learns a binary classifier in the

absence of explicitly labeled negative samples. Therefore, it can be

helpful in many real-world where only one type of label is often

abundant.

There are two categories of PU learning, which differ in how

unlabeled (U) data is handled. As a first category, reliable negative

mining approaches choose data close to negative (N) from U and

then perform supervised learning using P and N [10]. On the other

hand, the second category regards U as weighted N [11, 31]. There

are some limitations of existing PU methods. Since negative data is

selected heuristically in the first category, the performance heavily

relies on the heuristics. And the second one needs to determine the

weight, which is computationally expensive. To avoid tuning the

weights, cost-sensitive PU learning [2, 3, 30] comes out as a

subcategory of the second category. Cost-sensitive PU learning

utilizes risk estimators which can reduce bias for PU classification.

Specifically, [2] proposes an unbiased risk estimator, and Kiryo [3]

proposes a non-negative risk estimator which can reduce over-

fitting.

However, since these methods classify U as N, they may suffer

from a negative-prediction preference. As the decision boundary is

biased toward positive (P), the number of incorrectly classified P

increases. To deal with this issue, we consider a data

 ３

augmentation-based regularizer, Mixup [4]. Mixup linearly

interpolates randomly selected samples and their label pair and adds

it to the training set. Flexible decision boundaries can be obtained

by expanding the training distribution, and it can also generalize the

model by reducing over-fitting. In this paper, we focus on marginal

pseudo-negative instances [12], whose ground truth is positive but

predicted by negative. We supervise those samples to be positive

by mixing between them rather than random sampling. Therefore,

our other goal is 2) to give supervision to those misclassified P

while augmenting data.

Putting these goals together, we propose Positive-Unlabeled

node classification with Mixup-based GNNs, namely PUM-GNN.

PUM-GNN transforms the marginal pseudo-negative instances into

augmented instances that are partially positive, so that learned

boundary moves to fully supervised ones.

The main contributions of this paper are summarized below:

● We propose a novel GNN framework called PUM-GNN and

formulate the node classification under PU labels, which can

address a label sparsity issue.

● We apply Mixup, which is commonly used in image

classification, to the graph domain, and propose a new Mixup

strategy that can both augment data and refine supervision.

● We experiment with various label ratios, and the result

shows that PUM-GNN can enhance the performance of PU

classification and can beat PN classification.

 ４

Chapter 2. Related Work

2.1 Graph-based PU learning

There have been several studies that apply PU learning to GNNs.

Wu et al [13] study positive-unlabeled node classification task for

the first time. They propose LSDAN (long-short distance

aggregated networks), which addresses the limitations of GAT and

captures long-distance relationships with a target node using a

higher-order adjacency matrix. It also employs two PU risk

estimators and the utilizes outputs of the model to achieve

optimized PU graph learning.

Zhou et al propose PURE [14], a novel approach for positive-

unlabeled recommender systems under GAN [15] framework. The

generator of PURE continuously generates a fake item(user) that

might be relevant to the user(item) to fool the discriminator. PURE

trains an unbiased positive-unlabeled discriminator which assigns

low scores to items/users that have not been rated.

Yoo et al address more practical graph-based PU learning and

propose GRAB [16]. It considers PU classification without class

prior 𝜋𝑃, which is not given in the real-world. GRAB models a

graph as a Markov network and iteratively estimates 𝜋𝑃 using the

graph topology and the node feature vector.

 ５

2.2 Mixup for graph data

Mixup [4] was first proposed in the field of computer vision and has

been actively studied until now. Despite the advantages of data

augmentation, Mixup has not been applied much to graph data

because it has irregular topology and connectivity. Nevertheless,

there have been novel attempts at this topic.

Wang et al [17] propose a novel Mixup method for graph data.

To deal with the irregularity and non-linearity of graph data, they

propose the two-branch Mixup graph convolution to mix nodes'

features and topology.

SubMix [18] generalizes CutMix [19] to the graph domain,

which creates a new graph while preserving the core structure of

the graph. It considers the adjacency matrix as an image and pastes

a random patch of the matrix which has been cut to another matrix.

In the recommendation system problem, a fundamental challenge

is to find a negative signal from implicit feedback. To address this

challenge, MixGCF [20] aims to create hard negative items through

embedding mixup, rather than sampling raw negatives from data.

 ６

Chapter 3. Problem Definition

In this paper, we study a node classification task using a set of

positive and unlabeled samples. Let x ∈ ℝd, d ∈ ℕ be the input

variable and y ∈ {+1, 0} be the label (+1: positive, 0: negative), and

𝑝(𝑥, 𝑦) be the true underlying joint distribution of (𝑥, 𝑦). PU dataset

𝒳𝑃𝑈 consists of two independent datasets uniformly sampled from

𝑝(𝑥, 𝑦): an incomplete set of 𝒳𝑃 of 𝑛𝑝 data-points with positive

label and a set of 𝒳𝑈 of 𝑛𝑢 unlabeled samples:

𝒳𝑃 = {𝑥𝑖
𝑃}

𝑖=1

𝑛𝑝 ~ 𝑝(𝑥 | 𝑦 = 1); 𝒳𝑈 = {𝑥𝑖
𝑈}

𝑖=1

𝑛𝑢 ~ 𝑝(𝑥); 𝒳𝑃𝑈 = 𝒳𝑃 ∪ 𝒳𝑈.

Let 𝑀 = 𝑛𝑝 + 𝑛𝑢 be the size of 𝒳𝑃𝑈. In the real world, each user

would rate a small number of nodes on average. Therefore, we set

the class prior probability 𝜋𝑃 = p(𝑦 = +1) to fall within the range of

[0.2, 0.4] which means the true distribution of the positive samples

is sparse.

Assumption 1 (Known class prior).

Throughout the paper, we assume 𝜋𝑃 is either known or can be

efficiently estimated from 𝒳𝑃𝑈 via mixture proportion estimation

algorithm [21, 22, 23, 24]. This assumption is dominant in most

cost-sensitive PU learning algorithms [1, 2, 3, 14].

 ７

Figure 3.1: Positive-Unlabeled classification with 𝝅𝑷.

We can estimate the number of positive samples in a set of

unlabeled samples using 𝜋𝑃. For example, as shown in Figure 3.1,

we can see that 𝜋𝑃 ∗ |𝒳𝑈| = 0.2 ∗ 10 = 2 samples in 𝒳𝑈 are P. Based

on this information, PU learning task is thus to train a classifier 𝑓

using only PU observations and knowledge of 𝜋𝑃.

Definition (Node classification problem).

Given: set of nodes 𝒩 = {𝑛1, 𝑛2, … , 𝑛𝑀}, set of node features ℱ =

{𝑥1, 𝑥2, … , 𝑥𝑀}, label set of nodes ℒ = {+1, −1, … , +1} (+1: positive,

−1: unlabeled), class prior probability 𝜋𝑃, adjacency matrix 𝑨.

Output: the estimated label of the unlabeled nodes

 ８

Chapter 4. Methodology

In this section, we introduce the proposed PUM-GNN for graph-

based PU learning. After running GNNs, we apply Mixup [4] in the

embedding space to regularize the model and produce partially

positive nodes to add more supervision. Then we optimize our PU

loss function. Figure 4.1 shows the overall process of PUM-GNN.

Figure 4.1: Overview of PUM-GNN.

We first introduce the common architecture of GNNs in section

4.1 and describe our Mixup strategy in section 4.2. Finally, in

section 4.3, we introduce PUM-GNN optimization compared with

the original PU optimization strategy.

 ９

4.1 GNN

We define a graph as 𝐺 = (𝑉, 𝐸) where 𝑉 denotes the set of nodes,

and 𝐸 is the set of edges. Each node 𝑖 belonging to 𝑉 has an initial

feature vector 𝑥𝑖 and its neighborhood is defined as 𝑁(𝑖) =

{𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸}. GNNs obtain the node representations ℎ𝑖
(𝑙)

 at layer

𝑙 through the message passing mechanism described as below:

𝑚𝑖
(𝑙)

 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ𝑗
(𝑙−1)

| 𝑗 ∈ 𝑁(𝑖)}), (1)

where 𝑚𝑖
(𝑙)

 is the aggregated message vector at layer 𝑙 and

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 is a function that aggregates neighbors' information. At

the input layer (𝑙 = 0), nodes' representations are initialized to 𝑥𝑖.

After aggregating the representations of the neighborhood nodes,

node 𝑖's representation at 𝑙-th layer is updated as follows.

ℎ𝑖
(𝑙)

= 𝑈𝑃𝐷𝐴𝑇𝐸 (ℎ𝑖
(𝑙−1)

, 𝑚𝑖
(𝑙)

, 𝑊(𝑙)). (2)

In equation (2), 𝑊(𝑙) denotes the weight matrix at layer 𝑙.

Finally, we can use ℎ𝑖
(𝑙)

 as the embedding of node 𝑖.

4.2 Mixup strategy

Mixup [4, 5] produces the synthetic sample (�̃�, �̃�) by linearly

interpolating samples (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), where 𝑥 denotes the input

feature and 𝑦 denotes the label.

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗, (3)

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗. (4)

 １０

In equation (3) and (4), 𝜆 is drawn from Beta distribution [25]

(𝜆 ~ 𝛽(𝛼, 𝛼), 𝛼 ∈ (0, ∞)). Mixup usually picks two random images from

the same mini-batch and linearly interpolates them.

In our work, we focus on not only the data augmentation effect

of Mixup but also the supervision correction through the mixing of

certain samples. Unlike previous studies that randomly select

samples, we carefully select mixup partners to improve the

imprecise supervision within 𝒳𝑈. Figure 4.2 shows the Mixup

strategy of our method.

Figure 4.2: Mixup strategy of PUM-GNN.

4.2.1 Mixup between 𝒳𝑃 𝑎𝑛𝑑 𝒳𝑈.

When mixing between 𝒳𝑃 and 𝒳𝑈, we first estimate unlabeled

instances whose ground truth is positive but incorrectly classified

as negative. We define these samples as potential positive samples,

called candidate mixup pool 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (⊂ 𝒳𝑈). We build 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

 １１

using the idea of graph convolution in homophilic graph. In the

homophilic graph, nodes of the same label tend to be connected, so

their embeddings are trained to be similar to each other. Therefore,

we measure the similarity of trained embedding between 𝒳𝑃 and

𝒳𝑈. Top-𝑘 unlabeled samples with high similarity to positive nodes

are selected to build 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. To measure relativeness between

samples, we use cosine similarity which is often used as a distance

metric function.

𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = {𝑥 | 𝑥 ∈ 𝒳𝑈, 𝑡𝑜𝑝 − 𝑘 (𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑝, 𝑥))} (5)

We also randomly select positive embeddings from 𝒳𝑃 paired

with 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. To produce partially positive embedding, we define

𝜆 to guarantee that the mixed sample �̃� is closer to positive sample

𝑥𝑖 than the unlabeled sample 𝑥𝑗. Consequently, (�̃�, �̃�) is assigned to

partially positive set (𝒳𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
′).

4.2.2 Mixup between 𝒳𝑃 (𝒳𝑈) 𝑎𝑛𝑑 𝒳𝑃 (𝒳𝑈).

After mixing between 𝒳𝑃 and 𝒳𝑈, the rest in 𝒳𝑃 and 𝒳𝑈 are mixed

in each set to obtain a new embedding set 𝒳𝑃
′ and 𝒳𝑈

′ with an

extended training distribution.

To sum up, the overall mixup partner selection is formulated as

follows:

(𝑥𝑖, 𝑦𝑖) = {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝒳𝑃), 𝑖𝑓 (𝑥𝑗, 𝑦𝑗) ∈ 𝒳𝑃 ∪ 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝒳𝑈), 𝑖𝑓 (𝑥𝑗, 𝑦𝑗) ∈ 𝒳𝑈 \ 𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

 (6)

 １２

4.3 Optimization

4.3.1 Original PU optimization

Let 𝑥 be an input node variable and 𝑝(𝑥) be the joint distribution of

nodes. Then, 𝑝(𝑥) can be rewritten as follows using the law of the

total probability:

𝑝(𝑥) = 𝜋𝑃𝑝𝑝(𝑥) + (1 − 𝜋𝑃)𝑝𝑛(𝑥), (7)

where 𝜋𝑃 = 𝑝(𝑦 = +1) is a positive class prior probability.

Equation (7) means probability 𝜋𝑃 of unlabeled samples is positive

and (1 − 𝜋𝑃) is negative. 𝑝𝑝(𝑥) = 𝑝(𝑥 | 𝑦 = +1) is a marginal

distribution from which positive samples are drawn and 𝑝𝑛(𝑥) =

𝑝(𝑥 | 𝑦 = 0) is a marginal distribution from which negative samples

are drawn.

To train the model, let 𝑙 be the loss function, then 𝑙(𝑦′, 𝑦)

measures the loss for predicted output 𝑦′ and ground truth 𝑦. Given

a set of representations 𝒪𝐿 = {𝑜1
𝐿, 𝑜2

𝐿 , … , 𝑜𝑀
𝐿 }, 𝑜𝑖

𝐿 ∈ ℝ2 where 𝐿 is final

layer and 𝑜𝑖 is feature representation of node 𝑖 after running

GNNs. Let mapping function 𝑓 ∶ 𝒪 → 𝒴, to classify 𝑜𝑖 into 𝒴 =

{+1, 0}. 𝑓(𝑜𝑖) maps the final representation of node 𝑖 in the range

(0, 1). Then, the binary risk minimizer for the classifier can be

learned as:

𝑅(𝑓) = 𝔼[𝑙(𝑓(𝑜), 𝑦)] = 𝜋𝑃𝑅𝑝
+(𝑓) + (1 − 𝜋𝑃)𝑅𝑛

−(𝑓), (8)

where 𝑅𝑝
+(𝑓) = 𝔼𝑝𝑝(𝑥)[𝑙(𝑓(𝑜), +1)] is the risk of samples with a

positive label (𝑦 = +1) and 𝑅𝑛
−(𝑓) = 𝔼𝑝𝑛(𝑥)[𝑙(𝑓(𝑜), 0)] is the risk of

samples with a negative label (𝑦 = 0). In practice, we can

 １３

approximate 𝑅𝑝
+(𝑓) using the observed positive samples, but 𝑅𝑛

−(𝑓)

is unknown because negative data is unavailable during a training

phase.

PU learning treats the unobserved samples directly as unlabeled

samples, not negative samples. 𝑅𝑛
−(𝑓) can be estimated via equation

(8) because we assume that both unlabeled and total data follow the

same distribution. Following [3], we express 𝑝𝑢(𝑥) as 𝜋𝑃𝑝𝑝(𝑥) +

(1 − 𝜋𝑃)𝑝𝑛(𝑥). Then, 𝑅𝑛
−(𝑓) can be expressed as follows:

(1 − 𝜋𝑃)𝑅𝑛
−(𝑓) = 𝑅𝑢

−(𝑓) − 𝜋𝑃𝑅𝑝
−(𝑓), (9)

where 𝑅𝑢
−(𝑓) is the risk of unlabeled samples with a negative

label and 𝑅𝑝
−(𝑓) is the risk of positive samples with a negative label.

Thus, the final risk minimization is as follows:

𝑅(𝑓) = 𝜋𝑃𝑅𝑝
+(𝑓) − 𝜋𝑃𝑅𝑝

−(𝑓) + 𝑅𝑢
−(𝑓). (10)

4.3.2 PUM-GNN optimization

Equation (10) computes loss for positive samples (1st term), and

negative ones (2nd, 3rd term). In our method, we produce a new

embedding set in section 4.2. Using this, the loss function for

PUM-GNN is as follows:

𝑅(𝑓) = 𝜋𝑃𝑅𝑝′
+ (𝑓) + 𝑅𝑝𝑝

𝜆 (𝑓) − 𝜋𝑃𝑅𝑝′
− (𝑓) + 𝑅𝑢′

− (𝑓), (11)

where 𝑅𝑝′(𝑓) calculates loss from 𝒳𝑃
′ and 𝑅𝑢′(𝑓) from 𝒳𝑈

′ .

𝑅𝑝𝑝
𝜆 (𝑓) calculates the risk of 𝒳𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

′ with soft label 𝜆.

In this paper, we use a sigmoid activation function 𝑓(𝑥) =

1

1+exp(−𝑥)
 to map the input 𝑥. Binary cross entropy is used for loss

 １４

function 𝑙(𝑦′, 𝑦) of each sample, which is defined as:

𝑙(𝑦𝑖
′, 𝑦𝑖) = −[𝑦𝑖 ⋅ log(𝑦𝑖

′) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦𝑖
′)]. (12)

 １５

Chapter 5. Experiment

5.1 Dataset

We employ three datasets in our experiments. The basic

information for each dataset is reported in Table 5.1. Cora,

Citeseer, and PubMed [26] are citation networks, which is

commonly used for node classification. On all datasets, each node

represents scientific publications classified according to the

research category it belongs to. Each publication in these datasets

is described by word vectors which contain their textual contents.

The nodes in datasets are classified into multiple classes.

Therefore, following [16], we treat one class with the largest

number of nodes as positive and the rest as negative for binary

classification. Under this setting, we calculate positive class prior

𝜋𝑃. The resulting number of positive and negative nodes, and class

prior 𝜋𝑃 are summarized in Table 5.1.

 １６

Table 5.1: Dataset

Name Cora Citeseer PubMed

of nodes 2,708 3,327 19,717

of edges 10,556 9,104 88,648

of features 1,433 3,703 500

of classes 7 6 3

of pos 818 701 7,875

of neg 1,890 2,626 11,842

𝜋𝑃 0.3 0.213 0.397

5.2 Baselines

We perform binary node classification under not only PU labels, but

also PN (supervised) labels. For each case, the baseline below was

used.

5.2.1 positive-unlabeled

Since PUM-GNN is the first paper to apply PU learning and Mixup

to GNNs, we compare with/without our Mixup strategy. For the

variants of PUM-GNN, we use three base models – MLP, GCN, and

GAT.

● PU-GNN is a basic model for graph-based PU learning.

Unbiased risk estimator [2] is utilized for GNN.

 １７

● PU-GNN-M simply mixes embedding from each of 𝒳𝑃 and

𝒳𝑈.

● PUM-GNN utilizes a partially positive set and also randomly

mixed embedding from each of 𝒳𝑃 and 𝒳𝑈 (proposed method).

5.2.2 positive-negative

To verify the effectiveness of PUM-GNN compared to supervised

methods, we utilize SOTA GNNs and regularization methods. They

are trained on fully supervised datasets. For regularization methods,

we use GCN [6] as a base model. The details of baseline methods

are presented below.

● MLP is a fully-connected feed-forward neural network

without using an edge connection.

● GCN [6] integrates the structure and feature information of

nodes using the adjacency matrix.

● GAT [7] uses the attention mechanism to learn the different

strengths between the ego node and each neighboring node.

● GIN [27] adopts an injective mapping function to aggregate

neighbors' information to learn more powerful

representations.

● DropEdge [28] simply drops edges by random to improve

generalization in deep GCNs.

● P-reg [29] adopts graph Laplacian regularization to provide

extra supervision signal and simply simulate a deep GCN.

 １８

● Mixup-conv [17] first mixes two node features and

performs graph convolution under each topology. Two

aggregated messages are mixed to obtain the node's final

representations.

5.3 Implementation details

We implement PUM-GNN by using PyTorch and torch_geometric

with Adam optimizer. When calculating the positive-unlabeled risk

of Equation (11), we employ BCELoss. The 𝛼 value of the beta

distribution is fixed at 4.0, to obtain a value that is skewed to the

center value. Also, we fix the size of candidate mixup pool

𝒳𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to |𝒳𝑃| ∗ 10%, and choose positive label ratio 𝑟 from

{10%, 30%, 50%, 70%, 90%}. For each dataset, we randomly select 𝑟%

from 𝒳𝑃 as a positive training set, and the rest positive nodes and

negative nodes as an unlabeled training set. If 𝑟 is high (low), it

means more (fewer) positive samples are used during training. The

training session is repeated for 300 epochs, and every training,

model is updated with a newly obtained training set via Mixup.

 １９

5.4 Experimental results

In this section, we perform various experiments to answer the

following research questions.

● RQ1: How accurate is PUM-GNN compared to baseline

methods under both PN and PU label cases? How do the

results change with different ratios of positive training

nodes?

● RQ2: Does PUM-GNN also perform well when 𝜋𝑃 is high

(more positive nodes and fewer unlabeled nodes)?

● RQ3: Does PUM-GNN alleviate the negative-prediction

problem of PU learning?

● RQ4: Does PUM-GNN distinguish unlabeled nodes well and

enable stable learning during training?

● RQ5: How does the accuracy of PUM-GNN change with

different hyperparameters for the classifier?

5.4.1 Node classification performance (RQ1)

We vary 𝑟 to adjust the positive label ratio and the results of

average node classification performance (F1 score) are reported in

Table 5.2. The best result is bolded, and the second-best is

underlined.

 ２０

Table 5.2: Node classification performance under PU labels,

showing average F1 score.

Cora (𝜋𝑃 = 0.3)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

 PU-MLP 0.7179 0.5921 0.0914

MLP PU-MLP-M 0.7183 0.5242 0.0914

 PUM-MLP 0.7532 0.6181 0.1116

 PU-GCN 0.8529 0.6616 0.0819

GCN PU-GCN-M 0.8698 0.6560 0.0706

 PUM-GCN 0.8785 0.8506 0.1140

 PU-GAT 0.8724 0.7655 0.2258

GAT PU-GAT-M 0.8614 0.7918 0.2590

 PUM-GAT 0.8902 0.8652 0.2714

Citeseer (𝜋𝑃 = 0.213)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

 PU-MLP 0.6996 0.4503 0.0438

MLP PU-MLP-M 0.6975 0.4333 0.0580

 PUM-MLP 0.7075 0.5168 0.0979

 PU-GCN 0.7715 0.5361 0.0584

GCN PU-GCN-M 0.7826 0.5758 0.1389

 PUM-GCN 0.7865 0.7619 0.1686

 PU-GAT 0.7722 0.6301 0.2013

GAT PU-GAT-M 0.7638 0.6359 0.2484

 PUM-GAT 0.7761 0.7311 0.2757

 ２１

Generally, PUM-GNN shows the best performance on all

datasets, and PU-GNN-M shows the second best. Also, we can see

that Mixup-based methods are better than the basic PU model,

which shows the regularization effect of Mixup. Mixup extends the

training distribution by linearly interpolating features, which lead to

that of the associated targets. It has been demonstrated to get

better representation and higher generalization ability [4].

In addition, it shows that the smaller 𝑟 and more unlabeled

nodes, the greater the performance improvement of the PUM-GNN.

When 𝑟 = 90%, the performance improvement is 2 ~ 4%, 𝑟 = 10%

results in a much larger performance improvement of 25 ~ 30%

than the basic PU model, PU-GNN. This is because adding new

supervision is more effective in situations where labels are limited.

From the model perspective, MLP does not use edge connections

PubMed (𝜋𝑃 = 0.397)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

 PU-MLP 0.8362 0.7782 0.5211

MLP PU-MLP-M 0.8449 0.7968 0.6137

 PUM-MLP 0.8463 0.8227 0.6591

 PU-GCN 0.8550 0.7697 0.4097

GCN PU-GCN-M 0.8556 0.8128 0.5201

 PUM-GCN 0.8663 0.8327 0.6397

 PU-GAT 0.8683 0.8255 0.7362

GAT PU-GAT-M 0.8664 0.8342 0.7555

 PUM-GAT 0.8728 0.8357 0.7879

 ２２

and fails to capture embedding similarities, thus resulting in minimal

performance improvements over other models. In general, GAT [7]

has better performance than GCN [6], and the same results came

out when PU learning was applied. We can conclude that producing

a new training set and adding partially positive samples based on

embedding similarity is helpful in PU learning.

Also, we experiment with the original binary labels to compare

PUM-GNN with SOTA GNN and regularization methods. In this

section, we want to find whether PUM-GNN can beat other

methods which are trained on fully supervised datasets. As we can

see in Table 5.3, in Cora and Citeseer network, PUM-GCN and

PUM-GAT show similar results with others when 𝑟 is more than

80%. Especially, when 𝑟 = 90%, PUM-GAT and PUM-GCN can

beat other promising comparison methods. The second-best

method on both datasets was graph regularizer P-reg [29], which

shows the importance of regularization during training. However,

when the graph size is large, Mixup-conv [17], which applies

Mixup both in feature space and embedding space, shows the best

result. If the graph is large, mixing the final representation is not

enough, and additional work is needed in the convolution process.

Therefore, when there are limited labeled nodes during training,

we can transform the problem into a PU learning task which can

result in a similar performance to supervised methods using only at

least 80% of the positive samples.

 ２３

Table 5.3: Node classification performance under PN labels,

showing average F1 score.

 Cora (𝜋𝑃 = 0.3)

MLP 0.7477

GCN 0.8742

GAT 0.8580

GIN 0.8564

DropEdge 0.8643

P-reg 0.8821

Mixup-conv 0.8746

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90%

PUM-MLP 0.7018 0.7193 0.7532

PUM-GCN 0.8531 0.8554 0.8785

PUM-GAT 0.8683 0.8784 0.8902

 ２４

 Citeseer (𝜋𝑃 = 0.213)

MLP 0.6923

GCN 0.7619

GAT 0.7752

GIN 0.7521

DropEdge 0.7613

P-reg 0.7854

Mixup-conv 0.7721

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90%

PUM-MLP 0.6552 0.7097 0.7075

PUM-GCN 0.7633 0.7716 0.7865

PUM-GAT 0.7519 0.7566 0.7761

 PubMed (𝜋𝑃 = 0.397)

MLP 0.8725

GCN 0.8654

GAT 0.8787

GIN 0.8540

DropEdge 0.8641

P-reg 0.8584

Mixup-conv 0.8810

 𝑟 = 70% 𝑟 = 80% 𝑟 = 90%

PUM-MLP 0.8276 0.8237 0.8463

PUM-GCN 0.8468 0.8441 0.8663

PUM-GAT 0.8609 0.8581 0.8728

 ２５

5.4.2 Effect of 𝝅𝑷(RQ2)

In section 5.4.1, we investigate the performance of PUM-GNN

under various 𝑟. Since the main challenge of machine learning is to

achieve superior performance with a limited number of data, we

focus on the results of PUM-GNN where 𝜋𝑃 is small (0.2 ~ 0.4) to

address the label sparsity issue.

In this section, we want to answer the question: how PUM-GNN

performs under reversed 𝜋𝑃? For the experiment, we flip the label

when binarizing the dataset, so that 𝜋𝑃 is set to a slightly larger

value (0.6 ~ 0.7). The results of average node classification

performance (F1 score) under reversed 𝜋𝑃 are described in Table

5.4. Similar to section 5.4.1, PUM-GNN performs the best and

second best over three datasets except in PubMed, 𝑟 = 90%. This

shows the strength of PUM-GNN that produces consistent results

regardless of 𝜋𝑃.

 ２６

Table 5.4: Node classification performance under reversed 𝜋𝑃,

showing average F1 score.

Cora (𝜋𝑃 = 0.7)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

MLP

PU-MLP 0.8634 0.6902 0.2646

PUM-MLP 0.8898 0.7759 0.4202

 GCN
PU-GCN 0.9326 0.7697 0.2431

PUM-GCN 0.9415 0.8522 0.4582

GAT
PU-GAT 0.9290 0.7883 0.4033

PUM-GAT 0.9518 0.8988 0.5478

Citeseer (𝜋𝑃 = 0.787)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

 MLP
PU-MLP 0.9075 0.7486 0.2044

PUM-MLP 0.9281 0.7914 0.4094

GCN
PU-GCN 0.9255 0.7516 0.2252

PUM-GCN 0.9435 0.8386 0.3547

GAT
PU-GAT 0.9245 0.7243 0.2780

PUM-GAT 0.9437 0.8472 0.4448

PubMed (𝜋𝑃 = 0.603)

Base model 𝑟 = 90% 𝑟 = 50% 𝑟 = 10%

MLP
PU-MLP 0.8888 0.8150 0.6068

PUM-MLP 0.8890 0.8906 0.8230

GCN
PU-GCN 0.8982 0.8203 0.5209

PUM-GCN 0.9065 0.9072 0.8192

GAT
PU-GAT 0.9117 0.9020 0.7038

PUM-GAT 0.9002 0.9027 0.8843

 ２７

5.4.3 Analysis of negative-prediction preference

(RQ3)

PU learning learns a binary classifier without any labeled negative

data. Especially, cost-sensitive PU approaches [1, 2, 3] classify

unlabeled samples to weighted N. Therefore, they tend to predict

unlabeled samples as N. This problem is crucial in the real world,

where it is important to correctly distinguish unlabeled samples

containing potential P and N. In our method, we prevent this

problem with our new Mixup strategy. It transforms misclassified P

samples into augmented samples that are partially positive, so that

learned boundary moves to the fully supervised ones.

To find whether PUM-GNN can mitigate the negative-

prediction preference of PU learning, we analyze the false negative

and true positive of test data. In Figure 5.1, PUM-GCN shows

fewer false negatives (orange) and more true positives (green)

than PU-GCN in all datasets. In Cora and Citeseer, when 𝑟 =

30% ~ 70%, improvement was large. In PubMed, which has a large

graph size, small 𝑟 gives more improvement. These results imply

that our method benefits the supervision correction within marginal

pseudo-negative instances. Thus, we can conclude that PUM-GNN

can alleviate the negative-prediction preference of PU learning.

 ２８

Figure 5.1: Analysis of false negatives and true positives.

 ２９

5.4.4 Analysis of training session (RQ4)

In this section, we study the effects of PUM-GCN during training.

We show the test loss of PU-GCN and PUM-GCN during

training in Figure 5.2 on the Cora (up) and Citeseer (down)

networks. As we can see, for both methods, the loss decreases in

the beginning. However, PUM-GCN significantly reduces the loss

as training progresses and helps GCN [6] to converge to a lower

loss. This shows that our method can regularize GCN to enable

stable training and reduce over-fitting.

 ３０

Figure 5.2: The training curves of PU-GCN and PUM-GCN.

(up: Cora, down: Citeseer)

PUM-GCN

PUM-GCN

 ３１

It is important for PU learning to successfully perform binary

classification without any negative data. In cost-sensitive PU

learning, 𝒳𝑃 is well classified but to distinguish 𝒳𝑈 well is the

challenge. To check the discriminative ability of PUM-GNN, we

present t-SNE visualization of trained node representations

obtained by PU-GCN and PUM-GCN in Figure 5.3.

Figure 5.3: t-SNE visualization of trained embedding.

(up: PU-GCN, down: PUM-GCN)

 ３２

Node representations of positive class (green), are

discriminative compared to unlabeled ones in both methods.

However, there is a significant difference in distinguishing unlabeled

nodes. Without applying our Mixup strategy (up), node

representations of positive (blue) and negative (purple) that belong

to 𝒳𝑈 are hardly distinguishable. In contrast, those representations

obtained by PUM-GCN (down) are easily distinguished. These

highly discriminative representations eventually lead to better label

predictions than less discriminative ones.

5.4.5 Parameter Sensitivity (RQ5)

We investigate the performance of PUM-GNN with different values

of hyper-parameters. We first tune the number of GCN [6] layers.

Figure 5.4 shows that when the number of layers is 1, the F1 score

is the lowest. In general, when the number of layers is 2 ~ 4, the

ego node aggregates deeper information and the performance is

excellent. Even if the number of layers increases, there is no

significant performance difference up to 0.05, and shows stable

results.

 ３３

Figure 5.4: Parameter analysis with respect to # of layers.

We also evaluate how sensitive PUM-GNN is to the selection of

Mixup weight 𝜆. Therefore, we differ hyper-parameter value: 𝛼,

which controls the Beta distribution and plot the experimental

results of PUM-GCN with 𝑟 = 0.5 in Table 5.5. The smaller the 𝛼,

the more skewed the distribution is formed at both ends, and when

the 𝛼 is large, the distribution is concentrated in the center.

As we can see, when 𝛼 is more than 1, the performance is good.

We think the reason is that if 𝛼 is 1 or higher, 𝜆 is chosen close to

0.5, so two data are evenly mixed. However, if 𝛼 is less than 1,

distribution is biased to both ends and particular data has a big

impact on the mixed result. Empirically, we choose 𝛼 = 4.0 as the

default setting.

 ３４

Table 5.5: Node classification performance under different 𝛼

values.

𝛼 Cora Citeseer PubMed

0.2 0.5922 0.7820 0.8411

0.5 0.6547 0.8208 0.8467

1.0 0.6607 0.8553 0.8515

2.0 0.6926 0.8599 0.8521

4.0 0.6872 0.8690 0.8534

5.0 0.6757 0.8617 0.8532

 ３５

Chapter 6. Conclusion

In this paper, we propose PUM-GNN, a novel graph-based PU

learning method utilizing Mixup [4, 5] strategy. After running

GNNs, PUM-GNN finds candidate unlabeled nodes which are close

to positive but easily misclassified to negative. It then mixes

candidate nodes with positive ones to produce partially positive

nodes with label 𝜆. Also, it mixes the rest P and U nodes

individually to make a new training set. In this way, PUM-GNN can

not only regularizes the model but also gives more supervision to

positive-unlabeled classification. We found PUM-GNN can

increase performance in positive-unlabeled classification, and even

in positive-negative classification. We experiment with various

positive label ratios to show the advantage of PUM-GNN which is

strong in label sparsity.

 ３６

Bibliography

[1] Elkan, C., & Noto, K. (2008, August). Learning classifiers from

only positive and unlabeled data. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data

mining (pp. 213-220).

[2] Du Plessis, M., Niu, G., & Sugiyama, M. (2015, June). Convex

formulation for learning from positive and unlabeled data. In

International conference on machine learning (pp. 1386-1394).

PMLR.

[3] Kiryo, R., Niu, G., Du Plessis, M. C., & Sugiyama, M. (2017).

Positive-unlabeled learning with non-negative risk estimator.

Advances in neural information processing systems, 30.

[4] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017).

mixup: Beyond empirical risk minimization. arXiv preprint

arXiv:1710.09412.

[5] Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I.,

Lopez-Paz, D., & Bengio, Y. (2019, May). Manifold mixup: Better

representations by interpolating hidden states. In International

Conference on Machine Learning (pp. 6438-6447). PMLR.

[6] Kipf, T. N., & Welling, M. (2016). Semi-supervised

classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907.

[7] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., &

Bengio, Y. (2017). Graph attention networks. arXiv preprint

arXiv:1710.10903.

 ３７

[8] Acharya, A., Sanghavi, S., Jing, L., Bhushanam, B., Choudhary,

D., Rabbat, M., & Dhillon, I. (2022). Positive Unlabeled Contrastive

Learning. arXiv preprint arXiv:2206.01206.

[9] Bekker, J., & Davis, J. (2020). Learning from positive and

unlabeled data: A survey. Machine Learning, 109(4), 719-760.

[10] Li, X., & Liu, B. (2003, August). Learning to classify texts

using positive and unlabeled data. In IJCAI (Vol. 3, No. 2003, pp.

587-592).

[11] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., &

Williamson, R. C. (2001). Estimating the support of a high-

dimensional distribution. Neural computation, 13(7), 1443-1471.

[12] Li, C., Li, X., Feng, L., & Ouyang, J. (2021, September). Who

Is Your Right Mixup Partner in Positive and Unlabeled Learning. In

International Conference on Learning Representations.

[13] Wu, M., Pan, S., Du, L., Tsang, I., Zhu, X., & Du, B. (2019,

November). Long-short distance aggregation networks for positive

unlabeled graph learning. In Proceedings of the 28th ACM

International Conference on Information and Knowledge

Management (pp. 2157-2160).

[14] Zhou, Y., Xu, J., Wu, J., Taghavi, Z., Korpeoglu, E., Achan, K.,

& He, J. (2021, August). Pure: Positive-unlabeled recommendation

with generative adversarial network. In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery & Data Mining

(pp. 2409-2419).

[15] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial

 ３８

networks. Communications of the ACM, 63(11), 139-144.

[16] Yoo, J., Kim, J., Yoon, H., Kim, G., Jang, C., & Kang, U. (2021,

December). Accurate Graph-Based PU Learning without Class

Prior. In 2021 IEEE International Conference on Data Mining

(ICDM) (pp. 827-836). IEEE.

[17] Wang, Y., Wang, W., Liang, Y., Cai, Y., & Hooi, B. (2021,

April). Mixup for node and graph classification. In Proceedings of

the Web Conference 2021 (pp. 3663-3674).

[18] Yoo, J., Shim, S., & Kang, U. (2022, April). Model-Agnostic

Augmentation for Accurate Graph Classification. In Proceedings of

the ACM Web Conference 2022 (pp. 1281-1291).

[19] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019).

Cutmix: Regularization strategy to train strong classifiers with

localizable features. In Proceedings of the IEEE/CVF international

conference on computer vision (pp. 6023-6032).

[20] Huang, T., Dong, Y., Ding, M., Yang, Z., Feng, W., Wang, X., &

Tang, J. (2021, August). Mixgcf: An improved training method for

graph neural network-based recommender systems. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining (pp. 665-674).

[21] Christoffel, M., Niu, G., & Sugiyama, M. (2016, February).

Class-prior estimation for learning from positive and unlabeled

data. In Asian Conference on Machine Learning (pp. 221-236).

PMLR.

[22] Ramaswamy, H., Scott, C., & Tewari, A. (2016, June). Mixture

proportion estimation via kernel embeddings of distributions. In

 ３９

International conference on machine learning (pp. 2052-2060).

PMLR.

[23] Ivanov, D. (2020, December). Dedpul: Difference-of-

estimated-densities-based positive-unlabeled learning. In 2020

19th IEEE International Conference on Machine Learning and

Applications (ICMLA) (pp. 782-790). IEEE.

[24] Garg, S., Wu, Y., Smola, A. J., Balakrishnan, S., & Lipton, Z.

(2021). Mixture proportion estimation and pu learning: A modern

approach. Advances in Neural Information Processing Systems, 34,

8532-8544.

[25] Gupta, A. K., & Nadarajah, S. (2004). Handbook of beta

distribution and its applications. CRC press.

[26] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., &

Eliassi-Rad, T. (2008). Collective classification in network data. AI

magazine, 29(3), 93-93.

[27] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How

powerful are graph neural networks?. arXiv preprint

arXiv:1810.00826.

[28] Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). Dropedge:

Towards deep graph convolutional networks on node classification.

arXiv preprint arXiv:1907.10903.

[29] Yang, H., Ma, K., & Cheng, J. (2021, May). Rethinking graph

regularization for graph neural networks. In Proceedings of the

AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp.

4573-4581).

[30] Du Plessis, M. C., Niu, G., & Sugiyama, M. (2014). Analysis of

 ４０

learning from positive and unlabeled data. Advances in neural

information processing systems, 27.

[31] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., &

Williamson, R. C. (2001). Estimating the support of a high-

dimensional distribution. Neural computation, 13(7), 1443-1471.

 ４１

초록

믹스업 기반의 그래프 신경망을

사용한 희소 라벨에서의

양성-비라벨 노드 분류

홍한결

컴퓨터공학부

서울대학교 대학원

최근, 준지도학습은 실제 데이터 세트의 희소성으로 인해 상당한

관심을 얻고 있다. 훈련 중에 라벨이 지정된 노드가 부족한 그래프

데이터에서 데이터 희소성은 일반적인 문제이다. 본 논문에서는 양성-

비라벨 (PU) 학습 방법을 그래프 신경망에 적용하여, 라벨이 지정되지

않은 많은 양의 노드를 학습에 활용하는 이진 노드 분류를 다룬다.

특히, 양성-비라벨 학습 방법은 양성 노드와 라벨이 없는 노드만을

사용해서 노드 간의 잠재적인 긍정적 및 부정적 상호 작용을 발굴하는

것을 목표로 한다. 본 논문은 믹스업 (Mixup) 기반의 그래프 신경망

(PUM-GNN) 이라는 새로운 프레임워크를 제안한다. 이 방법은

라벨링된 데이터가 적은 사례를 다루고, 믹스업 정규화를 사용하여

양성-비라벨 학습을 지도한다. 믹스업은 이미지 데이터 분류에서

유망한 연구이지만, 그래프 신경망 분야에서는 그래프의 불규칙성으로

 ４２

인해 많이 연구되지 않았다. 우리는 임베딩 공간에서 믹스업을 사용하여

데이터를 증강시킬 뿐만 아니라 주변 의사 음성 인스턴스를 부분 긍정

라벨을 갖는 새로운 인스턴스로 변환하고, 라벨이 지정되지 않은

인스턴스 내의 부정확한 지도를 개선한다. 우리는 긍정 라벨 비율을

다양하게 조절하며 실험을 수행했고, 제안 모델이 과적합을 줄일 뿐만

아니라 희소 라벨에서 최첨단 방법을 능가한다는 것을 확인했다.

주요어: 준지도학습, 그래프 신경망, 정규화, 데이터 증강, 노드 분류

학번: 2021-26464

	Chapter 1. Introduction
	Chapter 2. Related Work
	2.1 Graph-based PU learning
	2.2 Mixup for graph data

	Chapter 3. Problem Definition
	Chapter 4. Methodology
	4.1 GNN
	4.2 Mixup strategy
	4.2.1 Mixup between Xp and Xu
	4.2.2 Mixup between Xp (Xu) and Xp (Xu)

	4.3 Optimization
	4.3.1 Original PU classifications
	4.3.2 PUM-GNN classifications

	Chapter 5. Experiment
	5.1 Dataset
	5.2 Baselines
	5.2.1 positive-unlabeled
	5.2.2 positive-negative

	5.3 Implementation Details
	5.4 Experimental Results
	5.4.1 Node classification performance (RQ1)
	5.4.2 Effect of positive class prior (RQ2)
	5.4.3 Analysis of negative-prediction preference (RQ3)
	5.4.4 Analysis of training session (RQ4)
	5.4.5 Parameter sensitivity (RQ5)

	Chapter 6. Conclusion
	Bibliography
	초록

<startpage>8
Chapter 1. Introduction 1
Chapter 2. Related Work 4
 2.1 Graph-based PU learning 4
 2.2 Mixup for graph data 5
Chapter 3. Problem Definition 6
Chapter 4. Methodology 8
 4.1 GNN 9
 4.2 Mixup strategy 9
 4.2.1 Mixup between Xp and Xu 10
 4.2.2 Mixup between Xp (Xu) and Xp (Xu) 11
 4.3 Optimization 12
 4.3.1 Original PU classifications 12
 4.3.2 PUM-GNN classifications 12
Chapter 5. Experiment 15
 5.1 Dataset 15
 5.2 Baselines 16
 5.2.1 positive-unlabeled 16
 5.2.2 positive-negative 17
 5.3 Implementation Details 18
 5.4 Experimental Results 19
 5.4.1 Node classification performance (RQ1) 19
 5.4.2 Effect of positive class prior (RQ2) 25
 5.4.3 Analysis of negative-prediction preference (RQ3) 27
 5.4.4 Analysis of training session (RQ4) 29
 5.4.5 Parameter sensitivity (RQ5) 32
Chapter 6. Conclusion 35
Bibliography 36
초록 41
</body>

