

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Robust Bootstrapping-based

Self-supervised Learning for

Graph Collaborative Filtering

그래프 협업 필터링을 위한 강력한 부트스트래핑

기반 자기 지도 학습

 2023년 02월

서울대학교 대학원

컴퓨터공학부

김 혜 린

Robust Bootstrapping-based

Self-supervised Learning for

Graph Collaborative Filtering

지도 교수 권 태 경

이 논문을 공학석사 학위논문으로 제출함

2023년 02월

서울대학교 대학원

컴퓨터공학부

김 혜 린

김혜린의 공학석사 학위논문을 인준함

 2023년 02월

위 원 장 이 광 근 (인)

부위원장 권 태 경 (인)

위 원 허 충 길 (인)

 i

Abstract

Contrastive learning (CL) based models are gaining traction in

recommendation research, since their ability to extract self-

supervised signals from raw data matches the requirements of

recommender systems to solve the data sparsity issue. Despite their

effectiveness, CL-based models have an important limitation:

negative sampling. A negative sampling scheme allows positive but

unobserved pairs to be selected as negative. To solve this problem,

a bootstrapping-based self-supervised learning method that does

not require negative sampling has been proposed. However, this

method also has limitations. Because only positive samples are used,

it is vulnerable to noisy interactions. Also, there is a sparsity issue

in real-world data sets.

To tackle the above issues, we introduce a Robust

Bootstrapping-based Self-supervised learning model for graph

collaborative filtering, named RBS. RBS consists of two modules: a

graph denoising module and a self-supervised learning module. The

graph denoising module is designed to reduce the influence of noisy

interactions. The self-supervised learning module consists of an

online encoder and a target encoder. RBS trains its online encoder to

predict the target encoder’s representation, while the target

encoder provides consistent targets by slowly approximating the

online encoder. In addition, RBS effectively alleviates the data

sparsity issue, by adding noises to encoder inputs. A comprehensive

empirical study on three benchmark datasets demonstrates that RBS

consistently and significantly outperforms all baseline methods.

Keywords : Collaborative Filtering, Bootstrapping-based Self-

Supervised Learning, Denoising, Data Augmentation, Graph Neural

Networks, Recommendation

Student Number : 2021-23995

 ii

Contents

Abstract .. ⅰ

Contents .. ⅱ

List of Figures .. ⅳ

List of Tables.. ⅴ

Chapter 1. Introduction .. 1

Chapter 2. Related Work ... 3

2.1. Graph Neural Networks 3

2.2. Graph Collaborative Filtering 3

2.3. Self-supervised Learning 4

Chapter 3. Methodology ... 6

3.1. Overview .. 6

3.2. Problem Definition .. 6

3.3. Graph Denoising Module 7

3.4. Self-supervised Learning Module 9

3.5. Prediction ... 11

Chapter 4. Experiments ... 12

4.1. Datasets.. 12

4.2. Baselines .. 13

4.3. Evaluation Metrics .. 13

4.4. Implementation Details 14

 iii

4.5. Overall Performance 14

4.6. Ablation Study .. 18

Chapter 5. Conclusion .. 21

Bibliography ... 22

초록 .. 27

 iv

List of Figures

Figure 1. An illustration of RBS model architecture 7

Figure 2. Ablation study on CiteULike dataset – Precision ... 19

Figure 3. Ablation study on CiteULike dataset – Recall 19

Figure 4. Ablation study on CiteULike dataset – NDCG 20

 v

List of Tables

Table 1. Statistics of the datasets ... 12

Table 2. The overall performance comparison on the CiteULike

dataset ... 15

Table 3. The overall performance comparison on the Movielens-

1M dataset ... 16

Table 4. The overall performance comparison on the LastFM

dataset ... 17

 １

Chapter 1. Introduction

These days, recommender systems have become more important

to help users discover items of preference in real-world applications

[1] such as E-commerce[3], news portals[4], and social media[5,

6]. The core of the recommender system is to predict whether a user

will prefer an item, e.g., click, rate, or purchase, among other forms

of interactions [11]. As a fundamental technique, collaborative

filtering (CF) models [7, 8], which focus on exploiting past user-

item interactions to achieve the prediction, have been widely applied.

Earlier work like matrix factorization (MF)[9] projects a single ID of

each user (or item) into an embedding vector. Deep neural networks

[10] learn better representations.

Recently, Graph neural networks (GNN) have shown good

performance in recommender systems as an effective graph

collaborative filtering (CF) approach [11]. In particular, Contrastive

learning (CL) based models are dominant in recommendation

research, since they explicitly aim to distinguish positive user-item

interactions from the negative counterparts. Despite their

effectiveness, CL-based models have critical limitations. Since the

negative interactions are not available in the implicit interaction graph,

CL-based models assume that all unobserved interactions are

negative. And a negative sampling scheme may choose positive but

unobserved pairs as negative. To solve this problem, a

bootstrapping-based self-supervised learning method [2, 13] that

does not require negative sampling has been proposed. However, this

method also has limitations. Since the bootstrapping-based self-

supervised learning method uses only positive samples, it is

vulnerable to noisy interactions. Especially, noisy interactions can be

fatal in the GNN learning process (i.e., the message-passing scheme

via aggregating neighborhood information). Therefore, even when

the noise of a single node itself is reduced to some extent, the global

impact of the aggregated noise from the neighborhood remains

uncontrolled. Also, there is a sparsity issue in real-world datasets.

 ２

To tackle the aforementioned issues, we introduce a Robust

Bootstrapping-based Self-supervised learning model for graph

collaborative filtering, named RBS. RBS consists of two modules: a

graph denoising module and a self-supervised learning module. The

graph denoising module is devised to reduce the influence of noisy

interactions. The self-supervised learning module consists of an

online encoder and a target encoder. RBS trains its online encoder to

predict the target encoder’s representation, while the target

encoder provides consistent targets by slowly approximating the

online encoder. In addition, RBS effectively alleviates the data

sparsity issue, by adding noises to encoder inputs. A comprehensive

empirical study on three benchmark datasets demonstrates the

effectiveness of RBS, which consistently and significantly

outperforms all baseline methods.

The key contributions of RBS are summarized as follows:

 We devise the RBS method to alleviate the negative

impact of noisy interactions in bootstrapping-based self-

supervised learning.

 We use random-based noise to mitigate the data sparsity

problem.

 Extensive evaluations performed on three real-world

datasets demonstrate the superiority of RBS.

 ３

Chapter 2. Related Work

In this part, we describe the related work from three

perspectives: graph neural networks, graph collaborative filtering,

and self-supervised learning.

2.1. Graph Neural Networks

Graph neural networks (GNN) [17, 18] are a family of neural

networks that have been widely used as the backbone encoder. A

general GNN framework involves two key computations for each

node 𝑣𝑖 at every layer:

 AGGREGATE: aggregating messages from node 𝑣𝑖 ‘s

one-hop neighbors 𝒩𝑖 and updating node representation

from its representation in the previous layer and the

aggregated messages

 COMBINE: combining the learned embeddings at each

layer after 𝐾 layers graph propagation

2.2. Graph Collaborative Filtering

Collaborative Filtering (CF) is a technique widely used in modern

recommender systems. One of the common methods of the CF model

is to parameterize users and items as embeddings and learn the

embedding parameters by reconstructing historical user-item

interactions [11, 19]. For instance, earlier CF models like matrix

factorization (MF) [21] project the user’s (or item’s) ID into an

embedding vector. The neural recommender models such as NCF [10]

use the same embedding component while enhancing the interaction

modeling with neural networks.

Recently emerged graph neural networks (GNN) shine a light on

the modeling graph structure, especially high-hop neighbors, to

 ４

guide the embedding learning [11]. Unlike traditional collaborative

filtering methods, graph collaborative filtering models interaction

data as a user-item graph and exploits the graph structure for the

recommendation [14]. Graph Neural Networks (GNN) now have

become widely acknowledged powerful architectures for modeling

recommendation data [15]. This paradigm ends the regime of MLP-

based recommendation models and boosts the neural recommender

systems to a new level. A large number of GNN-based

recommendation models claim that they have achieved state-of-

the-art performance [11, 15, 22]. In particular, GCN [18] is the most

prevalent variant of GNNs. GCN further promotes the development

of graph neural recommendation models. For example, GCMC [23],

which is the graph-based auto-encoder framework, is proposed for

explicit matrix completion. NGCF [24] leverages high-order

connectivity in the user-item graph to improve recommendations.

Especially, LightGCN [11] is the most popular one, because it

removes nonlinear activation and feature transformation of GCN to

simplify the architecture recommendation.

2.3. Self-supervised Learning

Recently, self-supervised learning (SSL) approaches have been

very successful in computer vision and natural language processing

[2]. Studies on self-supervised learning can be roughly categorized

into two branches: generative models [25, 31, 32] and contrastive

models [12, 33, 34]. Auto-encoding is the most popular generative

model that learns how to reconstruct the input data, and can on

purpose add noise to improve model robustness [25]. Contrastive

models learn how to compare via a Noise Contrastive Estimation

(NCE) objective, which can be a global-local contrast [35] or

global-global contrast approach [33]. The former focuses on

modeling the relationship between the local part of a sample and its

global context representation. While the latter directly performs a

comparison between different samples, it usually requires multiple

 ５

views of samples [33, 36].

As Contrastive Learning (CL) works in a self-supervised

manner[39], it is essentially a possible solution to the problem of

data sparsity [40] in recommender systems. Inspired by the success

of CL in other fields, a new wave of research has emerged that

integrates CL with recommendations [15]. A common approach [12]

to applying CL to recommendation tasks is to first augment the user-

item interaction graph with structural perturbations, and then

maximize the consistency of representations under different views

learned via a graph encoder. SGL [12], a state-of-the-art CL-

based recommendation method, augments the original graph by

performing node or edge dropout and adopts InfoNCE for CL.

 ６

Chapter 3. Methodology

In this chapter, we present the proposed Robust Bootstrapping-

based Self-supervised learning model (RBS), which enhances the

robustness of bootstrapping-based self-supervised learning for

graph collaborative filtering.

3.1. Overview

The proposed RBS model consists of two modules, i.e., the graph

denoising module and the self-supervised learning module.

Specifically, the graph denoising module is devised for reducing the

effect of noisy user-item interactions in representation learning of

GNN-based CF [14]. Based on the estimated confidence scores of

the user-item interactions, we discard interactions that are

confidently estimated as noise in the graph denoising module. Then

we propose the self-supervised module, which learns the

representations of users and items without any assumptions about

negative interactions. The overview of RBS is illustrated in Figure 1,

and more details will be described in the following sections.

3.2. Problem Definition

Let 𝒰 and ℐ be the set of users and items respectively. Given a

set of observed user-item interactions ℛ , the goal of top- 𝐾

recommendation is to obtain the preference score 𝑠(𝑢, 𝑣) ∈ ℝ, which

indicates how much the user 𝑢 prefers item 𝑣 . Based on the

preference scores, we can recommend 𝐾 items with the highest

scores for each user. To define the preference score by using the

denoised representations of users and items, we focus on denoising

the graph and training the encoder network that maps each user and

item into a low-dimensional latent space where the users’

 ７

preferences on the items are effectively captured.

Figure 1: An illustration of RBS model architecture.

3.3. Graph Denoising Module

According to the homophily theory [37] of social networks,

nodes with structural roles or similar features are more likely to

interact with each other than nodes with different structural roles or

features. Since node features might be unavailable in CF, we estimate

the confidence scores [14] of observed interactions between users

and items based on their structural similarity in the interaction graph.

Let 𝒰 = {𝑢1, … , 𝑢𝑀} and ℐ = {𝑖1, … , 𝑖𝑁} be the set of 𝑀 users and N

items, respectively. Concretely, given the user-item interaction data

𝑹 ∈ ℝ𝑀×𝑁, we can construct the interaction graph 𝒢, where e 𝑟𝑢,𝑖 = 1

entry in 𝑅 corresponds to an edge between user 𝑢 and item 𝑖 in 𝒢.

Then we extract the nodes’ one-hop neighbors as their structural

features, that encode the local topological information of nodes. The

 ８

embedding matrices 𝑬𝑈 ∈ ℝ𝑀×𝑑 and 𝑬𝐼 ∈ ℝ𝑁×𝑑 are set to transform

the user and item structural features into the same hidden space:

 𝑯𝑈 = 𝑹𝑬𝐼 , 𝑯𝐼 = 𝑹⊺𝑬𝑈 (1)

where 𝑯𝑈 ∈ ℝ𝑀×𝑑 and 𝑯𝐼 ∈ ℝ𝑁×𝑑 are the structural feature matrices

of users and items, respectively.

We measure their structural similarity in the interaction graph 𝒢

to estimate the confidence score of interaction between user 𝑢 and

item 𝑖. Given the structural features ℎ𝑢 and ℎ𝑖, which are the 𝑢-th

row of 𝑯𝑈 and the 𝑖 -th row of 𝑯𝐼 , respectively, we use the

normalized cosine distance for the confidence score 𝑐𝑢,𝑖 [14]:

 𝑐𝑢,𝑖 = (cos(ℎ𝑢, ℎ𝑖) + 1)/2 (2)

A large confidence score 𝑐𝑢,𝑖 indicates a reliable interaction between

user 𝑢 and item 𝑖 based on their structural similarity.

Based on the estimated confidence scores of user-item

interactions, we apply a pruning strategy to the interaction graph 𝒢

to conduct a denoised interaction graph, denoted as �̃�. To be specific,

for the interactions that are considered noise with low confidence

scores, the graph denoising module uses denoising strategy with

pruning by removing them directly from the interaction graph. For

each observed interaction 𝑟𝑢,𝑖 the corresponding denoised

interaction can be formally given as:

 �̃�𝑢,𝑖 = {
0, 𝑐𝑢,𝑖 < 𝛽

1, 𝑐𝑢,𝑖 > 𝛽
 (3)

where 𝛽 is a hyperparameter representing the predefined threshold.

By pruning the interactions, we can obtain a denoised interaction

matrix �̃�, which can further form a denoised interaction graph �̃�.To

 ９

sum up, the graph denoising module mitigates the negative impact of

noisy interactions in GNN by pruning them in the interaction graph.

3.4. Self-supervised Learning Module

We introduce a random noise-based data augmentation to

alleviate the data sparsity problem in the proposed framework.

Inspired by the adversarial examples [38] which are constructed by

adding imperceptibly small perturbations to the input images, we

directly add random noises to the input of the encoder for an efficient

augmentation. Formally, given a node 𝑢 and its representation 𝑒𝑢 in

the 𝑑-dimensional embedding space, we can implement the following

representation-level augmentation:

 𝑒𝑢
′ = 𝑒𝑢 + ∆𝑢

′ (4)

where the added noise vectors ∆𝑢
′ is subject to ||∆||

2
= 𝜖 and

 ∆ = ∆̅ ⨀ 𝑠𝑖𝑔𝑛(𝑒𝑢), ∆̅ ∈ ℝ𝑑 ~ 𝑈(0,1) [15]. There are two

constraints. ∆ should be numerically equivalent to a point on the

hypersphere with radius 𝜖. At the same time, 𝑒𝑢 and ∆′ should be in

the same hyperoctant. Because of this, adding noise will not introduce

large deviations of 𝑒𝑢 that would make an invalid positive sample

[15]. Note that, the random noise added for each node representation

is different.

Let 𝑓 be the encoder network to generate the representations of

users and items. We use LightGCN [11] as the encoder. To be

specific, each encoder consists of a user encoder and an item encoder,

and takes as input the denoised user and item embedding vector

obtained from denoised interaction graph �̃�.

The self-supervised learning module uses two distinct encoder

networks with the same structure: online encoder 𝑓𝜃 and target

encoder 𝑓𝜉, parameterized by 𝜃 and 𝜉, respectively. The key idea is

to use the outputs of the target encoder as a target to train the online

 １０

encoder while slowly improving the target encoder as well [2, 13].

The online encoder is trained to minimize the error between its

output and the target, while the target network is gradually updated

based on the momentum update [36] so as to keep its output

consistent.

Precisely, for each denoised interaction (�̃�, 𝑖)̃ ∈ ℛ̃, the RBS loss

is defined based on the mean squared error of the prediction against

each other (i.e., representations of �̃� and 𝑖̃) using the predictor

𝑞𝜃: ℝ𝑑 → ℝ𝑑 on top of the online encoder. It contains two error terms:

one is to update the online user vector 𝑓𝜃(�̃�) to accurately predict

the target item vector 𝑓𝜉(�̃�), and the other is to update the online item

vector 𝑓𝜃(𝑖)̃ to predict as the target user vector 𝑓𝜉(�̃�). Finally, the

loss is described as follows:

ℒ𝜃,𝜉(�̃�, 𝑖̃) = 𝑙2[𝑞𝜃(𝑓𝜃(�̃�)), 𝑓𝜉(𝑖)̃] + 𝑙2[𝑞𝜃(𝑓𝜃(𝑖)̃), 𝑓𝜉(�̃�)]

≈ −
𝑞𝜃(𝑓𝜃(�̃�))

⊺
𝑓𝜉(𝑖)̃

||𝑞𝜃(𝑓𝜃(�̃�))||
2

||𝑓𝜉(�̃�)||
2

−
𝑞𝜃(𝑓𝜃(�̃�))

⊺
𝑓𝜉(�̃�)

||𝑞𝜃(𝑓𝜃(�̃�))||
2

||𝑓𝜉(�̃�)||
2

(5)

where 𝑙2[𝑥, 𝑦] is the 𝑙2 distance between two normalized vectors �̅� =

𝑥/||𝑥||
2
 and �̅� = 𝑦/||𝑦||

2
. As the mean squared errors between two

normalized vectors are equivalent to the negative value of their inner

product (Equation (4)), we simply use the inner product for the

optimization.

In a nutshell, the parameters of the online encoder and target

encoder are optimized by

𝜃 ← 𝜃 − 𝜂 ⋅ ∇𝜃ℒ𝜃,𝜉

𝜉 ← 𝜏 ⋅ 𝜉 + (1 − 𝜏) ⋅ 𝜃
(6)

𝜂 is the learning rate for stochastic optimization, and 𝜏 ∈ [0,1] is a

momentum coefficient (also called as target decay) for momentum-

based moving average. The online encoder 𝑓𝜃 and the predictor 𝑞𝜃

are effectively optimized by the gradients backpropagated from the

loss (Equation (4)), while the target encoder 𝑓𝜉 is updated with the

 １１

moving average of the online encoder. By taking a large value of 𝜏,

the target encoder slowly approximates the online encoder. This

momentum-based update makes 𝜉 evolve more slowly than 𝜃 ,

which enables to bootstrap the representations by providing

enhanced but consistent targets to the online encoders [2, 36].

3.5. Prediction

To retrieve 𝐾 most preferred items for each user, we define the

preference score 𝑠(�̃�, 𝑖̃) by using the representations of users and

items. Since we minimize the prediction error between �̃� and 𝑖 ̃ for

denoised interaction (�̃�, 𝑖̃), their positive relationship is encoded as

the 𝑙2 distance between their representations (Equation (4)). That

is, a smaller value of ℒ𝜃,𝜉(�̃�, 𝑖̃) indicates that the user-item pair (�̃�, 𝑖̃)

is more likely to be interacted, which means the loss becomes

inversely proportional to the preference score [13]. To consider the

symmetric relationship between �̃� and 𝑖,̃ we define the preference

score on the cross-prediction task.

 𝑠(�̃�, 𝑖)̃ = 𝑞𝜃(𝑓𝜃(�̃�))
⊺
𝑓𝜃(�̃�) + 𝑓𝜃(�̃�)⊺𝑞𝜃(𝑓𝜃(�̃�)) (7)

To obtain the preference score, we use only the representation from

the online encoder. The target encoder is discarded. Since the online

encoder and the target encoder finally converge to equilibrium by the

slow-moving average [2, 13], the preference score can be

effectively inferred with only the online encoder. Considering the

purpose of the target network to generate targets for training the

online network, it makes sense to discard the target network at the

end. Additionally, RBS uses the predictor to model interactions. The

predictor can encode the relationship between users and items into

representations. In conclusion, with the help of the predictor, RBS

not only accurately computes the user-item preference scores but

also optimizes the representation without explicit use of negative

samples.

 １２

Chapter 4. Experiments

In this section, we conduct evaluations to justify the superiority

of RBS. We first describe comparison results with the state-of-the-

art recommendation models for the top-𝐾 recommendation. Then,

validate the effectiveness of each component through an ablation

study.

4.1. Datasets

In our experiments, we adopt three real-world datasets:

CiteULike, Movielens-1M, and LastFM.

 CiteULike [26]: allows users to create their own

collections of articles.

 Movielens-1M [29]: has been widely used in previous

studies on recommendation, which contains movie ratings.

 LastFM [28]: contains users and songs.

The statistics of all three datasets are summarized in Table 1.

Table 1: Statistics of the datasets.

Dataset CiteULike Movielens-1M LastFM

#Users 5,551 6,040 1,892

#Items 16,980 3,629 17,632

#Interactions 106,852 423,208 48,288

Density 0.113% 1.931% 0.145%

 １３

4.2. Baselines

We compare the proposed RBS with the following CF models:

 NGCF [24]: A neighbor-based method to encode the

neighbors of users (and items) using Graph Convolutional

Networks (GCN). Multi-hop neighbors can also be

considered based on the GCN layer stack.

 LightGCN (LGCN) [11]: This method devised a light

graph convolution for training efficiency and generation

ability.

 SGL [12]: This model utilizes self-supervised learning

to improve the accuracy and robustness of LightGCN for

the recommendation. In our experiments, we adopt the

SGL equipped with the Edge Dropout.

 BUIR [13]: BUIR has a two-branch architecture which

consists of a target network and an online network. And

it only uses positive examples for self-supervised

learning.

For a fair comparison, we refer to the best hyperparameter settings

reported in the original papers of the baselines and then fine-tune

the hyperparameters of the baselines.

4.3. Evaluation Metrics

As we focus on the top-𝐾 recommendation task for implicit

feedback, we evaluate the performance of each model by using three

widely-used ranking metrics.

 Precision (P@K): Precision measures how many test

items are included in the list of top-𝐾 items.

 Recall (R@K): Recall means how many test items are

included in the total items that users are interested in.

 NDCG (N@K): Normalized Discounted Cumulative Gain.

 １４

NDCG assigns higher scores on the upper-ranked test

items.

4.4. Implementation Details

We implement the proposed framework by using PyTorch. Adam

[30] is applied to optimize all the parameters with the learning rate

𝜂 initialized as 0.001. We adopt a single linear layer for the predictor

𝑞𝜃 and fix the momentum coefficient 𝜏 to 0.995. We set batch size

1024 and embedding size 𝑑 = 250 , and 1-layer LightGCN as the

encoder. Besides, we tune the pruning threshold 𝛽 in {0.38, 0.39, 0.4}.

For the baselines, each experiment is performed with codes provided

by the authors and reported hyperparameters. We set up the

maximum number of epochs to 500 and adopt the early stopping

strategy.

4.5. Overall Performance

First and foremost, we compared the top-𝐾 recommendation

performance of RBS and baselines. Table 2, Table 3, and Table 4

present the comparison results on three real-world datasets,

respectively.

 １５

Table 2: The overall performance comparison on the CiteULike dataset. The

best result is bolded and the runner-up is underlined.

CiteULike

K Metric NGCF LGCN SGL BUIR RBS

10

P 0.0295 0.0654 0.1613 0.1950 0.1982

R 0.1125 0.1395 0.1573 0.1620 0.1638

N 0.1028 0.1430 0.1582 0.1843 0.1887

20

P 0.0386 0.0663 0.1717 0.2451 0.2507

R 0.1288 0.1877 0.2158 0.2326 0.2376

N 0.1253 0.1494 0.1737 0.2011 0.2064

50

P 0.0479 0.0686 0.2654 0.3543 0.3596

R 0.1315 0.1865 0.3225 0.3536 0.3588

N 0.1417 0.1464 0.2015 0.2376 0.2428

 １６

Table 3: The overall performance comparison on the Movielens-1M dataset.

The best result is bolded and the runner-up is underlined.

Movielens-1M

K Metric NGCF LGCN SGL BUIR RBS

10

P 0.1289 0.2051 0.2889 0.3310 0.3329

R 0.0747 0.1099 0.1182 0.1295 0.1335

N 0.1651 0.2592 0.2933 0.3519 0.3543

20

P 0.1405 0.2052 0.2776 0.3202 0.3263

R 0.1372 0.1895 0.1937 0.2025 0.2081

N 0.1880 0.2587 0.2954 0.3310 0.3359

50

P 0.1557 0. 1597 0.2936 0.3749 0.3877

R 0.1375 0.1857 0.3384 0.3366 0.3491

N 0.1877 0.2563 0.2993 0.3388 0.3476

 １７

Table 4: The overall performance comparison on the LastFM dataset. The

best result is bolded and the runner-up is underlined.

LastFM

K Metric NGCF LGCN SGL BUIR RBS

10

P 0.0676 0.1271 0.1708 0.1866 0.1909

R 0.1259 0.1420 0.1620 0.1693 0.1722

N 0.1520 0.1963 0.2043 0.2235 0.2263

20

P 0.0834 0.1260 0.1822 0.2482 0.2521

R 0.1601 0.2397 0.2501 0.2472 0.2521

N 0.1735 0.2234 0.2320 0.2468 0.2521

50

P 0.1170 0.1268 0.2825 0.3842 0.3886

R 0.2204 0.2409 0.3624 0.3842 0.3906

N 0.2032 0.2231 0.2943 0.3087 0.3119

The overall performance comparison results between RBS and

baseline models are shown in Table 2, Table 3, and Table 4. The best

result is bolded and the runner-up is underlined. As can be observed,

RBS outperforms all baseline models on all datasets. The

performance of the self-supervised learning-based models (SGL,

BUIR, and RBS) is significantly higher than the basic GNN-based

models (NGCF and LGCN). This indicates that self-supervised

learning improves the performance of GNN-based methods. Also,

compared to the discriminative models (NGCF, LGCN, and SGL) the

performance of RBS is better. This means that the imperfect

assumption that regards the unobserved interaction as a negative

interaction limits the ability to capture user preferences. Compared

to BUIR, which is a bootstrapping-based model, the performance of

RBS is higher. Through this, it can be seen that denoising plays an

important role in capturing the user’s exact preference.

 １８

4.6. Ablation Study

To validate the contribution of each module in RBS, we conduct

an ablation study on the CiteULike dataset. We adopt Precision,

Recall, and NDCG as the metrics. We present the experimental

results in Figure 2, Figure 3, and Figure 4. The following figures are

graphs showing the relative performance when RBS performance is

set to 100%. ‘w/o D’ is a model removed the graph denoising module,

and ‘w/o N’ is a model without random-based noise. ‘w/o both’ is a

model removed both. From Figure 2, Figure3, and Figure4, we can

observe that the performance of RBS degrades significantly when the

graph denoising module or random-based noise is removed. Overall,

the ablation study indicates that both the graph denoising module and

random-based noise contribute to RBS.

 １９

Figure 2: Ablation study on CiteULike dataset – Precision.

Figure 3: Ablation study on CiteULike dataset – Recall.

 ２０

Figure 4: Ablation study on CiteULike dataset – NDCG.

 ２１

Chapter 5. Conclusion

In this paper, we propose a Robust Bootstrapping-based Self-

supervised learning model for graph collaborative filtering, named RBS. To

reduce the negative impact of noisy interactions, the graph denoising module

applies denoising by pruning based on the confidence score. RBS also

significantly improves recommendation performance by adding random-

based noise to the encoder input to alleviate the data sparsity problem. The

extensive experiments demonstrate that RBS outperforms all other

baselines in terms of top-𝐾 recommendation.

 ２２

Bibliography

[1] Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet

Recommendation Systems. Journal of Marketing Research, 37(3),

363–375.

[2] Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P.,

Buchatskaya, E., ... & Valko, M. (2020). Bootstrap your own latent-

a new approach to self-supervised learning. Advances in neural

information processing systems, 33, 21271-21284.

[3] Nie, L., Wang, W., Hong, R., Wang, M., & Tian, Q. (2019, October).

Multimodal dialog system: Generating responses via adaptive

decoders. In Proceedings of the 27th ACM International Conference

on Multimedia (pp. 1098-1106).

[4] Lu, H., Zhang, M., & Ma, S. (2018, June). Between clicks and

satisfaction: Study on multi-phase user preferences and satisfaction

for online news reading. In The 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval (pp.

435-444).

[5] Ren, Z., Liang, S., Li, P., Wang, S., & de Rijke, M. (2017,

February). Social collaborative viewpoint regression with explainable

recommendations. In Proceedings of the tenth ACM international

conference on web search and data mining (pp. 485-494).

[6] Wang, W., Huang, M., Xu, X. S., Shen, F., & Nie, L. (2018, June).

Chat more: Deepening and widening the chatting topic via a deep

model. In The 41st international acm sigir conference on research &

development in information retrieval (pp. 255-264).

[7] Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007).

Collaborative filtering recommender systems. In The adaptive web

(pp. 291-324). Springer, Berlin, Heidelberg.

[8] Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative

filtering techniques. Advances in artificial intelligence, 2009.

[9] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L.

(2012). BPR: Bayesian personalized ranking from implicit feedback.

 ２３

arXiv preprint arXiv:1205.2618.

[10] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017,

April). Neural collaborative filtering. In Proceedings of the 26th

international conference on world wide web (pp. 173-182).

[11] He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020,

July). Lightgcn: Simplifying and powering graph convolution network

for recommendation. In Proceedings of the 43rd International ACM

SIGIR conference on research and development in Information

Retrieval (pp. 639-648).

[12] Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X.

(2021, July). Self-supervised graph learning for recommendation. In

Proceedings of the 44th international ACM SIGIR conference on

research and development in information retrieval (pp. 726-735).

[13] Lee, D., Kang, S., Ju, H., Park, C., & Yu, H. (2021, July).

Bootstrapping user and item representations for one-class

collaborative filtering. In Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information

Retrieval (pp. 317-326).

[14] Tian, C., Xie, Y., Li, Y., Yang, N., & Zhao, W. X. (2022, July).

Learning to Denoise Unreliable Interactions for Graph Collaborative

Filtering. In Proceedings of the 45th International ACM SIGIR

Conference on Research and Development in Information Retrieval

(pp. 122-132).

[15] Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., & Nguyen, Q. V. H.

(2022, July). Are graph augmentations necessary? simple graph

contrastive learning for recommendation. In Proceedings of the 45th

International ACM SIGIR Conference on Research and Development

in Information Retrieval (pp. 1294-1303).

[16] Wang, W., Feng, F., He, X., Nie, L., & Chua, T. S. (2021, March).

Denoising implicit feedback for recommendation. In Proceedings of

the 14th ACM international conference on web search and data

mining (pp. 373-381).

[17] Wu, L., Lin, H., Tan, C., Gao, Z., & Li, S. Z. (2021). Self-

supervised learning on graphs: Contrastive, generative, or predictive.

IEEE Transactions on Knowledge and Data Engineering.

 ２４

[18] Kipf, T. N., & Welling, M. (2017). Semi-supervised

classification with graph convolutional networks. In 5th International

Conference on Learning Representations.

[19] Covington, P., Adams, J., & Sargin, E. (2016, September). Deep

neural networks for youtube recommendations. In Proceedings of the

10th ACM conference on recommender systems (pp. 191-198).

[20] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., &

Leskovec, J. (2018, July). Graph convolutional neural networks for

web-scale recommender systems. In Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery & data

mining (pp. 974-983).

[21] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization

techniques for recommender systems. Computer, 42(8), 30-37.

[22] Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., & Zhang, X. (2021,

April). Self-supervised multi-channel hypergraph convolutional

network for social recommendation. In Proceedings of the Web

Conference 2021 (pp. 413-424).

[23] Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph

convolutional matrix completion. arXiv preprint arXiv:1706.02263.

[24] Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July).

Neural graph collaborative filtering. In Proceedings of the 42nd

international ACM SIGIR conference on Research and development in

Information Retrieval (pp. 165-174).

[25] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert:

Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805.

[26] Wang, H., Chen, B., & Li, W. J. (2013, June). Collaborative topic

regression with social regularization for tag recommendation. In

Twenty-Third International Joint Conference on Artificial

Intelligence.

[27] Li, M., Zhang, S., Zhu, F., Qian, W., Zang, L., Han, J., & Hu, S.

(2020, April). Symmetric metric learning with adaptive margin for

recommendation. In Proceedings of the AAAI conference on artificial

intelligence (Vol. 34, No. 04, pp. 4634-4641).

[28] Brusilovsky, P., Cantador, I., Koren, Y., Kuflik, T., & Weimer, M.

 ２５

(2010, September). Workshop on information heterogeneity and

fusion in recommender systems (HetRec 2010). In Proceedings of

the fourth ACM conference on Recommender systems (pp. 375-

376).

[29] Harper, F. M., & Konstan, J. A. (2015). The movielens datasets:

History and context. Acm transactions on interactive intelligent

systems (tiis), 5(4), 1-19.

[30] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

[31] Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018,

April). Variational autoencoders for collaborative filtering. In

Proceedings of the 2018 world wide web conference (pp. 689-698).

[32] Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., &

Graves, A. (2016). Conditional image generation with pixelcnn

decoders. Advances in neural information processing systems, 29.

[33] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020,

November). A simple framework for contrastive learning of visual

representations. In International conference on machine learning (pp.

1597-1607). PMLR.

[34] Komodakis, N., & Gidaris, S. (2018, April). Unsupervised

representation learning by predicting image rotations. In International

Conference on Learning Representations (ICLR).

[35] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K.,

Bachman, P., Trischler, A., & Bengio, Y. (2018). Learning deep

representations by mutual information estimation and maximization.

arXiv preprint arXiv:1808.06670.

[36] He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020).

Momentum contrast for unsupervised visual representation learning.

In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition (pp. 9729-9738).

[37] McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of

a feather: Homophily in social networks. Annual review of sociology,

415-444.

[38] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining

and harnessing adversarial examples. arXiv preprint

 ２６

arXiv:1412.6572.

[39] Yu, J., Yin, H., Xia, X., Chen, T., Li, J., & Huang, Z. (2022). Self-

Supervised Learning for Recommender Systems: A Survey. arXiv

preprint arXiv:2203.15876.

[40] Yu, J., Gao, M., Li, J., Yin, H., & Liu, H. (2018, October).

Adaptive implicit friends identification over heterogeneous network

for social recommendation. In Proceedings of the 27th ACM

international conference on information and knowledge management

(pp. 357-366).

[41] Oord, A. V. D., Li, Y., & Vinyals, O. (2018). Representation

learning with contrastive predictive coding. arXiv preprint

arXiv:1807.03748

 ２７

초록

대조 학습 기반 모델은 원시 데이터에서 자체 감독 신호를 추출하는

기능이 데이터 희소성 문제를 해결하기 위한 추천 시스템의 요구 사항과

일치하기 때문에 추천 연구에서 주목을 받고 있다. 이러한 효율성에도

불구하고 대조 학습 기반 모델에는 중요한 한계점이 있다. 바로

네거티브 샘플링이다. 네거티브 샘플링 방식을 사용하면 사용자의

취향에 맞는 항목이지만 상호작용이 관찰되지 않은 사용자-항목 쌍을

네거티브로 선택할 수 있다. 이를 해결하기 위해 네거티브 샘플링이

필요하지 않은 부트스트래핑 기반의 자기 지도 학습 방법이 제안되었다.

그러나 이 방법에도 한계점이 있다. 관찰된 샘플만 사용하기 때문에

노이즈가 있는 상호 작용에 취약하다. 또한 실제 데이터 셋에는 희소성

문제가 있다.

위의 문제를 해결하기 위해 그래프 협업 필터링을 위한 강력한

부트스트래핑 기반 자기 지도 학습 모델, RBS를 소개한다. RBS는

그래프 노이즈 제거 모듈과 자가 지도 학습 모듈의 두 가지 모듈로

구성된다. 그래프 노이즈 제거 모듈은 잡음이 있는 상호 작용의 영향을

줄이기 위해 설계되었다. 자기 지도 학습 모듈은 온라인 인코더와 타깃

인코더로 구성된다. RBS는 타깃 인코더의 표현을 예측하도록 온라인

인코더를 학습하는 반면, 타깃 인코더는 온라인 인코더를 천천히

근사하여 일관된 타깃을 제공한다. 또한 RBS는 인코더 입력에 노이즈를

추가하여 데이터 희소성 문제를 효과적으로 완화한다. 3가지 벤치마크

데이터 셋에 대한 포괄적인 경험적 연구는 RBS가 모든 기준 모델을

일관되고 크게 능가한다는 것을 보여준다.

	Chapter 1. Introduction
	Chapter 2. Related Work
	2.1. Graph Neural Networks
	2.2. Graph Collaborative Filtering
	2.3. Self-supervised Learning

	Chapter 3. Methodology
	3.1. Overview
	3.2. Problem Definition
	3.3. Graph Denoising Module
	3.4. Self-supervised Learning Module
	3.5. Prediction

	Chapter 4. Experiments
	4.1. Datasets
	4.2. Baselines
	4.3. Evaluation Metrics
	4.4. Implementation Details
	4.5. Overall Performance
	4.6. Ablation Study

	Chapter 5. Conclusion
	Bibliography
	초록

<startpage>9
Chapter 1. Introduction 1
Chapter 2. Related Work 3
 2.1. Graph Neural Networks 3
 2.2. Graph Collaborative Filtering 3
 2.3. Self-supervised Learning 4
Chapter 3. Methodology 6
 3.1. Overview 6
 3.2. Problem Definition 6
 3.3. Graph Denoising Module 7
 3.4. Self-supervised Learning Module 9
 3.5. Prediction 11
Chapter 4. Experiments 12
 4.1. Datasets 12
 4.2. Baselines 13
 4.3. Evaluation Metrics 13
 4.4. Implementation Details 14
 4.5. Overall Performance 14
 4.6. Ablation Study 18
Chapter 5. Conclusion 21
Bibliography 22
초록 27
</body>

