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Abstract 

 
Contrastive learning (CL) based models are gaining traction in 

recommendation research, since their ability to extract self-

supervised signals from raw data matches the requirements of 

recommender systems to solve the data sparsity issue. Despite their 

effectiveness, CL-based models have an important limitation: 

negative sampling. A negative sampling scheme allows positive but 

unobserved pairs to be selected as negative. To solve this problem, 

a bootstrapping-based self-supervised learning method that does 

not require negative sampling has been proposed. However, this 

method also has limitations. Because only positive samples are used, 

it is vulnerable to noisy interactions. Also, there is a sparsity issue 

in real-world data sets. 

To tackle the above issues, we introduce a Robust 

Bootstrapping-based Self-supervised learning model for graph 

collaborative filtering, named RBS. RBS consists of two modules: a 

graph denoising module and a self-supervised learning module. The 

graph denoising module is designed to reduce the influence of noisy 

interactions. The self-supervised learning module consists of an 

online encoder and a target encoder. RBS trains its online encoder to 

predict the target encoder’s representation, while the target 

encoder provides consistent targets by slowly approximating the 

online encoder. In addition, RBS effectively alleviates the data 

sparsity issue, by adding noises to encoder inputs. A comprehensive 

empirical study on three benchmark datasets demonstrates that RBS 

consistently and significantly outperforms all baseline methods. 

 

 

 

Keywords : Collaborative Filtering, Bootstrapping-based Self-

Supervised Learning, Denoising, Data Augmentation, Graph Neural 

Networks, Recommendation 
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Chapter 1. Introduction 
 

 

These days, recommender systems have become more important 

to help users discover items of preference in real-world applications 

[1] such as E-commerce[3], news portals[4], and social media[5, 

6]. The core of the recommender system is to predict whether a user 

will prefer an item, e.g., click, rate, or purchase, among other forms 

of interactions [11]. As a fundamental technique, collaborative 

filtering (CF) models [7, 8], which focus on exploiting past user-

item interactions to achieve the prediction, have been widely applied. 

Earlier work like matrix factorization (MF)[9] projects a single ID of 

each user (or item) into an embedding vector. Deep neural networks 

[10] learn better representations. 

Recently, Graph neural networks (GNN) have shown good 

performance in recommender systems as an effective graph 

collaborative filtering (CF) approach [11]. In particular, Contrastive 

learning (CL) based models are dominant in recommendation 

research, since they explicitly aim to distinguish positive user-item 

interactions from the negative counterparts. Despite their 

effectiveness, CL-based models have critical limitations. Since the 

negative interactions are not available in the implicit interaction graph, 

CL-based models assume that all unobserved interactions are 

negative. And a negative sampling scheme may choose positive but 

unobserved pairs as negative. To solve this problem, a 

bootstrapping-based self-supervised learning method [2, 13] that 

does not require negative sampling has been proposed. However, this 

method also has limitations. Since the bootstrapping-based self-

supervised learning method uses only positive samples, it is 

vulnerable to noisy interactions. Especially, noisy interactions can be 

fatal in the GNN learning process (i.e., the message-passing scheme 

via aggregating neighborhood information). Therefore, even when 

the noise of a single node itself is reduced to some extent, the global 

impact of the aggregated noise from the neighborhood remains 

uncontrolled. Also, there is a sparsity issue in real-world datasets. 



 

 ２ 

To tackle the aforementioned issues, we introduce a Robust 

Bootstrapping-based Self-supervised learning model for graph 

collaborative filtering, named RBS. RBS consists of two modules: a 

graph denoising module and a self-supervised learning module. The 

graph denoising module is devised to reduce the influence of noisy 

interactions. The self-supervised learning module consists of an 

online encoder and a target encoder. RBS trains its online encoder to 

predict the target encoder’s representation, while the target 

encoder provides consistent targets by slowly approximating the 

online encoder. In addition, RBS effectively alleviates the data 

sparsity issue, by adding noises to encoder inputs. A comprehensive 

empirical study on three benchmark datasets demonstrates the 

effectiveness of RBS, which consistently and significantly 

outperforms all baseline methods. 

The key contributions of RBS are summarized as follows: 

 We devise the RBS method to alleviate the negative 

impact of noisy interactions in bootstrapping-based self-

supervised learning. 

 We use random-based noise to mitigate the data sparsity 

problem. 

 Extensive evaluations performed on three real-world 

datasets demonstrate the superiority of RBS. 
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Chapter 2. Related Work 
 

 

In this part, we describe the related work from three 

perspectives: graph neural networks, graph collaborative filtering, 

and self-supervised learning. 

 

 

2.1. Graph Neural Networks 
 

Graph neural networks (GNN) [17, 18] are a family of neural 

networks that have been widely used as the backbone encoder. A 

general GNN framework involves two key computations for each 

node 𝑣𝑖 at every layer: 

 AGGREGATE: aggregating messages from node 𝑣𝑖  ‘s 

one-hop neighbors 𝒩𝑖 and updating node representation 

from its representation in the previous layer and the 

aggregated messages 

 COMBINE: combining the learned embeddings at each 

layer after 𝐾 layers graph propagation 

 

 

2.2. Graph Collaborative Filtering 
 

Collaborative Filtering (CF) is a technique widely used in modern 

recommender systems. One of the common methods of the CF model 

is to parameterize users and items as embeddings and learn the 

embedding parameters by reconstructing historical user-item 

interactions [11, 19]. For instance, earlier CF models like matrix 

factorization (MF) [21] project the user’s (or item’s) ID into an 

embedding vector. The neural recommender models such as NCF [10] 

use the same embedding component while enhancing the interaction 

modeling with neural networks. 

Recently emerged graph neural networks (GNN) shine a light on 

the modeling graph structure, especially high-hop neighbors, to 
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guide the embedding learning [11]. Unlike traditional collaborative 

filtering methods, graph collaborative filtering models interaction 

data as a user-item graph and exploits the graph structure for the 

recommendation [14]. Graph Neural Networks (GNN) now have 

become widely acknowledged powerful architectures for modeling 

recommendation data [15]. This paradigm ends the regime of MLP-

based recommendation models and boosts the neural recommender 

systems to a new level. A large number of GNN-based 

recommendation models claim that they have achieved state-of-

the-art performance [11, 15, 22]. In particular, GCN [18] is the most 

prevalent variant of GNNs. GCN further promotes the development 

of graph neural recommendation models. For example, GCMC [23], 

which is the graph-based auto-encoder framework, is proposed for 

explicit matrix completion. NGCF [24] leverages high-order 

connectivity in the user-item graph to improve recommendations. 

Especially, LightGCN [11] is the most popular one, because it 

removes nonlinear activation and feature transformation of GCN to 

simplify the architecture recommendation. 

 

 

2.3. Self-supervised Learning 
 

Recently, self-supervised learning (SSL) approaches have been 

very successful in computer vision and natural language processing 

[2]. Studies on self-supervised learning can be roughly categorized 

into two branches: generative models [25, 31, 32] and contrastive 

models [12, 33, 34]. Auto-encoding is the most popular generative 

model that learns how to reconstruct the input data, and can on 

purpose add noise to improve model robustness [25]. Contrastive 

models learn how to compare via a Noise Contrastive Estimation 

(NCE) objective, which can be a global-local contrast [35] or 

global-global contrast approach [33]. The former focuses on 

modeling the relationship between the local part of a sample and its 

global context representation. While the latter directly performs a 

comparison between different samples, it usually requires multiple 
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views of samples [33, 36].  

As Contrastive Learning (CL) works in a self-supervised 

manner[39], it is essentially a possible solution to the problem of 

data sparsity [40] in recommender systems. Inspired by the success 

of CL in other fields, a new wave of research has emerged that 

integrates CL with recommendations [15]. A common approach [12] 

to applying CL to recommendation tasks is to first augment the user-

item interaction graph with structural perturbations, and then 

maximize the consistency of representations under different views 

learned via a graph encoder. SGL [12], a state-of-the-art CL-

based recommendation method, augments the original graph by 

performing node or edge dropout and adopts InfoNCE for CL. 

 

 

 



 

 ６ 

Chapter 3. Methodology 
 

 

In this chapter, we present the proposed Robust Bootstrapping-

based Self-supervised learning model (RBS), which enhances the 

robustness of bootstrapping-based self-supervised learning for 

graph collaborative filtering. 

 

 

3.1. Overview 
 

The proposed RBS model consists of two modules, i.e., the graph 

denoising module and the self-supervised learning module. 

Specifically, the graph denoising module is devised for reducing the 

effect of noisy user-item interactions in representation learning of 

GNN-based CF [14]. Based on the estimated confidence scores of 

the user-item interactions, we discard interactions that are 

confidently estimated as noise in the graph denoising module. Then 

we propose the self-supervised module, which learns the 

representations of users and items without any assumptions about 

negative interactions. The overview of RBS is illustrated in Figure 1, 

and more details will be described in the following sections. 

 

 

3.2. Problem Definition 
 

Let 𝒰 and ℐ be the set of users and items respectively. Given a 

set of observed user-item interactions ℛ , the goal of top- 𝐾 

recommendation is to obtain the preference score 𝑠(𝑢, 𝑣) ∈ ℝ, which 

indicates how much the user 𝑢  prefers item 𝑣 . Based on the 

preference scores, we can recommend 𝐾  items with the highest 

scores for each user. To define the preference score by using the 

denoised representations of users and items, we focus on denoising 

the graph and training the encoder network that maps each user and 

item into a low-dimensional latent space where the users’ 
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preferences on the items are effectively captured. 

 

 

 

 

Figure 1: An illustration of RBS model architecture. 

 

 

3.3. Graph Denoising Module 
 

According to the homophily theory [37] of social networks, 

nodes with structural roles or similar features are more likely to 

interact with each other than nodes with different structural roles or 

features. Since node features might be unavailable in CF, we estimate 

the confidence scores [14] of observed interactions between users 

and items based on their structural similarity in the interaction graph. 

Let 𝒰 = {𝑢1, … , 𝑢𝑀} and ℐ = {𝑖1, … , 𝑖𝑁} be the set of 𝑀 users and N 

items, respectively. Concretely, given the user-item interaction data 

𝑹 ∈ ℝ𝑀×𝑁, we can construct the interaction graph 𝒢, where e 𝑟𝑢,𝑖 = 1 

entry in 𝑅 corresponds to an edge between user 𝑢 and item 𝑖 in 𝒢. 

Then we extract the nodes’ one-hop neighbors as their structural 

features, that encode the local topological information of nodes. The 
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embedding matrices 𝑬𝑈 ∈ ℝ𝑀×𝑑 and 𝑬𝐼 ∈ ℝ𝑁×𝑑 are set to transform 

the user and item structural features into the same hidden space: 

 

 𝑯𝑈 = 𝑹𝑬𝐼 ,      𝑯𝐼 = 𝑹⊺𝑬𝑈 (1) 

   

where 𝑯𝑈 ∈ ℝ𝑀×𝑑 and 𝑯𝐼 ∈ ℝ𝑁×𝑑 are the structural feature matrices 

of users and items, respectively. 

 

We measure their structural similarity in the interaction graph 𝒢 

to estimate the confidence score of interaction between user 𝑢 and 

item 𝑖. Given the structural features ℎ𝑢 and ℎ𝑖, which are the 𝑢-th 

row of 𝑯𝑈  and the 𝑖 -th row of 𝑯𝐼 , respectively, we use the 

normalized cosine distance for the confidence score 𝑐𝑢,𝑖 [14]: 

 

 𝑐𝑢,𝑖 = (cos(ℎ𝑢, ℎ𝑖) + 1)/2 (2) 

 

A large confidence score 𝑐𝑢,𝑖 indicates a reliable interaction between 

user 𝑢 and item 𝑖 based on their structural similarity. 

 

Based on the estimated confidence scores of user-item 

interactions, we apply a pruning strategy to the interaction graph 𝒢 

to conduct a denoised interaction graph, denoted as �̃�. To be specific, 

for the interactions that are considered noise with low confidence 

scores, the graph denoising module uses denoising strategy with 

pruning by removing them directly from the interaction graph. For 

each observed interaction 𝑟𝑢,𝑖  the corresponding denoised 

interaction can be formally given as: 

 

 �̃�𝑢,𝑖 = {
0,    𝑐𝑢,𝑖 < 𝛽

1,    𝑐𝑢,𝑖 > 𝛽
 (3) 

 

where 𝛽 is a hyperparameter representing the predefined threshold. 

 

By pruning the interactions, we can obtain a denoised interaction 

matrix �̃�, which can further form a denoised interaction graph �̃�.To 
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sum up, the graph denoising module mitigates the negative impact of 

noisy interactions in GNN by pruning them in the interaction graph. 

 

 

3.4. Self-supervised Learning Module 
 

 

We introduce a random noise-based data augmentation to 

alleviate the data sparsity problem in the proposed framework. 

Inspired by the adversarial examples [38] which are constructed by 

adding imperceptibly small perturbations to the input images, we 

directly add random noises to the input of the encoder for an efficient 

augmentation. Formally, given a node 𝑢 and its representation 𝑒𝑢 in 

the 𝑑-dimensional embedding space, we can implement the following 

representation-level augmentation: 

 

 𝑒𝑢
′ = 𝑒𝑢 + ∆𝑢

′  (4) 

 

where the added noise vectors ∆𝑢
′  is subject to  ||∆||

2
= 𝜖   and   

 ∆ =  ∆̅ ⨀  𝑠𝑖𝑔𝑛(𝑒𝑢),    ∆̅ ∈ ℝ𝑑  ~ 𝑈(0,1)  [15]. There are two 

constraints. ∆ should be numerically equivalent to a point on the 

hypersphere with radius 𝜖. At the same time, 𝑒𝑢 and ∆′ should be in 

the same hyperoctant. Because of this, adding noise will not introduce 

large deviations of 𝑒𝑢 that would make an invalid positive sample 

[15]. Note that, the random noise added for each node representation 

is different. 

Let 𝑓 be the encoder network to generate the representations of 

users and items. We use LightGCN [11] as the encoder. To be 

specific, each encoder consists of a user encoder and an item encoder, 

and takes as input the denoised user and item embedding vector 

obtained from denoised interaction graph �̃�. 

The self-supervised learning module uses two distinct encoder 

networks with the same structure: online encoder 𝑓𝜃  and target 

encoder 𝑓𝜉, parameterized by 𝜃 and 𝜉, respectively. The key idea is 

to use the outputs of the target encoder as a target to train the online 
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encoder while slowly improving the target encoder as well [2, 13]. 

The online encoder is trained to minimize the error between its 

output and the target, while the target network is gradually updated 

based on the momentum update [36] so as to keep its output 

consistent. 

Precisely, for each denoised interaction (�̃�, 𝑖)̃ ∈ ℛ̃, the RBS loss 

is defined based on the mean squared error of the prediction against 

each other (i.e., representations of �̃�  and 𝑖̃) using the predictor 

𝑞𝜃: ℝ𝑑 → ℝ𝑑 on top of the online encoder. It contains two error terms: 

one is to update the online user vector 𝑓𝜃(�̃�) to accurately predict 

the target item vector 𝑓𝜉(�̃�), and the other is to update the online item 

vector 𝑓𝜃(𝑖)̃ to predict as the target user vector 𝑓𝜉(�̃�). Finally, the 

loss is described as follows: 

 

 

ℒ𝜃,𝜉(�̃�, 𝑖̃) = 𝑙2[𝑞𝜃(𝑓𝜃(�̃�)), 𝑓𝜉(𝑖)̃] + 𝑙2[𝑞𝜃(𝑓𝜃(𝑖)̃), 𝑓𝜉(�̃�)] 

≈ −
𝑞𝜃(𝑓𝜃(�̃�))

⊺
𝑓𝜉(𝑖)̃

||𝑞𝜃(𝑓𝜃(�̃�))||
2

||𝑓𝜉(�̃�)||
2

−
𝑞𝜃(𝑓𝜃(�̃�))

⊺
𝑓𝜉(�̃�)

||𝑞𝜃(𝑓𝜃(�̃�))||
2

||𝑓𝜉(�̃�)||
2

 
(5) 

 

where 𝑙2[𝑥, 𝑦] is the 𝑙2 distance between two normalized vectors �̅� =

𝑥/||𝑥||
2
 and �̅� = 𝑦/||𝑦||

2
. As the mean squared errors between two 

normalized vectors are equivalent to the negative value of their inner 

product (Equation (4)), we simply use the inner product for the 

optimization. 

In a nutshell, the parameters of the online encoder and target 

encoder are optimized by 

 

 
𝜃 ← 𝜃 − 𝜂 ⋅ ∇𝜃ℒ𝜃,𝜉 

𝜉 ← 𝜏 ⋅ 𝜉 + (1 − 𝜏) ⋅ 𝜃 
(6) 

 

𝜂 is the learning rate for stochastic optimization, and 𝜏 ∈ [0,1] is a 

momentum coefficient (also called as target decay) for momentum-

based moving average. The online encoder 𝑓𝜃 and the predictor 𝑞𝜃 

are effectively optimized by the gradients backpropagated from the 

loss (Equation (4)), while the target encoder 𝑓𝜉 is updated with the 
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moving average of the online encoder. By taking a large value of 𝜏, 

the target encoder slowly approximates the online encoder. This 

momentum-based update makes 𝜉  evolve more slowly than 𝜃 , 

which enables to bootstrap the representations by providing 

enhanced but consistent targets to the online encoders [2, 36]. 

 

 

3.5. Prediction 
 

To retrieve 𝐾 most preferred items for each user, we define the 

preference score 𝑠(�̃�, 𝑖̃) by using the representations of users and 

items. Since we minimize the prediction error between �̃� and 𝑖 ̃ for 

denoised interaction (�̃�, 𝑖̃), their positive relationship is encoded as 

the 𝑙2 distance between their representations (Equation (4)). That 

is, a smaller value of ℒ𝜃,𝜉(�̃�, 𝑖̃) indicates that the user-item pair (�̃�, 𝑖̃) 

is more likely to be interacted, which means the loss becomes 

inversely proportional to the preference score [13]. To consider the 

symmetric relationship between �̃� and 𝑖,̃ we define the preference 

score on the cross-prediction task. 

 

 𝑠(�̃�, 𝑖)̃ = 𝑞𝜃(𝑓𝜃(�̃�))
⊺
𝑓𝜃(�̃�) + 𝑓𝜃(�̃�)⊺𝑞𝜃(𝑓𝜃(�̃�)) (7) 

 

To obtain the preference score, we use only the representation from 

the online encoder. The target encoder is discarded. Since the online 

encoder and the target encoder finally converge to equilibrium by the 

slow-moving average [2, 13], the preference score can be 

effectively inferred with only the online encoder. Considering the 

purpose of the target network to generate targets for training the 

online network, it makes sense to discard the target network at the 

end. Additionally, RBS uses the predictor to model interactions. The 

predictor can encode the relationship between users and items into 

representations. In conclusion, with the help of the predictor, RBS 

not only accurately computes the user-item preference scores but 

also optimizes the representation without explicit use of negative 

samples. 
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Chapter 4. Experiments 
 

 

In this section, we conduct evaluations to justify the superiority 

of RBS. We first describe comparison results with the state-of-the-

art recommendation models for the top-𝐾 recommendation. Then, 

validate the effectiveness of each component through an ablation 

study. 

 

 

4.1. Datasets 
 

In our experiments, we adopt three real-world datasets: 

CiteULike, Movielens-1M, and LastFM. 

 

 CiteULike [26]: allows users to create their own 

collections of articles. 

 Movielens-1M [29]: has been widely used in previous 

studies on recommendation, which contains movie ratings. 

 LastFM [28]: contains users and songs. 

 

The statistics of all three datasets are summarized in Table 1. 

 

 

Table 1: Statistics of the datasets. 

Dataset CiteULike Movielens-1M LastFM 

#Users 5,551 6,040 1,892 

#Items 16,980 3,629 17,632 

#Interactions 106,852 423,208 48,288 

Density 0.113% 1.931% 0.145% 
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4.2. Baselines 
 

We compare the proposed RBS with the following CF models: 

 NGCF [24]: A neighbor-based method to encode the 

neighbors of users (and items) using Graph Convolutional 

Networks (GCN). Multi-hop neighbors can also be 

considered based on the GCN layer stack. 

 LightGCN (LGCN) [11]: This method devised a light 

graph convolution for training efficiency and generation 

ability. 

 SGL [12]: This model utilizes self-supervised learning 

to improve the accuracy and robustness of LightGCN for 

the recommendation. In our experiments, we adopt the 

SGL equipped with the Edge Dropout. 

 BUIR [13]: BUIR has a two-branch architecture which 

consists of a target network and an online network. And 

it only uses positive examples for self-supervised 

learning. 

 

For a fair comparison, we refer to the best hyperparameter settings 

reported in the original papers of the baselines and then fine-tune 

the hyperparameters of the baselines. 

 

 

4.3. Evaluation Metrics 
 

As we focus on the top-𝐾  recommendation task for implicit 

feedback, we evaluate the performance of each model by using three 

widely-used ranking metrics. 

 

 Precision (P@K): Precision measures how many test 

items are included in the list of top-𝐾 items. 

 Recall (R@K): Recall means how many test items are 

included in the total items that users are interested in. 

 NDCG (N@K): Normalized Discounted Cumulative Gain. 



 

 １４ 

NDCG assigns higher scores on the upper-ranked test 

items. 

 

 

4.4. Implementation Details 
 

We implement the proposed framework by using PyTorch. Adam 

[30] is applied to optimize all the parameters with the learning rate 

𝜂  initialized as 0.001. We adopt a single linear layer for the predictor 

𝑞𝜃 and fix the momentum coefficient 𝜏 to 0.995. We set batch size 

1024 and embedding size 𝑑 = 250 , and 1-layer LightGCN as the 

encoder. Besides, we tune the pruning threshold 𝛽 in {0.38, 0.39, 0.4}. 

For the baselines, each experiment is performed with codes provided 

by the authors and reported hyperparameters. We set up the 

maximum number of epochs to 500 and adopt the early stopping 

strategy. 

 

 

4.5. Overall Performance 
 

First and foremost, we compared the top-𝐾 recommendation 

performance of RBS and baselines. Table 2, Table 3, and Table 4 

present the comparison results on three real-world datasets, 

respectively. 
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Table 2: The overall performance comparison on the CiteULike dataset. The 

best result is bolded and the runner-up is underlined. 

CiteULike 

K Metric NGCF LGCN SGL BUIR RBS 

10 

P 0.0295 0.0654 0.1613 0.1950 0.1982 

R 0.1125 0.1395 0.1573 0.1620 0.1638 

N 0.1028 0.1430 0.1582 0.1843 0.1887 

20 

P 0.0386 0.0663 0.1717 0.2451 0.2507 

R 0.1288 0.1877 0.2158 0.2326 0.2376 

N 0.1253 0.1494 0.1737 0.2011 0.2064 

50 

P 0.0479 0.0686 0.2654 0.3543 0.3596 

R 0.1315 0.1865 0.3225 0.3536 0.3588 

N 0.1417 0.1464 0.2015 0.2376 0.2428 
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Table 3: The overall performance comparison on the Movielens-1M dataset. 

The best result is bolded and the runner-up is underlined. 

Movielens-1M 

K Metric NGCF LGCN SGL BUIR RBS 

10 

P 0.1289 0.2051 0.2889 0.3310 0.3329 

R 0.0747 0.1099 0.1182 0.1295 0.1335 

N 0.1651 0.2592 0.2933 0.3519 0.3543 

20 

P 0.1405 0.2052 0.2776 0.3202 0.3263 

R 0.1372 0.1895 0.1937 0.2025 0.2081 

N 0.1880 0.2587 0.2954 0.3310 0.3359 

50 

P 0.1557 0. 1597 0.2936 0.3749 0.3877 

R 0.1375 0.1857 0.3384 0.3366 0.3491 

N 0.1877 0.2563 0.2993 0.3388 0.3476 
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Table 4: The overall performance comparison on the LastFM dataset. The 

best result is bolded and the runner-up is underlined. 

LastFM 

K Metric NGCF LGCN SGL BUIR RBS 

10 

P 0.0676 0.1271 0.1708 0.1866 0.1909 

R 0.1259 0.1420 0.1620 0.1693 0.1722 

N 0.1520 0.1963 0.2043 0.2235 0.2263 

20 

P 0.0834 0.1260 0.1822 0.2482 0.2521 

R 0.1601 0.2397 0.2501 0.2472 0.2521 

N 0.1735 0.2234 0.2320 0.2468 0.2521 

50 

P 0.1170 0.1268 0.2825 0.3842 0.3886 

R 0.2204 0.2409 0.3624 0.3842 0.3906 

N 0.2032 0.2231 0.2943 0.3087 0.3119 

 

 

The overall performance comparison results between RBS and 

baseline models are shown in Table 2, Table 3, and Table 4. The best 

result is bolded and the runner-up is underlined. As can be observed, 

RBS outperforms all baseline models on all datasets. The 

performance of the self-supervised learning-based models (SGL, 

BUIR, and RBS) is significantly higher than the basic GNN-based 

models (NGCF and LGCN). This indicates that self-supervised 

learning improves the performance of GNN-based methods. Also, 

compared to the discriminative models (NGCF, LGCN, and SGL) the 

performance of RBS is better. This means that the imperfect 

assumption that regards the unobserved interaction as a negative 

interaction limits the ability to capture user preferences. Compared 

to BUIR, which is a bootstrapping-based model, the performance of 

RBS is higher. Through this, it can be seen that denoising plays an 

important role in capturing the user’s exact preference. 
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4.6. Ablation Study 
 

To validate the contribution of each module in RBS, we conduct 

an ablation study on the CiteULike dataset. We adopt Precision, 

Recall, and NDCG as the metrics. We present the experimental 

results in Figure 2, Figure 3, and Figure 4. The following figures are 

graphs showing the relative performance when RBS performance is 

set to 100%. ‘w/o D’ is a model removed the graph denoising module, 

and ‘w/o N’ is a model without random-based noise. ‘w/o both’ is a 

model removed both. From Figure 2, Figure3, and Figure4, we can 

observe that the performance of RBS degrades significantly when the 

graph denoising module or random-based noise is removed. Overall, 

the ablation study indicates that both the graph denoising module and 

random-based noise contribute to RBS. 
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Figure 2: Ablation study on CiteULike dataset – Precision. 

 

Figure 3: Ablation study on CiteULike dataset – Recall. 
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Figure 4: Ablation study on CiteULike dataset – NDCG. 
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Chapter 5. Conclusion 
 

 

In this paper, we propose a Robust Bootstrapping-based Self-

supervised learning model for graph collaborative filtering, named RBS. To 

reduce the negative impact of noisy interactions, the graph denoising module 

applies denoising by pruning based on the confidence score. RBS also 

significantly improves recommendation performance by adding random-

based noise to the encoder input to alleviate the data sparsity problem. The 

extensive experiments demonstrate that RBS outperforms all other 

baselines in terms of top-𝐾 recommendation. 
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초록 

 

 

대조 학습 기반 모델은 원시 데이터에서 자체 감독 신호를 추출하는 

기능이 데이터 희소성 문제를 해결하기 위한 추천 시스템의 요구 사항과 

일치하기 때문에 추천 연구에서 주목을 받고 있다. 이러한 효율성에도 

불구하고 대조 학습 기반 모델에는 중요한 한계점이 있다. 바로 

네거티브 샘플링이다. 네거티브 샘플링 방식을 사용하면 사용자의 

취향에 맞는 항목이지만 상호작용이 관찰되지 않은 사용자-항목 쌍을 

네거티브로 선택할 수 있다. 이를 해결하기 위해 네거티브 샘플링이 

필요하지 않은 부트스트래핑 기반의 자기 지도 학습 방법이 제안되었다. 

그러나 이 방법에도 한계점이 있다. 관찰된 샘플만 사용하기 때문에 

노이즈가 있는 상호 작용에 취약하다. 또한 실제 데이터 셋에는 희소성 

문제가 있다. 

위의 문제를 해결하기 위해 그래프 협업 필터링을 위한 강력한 

부트스트래핑 기반 자기 지도 학습 모델, RBS를 소개한다. RBS는 

그래프 노이즈 제거 모듈과 자가 지도 학습 모듈의 두 가지 모듈로 

구성된다. 그래프 노이즈 제거 모듈은 잡음이 있는 상호 작용의 영향을 

줄이기 위해 설계되었다. 자기 지도 학습 모듈은 온라인 인코더와 타깃 

인코더로 구성된다. RBS는 타깃 인코더의 표현을 예측하도록 온라인 

인코더를 학습하는 반면, 타깃 인코더는 온라인 인코더를 천천히 

근사하여 일관된 타깃을 제공한다. 또한 RBS는 인코더 입력에 노이즈를 

추가하여 데이터 희소성 문제를 효과적으로 완화한다. 3가지 벤치마크 

데이터 셋에 대한 포괄적인 경험적 연구는 RBS가 모든 기준 모델을 

일관되고 크게 능가한다는 것을 보여준다. 
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