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Abstract

Previous models for vision-to-language generation tasks usually pretrain a vi-

sual encoder and a language generator in the respective domains and jointly

finetune them with the target task. However, this direct transfer practice may

suffer from the discord between visual specificity and language fluency since they

are often separately trained from large corpora of visual and text data with no

common ground. In this work, we claim that a transitional adaptation task is

required between pretraining and finetuning to harmonize the visual encoder

and the language model for challenging downstream target tasks like visual

storytelling. We propose a novel approach named Transitional Adaptation of

Pretrained Model (TAPM) that adapts the multi-modal modules to each other

with a simpler alignment task between visual inputs only with no need for text

labels. Through extensive experiments, we show that the adaptation step sig-

nificantly improves the performance of multiple language models for sequential

video and image captioning tasks. We achieve new state-of-the-art performance

on both language metrics and human evaluation in the multi-sentence descrip-

tion task of LSMDC 2019 [1] and the image storytelling task of VIST [2]. Our

experiments reveal that this improvement in caption quality does not depend

on the specific choice of language models.

Keywords: artificial intelligence, multomodal learning, visual storytelling
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Chapter 1

Introduction

Most models for vision-to-language generation tasks consist of a visual encoder

to extract visual information from input images or videos, a language model

to generate text sentences, and a mechanism to weld the two modules into one

harmonized architecture. For example, recent models for visual captioning [3, 4]

adopt a pretrained visual encoder and a pretrained language generator and

then optimize the target cross-modal generation objective with the downstream

datasets [5, 6, 7, 8, 9, 10]. In this process, however, no transitional adaptation

step has proposed to match the potentially substantial differences between the

information stored in the visual encoder and the language generator, as they

are separately trained from large sets of visual and text data with no common

ground (e.g.images from ImageNet and text from Wikipedia).

This work is motivated by that this direct transfer of pretrained models to

a downstream task may suffer from the dissonance between visual specificity

and language fluency. For example, finetuning pretrained language models on

another target task may result in catastrophic forgetting of the language gener-

1



(a) Traditional image/video captioning

(b) Adaptive image/video captioning
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Figure 1.1 Comparison between existing captioning models and our Transitional

Adaptation of Pretrained Model (TAPM). (a) Previous captioning models start

from a pretrained visual encoder and a language generator and then directly

finetune with the downstream datasets. (b) TAPM includes a simple pretext

task as an adaptation process that harmonizes the generator with the visual

encoder before optimizing the target objective.

ation capability [11, 12]. Moreover, existing captioning models have often been

criticized for not sufficiently conditioning on the visual context and thus lack

visual discriminability [13, 14].

Considering the potentially vast gap between the nature of the information

stored in the visual encoder and the language decoder, it would be difficult for

them to work in harmony at once for another challenging objective of vision-

to-language generation. In this light, we believe a simpler objective dedicated

to improving coordination between the two separately pretrained models could

help the model get prepared for the target objective eventually better and faster.

Therefore, we present Transitional Adaptation of Pretrained Model (TAPM)

for visual storytelling as the first approach that proposes an explicit visual adap-

tation step to harmonize the visual encoder with the pretrained language models

as depicted in Fig. 1.1. Our adaptation step can be trained with only visual in-
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puts, such as images or videos with no text label. We outline the contributions

of this work as follows:

1. Our work is the first attempt to demonstrate an auxiliary adaptation

loss’s effectiveness in welding a visual encoder with a pretrained language

model. By extensive experiments, we show that this additional adaptation

between pretraining and finetuning consistently improves the captioning

quality of various language models such as GPT-2 [15], XLM [16], and

QRNN [17].

2. We present the sequential coherence loss that can adapt the language

generator using only sequential video/image inputs with no text label.

We also introduce two recipes critical to TAPM’s success: (i) using the

language model outputs for adaptation training and (ii) using the split-

training process.

3. We evaluate TAPM in two storytelling tasks: sequential video captioning

in the LSMDC 2019 [1] and sequential image captioning in VIST [2].

TAPM achieves new state-of-the-art performance in both tasks in terms

of automatic language metrics and human evaluation.
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Chapter 2

Related Work

2.1 Visual Storytelling

Unlike direct and literal descriptions, visual storytelling aims to generate a more

figurative and consistent narrative for consecutive images or videos [2]. Some

earlier works [18, 19] explore the summarization of long videos into the storyline

representation. Park et al. [20, 21] integrate an entity-based local coherence

model to generate a coherent flow of multiple sentences for a photo album. Fan

et al. [22] use a shorter prompt as the intermediate representation. Jain et al. [23]

combine SMTs and RNNs to merge independent descriptions into a coherent

story. Huang et al. [24] propose a two-level hierarchical RL-based decoder to

plan a semantic topic first and then generate consistent sentences. Tang et

al. [25] employ an attribute-based hierarchical decoder to create paragraphs

using policy gradient with word-level rewards and adversarial training. Fan et

al. [26] exploit a predicate-argument structure of the text to build coherent

stories. Gella et al. [27] introduce the VideoStory dataset for generating stories

4



from social media videos. AdvInf [28] uses adversarial inference and MART [29]

memory augmented transformer to generate paragraph-level captions.

Most previous works on visual storytelling require both visual encoder and

language generator. Our work is orthogonally applicable to these approaches

to better adapt the language decoder for visual context before training the

models with the main vision-to-language objective, including Reinforcement

and adversarial learning.

2.2 Auxiliary Losses for Captioning

Autoregressive language models trained with cross-entropy often suffer from

exposure bias [30]. Several works on captioning have leveraged reinforcement

learning by using rewards as auxiliary loss signals to ameliorate this bias. Zhang

et al.[31] directly optimize language quality metrics with an actor-critic frame-

work. Liu et al.[32] optimize a linear combination of language metrics using

Monte Carlo rollouts. SCST [33] improves the REINFORCE algorithm to cor-

rectly normalize external rewards using the test-time inference algorithm’s out-

put. Ren et al.[34] use the embedding similarity between generated sentences

and image features as the reward. These reinforcement learning approaches

have been extended to the video captioning problem [35, 36]. While reinforce-

ment learning can help training non-differentiable objectives, it is known to

be unstable [37]. Other types of auxiliary losses have also been adopted for

captioning problems. Ma et al.[38] employ the cyclic reconstruction to enforce

the localization of each word in an image. Zhou et al.[39] add visual ground-

ing supervision to enhance the sentence generation quality. HINT [40] learns to

match the attention map to human attention for grounded image captioning.

VideoBERT [41] extends the text-based BERT to build bidirectional modeling

5



between videos and captions. Compared to previous work, our work does not

require additional visual caption data since it takes self-supervision losses with

only sequential visual inputs.

2.3 Pretrained Models for Vision-to-Language Tasks

Recently, many works have demonstrated the power of self-supervision based

representation learning in cross-modal settings. LXMERT [42] and ViLBERT [43]

pretrain two-stream transformers on various tasks including masked cross-modal

language model (LM) objectives. LXMERT is extended later with adaptive

sparse attention [44]. VisualBERT [45] and VL-BERT [46] uses single-stream

transformers. CMR [47] models the relevance between the textual entities and

visual entities. UNITER [48] and Unicoder-VL [49] use object detection based

objectives in addition to the masked LM loss. VideoBERT [41] trains a trans-

former for video-language tasks using vector quantization to categorize videos

into discrete tokens. CBT [50] replaces the softmax loss of BERT with noise

contrastive estimation.

These approaches aim to learn general representations, and our method

adapts the trained representations to the target cross-modal generation tasks.

Thus, our model is orthogonal to the aforementioned self-supervised represen-

tations and consistently improves the final performance even with the self-

supervised representation. Furthermore, they often use the masked cross-modal

objectives that require both visual data and associated sentences (with blanks);

contrarily, our method does not require text data at all for self-supervision.
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Chapter 3

Approach

We demonstrate our TAPM approach in visual storytelling tasks, which are

a sequential extension of visual captioning. Its goal is to generate coherent C

sentences for C visual inputs of video clips or images. We henceforth explain

our model in the context of sequential video captioning because it subsumes

sequential image captioning.

Fig. 3.1 illustrates the overall architecture, which consists of the visual en-

coder (section 3.1) and the language generator (section 3.2). We train the visual

encoder and the language generator with the adaptation loss before finetuning

them with the downstream captioning tasks (section 3.3). We employ the se-

quential coherence loss as the adaptation loss to encourage both distinctiveness

and coherence in sequential captions. These losses are applied to the language

model outputs in order to update the visual encoder in accordance with the lan-

guage model (section 3.5). Finally, the encoder and the generator are trained

with the target objective of visual storytelling.

For overall training, we use a split-training approach (section 3.5) that helps

7
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Figure 3.1 Illustration of the proposed TAPM framework. (a) TAPM harmo-

nizes a pretrained visual encoder (section 3.1) with a pretrained language gen-

erator (section 3.2) to improve a target captioning task. In the adaptation

phase, the model takes only videos (or images) as the input. Given a video,

the language generator builds the corresponding video embedding (v̂i) and text

embedding (ŝi) per each video. (b) We introduce sequential coherence loss to

improve temporal coherence in visual storytelling tasks. We first use the re-

spective FC layers (fp, f c and ff ) to project the text embedding (ŝi) into the

past, current, and future visual space. We then encourage the respective past,

current, and future text embedding to be closer to their corresponding visual

representations (Pull (Green arrows)) than the other visual representations

(Push (Red arrows)).

the decoder retain language generation capability. Since the adaptation loss

is not a generation loss, it may degrade the language understanding of the

pretrained language model. Hence, split-training fixes the language generator

weights during the adaptation phase.
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3.1 The Visual Encoder

Given a video clip, we utilize pretrained feature extractors to extract vector

feature vij for each frame j. The set of pretrained feature extractors varies

depending on datasets and will be covered in section 4.1. We then reduce the

vectors to M segments by mean-pooling them over temporal dimension.

With the extracted features of a video clip Vi = {vi1, . . . ,viM} as inputs,

the visual encoder builds task-specific representationsVi = {vi1, . . . ,viM}. Our

visual encoder consists of two fully connected (FC) layers followed by Leaky

ReLU [51], three layers of residual blocks, and a final self-attention layer [52].

A residual block consists of two FC layers and a ReLU activation [53]. After

processing the visual inputs, we mean-pool the previous and next frame rep-

resentation and concatenate them to the current representation to encode the

context information.

3.2 The Language Generator

For the language generator, one can use any language model. In our exper-

iments, it is implemented by (but not confined to) GPT-2 [15], GPT [54],

XLM [16], QRNN [17], and LSTM [55]. We use GPT-2-small [15] pretrained on

a corpus dataset of 8 million web pages as the default generator due to its best

performance among other language model s. We will report the results of other

language models in section 4.3.

3.3 Adaptation training

We train the visual encoder with a simple auxiliary objective to harmonize it

with the language generator in the adaptation phase. Here, we describe how

to encode the visual and text representations for calculating the adaptation

9



loss given the video inputs. The adaptation loss for visual storytelling will be

discussed in the next section.

The language generator takes the task-specific representation Vi from the

visual encoder as inputs and generates the contextualized representation for

visual Ṽi and text ŝi. Specifically, the input Xi to the generator is

Xi = [Vi, [sep], [dummy]], (3.1)

where [sep] and [dummy] are respectively separation and dummy tokens. Re-

mind that Vi is a sequence of vectors with the number of segments M . Then

the generator outputs

X̃i = [Ṽi, [sep], ŝi], (3.2)

where ŝi can be regarded as the text representation that the generator predicts

for a sequential video input Vi.

Finally, the visual representation v̂i is obtained by mean-pooling the se-

quence representation Ṽi to a single vector. Note that the adaptation step

does not use the caption label but inputs a dummy token into the generator

to obtain text information. Thus, we can train the language generator with

video-only datasets. While the dummy token can be arbitrarily selected from

the pretrained vocabulary, we resort to the start-of-sentence token for all re-

ported experiments. As will be shown in Table 4.3, TAPM with the dummy

token performs comparably with the ground truth captions.

3.4 The Sequential Coherence Loss

Visual storytelling is the problem of generating expressive, aligned, and coherent

captions from a sequence of semantically connected visual inputs (e.g.videos

10



or photo streams). Consecutive images or video clips tend to share common

backgrounds, characters, and objects.

This closeness makes those visual features similar, and as a result, the cap-

tions generated from them overlap one another. To make consecutive captions

not too overlapped but still coherent, we introduce the sequential coherence loss

to build text representation of each visual input.

The sequential coherence loss enforces the text representation of a clip to

predict the visual representations within its closed neighborhood well. We divide

the sequential coherence loss into three parts of the past, current, and future

matching loss for a better explanation. First, the past matching loss projects

the text representation ŝi of video i by an FC layer fp and makes it closer to

the visual representation v̂i−1 of the previous video i−1 than the other videos,

as in Figure 3.1. Second, the future matching loss is almost identical to the

past matching loss except that it projects ŝi with a different FC layer ff and

matches with the next visual representation v̂i+1. Finally, the current matching

loss matches the current visual representation v̂i with ŝi through an FC layer

f c. They are similar in that the text representation is projected in the past,

future, current visual space by an FC layer and then drives the embeddings of

correct matches closer (pull) and those of wrong matches farther away from

each other (push).

To implement this notion, we employ margin ranking losses between correct

matches and other wrong ones. The final loss is the sum of the past, current,

11



and future matching losses as follows:

Li =
∑

j ̸=i−1

max(0, 1 + v̂j ∗ fp(ŝi)− v̂i−1 ∗ fp(ŝi)) (3.3)

+
∑
j ̸=i

max(0, 1 + v̂j ∗ f c(ŝi)− v̂i ∗ f c(ŝi))

+
∑

j ̸=i+1

max(0, 1 + v̂j ∗ ff (ŝi)− v̂i+1 ∗ ff (ŝi)),

where the operator ∗ denotes the cosine similarity, and j indicates the index

for wrong matches.

3.5 Training with the adaptation Loss

Use of Language Model Outputs. As described in the previous sections,

our adaptation losses use the visual representation processed with the language

model rather than the visual encoder outputs. Using the language model out-

puts enables the adaptation losses to update the visual encoder in accordance

with the language model. On the other hand, using the encoder outputs would

update the visual encoder in isolation. In Table 4.3, we will show that adapta-

tion using the encoder outputs (TAPM+VisualA) does not improve upon the

baseline (TAPM-A), while adaptation on the language model outputs (TAPM)

does. Thus, this scheme is crucial to train the visual encoder in coordination

with the language model to benefit the target task.

Split-Training. We split the training process into two phases: the adap-

tation loss step and the caption generation loss step. First, the visual encoder

is updated for a given number of epochs by the adaptation loss, while the text

encoder and the language generator are fixed. Then, we jointly update all the

components with the generation loss. By splitting the training process, we give

the model a chance to optimize the simpler adaptation task long enough before
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being presented with the harder generation objective. Fixing the language gen-

erator during the adaptation loss step prevents catastrophic forgetting of the

language generation capability. Our ablation study in section 4.3 confirms that

the split training leads to significant performance gains.

3.6 Finetuning and Inference

Target-Task Training. After adaptation training, we can finetune the lan-

guage generator to the downstream captioning task with ground-truth data,

where we input C pairs of video clips (or images) and text descriptions one by

one: {V1,S1, . . . ,VC ,SC}. We use the teacher forcing as the training scheme

with the cross-entropy loss:

LG
i = −

L∑
l=1

V∑
v=1

yvil log p
v
il, (3.4)

where v ∈ {1, . . . , V } is the vocabulary index, pil is the prediction probability

for the l-th token in Si, and yil is the ground truth label. Finally, the language

model head generates a caption output, consisting of a single FC layer that maps

each vector of the language model outputs S̃i to a softmax layer to obtain the

word probability pi of each token over vocabulary.

Cross-Modal Generation. At inference, our goal is to generate a coherent

sequence of C sentences for a visual test sample {V1, . . . ,VC}. We first use the

visual encoder to build the visual embedding Vi for i = 1, . . . , C. We then gen-

erate each sentence auto-regressively using the finetuned language generator. In

the decoding step l for Vi (i.e., the i-th output sentence is generated up to l−1

words), the input to the language generator is [Vi, [sep], [dummy], si1, . . . , sil−1].

We can obtain the word probability pil with the output of the language gener-

ator s̃il−1, and finally select the next word sil = argmaxv pil. We iterate this
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until the end-of-sentence token [eos] appears, or the output sentence reaches

the predefined maximum length.
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Chapter 4

Experiments

We evaluate the TAPM approach in two visual storytelling tasks: sequential

video captioning in LSMDC 2019 [1] and image captioning in VIST [2]. For both

tasks, we achieve new state-of-the-art performance in both automatic evalua-

tion (section 4.2) and human evaluation (section 4.4). We also perform various

empirical analyses of our TAPM across various language models (section 4.3).

Furthermore, we demonstrate that TAPM can benefit from additional visual-

only datasets. TAPM is also extendable to other visual-linguistic tasks such as

VQA and cross-modal retrieval, as shown in Appendix.

4.1 Experimental Setup

Datasets. The Multi-Sentence Description of LSMDC 2019 [1] is the task of

generating consecutive captions for multiple short movie clips. For a given set of

five clips, the model generates five sentences maintaining logical and contextual

consistency. The dataset contains 128,085 clips from 200 movies and has four
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splits; 20,283 training, 1,486 validation, 2,018 public test, and 1,923 blind test

samples. Following the challenge protocol, we combine the train and validation

split as training data. The official performance is evaluated on the blind test

split hidden from participants, while ablation studies are conducted on the

public test split.

VIST [2] is a visual storytelling dataset, including 10,117 Flickr albums with

210,819 unique photos. Each story of VIST contains five sequential images with

the corresponding captions. We use the SIS (Stories of Images in Sequence)

tier that has more storytelling elements. Ignoring broken images, we use 40,071

training, 4,988 validation, and 5,050 testing story samples. In all experiments,

we use the training/test split of [2, 56, 57]. As in [57], we evaluate at the

album level by allowing only one story candidate per album regardless of photo

sequences.

Data Preprocessing. For LSMDC 2019, we use the ResNet [58] pretrained

on ImageNet [59] to extract frame features as in [33, 60]. For the challenge sub-

mission and human evaluation, we add the I3D feature [61] pretrained on Kinet-

ics [62] as done in the official baseline [28]. We equally segment a video clip into

three subshots and represent each by mean-pooling the features of frames. For

the challenge results, we use set level evaluation by concatenating all captions

within a set of 5 clips as dictated by the organizers. For ablation study, we use

individual sentence level evaluation to compare with non-sequential generation

models fairly. For VIST, we use the same ResNet extractor and additional fea-

tures of object bounding boxes from Faster R-CNN [63] pretrained on Visual

Genome [64]. We choose at most 20 objects with the highest likelihood per image

from the R-CNN [63] detection results. After processing each feature through

the visual encoder, we concatenate all features along the temporal dimension

with a special separator token between them. We tokenize and numericalize
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the text using Byte Pair Encoding [65] for pretrained language models while

using the whitespace tokenizer for the no pretrained models. In VIST, we use

the default tokenizer to re-tokenize our generated samples for evaluation. We

generate each caption with beam search up to 30 tokens and cut every ground

truth sentence to the maximum length of 50 tokens for all experiments.

Metrics. We use three n-gram based metrics to evaluate our approach:

CIDEr [66], METEOR [67] and ROUGE-L [68]. CIDEr captures consensus by

applying Term Frequency Inverse Document Frequency (TF-IDF) weighting for

each n-gram. METEOR scores the sequence matches with explicit alignment at

the sentence level. ROUGE-L is a recall-based metric computed with the length

of the longest common subsequence. For computing METEOR in VIST, we use

the official VIST challenge evaluation code 1. All the other metric scores are

computed with the pycocoevalcap library 2.

Baselines. For LSMDC 2019, we compare our approach with the official

baseline [1, 28]. We also adapt XE and AREL models [57] to LSMDC us-

ing the official codes. For VIST, we compare TAPM with eight state-of-the-

art methods: GLACNet [69], h-attn-rank [56], Contextualize, Show and Tell

(CST) [70], BLEU-RL [57], CIDEr-RL [57], GAN [57], AREL [57], StoryAn-

chor [71], HSRL [24], and INet [72]. The scores for BLEU-RL, CIDEr-RL, and

AREL are referred from [57], while the results of GLACNet, CST, StoryAncher,

HSRL, and INet are referred from the respective papers. We use XE and AREL

as baselines for human evaluation on the VIST dataset. XE shares the archi-

tecture of AREL except for the lack of adversarial rewards. We use the publicly

available codes for both models.

Hyperparameters. Unless we mention it explicitly, we fix all random seeds

1https://github.com/windx0303/VIST-Challenge-NAACL-2018
2https://github.com/tylin/coco-caption
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Table 4.1 Quantitative results on the LSMDC 2019 [1] public and blind test set.
XE and AREL do not report the blind test score because they are not challenge
participants. C stands for CIDEr and M for METEOR. All tests are done on
the set level.

Public Test Blind Test
Models C M C M
Official Baseline [28] 7.0 12.0 6.9 11.9
XE [57] 7.2 11.5 - -
AREL [57] 7.3 11.4 - -
TAPM (ours) 10.0 12.3 8.8 12.4

Table 4.2 Quantitative results on the VIST [2] test set. R stands for ROUGE-L.

Models C M R
Huang et al.[2] - 31.4 -
h-attn-rank[56] 7.5 34.1 29.5
GLACNet[69] - 30.1 -
CST[70] 5.1 34.4 29.2
BLEU-RL[57] 8.9 34.6 29.0
CIDEr-RL[57] 8.1 34.9 29.7
GAN[57] 9.1 35.0 29.5
AREL[57] 9.4 35.0 29.5
StoryAnchor[71] 9.9 35.5 30.0
HSRL[24] 10.7 35.2 30.8
INet[72] 10.0 35.6 29.7
TAPM (ours) 13.8 37.2 33.1

to 0. For training, we use Adam optimizer [73] with linear learning rate decay.

The learning rate is 5e − 5, which is warmed up for the first 4000 steps. We

apply 0.5 dropout on the language generator outputs. In all experiments, we

use the batch size of 8. For LSMDC dataset we train the adaptation loss for

5 epochs, whereas we train for 3 epochs in case of VIST dataset. We train all

models up to 30 epochs.
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Table 4.3 Ablation results of our TAPM model on the LSMDC 2019 public test
set and the VIST test set. The evaluations for LSMDC are done on the sentence
level.

LSMDC VIST
Models C M R C M R
Baseline[28] 11.90 8.25 - - - -
Baseline+GPT-2[15] 8.65 7.75 19.90 - - -
TAPM (ours) 15.37 8.41 20.21 8.3 34.1 30.2
-A 14.54 8.27 19.89 4.8 33.6 29.9
+Cap 15.29 8.47 20.19 6.7 33.8 29.8
+VisualA 14.59 8.37 20.00 4.9 33.0 29.9
-Split 14.28 8.34 19.71 4.5 32.8 29.8
-A+Split 14.01 8.28 19.60 6.5 33.8 30.0

4.2 Quantitative Results

We use OpenAI GPT-2 [15] as our default language generator due to its best

performance among other language models. We use beam search with a size of

3 for the results in this section and section 4.4 and use a greedy search for the

results in section 4.3 for faster computation.

Table 4.1 outlines the results of sequential video captioning on the LSMDC

2019 blind test set. Our TAPM method outperforms the strong adversarial

inference official baseline [28] as well as the XE and AREL model in all met-

rics. Notably, our method shows significant gaps in the CIDEr metric, which is

designed to score human-likeness [66].

Table 4.2 compares the results of sequential image captioning on the VIST

test set. We report the scores computed using only one story per album following

previous works. Even without explicitly optimizing the language metrics, our

method is competent in the automatic evaluation. In CIDEr, our approach ex-

hibits significant performance gains over the best-performing model AREL [57].

Our model also achieves the highest ROUGE accuracy and on-par METEOR

performance with the baselines.
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Table 4.4 Comparison between language models on LSMDC 2019 public test
set. C, M, and R denote CIDEr, METEOR, and ROUGE-L, respectively. All
evaluations are on the sentence level.

No Adaptation Adaptation (No split-training) Adaptation (split-training)
Models C M R C M R C M R
Baseline [28] 11.90 8.25 - - - - - - -
LSTM-WT2 3.00 5.73 17.13 1.41 4.60 12.83 7.36 8.47 20.40
XLM [16] 10.05 7.09 19.01 7.50 6.95 17.66 13.11 8.00 20.01
GPT [54] 14.01 7.96 19.84 11.81 7.86 19.23 14.76 8.33 20.07
GPT-2 14.54 8.27 19.89 14.28 8.34 19.71 15.37 8.41 20.21

4.3 Further Analyses

We perform various empirical analyses of our TAPM model, including (i) ab-

lation study to inspect the contributions of key ingredients and use of (ii) six

other language models beyond GPT-2.

Ablation Study. We conduct an ablation study for the TAPM model in

both LSMDC 2019 and VIST dataset. We test six variants: (i) (-A) removes

the adaptation loss training, (ii) (+Cap) uses the ground truth captions instead

of the dummy token, (iii) (+VisualA) applies the adaptation loss to the visual

encoder output instead of the language generator output, (iv) (-Split) uses naive

joint training of the adaptation and generation loss, (v) (-A+Split) is (-A) that

uses split-training between the visual encoder and the generator,

Table 4.3 compares the results of the ablation variants. The performance of

TAPM is comparable to that of TAPM+Cap, suggesting that adaptation with

videos only is as successful as the supervision with the caption labels.

The slight performance drop from TAPM to TAPM-Split shows that naive

joint training can be even worse than training without the adaptation loss. Sig-

nificant degradation from TAPM-A to TAPM-A+Split proves the split training

without the adaptation loss performs the worst. The results of TAPM+VisualA
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show that applying adaptation loss to visual encoder outputs does not improve

the caption quality. Hence, using language model outputs for adaptation is

crucial. Our model, TAPM, performs the best when used as proposed.

Additionally, we replace the backbone of the baseline model [28] from the

RNN encoder to GPT-2 pretrained language generator [15]. As shown in the

table’s first two rows, the modified model performs even worse than the original

baseline. This performance drop verifies our claim that employing a stronger

language model does not automatically lead to a better storytelling capability.

A stronger textual prior may weaken the visual conditioning when the visually

conditioned target data size is insufficient. Without a proper adaptation step,

the model would generate less visually relevant captions when using a strong

language model such as GPT-2. Hence, the performance improvement of TAPM

is attributable to the adaptation step rather than the strength of the language

model.

Other Language Models. We test the generalization capability of TAPM

using three pretrained language models, including LSTM-WT2 [55], XLM [16],

and GPT [54]. LSTM [55] is an extension of RNN enlarging its memory capac-

ity. We pretrain an LSTM-based two-layer encoder-decoder architecture on the

WikiText-2 dataset [74]. XLM [16] is a multilingual language model designed to

exploit both monolingual data and aligned bilingual data. GPT [54] is the pre-

decessor of GPT-2. Table 4.4 compares the result of different language models.

For all models, split-training with the adaptation loss contributes to consistent

improvement in the language metrics, while naive joint training results in per-

formance drops in terms of CIDEr and METEOR. These results prove that

our TAPM method can improve the visual storytelling performance of a wide

range of language models. Furthermore, both the adaptation loss and the split

training are necessary to achieve the enhancement.
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Table 4.5 Results with additional visual-only data provided in the adaptation
phase. The performance rises with the number of additional videos. C, M and
R denotes CIDEr, METEOR and ROUGE-L, respectively.

Models Videos C M R
Baseline (Ours) 108,487 15.37 8.41 20.21
+ Additional LSMDC 10,053 15.49 8.51 20.26
+ Additional ActivityNet 480,860 16.48 8.67 20.35

Models Scores
Human 1.085
Official Baseline [28] 4.015
TAPM (ours) 3.670

Table 4.6 Official human evaluation results on the LSMDC 2019 blind test set.
Lower is better.

Additional Visual-Only Data. By not relying on ground-truth captions

during the adaptation phase, we can exploit additional visual-only data. In Ta-

ble 4.5, we perform experiments using additional video-only dataset to further

improve TAPM in LSMDC. The generation performance increases along with

the number of videos used, indicating that TAPM can use visual-only data to

improve cross-modal generation capability.

4.4 Human Evaluation Results

We opt for human evaluation to robustly evaluate the captioning quality of our

approach. As pointed out in [57], the automatic metrics often fail to capture

TAPM vs XE TAPM vs AREL
Choice (%) TAPM XE Tie TAPM AREL Tie
Relevance 59.9 34.1 6.0 61.3 32.8 5.9
Expressiveness 57.3 32.3 10.4 57.3 34.0 8.7
Concreteness 59.1 30.3 10.7 59.6 30.4 10.0

Table 4.7 Human evaluation results on VIST. Higher is better.
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expressiveness and coherence within a story. Please refer to [57] for details on

the limitations of the language metrics for story evaluation.

Table 4.6 shows human evaluation results conducted by the LSMDC 2019

challenge organizers. For 150 random sets of clips, human annotators rate gener-

ated multi-sentence descriptions from 5 (worst) to 1 (best) based on how helpful

they are for a blind person to understand what is happening in the movie. To

account for variability in human decisions, they aggregate three human judg-

ments per caption and report the median score. We observe that TAPM is

superior to the strong adversarial baseline [28].

For VIST, we follow previous research [57] to perform the pairwise com-

parison test, comparing a pair of generated samples by two methods. We ask

human annotators to choose a better story between the two models’ outputs

for three aspects: relevance, expressiveness, and concreteness. The judges can

conclude that the two samples are equally good. We randomly select 150 photo

sequences and collect the medians of scores from five workers per test sample.

For baselines of XE and AREL, we reproduce the results using the code and

parameters provided by the original authors.

Table 4.7 shows that our TAPM outperforms the baselines in all three as-

pects by large margins. The performance gain of our model is the most signif-

icant in terms of relevance. The gain suggests that the captions generated by

TAPM reflect the pictorial narrative better than the baselines since the rele-

vance measures how accurately the story describes what is happening in the

image sequence.

4.5 Qualitative Results

Fig. 4.1 presents a VIST example to compare the captions of TAPM against

the baselines. Our generated output can avoid using some wrong words like
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[female] is scared, she's 

getting married. 

this is her first wedding 

photo. 

and here she is with 

everyone in the wedding. 

this is [male], her husband 

with location, the best man.

here's [male] and his family.
GT

XE
the bride was so happy to 

be married. 

it was a beautiful day for 

the wedding.

the bride and groom were 

very happy to be married. 

the bride and groom were 

very happy to be married. 
the bride and groom pose 

for a picture.

AREL
it was a beautiful day for 

the wedding.

i had a great time there. the bride and groom were 

so happy to be married.

then the bride and groom 

walked down the aisle.

the bride and groom pose 

for a picture.

TAPM

(Ours)

it was a beautiful day for 

the wedding.

they went down the stairs

to get to the reception.

the bride and groom posed 

for pictures.

after the ceremony, the 

groom and the groom's 

father pose for a picture.

all of the guests were 

happy to be at the wedding.

Figure 4.1 Qualitative comparison of sequential image captioning between our
method and selected baselines on the VIST dataset. Blue and red fonts indicate
correct and erroneous descriptions, respectively. Green shows the coherence be-
tween sentences. In the second sentence generated by TAPM, the model explains
why the couple is going down the stairs.

bride, unlike the baselines. Furthermore, TAPM notably captures the causal

relationship between the images well. In the second picture, TAPM states the

purpose of going down the stairs is to get to the reception and deduces that the

ceremony is over with the third picture. The readers can find more examples in

Appendix.
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Chapter 5

Conclusion

We proposed the Transitional Adaptation of Pretrained Model (TAPM) method

for harmonizing the pretrained language model with the visual encoder for

vision-to-language generation tasks. Extensive experiments showed that the

adaptation phase using the adaptation loss consistently improves the caption

quality across several language models and loss types. Our model achieved com-

petitive performance in both automatic metrics and human evaluation for two

visual storytelling tasks: the multi-sentence description of LSMDC 2019 and

the image storytelling of VIST. There are several directions beyond this work.

First, we can explore other adaptation loss types to improve the visual under-

standing capability of the pretrained language models that have proven their

strengths in many language tasks. Second, one can apply our method to other

cross-modal generation tasks utilizing the pretrained language models beyond

visual storytelling.
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Appendix A

Overview

We provide the details of implementation and experiments that are not fully

described in the main paper.

The outline of this material is as follows.

• Implementation Details

– Computing Infrastructure

– Random Seeds

– Computational Efficiency

• Additional Experiments

– Fill-in-the-Blank QA

– Randomly Initialized Backbones

• AMT user interface

• Additional examples
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Appendix B

Implementation Details

B.1 Computing Infrastructure

With the GPT-2-small model as the language generator, TAPM includes 751M

parameters in total. The model takes approximately 30 minutes per epoch for

training using a single NVIDIA TITAN RTX GPU.

We here summarize some information about computing infrastructure for

our experiments.

• GPU: NVIDIA TITAN RTX

• CPU: Intel(R) Xeon(R) E5-2650 CPU

• OS : Ubuntu 16.04 LTS OS.

• RAM: SAMSUNG DDR4 8G

• Operating System: Ubuntu 16.04
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Table B.1 Mean and standard deviations of TAPM using random seed [0− 4].
Note that we fix the random seed to 0 in all other experiments.

LSMDC VIST
Stats C M R C M R
mean 15.50 8.55 20.23 8.26 34.02 29.70
std 0.33 0.05 0.12 0.17 0.08 0.06

Table B.2 The number of parameters and GFLOPs.
Models GFLOPs (G) Params (M)
TAPM 5.766 62.3
-A 5.761 60.3

• Names and versions of relevant software libraries and frameworks: python

≥ 3.6 and PyTorch ≥ 1.3

All pretrained transformers are from the huggingface implementations (https:

//github.com/huggingface/transformers). See the source code for more

details.

B.2 Random Seeds

Table B.1 shows that the performance of TAPM is stable across several random

seeds.

B.3 Computational Efficiency

Table B.2 shows the number of parameters and GFLOPs (floating point op-

erations) for training. Since the adaptation module (A) requires only 4 FC

layers (fp
v , f

p
s , f

f
v , f

f
s ), it does not significantly affect computation complexity

and training time. The adaptation module is not used for the inference time, so

the inference time and complexity of TAPM and TAPM-A are exactly the same.

Please note that our adaptation module does not contribute to the complexity

of model inference.
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Appendix C

Additional Experiments

C.1 Fill-in-the-Blank QA

We explore the generalizability of TAPM on another type of task. In Table C.1

we test TAPM with a videoQA task, specifically Fill-in-the-Blank QA task of

LSMDC2017, beyond the sequential caption generation tasks in the original

paper. The results show that our approach achieves the state-of-the-art perfor-

mance for another multimodal task.

C.2 Randomly Initialized Backbones

Additionally, we explore how TAPM affects randomly initialized language mod-

els. In Table C.2, we test three randomly initialized language generators; LSTM-

Scratch, QRNN-Scratch [17] and GPT-2-Scratch. As with pretrained language

models, adaptation with split-training consistently improves caption quality

across all language models. Even when there is no pretrained language infor-

mation to adapt to, self-supervision may enhance robustness [76] and hence
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Table C.1 Results on Fill-in-the-Blank QA task in LSMDC 2017.
Models Accuracy
JsFusion [75] 45.52
Cross-Modal BERT −TAPM 50.10
Cross-Modal BERT +TAPM 52.53

Table C.2 Comparison between not pretrained language models on LSMDC
2019 public test set. C, M and R denotes CIDEr, METEOR and ROUGE-L,
respectively. All evaluations are on the sentence level.

No Adaptation
Adaptation Adaptation

(No split-training) (split-training)
Models C M R C M R C M R
Baseline [28] 11.90 8.25 - - - - - - -
LSTM-Scratch 5.13 6.77 19.34 3.67 5.95 18.51 7.90 7.70 19.45
QRNN-Scratch 1.48 5.65 16.29 3.01 5.73 17.13 7.05 7.25 18.58
GPT2-Scratch 4.17 5.94 16.97 4.01 6.03 17.18 12.68 8.27 20.08
GPT-2 14.54 8.27 19.89 14.28 8.34 19.71 15.37 8.41 20.21

generalization in sparse-signal datasets such as LSMDC.
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Appendix D

AMT user interface

In our main paper, we conduct our human evaluation to compare different

models’ outputs on Amazon Mechanical Turk (AMT). Figure D.1,D.2,D.3 re-

spectively shows the user interfaces for AMT instruction and human evaluation

layouts for VIST and LSMDC 2019.
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Figure D.1 The AMT Instruction for the turkers for the VIST model compari-
son.

Figure D.2 The AMT human evaluation layout for the VIST model comparison.
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Figure D.3 The AMT human evaluation layout for the LSMDC 2019 model
comparison.
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Appendix E

Additional examples

We provide additional examples to compare TAPM variants and with selected

baselines qualitatively. Figure E.1,E.2 are from LSMDC 2019 experiments, while

Figure E.3,E.4 are from VIST tests.
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(a)

someone grooves. someone touches the 

screen.

someone clicks the 

mouse.

someone points to 

someone.

someone laughs to the 

kids.
GT

TAPM

-A

someone smiles. someone clicks on a 

computer.

someone looks at the 

computer.

someone smiles. someone smiles.

TAPM

-Split
someone smiles. someone looks at the 

screen.

someone looks at the 

screen.

someone smiles. someone smiles.

TAPM

(Ours)
someone gives someone 

a thumbs up. 

someone clicks on a 

message on the screen: 

"access denied. ".

someone sits at a 

computer.

someone gives a thumbs 

up.

someone smiles and 

nods.

(b)

in the control room. someone sneers at 

someone.

someone looks sharply 

at someone.

someone puts his arm 

around someone.

someone faces 

someone.
GT

TAPM

-A

someone looks at 

someone.

someone looks at 

someone.

someone looks at 

someone.

someone looks at 

someone.

someone sits on a 

couch. 

TAPM

-Split
someone sits on a 

couch. 
someone looks at 

someone.

someone looks at 

someone.

someone looks at the 

camera.

someone looks at 

someone.

TAPM

(Ours)
someone sits at a desk 

in the security hub.

someone and someone 

exchange a look.

someone and someone 

watch from their desks.

someone grabs the 

camera.

someone looks up at 

someone.

(c)

in the interrogation 

room, the burly agent 

stays put beside the 

open door.

someone dials a 

payphone.

in his home, someone 

answers.

now, a woman sits at a 

bar.
GT

TAPM

-A

someone walks into the 

room.

someone is sitting on 

the couch.

someone sits on the bed, 

looking at the glass.

someone looks at 

someone.

TAPM

-Split
someone pulls her into 

the room.

someone looks at 

someone.

someone takes a drink. someone sits on the 

couch.

someone looks at 

someone.

TAPM

(Ours)
someone and someone 

are in the corridor.

someone looks at 

someone.

someone hangs up the 

phone.

someone answers the 

phone.

someone looks up at 

someone.

now, someone nods to 

someone. 

someone looks at 

someone. 

Figure E.1 The qualitative comparison between TAPM variants in the LSMDC
2019 dataset. Red indicates repetitions, blue/italic indicates interesting sam-
ples, and green/bold shows coherent sentences. In (a), TAPM tries to predict
the message on the screen but nearly misses.
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(d)

another closes her eyes. someone flips open 

another phone.

and pulls up its speed 

dial numbers.

someone appears at the 

top of the list.

someone glances at the 

executive, then presses a 

button.

GT

TAPM

-A

someone looks at 

someone.

someone walks to the 

door.

someone looks at the 

screen.

someone reads the 

number.
someone looks at the 

phone.

TAPM

-Split
someone looks at 

someone.

someone looks at the 

camera.

someone looks at the 

screen.

someone reads the 

number.

someone looks at the 

phone.

TAPM

(Ours)
someone and someone 

sit at the end of the long 

row of seats.

someone sees a man 

with a gun on a security 

guard.

someone sees a text 

message from 

someone.

someone's phone shows 

a text message, "call 

me. ".

someone answers his 

cell.

(e)

someone glances toward 

the open front door, 

then takes a bite.

the brunette lags behind. now, a goateed man 

bicycles with the father.

a car darts out and 

nearly hits them.
GT

TAPM

-A

someone walks up to 

someone.

someone walks up to 

someone and starts to 

walk away.

someone rides a bike. someone rides a bike.someone takes a sip of 

the coffee and then goes 

to the kitchen.

TAPM

-Split
someone pulls out a 

bottle of milk and starts 

to eat.

someone walks up to 

someone.

someone walks up to 

someone and starts to 

walk away.

someone rides a bike. someone rides a bike.

TAPM

(Ours)
someone eats a cookie. someone and someone 

climb the stairs.

someone and someone 

run up to the fence.

now, someone and 

someone ride on a 

bike.

someone rides up 

behind them.

now, a man leads the 

woman and a plump 

brunette up the stairs.

Figure E.2 The qualitative comparison between TAPM variants in the LSMDC
2019 dataset. Red indicates repetitions, blue/italic indicates interesting sam-
ples, and green/bold shows coherent sentences. In (d), TAPM takes a wrong
guess for the message on the cell phone.
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(a)

we decided to take a 

walk around town to see 

all the local stores. 

we started bright and 

early in the morning, it 

was such a beautiful 

day.

we stopped for lunch at 

the location location and 

had a wonderful 

sandwhich.

. we then went to 

copperfield's books and 

read and browsed for 

awhile.

finally, on our way back 

we stopped in to popeyes

for some delicious fried 

chicken.

GT

TAPM

-A

the city was a great 

place to go.

the view from the 

window was amazing.

the building was very 

beautiful.

the restaurant was very 

nice.
we had a great time.

TAPM

-Split

we went to the location

location location 

location locatio

the city is beautiful. the building was very 

nice.

the sign was very nice. the place was very nice.

TAPM

(Ours)
we went to the city 

today to see what it was 

like. 

the windows were very 

old and had a lot of 

history.

we saw a lot of 

interesting things.

there was a lot of cool 

things to see.

afterward i went back to 

my hotel.

(b)

a little driver wanted to 

take them to their 

destination.

the church was small 

and held a few guests.

members of the party 

were young and old.

the rings were basic but 

significant.

photos taken provided 

memories for a lifetime.GT

TAPM

-A

the church was 

beautiful.

the flowers were 

beautiful.

the bride and groom 

were happy to be 

married.

TAPM

-Split

the boy was so excited 

to get his new car.

the church was 

beautiful.

the bride was so 

happy.

the bride and groom 

were so happy. 

the bride and groom 

were happy to be 

married.

TAPM

(Ours)
i took my son to the 

park yesterday.

there were a lot of 

beautiful sights to see.

her favorite part of the 

wedding was the 

umbrella.

the bride's ring looked 

so delicate and 

beautiful.

they are now married 

and ready to go home.

the car was a little too 

big for my liking. 

the bride was very 

happy to be able to 

touch the ring. 

Figure E.3 The qualitative comparison between TAPM variants in the VIST
dataset. Red indicates uninformative captions, blue/italic indicates language
modelling failures, and green/bold shows coherent sentences. In (a), TAPM-
Split shows a language modelling failure. Jointly training the adaptation loss
with the generation loss could harm the language generation ability of the
model. We see that full TAPM does not suffer from such issues. In (b), TAPM-
Split and full TAPM try to describe the image within the context of wedding.
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(a)

the cruise ship look so 

majestic as it comes in 

the port.

friends are waiting to 

greet the passengers.

the port is all decked 

out for christmas, 

including this wonderful 

tree.

this lamp is so cool, i

wonder where you find 

such a thing.

any of the passengers 

would like to get their 

picture taken 

professionally certainly 

have that option here.

GT

AREL we went on vacation to 

location.

we got to see a lot of 

people there.

this is a picture of a 

tree.

i had a great time there. this is a picture of a 

building.

XE we went to the location. we took a trip to the 

local museum.

we saw a lot of flowers 

on the wall.

we saw a lot of 

interesting things to see.

we had a great time.

TAPM

(Ours)
our cruise ship was 

ready for us.

the view from the deck 

was amazing. 

i bought some flowers 

while i was there. 

there was a lot of 

decorations there.

this sign was a great 

addition to the 

christmas tree.

(b)

it was time for the 

halloween party and 

[male] the pirate was 

ready to go.

but [male] the pirate 

was very sad as [male] 

the balloon man showed 

up in a better costume.

[male] the balloon man 

had all kinds of fans.

a few that didn't see 

[male] the pirate were 

happy with [male] the 

balloon man.

but when [male] the 

pirate asked if [male] 

the balloon man can be 

his friend, everybody 

joined in too.

GT

AREL this is a picture of a 

man.

we had a lot of fun 

playing games.

there was a lot of fun 

dancing.

some of the performers 

were really cool.

this is a picture of a 

group of people.

XE the halloween party was 

a lot of fun.

there were a lot of 

people there.

there were a lot of 

people there.

we had a great time. at the end of the night, 

everyone had a great 

time.

TAPM

(Ours)
i went to my friend's 

halloween party last 

night.

we played games and 

had fun.

some of the costumes 

were very creative.

after the party we all got 

together for a group 

photo.

it was a great halloween

party and everyone had 

a great time.

Figure E.4 The qualitative comparison of TAPM and the selected baselines
in the VIST dataset. Red indicates uninformative or misaligned captions, and
blue/italic indicates isolated sentences.
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초록

시각-언어 생성 문제를 풀 때, 기존 모델들은 일반적으로 시각 인코더와 언어 생성

기를 각 영역에서 선학습한 후 목표 문제에 미세조정한다. 그러나 이러한 직접적

이전 방식은 시각적 특정성과 언어적 유창성 간의 부조화를 낳을 수 있는데, 이는

시각과 언어 모델 각각이 공통되는 영역이 없는 대량의 시각과 언어 데이터에서

서로 별도로 학습되기 때문이다. 본 연구에서는 선학습과 미세조정 사이에 전이

적용문제를학습할때보다어려운목표문제인시각적스토리텔링문제에서시각

인코더와 언어 모델을 조화시킬 수 있음을 밝힌다. 그 방법으로 제시한 TAPM은

언어 라벨 없이 시각적 입력값 간의 연결성 만을 파악하는 간단한 문제를 사용함

으로서 멀티모달 모듈 간의 연결성을 확보한다. 연구결과를 종합해 볼 때, 제시된

적용 단계는 순차적 비디오 또는 이미지 캡셔닝 문제에서 다수 언어 모델의 성능

을 크게 향상시켰다. 그 결과, 복수 문장 설명 문제인 LSMDC 2019 [1]와 이미지

스토리텔링 문제인 VIST [2]에서 자동 성능과 인적 평가 모두 최고 성능을 달성

했다. 또한 추가적 실험으로 캡션의 질적 성능 향상이 특정 언어 모델에 국한되지

않는다는 점을 보였다.

주요어: 인공지능, 멀티모달 학습, 시각적 스토리텔링

학번: 2019-29077
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