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Abstract

Previous models for vision-to-language generation tasks usually pretrain a vi-
sual encoder and a language generator in the respective domains and jointly
finetune them with the target task. However, this direct transfer practice may
suffer from the discord between visual specificity and language fluency since they
are often separately trained from large corpora of visual and text data with no
common ground. In this work, we claim that a transitional adaptation task is
required between pretraining and finetuning to harmonize the visual encoder
and the language model for challenging downstream target tasks like visual
storytelling. We propose a novel approach named Transitional Adaptation of
Pretrained Model (TAPM) that adapts the multi-modal modules to each other
with a simpler alignment task between visual inputs only with no need for text
labels. Through extensive experiments, we show that the adaptation step sig-
nificantly improves the performance of multiple language models for sequential
video and image captioning tasks. We achieve new state-of-the-art performance
on both language metrics and human evaluation in the multi-sentence descrip-
tion task of LSMDC 2019 [1] and the image storytelling task of VIST [2]. Our
experiments reveal that this improvement in caption quality does not depend

on the specific choice of language models.

Keywords: artificial intelligence, multomodal learning, visual storytelling

Student Number: 2019-29077
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Chapter 1

Introduction

Most models for vision-to-language generation tasks consist of a visual encoder
to extract visual information from input images or videos, a language model
to generate text sentences, and a mechanism to weld the two modules into one
harmonized architecture. For example, recent models for visual captioning [3, 4]
adopt a pretrained visual encoder and a pretrained language generator and
then optimize the target cross-modal generation objective with the downstream
datasets [5, 6, 7, 8, 9, 10]. In this process, however, no transitional adaptation
step has proposed to match the potentially substantial differences between the
information stored in the visual encoder and the language generator, as they
are separately trained from large sets of visual and text data with no common
ground (e.g.images from ImageNet and text from Wikipedia).

This work is motivated by that this direct transfer of pretrained models to
a downstream task may suffer from the dissonance between visual specificity
and language fluency. For example, finetuning pretrained language models on

another target task may result in catastrophic forgetting of the language gener-



Pretrained

. Encoder

visual encoder

Pretrained

Generator
generator .
(a) Traditional image/video captioning
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Figure 1.1 Comparison between existing captioning models and our Transitional
Adaptation of Pretrained Model (TAPM). (a) Previous captioning models start
from a pretrained visual encoder and a language generator and then directly
finetune with the downstream datasets. (b) TAPM includes a simple pretext
task as an adaptation process that harmonizes the generator with the visual

encoder before optimizing the target objective.

ation capability [11, 12]. Moreover, existing captioning models have often been
criticized for not sufficiently conditioning on the visual context and thus lack
visual discriminability [13, 14].

Considering the potentially vast gap between the nature of the information
stored in the visual encoder and the language decoder, it would be difficult for
them to work in harmony at once for another challenging objective of vision-
to-language generation. In this light, we believe a simpler objective dedicated
to improving coordination between the two separately pretrained models could
help the model get prepared for the target objective eventually better and faster.

Therefore, we present Transitional Adaptation of Pretrained Model (TAPM)
for visual storytelling as the first approach that proposes an explicit visual adap-
tation step to harmonize the visual encoder with the pretrained language models

as depicted in Fig. 1.1. Our adaptation step can be trained with only visual in-



puts, such as images or videos with no text label. We outline the contributions

of this work as follows:

1. Our work is the first attempt to demonstrate an auxiliary adaptation
loss’s effectiveness in welding a visual encoder with a pretrained language
model. By extensive experiments, we show that this additional adaptation
between pretraining and finetuning consistently improves the captioning
quality of various language models such as GPT-2 [15], XLM [16], and
QRNN [17].

2. We present the sequential coherence loss that can adapt the language
generator using only sequential video/image inputs with no text label.
We also introduce two recipes critical to TAPM’s success: (i) using the
language model outputs for adaptation training and (ii) using the split-

training process.

3. We evaluate TAPM in two storytelling tasks: sequential video captioning
in the LSMDC 2019 [1] and sequential image captioning in VIST [2].
TAPM achieves new state-of-the-art performance in both tasks in terms

of automatic language metrics and human evaluation.



Chapter 2

Related Work

2.1 Visual Storytelling

Unlike direct and literal descriptions, visual storytelling aims to generate a more
figurative and consistent narrative for consecutive images or videos [2]. Some
earlier works [18, 19] explore the summarization of long videos into the storyline
representation. Park et al. [20, 21] integrate an entity-based local coherence
model to generate a coherent flow of multiple sentences for a photo album. Fan
et al. [22] use a shorter prompt as the intermediate representation. Jain et al. [23]
combine SMTs and RNNs to merge independent descriptions into a coherent
story. Huang et al. [24] propose a two-level hierarchical RL-based decoder to
plan a semantic topic first and then generate consistent sentences. Tang et
al. [25] employ an attribute-based hierarchical decoder to create paragraphs
using policy gradient with word-level rewards and adversarial training. Fan et
al. [26] exploit a predicate-argument structure of the text to build coherent

stories. Gella et al. [27] introduce the VideoStory dataset for generating stories



from social media videos. AdvInf [28] uses adversarial inference and MART [29]
memory augmented transformer to generate paragraph-level captions.

Most previous works on visual storytelling require both visual encoder and
language generator. Our work is orthogonally applicable to these approaches
to better adapt the language decoder for visual context before training the
models with the main vision-to-language objective, including Reinforcement

and adversarial learning.

2.2 Auxiliary Losses for Captioning

Autoregressive language models trained with cross-entropy often suffer from
exposure bias [30]. Several works on captioning have leveraged reinforcement
learning by using rewards as auxiliary loss signals to ameliorate this bias. Zhang
et al.[31] directly optimize language quality metrics with an actor-critic frame-
work. Liu et al.[32] optimize a linear combination of language metrics using
Monte Carlo rollouts. SCST [33] improves the REINFORCE algorithm to cor-
rectly normalize external rewards using the test-time inference algorithm’s out-
put. Ren et al.[34] use the embedding similarity between generated sentences
and image features as the reward. These reinforcement learning approaches
have been extended to the video captioning problem [35, 36]. While reinforce-
ment learning can help training non-differentiable objectives, it is known to
be unstable [37]. Other types of auxiliary losses have also been adopted for
captioning problems. Ma et al.[38] employ the cyclic reconstruction to enforce
the localization of each word in an image. Zhou et al.[39] add visual ground-
ing supervision to enhance the sentence generation quality. HINT [40] learns to
match the attention map to human attention for grounded image captioning.

VideoBERT [41] extends the text-based BERT to build bidirectional modeling



between videos and captions. Compared to previous work, our work does not
require additional visual caption data since it takes self-supervision losses with

only sequential visual inputs.

2.3 Pretrained Models for Vision-to-Language Tasks

Recently, many works have demonstrated the power of self-supervision based
representation learning in cross-modal settings. LXMERT [42] and VILBERT [43]
pretrain two-stream transformers on various tasks including masked cross-modal
language model (LM) objectives. LXMERT is extended later with adaptive
sparse attention [44]. VisualBERT [45] and VL-BERT [46] uses single-stream
transformers. CMR [47] models the relevance between the textual entities and
visual entities. UNITER [48] and Unicoder-VL [49] use object detection based
objectives in addition to the masked LM loss. VideoBERT [41] trains a trans-
former for video-language tasks using vector quantization to categorize videos
into discrete tokens. CBT [50] replaces the softmax loss of BERT with noise
contrastive estimation.

These approaches aim to learn general representations, and our method
adapts the trained representations to the target cross-modal generation tasks.
Thus, our model is orthogonal to the aforementioned self-supervised represen-
tations and consistently improves the final performance even with the self-
supervised representation. Furthermore, they often use the masked cross-modal
objectives that require both visual data and associated sentences (with blanks);

contrarily, our method does not require text data at all for self-supervision.



Chapter 3

Approach

We demonstrate our TAPM approach in visual storytelling tasks, which are
a sequential extension of visual captioning. Its goal is to generate coherent C
sentences for C visual inputs of video clips or images. We henceforth explain
our model in the context of sequential video captioning because it subsumes
sequential image captioning.

Fig. 3.1 illustrates the overall architecture, which consists of the visual en-
coder (section 3.1) and the language generator (section 3.2). We train the visual
encoder and the language generator with the adaptation loss before finetuning
them with the downstream captioning tasks (section 3.3). We employ the se-
quential coherence loss as the adaptation loss to encourage both distinctiveness
and coherence in sequential captions. These losses are applied to the language
model outputs in order to update the visual encoder in accordance with the lan-
guage model (section 3.5). Finally, the encoder and the generator are trained
with the target objective of visual storytelling.

For overall training, we use a split-training approach (section 3.5) that helps
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Figure 3.1 Illustration of the proposed TAPM framework. (a) TAPM harmo-
nizes a pretrained visual encoder (section 3.1) with a pretrained language gen-
erator (section 3.2) to improve a target captioning task. In the adaptation
phase, the model takes only videos (or images) as the input. Given a video,
the language generator builds the corresponding video embedding (v;) and text
embedding (8;) per each video. (b) We introduce sequential coherence loss to
improve temporal coherence in visual storytelling tasks. We first use the re-
spective FC layers (f?, f¢ and f/) to project the text embedding (8;) into the
past, current, and future visual space. We then encourage the respective past,
current, and future text embedding to be closer to their corresponding visual
representations (Pull (Green arrows)) than the other visual representations

(Push (Red arrows)).

the decoder retain language generation capability. Since the adaptation loss
is not a generation loss, it may degrade the language understanding of the
pretrained language model. Hence, split-training fixes the language generator

weights during the adaptation phase.
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3.1 The Visual Encoder

Given a video clip, we utilize pretrained feature extractors to extract vector
feature v;; for each frame j. The set of pretrained feature extractors varies
depending on datasets and will be covered in section 4.1. We then reduce the
vectors to M segments by mean-pooling them over temporal dimension.

With the extracted features of a video clip V; = {v;1,..., vy} as inputs,
the visual encoder builds task-specific representations V; = {Vit, ..., Vinm}. Our
visual encoder consists of two fully connected (FC) layers followed by Leaky
ReLU [51], three layers of residual blocks, and a final self-attention layer [52].
A residual block consists of two FC layers and a ReLU activation [53]. After
processing the visual inputs, we mean-pool the previous and next frame rep-
resentation and concatenate them to the current representation to encode the

context information.

3.2 The Language Generator

For the language generator, one can use any language model. In our exper-
iments, it is implemented by (but not confined to) GPT-2 [15], GPT [54],
XLM [16], QRNN [17], and LSTM [55]. We use GPT-2-small [15] pretrained on
a corpus dataset of 8 million web pages as the default generator due to its best
performance among other language model s. We will report the results of other

language models in section 4.3.

3.3 Adaptation training

We train the visual encoder with a simple auxiliary objective to harmonize it
with the language generator in the adaptation phase. Here, we describe how

to encode the visual and text representations for calculating the adaptation



loss given the video inputs. The adaptation loss for visual storytelling will be
discussed in the next section.

The language generator takes the task-specific representation V; from the
visual encoder as inputs and generates the contextualized representation for

visual \7} and text ;. Specifically, the input X; to the generator is

X = [V, [sep], [dummy]], (3.1)

where [sep] and [dummy] are respectively separation and dummy tokens. Re-
mind that V; is a sequence of vectors with the number of segments M. Then

the generator outputs

X; = [V, [sep], 3], (3.2)
where 8; can be regarded as the text representation that the generator predicts
for a sequential video input V;.

Finally, the visual representation v; is obtained by mean-pooling the se-
quence representation \N/'Z to a single vector. Note that the adaptation step
does not use the caption label but inputs a dummy token into the generator
to obtain text information. Thus, we can train the language generator with
video-only datasets. While the dummy token can be arbitrarily selected from
the pretrained vocabulary, we resort to the start-of-sentence token for all re-
ported experiments. As will be shown in Table 4.3, TAPM with the dummy

token performs comparably with the ground truth captions.

3.4 The Sequential Coherence Loss

Visual storytelling is the problem of generating expressive, aligned, and coherent

captions from a sequence of semantically connected visual inputs (e.g.videos

-1
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or photo streams). Consecutive images or video clips tend to share common
backgrounds, characters, and objects.

This closeness makes those visual features similar, and as a result, the cap-
tions generated from them overlap one another. To make consecutive captions
not too overlapped but still coherent, we introduce the sequential coherence loss
to build text representation of each visual input.

The sequential coherence loss enforces the text representation of a clip to
predict the visual representations within its closed neighborhood well. We divide
the sequential coherence loss into three parts of the past, current, and future
matching loss for a better explanation. First, the past matching loss projects
the text representation s; of video i by an FC layer f? and makes it closer to
the visual representation v;_1 of the previous video 7 — 1 than the other videos,
as in Figure 3.1. Second, the future matching loss is almost identical to the
past matching loss except that it projects 8; with a different FC layer ff and
matches with the next visual representation v;,1. Finally, the current matching
loss matches the current visual representation v; with s; through an FC layer
f¢. They are similar in that the text representation is projected in the past,
future, current visual space by an FC layer and then drives the embeddings of
correct matches closer (pull) and those of wrong matches farther away from
each other (push).

To implement this notion, we employ margin ranking losses between correct

matches and other wrong ones. The final loss is the sum of the past, current,

11 Sk



and future matching losses as follows:

Li= Y max(0,14 ;% fP(8) — Vi_1 * f*(8:)) (3.3)
j#i—1
+ > max(0,1 4V« f98;) — Vi x f°(51))
J#i
+ > max(0,1+ 9+ 11 (8) = Viy1 = f1(5),
JAi+1

where the operator * denotes the cosine similarity, and j indicates the index

for wrong matches.

3.5 Training with the adaptation Loss

Use of Language Model Outputs. As described in the previous sections,
our adaptation losses use the visual representation processed with the language
model rather than the visual encoder outputs. Using the language model out-
puts enables the adaptation losses to update the visual encoder in accordance
with the language model. On the other hand, using the encoder outputs would
update the visual encoder in isolation. In Table 4.3, we will show that adapta-
tion using the encoder outputs (TAPM+VisualA) does not improve upon the
baseline (TAPM-A), while adaptation on the language model outputs (TAPM)
does. Thus, this scheme is crucial to train the visual encoder in coordination
with the language model to benefit the target task.

Split-Training. We split the training process into two phases: the adap-
tation loss step and the caption generation loss step. First, the visual encoder
is updated for a given number of epochs by the adaptation loss, while the text
encoder and the language generator are fixed. Then, we jointly update all the
components with the generation loss. By splitting the training process, we give

the model a chance to optimize the simpler adaptation task long enough before

]
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being presented with the harder generation objective. Fixing the language gen-
erator during the adaptation loss step prevents catastrophic forgetting of the
language generation capability. Our ablation study in section 4.3 confirms that

the split training leads to significant performance gains.

3.6 Finetuning and Inference

Target-Task Training. After adaptation training, we can finetune the lan-
guage generator to the downstream captioning task with ground-truth data,
where we input C pairs of video clips (or images) and text descriptions one by
one: {V1,S1,...,Vc,Sc}. We use the teacher forcing as the training scheme

with the cross-entropy loss:

L VvV
LY ==>" yilogpy, (3.4)

=1 v=1
where v € {1,...,V} is the vocabulary index, p; is the prediction probability
for the I-th token in S;, and y;; is the ground truth label. Finally, the language
model head generates a caption output, consisting of a single FC layer that maps
each vector of the language model outputs S; to a softmax layer to obtain the
word probability p; of each token over vocabulary.

Cross-Modal Generation. At inference, our goal is to generate a coherent
sequence of C' sentences for a visual test sample {Vy,..., Vo }. We first use the
visual encoder to build the visual embedding V; for i = 1,...,C. We then gen-
erate each sentence auto-regressively using the finetuned language generator. In
the decoding step [ for V; (i.e., the i-th output sentence is generated up to [ — 1
words), the input to the language generator is [V, [sep], [dummy], s, - . ., si_1].
We can obtain the word probability p; with the output of the language gener-

ator s;_1, and finally select the next word s;; = argmax, p;;. We iterate this

]
13 =4



until the end-of-sentence token [eos| appears, or the output sentence reaches

the predefined maximum length.
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Chapter 4

Experiments

We evaluate the TAPM approach in two visual storytelling tasks: sequential
video captioning in LSMDC 2019 [1] and image captioning in VIST [2]. For both
tasks, we achieve new state-of-the-art performance in both automatic evalua-
tion (section 4.2) and human evaluation (section 4.4). We also perform various
empirical analyses of our TAPM across various language models (section 4.3).
Furthermore, we demonstrate that TAPM can benefit from additional visual-
only datasets. TAPM is also extendable to other visual-linguistic tasks such as

VQA and cross-modal retrieval, as shown in Appendix.

4.1 Experimental Setup

Datasets. The Multi-Sentence Description of LSMDC 2019 [1] is the task of
generating consecutive captions for multiple short movie clips. For a given set of
five clips, the model generates five sentences maintaining logical and contextual

consistency. The dataset contains 128,085 clips from 200 movies and has four

15 -’x_i'l'll.-i L



splits; 20,283 training, 1,486 validation, 2,018 public test, and 1,923 blind test
samples. Following the challenge protocol, we combine the train and validation
split as training data. The official performance is evaluated on the blind test
split hidden from participants, while ablation studies are conducted on the
public test split.

VIST [2] is a visual storytelling dataset, including 10,117 Flickr albums with
210,819 unique photos. Each story of VIST contains five sequential images with
the corresponding captions. We use the SIS (Stories of Images in Sequence)
tier that has more storytelling elements. Ignoring broken images, we use 40,071
training, 4,988 validation, and 5,050 testing story samples. In all experiments,
we use the training/test split of [2, 56, 57]. As in [57], we evaluate at the
album level by allowing only one story candidate per album regardless of photo
sequences.

Data Preprocessing. For LSMDC 2019, we use the ResNet [58] pretrained
on ImageNet [59] to extract frame features as in [33, 60]. For the challenge sub-
mission and human evaluation, we add the I3D feature [61] pretrained on Kinet-
ics [62] as done in the official baseline [28]. We equally segment a video clip into
three subshots and represent each by mean-pooling the features of frames. For
the challenge results, we use set level evaluation by concatenating all captions
within a set of 5 clips as dictated by the organizers. For ablation study, we use
individual sentence level evaluation to compare with non-sequential generation
models fairly. For VIST, we use the same ResNet extractor and additional fea-
tures of object bounding boxes from Faster R-CNN [63] pretrained on Visual
Genome [64]. We choose at most 20 objects with the highest likelihood per image
from the R-CNN [63] detection results. After processing each feature through
the visual encoder, we concatenate all features along the temporal dimension

with a special separator token between them. We tokenize and numericalize
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the text using Byte Pair Encoding [65] for pretrained language models while
using the whitespace tokenizer for the no pretrained models. In VIST, we use
the default tokenizer to re-tokenize our generated samples for evaluation. We
generate each caption with beam search up to 30 tokens and cut every ground
truth sentence to the maximum length of 50 tokens for all experiments.

Metrics. We use three n-gram based metrics to evaluate our approach:
CIDEr [66], METEOR [67] and ROUGE-L [68]. CIDEr captures consensus by
applying Term Frequency Inverse Document Frequency (TF-IDF) weighting for
each n-gram. METEOR scores the sequence matches with explicit alignment at
the sentence level. ROUGE-L is a recall-based metric computed with the length
of the longest common subsequence. For computing METEOR in VIST, we use
the official VIST challenge evaluation code '. All the other metric scores are
computed with the pycocoevalcap library 2.

Baselines. For LSMDC 2019, we compare our approach with the official
baseline [1, 28]. We also adapt XE and AREL models [57] to LSMDC us-
ing the official codes. For VIST, we compare TAPM with eight state-of-the-
art methods: GLACNet [69], h-attn-rank [56], Contextualize, Show and Tell
(CST) [70], BLEU-RL [57], CIDEr-RL [57], GAN [57], AREL [57], StoryAn-
chor [71], HSRL [24], and INet [72]. The scores for BLEU-RL, CIDEr-RL, and
AREL are referred from [57], while the results of GLACNet, CST, StoryAncher,
HSRL, and INet are referred from the respective papers. We use XE and AREL
as baselines for human evaluation on the VIST dataset. XE shares the archi-
tecture of AREL except for the lack of adversarial rewards. We use the publicly
available codes for both models.

Hyperparameters. Unless we mention it explicitly, we fix all random seeds

"https://github.com /windx0303/VIST-Challenge-NAACL-2018
Zhttps://github.com /tylin/coco-caption
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Table 4.1 Quantitative results on the LSMDC 2019 [1] public and blind test set.
XE and AREL do not report the blind test score because they are not challenge
participants. C stands for CIDEr and M for METEOR. All tests are done on
the set level.

Public Test | Blind Test
Models C M C M
Official Baseline [28] 7.0 12.0(6.9 119
XE [57] 72 115 - -
AREL [57] 73 114 | - -
TAPM (ours) 10.0 12.3 (8.8 12.4

Table 4.2 Quantitative results on the VIST [2] test set. R stands for ROUGE-L.

Models cC M R

Huang et al.[2] - 314 -

h-attn-rank[56] 7.5 341 295
GLACNet[69] 300 -

CST[70] 51 344 29.2
BLEU-RLI[57] 89 346 29.0
CIDEr-RL[57] 81 349 207
GAN[57] 9.1 350 295
AREL[57] 94 350 295
StoryAnchor[71] 9.9 355 30.0
HSRL[24] 10.7 352 30.8
INet[72] 10.0 35.6 29.7
TAPM (ours) 13.8 37.2 33.1

to 0. For training, we use Adam optimizer [73] with linear learning rate decay.
The learning rate is 5e — 5, which is warmed up for the first 4000 steps. We
apply 0.5 dropout on the language generator outputs. In all experiments, we
use the batch size of 8. For LSMDC dataset we train the adaptation loss for
5 epochs, whereas we train for 3 epochs in case of VIST dataset. We train all

models up to 30 epochs.
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Table 4.3 Ablation results of our TAPM model on the LSMDC 2019 public test
set and the VIST test set. The evaluations for LSMDC are done on the sentence
level.

LSMDC VIST
Models C M R CcC M R
Baseline[28] 11.90 825 - - - -
Baseline+GPT-2[15] | 8.65 7.75 19.90 | - - -
TAPM (ours) 15.37 8.41 20.21|8.3 34.1 30.2
-A 14.54 8.27 19.89 |4.8 33.6 29.9
+Cap 15.29 8.47 20.19 | 6.7 33.8 29.8
+VisualA 14.59 8.37 20.00 4.9 33.0 29.9
-Split 14.28 834 19.71 |45 32.8 29.8
-A+Split 14.01 8.28 19.60 | 6.5 33.8 30.0

4.2 Quantitative Results

We use OpenAI GPT-2 [15] as our default language generator due to its best
performance among other language models. We use beam search with a size of
3 for the results in this section and section 4.4 and use a greedy search for the
results in section 4.3 for faster computation.

Table 4.1 outlines the results of sequential video captioning on the LSMDC
2019 blind test set. Our TAPM method outperforms the strong adversarial
inference official baseline [28] as well as the XE and AREL model in all met-
rics. Notably, our method shows significant gaps in the CIDEr metric, which is
designed to score human-likeness [66].

Table 4.2 compares the results of sequential image captioning on the VIST
test set. We report the scores computed using only one story per album following
previous works. Even without explicitly optimizing the language metrics, our
method is competent in the automatic evaluation. In CIDEr, our approach ex-
hibits significant performance gains over the best-performing model AREL [57].
Our model also achieves the highest ROUGE accuracy and on-par METEOR

performance with the baselines.
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Table 4.4 Comparison between language models on LSMDC 2019 public test
set. C, M, and R denote CIDEr, METEOR, and ROUGE-L, respectively. All
evaluations are on the sentence level.

No Adaptation Adaptation (No split-training) | Adaptation (split-train
Models C M R C M R C M R
Baseline 28] | 11.90  8.25 - - - - - - -
LSTM-WT?2 3.00 5.73 17.13 1.41 4.60 12.83 7.36 8.47 20.-
XLM [16] 10.05 7.09 19.01 7.50 6.95 17.66 13.11 8.00 20.(
GPT [54] 14.01 7.96 19.84 11.81 7.86 19.23 14.76 8.33 20.(
GPT-2 14.54 8.27 19.89 14.28 8.34 19.71 15.37 8.41 20..

4.3 Further Analyses

We perform various empirical analyses of our TAPM model, including (i) ab-
lation study to inspect the contributions of key ingredients and use of (ii) six
other language models beyond GPT-2.

Ablation Study. We conduct an ablation study for the TAPM model in
both LSMDC 2019 and VIST dataset. We test six variants: (i) (-A) removes
the adaptation loss training, (ii) (+Cap) uses the ground truth captions instead
of the dummy token, (iii) (4+VisualA) applies the adaptation loss to the visual
encoder output instead of the language generator output, (iv) (-Split) uses naive
joint training of the adaptation and generation loss, (v) (-A+Split) is (-A) that
uses split-training between the visual encoder and the generator,

Table 4.3 compares the results of the ablation variants. The performance of
TAPM is comparable to that of TAPM+Cap, suggesting that adaptation with
videos only is as successful as the supervision with the caption labels.

The slight performance drop from TAPM to TAPM-Split shows that naive
joint training can be even worse than training without the adaptation loss. Sig-
nificant degradation from TAPM-A to TAPM-A+Split proves the split training
without the adaptation loss performs the worst. The results of TAPM+VisualA
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show that applying adaptation loss to visual encoder outputs does not improve
the caption quality. Hence, using language model outputs for adaptation is
crucial. Our model, TAPM, performs the best when used as proposed.

Additionally, we replace the backbone of the baseline model [28] from the
RNN encoder to GPT-2 pretrained language generator [15]. As shown in the
table’s first two rows, the modified model performs even worse than the original
baseline. This performance drop verifies our claim that employing a stronger
language model does not automatically lead to a better storytelling capability.
A stronger textual prior may weaken the visual conditioning when the visually
conditioned target data size is insufficient. Without a proper adaptation step,
the model would generate less visually relevant captions when using a strong
language model such as GPT-2. Hence, the performance improvement of TAPM
is attributable to the adaptation step rather than the strength of the language
model.

Other Language Models. We test the generalization capability of TAPM
using three pretrained language models, including LSTM-WT2 [55], XLM [16],
and GPT [54]. LSTM [55] is an extension of RNN enlarging its memory capac-
ity. We pretrain an LSTM-based two-layer encoder-decoder architecture on the
WikiText-2 dataset [74]. XLM [16] is a multilingual language model designed to
exploit both monolingual data and aligned bilingual data. GPT [54] is the pre-
decessor of GPT-2. Table 4.4 compares the result of different language models.
For all models, split-training with the adaptation loss contributes to consistent
improvement in the language metrics, while naive joint training results in per-
formance drops in terms of CIDEr and METEOR. These results prove that
our TAPM method can improve the visual storytelling performance of a wide
range of language models. Furthermore, both the adaptation loss and the split

training are necessary to achieve the enhancement.
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Table 4.5 Results with additional visual-only data provided in the adaptation
phase. The performance rises with the number of additional videos. C, M and
R denotes CIDEr, METEOR and ROUGE-L, respectively.

Models Videos C M R

Baseline (Ours) 108,487 | 15.37 | 8.41 | 20.21
+ Additional LSMDC 10,053 | 15.49 | 8.51 | 20.26
+ Additional ActivityNet | 480,860 | 16.48 | 8.67 | 20.35

Models Scores
Human 1.085
Official Baseline [28] | 4.015
TAPM (ours) 3.670

Table 4.6 Official human evaluation results on the LSMDC 2019 blind test set.
Lower is better.

Additional Visual-Only Data. By not relying on ground-truth captions
during the adaptation phase, we can exploit additional visual-only data. In Ta-
ble 4.5, we perform experiments using additional video-only dataset to further
improve TAPM in LSMDC. The generation performance increases along with
the number of videos used, indicating that TAPM can use visual-only data to

improve cross-modal generation capability.
4.4 Human Evaluation Results

We opt for human evaluation to robustly evaluate the captioning quality of our

approach. As pointed out in [57], the automatic metrics often fail to capture

TAPM vs XE TAPM vs AREL
Choice (%) TAPM XE Tie | TAPM AREL Tie
Relevance 59.9 34.1 6.0 61.3 32.8 5.9

Expressiveness | 57.3 323 104 | 57.3 34.0 8.7
Concreteness 59.1 30.3 10.7 | 59.6 304 10.0

Table 4.7 Human evaluation results on VIST. Higher is better.
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expressiveness and coherence within a story. Please refer to [57] for details on
the limitations of the language metrics for story evaluation.

Table 4.6 shows human evaluation results conducted by the LSMDC 2019
challenge organizers. For 150 random sets of clips, human annotators rate gener-
ated multi-sentence descriptions from 5 (worst) to 1 (best) based on how helpful
they are for a blind person to understand what is happening in the movie. To
account for variability in human decisions, they aggregate three human judg-
ments per caption and report the median score. We observe that TAPM is
superior to the strong adversarial baseline [28].

For VIST, we follow previous research [57] to perform the pairwise com-
parison test, comparing a pair of generated samples by two methods. We ask
human annotators to choose a better story between the two models’ outputs
for three aspects: relevance, expressiveness, and concreteness. The judges can
conclude that the two samples are equally good. We randomly select 150 photo
sequences and collect the medians of scores from five workers per test sample.
For baselines of XE and AREL, we reproduce the results using the code and
parameters provided by the original authors.

Table 4.7 shows that our TAPM outperforms the baselines in all three as-
pects by large margins. The performance gain of our model is the most signif-
icant in terms of relevance. The gain suggests that the captions generated by
TAPM reflect the pictorial narrative better than the baselines since the rele-
vance measures how accurately the story describes what is happening in the

image sequence.
4.5 Qualitative Results

Fig. 4.1 presents a VIST example to compare the captions of TAPM against

the baselines. Our generated output can avoid using some wrong words like

-1
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GT [female] is scared, she's this is her first wedding  and here she is with this is [male], her husband here's [male] and his family.

getting married. photo. everyone in the wedding. ~ with location, the best man.
XE the bride was so happy to it was a beautiful day for  the bride and groom were the bride and groom were  the bride and groom pose
be married. the wedding. very happy to be married. very happy to be married. ~ for a picture.
AREL it was a beautiful day for i had a great time there. the bride and groom were then the bride and groom  the bride and groom pose
the wedding. 5o happy to be married. ~ walked down the aisle. for a picture.
it was a beautiful day for they went down the stairs the bride and groom posed after the ceremony, the all of the guests were
TAPM . S o B .
e wedding. to get to the reception.  for pictures. groom and the groom's  happy to be at the wedding.
(Ours) father pose for a picture.

Figure 4.1 Qualitative comparison of sequential image captioning between our
method and selected baselines on the VIST dataset. Blue and red fonts indicate
correct and erroneous descriptions, respectively. Green shows the coherence be-
tween sentences. In the second sentence generated by TAPM, the model explains
why the couple is going down the stairs.

bride, unlike the baselines. Furthermore, TAPM notably captures the causal
relationship between the images well. In the second picture, TAPM states the
purpose of going down the stairs is to get to the reception and deduces that the
ceremony is over with the third picture. The readers can find more examples in

Appendix.
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Chapter 5

Conclusion

We proposed the Transitional Adaptation of Pretrained Model (TAPM) method
for harmonizing the pretrained language model with the visual encoder for
vision-to-language generation tasks. Extensive experiments showed that the
adaptation phase using the adaptation loss consistently improves the caption
quality across several language models and loss types. Our model achieved com-
petitive performance in both automatic metrics and human evaluation for two
visual storytelling tasks: the multi-sentence description of LSMDC 2019 and
the image storytelling of VIST. There are several directions beyond this work.
First, we can explore other adaptation loss types to improve the visual under-
standing capability of the pretrained language models that have proven their
strengths in many language tasks. Second, one can apply our method to other
cross-modal generation tasks utilizing the pretrained language models beyond

visual storytelling.
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Appendix A

Overview

We provide the details of implementation and experiments that are not fully

described in the main paper.

The outline of this material is as follows.

e Implementation Details

— Computing Infrastructure
— Random Seeds

— Computational Efficiency
e Additional Experiments

— Fill-in-the-Blank QA

— Randomly Initialized Backbones
e AMT user interface

e Additional examples
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Appendix B

Implementation Details

B.1 Computing Infrastructure

With the GPT-2-small model as the language generator, TAPM includes 751M
parameters in total. The model takes approximately 30 minutes per epoch for
training using a single NVIDIA TITAN RTX GPU.

We here summarize some information about computing infrastructure for

our experiments.

e GPU: NVIDIA TITAN RTX

CPU: Intel(R) Xeon(R) E5-2650 CPU
e OS : Ubuntu 16.04 LTS OS.

RAM: SAMSUNG DDRA4 8G

Operating System: Ubuntu 16.04
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Table B.1 Mean and standard deviations of TAPM using random seed [0 — 4].
Note that we fix the random seed to 0 in all other experiments.

LSMDC VIST

Stats C M R C M R

mean | 15.50 8.55 20.23 | 8.26 34.02 29.70

std 033 0.06 0.12 | 0.17 0.08 0.06

Table B.2 The number of parameters and GFLOPs.
Models | GFLOPs (G) | Params (M)
TAPM 5.766 62.3
-A 5.761 60.3

e Names and versions of relevant software libraries and frameworks: python

> 3.6 and PyTorch > 1.3

All pretrained transformers are from the huggingface implementations (https:
//github.com/huggingface/transformers). See the source code for more

details.

B.2 Random Seeds

Table B.1 shows that the performance of TAPM is stable across several random

seeds.
B.3 Computational Efficiency

Table B.2 shows the number of parameters and GFLOPs (floating point op-
erations) for training. Since the adaptation module (A) requires only 4 FC
layers (f7, /¥, ff , fsf ), it does not significantly affect computation complexity
and training time. The adaptation module is not used for the inference time, so
the inference time and complexity of TAPM and TAPM-A are exactly the same.
Please note that our adaptation module does not contribute to the complexity

of model inference.
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Appendix C

Additional Experiments

C.1 Fill-in-the-Blank QA

We explore the generalizability of TAPM on another type of task. In Table C.1
we test TAPM with a videoQA task, specifically Fill-in-the-Blank QA task of
LSMDC2017, beyond the sequential caption generation tasks in the original
paper. The results show that our approach achieves the state-of-the-art perfor-

mance for another multimodal task.
C.2 Randomly Initialized Backbones

Additionally, we explore how TAPM affects randomly initialized language mod-
els. In Table C.2, we test three randomly initialized language generators; LSTM-
Scratch, QRNN-Scratch [17] and GPT-2-Scratch. As with pretrained language
models, adaptation with split-training consistently improves caption quality
across all language models. Even when there is no pretrained language infor-

mation to adapt to, self-supervision may enhance robustness [76] and hence
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Table C.1 Results on Fill-in-the-Blank QA task in LSMDC 2017.

Table C.2 Comparison between not pretrained language models on LSMDC
2019 public test set. C, M and R denotes CIDEr, METEOR and ROUGE-L,

Models Accuracy
JsFusion [75] 45.52
Cross-Modal BERT —TAPM 50.10
Cross-Modal BERT +TAPM 52.53

respectively. All evaluations are on the sentence level.

. Adaptation Adaptation

No Adaptation (No split-training) (split-training)

Models C M R C M R C M R

Baseline [28] 11.90 8.25 - - - - - - -
LSTM-Scratch | 5.13  6.77 19.34 | 3.67 5.95 1851 | 7.90 7.70 19.45
QRNN-Scratch | 1.48 5.65 16.29 | 3.01 573 17.13| 7.05 7.25 18.58
GPT2-Scratch | 4.17 5.94 16.97 | 4.01 6.03 17.18 | 12.68 8.27 20.08
GPT-2 14.54 8.27 19.89 | 14.28 8.34 19.71|15.37 8.41 20.21

generalization in sparse-signal datasets such as LSMDC.
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Appendix D

AMT user interface

In our main paper, we conduct our human evaluation to compare different
models’ outputs on Amazon Mechanical Turk (AMT). Figure D.1,D.2,D.3 re-
spectively shows the user interfaces for AMT instruction and human evaluation

layouts for VIST and LSMDC 2019.
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Summary Detailed Instructions Examples

Read the stories of the following image stream and compare the two in the aspect of matching, coherence and concreteness.

Relevance: the story accurately describes what is happening in the image stream and covers the main objects appearing in the images. (Which story better describes

the images?)
Expressiveness: coherence, grammatically and semantically correct, no repetition, expressive language style. (Which story is more coherent?)
Concreteness: the story should narrate concretely what is in the image rather than giving very general descriptions. (Which story is more concrete?)

Good example: The students gathered to listen to the presenters give lectures. There was several presenters on hand to speak. They spoke to the crowd with new ideas.

The students listened with interest. Some of the students took notes as the presenters spoke.

Bad example (repetition): Today was the day. | was very happy to see them. She was very happy to be there. They were all very happy to see him. This is a picture of a

group.
Bad example (too abstract): This is a picture of a speaker. The speaker was very good. Everyone is happy to be there. Everyone was very happy. Everyone was very happy.

Choosing "Tie" as the answer is discouraged if possible. One "Tie" out of 10~20 comparisons is recommended

Figure D.1 The AMT Instruction for the turkers for the VIST model compari-
son.

Click for instructions

Before proceeding, please read the instruction section carefully.

[Q1. Read the stories of the following image stream and answer the following

. our bus arrived at our stop. we snapped a few pictures of flowers. these were very pretty. we walked the trail to the water. we entered an old building.

B. on our way to the park to take a walk. there are so many beautiful flowers in the park. we saw beautiful flowers growing on the side of the road. afterward i went to the
lake to watch the sunset. the cathedral was beautiful.

Which story is likely to be generated by human? O A Os O Unsure

Figure D.2 The AMT human evaluation layout for the VIST model comparison.
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IQ2. Read the stories of the following image stream and answer the following

IA. today we had a meeting to discuss the future of our company. they had a meeting to discuss the new plan. some of the speakers had a lot of questions to ask. some
people were very happy to be there. at the end of the day, everyone was happy.

B. i went to the meeting last week. the ceo of the company had a lot of questions from the audience. the ceo of the meeting was very informative. the men were happy to
Isee each other. it was a great day for all

Which story better describes the image?

OA OB QTie

Which story is more coherent? O A Os O T

Which story is more concrete?

OA OB QTie

Figure D.3 The AMT human evaluation layout for the LSMDC 2019 model
comparison.
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Appendix E

Additional examples

We provide additional examples to compare TAPM variants and with selected
baselines qualitatively. Figure E.1,E.2 are from LSMDC 2019 experiments, while
Figure E.3,E.4 are from VIST tests.
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GT

TAPM
-A
TAPM
-Split

TAPM
(Ours)

GT

TAPM
-A
TAPM
-Split
TAPM
(Ours)

someone grooves.

someone smiles.

someone smiles.

someone gives someone
a thumbs up.

in the control room.

someone sits on a
couch.

someone sits on a
couch.

someone sits at a desk
in the security hub.

now, someone nods to
someone.

someone looks at
someone.

someone pulls her into
the room.

someone and someone
are in the corridor.

someone touches the
screen.

someone clicks on a
computer.

someone looks at the
screen.

someone clicks on a
message on the screen:
"access denied. "

someone sneers at
someone.

someone looks at
someone.

someone looks at
someone.

someone and someone
exchange a look.

in the interrogation
room, the burly agent
stays put beside the
open door.

someone walks into the
room.

someone looks at
someone.

someone looks at
someone.

someone clicks the
mouse.

someone looks at the
computer.

someone looks at the
screen.

someone sits at a
computer.

someone looks sharply
at someone.

someone looks at
someone.

someone looks at
someone.

someone and someone
watch from their desks.

someone dials a
payphone.

someone is sitting on
the couch.

someone takes a drink.

someone hangs up the
phone.

()

someone points to
someone.

someone smiles.

someone smiles.

someone gives a thumbs
up.

someone puts his arm
around someone.

someone looks at
someone.

someone looks at the
camera.

someone grabs the
camera.

in his home, someone
answers.

someone sits on the bed,
looking at the glass.

someone sits on the
couch.

someone answers the
phone.

someone laughs to the
kids.

someone smiles.

someone smiles.

someone smiles and
nods.

someone faces
someone.

someone looks at
someone.

someone looks at
someone.

someone looks up at
someone.

now, a woman sits at a
bar.

someone looks at
someone.

someone looks at
someone.

someone looks up at
someone.

Figure E.1 The qualitative comparison between TAPM variants in the LSMDC
2019 dataset. Red indicates repetitions, blue/italic indicates interesting sam-
ples, and green/bold shows coherent sentences. In (a), TAPM tries to predict
the message on the screen but nearly misses.
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GT

TAPM
-A

TAPM
-Split

TAPM
(Ours)

GT

TAPM
A

TAPM
-Split

TAPM
(Ours)

another closes her eyes.

someone looks at
someone.

someone looks at
someone.

someone and someone
sit at the end of the long
row of seats.

someone glances toward
the open front door,
then takes a bite.

someone takes a sip of
the coffee and then goes
to the kitchen.

someone pulls out a
bottle of milk and starts
to eat.

someone eats a cookie.

someone flips open
another phone.

someone walks to the
door.

someone looks at the
camera.

someone sees a man
with a gun on a security
guard.

now, a man leads the
woman and a plump
brunette up the stairs.

someone walks up to
someone.

someone walks up to
someone.

someone and someone
climb the stairs.

and pulls up its speed
dial numbers.

someone looks at the
screen.

someone looks at the
screen.

someone sees a text
message from
someone.

the brunette lags behind.

someone walks up to
someone and starts to
walk away.

someone walks up to
someone and starts to
walk away.

someone and someone
run up to the fence.

(e)

someone appears at the
top of the list.

someone reads the
number:

someone reads the
number:

someone's phone shows
a text message, "call

"

me. ".

now, a goateed man
bicycles with the father.

someone rides a bike.

someone rides a bike.

now, someone and
someone ride on a
bike.

someone glances at the
executive, then presses a
button.

someone looks at the
phone.

someone looks at the
phone.

someone answers his
cell.

a car darts out and
nearly hits them.

someone rides a bike.

someone rides a bike.

someone rides up
behind them.

Figure E.2 The qualitative comparison between TAPM variants in the LSMDC
2019 dataset. Red indicates repetitions, blue/italic indicates interesting sam-
ples, and green/bold shows coherent sentences. In (d), TAPM takes a wrong
guess for the message on the cell phone.
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we decided to take a
GT walk around town to see
all the local stores.

TAPM the city was a great

-A place to go.

TAPM we went to the location
-Split location location

location locatio

TAPM  we went to the city
(Ours)  today to see what it was
like.

we started bright and
early in the morning, it
was such a beautiful
day.

the view from the
window was amazing.

the city is beautiful.

the windows were very
old and had a lot of
history.

we stopped for lunch at
the location location and
had a wonderful
sandwhich.

the building was very
beautiful.

the building was very
nice.

we saw a lot of
interesting things.

(2)

. we then went to
copperfield's books and
read and browsed for
awhile.

the restaurant was very
nice.

the sign was very nice.

there was a lot of cool
things to see.

finally, on our way back
we stopped in to popeyes
for some delicious fried
chicken.

we had a great time.

the place was very nice.

afterward i went back to
my hotel.

a little driver wanted to
GT take them to their
destination.

TAPM the car was a little too
-A big for my liking.
TAPM the boy was so excited
-Split  to get his new car.
TAPM i took my son to the
(Ours)  park yesterday.

the church was small
and held a few guests.

the church was
beautiful.

the church was
beautiful.

there were a lot of
beautiful sights to see.

members of the party
were young and old.

the flowers were
beautiful.

the bride was so
happy.

her favorite part of the
wedding was the
umbrella.

(b)

the rings were basic but
significant.

the bride was very
happy to be able to
touch the ring.

the bride and groom
were so happy.

the bride's ring looked
so delicate and
beautiful.

photos taken provided
memories for a lifetime.

the bride and groom
were happy to be
married.

the bride and groom
were happy to be
married.

they are now married
and ready to go home.

Figure E.3 The qualitative comparison between TAPM variants in the VIST
dataset. Red indicates uninformative captions, blue/italic indicates language
modelling failures, and green/bold shows coherent sentences. In (a), TAPM-
Split shows a language modelling failure. Jointly training the adaptation loss
with the generation loss could harm the language generation ability of the
model. We see that full TAPM does not suffer from such issues. In (b), TAPM-
Split and full TAPM try to describe the image within the context of wedding.
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the cruise ship look so
GT majestic as it comes in
the port.

AREL e went on vacation to
location.

XE we went to the location.

TAPM our cruise ship was
(Ours) ready for us.

friends are waiting to
greet the passengers.

we got to see a lot of
people there.

we took a trip to the
local museum.

the view from the deck
was amazing.

the port is all decked
out for christmas,
including this wonderful
tree.

this is a picture of a
tree.

we saw a lot of flowers
on the wall.

i bought some flowers
while i was there.

(a)

this lamp is so cool, i
wonder where you find
such a thing.

i had a great time there.
we saw a lot of
interesting things to see.

there was a lot of
decorations there.

any of the passengers
would like to get their
picture taken
professionally certainly
have that option here.

this is a picture of a
building.

we had a great time.
this sign was a great

addition to the
christmas tree.

it was time for the

GT  halloween party and
[male] the pirate was
ready to go.

AREL this is a picture of a

man.

XE the halloween party was
alot of fun.

TAPM i went to my friend's
(Ours) halloween party last
night.

but [male] the pirate
was very sad as [male]
the balloon man showed
up in a better costume.

we had a lot of fun
playing games.

there were a lot of
people there.

we played games and
had fun.

[male] the balloon man
had all kinds of fans.

there was a lot of fun
dancing.

there were a lot of
people there.

some of the costumes
were very creative.

(b)

a few that didn't see
[male] the pirate were
happy with [male] the
balloon man.

some of the performers
were really cool.

we had a great time.

after the party we all got
together for a group
photo.

but when [male] the
pirate asked if [male]
the balloon man can be
his friend, everybody
joined in too.

this is a picture of a
group of people.

at the end of the night,
everyone had a great
time.

it was a great halloween
party and everyone had
a great time.

Figure E.4 The qualitative comparison of TAPM and the selected baselines
in the VIST dataset. Red indicates uninformative or misaligned captions, and
blue/italic indicates isolated sentences.
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