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Abstract 

Development of an Isogeometric analysis based 

on Bezier tetrahedral element for high-

precision structural prediction 

 

Dong-Hyeon Song 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Precise prediction is one of the essential components in the design stage of the 

various engineering objects. Certain curved configuration of it may induce severe 

discretization inaccuracy when it is analyzed by the conventional finite element 

method (FEM). Meanwhile, an isogeometric analysis (IGA) that combines the 

computer-aided design (CAD) and FEM is capable of more precise numerical 

computation when compared against FEM. It is due to that the exact geometry is 

represented identically as CAD does and high inter-element continuity of the basis 

function is maintained. Actually, prediction of more precise numerical results has 

been verified on many engineering areas such as fluids, solids, and electromagnetics. 

However, application of the IGA for a complicated three-dimensional object has not 

been successful. The main reasons of that are NURBS basis function which defined 

as tensor product, and Boundary representation (B-rep) of CAD software. Because 
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of the NURBS defined as tensor product, multi-patch is required for representing 

complicated geometry. Furthermore, B-rep of CAD software means that the three-

dimensional solid objects is represented using only the bounding surfaces without 

the inner volumetric information. To overcome such limitation, many alternatives 

have been suggested including the method using Bezier element. The present method 

presented in this thesis is based on such idea.  

In this thesis, the three-dimensional solid geometry will be inner volumetric 

parameterized by FE discretization. Then, Bernstein-Bezier discretization that 

represents the curved surface with quite smaller geometric discrepancy will be 

obtained by the surface reconstruction. Then, an approximate 𝐶1  Bezier basis 

function will be obtained by the linear combination of 𝐶0  Bezier basis function 

based on the continuity coefficients. The remaining analysis will be carried out using 

the 𝐶1 Bezier basis function. For the computational efficiency, the macro element 

splitting technique that will split a single macro tetrahedron into multiple micro 

tetrahedrons will be utilized. Finally, an approximate 𝐶1 Bezier basis function will 

be applied to the various curved solid objects that include the realistic geometry. 

Unlike the previous method using 5th order Bezier tetrahedral element, present 

method utilizes a conventional 2nd order element. Therefore, more improved 

applicability for arbitrary geometry can be obtained by applying the graph algorithm 

in pre-processing with the conventional element. Also, by utilizing the commercial 

FEM software, there is no requirement for combining the inconsistency which 

occurred on the intersection of NURBS surfaces as in the previous work.  
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The verification of the present method will be accomplished by comparing the 

discrepancy on von-Mises stress by the present prediction against those by the 

traditional FEM. Additionally, NASA Rotor 67 blade configuration is selected for 

verifying the improved applicability of the present method.  

Keywords: Isogeometric analysis, Finite element method, Tetrahedral Bezier 

spline, Bezier tetrahedron, Macro element split, 𝐂𝟏  continuity 

condition, FE discretization 

Student Number: 2021-27453  
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Chpater 1  

Introduction 

1.1 Background and Motivation 

Turbine blade, of which one of the complicated mechanical geometries, is usually 

operated in harsh environments. The high temperature and high speed-rotation may 

lead to the blade failure, and therefore precise prediction in its design process will 

be crucial.  

Certain curved configuration of it may induce severe discretization inaccuracy 

when it is analyzed by the conventional FEM. One of the alternatives for alleviation 

of such inaccuracy, isogeometric analysis (IGA) has been proposed as a means to 

combine the traditional computer-aided design (CAD) along with the FEM [1]. It 

utilizes the same basis function as that CAD uses, non-uniform rational B-spline 

(NURBS), to describe both the geometry and physical quantities in the field. The 

detailed CAD geometry reduces the approximation discrepancy induced by FE 

polygonal discretization. And because the NURBS basis function has higher inter-

element continuity, a more precise numerical behavior may be obtained. IGA has 

been successfully applied in many engineering fields, such as structural vibration [2, 

3], fluids [4], electromagnetics [5], shell analysis [6], and fluid-structure interaction 

analysis [7]. Especially in the structural analysis, precise and continuous stress 

computation will be conducted because of its higher-order inter-element continuity 
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originated by NURBS basis function. Similarly, IGA is known to provide a more 

precise solution than the traditional FEM does regarding the multiple curved surfaces. 

The main reason of that is the representation of curved configuration more exactly 

than FE polygon. However, application of NURBS-based IGA to various 

engineering geometries will not be straightforward because there does not exist an 

appropriate preprocessor. It is due to that a multi-patch object will be required for 

representing the complicated geometry because of the NURBS which expressed as 

a tensor product. In most of CAD software, three-dimensional solid object is 

represented as boundary-representation (B-rep) that represents only the boundary 

surface of the object. Therefore, it is not suitable for numerical analysis because of 

the absence of the inner volumetric information for the analysis configuration. 

To overcome such limitation, quite a lot of researches have been executed to find 

an advanced solution methodology. Aigner proposed a swept volume 

parameterization for IGA [8], while generating an inner volumetric parameterization 

from the given boundary condition and guiding curves. Kim [9] proposed IGA for 

the trimmed CAD surface that used the triangular or quadrilateral elements with only 

one trimmed edge by decomposing the surface. Jaxon and Xia [10, 11] proposed IGA 

on the discretized field, where the triangular and tetrahedral Bezier elements were 

used for an inner volumetric parameterization. Kadapa [12] proposed the quadratic 

𝐶0 Bezier mesh generation technique for a unified pre-processing framework. Also, 

an idea of using the other splines such as T-splines [13] and U-splines [13] instead 

of NURBS of Bezier spline for the solid IGA was proposed. Other than those, a 
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scaled boundary IGA which utilized NURBS information of B-rep of CAD and 

parameterized the inner volume by a radial scaling factor was proposed by Chasapi 

[15].  

Similarly, there have been several attempts that employed IGA for the turbine 

blade, which contained multiple curved surfaces. Hsu [16] generated a CAD result 

which was IGA-suitable by a parametric modeling on a turbine blade while using 

Grasshopper, an add-on program by Rhinoceros CAD software, Inc. Bazilevs [17] 

analyzed the fluid and structural vibration by using IGA on the turbine blade used 

for Black Hawk and Apache helicopters by using NURBS mesh generation. 
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(a)fluids 

 

(b) electromagnetics 

Fig. 1.1 Application of NURBS-based IGA for various fields 

 

  



 

5 

 

 

 

 

 

 

Fig. 1.2 Turbine blade which contains multiple curved surfaces [26] 
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Fig. 1.3 NURBS basis function [1] 

 

Fig. 1.4 Comparison between B-spline and NURBS [1] 
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Fig. 1.5 Difference of NURBS surfaces occurred on the intersection [11] 
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1.2 Research objective 

The present method is inspired by IGA based on Bezier tetrahedra for more precise 

structural analysis. Compared with the previous work, the present framework is more 

applicable to any arbitrary geometry by using the conventional lower order 

tetrahedron and unified preprocessing with a graph algorithm. Furthermore, the 

combining process for the different NURBS surface occurred on the intersections of 

tetrahedron is not required. By using the commercial FE preprocessing software, the 

different NURBS surface is combined already. 

The inner parameterized FE polygon is transformed into the Bezier elements by 

using the surface reconstruction for reducing the geometric discrepancy. However, 

the reconstructed element is not a exact geometry. It’s because Bezier spline 

corresponds to the knot span of B-spline, which is the non-rational form of NURBS. 

Despite, if single curved surface represented with multiple Bezier surface than the 

geometry discrepancy will be reduced significantly. Also, by applying the additional 

continuity condition to 𝐶0 Bezier basis, a more continuous basis will be obtained. 

Applying the continuity condition is conducting Hermite interpolation for 

intersection of all tetrahedrons. As a result, the features of NURBS-based IGA for 

precise analysis will be implemented in the present method.  

To obtain an inner volumetric parameterization of a solid object, finite element 

(FE) discretization using a tetrahedral element will be performed by the commercial 

software ANSYS. The resulting tetrahedral element will be converted into a 
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quadratic 𝐶0 Bezier element by the surface reconstruction technique. The resulting 

Bezier element will represent a curved geometry with significantly decreased 

geometric discrepancy than that by a traditional FE polygon. Especially, more Bezier 

element utilized for representing the single CAD geometry. Then, an approximate 

𝐶1 Bezier basis function will be obtained by a linear combination of 𝐶0 Bezier 

basis function and continuity coefficients. The continuity coefficients will be 

obtained by applying the relevant condition to all 𝐶0 Bezier tetrahedrons. In other 

words, Hermite interpolation will be applied to all the intersections on each 

tetrahedron. When applying the continuity condition, the macro element spliting 

technique will be used for efficiency, and a minimal determining set (MDS), which 

represents all the domain points, be defined. The resulting MDS and approximate 

𝐶1 basis function which is defined only on MDS will be used for the remaining 

analysis. A complete framework of TBS-based IGA will be constructed and carried 

out on the curved solid object. Then the present method will be verified by 

comparing its results against those by the analytic solution and FEM. 

  



 

10 

 

 

 

 

Fig. 1.6 Alternatives for three-dimensional solid IGA 
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1.3 Thesis overview 

In this thesis, the framework of tetrahedral Bezier spline (TBS)- based IGA will 

be presented, and attempted on three-dimensional solid object including the turbine 

blade geometry. The proposed method is characterized by the summaries as follows: 

1. For precise numerical solution, the proposed methodology implements the 

features of NURBS-based IGA, of which the spline-based geometric 

representation and improved continuity of basis function. 

2. For an application of the present method to three-dimensional solid object, FE 

discretization will be utilized for an inner volumetric parameterization. 

3. When compared against the previous work [10, 11], the present method will 

improve the applicability for an arbitrary solid object by using the 

conventional tetrahedral element, and a graph preprocessing algorithm. 

4. For the verification of the present method can calculate more precise 

numerical solution than traditional FEM, curved solid geometry is selected. 

5. For the verification of the improved applicability of the present method, 

NASA Rotor 67 is selected.  
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Chpater 2  

NURBS and Bernstein-Bezier Technique 

2.1 NURBS 

CAD geometry is usually defined by NURBS-expressed boundary which is 

described by a linear combination between the control point and basis function at a 

few parametric locations. NURBS basis is defined by the control point, weight, and 

knot vectors [18]. According to Cox-deBoor recursion formula, the 𝑝-th order B-

spline basis function is defined as in Eqs. (2.1) and (2.2). The 𝑝-th order NURBS 

basis functions are defined as Eq. (2.3). 

 𝑵𝒊,𝟎(𝝃) = {
𝟏       𝒊𝒇 𝝃𝒊 ≤ 𝝃 < 𝝃𝒊+𝟏 
𝟎                 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 (2.1) 

𝑵𝒊,𝟎(𝝃) =
𝝃 − 𝝃𝒊

𝝃𝒊+𝒑 − 𝝃𝒊
𝑵𝒊,𝒑−𝟏(𝛏) +

𝝃𝒊+𝒑+𝟏 − 𝝃

𝝃𝒊+𝒑+𝟏 − 𝝃𝒊+𝟏
𝑵𝒊+𝟏,𝒑−𝟏(𝛏) 

(2.2) 

𝑹𝒊,𝒋
𝒑,𝒒

(𝛏, 𝛈) =
𝑵𝒊,𝒑(𝝃)𝑴𝒋,𝒒(𝜼)𝒘𝒊,𝒋

∑ ∑ 𝑵𝒊,𝒑(𝝃)𝑴𝒋,𝒒(𝜼)𝒘𝒊,𝒋
𝒎+𝒒+𝟏
𝒋=𝟏

𝒏+𝒑+𝟏
𝒊=𝟏

 
(2.3) 

where 𝑛, 𝑚 is the number of the basis functions, 𝑤 is the weight of the control 

point and ξ, η indicate the parametric coordinate. 𝜉𝑖 is the 𝑖-th knot vector where 

Ξ = {𝜉1, 𝜉2,∙∙∙, 𝜉𝑛+𝑝+1}  and 𝜂𝑗  is the 𝑗 -th knot vector where Φ = {𝜂1, 𝜂2,∙∙∙

, 𝜂𝑚+𝑞+1} .  𝑁𝑖,𝑝  and 𝑀𝑗,𝑞  are the 𝑝 -th and 𝑞 -th order B-spline basis function, 
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respectively. 𝑅𝑖,𝑗
𝑝,𝑞

 is NURBS basis function defined by 𝑁𝑖,𝑝 and 𝑀𝑗,𝑞. 

Then, NURBS surface 𝑆𝑛𝑢𝑟𝑏𝑠(ξ, η) can be defined as the linear combination of 

the basis function and control points as in Eq. (2.4). 

𝑺𝒏𝒖𝒓𝒃𝒔(𝛏, 𝛈) = ∑∑𝑅𝑖,𝑗
𝑝,𝑞

𝑃𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

. 
(2.4) 
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2.2 Bernstein-Bezier technique 

2.2.1 Bezier surface 

Bezier surface corresponds to each knot span of B-spline surface, the same as the 

non-rational NURBS surface. Bezier surface is defined by a linear combination of 

Bernstein basis functions and control points. The 𝑑-th order Bernstein polynomial 

is defined as in Eq. (2.5). The 𝑑-th order Bezier surface is defined as in Eq. (2.6). 

𝑩𝒊,𝒅(𝝃) =
𝒅!

𝒊! (𝒅 − 𝒊)!
𝝃𝒊(𝟏 − 𝝃)𝒅−𝒊,    𝝃 ∈  [𝟎, 𝟏]. 

(2.5) 

𝐒𝒃𝒆𝒛𝒊𝒆𝒓(𝝃, 𝜼) = ∑ ∑ 𝑩𝒊,𝒌(𝝃)𝑩𝒋,𝒍(𝜼)
𝒍+𝟏

𝒋=𝟏
𝑲𝒊,𝒋

𝒌+𝟏

𝒊=𝟏
. 

(2.6) 

where 𝑘, 𝑙  are the degree of Bernstein basis, and ξ, η  indicate the parametric 

coordinate, respectively. 𝐵𝑖,𝑑 is the 𝑑-th order Bernstein basis function, 𝐾𝑖,𝑗 is the 

control point, and S𝑏𝑒𝑧𝑖𝑒𝑟(ξ, η) is Bezier surface at parametric location. 

2.2.2 Bezier tetrahedron 

All the points located at the inner side of the tetrahedron may be represented by 

using the barycentric coordinate λ = [𝜆1, 𝜆2, 𝜆3, 𝜆4] which is rewritten in terms of 

the volume of the tetrahedron T = {𝑣1, 𝑣2, 𝑣3, 𝑣4} as shown in Eqs. (2.7) and (2.8). 

𝝀𝒊 =
𝑽𝒊

𝑽
. 

(2.7) 
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𝑷(𝝀) = 𝝀𝟏𝒗𝟏 + 𝝀𝟐𝒗𝟐 + 𝝀𝟑𝒗𝟑 + 𝝀𝟒𝒗𝟒. (2.8) 

Bernstein basis function will be defined using the barycentric coordinate for a 

tetrahedron in the parent space. The 𝑑-th order Bernstein basis is defined as shown 

in Eq. (2.9). 

𝑩𝒊𝒋𝒌𝒍
𝒅 (𝝀) =

𝒅!

𝒊! 𝒋! 𝒌! 𝒍!
𝝀𝟏

𝒊 𝝀𝟐
𝒋
𝝀𝟑

𝒌𝝀𝟒
𝒍 ,    𝒊 + 𝒋 + 𝒌 + 𝒍 = 𝒅. 

(2.9) 

Then Bezier tetrahedron in the physical space will be represented a linear 

combination of Bernstein basis and control point as Eq. (2.10). 

𝑻(𝝀) = ∑ 𝑩𝒊𝒋𝒌𝒍
𝒅 (𝝀)𝑷𝒊𝒋𝒌𝒍

𝒊+𝒋+𝒌+𝒍=𝒑

. 
(2.10) 

where 𝑃𝑖𝑗𝑘𝑙 is the control point in the physical space. 

2.2.3 Derivatives of a polynomial in B-form 

The directional derivative at point 𝑣 with respect to the direction 𝑢 is defined 

as shown in Eq. (2.11), and the direction vector u is defined using 𝑎 =

(𝑎1, 𝑎2, 𝑎3, 𝑎4) in terms of the barycentric coordinate. The quantity, 𝑐𝑖𝑗𝑘𝑙
(1)

(𝑎) are 

obtained from the first step of de Casteljau algorithm as shown in Eq. (2.12). 

𝑫𝒖𝒑(𝒗) = 𝒅 ∑ 𝒄𝒊𝒋𝒌𝒍
(𝟏)

(𝒂)𝑩𝒊𝒋𝒌𝒍
𝒅−𝟏(𝒗)

𝒊+𝒋+𝒌+𝒍=𝒅

. 
(2.11) 
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𝑐𝑖𝑗𝑘𝑙
(1)

(𝑎) = 𝑐𝑖+1,𝑗,𝑘,𝑙𝑎1 + 𝑐𝑖,𝑗+1,𝑘,𝑙𝑎2 + 𝑐𝑖,𝑗,𝑘+1,𝑙𝑎3 + 𝑐𝑖,𝑗,𝑘,𝑙+1𝑎4. (2.11) 

𝑖 + 𝑗 + 𝑘 + 𝑙 = 𝑑 − 1 

where 𝑐𝑖,𝑗,𝑘,𝑙 is the control point, and 𝐵𝑖𝑗𝑘𝑙
𝑑  is the 𝑑-th order Bezier basis function. 
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Chpater 3  

TBS-based isogeometric analysis 

3.1 Framework of TBS-based IGA 

For the convenience, the complete framework of TBS-based IGA is depicted using 

a two-dimensional curved geometry example as shown in Fig. 3.1. Diminishing the 

geometric discrepancy and utilizing a high inter-element continuous shape function 

are the main features of NURBS-based IGA for an accurate numerical analysis. To 

implement those features in the present method, pre-processing techniques such as 

surface reconstruction and applying continuity condition by using macro element 

split will be used. 

First, the surface reconstruction will be attempted. Using the commercial FEM 

software, CAD geometry, represented as B-rep, will become inner parameterized by 

using FE discretization that contains the geometrical discrepancy on the curved 

boundary. To reduce it, FE tetrahedral elements will be converted into 𝐶0 Bezier 

tetrahedral elements by the surface reconstruction process. In the process, control 

points of each Bezier element will be obtained by using the definition of TBS spline 

with the physical coordinate from FEM software. However, the reconstructed Bezier 

element represents the exact geometry as the NURBS. By representing with multiple 

Bezier elements for single curved surface, it will be resolved. The converted Bezier 

elements will exhibit significantly reduced geometric discrepancy than FE 
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tetrahedral elements do when representing the curved geometry. In this process, input 

information for the in-house code is only from the commercial FEM software. 

Because there is no requirement of the NURBS information for each surfaces, and 

the graph algorithm is utilized for finding the element located on boundary. 

Second, the continuity condition is applied to obtain 𝐶1 basis function. In general, 

the construction of 𝐶1  basis requires over the 9th-order tetrahedral element. For 

computationally efficient analysis, approximate 𝐶1  basis could be constructed 

using the lower-order tetrahedral element by utilizing the macro element split. In the 

splitting element, split condition for macro edge is violated for the alleviation of the 

geometric constraint. By doing that, the present method can be applied to 

complicated geometry such as curve-dominant geometry. However, the 𝐶1 

continuity is violated on the midpoint of macro edge. Consequently, the approximate 

𝐶1 basis, of which not exact 𝐶1 on the macro edge is constructed. After that, the 

minimal determining set (MDS) will be defined by applying the continuity condition 

on all of 𝐶0 Bezier elements. By The approximate 𝐶1 Bezier basis is defined on 

MDS by a linear combination of 𝐶0 Bezier basis and continuity coefficients, and 

utilize it for representing the overall physical field. 

By conducting the above pre-processing process, the features of the NURBS-

based IGA for precise numerical analysis can be implemented. As mentioned earlier, 

this process requires only the information from the commercial FEM software as the 

input information by utilizing the graph algorithm. Such unified preprocessing has 

advantage of improved applicability for arbitrary complicated geometry. 
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Fig. 3.1 Framework of the present method 
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After pre-processing, the numerical analysis may be conducted by utilizing the 

physical field with a reduced geometrical discrepancy and the approximate 𝐶1 

Bezier basis function defined on the MDS. Entire analysis procedures are similar to 

the traditional FE formulation except that the solution is obtained on MDS points. In 

other words, the matrix of properties such as the stiffness is constructed only using 

the MDS. Figure 3.2 illustrates the analysis procedure of the present method. First, 

because approximate 𝐶1 Bezier basis function is defined on the parametric space, 

physical control points and boundary condition will be projected onto the linearized 

parametric space. Then, the analysis will be conducted on MDS. Finally, calculated 

parametric field will be projected onto the physical space. Consequently, the 

numerical analysis for physical space that represents that contains highly reduced 

geometric discrepancy is conducted. 

The comparison of the entire analysis procedure for the present method with 

NURBS-based IGA and traditional FEM is illustrated in Fig 3.3 using two-

dimensional example geometry. The formulation for all method is same except the 

analysis is conducted on the control point in NURBs-based IGA, node in the FEM, 

and MDS in the present method. In NURBS-based IGA, the NURBS basis function 

is defined on the parametric space represented as rectangle. Then, the numerical 

solution will be calculated on physical space directly because it utilizes the same 

geometry representation as CAD does. In traditional FEM, after the CAD geometry 

discretization by FE polygon, nodal displacement will be calculated. For stress 

calculation, it requires additional stress recovery technique such as extrapolation. 
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Meanwhile, the present method utilizes the FE discretized geometry as parametric 

space. The numerical solution will be calculated on parametric space, of which the 

approximate 𝐶1  basis function is defined. Finally, the solution will be projected 

onto the physical space. 
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Fig. 3.2 Present analysis procedure 
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Fig. 3.3 Comparison of the analysis procedures 
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3.2 Surface reconstruction 

As expressed in the previous section, CAD represents a solid as B-rep without an 

inner volumetric information, and it is necessary to create an inner volumetric 

parameterization for the numerical analysis. In this paper, ANSYS, a FEM software, 

will be used for FE discretization with a conventional 2nd order tetrahedral element. 

First, FE discretization by using the tetrahedral mesh will be performed to 

parameterize the interior of the domain. However, the surface of the FE discretized 

geometry is represented by using the polygonal mesh. Thus, the surface 

reconstruction is required to represent the curved surface with the reduced geometric 

discrepancy. 

Second, it is assumed that all the tetrahedral elements will be Bezier elements, and 

then the relationship that the physical points obtained from FEM SW will be the 

same as Bezier surface at the boundary parametric space. Therefore, the linear 

combination of Bezier basis (𝑩) at the parametric coordinate (𝝀̂) and Bezier control 

points (𝑷𝒃 ) will be the same as the physical points of CAD (𝒙|𝒑𝒉𝒚 ). For one 

tetrahedron, this relation will be described as Eq. (3.1), in a matrix form as in Eqs. 

(3.2) and (3.3) and the matrices of basis and control point are described as Eqs. (3.4) 

and (3.5). Figure 3.4 describe the entire from FE polygonal element to Bezier 

element tor two-dimensional curved geometry.  

𝒙|𝒑𝒉𝒚 = ∑𝑩𝒊,𝒑(𝝀̂)𝑷𝒊
𝒃

𝒏𝒇

𝒊=𝟏

. (3.1) 
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𝒙|𝒑𝒉𝒚 = 𝑩(𝝀̂)𝑷𝒃. (3.2) 

𝑷𝒃 = 𝑩−𝟏(𝝀̂)𝑷𝒑. (3.3) 

𝑩(𝝀̂) = [

𝑩𝟏,𝒑(𝝀̂𝟏) 𝑩𝟐,𝒑(𝝀̂𝟏)  ∙∙∙   𝑩𝒏𝒇,𝒑(𝝀̂𝟏)
:

𝑩𝟏,𝒑 (𝝀̂𝒏𝒇
) 𝑩𝟐,𝒑 (𝝀̂𝒏𝒇

)   ∙∙∙   𝑩𝒏𝒇,𝒑 (𝝀̂𝒏𝒇
)
] . 

(3.4) 

𝐏𝒑 =

[
 
 
 
 𝒙𝟏

𝒑𝒉𝒚

𝒙𝟐
𝒑𝒉𝒚

:

𝒙𝒏𝒔

𝒑𝒉𝒚
]
 
 
 
 

,  𝐏𝐛 =

[
 
 
 
 
𝑷𝟏

𝒃

𝑷𝟐
𝒃

:
𝑷𝒏𝒔

𝒃
]
 
 
 
 

. 

(3.5) 

Where 𝑛𝑓 and 𝑛𝑠 are number of boundary elements and number of nodes per each 

face, respectively. 

Although Bezier extraction [20] and Bezier projection [21] may be used for the 

surface reconstruction, these will be the local operators and there is a constraint that 

Bezier element face should be located in one NURBS knot span. Therefore, there 

exists a difficulty in applying those to any FE discretized domain. However, utilizing 

the definition of Bezier surface, presented in [12], becomes free from such 

constraints. In addition, the present process may be conducted only by the 

conventional FE preprocess software because there exists no requirement for 

NURBS information for each surface. Such unified preprocess is achieved by 

utilizing a graph algorithm for searching the elements that located on the boundary 

surface. As a result, the present method has an advantage of enlarged applicability 

for an arbitrary complicated geometry. Despite the above-mentioned advantages, the 
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reconstructed surface may not represent an exact CAD geometry with the weight of 

the control points between zero and unity, the weight of the reconstructed surface for 

all the control points will be a unity. However, when the single surface is represented 

by multiple number of the non-rational surfaces, the geometric discrepancy will 

become small against the rational surface. Regarding the visualization of the 

discrepancy in each situation, FE polygon, non-rational TBS, and NURBS curve are 

shown in Fig. 3.5. 
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(a) FE triangular element 

 

(b) 𝑪𝟎 Bezier element 

Fig. 3.4 Surface reconstruction of a two-dimensional object 
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(a) Number of the curves = 1 

 

(b) Number of the curves = 2 

Fig. 3.5 Comparison of discrepancy respect to the number of the curves 
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3.3 Macro element split 

Although the reconstructed Bezier elements represent the geometry in a reduced 

geometric discrepancy, the basis function will still be 𝐶0 inter-element continuous. 

To obtain 𝐶𝑟  continuous basis function (r ≥ 1) , continuity condition should be 

applied to all the elements. In general, constructing 𝐶1 basis requires one greater 

than 9th-order tetrahedron. For the computational efficiency, macro element split 

technique is presented to construct 𝐶1  basis using a lower-order tetrahedron by 

splitting the original tetrahedron, as shown in Fig. 3.6. After the macro element split, 

each macro tetrahedron will be split into multiple micro tetrahedron. By doing that, 

the macro tetrahedron that possess similar number of nodal points as higher-order 

tetrahedron could be constructed. There are macro element split techniques for 

construction of 𝐶1 basis formulated, such as Worsey-Piper split utilizing 24 split 

2nd-order tetrahedron, Worsey-Farin split using 12 split 3rd-order tetrahedron, and 

Alfeld split require 5th-order tetrahedron. 
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(a) Worsey-Piper split 

 

(b) Worsey-Farin split 

 

(c) Alfeld split 

Fig. 3.6 Macro element split 
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In this paper, Worsey-Piper split which utilizes a conventional 2nd-order 

tetrahedral element. Unlike Alfeld split, it requires split condition for each split point 

as follows: 

• Face split point is the intersection point of elemental points that share the same 

face 

• All elemental split point that share an identical edge are on the same plane 

The split points are depicted in Fig. 3.7. To fulfill those conditions, the angle of 

all faces for FE discretized tetrahedron should be an acute. Unfortunately, such 

constraints are not straightforward to satisfy when it comes to complicated geometry 

like inner hole-dominant geometry. Therefore, for an alleviation of the geometric 

constraint the split condition for the edge is disregarded in the present method. 

Consequently 𝐶1  continuity condition utilizing such macro element split is 

approximate 𝐶1 continuity condition. 
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Fig. 3.7 Split points for Worsey-Piper split 
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3.4 Approximate 𝑪𝟏 Bezier basis function 

To construct 𝐶𝑟  basis, the continuity condition will be applied for the entire 

micro tetrahedrons, which is quoted as Hermite interpolation. Hermite interpolation 

formulation is described as in Eqs. (3.6) - (3.9).  

𝐬(𝒙𝒊, 𝒚𝒊, 𝒛𝒊) = 𝒌𝒊    𝒇𝒐𝒓 𝒊 = 𝟏,… , 𝒏. (3.6) 

𝑫𝒙𝐬(𝒙𝒊, 𝒚𝒊, 𝒛𝒊) = 𝒌𝒊
𝒙    𝒇𝒐𝒓 𝒊 = 𝟏,… , 𝒏. . (3.7) 

𝑫𝒚𝐬(𝒙𝒊, 𝒚𝒊, 𝒛𝒊) = 𝒌𝒊
𝒚
    𝒇𝒐𝒓 𝒊 = 𝟏,… , 𝒏. . (3.8) 

𝑫𝒛𝐬(𝒙𝒊, 𝒚𝒊, 𝒛𝒊) = 𝒌𝒊
𝒛    𝒇𝒐𝒓 𝒊 = 𝟏,… , 𝒏. . (3.9) 

Where s(𝒙𝒊, 𝒚𝒊, 𝒛𝒊) is the 𝐶0 Bezier spline at the intersection point. 𝐷𝑥s, 𝐷𝑦s, and 

𝐷𝑧s is the x, y, and z direction derivatives of 𝐶0 Bezier spline. 

When applying the continuity condition, the directional derivatives of the basis 

function will be utilized at the interface among tetrahedrons such as a node, edge, 

and face. By using the Bernstein-Bezier technique, the derivatives of the basis 

function will be obtained in terms of the barycentric coordinate. After enforcing the 

continuity condition, there will be some set Γ ⊆ 𝑆𝑑
0(△) of the total domain 𝑆𝑑

0(△) 

that determine all other set in 𝑆𝑑
0(△) . Γ  is the determining set for 𝑆𝑑

0 , and the 

smallest set of Γ  is the minimal determining set (MDS) for 𝑆𝑑
0 , and it will be 

utilized same as the degree of freedom as in the FEM. Figure 3.8 depicts the MDS 

points for three-dimensional example geometry. 
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Fig. 3.8 MDS points for the macro element split 
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As a result of enforcing the continuity condition, all domain points s ⊆ 𝑆𝑑
0  is 

determined as the linear combination of MDS with continuity coefficients as 

described in Eq. (3.10). The continuity coefficients are obtained from the Hermite 

interpolation for all intersections of micro tetrahedrons as in Eqs. (3.6) - (3.9).  

𝒄 = 𝑨𝒄̃. (3.10) 

Where c  and 𝑐̃  are the all domain points in 𝑆𝑑
0  and MDS points in ℳ , 

respectively. 𝐴 is continuity matrix. 

Then, the approximate 𝐶1  basis (ψ ) at the parametric point ( 𝒙̂ ) for every 

tetrahedron 𝑇  is defined on the MDS (ℳ ) by using the 𝐶0  basis (𝐵 ) at the 

parametric point ( 𝒙̂ ) and continuity coefficients (𝑎 ), of which component for 

continuity matrix (𝐴) as described in Eq. (3.11). 

𝝍𝝃|𝑻(𝒙̂) = ∑ 𝒂𝜼𝝃

𝜼∈𝑫𝒅,𝑻

𝑩𝜼
𝑻(𝒙̂). 

(3.11) 

Where ξ and 𝜂 are the point of the set of MDS (ℳ) and the set of domain points 

(𝐷𝑑,𝑇 ), respectively. 𝑎𝜂𝜉  is the component of 𝜂 -th column, 𝜉 -th low of the 

continuity matrix 𝐴. 

The constructed approximate 𝐶1 basis is unity for each ξ ∈ ℳ as described in 

Eq. (3.11). Because the continuity coefficient for the MDS point is only unity on the 

corresponding points, and all other components is zero. 

𝜸𝜼𝝍𝝃 = 𝜹𝜼,𝝃,    𝒇𝒐𝒓 𝜼 ∈ 𝓜. (3.12) 

Where 𝛾𝜂  is the linear functional such that for every 𝑠 ∈ 𝑆𝑑
0 , 𝛾𝜂𝑠  is the Bezier 
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coefficient of 𝑠 corresponding to the domain point 𝜂. 𝛿 is the direc delta function. 

Because the constructed approximate 𝐶1  basis satisfy the condition for shape 

function on the MDS, it can be used in traditional FE formulation easily. It will be 

verified in the next section by applying this for numerical analysis. 
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Chpater 4  

Numerical results 

4.1 Formulation 

As described in the previous chapter, the approximate 𝐶1 basis can be utilized in 

traditional FE formulation easily. Therefore, formulation of the present method is 

identical except the approximation is conducted on MDS. By utilizing that 

formulation, linear static structural analysis using TBS-based IGA is carried out for 

the curved solid objects including turbine blade geometry. First, the present method 

is applied to the example geometries which the analytic solution exists [23]. That 

includes Infinite plate with 3D hole, Spherical cavity in an infinite solid, and Inner 

pressurized hollow sphere. To verify that the present method obtains more precise 

result than traditional FEM does, comparison of those results against the analytic 

solution will be conducted by using the same meshes. Furthermore, improved 

applicability of the present method is demonstrated by applying it for NASA Rotor 

67 blade. 

The governing equation, boundary condition and physical displacement 

approximation are conducted only on MDS as described in Eqs. (4.1) – (4.4). 

Moreover, stiffness matrix constructed by using only MDS as described in Eq. (4.5). 

𝛁 ∙ 𝛔 + 𝒃𝒇 = 𝟎    𝒐𝒏 𝛀. (4.1) 
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𝛔 ∙ 𝒏 = 𝒕    𝒐𝒏 𝚪𝒕. (4.2) 

𝒖 = 𝒖̅    𝒐𝒏 𝚪𝒖. (4.3) 

𝑺 = ∑ 𝒄𝝃𝝍𝝃

𝝃∈𝓜

= ∑ 𝒄𝝃𝝍𝝃

𝝃∈𝓜𝒃

+ ∑ 𝒄𝝃𝝓𝝃

𝝃∈𝓜𝟎

. 
(4.4) 

𝑲𝑴𝑫𝑺 = [𝑨]𝑻[𝑲][𝑨]. (4.5) 

Where Ω is the total domain. Γ𝑡 and Γ𝑢 are the surface imposed by the Neumann 

and Dirichlet boundary condition, respectively. 𝑐𝜉  and 𝑆  are the Bezier control 

variable and Bezier approximation, respectively. ℳ , ℳ0 , and ℳ𝑏  is the set of 

MDS pints, the list belonged to both the set of MDS points and Γ𝑡, and the list of 

MDS points except the points in ℳ0, respectively. 
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4.2 Numerical result 

4.2.1 Infinite plate with a three-dimensional hole 

As a first numerical example for verification of the present method, Infinite plate 

with 3D hole with radius a = 0.25m, length of plate L = 1m, and thickness of plate 𝑡 

= 0.25m. The plate with Young’s modulus 𝐸 = 1000 Pa and Poisson’s ratio υ = 

0.3, subjected to a uni-directional tensile load 𝑇𝑖𝑛𝑓 = 1 Pa  which applied at an 

infinite distance from the three-dimensional hole will be selected as shown in Fig. 

4.1. For reducing the expense of the analysis, the quarter of the geometry will be 

considered, and symmetry boundary condition be imposed on the planar surfaces 

which are perpendicular to x and y direction. The object is selected by the reason 

that stress concentration at the curved surface, and it is the one of the conventional 

examples for verification of the numerical solution. 

The pre-processing method is conducted as shown in Fig. 4.2. For the verification 

of the present method, the analysis by the present method and traditional FEM both 

are conducted on the identical discretization. The discrepancy against the analytic 

solution [23] of both method are measured by 𝐻0 − 𝑛𝑜𝑟𝑚 𝑒𝑟𝑟𝑜𝑟, ‖𝑒𝜎‖𝐻0, [23] as 

expressed in Eq. (4.6). 

‖𝒆𝝈‖𝑯𝟎 = √∑ (
∫(𝝈𝒆𝒙 − 𝝈𝒈

𝒎) ∙ (𝝈𝒆𝒙 − 𝝈𝒈
𝒎)𝒅𝑽

∫𝝈𝒆𝒙 ∙ 𝝈𝒆𝒙 𝒅𝑽
)

𝒏𝒆𝒍

𝒎=𝟏

 

(4.6) 

Where 𝜎𝑒𝑥 and 𝜎𝑔 are the analytic von-Mises stress at gauss point and numerically 

calculated von-Mises stress at gauss point, respectively. 𝑛𝑒𝑙  is the number of 
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elements. 

The comparison of the discrepancy in von-Mises stress of the present method with 

traditional FEM for the mesh refinement is illustrated in Fig. 4.3. The convergence 

curve in Fig. 4.3 visualizes the improved accuracy of the present method in terms of 

the mesh refinement.  
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(a) three-dimensional geometry 

 

(b) Conventional two-dimensional example [23] 

Fig. 4.1 Infinite plate with a three-dimensional hole 
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(a) FE discretization 

 

(b) Macro element split 

Fig. 4.2 Pre-processing for TBS-based IGA 
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(a) Analytic solution for von-Mises stress 

 

(b) Convergence curve of von-Mises stress 

Fig. 4.3 Comparison of Numerical solution 
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4.2.2 Spherical cavity in an infinite solid 

As a second numerical example for verification of the present method, Spherical 

cavity in an infinite solid with radius a = 0.1m, length of solid L = 0.4m with Young’s 

modulus 𝐸 = 1,000 Pa and Poisson’s ratio υ = 0.3, subjected to a uni-directional 

tensile load 𝑇𝑖𝑛𝑓 = 1 Pa which applied at an infinite distance from the cavity will 

be selected as shown in Fig. 4.4. For reducing the expense of the analysis, the eighth 

of the geometry will be considered, and symmetry boundary condition be imposed 

on the planar surfaces which are perpendicular to x, y, and z direction. In figure. 4.5, 

the pre-processing for TBS-based IGA is described. 

The comparison on von-Mises stress between the present method and the 

traditional FEM for the mesh refinement is illustrated in Fig. 4.6. The convergence 

curve depicted in Fig. 4.6 visualizes the improved accuracy of the present method in 

terms of the mesh refinement. In the convergence curve, Although the difference of 

discrepancy is small, the convergence rate along the mesh refinement is larger in the 

present method than the traditional FEM. 
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Fig. 4.4 Configuration of the example 
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(a) FE discretization 

 

(b) Macro element split 

Fig. 4.5 Pre-processing for TBS-based IGA 
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(a) Analytic solution for von-Mises stress 

 

(b) Convergence curve of von-Mises stress 

Fig. 4.6 Comparison of the result 
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4.2.3 Inner pressurized hollow sphere 

As a final numerical example for verification of the present method, a hollow 

sphere with inner radius a = 0.5m and outer radius b = 1m, subjected to a uniform 

internal pressure p = 1Pa will be selected as shown in Fig. 4.7. For reducing the 

expense of the analysis, an eight part will be considered as in previous example. Also, 

same symmetry boundary condition will be imposed. The reasons for the selection 

of the object are the stress concentration on the curved surface and curvature that 

increases toward the inside from the exterior. Moreover, such object is constructed 

mostly with curved surface when compared with the previous objects. 
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(a) Analysis geometry 

 

(b) Hollow sphere [] 

Fig. 4.7 Configuration of the example 
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(a) FE discretization 

 

(b) Macro element split 

Fig. 4.8 Pre-processing for TBS-based IGA 
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(a) Analytic solution for von-Mises stress 

 

(b) Convergence curve of von-Mises stress 

Fig. 4.9 Comparison of the result 
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For the verification of the present TBS-based IGA, three examples which exists 

an analytic solution are selected, and the discrepancy of von-Mises stress obtained 

from the present method and traditional FEM.  

When the results of convergence curve are compared, the discrepancy of the 

present method is much lower than traditional FEM on the 3rd example. The reasons 

for that result will be the boundary condition which applied on curved surface and 

the 3rd object is constructed mostly with curved geometry. 

From the results of the three examples for verification, it is confirmed that the 

present method provides more precise numerical solution. Furthermore, such 

advantage will be maximized for analysis of the curve-dominant configuration. 

Industrial geometries in mechanical, aerospace, and naval engineering are mostly 

constructed of curved geometry for improved efficiency. Therefore, the present 

method will be helpful for predicting the precise numerical solution for such 

configuration. 
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Table. 4.1 Mesh information of the present analysis 

Type No. of macro nodes No. of micro nodes No. of MDS nodes 

Case 1 330 5,977 240 

Case 2 940 18,411 620 

Case 3 5,507 117,477 3,276 

Case 4 27,073 598,213 13,272 
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(a) TBS-based IGA 

 

(b) FEM (TET10) 

Fig. 4.10 von-Mises stress discrepancy distribution for Case 1 
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(a) TBS-based IGA 

 

(b) FEM (TET10) 

Fig. 4.11 von-Mises stress discrepancy distribution for Case 2 
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(a) TBS-based IGA 

 

(b) FEM (TET10) 

Fig. 4.12 von-Mises stress discrepancy distribution for Case 3 
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(a) TBS-based IGA 

 

(b) FEM (TET10) 

Fig. 4.13 von-Mises stress discrepancy distribution for Case 4 
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4.2.4 NASA Rotor 67 

As a numerical application for indication of improved applicability, a single blade 

of NASA Rotor 67 with tip load 𝑓=600N and fixed condition of a root of the blade 

is selected as shown in Fig. 4.14. By utilizing commercial FEM software with a 

conventional 2nd-order tetrahedron for FE discretization and unification of all the 

other pre-processing in the present in-house code, the present method has improved 

applicability for arbitrary solid object as shown in Fig. 4.15. 

Figure 4.16 illustrate the von-Mises stress distribution obtained from the present 

method, and the maximum stress is observed on the thinnest location of the blade. 
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(a) single blade 

 

(b) Entire packet 

Fig. 4.14 Configuration of the example 
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(a) Force condition 

 

(b) FE discretization 

Fig. 4.15 Configuration of the example 
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(a) Macro element split 

 

(b) MDS 

Fig. 4.16 Configuration of the pre-processing 
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Fig. 4.17 von-Mises stress distribution from the present method 
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Chapter 5 

Conclusion and Future works 

5.1 Conclusion 

In this thesis, TBS-based IGA by using Benrstein-Bezier discretization is 

attempted for the structural analysis of the curved solid object including a turbine 

blade. In NURBS-based IGA, by utilizing the shape function as NURBS basis that 

used for geometry representation in CAD, more accurate numerical solution can be 

calculated than traditional FEM. The main features of that advantage are the 

geometric exactness and high-continuity of the basis function. 

Because there is no suitable preprocessor for NURBS-based IGA, applying IGA 

to a three-dimensional solid object for more precise analysis has been a challenge in 

the field. The main reasons of that are the NURBS defined as tensor product, and the 

B-rep of the general CAD software. To solve such limitation, many alternatives have 

been proposed including the method using the 5th order Bezier tetrahedral element. 

The present method is one of such efforts, and inspired from the previous work. 

The present method utilizes FE discretization for inner volumetric 

parameterization, and some pre-processing is conducted to implement the features 

of NURBS-based IGA. From the FE discretized geometry, surface reconstruction is 

conducted to reduce the geometric discrepancy that occurred on the curved surface 

between the CAD geometry and the FE polygon. After that, for the high continuity 
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of the basis function, the additional continuity condition is applied. In the process, 

the macro element split technique is used for computational efficiency in the entire 

analysis. 

Because the present approach requires the discretization information of the 

commercial FEM software only, it will exhibit improved applicability for an 

arbitrary complicated solid object than the other alternatives do based on the 

complex NURBS information. An approximate 𝐶1  Bezier basis function is 

constructed by violating the split condition of macro edge for alleviation of 

geometric constraint.  

For the verification of the present method, three-dimensional curved solid objects 

are selected. The analysis is conducted on the same mesh for the present method and 

traditional FEM. Calculation of the discrepancy is conducted the 𝐻0 − 𝑛𝑜𝑟𝑚 error 

with the analytic solution. Form the convergence curve of discrepancy for all 

example geometry that compared, the discrepancy in von-Mises stress is found to be 

superior in the prediction by the present method than that by the traditional FEM for 

an entirely refined mesh set. Especially, the discrepancy in the ‘Inner pressurized 

hollow sphere’ is much smaller than that of FEM compared to the other example. 

The first reason of that is the boundary condition applied on the curved surface. 

Because the boundary condition is applied on the physical point unlikely in the FEM 

that applied on the FE node. The second reason is the portion of the curved surface 

in the entire configuration. That geometry is mostly constructed using curved 

surfaces. Therefore, the effect of surface reconstruction will be larger than the other 
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examples. After the verification for the precise numerical analysis of the present 

method, to verify the improved applicability of the present method to an arbitrary 

solid object NASA Rotor 67 blade is selected. By applying the same pre-processing 

as in the example geometry, it shows that the present method can be applied to 

arbitrary solid geometry easily. 
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5.2 Recommendation for the Future works 

The followings are suggested for the future tasks for extending the present in-

house analysis to conduct a more realistic numerical simulation. 

 

• Application of the present method for the other industrial geometries 

including the inner hole-dominant configuration. 

 

• Extension of the present method from the linear static analysis to 

nonlinear and dynamic analysis for more realistic numerical analysis. 

 

• Parametric space optimization for the optimal convergence. 
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국문초록 

 

고정밀 구조응답 예측을 위한 Bezier 사면체 

요소 기반 isogeometric 해석 개발 

 

송동현 

서울대학교 대학원 

항공우주공학과 

 

본 논문에서는 고정밀 구조해석을 위한 유한요소 이산화 기반 TBS-

기반 아이소-지오메트릭 해석 프레임워크를 구축하였다. 기존의 

유한요소해석에서는 해석을 위해 유한요소 이산화 과정이 필수적이며, 

복잡한 형상에 대한 이산화 과정에서 CAD 형상과의 기하학적 오차가 

발생한다. 반면, isogeometric 해석은 CAD 에서 사용되는 

형상표현법을 활용하여 기존 FEM 보다 정밀한 해석을 도출하는 것이 

입증되어 왔다. 가장 큰 원인으로는 CAD 와 같은 형상표현을 통한 

형상의 정확성과 NURBS 기저함수의 요소간 높은 연속성이다. 하지만, 

일반적으로 CAD프로그램에서 3차원 솔리드 형상을 표현할 때, 형상의 

내부를 제외하고 겉부분만을 표현하기 때문에 이를 해석에 이용하기에 

어려움이 있다. 이 같은 한계를 극복하기 위해 많은 대안들이 제시되어 

왔으며 본 논문은 5 차 Bezier 사면체 요소를 활용하는 대안에서 
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영감을 얻었다.  

본 논문에서 소개된 Bezier 사면체 요소 기반 isogeometric 해석 

프레임워크는 다음과 같다. 먼저, 상용 유한요소 프로그램을 통해 

겉부분만 표현된 CAD 형상을 내부까지 이산화하고, 기하학적 오차 

감소를 위해 이산화된 유한요소 다각형을 Bezier 요소로 변환한다. 

이후 높은 요소 간 연속성 획득을 위해 추가의 연속 조건을 적용하며, 

이 과정에서 높은 적용성을 위해 근사 𝐶1  기저함수를 구성하며, 이후 

진행되는 해석 과정에서 이를 활용한다. 

이와 같이 구성된 전체 프레임워크를 이론해가 존재하는 곡면을 

포함하는 예제 형상에 적용하고 이를 동일한 유한요소 이산화에서 본 

기법, FEM 의 결과를 이론해와 비교한 오차의 수렴도 곡선을 통해 본 

기법의 타당성을 증명하였다. 또한, 본 기법의 높은 기하학적 적용성의 

입증을 위해 임의의 솔리드 형상인 NASA Rotor 67에 적용하였다.  

 

주제어: 아이소-지오메트릭 해석, 유한요소법, 사면체 Bezier 

곡선 기저함수, 거시적 요소 분할, 연속 조건 , 유한요소 

이산화,  
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