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Abstract

Development of an Isogeometric analysis based
on Bezier tetrahedral element for high-

precision structural prediction

Dong-Hyeon Song
Department of Aerospace Engineering
The Graduate School

Seoul National University

Precise prediction is one of the essential components in the design stage of the
various engineering objects. Certain curved configuration of it may induce severe
discretization inaccuracy when it is analyzed by the conventional finite element
method (FEM). Meanwhile, an isogeometric analysis (IGA) that combines the
computer-aided design (CAD) and FEM is capable of more precise numerical
computation when compared against FEM. It is due to that the exact geometry is
represented identically as CAD does and high inter-element continuity of the basis
function is maintained. Actually, prediction of more precise numerical results has
been verified on many engineering areas such as fluids, solids, and electromagnetics.
However, application of the IGA for a complicated three-dimensional object has not
been successful. The main reasons of that are NURBS basis function which defined

as tensor product, and Boundary representation (B-rep) of CAD software. Because



of the NURBS defined as tensor product, multi-patch is required for representing
complicated geometry. Furthermore, B-rep of CAD software means that the three-
dimensional solid objects is represented using only the bounding surfaces without
the inner volumetric information. To overcome such limitation, many alternatives
have been suggested including the method using Bezier element. The present method
presented in this thesis is based on such idea.

In this thesis, the three-dimensional solid geometry will be inner volumetric
parameterized by FE discretization. Then, Bernstein-Bezier discretization that
represents the curved surface with quite smaller geometric discrepancy will be
obtained by the surface reconstruction. Then, an approximate C! Bezier basis
function will be obtained by the linear combination of C° Bezier basis function
based on the continuity coefficients. The remaining analysis will be carried out using
the C! Bezier basis function. For the computational efficiency, the macro element
splitting technique that will split a single macro tetrahedron into multiple micro
tetrahedrons will be utilized. Finally, an approximate C! Bezier basis function will
be applied to the various curved solid objects that include the realistic geometry.
Unlike the previous method using 5™ order Bezier tetrahedral element, present
method utilizes a conventional 2™ order element. Therefore, more improved
applicability for arbitrary geometry can be obtained by applying the graph algorithm
in pre-processing with the conventional element. Also, by utilizing the commercial
FEM software, there is no requirement for combining the inconsistency which
occurred on the intersection of NURBS surfaces as in the previous work.

iv



The verification of the present method will be accomplished by comparing the
discrepancy on von-Mises stress by the present prediction against those by the
traditional FEM. Additionally, NASA Rotor 67 blade configuration is selected for

verifying the improved applicability of the present method.

Keywords: Isogeometric analysis, Finite element method, Tetrahedral Bezier
spline, Bezier tetrahedron, Macro element split, C! continuity

condition, FE discretization
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Chpater 1

Introduction

1.1 Background and Motivation

Turbine blade, of which one of the complicated mechanical geometries, is usually
operated in harsh environments. The high temperature and high speed-rotation may
lead to the blade failure, and therefore precise prediction in its design process will
be crucial.

Certain curved configuration of it may induce severe discretization inaccuracy
when it is analyzed by the conventional FEM. One of the alternatives for alleviation
of such inaccuracy, isogeometric analysis (IGA) has been proposed as a means to
combine the traditional computer-aided design (CAD) along with the FEM [1]. It
utilizes the same basis function as that CAD uses, non-uniform rational B-spline
(NURBS), to describe both the geometry and physical quantities in the field. The
detailed CAD geometry reduces the approximation discrepancy induced by FE
polygonal discretization. And because the NURBS basis function has higher inter-
element continuity, a more precise numerical behavior may be obtained. IGA has
been successfully applied in many engineering fields, such as structural vibration [2,
3], fluids [4], electromagnetics [5], shell analysis [6], and fluid-structure interaction
analysis [7]. Especially in the structural analysis, precise and continuous stress

computation will be conducted because of its higher-order inter-element continuity
1



originated by NURBS basis function. Similarly, IGA is known to provide a more
precise solution than the traditional FEM does regarding the multiple curved surfaces.
The main reason of that is the representation of curved configuration more exactly
than FE polygon. However, application of NURBS-based IGA to various
engineering geometries will not be straightforward because there does not exist an
appropriate preprocessor. It is due to that a multi-patch object will be required for
representing the complicated geometry because of the NURBS which expressed as
a tensor product. In most of CAD software, three-dimensional solid object is
represented as boundary-representation (B-rep) that represents only the boundary
surface of the object. Therefore, it is not suitable for numerical analysis because of
the absence of the inner volumetric information for the analysis configuration.

To overcome such limitation, quite a lot of researches have been executed to find
an advanced solution methodology. Aigner proposed a swept volume
parameterization for IGA [8], while generating an inner volumetric parameterization
from the given boundary condition and guiding curves. Kim [9] proposed IGA for
the trimmed CAD surface that used the triangular or quadrilateral elements with only
one trimmed edge by decomposing the surface. Jaxon and Xia [10, 11] proposed IGA
on the discretized field, where the triangular and tetrahedral Bezier elements were
used for an inner volumetric parameterization. Kadapa [12] proposed the quadratic
C° Bezier mesh generation technique for a unified pre-processing framework. Also,
an idea of using the other splines such as T-splines [13] and U-splines [13] instead
of NURBS of Bezier spline for the solid IGA was proposed. Other than those, a

2



scaled boundary IGA which utilized NURBS information of B-rep of CAD and
parameterized the inner volume by a radial scaling factor was proposed by Chasapi
[15].

Similarly, there have been several attempts that employed IGA for the turbine
blade, which contained multiple curved surfaces. Hsu [16] generated a CAD result
which was IGA-suitable by a parametric modeling on a turbine blade while using
Grasshopper, an add-on program by Rhinoceros CAD software, Inc. Bazilevs [17]
analyzed the fluid and structural vibration by using IGA on the turbine blade used

for Black Hawk and Apache helicopters by using NURBS mesh generation.
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Fig. 1.2 Turbine blade which contains multiple curved surfaces [26]
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Fig. 1.5 Difference of NURBS surfaces occurred on the intersection [11]



1.2 Research objective

The present method is inspired by IGA based on Bezier tetrahedra for more precise
structural analysis. Compared with the previous work, the present framework is more
applicable to any arbitrary geometry by using the conventional lower order
tetrahedron and unified preprocessing with a graph algorithm. Furthermore, the
combining process for the different NURBS surface occurred on the intersections of
tetrahedron is not required. By using the commercial FE preprocessing software, the

different NURBS surface is combined already.

The inner parameterized FE polygon is transformed into the Bezier elements by
using the surface reconstruction for reducing the geometric discrepancy. However,
the reconstructed element is not a exact geometry. It’s because Bezier spline
corresponds to the knot span of B-spline, which is the non-rational form of NURBS.
Despite, if single curved surface represented with multiple Bezier surface than the
geometry discrepancy will be reduced significantly. Also, by applying the additional
continuity condition to C° Bezier basis, a more continuous basis will be obtained.
Applying the continuity condition is conducting Hermite interpolation for
intersection of all tetrahedrons. As a result, the features of NURBS-based IGA for

precise analysis will be implemented in the present method.

To obtain an inner volumetric parameterization of a solid object, finite element
(FE) discretization using a tetrahedral element will be performed by the commercial

software ANSYS. The resulting tetrahedral element will be converted into a
8



quadratic C° Bezier element by the surface reconstruction technique. The resulting
Bezier element will represent a curved geometry with significantly decreased
geometric discrepancy than that by a traditional FE polygon. Especially, more Bezier
element utilized for representing the single CAD geometry. Then, an approximate
C! Bezier basis function will be obtained by a linear combination of C® Bezier
basis function and continuity coefficients. The continuity coefficients will be
obtained by applying the relevant condition to all C° Bezier tetrahedrons. In other
words, Hermite interpolation will be applied to all the intersections on each
tetrahedron. When applying the continuity condition, the macro element spliting
technique will be used for efficiency, and a minimal determining set (MDS), which
represents all the domain points, be defined. The resulting MDS and approximate
C! basis function which is defined only on MDS will be used for the remaining
analysis. A complete framework of TBS-based IGA will be constructed and carried
out on the curved solid object. Then the present method will be verified by

comparing its results against those by the analytic solution and FEM.
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Fig. 1.6 Alternatives for three-dimensional solid IGA
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1.3 Thesis overview
In this thesis, the framework of tetrahedral Bezier spline (TBS)- based IGA will
be presented, and attempted on three-dimensional solid object including the turbine

blade geometry. The proposed method is characterized by the summaries as follows:

1. For precise numerical solution, the proposed methodology implements the
features of NURBS-based IGA, of which the spline-based geometric

representation and improved continuity of basis function.

2. For an application of the present method to three-dimensional solid object, FE

discretization will be utilized for an inner volumetric parameterization.

3. When compared against the previous work [10, 11], the present method will
improve the applicability for an arbitrary solid object by using the
conventional tetrahedral element, and a graph preprocessing algorithm.

4. For the verification of the present method can calculate more precise
numerical solution than traditional FEM, curved solid geometry is selected.

5. For the verification of the improved applicability of the present method,

NASA Rotor 67 is selected.
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Chpater 2

NURBS and Bernstein-Bezier Technique

2.1 NURBS

CAD geometry is usually defined by NURBS-expressed boundary which is
described by a linear combination between the control point and basis function at a
few parametric locations. NURBS basis is defined by the control point, weight, and
knot vectors [18]. According to Cox-deBoor recursion formula, the p-th order B-
spline basis function is defined as in Eqgs. (2.1) and (2.2). The p-th order NURBS

basis functions are defined as Eq. (2.3).

(1 if& <&
Nio($) = {0 otherwi;:z 2.1
, _ $-4& ) $ivp+1—§ _ (2.2)
Niol@) = $ivp — §i Nip-1(®) + Sirpr1 — Sis1 Niv1p-1(3)

Nip(M;,(mw;; (2.3)
Sy R T N (DM g (W,

RV (Em) =

where n, m is the number of the basis functions, w is the weight of the control
point and &, 1 indicate the parametric coordinate. &; is the i-th knot vector where
E= {51,52,---,€n+p+1} and n; is the j-th knot vector where & = {771»772»"'

,nm+q+1}. N;, and M;, are the p-th and g-th order B-spline basis function,
12



respectively. Rf }-q is NURBS basis function defined by N;, and M; .
Then, NURBS surface S™"5(€,1) can be defined as the linear combination of

the basis function and control points as in Eq. (2.4).

n m
(2.4)
smebsgm) = > ) R,

i=1j=1

13



2.2 Bernstein-Bezier technique
2.2.1 Bezier surface

Bezier surface corresponds to each knot span of B-spline surface, the same as the
non-rational NURBS surface. Bezier surface is defined by a linear combination of
Bernstein basis functions and control points. The d-th order Bernstein polynomial

is defined as in Eq. (2.5). The d-th order Bezier surface is defined as in Eq. (2.6).

i (2.5)

B;4($) =m5i(1—f)d_i' §e[01]

. k+1 < l+1 (2.6)
shezier (g py = Z 2 lBi,k(f)Bi.l(n) K;;.
i= 1=

where k,l are the degree of Bernstein basis, and §n indicate the parametric

coordinate, respectively. B; 4 isthe d-th order Bernstein basis function, K;; isthe

control point, and SP¢%%7 (g 1) is Bezier surface at parametric location.

2.2.2 Bezier tetrahedron

All the points located at the inner side of the tetrahedron may be represented by
using the barycentric coordinate A = [A4,1,,A3,44] which is rewritten in terms of

the volume of the tetrahedron T = {v;,v,,v3,v,} as shown in Egs. (2.7) and (2.8).

2.7)
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P(A) = ).1171 + Az'ﬂz + ).3173 + 14174_. (28)

Bernstein basis function will be defined using the barycentric coordinate for a
tetrahedron in the parent space. The d-th order Bernstein basis is defined as shown

in Eq. (2.9).

d i (2.9)
Hklllaa,uzp i+j+k+1=d.

l]kl( )
Then Bezier tetrahedron in the physical space will be represented a linear

combination of Bernstein basis and control point as Eq. (2.10).

T(4) = Z Ba(DPyj . (2.10)

i+j+k+l=p
where P;jy; 1s the control point in the physical space.

2.2.3 Derivatives of a polynomial in B-form

The directional derivative at point v with respect to the direction u is defined
as shown in Eq. (2.11), and the direction vector u is defined using a =

(ay,a;3,a3,a,) in terms of the barycentric coordinate. The quantity, c; ]kl(a) are

obtained from the first step of de Casteljau algorithm as shown in Eq. (2.12).

DM =d Y @B, 1D

i+j+k+l=d

15



(1) _
Ciji1(@) = Civ1jk11 + Cijar i@z + Cijre+1,103 + Cijk 14104 (2.11)

i+j+k+l=d—1

where ¢; j 1 is the control point, and B{ijkl is the d-th order Bezier basis function.

16



Chpater 3

TBS-based isogeometric analysis

3.1 Framework of TBS-based IGA

For the convenience, the complete framework of TBS-based IGA is depicted using
a two-dimensional curved geometry example as shown in Fig. 3.1. Diminishing the
geometric discrepancy and utilizing a high inter-element continuous shape function
are the main features of NURBS-based IGA for an accurate numerical analysis. To
implement those features in the present method, pre-processing techniques such as
surface reconstruction and applying continuity condition by using macro element
split will be used.

First, the surface reconstruction will be attempted. Using the commercial FEM
software, CAD geometry, represented as B-rep, will become inner parameterized by
using FE discretization that contains the geometrical discrepancy on the curved
boundary. To reduce it, FE tetrahedral elements will be converted into C° Bezier
tetrahedral elements by the surface reconstruction process. In the process, control
points of each Bezier element will be obtained by using the definition of TBS spline
with the physical coordinate from FEM software. However, the reconstructed Bezier
element represents the exact geometry as the NURBS. By representing with multiple
Bezier elements for single curved surface, it will be resolved. The converted Bezier

elements will exhibit significantly reduced geometric discrepancy than FE
17



tetrahedral elements do when representing the curved geometry. In this process, input
information for the in-house code is only from the commercial FEM software.
Because there is no requirement of the NURBS information for each surfaces, and
the graph algorithm is utilized for finding the element located on boundary.

Second, the continuity condition is applied to obtain C* basis function. In general,
the construction of C! basis requires over the 9"-order tetrahedral element. For
computationally efficient analysis, approximate C! basis could be constructed
using the lower-order tetrahedral element by utilizing the macro element split. In the
splitting element, split condition for macro edge is violated for the alleviation of the
geometric constraint. By doing that, the present method can be applied to
complicated geometry such as curve-dominant geometry. However, the C!
continuity is violated on the midpoint of macro edge. Consequently, the approximate
C! basis, of which not exact C! on the macro edge is constructed. After that, the
minimal determining set (MDS) will be defined by applying the continuity condition
on all of C° Bezier elements. By The approximate C! Bezier basis is defined on
MDS by a linear combination of C° Bezier basis and continuity coefficients, and
utilize it for representing the overall physical field.

By conducting the above pre-processing process, the features of the NURBS-
based IGA for precise numerical analysis can be implemented. As mentioned earlier,
this process requires only the information from the commercial FEM software as the
input information by utilizing the graph algorithm. Such unified preprocessing has
advantage of improved applicability for arbitrary complicated geometry.

18
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Fig. 3.1 Framework of the present method
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After pre-processing, the numerical analysis may be conducted by utilizing the
physical field with a reduced geometrical discrepancy and the approximate C:
Bezier basis function defined on the MDS. Entire analysis procedures are similar to
the traditional FE formulation except that the solution is obtained on MDS points. In
other words, the matrix of properties such as the stiffness is constructed only using
the MDS. Figure 3.2 illustrates the analysis procedure of the present method. First,
because approximate C! Bezier basis function is defined on the parametric space,
physical control points and boundary condition will be projected onto the linearized
parametric space. Then, the analysis will be conducted on MDS. Finally, calculated
parametric field will be projected onto the physical space. Consequently, the
numerical analysis for physical space that represents that contains highly reduced
geometric discrepancy is conducted.

The comparison of the entire analysis procedure for the present method with
NURBS-based IGA and traditional FEM is illustrated in Fig 3.3 using two-
dimensional example geometry. The formulation for all method is same except the
analysis is conducted on the control point in NURBs-based IGA, node in the FEM,
and MDS in the present method. In NURBS-based IGA, the NURBS basis function
is defined on the parametric space represented as rectangle. Then, the numerical
solution will be calculated on physical space directly because it utilizes the same
geometry representation as CAD does. In traditional FEM, after the CAD geometry
discretization by FE polygon, nodal displacement will be calculated. For stress

calculation, it requires additional stress recovery technique such as extrapolation.

21



Meanwhile, the present method utilizes the FE discretized geometry as parametric
space. The numerical solution will be calculated on parametric space, of which the
approximate C! basis function is defined. Finally, the solution will be projected

onto the physical space.
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3.2 Surface reconstruction

As expressed in the previous section, CAD represents a solid as B-rep without an
inner volumetric information, and it is necessary to create an inner volumetric
parameterization for the numerical analysis. In this paper, ANSYS, a FEM software,
will be used for FE discretization with a conventional 2™ order tetrahedral element.

First, FE discretization by using the tetrahedral mesh will be performed to
parameterize the interior of the domain. However, the surface of the FE discretized
geometry is represented by using the polygonal mesh. Thus, the surface
reconstruction is required to represent the curved surface with the reduced geometric
discrepancy.

Second, it is assumed that all the tetrahedral elements will be Bezier elements, and
then the relationship that the physical points obtained from FEM SW will be the
same as Bezier surface at the boundary parametric space. Therefore, the linear
combination of Bezier basis (B) at the parametric coordinate (1) and Bezier control
points (P?) will be the same as the physical points of CAD (X|phy). For one
tetrahedron, this relation will be described as Eq. (3.1), in a matrix form as in Egs.
(3.2) and (3.3) and the matrices of basis and control point are described as Egs. (3.4)
and (3.5). Figure 3.4 describe the entire from FE polygonal element to Bezier

element tor two-dimensional curved geometry.

ng
Xlpny = z B;,(A)P?. (3.1)
i=1
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x| pny = B(A)PP. (3.2)

PP = B~1(A)PP. (3.3)

B1p(41) B2p(21)  Bnyp(41) (34

B(2) = A A A
Bip (A"f) Bzp (Anf) " By (Anf)

phy b
X P
[ ;hy] [Pll)] (35)
P"=|x2 l,Pb=| 2 |
[xﬁhyj lP?LsJ

Where ny and ng are number of boundary elements and number of nodes per each
face, respectively.

Although Bezier extraction [20] and Bezier projection [21] may be used for the
surface reconstruction, these will be the local operators and there is a constraint that
Bezier element face should be located in one NURBS knot span. Therefore, there
exists a difficulty in applying those to any FE discretized domain. However, utilizing
the definition of Bezier surface, presented in [12], becomes free from such
constraints. In addition, the present process may be conducted only by the
conventional FE preprocess software because there exists no requirement for
NURBS information for each surface. Such unified preprocess is achieved by
utilizing a graph algorithm for searching the elements that located on the boundary
surface. As a result, the present method has an advantage of enlarged applicability

for an arbitrary complicated geometry. Despite the above-mentioned advantages, the
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reconstructed surface may not represent an exact CAD geometry with the weight of
the control points between zero and unity, the weight of the reconstructed surface for
all the control points will be a unity. However, when the single surface is represented
by multiple number of the non-rational surfaces, the geometric discrepancy will
become small against the rational surface. Regarding the visualization of the
discrepancy in each situation, FE polygon, non-rational TBS, and NURBS curve are

shown in Fig. 3.5.
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Fig. 3.5 Comparison of discrepancy respect to the number of the curves
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3.3 Macro element split

Although the reconstructed Bezier elements represent the geometry in a reduced
geometric discrepancy, the basis function will still be C° inter-element continuous.
To obtain C" continuous basis function (r = 1), continuity condition should be
applied to all the elements. In general, constructing C! basis requires one greater
than 9"-order tetrahedron. For the computational efficiency, macro element split
technique is presented to construct C! basis using a lower-order tetrahedron by
splitting the original tetrahedron, as shown in Fig. 3.6. After the macro element split,
each macro tetrahedron will be split into multiple micro tetrahedron. By doing that,
the macro tetrahedron that possess similar number of nodal points as higher-order
tetrahedron could be constructed. There are macro element split techniques for
construction of C! basis formulated, such as Worsey-Piper split utilizing 24 split
2" order tetrahedron, Worsey-Farin split using 12 split 3™-order tetrahedron, and

Alfeld split require 5™-order tetrahedron.
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(a) Worsey-Piper split

(b) Worsey-Farin split

(c) Alfeld split

Fig. 3.6 Macro element split
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In this paper, Worsey-Piper split which utilizes a conventional 2"-order
tetrahedral element. Unlike Alfeld split, it requires split condition for each split point
as follows:

e Face split point is the intersection point of elemental points that share the same
face
e All elemental split point that share an identical edge are on the same plane

The split points are depicted in Fig. 3.7. To fulfill those conditions, the angle of
all faces for FE discretized tetrahedron should be an acute. Unfortunately, such
constraints are not straightforward to satisfy when it comes to complicated geometry
like inner hole-dominant geometry. Therefore, for an alleviation of the geometric
constraint the split condition for the edge is disregarded in the present method.
Consequently C! continuity condition utilizing such macro element split is

approximate C! continuity condition.
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Fig. 3.7 Split points for Worsey-Piper split
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3.4 Approximate C! Bezier basis function
To construct C” basis, the continuity condition will be applied for the entire
micro tetrahedrons, which is quoted as Hermite interpolation. Hermite interpolation

formulation is described as in Egs. (3.6) - (3.9).

s(x;,vi,2;)) =k; fori=1,..,n (3.6)
D,s(x;,yi,2;) =ki fori=1,..,n. (3.7)
Dys(x;,y;,2;) =k} fori=1,..,n. (3.8)
D,s(x;,yi,z;)) =ki fori=1,..,n. (3.9)

Where s(x;,¥;,2;) isthe C° Bezier spline at the intersection point. D,s, Dys, and
D,s is the x, y, and z direction derivatives of C° Bezier spline.

When applying the continuity condition, the directional derivatives of the basis
function will be utilized at the interface among tetrahedrons such as a node, edge,
and face. By using the Bernstein-Bezier technique, the derivatives of the basis
function will be obtained in terms of the barycentric coordinate. After enforcing the
continuity condition, there will be some set I' € S9(A) of the total domain SJ(A)
that determine all other set in SJ(A). T is the determining set for SJ, and the
smallest set of T' is the minimal determining set (MDS) for S2, and it will be
utilized same as the degree of freedom as in the FEM. Figure 3.8 depicts the MDS

points for three-dimensional example geometry.
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Fig. 3.8 MDS points for the macro element split
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As a result of enforcing the continuity condition, all domain points s € S9 is
determined as the linear combination of MDS with continuity coefficients as
described in Eq. (3.10). The continuity coefficients are obtained from the Hermite

interpolation for all intersections of micro tetrahedrons as in Egs. (3.6) - (3.9).

c=Ac. (3.10)
Where ¢ and ¢ are the all domain points in S and MDS points in M,
respectively. A is continuity matrix.
Then, the approximate C! basis (/) at the parametric point (X) for every
tetrahedron T is defined on the MDS (M) by using the C° basis (B) at the
parametric point (X) and continuity coefficients (a), of which component for

continuity matrix (A) as described in Eq. (3.11).

Yr@ = ) ayBi®). G1D

n€Dgr
Where § and 71 are the point of the set of MDS (M) and the set of domain points
(Dgr), respectively. a,e is the component of 7-th column, ¢-th low of the
continuity matrix A.
The constructed approximate C! basis is unity for each £ € M as described in
Eq. (3.11). Because the continuity coefficient for the MDS point is only unity on the

corresponding points, and all other components is zero.

VoW =0ye forneM. (3.12)

Where ¥, is the linear functional such that for every s € S92, YyS is the Bezier
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coefficient of s corresponding to the domain point 7. § is the direc delta function.
Because the constructed approximate C! basis satisfy the condition for shape
function on the MDS, it can be used in traditional FE formulation easily. It will be

verified in the next section by applying this for numerical analysis.
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Chpater 4

Numerical results

4.1 Formulation

As described in the previous chapter, the approximate C! basis can be utilized in
traditional FE formulation easily. Therefore, formulation of the present method is
identical except the approximation is conducted on MDS. By utilizing that
formulation, linear static structural analysis using TBS-based IGA is carried out for
the curved solid objects including turbine blade geometry. First, the present method
is applied to the example geometries which the analytic solution exists [23]. That
includes Infinite plate with 3D hole, Spherical cavity in an infinite solid, and Inner
pressurized hollow sphere. To verify that the present method obtains more precise
result than traditional FEM does, comparison of those results against the analytic
solution will be conducted by using the same meshes. Furthermore, improved
applicability of the present method is demonstrated by applying it for NASA Rotor
67 blade.

The governing equation, boundary condition and physical displacement
approximation are conducted only on MDS as described in Egs. (4.1) — (4.4).

Moreover, stiffness matrix constructed by using only MDS as described in Eq. (4.5).

V-o+bs=0 onqQ. (4.1)
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c-n=t onl,. 4.2)

u=u onT,. (4.3)

§= Z CePs = Z CePe + z CePs.- @9
fem feMy §EMy
Kups = [A]"[K][A]. (4.5)
Where Q is the total domain. I, and I, are the surface imposed by the Neumann
and Dirichlet boundary condition, respectively. ¢ and S are the Bezier control
variable and Bezier approximation, respectively. M, M, and M}, is the set of
MDS pints, the list belonged to both the set of MDS points and [}, and the list of

MDS points except the points in M, respectively.
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4.2 Numerical result

4.2.1 Infinite plate with a three-dimensional hole

As a first numerical example for verification of the present method, Infinite plate
with 3D hole with radius a = 0.25m, length of plate L = 1m, and thickness of plate t
= 0.25m. The plate with Young’s modulus E = 1000 Pa and Poisson’s ratio v =
0.3, subjected to a uni-directional tensile load Ti,r = 1 Pa which applied at an
infinite distance from the three-dimensional hole will be selected as shown in Fig.
4.1. For reducing the expense of the analysis, the quarter of the geometry will be
considered, and symmetry boundary condition be imposed on the planar surfaces
which are perpendicular to x and y direction. The object is selected by the reason
that stress concentration at the curved surface, and it is the one of the conventional
examples for verification of the numerical solution.

The pre-processing method is conducted as shown in Fig. 4.2. For the verification
of the present method, the analysis by the present method and traditional FEM both
are conducted on the identical discretization. The discrepancy against the analytic
solution [23] of both method are measured by H® — norm error, |ley||y0, [23] as

expressed in Eq. (4.6).

o (4.6)
legll o = Z (f(aex - azn) “(Oex — a.rgn) dV)
o m=1 fo'ex "o dV

Where g,y and g are the analytic von-Mises stress at gauss point and numerically

calculated von-Mises stress at gauss point, respectively. nel is the number of
40



elements.

The comparison of the discrepancy in von-Mises stress of the present method with
traditional FEM for the mesh refinement is illustrated in Fig. 4.3. The convergence
curve in Fig. 4.3 visualizes the improved accuracy of the present method in terms of

the mesh refinement.
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(a) three-dimensional geometry

1444848484444
T

(b) Conventional two-dimensional example [23]

Fig. 4.1 Infinite plate with a three-dimensional hole
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(a) FE discretization

(b) Macro element split

Fig. 4.2 Pre-processing for TBS-based IGA
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(a) Analytic solution for von-Mises stress
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102
(b) Convergence curve of von-Mises stress

Fig. 4.3 Comparison of Numerical solution
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4.2.2 Spherical cavity in an infinite solid

As a second numerical example for verification of the present method, Spherical
cavity in an infinite solid with radius a = 0.1m, length of solid L = 0.4m with Young’s
modulus £ =1,000 Pa and Poisson’s ratio v = 0.3, subjected to a uni-directional
tensile load Ty,r = 1 Pa which applied at an infinite distance from the cavity will
be selected as shown in Fig. 4.4. For reducing the expense of the analysis, the eighth
of the geometry will be considered, and symmetry boundary condition be imposed
on the planar surfaces which are perpendicular to x, y, and z direction. In figure. 4.5,
the pre-processing for TBS-based IGA is described.

The comparison on von-Mises stress between the present method and the
traditional FEM for the mesh refinement is illustrated in Fig. 4.6. The convergence
curve depicted in Fig. 4.6 visualizes the improved accuracy of the present method in
terms of the mesh refinement. In the convergence curve, Although the difference of
discrepancy is small, the convergence rate along the mesh refinement is larger in the

present method than the traditional FEM.
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Fig. 4.4 Configuration of the example
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(a) FE discretization

(b) Macro element split

Fig. 4.5 Pre-processing for TBS-based IGA
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(a) Analytic solution for von-Mises stress
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(b) Convergence curve of von-Mises stress

Fig. 4.6 Comparison of the result
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4.2.3 Inner pressurized hollow sphere

As a final numerical example for verification of the present method, a hollow
sphere with inner radius a = 0.5m and outer radius b = 1m, subjected to a uniform
internal pressure p = 1Pa will be selected as shown in Fig. 4.7. For reducing the
expense of the analysis, an eight part will be considered as in previous example. Also,
same symmetry boundary condition will be imposed. The reasons for the selection
of the object are the stress concentration on the curved surface and curvature that
increases toward the inside from the exterior. Moreover, such object is constructed

mostly with curved surface when compared with the previous objects.
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(a) Analysis geometry

(b) Hollow sphere []

Fig. 4.7 Configuration of the example

50



(a) FE discretization

(b) Macro element split

Fig. 4.8 Pre-processing for TBS-based IGA
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(a) Analytic solution for von-Mises stress
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(b) Convergence curve of von-Mises stress

Fig. 4.9 Comparison of the result
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For the verification of the present TBS-based IGA, three examples which exists
an analytic solution are selected, and the discrepancy of von-Mises stress obtained
from the present method and traditional FEM.

When the results of convergence curve are compared, the discrepancy of the
present method is much lower than traditional FEM on the 3™ example. The reasons
for that result will be the boundary condition which applied on curved surface and
the 3™ object is constructed mostly with curved geometry.

From the results of the three examples for verification, it is confirmed that the
present method provides more precise numerical solution. Furthermore, such
advantage will be maximized for analysis of the curve-dominant configuration.

Industrial geometries in mechanical, aerospace, and naval engineering are mostly
constructed of curved geometry for improved efficiency. Therefore, the present
method will be helpful for predicting the precise numerical solution for such

configuration.
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Type
Case 1
Case 2
Case 3

Case 4

Table. 4.1 Mesh information of the present analysis

No. of macro nodes No. of micro nodes No. of MDS nodes

330 5,977 240
940 18,411 620
5,507 117,477 3,276
27,073 598,213 13,272
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(a) TBS-based IGA

A

(b) FEM (TET10)

Fig. 4.10 von-Mises stress discrepancy distribution for Case 1
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(a) TBS-based IGA

i
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(b) FEM (TET10)

Fig. 4.11 von-Mises stress discrepancy distribution for Case 2
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(a) TBS-based IGA

(b) FEM (TET10)

Fig. 4.12 von-Mises stress discrepancy distribution for Case 3
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(a) TBS-based IGA

(b) FEM (TET10)

Fig. 4.13 von-Mises stress discrepancy distribution for Case 4
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4.2.4 NASA Rotor 67

As a numerical application for indication of improved applicability, a single blade
of NASA Rotor 67 with tip load f=600N and fixed condition of a root of the blade
is selected as shown in Fig. 4.14. By utilizing commercial FEM software with a
conventional 2"-order tetrahedron for FE discretization and unification of all the
other pre-processing in the present in-house code, the present method has improved
applicability for arbitrary solid object as shown in Fig. 4.15.

Figure 4.16 illustrate the von-Mises stress distribution obtained from the present

method, and the maximum stress is observed on the thinnest location of the blade.
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(a) single blade

(b) Entire packet

Fig. 4.14 Configuration of the example
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(a) Force condition

(b) FE discretization

Fig. 4.15 Configuration of the example
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(a) Macro element split

(b) MDS

Fig. 4.16 Configuration of the pre-processing



Fig. 4.17 von-Mises stress distribution from the present method
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Chapter 5

Conclusion and Future works

5.1 Conclusion

In this thesis, TBS-based IGA by using Benrstein-Bezier discretization is
attempted for the structural analysis of the curved solid object including a turbine
blade. In NURBS-based IGA, by utilizing the shape function as NURBS basis that
used for geometry representation in CAD, more accurate numerical solution can be
calculated than traditional FEM. The main features of that advantage are the
geometric exactness and high-continuity of the basis function.

Because there is no suitable preprocessor for NURBS-based IGA, applying IGA
to a three-dimensional solid object for more precise analysis has been a challenge in
the field. The main reasons of that are the NURBS defined as tensor product, and the
B-rep of the general CAD software. To solve such limitation, many alternatives have
been proposed including the method using the 5™ order Bezier tetrahedral element.
The present method is one of such efforts, and inspired from the previous work.

The present method utilizes FE discretization for inner volumetric
parameterization, and some pre-processing is conducted to implement the features
of NURBS-based IGA. From the FE discretized geometry, surface reconstruction is
conducted to reduce the geometric discrepancy that occurred on the curved surface

between the CAD geometry and the FE polygon. After that, for the high continuity
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of the basis function, the additional continuity condition is applied. In the process,
the macro element split technique is used for computational efficiency in the entire
analysis.

Because the present approach requires the discretization information of the
commercial FEM software only, it will exhibit improved applicability for an
arbitrary complicated solid object than the other alternatives do based on the
complex NURBS information. An approximate C! Bezier basis function is
constructed by violating the split condition of macro edge for alleviation of
geometric constraint,

For the verification of the present method, three-dimensional curved solid objects
are selected. The analysis is conducted on the same mesh for the present method and
traditional FEM. Calculation of the discrepancy is conducted the H® — norm error
with the analytic solution. Form the convergence curve of discrepancy for all
example geometry that compared, the discrepancy in von-Mises stress is found to be
superior in the prediction by the present method than that by the traditional FEM for
an entirely refined mesh set. Especially, the discrepancy in the ‘Inner pressurized
hollow sphere’ is much smaller than that of FEM compared to the other example.
The first reason of that is the boundary condition applied on the curved surface.
Because the boundary condition is applied on the physical point unlikely in the FEM
that applied on the FE node. The second reason is the portion of the curved surface
in the entire configuration. That geometry is mostly constructed using curved

surfaces. Therefore, the effect of surface reconstruction will be larger than the other
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examples. After the verification for the precise numerical analysis of the present
method, to verify the improved applicability of the present method to an arbitrary
solid object NASA Rotor 67 blade is selected. By applying the same pre-processing
as in the example geometry, it shows that the present method can be applied to

arbitrary solid geometry easily.
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5.2 Recommendation for the Future works
The followings are suggested for the future tasks for extending the present in-

house analysis to conduct a more realistic numerical simulation.

e Application of the present method for the other industrial geometries

including the inner hole-dominant configuration.

e Extension of the present method from the linear static analysis to

nonlinear and dynamic analysis for more realistic numerical analysis.

e Parametric space optimization for the optimal convergence.
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