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Abstract 

Projection-based Hyper Reduced- 

order Modeling and its Application for  

Nonlinear Structural Dynamics 

 

Yongse Kim 

Department of Aerospace Engineering 

The Graduate School 

Seoul National University 

 

In this dissertation, a finite element (FE)-based nonlinear analysis framework 

capable of predicting the geometric nonlinearity is developed. A nonlinear dynamic 

simulation requires large computation owing to its iterative solution algorithm. To 

reduce the anticipated computational expense, a projection-based reduced-order 

modeling (ROM) combine with hyper-reduction will be applied. To efficiently 

perform the computation, the following three hyper-reduction approaches will be 

employed to approximate the nonlinear finite-element matrices: discrete empirical 

interpolation method (DEIM), Gauss–Newton with approximated tensors (GNAT), 

and energy-conserving sampling and weighting (ECSW). The present frameworks 

are applied to the time-transient simulation of a propeller, including the parametrized 

material and load properties. Compared with DEIM approach, GNAT and ECSW 

approaches exhibit better enhancement in terms of the accuracy and robustness of 
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the reduced-order representation. Additionally, the computational efficiency of 

ECSW approach is improved significantly compared with that of the other 

projection-based ROM approaches. 

On the other hand, if FE representation varies owing to the geometric defect or 

imperfection, the reduced order representation will be expensively reconstructed. To 

avoid such computational inefficiency, an improved nonlinear reduced-order 

modeling technique capable of describing the parametrized shape defect will be 

proposed. In the proposed framework, the reduced-order representation is created in 

a polynomial form comprised a set of reduced-tensor coefficients of defect and 

physical displacement field. However, constructing the reduced tensors using a large 

number of discretized elements usually requires enormous amounts of the 

computational resources. Therefore, to reduce the computational expense, a 

quadratic-manifold-based ECSW approach will be employed to obtain the reduced 

tensors concerning only a few optimally selected elements. This approach can be 

used to conduct both time-transient and frequency response analyses on the rotating 

mechanical components. It is found that the proposed approach can accurately 

estimate the broad defect-parametric variation. In particular, its computational 

efficiency demonstrates a significant improvement in contrast to that of the existing 

approaches. 

Keywords: Projection-based model-order reduction, Proper orthogonal 

decomposition, Geometric nonlinearity, Structural dynamics 

Hyper-reduction, Defect-parametric reduced-order model 

Student Number: 2019-32693  
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Chpater 1  

Introduction 

1.1 Background and Motivation 

The mechanical and aerospace hardware (Fig. 1.1) such as the turbomachinery, 

aircraft propeller, and wings usually operate under severe condition owing to large 

power requirement. In particular, rotating components such as turbine blades and 

propellers exhibit large displacement owing to the high-speed rotation and periodic 

aerodynamic excitation, called as the forced vibration (Fig. 1.2). Moreover, complex 

design for improving the aerodynamic performance, such as twisted-surfaced, 

increased slenderness, and the larger-aspect ratio of the relevant geometric shape, 

might cause considerable influence on their geometric nonlinearity. A geometrically 

nonlinear simulation based on the larger dimensional representation, usually by the 

finite element (FE) method [1], is considered an indispensable method of assessing 

their structural integrity during the design process. However, the relevant nonlinear 

analysis consumes significant amount of time, owing to its iterative solution 

procedure. Additionally, multi-fidelity analysis strategies, such as the fluid-structure 

interaction and design optimization, which involve large number of the parametric 

simulations, consume substantially larger amount of the computing resource. While 

the parallel computing based on the domain decomposition method (e.g. finite 

element tearing and interconnecting (FETI) [2] may be capable of the large-size 
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simulation as the computation is performed in a distributed manner, it will not reduce 

memory requirement.  

Instead, the model-order reduction (MOR) techniques have been proposed as the 

viable means for reducing the relevant computational expense. MOR aims to reduce 

the dimensions of the full-order model (FOM), that is, the construction of a reduced-

order model (ROM) along with the minimal loss of accuracy. In other words, MOR 

is able to describe the key characteristics by reducing the number of degrees of 

freedom (DOFs) of the representation (Fig. 1.3). Therefore, the large-size simulation 

can be performed faster and cheaper, yet acceptably represent the original large-size 

object. Generally, MOR procedure comprises a computationally expensive off-line 

stage, wherein ROM is constructed and executed in an efficient online stage. During 

the off-line stage, a set of samples will be collected from the numerous simulations, 

using the high-fidelity analysis. The relevant solutions are used to construct the 

reduced-order representation. During the online stage, the simulation will be 

executed using the reduced-order representation. Once ROMs are constructed, it will 

be possible to obtain fast and accurate solution. In other words, repeated 

computations can be performed for a variety of different conditions without going 

through the off-line stage processes (Fig. 1.4). 

The various MOR techniques (Fig. 1.5) have been developed and introduced in 

many fields such as the mechanical, aerospace, chemistry, biomedicine, 

microelectronic, and neuroscience, etc. Furthermore, MOR technique has been 

recently utilized for the advanced structural maintenance or design (e.g. structural 
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health monitoring (SHM) or condition-based maintenance (CBM)) based on a 

predictive digital twin technology which essentially requires a real-time solution.  

In the following sections, the previous studies regarding the relevant MOR 

techniques will be discussed.  

 

 

 

Fig. 1.1 Mechanical and aerospace components 
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Fig. 1.2 Primary elements of the forced vibration [3] 

 

 

 

Fig. 1.3 Graphical illustration of the model order reduction [4] 
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Fig. 1.4 Computational cost in the MOR  

 

 

 

Fig. 1.5 Techniques for the MOR 
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1.2 Literature Review 

1.2.1 Projection-based Model-order Reduction 

There are two different types of approaches for constructing ROMs in the off-line 

stage: data-fitting- and projection-based approaches (Fig. 1.6). Data-fitting based 

MOR uses the relationship between the input parameter and output result directly for 

constructing ROMs. The resulting ROM is constructed as a black box and is 

independent of the governing formulation. This will be implemented by applying 

either regression or interpolation techniques (e.g. radial basis function [5], Gaussian 

process [6], Grassman manifold [7], autoencoder [8], and neural network [9, 10]) on 

the full-order simulation solution. These approaches have been applied to nonlinear 

systems such as structural dynamics [11], design optimization [12], fluid dynamics 

[13], and combustion problem [14]. 

The data-fitting-based MOR does not require knowledge of the system governing 

equation or the problem physics. In this respect, it will be an advantage if only a 

commercial software solver is available for ROM construction. However, the data 

fitting-based MOR will typically require extensive FOM computations and 

corresponding solutions in the off-line stage. This may significantly affect the overall 

computational cost, including the off-line cost. 

Projection-based MOR [15] builds a reduced-order representation by projecting 

the larger-dimensional system of equations onto a reduced basis (i.e. Galerkin 

projection). Therefore, such ROM techniques will retain the properties of the original 

governing equation, and a solution algorithm with system consistency applied to the 
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full-order representation may be used on the reduced one. Moreover, the off-line 

computational cost will be lower than that of the data fitting-based MOR. 

In this dissertation, the projection-based MOR technique will be applied to deal 

with the geometrically nonlinear behavior of a structural component in the reduced 

space. In the context of the nonlinear solid mechanics, the projection-based MOR 

technique will differ based on the selection of the reduced basis which span the 

original (full-order) representation solution subspace. Furthermore, it will be 

different for different methodologies that are available for reduced nonlinear term 

approximation, such as the internal force and tangent stiffness matrix. 

 

Selection of the Reduced Basis 

Regarding the reduced basis selection, there exist two main approaches: data- and 

model-driven. In the data-driven approach, the reduced basis will be usually obtained 

from the precomputed FOM result, called as the snapshot. Proper orthogonal 

decomposition (POD) [16] is a representative and favored data-driven approach, and 

whose basis comprises the snapshots’ leading principal component. POD-based 

ROMs have been utilized in the various fields, including aeroelasticity, controls and 

optimization [17–19]. In the structural analysis framework, POD-based ROMs have 

been successfully applied to both linear and nonlinear formulations and enhanced 

computational efficiency [20–22].  

Conversely, the model-driven approach directly derives the reduced basis from the 

discretized formulation for FOM, also known as the data-free approach. Although 
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the model-based approach is not widely used as the data-driven approach based on 

POD, it will not require a high-cost FOM simulation, especially for the solid analysis. 

Free vibration modes, i.e., the eigenvectors of the undamped linear system, are one 

of the well-known reduced basis vectors for the linear structural dynamics. In 

contrast, modal derivatives [23, 24], dual modes [25–27] approaches have been 

utilized for the nonlinear structural dynamics. 

 

Approximation of the Reduced Nonlinear Terms 

The reduced nonlinear term may be approximated by either the non-intrusive or 

intrusive method. In the non-intrusive method, the reduced nonlinear term is 

described as a polynomial form of the reduced coordinates with the stiffness 

coefficients, which will in turn be determined from the sufficient nonlinear static 

simulation (compatible with the commercial FE software) with the imposed 

displacements or forces. The stiffness-evaluation procedure (STEP) [28, 29], 

implicit condensation, and expansion (ICE) [30] have been used for the non-intrusive 

projection-based reduction method. Recent studies are found in [31–33].  

In the intrusive method, the reduced nonlinear term will be approximated directly 

by projecting the full-order nonlinear term onto the reduced basis at an element level. 

Therefore, a systematic access to FE formulation is required, unlike the non-intrusive 

methods. However, for the nonlinear simulation, which have a larger number of 

degrees of freedom (DOFs), will require repetitive projection processes of the large 

number of nonlinear terms via the reduced basis. This may incur significant 
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computational time and resources. Specifically, for a linear time-transient 

formulation, the projection-based ROM can be easily expressed by the time-invariant 

equations. By contrast, a nonlinear time-transient formulation will usually attempt 

to solve simultaneous linearized time-varying equations using an appropriate 

iterative-solution algorithm.  

To compensate for such computational inefficiency, sparse-sampling methods, 

including hyper-reduction, have been suggested. The hyper-reduction approach can 

alleviate such computational bottlenecks, allowing the reconstruction of the 

nonlinear term in the reduced dimension by using either a few sampling points or a 

reduced number of meshes. As a result, the computational cost for constructing the 

reduced-order representation will be decreased significantly by using the reduced 

nonlinear term during the recursive projection. 

One representative approach is the discrete empirical interpolation method (DEIM) 

proposed by Chaturantabut and Sorensen [34]. DEIM, a discrete version of EIM [35], 

uses interpolation to determine the optimality of nonlinear terms in the reduced-order 

basis. This will enable an approximation of the non-affinely parameterized functions. 

DEIM has been employed in nonlinear structural dynamics, including 

elastoplasticity [36], hyper-elasticity [37], and viscoplasticity [38]. Negri et al. and 

Bonomi et al. suggested a matrix version of DEIM (MDEIM) as an extension of 

DEIM [39, 40]. It was used to efficiently approximate Jacobian matrices, i.e., to find 

an optimality in the reduced-order basis for a tangent matrix. Willcox [41] 

recommended the missing-point estimation approach using gappy-POD, which used 
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regression to approximate the nonlinear terms. That method was successfully applied 

to the unsteady flow sensing. 

In the hyper-reduction approach, the reliability and computational efficiency of 

ROM are usually determined by the quality sampling points. Hence, neither DEIM 

nor gappy-POD leads to a reliable solution because they use an insufficient number 

of sampling points [42]. Subsequent investigations discovered the convergence 

difficulties induced by the non-symmetry of the matrices in the POD-based ROM, 

in combination with either DEIM or gappy-POD [43, 44].  

As an alternative to Galerkin projection, Gauss-Newton with approximated 

tensors (GNAT) was proposed by Carlberg et al. [45]. GNAT will approximate the 

nonlinear terms by solving using the low-cost least-squares approach, and it will 

enable the resulting ROM to obtain a stable solution. Moreover, POD-based ROMs 

combined with GNAT were applied to the fluid dynamics [46] and microscopic 

formulation [47], and its numerical stability and computational efficiency were 

verified. Farhat et al. [48] proposed an energy-conserving sampling and weighting 

(ECSW) method that directly approximated the reduced nonlinear terms while 

preserving their numerical stability. ECSW considers the virtual work of FE-based 

dynamic system to define the reduced meshes and their relevant weights. This 

approach achieved sufficient accuracy and numerical stability for the structural and 

turbulent problems [49, 50].  

However, in the hyper-reduction approach, a smaller number of the selected 

elements are typically chosen from the training set specified by the nonlinear FOM 
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simulation. Those simulations may incur a computationally expensive off-line stage. 

Jain et al. [51] proposed the quadratic manifold (QM)-based reduction approach to 

inexpensively generate the training set for ECSW. In this approach, the nonlinear 

full-order solution was obtained via nonlinear mapping of the inexpensive linear 

modal solution.  
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Fig. 1.6 Projection- and Data fitting-based MOR. 
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1.2.2 Parametric Reduced-order Modeling for a Shape Imperfection 

The aforementioned FE-based nonlinear ROMs typically use a nominal 

representation (blueprint), which refer to the geometry without any imperfection or 

shape deformation. However, considering the structural design or optimization 

process, even small geometric defect, such as the mistuning of the turbine blade [52] 

and manufacturing imperfection [53, 54], may significantly affect the dynamic 

characteristics of the entire component. Therefore, numerous repeated simulations 

considering the probability of various geometric defect, such as the stochastic 

analysis via Monte Carlo simulation [55], will be required. Therefore, it is necessary 

to develop an improved FE representation that includes the shape defect by varying 

the geometry (e.g., CAD drawing modification) and discretizing elements, or 

directly shifting the nominal FE discretization node location. Then, the resulting 

ROM will be constructed to solve the resulting nonlinear problem. This procedure 

will be repeated whenever the shape defects are varied, which will significantly 

decrease the efficiency owing to an increase in the off-line computational expense.  

To avoid such computational inefficiency, Marconi. et al. [56] suggested a 

nonlinear parametric ROM for the geometric nonlinearity and parametrized 

geometric defect, which is known as the defect-parametric reduced-order model 

(DpROM). In DpROM, the pre-determined displacement field of the shape defect or 

the nonuniformity from the nominal FE representation will be inserted in the strain 

formulation. By using such modified approximation, the nonlinear internal forces 

will be represented as a polynomial function comprised of the tensor coefficients 
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concerning the defect- and practical displacement fields. Those full-order tensors 

will be reduced via Galerkin projection using the selected reduced basis at an element 

level, that is, during the assembly procedure for the discretized elements. Moreover, 

in [57], DpROM was improved by introducing the higher-order strain approximation 

exploiting Neumann expansion, which achieved a higher accuracy. DpROM based 

on such intrusive tensorial approach was successfully applied to MEMS gyroscope 

components with a set of defect-shape [57], as shown in Fig. 1.7. 

However, considering that the full-order tensors in DpROM framework containing 

up to the higher-order elements will be evaluated for each element, a large number 

of Galerkin projections and assembling procedures will be required. This will 

directly influence the off-line cost for constructing the reduced tensor. Therefore, 

large discretization and the increased number of DOFs may result in computational 

inefficiency and out-of-resource situation. 
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Fig. 1.7 MEMS gyroscope component with a set of defect-shape  

(wall angle and tapering defects) [57]. 
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1.3 Objectives and Contributions 

The objective of this dissertation is to develop a projection-based ROM and 

systematically evaluate the resulting ones regarding the prediction capability for the 

nonlinear formulation accurately and quickly. In particular, the hyper-reduction 

approach will be introduced to alleviate the computational bottleneck that the 

projection-based ROM requires the repetitive multiplications of the huge nonlinear 

terms by the reduced basis. To achieve such goal, various hyper-reduction-based 

ROMs will be developed and verified by applying the present approach to the 

structural components such as the aircraft propeller and turbine blades. Moreover, 

DpROM combined with the hyper-reduction will be developed to mitigate the issues 

in the off-line stage, such as the computational burden resulting from an increased 

number of the element-level tensors. Herein, the hyper-reduction approach will be 

employed to evaluate and assemble the element-level tensor by using only a few 

selected elements. 

The novel contributions of this dissertation may be summarized as follows: 

 

• Hyper-reduction-based ROMs based on the three-dimensional finite element 

are developed to handle the geometrically nonlinear formulation. 

 

• A systematic comparison of the hyper-reduction-based ROMs will be 

performed, specifically those related to the geometrically nonlinear structural 

dynamics of the rotating component, which is published in [58]. 
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• Various and practical application of the hyper-reduction-based ROMs will be 

examined for the nonlinear structural dynamics, i.e., modal, time-transient, 

and forced vibration, which are published in [58, 59] 

 

• An improved parametric reduced-order modeling technique by the hyper-

reduction will be developed for a geometrically imperfect component, which 

is published in [60, 61]. 
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1.4 Outline of Dissertation 

To provide an outline of this dissertation, the contents of the chapters are presented 

in the following. 

 

In Chapter 2, the projection-based MOR technique will be presented. The reduced 

bases for the structural dynamics will be introduced. Then, a reduced-order 

representation by the reduced basis will be presented in a context of the 

geometrically nonlinear dynamic formulation. Moreover, an explicit tensorial 

representation will be presented.  

 

In Chapter 3, the hyper-reduction approaches, i.e., DEIM, GNAT, and ECSW, will 

be described in detail. Moreover, the hyper reduced-order representation for the 

nonlinear dynamics will be presented. 

 

In Chapter 4, the hyper-reduction-based ROMs will be applied to a rotating 

component. Then, the obtained results will be compared against those obtained using 

the other ROM approaches, in terms of the accuracy, stability, and computational 

efficiency. In addition, their strengths and weaknesses will be discussed. 

 

In Chapter 5, an improved DpROM framework based on the hyper-reduction will 

be presented. Numerical examination will be performed to evaluate whether the 

present DpROM framework is capable of accurately and rapidly predicting the 
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structural dynamics of the rotating components which possess the shape defect and 

geometrically nonlinear characteristics. 

 

Finally, concluding remarks and future works will be presented in Chapter 6. 
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Chpater 2  

Projection-based Model-order Reduction Technique 

2.1 Key Concept of the Projection-based MOR 

Fundamentals and relevant formulations of the projection-based MOR will be 

described in this section. The projection-based MOR constructs a reduced-order 

representation (with a small n-DOFs) by directly projecting the full-order 

representation (with a large N-DOFs) onto the reduced basis V, as shown in Fig. 2.1. 

Such procedure is called as Galerkin projection.  

For an FE-based nonlinear dynamic system, the discretized nonlinear structural 

formulation for the full-order representation can be expressed as follows: 

𝐌𝐮̈ + 𝐂𝐮̇ + 𝐟𝑖𝑛𝑡(𝐮)  = 𝐟𝑒𝑥𝑡 (2.1) 

 

 

Fig. 2.1 Concept of the Projection-based MOR. 
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where 𝐌 ∈ ℝ𝑁×𝑁 , 𝐂 ∈ ℝ𝑁×𝑁 , 𝐟𝑖𝑛𝑡 ∈ ℝ
𝑁 , and 𝐟𝑒𝑥𝑡 ∈ ℝ

𝑁  indicate the constant 

mass matrix, linear proportional damping matrix based on an initial configuration, 

internal and external force vector, respectively. 𝐮 ∈ ℝ𝑁, 𝐮̇ ∈ ℝ𝑁, and 𝐮̈ ∈ ℝ𝑁, are 

the unknown vectors, i.e., displacement, velocity, and acceleration, respectively. N 

denotes the dimension of the full-order representation. Each vector is a function of 

the unknown vectors. In case of a linear system, 𝐟𝑖𝑛𝑡(𝐮)  in Eq. (2.1) may be 

replaced by 𝐊|𝑒𝑞𝐮 , in which 𝐊|𝑒𝑞  is the stiffness matrix, i.e., Jacobian of the 

internal force ∂f(𝐮)/ ∂𝐮|𝑢=0. 

To reduce the full-order representation, Eq. (2.1), the generalized coordinate 

vector 𝐮 will be approximated as a weighted linear combination of the set of the 

reduced basis vectors. 

𝐮 ≈ 𝐕𝛈, (2.2) 

where 𝐕 ∈ ℝ𝑁×𝑛  and the 𝛈 ∈ ℝ𝑛  denote the reduced basis and reduced 

coordinate vector, respectively. 

By substituting Eq. (2.2) into Eq. (2.1), the resulting representation is as follows: 

𝐌𝐕𝛈̈ + 𝐂𝐕𝛈̇ + 𝐟𝑖𝑛𝑡(𝐕𝛈)  = 𝐟𝑒𝑥𝑡 + 𝐫, (2.3) 

where 𝐫 denotes the residual originated from the approximation.  

In order for Eq. (2.3) to be uniquely determined, the residual 𝐫  will be 

constrained to be orthogonal to the column space of the reduced subspace 𝐕: 

𝐕𝑇𝐫 = 𝟎. (2.4) 
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This results in 

𝐕𝑇𝐌𝐕⏟  𝛈̈
𝐌̂

+ 𝐕𝑇𝐂𝐕⏟  𝛈̇
𝐂̂

+ 𝐕𝑇𝐟𝑖𝑛𝑡(𝐕𝛈)⏟      
𝐟𝑖𝑛𝑡

= 𝐕𝑇𝐟𝑒𝑥𝑡⏟  
𝐟𝑒𝑥𝑡

, 
(2.5) 

where ^ denotes the components of the reduced-order representation. 𝐌̂ ∈ ℝ𝑛×𝑛, 

𝐂̂ ∈ ℝ𝑛×𝑛 , 𝐟𝑖𝑛𝑡 ∈ ℝ
𝑛 , and 𝐟𝑒𝑥𝑡 ∈ ℝ

𝑛  indicate the reduced constant mass matrix, 

reduced damping matrix, reduced internal force vector and external force vector, 

respectively. 

It is noted that the reduced-order representation, Eq. (2.5), can be preserved the 

symmetric properties. Also, the reduced terms 𝐌̂ , 𝐂̂ , and 𝐟𝑒𝑥𝑡  will be pre-

computed in the off-line stage. However, the reduced nonlinear internal force 𝐟𝑖𝑛𝑡 

still need to be evaluated under the full-order representation in the online stage. 

Therefore, an efficient computation of 𝐟𝑖𝑛𝑡 will determine the online expense of the 

projection-based ROM. 

Furthermore, as mentioned in Introduction, the reduced basis V will play an 

important role for constructing an accurate ROM in the projection-based MOR 

framework. Representative approaches to select a proper reduced basis for the 

structural dynamics will be discussed in the following section. 
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2.2 Reduced Basis for Structural Dynamics 

2.2.1 Mode Superposition Method (MSM) 

For linear structural dynamics, one of the oldest and conventional MOR 

techniques is the mode superposition method (MSM) which is also known as the 

modal truncation. The approach is based on the free vibration modes which will be 

obtained by solving the undamped eigenvalue expression: 

𝐌𝐮̈ + 𝐊|𝑒𝑞𝐮 = 𝟎, (2.6) 

(𝐊|𝑒𝑞 −𝜔𝑖
2𝐌)𝛟𝑖 = 𝟎, (2.7) 

where 𝜔𝑖  and ϕ𝑖  are the ith eigenvalue (natural frequency) and corresponding 

eigenvector, respectively. Moreover, the contribution of the spin-softening effect is 

considered for the rotating components (i.e., 𝐊|𝑒𝑞 = ∂f(𝐮)/ ∂𝐮|𝑢=0 − 𝐊𝑠𝑝) 

The linear reduced basis can be obtained by selecting 𝑛Φ free vibration modes: 

𝐕 = [𝛟1, 𝛟2, … ,𝛟𝑛Φ], (2.8) 

Herein, 𝛟𝑛Φ  is the eigenvector associated with the nth natural frequency which 

retains up to approximately twice the highest frequency of interest. 

For a linear dynamic system including Rayleigh damping, the reduced-order 

representation will approximate by a superposition of the modal displacements (Fig. 

2.2): 

𝐮 ≈ ∑𝛟𝑘𝛈𝑘

𝑛Φ

𝑘=1

= 𝚽𝛈, (2.9) 
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𝐕𝑇𝐌𝐕⏟  𝛈̈
𝐈

+ 𝐕𝑇𝐂𝐕𝛈̇ + 𝐕𝑇𝐊|𝑒𝑞𝐕⏟      𝛈

𝚲

= 𝐕𝑇𝐟𝑒𝑥𝑡, 
(2.10) 

where 𝐈 ∈ ℝ𝑛Φ×𝑛Φ  and 𝚲 = diag{𝜔1
2, 𝜔2

2, … , 𝜔𝑛Φ
2 } ∈ ℝ𝑛Φ×𝑛Φ  are the identity 

and diagonal eigenvalue matrices, respectively. 

In addition, several variants [62-64] of MSM have been developed for the linear 

structural dynamics (e.g. mode displacement method, mode acceleration correction, 

and mode truncation augmentation). 

 

 

Fig. 2.2 Modal superposition method. 
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2.2.2 Modal Derivatives 

The linear reduced basis comprised of the free-vibration modes, Eq. (2.8), is no 

longer suitable for approximation of the nonlinear full-order representation. 

Specifically, the linear basis does not feature the geometric nonlinearity such as the 

dominant coupling effect between the free vibration modes. 

Idelsohn and Cardona [23] suggested the modal derivatives to capture such 

nonlinear response which is deviated from the linear behavior. Fundamentally, the 

modal derivatives are the mode shapes derived from the pre-selected free vibration 

modes. Specifically, the modal derivatives will describe the key deformation shape 

owing to the finite deflection in the direction of the dominant free vibration modes. 

The modal derivatives 𝚯  are obtained by differentiating the undamped 

eigenvalue expression with respect to the modal amplitude 𝛈. 

(𝐊|𝑒𝑞 − 𝜔𝑖
2𝐌)

𝜕𝛟𝑖
𝜕𝛈𝑗

|
𝑒𝑞

+ (
𝜕𝐊

𝜕𝛈𝑗
|
𝑒𝑞

−
𝜕𝜔𝑖

2

𝜕𝛈𝑗
|
𝑒𝑞

𝐌)𝛟𝑖|𝑒𝑞 = 0, 

 𝑖, 𝑗 ∈ {1,… , 𝑛Φ} 

(2.11) 

where 𝛉𝑖𝑗 =
𝜕𝛟𝑖

𝜕𝛈𝑗
 is the derivatives of the ith mode in the jth modal direction. 

𝜕𝐊

𝜕𝛈𝑗
 is 

the tangent stiffness matrix evaluated for a displacement 𝐮 = 𝛈𝑗𝛟𝑗, as follows: 

𝜕𝐊

𝜕𝛈𝑗
|
𝑒𝑞

=
𝜕𝐊(𝐮 = 𝛟𝑗𝛈𝑗|𝑒𝑞)

𝜕𝛈𝑗
|

𝑒𝑞

. (2.12) 

To solve Eq. (2.11), an additional constraint will be required as the coefficient 
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matrix (𝐊|𝑒𝑞 − 𝜔𝑖
2𝐌) in Eq. (2.11) is singular. Thus, the mass normalization of the 

free vibration modes regarding the constant mass matrix will be employed as follows: 

𝛟𝑖
𝑇𝐌𝛉𝑖𝑗 = 0 (2.13) 

Generally, the modal derivative computation may incur significant cost because 

the large-dimensional matrices need to be factorized for each modal derivative. Thus, 

a cost-effective version of the modal derivatives, usually called as the static modal 

derivatives [65], was proposed, which was obtained by neglecting the mass term in 

Eq. (2.11): 

𝛉𝑖𝑗 =
𝜕𝛟𝑖
𝜕𝛈𝑗

|
𝑒𝑞

= −𝐊|𝑒𝑞
−𝟏
𝜕𝐊(𝐮 = 𝛟𝑗𝛈𝑗|𝑒𝑞)

𝜕𝛈𝑗
|

𝑒𝑞

𝛟𝑖, (2.14) 

Herein, the static modal derivatives are symmetric, which was proved in [65]: 

𝛉𝑖𝑗 =
𝜕𝛟𝑖
𝜕𝛈𝑗

|
𝑒𝑞

=
𝜕𝛟𝑗

𝜕𝛈𝑖
|
𝑒𝑞

= 𝛉𝑗𝑖. (2.15) 

These static modal derivatives have been successfully utilized for the 

geometrically nonlinear multibody dynamics [66, 67].  

Figure 2.3 shows an example of the first three free vibration modes and the 

corresponding static modal derivatives for the flat rectangular plate supported at both 

ends. It is observed that the vibration modes illustrate the out-of-plane displacement 

only, whereas the modal derivatives contain the in-plane contribution to capture the 

geometrically nonlinear coupling effect. Moreover, the symmetry property of the 
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static modal derivatives is observed as shown in Fig. 2.3 (i.e., 𝛉12 = 𝛉21, 𝛉13 =

𝛉31, and 𝛉23 = 𝛉32). 

Hence, when a set of 𝑛Φ  free vibration modes are selected, 𝑛Φ(𝑛Φ + 1)/2  

modal derivatives will be obtained. Consequently, 𝑛 vectors of the reduced basis 𝐕 

will correspond to (3/2 + 𝑛Φ/2) 𝑛Φ basis vectors: 

𝐕 = [𝛟1, 𝛟2, … ,𝛟𝑛Φ , 𝛉11, 𝛉12, … , 𝛉𝑛Φ𝑛Φ], 

 𝑖, 𝑗 ∈ {1, … , 𝑛Φ} 
(2.16) 
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Fig. 2.3 First three free vibration modes and the corresponding static modal 

derivatives for the flat rectangular plate [65]. 
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2.2.3 Proper Orthogonal Decomposition (POD) 

POD formulates an optimal basis required to represent a nonlinear dynamical 

system. It has been applied to many engineering and scientific systems, including 

the lower-dimensional dynamics modeling. 

In the POD-based MOR framework, a reduced-order representation will be 

defined based on the precomputed full-order solution, considering the parameter 

variations, e.g., time-transient displacement response. Those precomputed results are 

arranged into a so-called snapshot matrix 𝐖𝑑 ∈ ℝ
𝑁×𝑁𝑠 , where q denotes the 

discretized state solution obtained by FOM, 𝑁 the number of DOFs of the full-order 

representation, 𝑆 the number of snapshots at each parameter 𝜇, and 𝑁𝑠 the total 

number of snapshots.  

𝐖𝑑 = [
𝑞1
(1,1) ⋯ 𝑞1

(𝑆1,1)

⋮ ⋱ ⋮
𝑞𝑁

(1,1) ⋯ 𝑞𝑁
(𝑆1,1)

   
𝑞1
(1,2) ⋯ 𝑞1

(𝑆2,2)

⋮ ⋱ ⋮
𝑞𝑁

(1,2) ⋯ 𝑞𝑁
(𝑆2,2)

   
𝑞1
(1,𝜇) ⋯ 𝑞1

(𝑆𝜇,𝜇)

⋮ ⋱ ⋮
𝑞𝑁

(1,𝜇) ⋯ 𝑞𝑁
(𝑆𝜇,𝜇)

]. (2.17) 

If the neutral point of the displacement response in time domain is zero, the mean 

value will be used. Otherwise, it will be composed of an instantaneous fluctuation 

except for the mean value, as follows: 

𝐪(𝑥, t) = 𝐪𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑡) − 𝐪𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥). (2.18) 

The reduced basis V will be obtained by implementing the snapshot method [68] 

or the singular value decomposition (SVD).  
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In the snapshot method, the eigenvalue expression will be defined. Thus, the 

average operator is evaluated as a space average over the domain. Then, a temporal-

correlation function from the snapshot can be obtained as: 

𝐂 = 𝐖𝑑
𝑇𝐖𝑑. (2.19) 

In addition, it is possible to formulate an eigenvalue problem to compute the 

reduced basis. 

𝐂𝐐 = 𝝀𝐐, (2.20) 

𝐕 = [𝚿1,𝚿2, … ,𝚿𝑛], (2.21) 

𝐕𝑖 =
1

√𝜆𝑖
𝐖𝑑𝐐𝑖,    𝑖, ∈ {1,… , 𝑛}, 

(2.22) 

where 𝑛  and 𝝀  are the selected number of the reduced basis vectors and the 

energy ratio in the full-order representation, respectively. 

When SVD is employed, the snapshot matrix will be decomposed into 𝐖𝑑 =

𝚿∑𝚲𝐓. Here, 𝚿 ∈ ℝ𝑁×𝑁𝑠, ∑ = 𝑑𝑖𝑎𝑔(𝜎1,…, 𝜎𝑁𝑠), and 𝚲𝐓 ∈ ℝ𝑁𝑠×𝑁. The reduced 

basis vectors V are composed of the first n column vectors of the left singular matrix 

𝚿 in the resulting SVD. 

A suitable number of the basis vectors n may be selected based on the ratio 

between the accumulated and total energies quantified by the singular values, as 

follows: 
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Energy ratio(%) =
∑ 𝜎𝑖
𝑛
𝑖=1

∑ 𝜎𝑖
𝑁𝑠
𝑖=1

× 100 ≥  ϵ𝑃𝑂𝐷   (𝑛 ≪ 𝑁) . (2.23) 

The relevant POD procedure is summarized in Algorithm 1. 

Algorithm 1 Compute the POD basis 

Input: POD basis 𝐓𝐦 = [𝐭𝟏, … , 𝐭𝒎] 

Output: Interpolation indices 𝐩𝐦 = [𝒑𝟏, … , 𝒑𝒎] 

Procedure POD 

Implement SVD of 𝐖𝑑 = 𝚿∑𝚲
𝐓 

Select the dimension of POD basis n, which is evaluated by Eq. (2.23). 

Construct 𝐕 by using the selected POD basis vectors 𝐕𝑖 = [𝚿1, … ,𝚿𝑛] 

 

It is noted that samples of the snapshot can be collected from the different 

instances of the parameters so that V may not rely on the parameter μ. 
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2.3 Representation of the Projection-based MOR 

2.3.1 Full-order Representation 

A reduced-order representation by the reduced basis is presented with a focus on 

the nonlinear dynamics, especially the time-transient formulation of a rotating 

component which exhibits large displacement. To achieve it, the relevant full-order 

representation will be first described in this subsection.  

For a nonlinear time-transient formulation, the solution to Eq. (2.1) will be 

obtained by an implicit generalized-α time integration [69]. The relevant procedure 

is summarized in Table 1, where 𝛼𝑚 , 𝛼𝑓 , 𝛽 , and 𝛾  are the algorithm-relevant 

parameters. The subscripts 𝑡  and 𝑡 + ∆𝑡  denote the current and next time step, 

respectively. When it is written as a non-subscript expression, ∆t will denote the size 

of the time increment. 

These nonlinear equations are solved by Newton-Raphson approach, introducing 

the residual force vector 𝐫t+∆t
k , as follows: 

𝐫𝑡+∆𝑡
𝑘 = 𝐟𝑒𝑥𝑡,𝑡+∆𝑡−𝛼𝑓 − 𝐟𝑖𝑛𝑡 (𝐮𝑡+∆𝑡−𝛼𝑓

𝑘 ) −𝐌𝐮̈𝑡+∆𝑡−𝛼𝑚
𝑘 − 𝐂𝐮̇𝑡+∆𝑡−𝛼𝑓

𝑘 , (2.24) 

[
1

𝛽∆𝑡2
𝐌+

𝛾

𝛽∆𝑡
𝐂 + (1 − 𝛼𝑓)𝐊(𝐮𝑡+∆𝑡

𝑘 )] ∆𝐮𝑡+∆𝑡
𝑘 = 𝐫𝑡+∆𝑡

𝑘 , (2.25) 

where the superscript 𝑘 indicates an iteration index for Newton-Raphson procedure 

in a single time step, and 𝐊(𝐮𝑡+∆𝑡
𝑘 ) is the tangent stiffness matrix in terms of the 

displacement vector. 

The updated-Lagrangian (UL) formulation [70] will be employed to consider 
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geometrical nonlinearity. The local elemental-stiffness matrix 𝐊𝑒(𝐮) and elemental 

internal-force vector 𝐟𝑖𝑛𝑡
𝑒 (𝐮) , which respectively comprise the global tangent 

stiffness matrix and internal force vector in Eqs. (2.24) and (2.25), are defined in the 

deformed (current) configuration, as follows: 

𝐊𝑒(𝐮) = ∫ 𝐁𝐿
T𝐂𝐁𝐿dV

𝐯

+∫ 𝐁𝑁𝐿
T 𝛕𝐁𝑁𝐿dV

𝐯

, (2.26) 

𝐟𝑖𝑛𝑡
𝑒 (𝐮) = ∫ 𝐁L

T𝛕̂dV,
𝐯

 (2.27) 

where v is the volume of the deformed elements, and 𝐂 is the constitutive matrix 

of the corresponding linear elastic material. 𝐁𝐿  and 𝐁𝑁𝐿  are the linear and 

nonlinear strain-displacement matrices, respectively. 𝛕  and 𝛕̂  are Cauchy (true) 

stress matrix and vector, respectively. As mentioned previously, all the quantities are 

derived with respect to the deformed configuration. The stress stiffening effect is 

included in the second term on the right-hand side, as shown in Eq. (26). 

For a rotating structure, the centrifugal force will vary owing to the deformation. 

When significant axial elongation occurs, a relevant increase in the centrifugal force 

will become equivalent to a decrease in the stiffness under a constant centrifugal 

force. In this context, a full-order representation will implement a spin-softening 

matrix 𝐊𝑠𝑝 . This will be required to precisely reflect the contribution of the 

centrifugal-force variation, in accordance with the deformation when the rotational 

speed is imposed. To consider the contribution of the constant mass, the elemental 
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spin-softening matrix 𝐊𝑠𝑝
𝑒   will be defined in the undeformed coordinate, and is 

expressed as follows [71]: 

𝐊𝑠𝑝
𝑒 = ∫ 𝜌𝐍T𝛀T𝛀𝐍dV,

𝐯

 (2.28) 

where V  and 𝜌  are the volume and density of the undeformed configuration, 

respectively. 𝐍 and 𝛀 are the interpolation and skew-symmetric matrices for the 

rotational velocity, respectively. Hence, Eqs. (2.24) and (2.25) are substituted with 

the following equations for the rotating component: 

𝐫t+∆t
k = 𝐟𝑒𝑥𝑡,t+∆t−αf − 𝐟𝑖𝑛𝑡(𝐮t+∆t−αf

k ) + (𝐊𝑠𝑝𝐮)t+∆t−αf

k
 

−𝐌𝐮̈t+∆t−αm
k − 𝐂𝐮̇t+∆t−αf

k , 

(2.29) 

where (𝐊𝑠𝑝𝐮)𝑡+∆𝑡−𝛼𝑓

𝑘
= (1 − 𝛼𝑓)𝐊𝑠𝑝,𝑡𝐮𝑡 + 𝛼𝑓𝐊𝑠𝑝,𝑡+∆𝑡𝐮𝑡+∆𝑡

𝑘  and 

[
1

𝛽∆𝑡2
𝐌+

𝛾

𝛽∆𝑡
𝐂 + (1 − 𝛼𝑓)(𝐊(𝐮𝑡+∆𝑡

𝑘 ) − 𝐊𝑠𝑝,𝑡+∆𝑡)]∆𝐮𝑡+∆𝑡
𝑘 = 𝐫𝑡+∆𝑡

k , (2.30) 

where 𝐊𝑠𝑝,𝑡  and 𝐊𝑠𝑝,𝑡+∆𝑡  indicate the spin-softening matrices corresponding to 

the rotational speed for the current and next time step, respectively. The centrifugal 

force estimated with respect to the undeformed configuration is included as an 

external force vector in Eq. (2.29). 

It is noted that all the sparse global matrices, e.g., 𝐌, 𝐂, 𝐊, 𝐊𝑠𝑝, and the sum of 

the square bracket in Eq. (2.30), can be treated in the symmetric compressed-row 
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storage (CRS) format. The row and column indices required for the CRS format are 

efficiently arranged based on the element connectivity, without explicitly generating 

the dense matrix format. In other words, only the terms related to the elemental 

connectivity will need to be stored. In most finite-element formulations, the CRS 

format has shown a better performance than the conventional skyline format, in 

terms of the storage requirement and equation-solving capability [72]. The CRS 

format is also capable of exploiting the sparse matrix routines provided by the Intel 

math kernel library (MKL) [73]. 

The nonlinear formulation in Eq. (2.30) and the relevant updated solution are 

expressed as the following simplified linearized expression, using Newton-Raphson 

approach. 

𝐊𝐓
𝑘(𝐮𝑘(𝜇); 𝜇)Δ𝐮(𝜇) = 𝐫𝑘(𝐮𝑘(𝜇); 𝜇), (2.31) 

𝐮𝑘+1(𝜇) = 𝐮𝑘(𝜇) + Δ𝐮(𝜇) (2.32) 

where 𝐊𝐓 denotes the tangent stiffness matrix as a square bracket on the left-hand 

side of Eq. (2.30), and 𝜇 denotes an input parameter. 

 

  



 

36 

 

 

 

 

Table 2.1 Generalized-α method for the nonlinear time-transient formulation 

1. Equilibrium 

𝐌𝐮̈𝑡+∆𝑡−𝛼𝑚 + 𝐂𝐮̇𝑡+∆𝑡−𝛼𝑓 = 𝐟𝑒𝑥𝑡,𝑡+∆𝑡−𝛼𝑓 − 𝐟𝑖𝑛𝑡 (𝐮𝑡+∆𝑡−𝛼𝑓) 

2. Time integration 

𝐮̇𝑡+∆𝑡 =
𝛾

𝛽∆𝑡
(𝐮𝑡+∆𝑡 − 𝐮𝑡) − (

𝛾

𝛽
− 1) 𝐮̇𝑡 − (

𝛾

2𝛽
− 1)∆𝑡𝐮̈𝑡 

𝐮̈𝑡+∆𝑡 =
1

𝛽∆𝑡2
(𝐮𝑡+∆𝑡 − 𝐮𝑡) −

1

𝛽∆𝑡
𝐮̇𝑡 − (

1

2𝛽
− 1) 𝐮̈𝑡 

3. Time average 

𝐮̈𝑡+∆𝑡−𝛼𝑚 = (1 − 𝛼𝑚)𝐮̈𝑡 + 𝛼𝑚𝐮̈𝑡+∆𝑡 

𝐮̇𝑡+∆𝑡−𝛼𝑓 = (1 − 𝛼𝑓)𝐮̇𝑡 + 𝛼𝑓𝐮̇𝑡+∆𝑡 

𝐮𝑡+∆𝑡−𝛼𝑓 = (1 − 𝛼𝑓)𝐮𝑡 + 𝛼𝑓𝐮𝑡+∆𝑡 

𝐟𝑒𝑥𝑡,𝑡+∆𝑡−𝛼𝑓 = (1 − 𝛼𝑓)𝐟𝑒𝑥𝑡,𝑡 + 𝛼𝑓𝐟𝑒𝑥𝑡,𝑡+∆𝑡 

𝐟𝑖𝑛𝑡 (𝐮𝑡+∆𝑡−𝛼𝑓) = (1 − 𝛼𝑓)𝐟𝑖𝑛𝑡(𝐮𝑡) + 𝛼𝑓𝐟𝑖𝑛𝑡(𝐮𝑡+∆𝑡) 
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2.3.2 Reduced-order Representation 

The order reduction via the projection-based MOR procedure converts the full-

order representation into an overdetermined equation. Thus, to define ROM, the 

Galerkin projection approach will be introduced for projecting the nonlinear 

equations. By applying Galerkin projection to the governing equation, Eq. (2.31), 

onto a smaller-dimensional subspace, the reconstructed solutions will be 

approximated into a weighted linear combination of the set of reduced basis vectors. 

𝐮(𝜇) ≈ 𝐕⏟
𝑁×𝑛

𝛈(𝜇)⏟
𝑛×1

 and ∆𝐮(𝜇) ≈ 𝐕⏟
𝑁×𝑛

∆𝛈(𝜇)⏟
𝑛×1

, 
(2.33) 

While considering Eq. (2.31), the resulting ROM at the iteration step k using 

Galerkin projection will be expressed as 

𝐊̂𝐓
𝑘 = 𝐕𝐓⏟

𝑛×𝑁

𝐊𝐓(𝐕𝛈
𝑘(𝜇); 𝜇)⏟          

𝑁×𝑁

𝐕⏟ ,
𝑁×𝑛

 
(2.34) 

𝐫̂𝑘 = 𝐕𝐓⏟
𝑛×𝑁

𝐫(𝐕𝛈𝑘(𝜇); 𝜇)⏟        
𝑁×1

. 
(2.35) 

By adopting Newton-Raphson scheme, the updated approximate solution will 

become as follows: 

𝛈𝑘+1(𝜇) = 𝛈𝑘(𝜇) + ∆𝛈(𝜇).  (2.36) 

Herein, the increment ∆𝛈 = −[𝐊̂𝐓
𝑘]
−1
𝐫̂𝑘   becomes optimized because it 

minimizes the discrepancy between the solution by ROM and that by FOM, in terms 
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of K-norm in [74]: 

∆𝛈 = arg min
𝐳∈ℝ𝑛

‖𝐕𝒛 − [𝐊𝐓
−1 𝐫]‖.  (2.37) 

It is noted that the reduced tangent stiffness matrix will become symmetric 

positive definite.  

The projection-based ROM will cause the number of degrees of freedom included 

in the nonlinear simultaneous equations to be decreased significantly, further 

reducing the computational cost. Nonetheless, Galerkin projection approach still 

relies on the full-order representation, as indicated in the matrix and vector 

multiplication in Eqs. (2.34) and (2.35), respectively. Such operations are required 

for each Newton-Raphson iteration and time step. Hence, additional relieving 

manipulation will be needed, with regard to this aspect. 

On the other hand, considering the geometric nonlinearities, the resulting internal 

forces may be explicitly written as a tensorial third-order polynomial in terms of u 

[76] for the linear elastic constitutive law and Green-Lagrange strain tensor: 

𝐟𝑖𝑛𝑡(𝐮) = 𝐊2 𝐮 + 𝐊 ∶ (𝐮⊗ 𝐮)3 + 𝐊 ⋮ (𝐮⊗ 𝐮⊗ 𝐮)4 ,  (2.38) 

where 𝐊2 ∈ ℝ𝑁×𝑁 , 𝐊3 ∈ ℝ𝑁×𝑁×𝑁 , and 𝐊4 ∈ ℝ𝑁×𝑁×𝑁×𝑁  are the stiffness 

tensor coefficients for the linear, quadratic, and cubic internal forces, respectively. 

Herein, the number in the left-subscript of each tensor indicates the order of 

tensors, whereas the symbols ⊗ , ∶ , and ⋮  denote the dyadic product, and the 

double and triple contraction operations, respectively. For example, by using 

Einstein summation convention, 𝐀3 ∶ 𝐁2  will yield a vector c (i. e. , 𝑐𝐼 = 𝐀3 ∶
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𝐁2 = 𝐴𝐼𝑖𝑗𝐵𝑖𝑗). 

By substituting Eq. (33) into (38), the reduced-order representation will be 

obtained as follows: 

𝐟𝑖𝑛𝑡(𝛈) = 𝐐2 𝛈 + 𝐐 ∶ (𝛈⊗ 𝛈)3 + 𝐐 ⋮ (𝛈⊗ 𝛈⊗ 𝛈)4 ,  (2.39) 

where 𝐐2 ∈ ℝ𝑛×𝑛 , 𝐐3 ∈ ℝ𝑛×𝑛×𝑛 , and 𝐐4 ∈ ℝ𝑛×𝑛×𝑛×𝑛  are the reduced 

stiffness tensor coefficients for the linear, quadratic, and cubic internal forces, 

respectively. 

Such tensorial approach results in the straightforward computation of the 

nonlinear terms by introducing a displacement function alone. In particular, pre-

computing high-order constant tensors prevents the evaluation and element-wise 

assemblage of the displacement-dependent nonlinear term at every NR iteration.  

However, computing the full-order tensor (third- and fourth-order) would be 

prohibitive owing to limited computational resources. Therefore, the projection-

based MOR technique will be employed to construct reduced tensors. During the off-

line stage, the full-order tensor dimension is reduced by projecting the element-level 

tensor by the selected reduced basis. Accordingly, the online computation time will 

be significantly reduced, considering that the resulting ROM only relies on the 

reduced basis dimension by virtue of the explicit tensorial representation. 

The detailed derivation of reduced tensors will be described in Chapter 5 which 

presents DpROM based on the tensorial approach. 
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Chpater 3  

Hyper-reduction approach 

3.1 Discrete Empirical Interpolation Method (DEIM) 

The hyper-reduction technique is crucial for preventing the time-consuming 

multiplication in the full-order representation matrices. The larger-dimensional 

nonlinear terms are approximated to reduce their dimensions. Therefore, the 

computational cost for Eqs. (2.34) and (2.35) will be substantially diminished, and 

the relevant reduced-order representation will be defined with regard to the hyper-

reduction technique.  

DEIM technique allows the residual force vector to be properly approximated as 

a linearized expression by the independent terms. A column vector 𝐫(𝐕𝛈(𝜇); 𝜇) for 

an arbitrary 𝛈 can be expressed as an orthogonal expansion, as follows: 

𝐫(𝐕𝛈(𝜇); 𝜇) ≈ 𝐓𝐦𝐜(𝜇),  (3.1) 

where 𝐓𝐦 ∈ ℝ
𝑁×𝑚  represents POD basis, which is obtained by POD procedure 

(Algorithm 1), based on the snapshots of the residual force vector 𝐖𝑓  during 

Newton-Raphson iterative computation. The subscript m denotes the number of the 

selected interpolation locations. 

As Eq. (3.1) is an overdetermined representation and 𝐓𝐦  is modified by 

introducing a Boolean matrix P, 
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𝐏𝐓𝐫(𝐕𝛈(𝜇); 𝜇) = (𝐏𝐓𝐓𝐦)𝐜(𝜇),  (3.2) 

where P is considered as a matrix composed of m vectors. 

𝐏 = [𝐞𝑝1 , … , 𝐞𝑝𝑚] ∈ ℝ
𝑁×𝑚, (3.3) 

where 𝐞𝑝𝑚  denotes the 𝑝𝑚
𝑡ℎ column of 𝑁 × 𝑁  identity matrix. The coefficients 

of c are obtained by solving Eq. (3.2) and substituting it into Eq. (3.1); the 

approximated residual force vector is expressed as follows: 

𝐜(𝜇) = (𝐏𝐓𝐓𝐦)
−1
𝐏𝐓𝐫(𝐕𝛈(𝜇); 𝜇), (3.4) 

𝐫̃ ≈ 𝐓𝐦𝐜(𝜇) = 𝐓𝐦(𝐏
𝐓𝐓𝐦)

−1
⏟        

𝑁×𝑚

𝐏𝐓𝐫(𝐕𝛈(𝜇); 𝜇)⏟        
𝑚×1

. (3.5) 

Similar to Eq. (3.5), the tangent matrix is approximated as follows: 

𝐊̃𝐓 = 𝐓𝐦(𝐏
𝐓𝐓𝐦)

−1
⏟        

𝑁×𝑚

𝐏𝐓𝐊𝐓(𝐕𝛈(𝜇); 𝜇)⏟          
𝑚×𝑁

. (3.6) 

The approximated nonlinear terms are handled by using only m components 

defined by P. The unknown value of P can be determined using Algorithm 2. 

Algorithm 2 provides DEIM basis vector, which contains the interpolation indices 

and extracts the optimal section of m rows, based on POD basis vector 𝐓𝐦. 
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Algorithm 2 Compute DEIM indices 

Input: POD basis 𝐓𝐦 = [𝐭1, … , 𝐭𝑚] 

Output: Interpolation indices 𝐩𝐦 = [𝑝1, … , 𝑝𝑚] 

procedure DEIM 

set 𝑝1 = 𝑚𝑎𝑥𝑙𝑜𝑐{𝐭1} 

𝐓𝐦 = [𝐭1], 𝐏 = [𝐞𝑝1] 

 for k = 2 to m do 

solve 𝐜 = (𝐏𝐓𝐓𝐦)
−1
𝐏𝐓𝐭𝑘 

𝐰 = 𝐭𝑘 −𝐓𝐦 𝐜 

𝑝𝒌 =  𝑚𝑎𝑥𝑙𝑜𝑐{𝐰} 

𝐓𝐦 ← [𝐓𝐦 𝐭𝑘],  𝐏 ← [𝐏 𝐞𝑝𝑘] 

end for 

 end procedure 

 

By combining DEIM approximation with Galerkin projection, the resulting ROM 

at an iteration step k will be expressed as follows: 

𝐫̂𝒌 = 𝐕𝐓𝐓𝐦(𝐏
𝐓𝐓𝐦)

−𝟏
⏟          

𝒏×𝒎

𝐏𝐓𝐫(𝐕𝛈(𝝁);𝝁)⏟          
𝒎×𝟏

= 𝐕𝐓𝐫̃ (3.7) 

𝐊̂𝐓
𝑘 = 𝐕𝐓𝐓𝐦(𝐏

𝐓𝐓𝐦)
−1

⏟          
𝑛×𝑚

𝐏𝐓𝐊𝐓(𝐕𝛈(𝜇); 𝜇)𝐕⏟            
𝑚×𝑛

= 𝐕𝐓𝐊̃𝐓𝐕 , (3.8) 

where, once n and m are selected, the first term 𝐕𝐓𝐓𝐦(𝐏
𝐓𝐓𝐦)

−1
 will become an 
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invariant component; therefore, it will be determined in the off-line phase.  

In contrast to the approach of solely applying Galerkin projection, i.e., Eqs. (2.34) 

and (2.35), it will be noted that 𝐊𝐓 and r in Eqs. (3.7) and (3.8) are not explicitly 

generated during the iterative procedure. Instead, the row-reduced matrix 𝐏𝐓𝐊𝐓 

and vector 𝐏𝐓𝐫  are directly applied, which will enable the algorithm to become 

more efficient by avoiding the assemblage of matrices and vector entries, specifically 

preventing the selection of irrelevant rows. 𝐏𝐓𝐊𝐓  and the other reduced-sized 

matrices for generating 𝐏𝐓𝐫, e.g., 𝐏𝐓𝐌 and 𝐏𝐓𝐂, are also the sparse matrices. As 

those matrices are treated in the non-symmetric CRS manipulation, multiplication 

with the other matrices and vectors will be needed infrequently, in proportion to the 

sparsity of the matrix. 
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3.2 Gauss-Newton with Approximated Tensors (GNAT) 

As expressed in Eq. (2.37), an optimal solution for the projection-based ROM is 

obtained, such that the discrepancy between ROM and FOM may be minimized 

when the tangent stiffness matrix is symmetric. In DEIM, however, the approximated 

tangent matrix 𝐊̃𝐓 is no longer guaranteed to be symmetric [37, 74]. Consequently, 

the matrices reduced by Galerkin projection in DEIM approach may often lead to 

inappropriate solution. 

As an alternative combination with Galerkin projection, GNAT will mitigate the 

drawback mentioned in the previous paragraph by solving it using a nonlinear least-

squares approach, e.g., Gauss-Newton method. 

∆𝛈 = arg min
𝐳∈ℝ𝑛

‖𝐊̂𝐓(𝐕𝛈(𝜇); 𝜇)𝐳 − 𝐫̂(𝐕𝛈(𝜇); 𝜇)‖2. (3.9) 

In GNAT, using DEIM approximation for the nonlinear terms, the resulting ROM 

at the kth iteration step will be expressed as 

𝐫̂𝑘 = (𝐏𝐓𝐓𝐦)
−1

⏟      
𝑚×𝑚

𝐏𝐓𝐫(𝐕𝛈(𝜇); 𝜇)⏟        ,
𝑚×1

 (3.10) 

𝐊̂𝐓
𝑘 = (𝐏𝐓𝐓𝐦)

−1
⏟      

𝑚×𝑚

𝐏𝐓𝐊𝐓(𝐕𝛈(𝜇); 𝜇)𝐕⏟            
𝑚×𝑛

. (3.11) 

The relevant updated approximate solution will result in the following. 
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∆𝛈 = arg min
𝐳∈ℝ𝑛

‖(𝐏𝐓𝐓𝐦)
−1
𝐏𝐓𝐊𝐓(𝐕𝛈(𝜇); 𝜇)𝐕𝒛

− (𝐏𝐓𝐓𝐦)
−1
𝐏𝐓𝐫(𝐕𝛈(𝜇); 𝜇)‖

2
, 

(3.12) 

where † denotes Moore-Penrose pseudo-inverse. 

Figure 3.1 presents the computational algorithm for DEIM and GNAT, in which 

the relevant equations are distinguished between DEIM (green) and GNAT (red). In 

the off-line stage, the full-order representation is used to solve the range of 

appropriately selected parameters. For the various parameters, the displacement 

results 𝐮(𝜇𝑖) and the residual force vector 𝐫(𝐮𝑘(𝜇𝑖); 𝜇𝑖), 𝑖 = 1,… , 𝑛𝑠, are stored 

in the snapshot matrices 𝐖𝑑 and 𝐖𝑓, respectively. The former is stored at each 

time step, and the latter at each Newton-Raphson iteration k. Subsequently, the 

reduced bases V and 𝐓𝐦  for Galerkin projection and DEIM approximation are 

respectively extracted. 

Next, DEIM algorithm is employed to compute the interpolation location for 𝐓𝐦 

and define the reduced meshes. Finally, the off-line terms are required during the 

online stage, and the online stage is executed. The nonlinear time-transient analysis 

requires only the assemblage of the reduced meshes and the solution of the smaller-

dimensional representation at each iterative procedure. 
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Fig. 3.1 Computational algorithm for DEIM and GNAT  
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3.3 Energy-Conserving Sampling and Weighting (ECSW) 

Unlike in DEIM and GNAT, the projected Galerkin nonlinear terms can be directly 

approximated in ECSW. A subset of elements 𝐄̃ in a finite element mesh (|𝐄̃| ≪

𝑁𝑒) is used to approximate only the reduced nonlinear terms that are related to the 

selected element level. Specifically, ECSW conserves the virtual work (energy) done 

by the internal force vector 𝐟𝑖𝑛𝑡 or tangent stiffness matrix 𝐊𝐓, along the set of the 

reduced basis V on the reduced FE mesh. Consequently, the approximated tangent 

stiffness matrix is guaranteed to be symmetric, and the resulting ROM can be 

constructed without losing the numerical stability of the full-order representation 

[48].  

For an FE-based dynamical system with 𝑁𝑒 the total number of elements, the 

reduced internal force vector 𝐟𝑖𝑛𝑡 at the kth iteration step will be expressed as the 

summation over the selected elements: 

𝐟𝑖𝑛𝑡
𝑘  = ∑𝐕𝑒

𝑇
𝐟𝑖𝑛𝑡
𝑒 (𝐕𝑒𝛈(𝜇); 𝜇)

𝑁𝑒

𝑒=1

≈∑𝑊𝑒𝐕
𝑒𝑇𝐟𝑖𝑛𝑡

𝑒 (𝐕𝑒𝛈(𝜇); 𝜇),

𝑒∈𝐄̃

 (3.13) 

where 𝑊𝑒 ∈ ℝ
𝑁𝑒  is the weights of element e used to provide the optimal 

approximation of the reduced nonlinear term. 

Similar to Eq. (3.13), the reduced tangent stiffness matrix can be approximated as 

follows: 

𝐊̂𝐓
𝑘 =∑𝐕𝑒𝑇𝐊𝑇

𝑒 (𝐕𝑒𝛈(𝜇); 𝜇)𝐕𝑒

𝑁𝑒

𝑒=1

≈∑𝑊𝑒𝐕
𝑒𝑇𝐊𝑇

𝑒 (𝐕𝑒𝛈(𝜇); 𝜇)𝐕𝑒 .

𝑒∈𝐄̃

 (3.14) 
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It is noted that this procedure is analogous to Gaussian quadrature method in 

which a certain integral is approximated by the integral function evaluation at 

specified points and then weighted by pre-defined weighting factors. 

The elements and weights can be determined from the training dataset specified 

by the displacement results, using the snapshot matrix with 𝑁𝑠  number of time 

steps). The relevant training dataset can then be computed using the least-squares 

approach as follows: 

𝛕(𝑖) = (𝐕𝐓𝐕)
−𝟏
𝐕𝐓𝐮(𝑖), (3.15) 

where the superscript 𝑖 indicates the 𝑖th training vector in the training data set. 

For each of the training vectors, the element-level contribution of the projected 

internal force can be assembled into a matrix G and vector b as follows: 

 𝐆 = [

𝐠11 ⋯ 𝐠1𝑁𝑒
⋮ ⋱ ⋮

𝐠𝑁𝑠1 ⋯ 𝐠𝑁𝑠𝑁𝑒

] ∈ ℝ𝑛𝑁𝑠×𝑁𝑒,    𝐛 = [

𝐛1
⋮
𝐛𝑁𝑠

] ∈ ℝ𝑛𝑁𝑠, (3.16) 

where 𝐠𝑖𝑒 = 𝐕𝑒
𝐓𝐟𝑖𝑛𝑡
𝑒 (𝐕𝑒𝛕

(𝑖)) ∈ ℝ𝑛  and 𝐛𝑖 = ∑ 𝐠𝑖𝑒
𝑁𝑒
𝑒=1 ∈ ℝ𝑛  represent the 

elemental reduced nonlinear internal force vector and their element-wise summation 

evaluated at the 𝑖th training vector, respectively.  

The unknown element weights 𝐖 and the subset of relevant elements 𝐄̃ are 

obtained by solving a sparse non-negative least-squares (NNLS) problem [47] as 

follows: 

𝐖 = arg min
𝑊̃𝜖ℝ𝑁𝑒 ,𝑊̃≥0

‖𝐆𝐖̃ − 𝐛‖
2
≤ 𝜖𝑛𝑛𝑙𝑠‖𝐛‖2 , (3.17) 
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where 𝐖̃  and 𝐖 = [𝑊1,𝑊2, … ,𝑊𝑁𝑒] ∈ ℝ
𝑁𝑒  are the sparse vector and set of 

positive weights associated with each element, respectively. 𝜖𝑛𝑛𝑙𝑠 ∈ [0, 1] denotes 

a training tolerance for controlling the sparsity of 𝐖̃. 

The relevant sparse NNLS procedure for ECSW is summarized as Algorithm 3. 

 

Algorithm 3 Compute the sparse NNLS for ECSW 

Input:  𝐆, b, 𝜖𝑛𝑛𝑙𝑠 

Output: element weight 𝐖 ∈ ℝ𝑁𝑒, selected elements 𝐄̃ ⊂ {1,… ,𝑁𝑒}  

procedure NNLS 

𝐄̃ = 𝐧𝐮𝐥𝐥, 𝐙 = {1,… ,𝑁𝑒}, 𝐖 = 𝟎, 𝐟𝑖𝑛𝑡
𝐍𝐍𝐋𝐒 = 𝐛 

while ‖𝐑‖2 < 𝜖𝑛𝑛𝑙𝑠‖𝐛‖2 do 

𝑝 =  𝑚𝑎𝑥𝑙𝑜𝑐{𝐆𝑻𝐟𝑖𝑛𝑡}  

𝐄̃ ← 𝐄̃ ∪ {𝑝}, 𝐙 ← 𝐙\{𝑝}  

loop 

solve 𝜻𝐄̃ = 𝐆𝐄̃
†
b  

𝜻𝐙 = 𝟎  

if 𝜻𝐄̃ > 𝟎 then 

𝐖 = 𝜻  

break 

end if 

α = 𝑚𝑖𝑛{𝑊𝑘/ (𝑊𝑘 − 𝜁𝑘) | 𝜁𝑘 ≤ 0, 𝑘 ∈ 𝐄̃}  

𝐖 ←𝐖+ α(𝜻 −𝐖)  

𝐄̃ ← 𝐄̃ ∪ {𝑘 | 𝑊𝑘 = 0}, 𝐙 ← 𝐙\{𝑘 | 𝑊𝑘 = 0} 

end loop 

𝐟𝑖𝑛𝑡
𝐍𝐍𝐋𝐒 = 𝐛− 𝐆𝐄̃

𝑇𝐖𝐄̃  

end while 

end procedure 



 

50 

 

3.4 Quadratic Manifold-based ECSW 

As mentioned earlier, it is necessary to generate the training dataset (snapshots) 

for sampling the elements in ECSW, which would comprise the full-order time-

varying displacement results. However, these numerous full-order simulations result 

in a computationally expensive off-line stage. 

Jain [51] suggested the QM-based reduction approach to collect the training set 

for ECSW in an inexpensive manner. In this approach, the full-order nonlinear time-

transient solution (𝑡) is obtained by nonlinearly mapping the inexpensive reduced 

linear solution 𝐪(𝑡), without the nonlinear FOM simulation: 

𝐮(t) ≈ 𝚪(𝐪(t)), (3.18) 

where 𝚪 ∶ ℝ𝑛 → ℝ𝑁 is the nonlinear mapping function. 

The relevant reduced linear solution is usually obtained via the mode 

superposition method. For a linear dynamic system with Rayleigh damping, the 

reduced-order representation by the selected 𝑛ϕ free vibration modes is expressed 

as follows: 

𝚽𝑇𝐌𝚽⏟    𝐪̈(𝑡)
𝐈

+𝚽𝑇𝐂𝚽𝐪̇(𝑡) + 𝚽𝑇𝐊|𝑒𝑞𝚽⏟      𝐪(𝑡)

𝚲

= 𝚽𝑇𝐟𝑒𝑥𝑡(𝑡), (3.19) 

𝐮𝑙𝑖𝑛(t) = 𝚽𝐪(𝑡), (3.20) 

where 𝐈 ∈ ℝ𝑛Φ×𝑛Φ  and 𝚲 = diag{𝜔1
2, 𝜔2

2, … , 𝜔𝑛Φ
2 } ∈ ℝ𝑛Φ×𝑛Φ  are the identity 

and diagonal eigenvalue matrices, respectively. 𝚽 ∈ ℝ𝑁×𝑛Φ and 𝐪(𝑡) ∈ ℝ𝑛Φ are 

the linear reduced basis comprising the selected free vibration modes and the 
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resulting time-varying displacement vector in terms of the reduced coordinate, 

respectively. 

Then, the nonlinear mapping 𝚪(𝐪(t)) is defined as a quadratic function, which 

is referred to as QM: 

𝐮(t) ≈ 𝚪(𝐪(t)) ∶= 𝚽𝐪(𝑡) +
1

2
𝛀 ∶ (𝐪(𝑡) ⊗ 𝐪(𝑡)), (3.21) 

where 𝛀 ∈ ℝ𝑁×𝑛Φ×𝑛Φ  is the quadratic component composed of static modal 

derivatives derived from the free vibration modes, which helps reflect the 

geometrically nonlinear (second-order) effects, as shown in Fig. 3.2. 

It is noted that the free vibration modes and associated modal derivatives in Eq. 

(3.21) are pre-computed basis vectors used to construct the reduced-order 

representation in the projection-based MOR. Algorithm 4 summarizes the relevant 

computational procedure of ECSW, including QM-based training set generating. 
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Fig. 3.2 Schematic of the QM-based training set generation [51, 75]. 
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Algorithm 4 ECSW including QM-based training set generation 

Input: free vibration modes 𝚽 ∈ ℝ𝑁×𝑛Φ, static modal derivatives 

𝚯 ∈ ℝ𝑁×
𝑛Φ(𝑛Φ+1)

2 , 𝜖𝑛𝑛𝑙𝑠, nominal FE representation (Eq. (2.1)) 

Output: element weight 𝐖 ∈ ℝ𝑁𝑒, selected elements 𝐄̃ ⊂ {1,… ,𝑁𝑒} 

procedure QM-based ECSW 

<Generation of the training data set> 

𝛀 ← third-order null tensor ∈ ℝ𝑁×𝑛Φ×𝑛Φ 

for 𝑗 = 1 to 𝑛Φ do 

for 𝑖 = 1 to 𝑛Φ do 

      𝛀𝑘𝑖𝑗 = (𝜽𝑖𝑗)𝑘 , 𝑘 ∈ {1,… ,𝑁} 

      if 𝑖 ≠ 𝑗 then 

         𝛀𝑘𝑖𝑗 = (𝜽𝑗𝑖)𝑘 

      endif 

  end for 

end for 

Define QM: 𝚪(𝐪(𝑡)), Eq. (3.21) 

Compute 𝐪(t) using Eq. (3.19) 

for 𝑖 = 1 to 𝑁𝑠 do 

   Compute 𝐮(𝑖) =  𝚪(𝐪(𝑡𝑖)) 

Compute 𝛕(𝑖) = (𝐕𝐓𝐕)
−𝟏
𝐕𝐓𝐮(𝑖) 

end for 

<Sampling of the elements and associated weights> 

Assemble G and b using Eq. (3.16) 

Acquire 𝐖 and 𝐄̃ by solving the sparse NNLS problem (Algorithm 3) 

end procedure 
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Chpater 4   

Evaluation on Hyper Reduced-order Model 

4.1 POD-based MOR including Hyper-reduction 

As mention in the previous chapter, the hyper-reduction approaches, DEIM, 

GNAT, and ECSW, can alleviate such computational bottleneck, allowing the 

reconstruction of the nonlinear term in the reduced dimension by using either a few 

sampling points or a reduced number of meshes. As a result, the computational cost 

for constructing the reduced-order representation will be decreased significantly by 

using the reduced nonlinear term during the recursive projection. Such hyper-

reduction-based ROMs have been applied to numerous engineering fields. 

However, a thorough comparison of the aforementioned hyper-reduction-based 

ROMs has not been reported, specifically those related to the geometrically 

nonlinear structural dynamics. Therefore, the parameterized POD-based MOR 

framework that includes hyper-reduction approach will be developed and 

systematically evaluated for the resulting ones regarding the prediction capability for 

the nonlinear formulations accurately and fast. To achieve this goal, a full-order 

representation is developed to provide a set of samples over a range of selected 

parameters. A nonlinear structural analysis, based on the updated Lagrangian 

formulation, is developed and applied to rotating components undergoing large 

displacements. The variation in their dynamic characteristics, owing to the rotation 
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effect, is included in the updated Lagrangian formulation. Then, POD-based ROMs 

combined with the hyper-reduction technique are developed to construct a reduced-

order representation. The relevant reduced nonlinear terms are approximated using 

DEIM, GNAT, and ECSW approaches. The resulting ROMs are applied to the 

structural dynamics of a propeller blade, including geometric nonlinear parametric 

variations. Finally, the obtained results are compared to those obtained using the 

other ROM approaches, in terms of accuracy, stability, and computational efficiency. 

Figure 4.1 illustrates the POD-based ROM framework, including the hyper-

reduction approach. In the off-line stage, a sampling analysis is carried out using the 

full-order representation, and the reduced basis is extracted from these results. In the 

online stage, the ROM is defined by assembling the reduced basis and the nonlinear 

terms at each iteration step. Herein, the hyper-reduction technique is employed to 

overcome the computational bottleneck due to the recursive computation. 

The mathematical expressions for the relevant ROMs are summarized in Table 4.1 
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Fig. 4.1 General POD-based framework, including the hyper-reduction. 

 

Table 4.1 Comparison of the reduced nonlinear terms between the POD-based ROMs 

 Reduced nonlinear terms (at kth iteration) 

POD 

𝐊̂𝐓
𝑘 = 𝐕𝐓𝐊𝐓𝐕 

𝐫̂𝑘 = 𝐕𝐓𝐫 

POD-DEIM 

𝐊̂𝐓
𝑘 = 𝐕𝐓𝐓𝐦(𝐏

𝐓𝐓𝐦)
−1𝐏𝐓𝐊𝐓𝐕 

𝐫̂𝑘 = 𝐕𝐓𝐓𝐦(𝐏
𝐓𝐓𝐦)

−1
𝐏𝐓𝐫 

POD-GNAT 
𝐊̂𝐓
𝑘 = (𝐏𝐓𝐓𝐦)

†
𝐏𝐓𝐊𝐓𝐕 

𝐫̂𝑘 = (𝐏𝐓𝐓𝐦)
†
𝐏𝐓𝐫 

POD-ECSW 

𝐊̂𝐓
𝑘 =∑𝑊𝑒𝐕

𝑒𝑇𝐊𝑇
𝑒𝐕𝑒

𝑒∈𝐄̃

 

𝐫̂𝑘 =∑𝑊𝑒𝐕
𝑒𝑇𝐫𝑒

𝑒∈𝐄̃
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4.2 Numerical Results 

A nonlinear time-transient analysis is performed based on the proposed framework, 

and its validation is presented in this section. The numerical example is the 54H60 

propeller blade, which is mainly installed on the C-130 or P-3 aircraft. It has a slender 

configuration with a twisted surface and a high aspect ratio. The relevant 

configuration and analysis conditions are shown in Fig. 4.2. The three-dimensional 

propeller-blade configuration is discretized by ten-node tetrahedral elements (5,903 

nodes with 17,709 degrees of freedom). The base surface of the blade is clamped, 

and harmonic excitation is applied to all the nodes of the top surface. The relevant 

amplitude of the excitation is chosen to be 500 N. Moreover, to investigate the 

geometrically nonlinear behavior involving large displacements, the blade is excited 

at a frequency of 150 rad/s, which corresponds to the first bending mode. Point A, 

𝛼𝑒, and 𝜔𝑒 represent the nodes showing the maximal displacement, excitation load, 

and frequency factor, respectively.  

To examine the performance of the parametric variations, three parameters 

( 𝜇1, 𝜇2, 𝜇3) , i.e., Young’s modulus 𝐸 = 𝜇1 GPa (𝜇1 ∈ [70, 75]),  density 𝜌 =

𝜇2 kg/m
3 (𝜇2 ∈ [2,500, 3,000]) , and constant rotational velocity Ω =

𝜇3 rpm (𝜇3 ∈ [1,000, 1,500]) , are utilized. Eight relevant training points (red 

circles) are selected at the upper and lower bounds (Fig. 4.3), and four test cases 

(green triangles) with different variables are randomly selected to investigate the 

performance of the parametric variation. The material properties are assumed to 

correspond to 7,000-series aluminum alloys with a 1% damping ratio [77]. An 
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inertial Rayleigh damping is considered for the structural viscous damping, 𝐂 =

𝛽𝑚𝐌, where 𝛽𝑚 denotes the coefficient for Rayleigh damping. 

To validate the present full-order representation, a time-transient analysis is 

conducted for up to 0.2 s (200 steps) for Case 1 (𝛼𝑒 = 1.0, 𝜔𝑒 = 1.0). These results 

are validated using the ANSYS commercial simulation software [78]. Figure 4.4-a 

shows a comparison of the tip-displacement history between ANSYS and the FOM. 

The FOM results show good agreement with those obtained using ANSYS. 

Considerable differences are found when comparing the linear and nonlinear 

analysis results. The geometrically nonlinear results show that the maximum 

response and resonant frequency are different, when compared with those of the 

linear analysis results (Fig. 4.4-b). Hence, the geometric nonlinearity may 

significantly influence the dynamic property prediction of the blade, and it should 

also be included in the reduced-order representation. 

To construct the reduced-order representation, a sampling analysis using the full-

order representation is conducted at the upper and lower bounds of the eight training 

points. A nonlinear transient solution is obtained over 200 steps. Moreover, 1,600 

and 7,806 snapshots are collected from the displacements (at each time step) and 

residual force vectors (at each iteration), respectively. The sampling procedures are 

summarized in Table 4.2. Subsequently, the POD and DEIM bases are extracted from 

the snapshots and used for the successive comparison of ROMs. 
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Fig. 4.2 Configuration and analysis conditions for a 54H60 propeller blade. 
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Fig. 4.3 Eight training points and four test cases for the parametric variations. 

 

 

Table 4.2 Sampling analysis results for extracting the reduced basis 

No. of  

training points 
Sampling time 

Time-step 

size (∆𝑡) 

No. of snapshots 

Displacements 
Residual 

force 

8 
0-0.2s 

(200 time steps) 
0.001s 1,600 7,806 
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(a) Time domain 

 

(b) Frequency domain 

Fig. 4.4 Comparison of the displacement history at Point A between ANSYS and FOM 
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4.2.1 Accuracy Factor 

The accuracy of the present ROMs, namely POD, POD-DEIM, POD-GNAT, and 

POD-ECSW, is evaluated using five accuracy factors proposed based on different 

levels of interest. Each factor 𝑒𝑖 is the normalized value, which varies from 0 to 1 

through comparisons with the solutions obtained from the full- and reduced-order 

representations; the closer the value is to 1, the better is its accuracy. Negative factor 

values are set to 0 while computing the accuracy factor. Several factors (𝑒1, 𝑒4, and 

𝑒5) are cited from Ref. [31]. 

i. Relative discrepancy of the energy 

𝑒1 =  max(0, 1 −
√∑ [𝐸(𝑡)]2𝑡

√∑ [𝐸𝐹𝑂𝑀(𝑡)]
2

𝑡

),  (4.1) 

where 𝐸(𝑡) is the sum of the kinetic and linear deformation energies. 

𝐸(𝑡) =
1

2
𝐮̇(𝑡)T𝐌𝐮̇(𝑡) +

1

2
𝐮(𝑡)T𝐊𝐮(𝑡),    

 Δ𝐸(𝑡) = 𝐸𝐹𝑂𝑀(𝑡) − 𝐸𝑅𝑂𝑀(𝑡). 

(4.2) 

ii. Relative discrepancy of the displacement 

𝑒2 =  max(0, 1 −
√∑ [Δ𝐮(𝑡)TΔ𝐮(𝑡)]𝑡

√∑ [𝐮FOM(𝑡)
T𝐮FOM(𝑡)]𝑡

),  (4.3) 

where  

Δ𝐮(𝑡) = 𝐮FOM(𝑡) − 𝐮ROM(𝑡). (4.4) 
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iii. Relative discrepancy of the velocity 

𝑒3 =  max(0, 1 −
√∑ [Δ𝐮̇(𝑡)TΔ𝐮̇(𝑡)]𝑡

√∑ [𝐮̇FOM(𝑡)
T𝐮̇FOM(𝑡)]𝑡

), (4.5) 

where  

Δ𝐮̇(𝑡) = 𝐮̇FOM(𝑡) − 𝐮̇ROM(𝑡). (4.6) 

iv. Relative oscillatory deviation at the blade tip 

𝑒4 =  max(0, 1 − √
1

𝑁𝑡𝑖𝑝
∑ (

𝜊𝐹𝑂𝑀,𝑖 − 𝜊𝑅𝑂𝑀,𝑖
𝜊𝐹𝑂𝑀,𝑖

)

𝑖∈𝑰𝒕𝒊𝒑

2

),  (4.7) 

where I𝑡𝑖𝑝 ∈ ℝ
𝑁𝑡𝑖𝑝  contains 𝑁𝑡𝑖𝑝 , the number of displacement indices 

corresponding to the degree of freedom of the blade-tip surface. 

𝜊𝑖 = max[𝐮𝑖(𝑡)] − min [𝐮𝑖(𝑡)]. (4.8) 

v. Relative discrepancy of the displacement at the blade-tip node 

𝑒5 =  max

(

 0, 1 −
√∑ [Δ𝐮𝑡𝑖𝑝(𝑡)TΔ𝐮𝑡𝑖𝑝(𝑡)]𝑡

√∑ [𝐮𝐹𝑂𝑀
𝑡𝑖𝑝 (𝑡)T𝐮𝐹𝑂𝑀

𝑡𝑖𝑝
(𝑡)]𝑡 )

 ,  (4.9) 

where 

Δ𝐮𝑡𝑖𝑝(𝑡) = Δ𝐮𝐹𝑂𝑀
𝑡𝑖𝑝 (𝑡)T − Δ𝐮𝑅𝑂𝑀

𝑡𝑖𝑝 (𝑡). (4.10) 
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4.2.2 Comparison among POD-based ROMs 

Based on the proposed accuracy factors, the POD-based ROMs are assessed in 

terms of accuracy and robustness. A nonlinear time-transient simulation is performed 

for up to 0.5 s (500 steps) in the first test case, which has an analysis condition of 

𝛼𝑒 = 1.0 and 𝜔𝑒 = 1.0. The tolerance concerning the nonlinear force residual is set 

to be ϵ ≤ 10−5 for the converged solutions. If the ROM fails to obtain a converged 

solution, it is indicated by an "x" in the subsequent results figure.  

In hyper-reduction-based ROMs, both POD-DEIM and POD-GNAT can be used 

to define a reduced mesh by considering the number of POD (n) and DEIM (m) bases 

independently, whereas POD-ECSW can only be used to define a different reduced 

mesh that depends on the number of POD bases and the training tolerance 𝜖𝑁𝑁𝐿𝑆 in 

Eq. (3.17). In this example, the training tolerance 𝜖𝑁𝑁𝐿𝑆 was set to 10−4 [48]. The 

number of selected elements was determined by examining the number of PODs 

used. Information about the number of the selected elements is summarized in Table 

4.3. 

Table 4.3 Summary of the selected elements for POD-ECSW 

 

 

Figure 4.5 shows the five accuracy factors used for the various number of POD 

and DEIM bases. In all the POD-based-ROMs, it is observed that the accuracy 

No. of POD bases (n) 10 20 30 40 50 60 70 80 90 100 

No. of sampled 

elements (𝐄̃) 
73 109 218 288 357 427 512 584 664 755 
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factors tend to increase as the number of POD bases increase. However, the POD-

DEIM approach shows numerical instability in all the accuracy factors, failing to 

converge when a certain number of bases are selected. Specifically, when more than 

90 POD bases are used, POD-DEIM will not converge for any number of DEIM 

bases. Considering the convergence tendency, a sufficient number of DEIM bases 

will be needed when the number of POD bases is increased. Such instability may be 

due to the loss of the symmetric property when the tangent matrix 𝐊̃  is 

approximated by applying the Galerkin projection in the hyper-reduction approach. 

From that perspective, POD-DEIM may lead to unstable situations for multi-query 

or parametric formulations when using a variety of arbitrary inputs.   

By contrast, POD-GNAT shows good convergence characteristics for all the 

selected numbers of POD and DEIM bases. When the number of POD bases is 

constant, even if the number of DEIM bases increased, the effect on the accuracy 

factors is much smaller than that of POD-DEIM. It should be noted that in POD-

GNAT, accuracy increases almost linearly in proportion to the number of POD bases 

used, and even a smaller number of DEIM bases is capable of guaranteeing 

converged solutions. The stability of POD-GNAT is due to the minimization of the 

global residual by applying the Gauss-Newton approach in Eq. (3.12) to the non-

symmetric tangent matrix 𝐊̃. POD-ECSW exhibits improved numerical stability by 

achieving high accuracy and convergence characteristics for all the selected numbers 

of POD bases. Specifically, sufficient accuracy is exhibited for only a small number 

of POD bases, similar to the result obtained in the approach that solely applied the 
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POD-Galerkin projection. This improvement is owing to the application of ECSW 

that preserved the symmetric properties and energies of the full-order representation, 

as shown by the trend in Fig. 4.6. Consequently, POD-GNAT and POD-ECSW build 

a more robust reduced-order representation than POD-DEIM.  

Additionally, the computational costs of CPU time during the off-line and online 

stages are compared to evaluate the computational efficiency. The value of the CPU 

time during the online stage corresponds to the time-transient simulation (1,000 steps) 

for Case 1 (𝛼𝑒 = 1.0, 𝜔𝑒 = 1.0). Moreover, all computations are performed using 

serial operations (single CPU).  

Each ROM is constructed using numbers of bases with accuracy factors exceeding 

0.95, as shown in Fig. 4.5. Hence, 350 and 200 DEIM bases are used to approximate 

the nonlinear terms in POD-DEIM and POD-GNAT, respectively. It is noted that 

POD-GNAT is used with a relatively larger number of POD bases than that of POD-

DEIM, while the DEIM bases used are significantly fewer than those of POD-DEIM. 

In contrast, POD-ECSW is applied using a comparatively smaller number of POD 

bases than both POD-DEIM and POD-GNAT. Subsequently, 218 selected elements 

associated with the 30 POD bases are obtained to define the reduced meshes. The 

relevant configuration of the reduced meshes is presented in Fig. 4.7, and the 

information about the bases is summarized in Table 4.4. 
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a) 𝒆𝟏 

 

b) 𝒆𝟐 

 

Fig. 4.5 Comparison of the accuracy factors in terms of the number of reduced bases. 
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c) 𝒆𝟑 

 

d) 𝒆𝟒 

 

Fig. 4.5 Comparison of the accuracy factors in terms of the number of reduced bases (cont.). 
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e) 𝒆𝟓 

 

Fig. 4.5 Comparison of the accuracy factors in terms of the number of reduced bases (cont.). 
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Fig. 4.6 Accuracy factors with respect to increasing reduced bases. 
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a) POD-DEIM  

(350 DEIM bases) 

b) POD-GNAT  

(200 DEIM bases) 

c) POD-ECSW  

(218 selected elements) 

Fig. 4.7 Accuracy factors with respect to increased reduced bases. 

 

Table 4.4 Number of the reduced bases used for ROM 

 POD POD-DEIM POD-GNAT POD-ECSW  

POD bases (n) 30 50 100 30* * No. of sampled 

elements : 218  DEIM bases (m) - 350 200 - 

 



 

72 

 

Figure 4.8-a compares the computational time between FOM and the POD-based 

ROMs during the online stage. Applying POD alone improves the computational 

time by only twice, when compared to FOM. In contrast, the hyper-reduction-based 

ROMs (POD-DEIM, POD-GNAT, and POD-ECSW) exhibit significant 

improvements in the computational time (11.1, 14.8, and 20.7 times faster than the 

FOM prediction, respectively). In particular, POD-ECSW, which is applied using a 

smaller number of POD bases than POD-DEIM and POD-GNAT, exhibits the 

optimum online computational efficiency (its CPU times are 1.9 times and 1.4 times 

faster, respectively). It should be noted that POD-GNAT, which is used with a 

smaller number of DEIM bases and a larger number of POD bases than POD-DEIM, 

shows improved computational efficiency. This implies that the computational 

efficiency of a hyper-reduction-based ROM combined with DEIM approximation 

mainly depends on the number of DEIM bases used. This determines the scale of the 

repetitive computations for constructing the reduced-order representation during the 

online stage.  

The total computational time, including the off-line stage, in terms of the number 

of computations, is compared between FOM and POD-based ROMs. The off-line 

time consists of a sum of the time for sampling analysis, time for extracting the 

reduced-order basis, and time for constructing off-line terms related to the reduced 

meshes. Herein, POD-DEIM and POD-GNAT extract DEIM bases from the huge 

snapshots of the residual-force vectors. POD-ECSW extracts the selected elements 

from an enormous training dataset. Then, they consume more off-line computational 
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phase time than that by the POD. Among those, POD-ECSW shows the highest off-

line computational time because it solves a time-consuming sparse NNLS problem 

(Fig. 4.8-b). Such off-line computational time is required once at the beginning of 

the computation. Then, the online computational time is obtained and accumulated 

for computational cost. Hence, it is expected that the total computational cost in the 

ROM framework will generally improve as similar computations are repeated. 

Specifically, the hyper-reduction-based ROMs, which has a remarkably larger speed-

up factor compared to POD in the online stage, show a significant reduction in the 

cumulative CPU time while the similar computation is repeated. 
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Fig. 4.8 Computational cost among FOM and POD-based ROMs. 

 

 

a) Online stage b) Off-line and online stage 
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4.2.3 Parametric Study of POD-based ROMs 

To demonstrate the performance of the ROMs within the parametric variations, 

three test cases are examined. The number of bases used for ROM construction is 

identical to that shown in Table 4.4. The relevant analysis conditions for the 

parametric study are listed in Table 4.5.  

 

Table 4.5 Summary of test conditions for the parametric study 

Condition No. 
Case No. 

(𝐸, 𝜌, Ω) 
Excitation factor 

Loading (𝛼𝑒) Frequency (𝜔𝑒) 

I 
2 

(73, 2850, 1260) 
1.0 1.0 

II 
3 

(74, 2910, 1340) 
1.5 1.0 

III 
4 

(72, 2640, 1470) 
0.5 2.0 

 

The deformation history at Point A (the trailing edge at the blade tip) is used to 

evaluate the accuracy of the ROMs. Moreover, the relative discrepancy in the 

deformation field between the FOM and ROMs is introduced. The total deformation 

is defined as follows:   

𝐮𝐴
𝑡𝑜𝑡 = √(𝐮𝑥,𝐴)

2
+ (𝐮𝑦,𝐴)

2
+ (𝐮𝑧,𝐴)

2
,  (4.11) 

where 𝐮𝑥,𝐴, 𝐮𝑦,𝐴, and 𝐮𝑧,𝐴 denote the displacement component of each direction 

at the Point A. 

Figure 4.9 shows the total deformation history at Point A. For Conditions I and II, 

all ROMs are in good agreement when compared to the FOM. Herein, the solution 
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history from the ROMs is recovered using POD bases. For Condition III, which has 

a larger nonlinearity than Conditions I and II, POD-DEIM does not deliver an 

accurate solution and diverged. However, POD, POD-GNAT, and POD-ECSW show 

a better correlation with FOM. 

To quantify the discrepancy in the hyper-reduction-based ROMs, the root mean 

squared relative error (RMSRE) of the total deformation history at Point A is 

considered. Table 4.6 provides a comparison of the RMSRE values between the 

ROMs. POD-GNAT and POD-ECSW achieve a significantly higher accuracy for 

Conditions I and II (the average relative discrepancy was within 2%). However, 

POD-GNAT shows a relative difference for Condition III. The accuracy trend of the 

number of reduced bases indicate that the accuracy will improve when the number 

of reduced-order bases is increased (Figs. 4.6 and 4.7). 

The reduced-order representations based on hyper-reduction reveal that the 

stability of POD-GNAT and POD-ECSW is better than that of POD-DEIM. Thus, 

POD-ECSW can accurately address broad parametric variation. This is determined 

by comparing the von Mises stress field between FOM and hyper-reduction-based 

ROMs. Figure 4.10 demonstrates von Mises stress field, which is computed at the 

time of maximum deformation in each condition. When compared against FOM 

results, POD-ECSW shows better correlation for all the conditions. 
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a) Condition I 

 

b) Condition II 

Fig. 4.9 Comparison of the total deformation for the different conditions.  
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c) Condition III 

 Fig. 4.9 Comparison of the total deformation for the different conditions (cont.).  

 

Table 4.6 Comparison of the RMSRE (%) regarding the total deformation 

 POD-DEIM POD-GNAT POD-ECSW 

Condition I 4.205 1.915 1.620 

Condition II 6.312 1.638 1.013 

Condition III N/A 7.911 1.429 
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Fig. 4.10 Comparison of von Mises stress for the different conditions. 
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4.3 Extension to Other Frameworks 

Based on the results presented in the foregoing sections, it is found that POD-

ECSW approach provide the most robust reduced-order representation for the 

nonlinear time-transient formulation, including parametric variations.  

In this section, POD-ECSW will be further extended to modal and forced vibration 

frameworks of rotating component. The rotating component is frequently subjected 

to various vibratory loads that may cause catastrophic failures such as high cycle 

fatigue [79]. There have been two approaches to prevent HCF problems [80]. The 

first approach is to design to avoid dangerous resonances in the operating range. This 

is a qualitative standard design practice to avoid resonance using the Campbell 

diagram. Generally, the resonance should be avoided in the lower-order structural 

modes (first bending, torsion modes, etc.). The second approach is to allow 

resonance in the operating range and to quantitatively assess the associated response 

level of the blades in resonant conditions. This approach is required to accurately 

predict the structural response under the resonant condition by conducting a forced 

vibration analysis. Therefore, in the design process of a rotating component, the 

modal and forced vibration analyses need to be performed to investigate their 

vibration characteristics. However, rather expensive nonlinear static and linear 

frequency response analyses are usually accompanied by a frequency domain 

analysis. The traditional mode superposition method (MSM) effectively reduces the 

cost of the frequency response analysis. However, the nonlinear static analysis of 

earlier processes remains as the computational bottleneck. 
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In this section, the application of POD-ECSW regarding the modal and forced 

vibration analyses of turbomachinery rotating blades will be investigated, 

respectively. Moreover, as in the previous subsection (time-transient analysis), the 

present results are validated by comparison with those obtained using FOM. 

 

4.3.1 Modal Analysis 

In this subsection, the modal analysis is executed. The relevant example is the 

transonic fan blade, NASA Rotor 67. The three-dimensional fan-blade configuration 

is discretized by 10-node tetrahedral elements with 𝑁𝑒 = 8,384, and corresponding 

number of the displacement DOFs is 𝑁 = 50,268 . The material of the blade 

structure is titanium alloy, i.e., Young’s modulus 𝐸 = 117 GPa , density 𝜌 =

4,539.5 kg/m3 , and Poisson’s ratio ν = 0.3.  

To construct the reduced-order representation, a sampling analysis using the full-

order representation under the pure centrifugal load condition, in which the number 

of time steps is 100 at intervals of 0.0001s. The base surface of the blade is clamped. 

For POD-ECSW, the training tolerance 𝜖𝑁𝑁𝐿𝑆  is set to be 10−3 . Then, 148 

selected elements and corresponding weights are determined by using 30 POD basis 

vectors with a 98% energy ratio (Eq. (2.23)) to FOM. 

Table 4.7 shows a comparison of the natural frequencies. When compared with 

the results obtained by FOM, POD-ECSW shows good agreement within 0.5% of 

the average discrepancy. In addition, the online computational time consumed by 

POD-ECSW is 0.42 s, and that by FOM is 7.5s. Therefore, the computational cost is 
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significantly improved as it is reduced by 95%. 

It is important to create a Campbell diagram to evaluate the resonance under 

excitations. To do this, dynamic analyses within operating ranges are performed, and 

this will require a significant amount of computation. In the projection-based MOR 

framework, once the ROMs are constructed, it will be straightforward to perform the 

modal analysis at various rotating conditions. This advantage makes it easier to 

create the Campbell diagram for resonance evaluation. Figure 4.12 shows a 

Campbell diagram for resonance evaluation. POD-ECSW exhibits a satisfactory 

correlation with FOM prediction. Specifically, when the rotational speed is increased, 

the natural frequency of each mode is also increased by the rotational effect. 

However, there is a difference in its increase rate for each mode. This may be 

explained by Southwell effect [81], by which coupling between the flapping and 

lead–lag modes occurs, owing to the difference in their natural frequencies’ increase 

rate among the modes as the blade rotates. 
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(a) Discretized fan blade (b) Reduced mesh (148 elements) 

Fig. 4.11 NASA Rotor 67 fan blade for the modal analysis 

 

 

Table 4.7 Comparison of the natural frequencies in the rotating condition (Hz) 
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Fig. 4.12 Campbell diagram. 
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4.3.2 Forced Vibration Analysis 

In this subsection, a comparison of the computational performance will be 

examined among the different MOR frameworks when applied to rotating 

component forced vibration analysis. The procedure of the forced vibration analysis 

includes the nonlinear static solution for the evaluation of the stiffness variation by 

the centrifugal force and time-harmonic solution to obtain the steady-state frequency 

response. The relevant approaches considered in this study are as follows: 

• FOM: The pre-stressed stiffness matrix 𝐊 is obtained by the nonlinear static 

analysis. Then, linear frequency response analysis is conducted. This will be a 

reference representation. 

• POD: The nonlinear static- and linear frequency analyses are conducted in 

sequence by solely applying POD-Galerkin projection. 

• POD-ECSW: The nonlinear static- and linear frequency analyses are conducted 

by using a small number of selected elements determined via ECSW. 

To evaluate the accuracy of the present MOR, two indices representing the relative 

displacement field and von-Mises stress discrepancies are defined as follows: 

𝐸𝐼𝑢(%) =
√∑ ‖𝐮𝑖

𝐹𝑂𝑀 − 𝐮𝑖
𝑅𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

√∑ ‖𝐮𝑖
𝐹𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

× 100  (4.12) 

𝐸𝐼𝜎(%) =
√∑ ‖𝜎𝑖

𝐹𝑂𝑀 − 𝜎𝑖
𝑅𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

√∑ ‖𝜎𝑖
𝐹𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

 × 100 (4.13) 
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where 𝑛𝑠 denotes the number of imposed frequencies. 𝐮 and 𝜎 are the complex 

displacement and the maximum von-Mises stress obtained from the alternating stress, 

respectively. In addition, to compare the computational efficiency between FOM and 

ROM, the online speed-up factor 𝑆 (𝑡𝐹𝑂𝑀/𝑡𝑅𝑂𝑀) is introduced. 

The relevant example is the first-stage blade of a 75-MW GT11N gas turbine. The 

three-dimensional turbine blade configuration is discretized by 10-node tetrahedral 

elements with 𝑁𝑒 = 376,538, and corresponding number of the displacement DOFs 

is 𝑁 = 1,774,512 . The material of the blade structure is Alloy In-738LC with a 

Rayleigh damping mass matrix multiplier of 50𝑠−1  (i.e., Young’s modulus 𝐸 =

200.6 GPa , density 𝜌 = 8,420 kg/m3  , and Poisson’s ratio ν = 0.28 ). For the 

frequency response analysis, a transverse tip harmonic force of 1,000 N is imposed 

using the frequency band extending from 500 to 4,500 Hz at the interval of 40 Hz.  

Regarding the off-line stage, the snapshot matrix 𝐖𝑑 is constructed based on the 

nonlinear time-transient analysis results. The relevant sampling analysis is 

performed under the sinusoidal angular velocities of amplitude 3,600 RPM are 

imposed along the transverse, longitudinal and rotation axes for each. The relevant 

sinusoidal function oscillates during 5 periods with the frequency of 1,000 Hz. Then, 

50 POD basis vectors are extracted, which have a 98% energy ratio to FOM. 

For POD-ECSW, the training tolerance 𝜖𝑁𝑁𝐿𝑆  is set to be 10−3 . Then, 605 

selected elements and corresponding weights are determined by using 50 POD basis 

vectors, as shown in Fig. 4.13. 

Table 4.8 compares the relative discrepancy and speed-up factor between FOM 
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and ROMs. Both POD and POD-ECSW achieve a significantly higher accuracy (the 

average relative discrepancies within 1.78% and 2.19% for 𝐸𝐼𝑢  and 𝐸𝐼𝜎 ). 

Moreover, POD-ECSW shows an improved speed-up factor compared to POD. 

Figure 4.14 shows the variations of the relative discrepancies in terms of the 

parametrized rotational velocity. In all the cases, the relevant discrepancies are 

observed to be within 2%. Specifically, the maximum transverse displacement is 

demonstrated for different rotational velocity, as shown in Fig. 4.15. Except for the 

slight deviation in the high frequency range, the peak location and corresponding 

displacement responses of ROMs are identical to those by FOM. 
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(a) Discretized turbine blade (b) Reduced mesh (605 elements) 

Fig. 4.13 GT11N turbine blade for the forced vibration analysis 

 

Table 4.8 Comparison of the relative discrepancy and speed-up factor for the 

GT11N turbine blade (𝛀 = 𝟑, 𝟔𝟎𝟎 𝐫𝐩𝐦) 
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(a) 𝑬𝑰𝒖 

 

(b) 𝑬𝑰𝝈 

Fig. 4.14 Comparison of the relative discrepancies in terms of 𝛀 
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(a) 𝛀 = 𝟏, 𝟖𝟎𝟎 𝐫𝐩𝐦 

 

 

(b) 𝛀 = 𝟓, 𝟒𝟎𝟎 𝐫𝐩𝐦 

Fig. 4.15 Maximum transverse displacement amplitude for the different 𝛀
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Chpater 5  

Parametric Hyper Reduced-order Model for a 

Geometrically Imperfect Component 

As mentioned in Introduction, if the FE representation varies owing to the 

geometric imperfection, the reduced-order representation will be expensively 

reconstructed. In this dissertation, to overcome such limitation, both defect-

parametric reduced-order model (DpROM) and hyper-reduction will be used.  

DpROM constructs a geometrically nonlinear ROM that is capable of describing 

parameterized shape defect. In its off-line stage, a set of the shape defects that may 

occur during manufacturing or operation will be defined as a displacement field with 

respect to the nominal FE representation. The reduced basis is extracted by using the 

model-based approach based on the nominal FE formulation and pre-defined defect-

displacement subspace alone. Subsequently, the reduced stiffness tensor is 

constructed by projecting the element-level full-order tensor with the reduced basis. 

In the online stage, ROM, which parametrically relies on the defect amplitude, is 

defined as a polynomial function comprising the reduced stiffness tensors with 

regard to the reduced coordinate. In the following sections, the relevant formulation 

and framework of the proposed ROM will be presented. 
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Fig. 5.1 Two-step movement of a continuum body regarding the defected geometry. 

 

5.1 Modified Strain Approximation 

In the current DpROM framework, the geometric imperfections are described as 

a set of the user-defined displacement fields (i.e., an additional assumed 

displacement), which will be integrated into the conventional strain formulation. 

This idea was suggested by Budiansky [82] for the post-buckling behavior in the 

presence of defects. Therefore, the total displacement fields of a structural object 

may be decomposed into the following two components: a defect-displacement 

(constant component) and an actual displacement (variable component). Beyond the 

deformation, a material point of the final coordinate in terms of the nominal (initial) 

configuration is defined as follows: 

𝐱 = 𝐱0 + 𝐮𝑑 + 𝐮,  (5.1) 

where 𝐱0 = {𝑥0, 𝑦0, 𝑧0}, 𝐮𝑑 = {𝑢𝑑 , 𝑣𝑑 , 𝑤𝑑}, and 𝐮 = {𝑢, 𝑣, 𝑤} are the nominal 



 

93 

 

coordinates, and the defect- and actual displacement fields, respectively. Herein, 

𝐮𝑑 is a user-defined displacement field that represents the shape defect. The final 

coordinate 𝐱 can be described by going through a two-step movement approach 

from the nominal coordinate 𝐱0, as shown in Fig. 5.1.  

Assuming a continuous mapping, the differential line segments d𝐱𝑑 and d𝐱 in 

the defected and deformed configuration can be expressed with respect to d𝐱0, as 

follows: 

d𝐱𝑑 = 𝐅𝑑d𝐱0,  (5.2) 

d𝐱 = 𝐅𝑓d𝐱𝑑 = 𝐅𝑓𝐅𝑑d𝐱0.  (5.3) 

where deformation gradients 𝐅𝑑 and 𝐅𝑓 are rearranged as follows: 

𝐅𝑑 =
𝜕𝐱𝑑
𝜕𝐱0

= 𝐈 +
𝜕𝐮𝑑
𝜕𝐱0

= 𝐈 +𝐇𝑑,  (5.4) 

𝐅𝑓 =
𝜕𝐱

𝜕𝐱𝑑
= 𝐈 +

𝜕𝐮

𝜕𝐱𝑑
= 𝐈 +𝐇𝑓,   (5.5) 

where 𝐅𝑑  and 𝐅𝑓  are the defect-deformation gradient in terms of the nominal 

coordinates and the final-deformation gradient in terms of the defected coordinates, 

respectively. 𝐇𝑑  and 𝐇𝑓  are the displacement gradients in the defected and 

deformed configuration, respectively. 

By the chain rule, the displacement gradient with respect to the nominal 

coordinates is defined as follows: 
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𝐇 =
𝜕𝐮

𝜕𝐱0
=
𝜕𝐮

𝜕𝐱𝑑

𝜕𝐱𝑑
𝜕𝐱0

= 𝐇𝑓𝐅𝑑  ⇔  𝐇𝑓 = 𝐇𝐅𝑑
−1.  (5.6) 

Using the relationship between Eqs. (5.2) - (5.6), the stretch between the deformed 

and defected configurations can be expressed as follows: 

𝑆 = 𝑑𝐱𝑇𝑑𝐱 − 𝑑𝐱𝑑
𝑇𝑑𝐱𝑑 

    = 𝑑𝐱0
𝑇𝐅𝑑

𝑇(𝐅𝑓
𝑇𝐅𝑓 − 𝐈)𝐅𝑑𝑑𝐱0 

    =  𝑑𝐱0
𝑇 (𝐇+𝐇𝑇 +𝐇𝑇𝐇+𝐇𝑑

𝑇𝐇+𝐇𝑇𝐇𝑑) 𝑑𝐱0. 

(5.7) 

Considering the strain measure with regard to the defected configuration, the 

modified Green-Lagrange strain tensor (second-order) is expressed as follows: 

𝑆 = 2d𝐱𝑑
𝑇𝐄𝑓d𝐱𝑑 = 2d𝐱0

𝑇𝐅𝑑
𝑇𝐄𝑓𝐅𝑑d𝐱0. (5.8) 

This leads to 

𝐄𝑓 =
1

2
(𝐅𝑓
𝑇𝐅𝑓 − 𝐈) 

      =
1

2
𝐅𝑑
−𝑇(𝐇 +𝐇𝑇 +𝐇𝑇𝐇+𝐇𝑑

𝑇𝐇+𝐇𝑇𝐇𝑑)𝐅𝑑
−1.  

(5.9) 

Assuming the shape defects are small (i. e. , ‖𝐇𝑑‖ ≪ 1), an inverse of the defect-

deformation gradient 𝐅𝑑
−1 of Eq. (5.9) will be expanded via Neumann series [83] as 

follows: 

𝐅𝑑
−1 = (𝐈 + 𝐇𝑑)

−1 ≈ ∑(−𝐇𝑑)
𝑛

𝑁

𝑛=0

, (5.10) 

where 𝑁 is the order for trimming the Neumann expansion sum. 
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Considering the first-order Neumann series in Eq. (5.10) (i.e., 𝐅𝑑
−1 = (𝐈 − 𝐇𝑑)), 

and substituting it into Eq. (5.9), the modified Green-Lagrange strain tensor can be 

written as follows while neglecting term 𝒪(𝐇𝑑
2):  

𝐄𝑓,𝑁 =
1

2
(𝐇 + 𝐇𝑇 +𝐇𝑇𝐇+𝐇𝑑

𝑇𝐇𝑇 −𝐇𝐇𝑑 −𝐇𝑑
𝑇𝐇𝑇𝐇− 𝐇𝑇𝐇𝐇𝑑). (5.11) 
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5.2 Finite Element Formulation 

For the FE-based nonlinear representation using the three-dimensional (3D) 

continuum element, the modified strain tensor, Eq. (5.11), can be rewritten as follows:  

𝐄𝑓,𝑁 = (𝐆 +
1

2
𝐀1 +𝐀2 + 𝐀3𝐀1) 𝐁̅𝐮

𝑒 , (5.12) 

where 

 

(5.13) 

 

(5.14) 

 

(5.15) 
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(5.16) 

where 𝐁̅ ∈ ℝ9×𝑛𝑒  and 𝐮𝑒 ∈ ℝ𝑛𝑒  are the shape function derivative matrix and 

elemental deformed-displacement vector of the 3D continuum finite element in 𝑛𝑒 

DOFs, respectively. 𝐆 ∈ ℝ6×9  is the constant localization matrix. 𝐀1 , 𝐀2 , and 

𝐀3 ∈ ℝ
6×9 are the displacement gradient matrices corresponding to the nominal 

configuration (e.g., 𝑢,𝑥 = 𝜕𝑢/𝜕𝑥0 and 𝑤𝑑,𝑦 = 𝜕𝑤𝑑/𝜕𝑦0, by using Voigt notation), 

respectively. 

While considering Eq. (5.16), the strain variation in the virtual work expression 

can be expressed as follows: 

𝛿𝐄𝑓,𝑁 = (𝐆 + 𝐀1 + 𝐀2 + 2𝐀3𝐀1)𝐁̅𝛿𝐮
𝑒 

            = 𝐁 𝛿𝐮𝑒 , 
(5.17) 

where 𝐁 is the strain-displacement matrix. 

The element-level internal force from the virtual work of the FE-based 

representation can be written as follows: 

𝐟𝑖𝑛𝑡
𝑒 = ∫ 𝐁𝑇𝐂𝐄𝑓,𝑁d𝑉𝑑

𝑒

𝑉𝑑
𝑒

, (5.18) 

where 𝐂 ∈ ℝ6×6  is the constitutive matrix of the corresponding linear elastic 
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material and 𝑉𝑑
𝑒 is the element-level volume in the defected configuration. 

By substituting Eqs. (5.12) and (5.17) into Eq. (5.18), the element-level internal 

force can be explicitly written as follows: 

𝐟𝑖𝑛𝑡
𝑒 = ∫ 𝐁̅T(𝐆 + 𝐀1 + 𝐀2 + 2𝐀3𝐀1)

T

𝑉𝑑
𝑒

𝐂  

             (𝐆 +
1

2
𝐀1 + 𝐀2 + 𝐀3𝐀1) 𝐁̅𝐮

𝑒d𝑉𝑑
𝑒 , 

(5.19) 

Herein, to explicitly compute the stiffness coefficients of the internal force, the 

displacement gradient matrices can be rewritten as follows: 

𝐀1 = 𝐋1 ∙ (𝐁̅𝐮
𝑒), (5.20) 

𝐀2 = 𝐋2 ∙ (𝐁̅𝐮𝑑
𝒆 ), (5.21) 

𝐀3𝐀1 = (𝐋3 ∙ (𝐁̅𝐮𝑑
𝒆 )) ∙ (𝐁̅𝐮𝑒), (5.22) 

where 𝐋1, 𝐋2 ∈ ℝ
6×9×9 and 𝐋3 ∈ ℝ

6×9×9×9 are the constant localization matrices, 

whose detailed expression is provided in Appendix A. 

Equation (5.19) can be divided into contributions that represent the linear, 

quadratic, and cubic terms for the displacement 𝐮𝑒, as follows: 

𝐟𝑙𝑖𝑛𝑒𝑎𝑟
𝑒 = ∫ 𝐁̅𝑇(𝐆𝑇𝐂𝐆 + 𝐆𝑇𝐂𝐀2 + 𝐀2

𝑇𝐂𝐆 + 𝐀2
𝑇𝐂𝐀2)

𝑉𝑑
𝑒

𝐁̅𝐮𝑒d𝑉𝑑
𝑒 , (5.23) 

𝐟𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐
𝑒 = ∫ 𝐁̅𝑇 (

1

2
𝐆𝑇𝐂𝐀1 + 𝐀1

𝑇𝐂𝐆 +
1

2
𝐀2

𝑇𝐂𝐀1 + 𝐀1
𝑇𝐂𝐀2

𝑉𝑑
𝑒

+ 2𝐀1
𝑇𝐀3

𝑇𝐂𝐆 + 𝐆𝑇𝐂𝐀3𝐀1 + 2𝐀1
𝑇𝐀3

𝑇𝐂𝐀2

+ 𝐀2
𝑇𝐂𝐀3𝐀1) 𝐁̅𝐮

𝑒d𝑉𝑑
𝑒 , 

(5.24) 



 

99 

 

𝐟𝑐𝑢𝑏𝑖𝑐
𝑒 = ∫ 𝐁̅𝑇 (

1

2
𝐀1

𝑇𝐂𝐀1 + 2𝐀1
𝑇𝐀3

𝑇𝐂𝐀3𝐀1 + 𝐀1
𝑇𝐀3

𝑇𝐂𝐀1
𝑉𝑑
𝑒

+ 𝐀1
𝑇𝐂𝐀3𝐀1) 𝐁̅𝐮

𝑒d𝑉𝑑
𝑒 . 

(5.25) 

These full-order terms will be expressed in the form of the following tensor 

relationships: 

𝐟𝑙𝑖𝑛𝑒𝑎𝑟
𝑒 = 𝐊𝑒(𝐮𝑑

𝑒) ∙
2

𝐮𝑒, (5.26) 

𝐟𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐
𝑒 = 𝐊𝑒(𝐮𝑑

𝑒) 
3

: (𝐮𝑒⊗𝐮𝑒), (5.27) 

𝐟𝑐𝑢𝑏𝑖𝑐
𝑒 = 𝐊𝑒(𝐮𝑑

𝑒)
4

⋮ (𝐮𝑒⊗𝐮𝑒⊗𝐮𝑒), (5.28) 

where 

𝐊𝑒(𝐮𝑑
𝑒) = 𝐊𝑒2𝑛 + 𝐊𝑒3𝑑 ⋅ 𝐮𝑑

𝑒 + 𝐊𝑒4𝑑𝑑  : (𝐮𝑑
𝑒 ⊗ 𝐮𝑑

𝑒)
2

, (5.29) 

𝐊𝑒(𝐮𝑑
𝑒) =

3
𝐊𝑒3𝑛 + 𝐊𝑒4𝑑 ⋅ 𝐮𝑑

𝑒 + 𝐊𝑒5𝑑𝑑  : (𝐮𝑑
𝑒 ⊗ 𝐮𝑑

𝑒), (5.30) 

𝐊𝑒(𝐮𝑑
𝑒)

4
= 𝐊𝑒4𝑛 + 𝐊𝑒5𝑑 ⋅ 𝐮𝑑

𝑒 + 𝐊𝑒6𝑑𝑑  : (𝐮𝑑
𝑒 ⊗ 𝐮𝑑

𝑒), (5.31) 

where the left-subscript of each tensor is its order. The letters “𝑛” and “𝑑” represent 

the tensor associated with only the nominal and defected geometry, respectively. 

Furthermore, "𝑑𝑑" indicates the higher tensor operand that is multiplied with the 

elemental defect-displacement vector 𝐮𝑑
𝑒
 twice. 
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5.3 Reduced Tensors and Nonlinear Terms 

To compute the reduced stiffness tensors, a suitable reduced basis 𝐕 ∈

ℝ𝑁×𝑚 (𝑚 ≪ 𝑁) and a set of displacement vectors 𝐔 ∈ ℝ𝑁×𝑚𝑑 that represent 𝑚𝑑 

predefined shape defects are designated. Then, elemental displacements 𝐮𝑒 and 𝐮𝑑
𝑒  

are approximated in a weighted linear combination of the set of basis vectors as 

follows: 

𝐮𝑒 ≈ 𝐕𝑒𝛈, (5.32) 

𝐮𝑑
𝑒 ≈ 𝐔𝑒𝝃, (5.33) 

where 𝛈 ∈ ℝ𝑚  and 𝝃 ∈ ℝ𝑚𝑑  are the reduced coordinate vector and defect 

amplitude vector, respectively. 𝐕𝑒 ∈ ℝ𝑛𝑒×𝑚 and 𝐔𝑒 ∈ ℝ𝑛𝑒×𝑚𝑑 are the element-

level contributions of 𝐕 and 𝐔, respectively. 

A reduced basis comprises three basis vectors via the following model-driven 

approaches: free vibration modes 𝚽, modal derivatives 𝚯, and defect sensitivities 

𝚵  (i.e., 𝐕 = [𝚽,𝚯, 𝚵 ] ), which can be directly obtained from the nominal FE 

representation. 

Recalling Eqs. (2.7) and (2.14), the free vibration modes 𝚽  and modal 

derivatives 𝚯 are computed as follows: 

(𝐊|𝑒𝑞 −𝜔𝑖
2𝐌)𝛟𝑖 = 𝟎, (5.34) 

𝛉𝑖𝑗 =
𝜕𝛟𝑖
𝜕𝛈𝑗

|
𝑒𝑞

= −𝐊|𝑒𝑞
−𝟏
𝜕𝐊𝑇(𝛟𝒋𝛈𝑗, 0)

𝜕𝛈𝑗
|
𝑒𝑞

𝛟𝑖, (5.35) 

where 
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𝜕𝐊𝑇(𝛟𝒋𝛈𝑗, 0)

𝜕𝛈𝑗
|
𝑒𝑞

= ∫ 𝐁̅𝑇(𝐆𝑇𝐂𝐀1 + 2𝐀1
𝑇𝐂𝐆)

𝑉𝑛

𝐁̅d𝑉𝑛, (5.36) 

where 𝐊|𝑒𝑞  represents tangent stiffness matrix 𝐊𝑇(𝐮, 𝐮𝑑)  at the equilibrium 

position (𝐮 = 0, 𝐮𝑑 = 0)  𝜔𝑖  and 𝛟𝑖  are the 𝑖 th eigenvalue and its associated 

eigenvector, respectively. Moreover, the contribution of the spin-softening effect is 

considered for the rotating component (i.e., 𝐊|𝑒𝑞 = 𝐊𝑇(0,0) − 𝐊𝑠𝑝). 

Analogous to the modal derivatives, the defect sensitivities 𝚵 can be obtained by 

differentiating the free vibration modes with respect to the defect amplitude, and 

are expressed as follows: 

𝚵𝑖𝑗 =
𝜕𝛟𝑖
𝜕𝝃𝑗

|
𝑒𝑞

= −𝐊|𝑒𝑞
−𝟏
𝜕𝐊𝑇(0,𝐔𝒋𝝃𝑗)

𝜕𝝃𝑗
|
𝑒𝑞

𝛟𝑖, (5.37) 

where 

𝜕𝐊𝑇(0, 𝐔𝒋𝝃𝑗)

𝜕𝝃𝑗
|
𝑒𝑞

= ∫ 𝐁̅𝑇(𝐆𝑇𝐂𝐀2 + 𝐀2
𝑇𝐂𝐆)

𝑉𝑛

𝐁̅d𝑉𝑛. (5.38) 

When a set of 𝑚Φ  free vibration modes and 𝑚𝑑  shape defects are selected, 

𝑚Φ(𝑚Φ + 1)/2 modal derivatives and 𝑚𝑑𝑚Φ defect sensitivities are obtained. 

Consequently, m vectors of the reduced basis 𝐕 correspond to (3/2 +𝑚Φ/2 +

𝑚𝑑) 𝑚Φ basis vectors. in the form of the following tensor relationships: 

By substituting Eqs. (5.32) and (5.33) into (5.23) - (5.25), the elemental reduced 

tensors can be obtained along with Einstein’s notation: 

𝑄𝐼𝐽
𝑒 = ∫ 𝛤𝑖𝐼𝐺𝑗𝑖𝐶𝑗𝑘𝐺𝑘𝑙𝛤𝑘𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

2𝑛 , (5.39) 
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𝑄𝐼𝐽𝐾
𝑒 = ∫ 𝛤𝑖𝐼 (

1

2
𝐺𝑗𝑖𝐶𝑗𝑘𝐿1𝑘𝑙𝑎𝛤𝑎𝐾 + 𝐿1𝑗𝑖𝑎𝛤𝑎𝐾𝐶𝑗𝑘𝐺𝑘𝑙)𝛤𝑙𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

,3𝑛  (5.40) 

𝑄𝐼𝐽𝐾
𝑒 = ∫ 𝛤𝑖𝐼(𝐺𝑗𝑖𝐶𝑗𝑘𝐿2𝑘𝑙𝑎𝛶𝑎𝐾 + 𝐿2𝑗𝑖𝑎𝛶𝑎𝐾𝐶𝑗𝑘𝐺𝑘𝑙)𝛤𝑙𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

,3𝑑  (5.41) 

𝑄𝐼𝐽𝐾𝐿
𝑒 =

1

2
∫ 𝛤𝑖𝐼𝐿1𝑗𝑖𝑎𝛤𝑎𝐾𝐶𝑗𝑘𝐿1𝑘𝑙𝑏𝛤𝑏𝐿𝛤𝑙𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

,4𝑛  (5.42) 

𝑄𝐼𝐽𝐾𝐿
𝑒 = ∫ 𝛤𝑖𝐼

(

  
 

1

2
𝐿2𝑗𝑙𝑎𝛶𝑎𝐿𝐶𝑗𝑘𝐿1𝑘𝑙𝑏𝛤𝑏𝐾

+𝐿1𝑗𝑖𝑎𝛤𝑎𝐾𝐶𝑗𝑘𝐿2𝑘𝑙𝑏𝛶𝑏𝐿
+2𝐿3𝑗𝑖𝑎𝑏𝛶𝑏𝐿𝛤𝑎𝐾𝐶𝑗𝑘𝐺𝑘𝑙
+𝐺𝑗𝑖𝐶𝑗𝑘𝐿3𝑘𝑙𝑎𝑏𝛶𝑏𝐿𝛤𝑎𝐾 )

  
 
𝛤𝑙𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

,4𝑑  (5.43) 

𝑄𝐼𝐽𝐾𝐿
𝑒 = ∫ 𝛤𝑖𝐼𝐿2𝐽𝑙𝑎𝛶𝑎𝐾𝐶𝑗𝑘𝐿2𝑗𝑖𝑎𝛶𝑏𝐿𝛤𝑙𝐽d𝑉𝑑

𝑒 ,
𝑉𝑑
𝑒

4𝑑𝑑  (5.44) 

𝑄𝐼𝐽𝐾𝐿𝑀
𝑒 = ∫ 𝛤𝑖𝐼 (

1

2
𝐿1𝑗𝑙𝑎𝛤𝑎𝐾𝐶𝑗𝑘𝐿3𝑘𝑙𝑏𝑐𝛶𝑐𝑀𝛤𝑏𝐿

+𝐿3𝑗𝑖𝑎𝑏𝛶𝑏𝑀𝛤𝑎𝐾𝐶𝑗𝑘𝐿1𝑘𝑙𝑐𝛤𝑙𝐿

)𝛤𝑙𝐽d𝑉𝑑
𝑒

𝑉𝑑
𝑒

,5𝑑  (5.45) 

𝑄𝐼𝐽𝐾𝐿𝑀
𝑒 = ∫ 𝛤𝑖𝐼 (

2𝐿3𝑗𝑖𝑎𝑏𝛶𝑏𝐿𝛤𝑎𝐾𝐶𝑗𝑘𝐿2𝑘𝑙𝑐𝛶𝑐𝑀
+𝐿2𝑗𝑙𝑎𝛶𝑎𝐿𝐶𝑗𝑘𝐿3𝑘𝑙𝑏𝑐𝛶𝑐𝑀𝛤𝑏𝐾

)𝛤𝑙𝐽d𝑉𝑑
𝑒

𝑉𝑑
𝑒

,5𝑑𝑑  (5.46) 

𝑄𝐼𝐽𝐾𝐿𝑀𝑁
𝑒 = 2∫ 𝛤𝑖𝐼𝐿3𝑗𝑖𝑎𝑏𝛶𝑏𝑀𝛤𝑎𝐿𝐶𝑗𝑘𝐿3𝑘𝑙𝑐𝑑𝛶𝑑𝑁𝛤𝑐𝐾𝛤𝑙𝐽d𝑉𝑑

𝑒

𝑉𝑑
𝑒

,6𝑑𝑑  (5.47) 

where 𝚪  = 𝐁̅𝐕𝑒  and 𝜰 = 𝐁̅𝐔𝑒  denote the projections of the shape function 

derivative matrix over the element-level bases. The right-subscript of each tensor is 

its dimensions. Accordingly, the capital letter represents m size (for the underlined 

one, 𝑚𝑑 size), e.g., Q𝑒 ∈ ℝ𝑚×𝑚×𝑚×𝑚×𝑚𝑑×𝑚𝑑
6𝑑𝑑 . 

The global reduced tensor for each contribution can be obtained as the summation 
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over all element-level tensors: 

𝐐∗ =∑ 𝐐𝑒∗

𝑁𝑒

𝑒=1

,   ∗= 2n, 3n,… ,6dd. (5.48) 

Herein, ∗𝐐𝑒 is computed over the nominal volume. If the volume changes due to 

defects, an approximated volume integration is considered to include the defect 

contribution [57]. 

Consequently, the reduced nonlinear internal force is defined as a polynomial 

representation comprising the global reduced tensor: 

𝐟𝑖𝑛𝑡 = 𝐐(𝜉) ∙2 𝛈⏟      
𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝐐(𝜉)
3

∶ (𝛈⊗ 𝛈)⏟          
𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

+ 𝐐(𝜉)
4

⋮ (𝛈⊗ 𝛈⊗𝛈)⏟              
𝑐𝑢𝑏𝑖𝑐

, 
(5.49) 

where 

𝐐(𝜉)2 = 𝐐2𝑛 + 𝐐 ∙ 𝝃 +3𝑑 𝐐4𝑑𝑑 ∶  (𝝃 ⊗ 𝝃), (5.50) 

𝐐(𝜉)3 = 𝐐3𝑛 + 𝐐 ∙ 𝝃 +4𝑑 𝐐5𝑑𝑑 ∶  (𝝃 ⊗ 𝝃), (5.51) 

𝐐(𝜉)4 = 𝐐4𝑛 + 𝐐 ∙ 𝝃 +5𝑑 𝐐6𝑑𝑑 ∶  (𝝃 ⊗ 𝝃), (5.52) 

Herein, spin-softening matrix 𝐊𝑠𝑝 is added to 𝐐2𝑛  for the rotating component. 

Similar to Eq. (5.49), the reduced tangent stiffness matrix is obtained as follows: 

𝐊̂𝑇 =
𝜕𝐟𝑖𝑛𝑡
𝜕𝛈

= 𝐐(𝜉)
2

+  2 𝐐(𝜉) ∙ 𝛈 + 3 𝐐(𝜉) ∶ 
4

(𝛈⊗ 𝛈)3 . (5.53) 

It is worth noting that fast online computation can be achieved because the 

resulting reduced nonlinear terms (Eqs. (5.49) and (5.53)) have the same dimension 

as the reduced basis owing to the tensorial formulation. However, for a larger 
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dimensional nonlinear representation, reducing the high-order tensors up to the 

sixth-order will require extensive computational time and resources during the off-

line stage. Mitigation of such computational load can be achieved via the hyper-

reduction method.  



 

105 

 

5.4 Hyper-reduced Tensors and Nonlinear Terms 

The hyper-reduction approach constructs the nonlinear terms only at a few 

optimally selected nodes or elements, which approximates the large number of 

nonlinear terms to reduce their dimension. Among the hyper-reduction methods, 

ECSW is considered suitable for FE-based structural applications, considering it 

directly approximates the reduced nonlinear terms while preserving the symmetric 

property [48]. Therefore, this thesis proposes the DpROM framework, including the 

ECSW method. The set of reduced high-order tensors are obtained by using only a 

small number of selected elements determined via ECSW. Consequently, the off-line 

expense for Eqs. (5.39) – (5.48) decreases substantially. The expression and 

computational procedure for the proposed DpROM are presented in this section. 

Based on QM-based ECSW (Section 3.4), the global reduced tensor for each 

contribution, Eq. (5.48), can be approximated as the summation over the selected 

elements only. 

𝐐∗ ≈ 𝐐ℎ∗ =∑𝑊𝑒( 𝐐𝑒∗ )

𝑒∈𝑬̃

,   ∗= 2n, 3n, … ,6dd. 
(5.54) 

where the letter “h” represents the hyper-reduced tensor via ECSW and 𝑊𝑒 is the 

weight of each selected element 𝑒 used to provide the optimal approximation of the 

global reduced tensor.  

Using the hyper-reduced tensors, the hyper-reduced nonlinear terms are obtained 

as follows:   
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𝐟𝑖𝑛𝑡,ℎ = 𝐐ℎ(𝜉) ∙2 𝛈 +  𝐐ℎ(𝜉) : (𝛈⊗ 𝛈) +3  𝐐ℎ(𝜉)4
 ⋮ (𝛈⊗ 𝛈⊗ 𝛈), (5.55) 

𝐊̂𝑡,ℎ =
𝜕𝐟𝑖𝑛𝑡,ℎ
𝜕𝛈

= 𝐐ℎ(𝜉)2
+  2 𝐐ℎ(𝜉) ∙ 𝛈 + 3 𝐐ℎ(𝜉)4

(𝛈⊗ 𝛈)3 . (5.56) 

Figure 5.2 shows the proposed computational algorithm of the proposed DpROM 

framework, including the ECSW method. In the off-line stage, the nominal full-order 

representation in Eq. (2.1) and the defect field are specified first, and then the 

relevant reduced basis is extracted. Next, the hyper-reduction approach, i.e., ECSW, 

optimally selects the elements and their weights. Herein, the QM approach is 

employed to mitigate expensive off-line computations on the full nonlinear FE 

representation required for the ECSW training vector (the reduced internal force, Eq. 

(3.16)). Then, the hyper-reduced-order tensors 𝐐ℎ∗ , which linearly contribute to the 

reduced internal force, are separately computed based on the selected elements and 

corresponding weights. Such QM-based ECSW would significantly reduce the off-

line computational cost associated with handling the high-dimensional tensors 

required to build the existing DpROM. 

Once the reduced basis V and hyper-reduced tensors 𝐐ℎ∗  are pre-computed in 

the off-line stage, the defect-parametric hyper-reduced-order representation is 

cheaply defined in polynomial form in the online stage. Then, the repeated static and 

dynamic simulations may be rapidly performed for the different defect amplitudes 

without going through the off-line stage process. 

The following is worth noting in the proposed approach: 
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• The dimension of the resulting ROM and the existing DpROM is m (the size 

of the reduced basis). Thus, the online computational cost will be 

approximately the same for both approaches. However, the proposed DpROM 

will reduce the overall cost compared with the existing one via its low-cost 

off-line stage process. 

• The reduced basis is selected conservatively, including 𝑚Φ(𝑚Φ + 1)/2  

modal derivatives and 𝑚𝑑𝑚Φ  defect sensitivities related to all 𝑚Φ  free 

vibration modes up to the higher-order. In other words, the size of the reduced 

basis 𝐕 features a quadratic growth with respect to the free vibration modes. 

Considering the large amount of reduced basis vectors, this will affect both the 

off-line and online expense. To reduce the number of bases by pre-selecting only 

a few modal derivatives, several approaches [65, 85, 86] can be employed. 

• If the defect parameter changes, the reduced mass 𝐌̂𝑑  and damping 𝐂̂𝑑 

matrices can be computed over the defected configuration during the online 

stage. Additionally, for the rotating component, the centrifugal force vector 

and spin-softening matrix will also be considered based on the defected 

configuration. However, the computational cost of such terms may be small 

in the online execution, and hence, will be negligible. 

• The proposed DpROM is built using the tensorial formulation based on a linear 

elastic material (i.e., a constant constitutive matrix 𝐂). In case of a nonlinear 

elastic material, the higher-order stiffness tensors should be reformulated along 

with the tensorial expansion of the corresponding material property expression.  
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Fig. 5.2 Computational algorithm of the proposed DpROM framework in the off-line and online stages. 
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5.5 Numerical Results 

5.5.1 Setup 

Herein, the validity of the proposed DpROM framework will be evaluated by 

comparing the computational performance of the five different approaches when 

applied to the geometrically nonlinear simulation, including the shape defect. The 

relevant representations considered in this dissertation are as follows: 

• FOM-d: The FOM with a shape defect involved by shifting the nominal FE 

discretization node locations. This will be a reference representation. 

• ROM-d: The ROM in tensorial form is obtained via FOM-d. Its reduced basis 

comprises free vibration modes and modal derivatives computed over the 

defected configuration. 

• ROM-n: The ROM in tensorial form is obtained via the nominal FE 

representation (i.e., no shape defect). Its reduced basis comprises free 

vibration modes and modal derivatives computed over the nominal 

configuration. 

• DpROM: The DpROM in tensorial form is obtained via the nominal FE 

representation and the set of pre-defined displacement fields. Its reduced basis 

comprises free vibration modes, modal derivatives, and defect sensitivities 

computed over the nominal configuration. The reduced tensors are up to the 

sixth-order (Eq. (5.48)). This was previously proposed by [57]. 

• DpHROM: The proposed DpROM, proposed for the first time in this 

dissertation, based on hyper-reduced tensors, comprises up to the sixth-order 
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(Eq. (5.54)) obtained via QM-based ECSW. Its reduced basis will be identical 

to that of DpROM. 

The aforementioned ROM frameworks are developed and implemented based on 

the open-source MATLAB package “YetAnotherFEcode” [87], which is a generic FE 

solver. All simulations are performed in MATLAB 2022a (compatible with 

MATLAB Tensor Toolbox [88]), using a single core Intel(R) i7-11700K @3.60 GHz 

and 128-GB RAM. 

To evaluate the accuracy of the ROM, an index representing the relative 

displacement field discrepancy is introduced as follows: 

𝐸𝐼(%) =
√∑ ‖𝐮𝑖

𝐹𝑂𝑀 − 𝐮𝑖
𝑅𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

√∑ ‖𝐮𝑖
𝐹𝑂𝑀‖

2

2𝑛𝑠
𝑖=1

× 100,  (5.57) 

where 𝐮𝑖 is the displacement vector for the ith step of FOM-d or the ROMs, i.e., 

ROM-n ROM-d, DpROM, and DpHROM. 𝑛𝑠 is the number of the time steps (for 

the time-transient analysis) or the number of the imposed frequencies (for the 

frequency response analysis). To compare the computational efficiency between 

FOM and ROM, the online speed-up factor 𝑆 and the total speed-up factor 𝑆𝑡𝑜𝑡are 

respectively defined as follows: 

𝑆 =
𝑡𝐹𝑂𝑀

𝑡𝑅𝑂𝑀
 , 𝑆𝑡𝑜𝑡 =

𝑛𝑜𝑛𝑡
𝐹𝑂𝑀

𝑛𝑜𝑓𝑓𝑡𝑜𝑓𝑓 + 𝑛𝑜𝑛𝑡
𝑅𝑂𝑀

, (5.58) 

where 𝑡𝐹𝑂𝑀 , 𝑡𝑅𝑂𝑀 , and 𝑡𝑜𝑓𝑓  are the online computational time consumed for 

FOM-d and ROM, and the off-line stage (𝑡𝑜𝑓𝑓 = 0  for FOM-d), respectively. In 
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particular, 𝑡𝑜𝑓𝑓  comprises the sum of the reduced basis extraction time and the 

reduced tensor computation time (for DpHROM, the element selection time is also 

added). 𝑛𝑜𝑛 is the number of the online simulations and 𝑛𝑜𝑓𝑓 refers to the number 

of the off-line terms constructed. 

In the following numerical examples, the generalized-𝛼 method is used to perform 

the nonlinear time-transient analysis. The tolerance concerning the nonlinear force 

residual was set as ϵ ≤ 10−6  for the converged solutions. For the proposed 

approach, the positive tolerance is set as the range 10−4 ≤ ϵ𝑛𝑛𝑙𝑠 ≤ 10
−2 , which 

was suggested in previous studies [48, 89] to select the set of elements 𝐄̃ in QM-

based ECSW. 

 

5.5.2 Three-dimensional slender beam 

The first example is a 3D slender beam clamped at both ends, similar to the one 

in [56]. The beam configuration, having length 𝑙𝑥 = 2𝑚, width 𝑏𝑦 = 0.2𝑚, and 

thickness 𝑡𝑧 = 0.05𝑚, is discretized into 20-node hexahedral elements with 𝑁𝑒 =

375, and the corresponding number of the displacement DOFs is 𝑁 = 6, 636. A time 

varying force is applied to the central node. Furthermore, the imposed frequency ω 

is chosen as the average of the first and second natural frequencies of the undamped 

linear component to investigate the geometrically nonlinear behavior involving large 

displacements. Rayleigh damping is used as the structural damping determined from 

a modal damping factor of 0.5 % for the first two natural frequencies. 

The single shape defect field 𝐔 = [𝐮𝑑 , 𝐯𝑑, 𝐰𝑑]
𝑇  is pre-defined as shifting the 
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vertical (z-direction) nominal FE discretization node location, given as follows:  

𝐰𝑑(𝑥, 𝜉) = 𝜉𝑡𝑧sin (
𝜋

𝑙𝑥
𝑥) ,   (5.59) 

and 𝐮𝑑 = 𝐯𝑑 = 0. Such displacement field represents the shallow-arch defect, and 

the defect amplitude 𝜉 = 1 corresponds to the maximum displacement of 𝑡𝑧 𝑚 for 

𝐔. The relevant analysis condition is shown in Fig. 5.3. 

Regarding the off-line stage, the reduced basis comprises the first five free 

vibration modes ( 𝑚Φ = 5 ) and the corresponding modal derivatives 𝑚Θ =

𝑚Φ(𝑚Φ + 1)/2 = 15 , for a total of 20 reduced basis vectors. For DpROM and 

DpHROM, five defect sensitivities (derivatives of five free vibration modes with 

respect to the single shape defect) are additionally included for a total of 25 reduced 

basis vectors. 

For DpHROM, the training dataset (i.e., time-varying displacement result) is 

obtained using the QM-based approach for over 200 time steps with a uniform 

timestep size of Δt = 𝑇0/50. Herein, 𝑇0 is the period of the harmonic force (i.e., 

𝑇0 = 2𝜋/𝜔). Then, 103 selected elements and associated weights are determined by 

the sparse NNLS with a tolerance of ϵ𝑛𝑛𝑙𝑠 = 10
−3, as shown in Fig. 5.4. 

After the reduced tensors are constructed for each ROM in the off-line stage, a 

time-transient online simulation is performed for up to 1,000 time steps. The relevant 

simulation is carried out for each defect amplitude 𝜉 = {0, 0.25, 0.5, 0.75, 1}, i.e., 

simulations for a total of five cases. 
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Fig. 5.3 Analysis condition of the 3D slender beam. 

 

 

 

Fig. 5.4 Reduced number of meshes for the 3D slender beam (103 selected elements). 
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First, the vertical displacement history at a certain node is selected to evaluate the 

accuracy of the ROM. Fig. 5.5 compares the displacement history at that node and 

shows the maximal displacement between the FOM and ROM predictions. ROM-d, 

DpROM, and DpHROM are found to be in good agreement when compared to FOM-

d. However, ROM-n yields an inaccurate solution owing to the defect. Then, the 

relative discrepancy is investigated. The relevant comparison is shown in Fig. 5.6. 

For all the cases, ROM-d, DpROM, and DpHROM achieve a significantly higher 

accuracy (the average relative discrepancy is within 2%). Conversely, ROM-n 

exhibits an unacceptable discrepancy even for a small defect amplitude. In addition, 

Fig. 5.7 illustrates a comparison of the von-Mises stress field at the time of maximum 

displacement (for a defect amplitude of 𝜉 = 1). Both DpROM and DpHROM show 

good agreement when compared with the FOM-d prediction. 

Next, to assess the accuracy and robustness of the proposed approach, the 

sensitivity analysis is performed with respect to a few numerical parameters.  

Figure 5.8 compares the model accuracy in terms of the number of reduced basis 

vectors (for a defect amplitude of 𝜉 = 1 ). In all ROMs except for ROM-n, it is 

observed that the accuracy tended to increase with the number of free vibration 

modes. When the number of free vibration modes is constant, DpHROM including 

defect sensitivities shows better accuracy than DpHROM without defect sensitivities. 

Specifically, when more than five free vibration modes and associated defect 

sensitivities are used, both DpROM and DpHROM build a robust reduced-order 

representation. Moreover, the QM-based ECSW of the proposed approach is 
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examined according to the choice of tolerance ϵ𝑛𝑛𝑙𝑠. Table 5.1 provides information 

regarding the number of selected elements and the corresponding relative 

discrepancy in terms of tolerance ϵ𝑛𝑛𝑙𝑠. As the tolerance ϵ𝑛𝑛𝑙𝑠 decreases, a larger 

number of elements are selected, resulting in better accuracy. In particular, when the 

number of reduced basis is constant, even if the tolerance ϵ𝑛𝑛𝑙𝑠  is smaller than 

10−3 , a satisfactory accuracy is achieved with a relative discrepancy of 

approximately 2%. When considering the above two comparison results, the 

proposed approach achieves both improved accuracy and computational efficiency 

by selecting a proper reduced basis and tolerance ϵ𝑛𝑛𝑙𝑠. 

The influence of the defect amplitude on accuracy is also investigated, as shown 

in Fig. 5.9. As the defect amplitude increases above unity, the accuracy of both 

DpROM and DpHROM tend to decrease. Such inaccuracy may be due to a deviation 

due to the small shape defect assumption (‖𝐇𝑑‖ ≪ 1 ). Therefore, quantitative 

bounds for the small defect hypothesis need to be further investigated. Finally, the 

computational cost based on the speed-up factor 𝑆  and 𝑆𝑡𝑜𝑡 , Eq. (5.58), is 

investigated. Table 5.2 summarizes the corresponding comparison. 

The online speed-up factor 𝑆 is found to be remarkably high considering that the 

online time required for time integration depends only on the reduced basis 

dimension owing to the explicit tensorial form. In particular, ROM-d demonstrates 

an improved speed-up factor compared to DpHROM, which includes additional 

basis vectors, the defect sensitivities, and the reduced basis. However, considering 

the total speed-up factor 𝑆𝑡𝑜𝑡  including the off-line time, both DpROM and 
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DpHROM yield a higher computational efficiency as the off-line cost for the reduced 

tensors is required once. Conversely, ROM-d requires a repeated off-line cost 

whenever the defect amplitude changes, as shown in Fig. 5.10. 

Additionally, it is worth noting that DpHROM achieves a significant reduction in 

terms of the off-line cost compared to both ROM-d and DpROM owing to the 

application of ECSW, which computes the reduced higher-order tensors by using 

only selected elements, as shown in Fig. 5.11. Furthermore, DpHROM is more 

computationally efficient for a larger-dimensional representation. 
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Fig. 5.5 Comparison of the displacement history at the maximal displacement location for the 3D slender beam. 
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Fig. 5.6 Comparison of the relative discrepancy for the 3D slender beam. 
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Fig. 5.7 von-Mises stress comparison at the time of the maximum displacement. 
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Fig. 5.8 Relative discrepancy comparison in terms of the number of the 

reduced basis vectors. 

 

Table 5.1 Comparison between the selected elements and the relative 

discrepancy in terms of the tolerance 𝛜𝒏𝒏𝒍𝒔.  

ϵ𝑛𝑛𝑙𝑠 10−1 10−2 10−3 10−4 10−5 

|𝐄̃| 37 77 103 142 178 

EI (%) 100.45 35.25 2.15 1.85 1.66 
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Fig. 5.9 Relative discrepancy comparison in terms of the defect amplitude  

(𝛏/𝒍𝒙 indicates the shape defect to beam length ratio). 

 

 

 

Fig. 5.10 Computational time comparison among ROMs. 
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Table 5.2 Computational expense between FOM and ROMs for the 3D slender beam 
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Fig. 5.11 Off-line cost in terms of the number of discretized elements. 
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5.5.3 54H60 propeller blade 

Turbomachinery rotating blades may exhibit geometric imperfections owing to 

the presence of the manufacturing defect or potential damage during operation (e.g., 

resonant vibration or bird strikes). Therefore, a numerical study is conducted to 

validate whether the proposed DpROM is capable of considering the influence of 

probable shape imperfections on a rotating blade. A 54H60 propeller blade of a C-

130H transport aircraft, which has a slender and twisted-surfaced configuration with 

a high aspect ratio, is taken as an example. The relevant configuration and analysis 

condition are shown in Fig. 5.12. The blade configuration is discretized using 24,151 

quadratic tetrahedral elements with 133,857 DOFs. The inner surface of the blade 

hub is clamped, and the harmonic excitation is applied to all nodes of the tip surface, 

at a constant rotational speed of 1,050 rpm. Herein, the imposed frequency ω is 

chosen as the first natural frequency to induce a high degree of geometric 

nonlinearity. The material properties corresponds to 7,000 series aluminum alloys 

with a Rayleigh damping mass matrix multiplier of 50 𝑠−1. 

The defect-displacement field is pre-defined as the linear superposition of two 

shape defects: twist and bending, i.e., 𝐔 = [𝐔1, 𝐔2] with their amplitude parameter 

vectors 𝝃 = [𝝃1, 𝝃2]
𝑇 . The first twist-shape defect 𝐔1 = [𝐮𝑑1, 𝐯𝑑1, 𝐰𝑑1]

𝑇  (Fig. 

5.13-a) is defined as follows:  

𝑢𝑑1(𝑥, 𝑦, 𝑧, 𝜉1) = 𝜉1𝑟sin(arctan(𝑥, 𝑧) + 𝜃𝑡 (
𝑦 − 𝑦̃

𝐿 − 𝑦̃
)) , (5.60) 
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𝑤𝑑1(𝑥, 𝑦, 𝑧, 𝜉1) = 𝜉1𝑟cos(arctan(𝑥, 𝑧) + 𝜃𝑡 (
𝑦 − 𝑦̃

𝐿 − 𝑦̃
)) , (5.61) 

where 𝑦̃ ≤ 𝑦 ≤ 𝐿  and 𝑣𝑑1 = 0 . 𝑟  and 𝜃𝑡  are the nodal positions converted to 

polar coordinates representing the radial distance from the rotation axis and pre-twist 

angle (set to be 1°), respectively. 𝑦̃ is y-coordinate corresponding to the beginning 

of the twist-defect at 40% in the span-wise position from the propeller blade hub. 

The second bending-shape defect 𝐔2 = [𝐮𝑑2, 𝐯𝑑2, 𝐰𝑑2]
𝑇 (Fig. 5.13-b) is given 

as follows: 

𝑤𝑑2(𝑦, 𝜉2) = 𝜉20.01𝑐 (
𝑦 − 𝑦̃

𝐿
) , (5.62) 

and 𝑢𝑑2 = 𝑣𝑑2 = 0. 

For all ROMs, the reduced basis is selected by the first seven free vibration modes 

and the corresponding 28 modal derivatives for a total of 36 reduced basis vectors. 

However, in for DpROM and DpHROM, 14 defect sensitivities (derivatives of the 

seven free vibration modes with respect to each shape defect) are additionally 

included for a total of 49 reduced basis vectors. 

For DpHROM, the QM-based training dataset is generated for up to 0.2 s (200 

time steps with ∆𝑡 = 0.001), and a set of selected elements 𝐄̃ is obtained by the 

sparse NNLS with a tolerance of 𝜖𝑛𝑛𝑙𝑠 = 10
−4, as shown in Fig. 5.14. 
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Fig. 5.12 Configuration and analysis condition for the 54H60 propeller blade. 
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(a) First defect, 𝐔𝟏: twist 

 

(b) Second defect, 𝐔𝟐: bending 

 

Fig. 5.13 Shape defects for the 54H60 propeller blade  

(the color map indicates the total displacement). 
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Fig. 5.14 Reduced number of meshes for the 54H60 propeller blade  

(166 selected elements). 
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In this example, an on-line simulation will be executed in both the time- and 

frequency domains. First, a nonlinear time-transient simulation was conducted for 

up to 1 s (1,000 time steps). The simulation was carried out for each defect amplitude 

selected by combining 𝜉1 = {−3, −1.5, 0, 1.5 3}  and 𝜉2 = {−1, −0.5, 0, 0.5 1} , 

i.e., the simulation is conducted for a total 25 cases. 

The total deformation history at the blade-tip surface is evaluated to assess the 

ROM accuracy. The total deformation was defined as follows: 

𝐮𝒊
𝑡𝑜𝑡 = √(𝐮𝑥,𝑖)

2
+ (𝐮𝑦,𝑖)

2
+ (𝐮𝑧,𝑖)

2
, 𝑖 ∈ 𝐍𝑡𝑖𝑝, (5.63) 

where 𝐍𝑡𝑖𝑝  and 𝐮𝑥,𝑖  are the list of nodes on the tip surface and displacement 

component in the x-direction at the ith node (same for 𝐮𝑦,𝑖 and 𝐮𝑧,𝑖), respectively.  

Figure 5.15 compares the total deformation history for the different defect 

conditions. Both DpROM and DpHROM exhibit a satisfactory correlation with the 

FOM-d prediction. In addition, the relative discrepancy 𝐸𝐼 is considered. As shown 

in Fig. 5.16, both DpROM and DpHROM yield a high accurate solution for all cases 

(average relative discrepancy is within 5%). However, ROM-n shows a reduced 

displacement accuracy when the defect amplitude increased. In particular, the 

relative discrepancy increases as the amplitude of the bending-defect 𝜉2 increases, 

whose direction corresponded to the first (bending) mode of the propeller blade. 

Furthermore, to evaluate the discrepancy at Point A (trailing edge at the blade tip) 

where the dominant shape defect occurs, the local error ϵ𝑢(𝑡)  is computed by 

‖𝐮𝐴
𝐹𝑂𝑀 − 𝐮𝐴

𝑅𝑂𝑀‖. Figure 5.17 shows a comparison of the local error history at Point 
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A. As shown in the figure, DpHROM exhibits a good accuracy, similar to ROM-d 

and DpROM. 

Next, a frequency response analysis is conducted to obtain the steady-state 

displacement within a specific frequency range. The rotating component is subjected 

to the sinusoidal load in the resonant condition, resulting in high cycle fatigue. 

Therefore, the frequency response analysis was useful for predicting its vibration 

characteristics. The relevant procedure for the rotating component is realized by 

conducting nonlinear static- and linear frequency response analyses in sequence. In 

particular, the stiffness variation, that is, the stress-stiffening and spin-softening 

effect, is evaluated from the nonlinear static solution owing to the centrifugal force. 

For the linear frequency response analysis, a transverse tip harmonic force of 500 𝑁 

is imposed using the frequency band ranging from 0–200 Hz at 1-Hz intervals. 

The online simulation is executed for 50 defect cases to examine the performance 

of the ROM within broad parametric variations. The set of defect parameter vectors 

𝝃 = [𝜉1, 𝜉2]
𝑇 are chosen randomly from 𝜉1,2 ∈ [0, 1], which is generated using the 

Latin hypercube sampling method [90], as shown in Fig. 5.18-a. The reduced basis 

and reduced tensors are similar to those used in the time-transient simulation, without 

going through the off-line stage. Fig. 5.18-b shows the relative discrepancy 𝐸𝐼 of the 

displacement field between FOM and ROMs. In all cases, the relevant discrepancies 

are observed to be within 2 %, except for ROM-n. In particular, the maximum 

transverse displacement is demonstrated for the different cases, as shown in Fig. 5.19. 

Depending on the defect parameter, slight deviations are observed owing to the peak 



 

131 

 

location and corresponding displacement responses, thereby indicating that the shape 

defect for the rotating component will vary based on the underlying system (i.e., 𝐊𝑇, 

𝐌𝑑 , and 𝐂𝑑 ) and the centrifugal force, which will affect their vibration 

characteristics. Additionally, the maximum von-Mises stress obtained from the 

alternating stress, which plays an important role for the fatigue prediction of the 

turbomachinery component, is investigated. Figure 5.20 illustrates a comparison of 

von-Mises stress field at 150 Hz, where large structural oscillation occurs for Case 

#31. DpHROM is observed to be in good agreement when compared with the FOM-

d prediction. Moreover, as shown in Table 5.3, DpHROM yields an accurate solution 

at the peak stress location, similar to ROM-d and DpROM (with a relative 

discrepancy within 3%). 

Finally, the computational cost during the off-line and online stages is compared 

to evaluate the computational efficiency, as summarized in Table 5.4. Among the 

ROMs, DpROM shows the largest off-line time considering it performs the time-

consuming computation of reduced high-order tensors using the entire FE 

discretization. Therefore, parallel computing might be considered for such larger 

dimensional off-line DpROM computations, as shown in [56]. Conversely, 

DpHROM exhibits a significant improvement in terms of the off-line time (34 times 

faster than DpROM). Figure 5.21 compares the total speed-up factor, including the 

off-line cost, among the ROMs. Unlike ROM-d, DpHROM off-line time is required 

once at the beginning of the computation. Then, the online time is accumulated for 

the total computational cost. Therefore, the total computational cost in the proposed 
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DpHROM framework is expected to improve as similar computations (𝑛𝑜𝑛 ) are 

repeated. In particular, DpHROM, which has a noticeably larger total speed-up factor 

compared to other ROMs, will be significantly efficient for large-size dynamic 

simulation with broad defect-parametric variations. 
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Kim, Y., Kang, S., Song, D., Cho, H., and Shin, S.-J., “Efficient Nonlinear Dynamic 

Analysis of a Rotating Blade with Shape Defects,” GPPS paper 2022-0139, September. 

2022. 

Kim, Y., Kang, S., Cho, H., Kim, H., and Shin, S.-J., “Parametric Reduced-order 

Modeling Enhancement for a Geometrically Imperfect Component via Hyper-reduction,” 

Computer Methods in Applied Mechanics and Engineering, published online, October. 

2022. 
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Fig. 5.15 Total deformation comparison for the different defect conditions.  
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Fig. 5.16 Relative discrepancy comparison for the 54H60 propeller blade. 
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Fig. 5.17 Displacement field difference between FOM and ROM prediction  

(𝝃𝟏 = 𝟑 and 𝝃𝟐 = 𝟏). 
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(a) Fifty sets of the defect parameters 

 

(b) Relative discrepancy 

Fig. 5.18 Frequency response simulation for the 54H60 propeller blade within 

the parametric variation. 
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Fig. 5.19 Maximum transverse displacement amplitude for the different cases.
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Fig. 5.20 von-Mises stress comparison (150 Hz, Case #31).
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Table 5.3 Relative discrepancy comparison at the peak von-Mises stress location  

(150 Hz, Case #31). 

 ROM-n ROM-d DpROM DpHROM 

EI (%) 19.51 2.65 2.72 2.88 

 

Table 5.4 Computational cost for the off-line and online stages for the 54H60 

propeller blade 

 

 

  

(a) Time-transient (b) Frequency response 

Fig. 5.21 Total speed-up factor comparison among ROMs.  
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Chpater 6  

Conclusion 

In this dissertation, a projection-based MOR framework including hyper-

reduction is developed for representing the geometrically nonlinear characteristics. 

In the presented framework, a geometrically nonlinear full-order representation, 

including the rotation effect, is developed to obtain the solutions required to build a 

reduced-order representation. 

To systematically evaluate the hyper-reduction-based ROMs, POD-based MOR 

framework that includes hyper-reduction approaches, i.e., POD, POD-DEIM, POD-

GNAT, and POD-ECSW, are compared in terms of accuracy, robustness, and 

computational efficiency. The following results are obtained: 

• POD-DEIM approach might not maintain the symmetry of the approximate 

tangent matrix, which could lead to numerical divergence. 

• Compared to the POD-DEIM, the POD-GNAT and POD-ECSW approaches 

exhibit better convergence characteristics owing to the minimized global 

residual error and preservation of the symmetric property, respectively, 

thereby enabling accurate predictions of the nonlinear formulations.  

• The POD-ECSW approach achieves a high level of accuracy for parametric 

problems, with a less than 2% average relative error 

• POD-ECSW shows the best computational improvement when compared to 
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FOM, POD-DEIM, and POD-GNAT (CPU times were 20.7, 1.9 and 1.4 times 

faster, respectively). 

Consequently, ECSW approach provides the most robust reduced-order 

representation for the geometrically nonlinear formulations, including the broad 

parametric variation. It exhibits a higher computational efficiency than other hyper-

reduction-based ROMs. Moreover, because of the smaller number of reduced basis 

used, ECSW is more advantageous in terms of computational efficiency. This 

dominated the construction of reduced-order representation during the online stage. 

Based on the comparison results of the hyper-reduction approaches, a DpROM 

framework including hyper-reduction, named as DpHROM, is proposed to represent 

the geometric imperfection of solid components. ECSW approach is employed to 

reduce the computational expense in the existing DpROM. The relevant reduced-

order tensors are obtained based on only a few selected elements. Herein, the QM-

based reduction approach is applied to efficiently obtain the full-order solution 

required for ECSW execution. Two examples, a 3D slender beam and 54H60 

propeller blade, are investigated to verify the accuracy and computational efficiency 

of the proposed framework. Based on the results, the following conclusions are 

drawn: 

• DpROM approach combined with hyper-reduction can successfully conduct 

the parametric handling of the prescribed shape defect and geometrically 

nonlinear formulation. 

• The proposed approach achieves a satisfactory accuracy while significantly 
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reducing the online computational time (with an average relative displacement 

field discrepancy smaller than 5%) 

• In conjunction with QM-based ECSW, the proposed approach significantly 

decreases the off-line expense compared to the existing approach (the CPU 

time decreased by a factor of 34). 

• In terms of speed-up performance, the proposed approach demonstrates an 

advantage for larger-dimensional representations. 

Accordingly, the proposed DpHROM framework provides reliable accuracy for 

geometric nonlinearity within broad defect-parametric variations. Also, it exhibits an 

improved computational efficiency when compared to currently available ROMs. 

Such computational improvement can be advantageous for the uncertainty 

quantification of shape design optimization, involving a large number of FE 

discretization. 

In future work, a technique to optimally select the reduced basis will be 

investigated to pre-select only a small number of reduced basis vectors. Moreover, 

the proposed approach could be applicable to more complex configurations, such as 

mistuned or damaged turbomachinery components. 
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Appendix A 

Expression of the matrices 𝐋𝟏, 𝐋𝟐, and 𝐋𝟑 

 

The constant localization matrices 𝐋1, 𝐋2, and 𝐋3 are defined as follows: 

 

 

(A.1) 

 

 

(A.2) 
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(A.3) 
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국문초록 

 

투영기반 하이퍼 차수축소모델링 및  

비선형 구조 동역학에 대한 응용 연구 

 

김용세 

서울대학교 대학원 

항공우주공학과 

 

본 논문에서는 기하 비선형 예측이 가능한 유한요소 기반 비선형 

구조해석 프레임워크를 개발하였다. 비선형 동적 해석은 반복해법 

알고리즘에 의해 많은 계산이 요구된다. 이러한 계산 비용을 줄이기 

위해 하이퍼 축소법을 결합한 차수축소모델링을 적용하였다. 효율적인 

계산 수행을 위해 이산적 경험 보간법(DEIM), Gauss-Newton 

근사법(GNAT), 에너지 보존 샘플링 및 가중치(ECSW) 등 하이퍼 

축소법을 각각 적용하였다. 개발한 프레임워크를 이용하여 매개변수화 

된 물성치와 하중을 포함한 비선형 시간과도 수치해석을 수행하였다. 그 

결과, DEIM 대비 GNAT 과 ECSW 가 정확도 및 강건성 측면에서 

향상된 차수축소 표현식을 구축하였으며, 특히 ECSW 가 다른 

차수축소모델 대비 가장 높은 계산 효율성을 보여주었다. 

반면, 구조물의 기하학적 결함 또는 불완전성에 의해 유한요소 
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표현식이 변화할 경우, 차수축소 표현식을 재구성하기 위해 높은 계산 

비용이 요구된다. 이러한 계산적 비효율성을 해결하기 위해 매개변수화 

된 형상 결함을 효율적으로 고려할 수 있는 차수축소모델링을 

제안하였다. 이 때, 차수축소 표현식은 결함과 실제 변형 관련 축소 

텐서들로 구성된 다항 함수로 구축된다. 하지만, 많은 수의 이산화된 

유한요소를 사용하여 축소 텐서를 구성하기 위해서는 일반적으로 상당한 

계산 자원이 필요하다. 따라서, 이차 매니폴드 (quadratic-manifold) 

기반 ECSW 기법을 적용하여 최적으로 선택된 몇 가지 요소에 관해 

축소 텐서를 구축하였다. 제안한 프레임워크를 회전기계 구성품을 

대상으로 시간과도 및 주파수 응답 해석을 각각 수행한 결과, 형상 결함 

매개변수 변화에 대해 정확한 예측이 가능할 뿐만 아니라, 기존 

차수축소 모델링 기법 대비 계산 비용을 상당히 절감하였다. 

 

주제어: 투영기반 차수축소모델, 적합 직교 분해, 기하 비선형, 

구조 동역학, 하이퍼 축소, 형상결함 파라메트릭 

차수축소모델 
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