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Abstract

Projection-based Hyper Reduced-
order Modeling and its Application for

Nonlinear Structural Dynamics

Yongse Kim
Department of Aerospace Engineering
The Graduate School

Seoul National University

In this dissertation, a finite element (FE)-based nonlinear analysis framework
capable of predicting the geometric nonlinearity is developed. A nonlinear dynamic
simulation requires large computation owing to its iterative solution algorithm. To
reduce the anticipated computational expense, a projection-based reduced-order
modeling (ROM) combine with hyper-reduction will be applied. To efficiently
perform the computation, the following three hyper-reduction approaches will be
employed to approximate the nonlinear finite-element matrices: discrete empirical
interpolation method (DEIM), Gauss—Newton with approximated tensors (GNAT),
and energy-conserving sampling and weighting (ECSW). The present frameworks
are applied to the time-transient simulation of a propeller, including the parametrized
material and load properties. Compared with DEIM approach, GNAT and ECSW

approaches exhibit better enhancement in terms of the accuracy and robustness of



the reduced-order representation. Additionally, the computational efficiency of
ECSW approach is improved significantly compared with that of the other
projection-based ROM approaches.

On the other hand, if FE representation varies owing to the geometric defect or
imperfection, the reduced order representation will be expensively reconstructed. To
avoid such computational inefficiency, an improved nonlinear reduced-order
modeling technique capable of describing the parametrized shape defect will be
proposed. In the proposed framework, the reduced-order representation is created in
a polynomial form comprised a set of reduced-tensor coefficients of defect and
physical displacement field. However, constructing the reduced tensors using a large
number of discretized elements usually requires enormous amounts of the
computational resources. Therefore, to reduce the computational expense, a
quadratic-manifold-based ECSW approach will be employed to obtain the reduced
tensors concerning only a few optimally selected elements. This approach can be
used to conduct both time-transient and frequency response analyses on the rotating
mechanical components. It is found that the proposed approach can accurately
estimate the broad defect-parametric variation. In particular, its computational
efficiency demonstrates a significant improvement in contrast to that of the existing

approaches.

Keywords: Projection-based model-order reduction, Proper orthogonal
decomposition, Geometric nonlinearity, Structural dynamics

Hyper-reduction, Defect-parametric reduced-order model
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Chpater 1

Introduction

1.1 Background and Motivation

The mechanical and aerospace hardware (Fig. 1.1) such as the turbomachinery,
aircraft propeller, and wings usually operate under severe condition owing to large
power requirement. In particular, rotating components such as turbine blades and
propellers exhibit large displacement owing to the high-speed rotation and periodic
aerodynamic excitation, called as the forced vibration (Fig. 1.2). Moreover, complex
design for improving the aerodynamic performance, such as twisted-surfaced,
increased slenderness, and the larger-aspect ratio of the relevant geometric shape,
might cause considerable influence on their geometric nonlinearity. A geometrically
nonlinear simulation based on the larger dimensional representation, usually by the
finite element (FE) method [1], is considered an indispensable method of assessing
their structural integrity during the design process. However, the relevant nonlinear
analysis consumes significant amount of time, owing to its iterative solution
procedure. Additionally, multi-fidelity analysis strategies, such as the fluid-structure
interaction and design optimization, which involve large number of the parametric
simulations, consume substantially larger amount of the computing resource. While
the parallel computing based on the domain decomposition method (e.g. finite

element tearing and interconnecting (FETI) [2] may be capable of the large-size
1



simulation as the computation is performed in a distributed manner, it will not reduce
memory requirement.

Instead, the model-order reduction (MOR) techniques have been proposed as the
viable means for reducing the relevant computational expense. MOR aims to reduce
the dimensions of the full-order model (FOM), that is, the construction of a reduced-
order model (ROM) along with the minimal loss of accuracy. In other words, MOR
is able to describe the key characteristics by reducing the number of degrees of
freedom (DOFs) of the representation (Fig. 1.3). Therefore, the large-size simulation
can be performed faster and cheaper, yet acceptably represent the original large-size
object. Generally, MOR procedure comprises a computationally expensive off-line
stage, wherein ROM is constructed and executed in an efficient online stage. During
the off-line stage, a set of samples will be collected from the numerous simulations,
using the high-fidelity analysis. The relevant solutions are used to construct the
reduced-order representation. During the online stage, the simulation will be
executed using the reduced-order representation. Once ROMs are constructed, it will
be possible to obtain fast and accurate solution. In other words, repeated
computations can be performed for a variety of different conditions without going
through the off-line stage processes (Fig. 1.4).

The various MOR techniques (Fig. 1.5) have been developed and introduced in
many fields such as the mechanical, aerospace, chemistry, biomedicine,
microelectronic, and neuroscience, etc. Furthermore, MOR technique has been

recently utilized for the advanced structural maintenance or design (e.g. structural

2



health monitoring (SHM) or condition-based maintenance (CBM)) based on a
predictive digital twin technology which essentially requires a real-time solution.
In the following sections, the previous studies regarding the relevant MOR

techniques will be discussed.

Propeller HALE UAV

Fig. 1.1 Mechanical and aerospace components

2 A2t

T



)7

Unsteady 4“_\%

forces
Structural %orcing function
I unsteady force

dynamic
properties
C
Aerodynamic
damping

MX + Cx + Kx = F sin ot Structural
damping

WAL va L

VaRvay

Vo WA NFa =AY

NN
"avl‘\§1k AN

VAR T VA

WHRNAN
VAR LDV

[)
)
N
—— - Y

/¢
I

VNN

Iy

Fig. 1.2 Primary elements of the forced vibration [3]

Fig. 1.3 Graphical illustration of the model order reduction [4]
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1.2 Literature Review

1.2.1 Projection-based Model-order Reduction

There are two different types of approaches for constructing ROMs in the off-line
stage: data-fitting- and projection-based approaches (Fig. 1.6). Data-fitting based
MOR uses the relationship between the input parameter and output result directly for
constructing ROMs. The resulting ROM is constructed as a black box and is
independent of the governing formulation. This will be implemented by applying
either regression or interpolation techniques (e.g. radial basis function [5], Gaussian
process [6], Grassman manifold [7], autoencoder [8], and neural network [9, 10]) on
the full-order simulation solution. These approaches have been applied to nonlinear
systems such as structural dynamics [11], design optimization [12], fluid dynamics
[13], and combustion problem [14].

The data-fitting-based MOR does not require knowledge of the system governing
equation or the problem physics. In this respect, it will be an advantage if only a
commercial software solver is available for ROM construction. However, the data
fitting-based MOR will typically require extensive FOM computations and
corresponding solutions in the off-line stage. This may significantly affect the overall
computational cost, including the off-line cost.

Projection-based MOR [15] builds a reduced-order representation by projecting
the larger-dimensional system of equations onto a reduced basis (i.e. Galerkin
projection). Therefore, such ROM techniques will retain the properties of the original

governing equation, and a solution algorithm with system consistency applied to the
6



full-order representation may be used on the reduced one. Moreover, the off-line
computational cost will be lower than that of the data fitting-based MOR.

In this dissertation, the projection-based MOR technique will be applied to deal
with the geometrically nonlinear behavior of a structural component in the reduced
space. In the context of the nonlinear solid mechanics, the projection-based MOR
technique will differ based on the selection of the reduced basis which span the
original (full-order) representation solution subspace. Furthermore, it will be
different for different methodologies that are available for reduced nonlinear term

approximation, such as the internal force and tangent stiffness matrix.

Selection of the Reduced Basis

Regarding the reduced basis selection, there exist two main approaches: data- and
model-driven. In the data-driven approach, the reduced basis will be usually obtained
from the precomputed FOM result, called as the snapshot. Proper orthogonal
decomposition (POD) [16] is a representative and favored data-driven approach, and
whose basis comprises the snapshots’ leading principal component. POD-based
ROMs have been utilized in the various fields, including aeroelasticity, controls and
optimization [17-19]. In the structural analysis framework, POD-based ROMs have
been successfully applied to both linear and nonlinear formulations and enhanced
computational efficiency [20-22].

Conversely, the model-driven approach directly derives the reduced basis from the
discretized formulation for FOM, also known as the data-free approach. Although

7



the model-based approach is not widely used as the data-driven approach based on
POD, it will not require a high-cost FOM simulation, especially for the solid analysis.
Free vibration modes, i.e., the eigenvectors of the undamped linear system, are one
of the well-known reduced basis vectors for the linear structural dynamics. In
contrast, modal derivatives [23, 24], dual modes [25-27] approaches have been

utilized for the nonlinear structural dynamics.

Approximation of the Reduced Nonlinear Terms

The reduced nonlinear term may be approximated by either the non-intrusive or
intrusive method. In the non-intrusive method, the reduced nonlinear term is
described as a polynomial form of the reduced coordinates with the stiffness
coefficients, which will in turn be determined from the sufficient nonlinear static
simulation (compatible with the commercial FE software) with the imposed
displacements or forces. The stiffness-evaluation procedure (STEP) [28, 29],
implicit condensation, and expansion (ICE) [30] have been used for the non-intrusive
projection-based reduction method. Recent studies are found in [31-33].

In the intrusive method, the reduced nonlinear term will be approximated directly
by projecting the full-order nonlinear term onto the reduced basis at an element level.
Therefore, a systematic access to FE formulation is required, unlike the non-intrusive
methods. However, for the nonlinear simulation, which have a larger number of
degrees of freedom (DOFs), will require repetitive projection processes of the large

number of nonlinear terms via the reduced basis. This may incur significant

8



computational time and resources. Specifically, for a linear time-transient
formulation, the projection-based ROM can be easily expressed by the time-invariant
equations. By contrast, a nonlinear time-transient formulation will usually attempt
to solve simultaneous linearized time-varying equations using an appropriate
iterative-solution algorithm.

To compensate for such computational inefficiency, sparse-sampling methods,
including hyper-reduction, have been suggested. The hyper-reduction approach can
alleviate such computational bottlenecks, allowing the reconstruction of the
nonlinear term in the reduced dimension by using either a few sampling points or a
reduced number of meshes. As a result, the computational cost for constructing the
reduced-order representation will be decreased significantly by using the reduced
nonlinear term during the recursive projection.

One representative approach is the discrete empirical interpolation method (DEIM)
proposed by Chaturantabut and Sorensen [34]. DEIM, a discrete version of EIM [35],
uses interpolation to determine the optimality of nonlinear terms in the reduced-order
basis. This will enable an approximation of the non-affinely parameterized functions.
DEIM has been employed in nonlinear structural dynamics, including
elastoplasticity [36], hyper-elasticity [37], and viscoplasticity [38]. Negri et al. and
Bonomi et al. suggested a matrix version of DEIM (MDEIM) as an extension of
DEIM [39, 40]. It was used to efficiently approximate Jacobian matrices, i.e., to find
an optimality in the reduced-order basis for a tangent matrix. Willcox [41]

recommended the missing-point estimation approach using gappy-POD, which used

9



regression to approximate the nonlinear terms. That method was successfully applied
to the unsteady flow sensing.

In the hyper-reduction approach, the reliability and computational efficiency of
ROM are usually determined by the quality sampling points. Hence, neither DEIM
nor gappy-POD leads to a reliable solution because they use an insufficient number
of sampling points [42]. Subsequent investigations discovered the convergence
difficulties induced by the non-symmetry of the matrices in the POD-based ROM,
in combination with either DEIM or gappy-POD [43, 44].

As an alternative to Galerkin projection, Gauss-Newton with approximated
tensors (GNAT) was proposed by Carlberg et al. [45]. GNAT will approximate the
nonlinear terms by solving using the low-cost least-squares approach, and it will
enable the resulting ROM to obtain a stable solution. Moreover, POD-based ROMs
combined with GNAT were applied to the fluid dynamics [46] and microscopic
formulation [47], and its numerical stability and computational efficiency were
verified. Farhat et al. [48] proposed an energy-conserving sampling and weighting
(ECSW) method that directly approximated the reduced nonlinear terms while
preserving their numerical stability. ECSW considers the virtual work of FE-based
dynamic system to define the reduced meshes and their relevant weights. This
approach achieved sufficient accuracy and numerical stability for the structural and
turbulent problems [49, 50].

However, in the hyper-reduction approach, a smaller number of the selected

elements are typically chosen from the training set specified by the nonlinear FOM

10



simulation. Those simulations may incur a computationally expensive oft-line stage.
Jain et al. [51] proposed the quadratic manifold (QM)-based reduction approach to
inexpensively generate the training set for ECSW. In this approach, the nonlinear
full-order solution was obtained via nonlinear mapping of the inexpensive linear

modal solution.

11
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1.2.2 Parametric Reduced-order Modeling for a Shape Imperfection

The aforementioned FE-based nonlinear ROMs typically use a nominal
representation (blueprint), which refer to the geometry without any imperfection or
shape deformation. However, considering the structural design or optimization
process, even small geometric defect, such as the mistuning of the turbine blade [52]
and manufacturing imperfection [53, 54], may significantly affect the dynamic
characteristics of the entire component. Therefore, numerous repeated simulations
considering the probability of various geometric defect, such as the stochastic
analysis via Monte Carlo simulation [55], will be required. Therefore, it is necessary
to develop an improved FE representation that includes the shape defect by varying
the geometry (e.g., CAD drawing modification) and discretizing elements, or
directly shifting the nominal FE discretization node location. Then, the resulting
ROM will be constructed to solve the resulting nonlinear problem. This procedure
will be repeated whenever the shape defects are varied, which will significantly
decrease the efficiency owing to an increase in the off-line computational expense.

To avoid such computational inefficiency, Marconi. et al. [56] suggested a
nonlinear parametric ROM for the geometric nonlinearity and parametrized
geometric defect, which is known as the defect-parametric reduced-order model
(DpROM). In DpROM, the pre-determined displacement field of the shape defect or
the nonuniformity from the nominal FE representation will be inserted in the strain
formulation. By using such modified approximation, the nonlinear internal forces

will be represented as a polynomial function comprised of the tensor coefficients

13



concerning the defect- and practical displacement fields. Those full-order tensors
will be reduced via Galerkin projection using the selected reduced basis at an element
level, that is, during the assembly procedure for the discretized elements. Moreover,
in [57], DpROM was improved by introducing the higher-order strain approximation
exploiting Neumann expansion, which achieved a higher accuracy. DpROM based
on such intrusive tensorial approach was successfully applied to MEMS gyroscope
components with a set of defect-shape [57], as shown in Fig. 1.7.

However, considering that the full-order tensors in DpROM framework containing
up to the higher-order elements will be evaluated for each element, a large number
of Galerkin projections and assembling procedures will be required. This will
directly influence the off-line cost for constructing the reduced tensor. Therefore,
large discretization and the increased number of DOFs may result in computational

inefficiency and out-of-resource situation.

14



Fig. 1.7 MEMS gyroscope component with a set of defect-shape
(wall angle and tapering defects) [57].
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1.3 Objectives and Contributions

The objective of this dissertation is to develop a projection-based ROM and
systematically evaluate the resulting ones regarding the prediction capability for the
nonlinear formulation accurately and quickly. In particular, the hyper-reduction
approach will be introduced to alleviate the computational bottleneck that the
projection-based ROM requires the repetitive multiplications of the huge nonlinear
terms by the reduced basis. To achieve such goal, various hyper-reduction-based
ROMs will be developed and verified by applying the present approach to the
structural components such as the aircraft propeller and turbine blades. Moreover,
DpROM combined with the hyper-reduction will be developed to mitigate the issues
in the off-line stage, such as the computational burden resulting from an increased
number of the element-level tensors. Herein, the hyper-reduction approach will be
employed to evaluate and assemble the element-level tensor by using only a few
selected elements.

The novel contributions of this dissertation may be summarized as follows:

* Hyper-reduction-based ROMs based on the three-dimensional finite element

are developed to handle the geometrically nonlinear formulation.

* A systematic comparison of the hyper-reduction-based ROMs will be
performed, specifically those related to the geometrically nonlinear structural

dynamics of the rotating component, which is published in [58].
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Various and practical application of the hyper-reduction-based ROMs will be
examined for the nonlinear structural dynamics, i.e., modal, time-transient,

and forced vibration, which are published in [58, 59]

An improved parametric reduced-order modeling technique by the hyper-

reduction will be developed for a geometrically imperfect component, which

is published in [60, 61].
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1.4 Outline of Dissertation
To provide an outline of this dissertation, the contents of the chapters are presented

in the following.

In Chapter 2, the projection-based MOR technique will be presented. The reduced
bases for the structural dynamics will be introduced. Then, a reduced-order
representation by the reduced basis will be presented in a context of the
geometrically nonlinear dynamic formulation. Moreover, an explicit tensorial

representation will be presented.

In Chapter 3, the hyper-reduction approaches, i.e., DEIM, GNAT, and ECSW, will
be described in detail. Moreover, the hyper reduced-order representation for the

nonlinear dynamics will be presented.

In Chapter 4, the hyper-reduction-based ROMs will be applied to a rotating
component. Then, the obtained results will be compared against those obtained using
the other ROM approaches, in terms of the accuracy, stability, and computational

efficiency. In addition, their strengths and weaknesses will be discussed.

In Chapter 5, an improved DpROM framework based on the hyper-reduction will
be presented. Numerical examination will be performed to evaluate whether the

present DpROM framework is capable of accurately and rapidly predicting the
18



structural dynamics of the rotating components which possess the shape defect and

geometrically nonlinear characteristics.

Finally, concluding remarks and future works will be presented in Chapter 6.
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Chpater 2

Projection-based Model-order Reduction Technique

2.1 Key Concept of the Projection-based MOR

Fundamentals and relevant formulations of the projection-based MOR will be
described in this section. The projection-based MOR constructs a reduced-order
representation (with a small n-DOFs) by directly projecting the full-order
representation (with a large N-DOFs) onto the reduced basis V, as shown in Fig. 2.1.
Such procedure is called as Galerkin projection.

For an FE-based nonlinear dynamic system, the discretized nonlinear structural

formulation for the full-order representation can be expressed as follows:

Full-order Lower-order
[
N
| —
- n
V'KV = K — Solve N
N| u=f vif=f .1|: R i=f Equation U u=Vi u
. ROM
FOM Galerkin ROM solution Solution
projection

Fig. 2.1 Concept of the Projection-based MOR.
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where M € RV*VN  ce RNV, f,,, € RY, and f,,, € RN indicate the constant
mass matrix, linear proportional damping matrix based on an initial configuration,
internal and external force vector, respectively. u € R¥, 1 € R, and ii € RY, are
the unknown vectors, i.e., displacement, velocity, and acceleration, respectively. N
denotes the dimension of the full-order representation. Each vector is a function of
the unknown vectors. In case of a linear system, f;,;(u) in Eq. (2.1) may be
replaced by K|cqu, in which K|, is the stiffness matrix, i.e., Jacobian of the
internal force df(u)/ ou|,—,.

To reduce the full-order representation, Eq. (2.1), the generalized coordinate
vector u will be approximated as a weighted linear combination of the set of the

reduced basis vectors.

u=Vvny, (2.2)

where V € RV*™ and the m € R™ denote the reduced basis and reduced
coordinate vector, respectively.

By substituting Eq. (2.2) into Eq. (2.1), the resulting representation is as follows:

MVij + CVn + £, (VM) =1, +T, (2.3)
where r denotes the residual originated from the approximation.
In order for Eq. (2.3) to be uniquely determined, the residual r will be

constrained to be orthogonal to the column space of the reduced subspace V:

Vir = 0. (2.4)
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This results in

VIMVij + VICV 1) + VT, (V) = VTf,,,, 25)
M ¢ '

finl‘ fext
where ~ denotes the components of the reduced-order representation. M € R™ ",
€ e RV, f,,,, € R*, and f,,, € R" indicate the reduced constant mass matrix,
reduced damping matrix, reduced internal force vector and external force vector,
respectively.

It is noted that the reduced-order representation, Eq. (2.5), can be preserved the

~

symmetric properties. Also, the reduced terms M, €, and f,,, will be pre-
computed in the off-line stage. However, the reduced nonlinear internal force f;,,;
still need to be evaluated under the full-order representation in the online stage.
Therefore, an efficient computation of f;,,, will determine the online expense of the
projection-based ROM.

Furthermore, as mentioned in Introduction, the reduced basis V will play an
important role for constructing an accurate ROM in the projection-based MOR

framework. Representative approaches to select a proper reduced basis for the

structural dynamics will be discussed in the following section.
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2.2 Reduced Basis for Structural Dynamics
2.2.1 Mode Superposition Method (MSM)

For linear structural dynamics, one of the oldest and conventional MOR
techniques is the mode superposition method (MSM) which is also known as the
modal truncation. The approach is based on the free vibration modes which will be

obtained by solving the undamped eigenvalue expression:

Mii + K|,qu = 0, (2.6)

(Kleg — wfM); = 0, (2.7)
where w; and &; are the i" eigenvalue (natural frequency) and corresponding
eigenvector, respectively. Moreover, the contribution of the spin-softening effect is
considered for the rotating components (i.e., Kl,, = df(u)/ dul,=o — Kgp)

The linear reduced basis can be obtained by selecting ng free vibration modes:

V=[d1, b2 , bn,), (2.8)
Herein, ¢, is the eigenvector associated with the n” natural frequency which
retains up to approximately twice the highest frequency of interest.
For a linear dynamic system including Rayleigh damping, the reduced-order
representation will approximate by a superposition of the modal displacements (Fig.

2.2):

ne
u= Z b, = P, (2.9)
k=1
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T . T - T — yTfext
VI'MVij + VTCVn + VTK|,,Vn = V¥,

(2.10)
I A

where I € R"®*"® and A = diag{w?, w3, ..., w3, } € R"®*™® are the identity
and diagonal eigenvalue matrices, respectively.

In addition, several variants [62-64] of MSM have been developed for the linear
structural dynamics (e.g. mode displacement method, mode acceleration correction,

and mode truncation augmentation).

x Mm(t)
Pa2 i Pa3,
. Px mt) <
D35 ! P33
H
7% :
Mode 1 Mode 2 Mode 3

Fig. 2.2 Modal superposition method.
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2.2.2 Modal Derivatives

The linear reduced basis comprised of the free-vibration modes, Eq. (2.8), is no
longer suitable for approximation of the nonlinear full-order representation.
Specifically, the linear basis does not feature the geometric nonlinearity such as the
dominant coupling effect between the free vibration modes.

Idelsohn and Cardona [23] suggested the modal derivatives to capture such
nonlinear response which is deviated from the linear behavior. Fundamentally, the
modal derivatives are the mode shapes derived from the pre-selected free vibration
modes. Specifically, the modal derivatives will describe the key deformation shape
owing to the finite deflection in the direction of the dominant free vibration modes.

The modal derivatives @ are obtained by differentiating the undamped

eigenvalue expression with respect to the modal amplitude 1.

d; 0K dw?
(Kleg — @7M) +(— — M |}l =0,
oyl \omyl,,  amyl,, )T 2.11)
i,j€{l,..,ne}

0d;

: o . . . L K .
o S the derivatives of the i mode in the j™ modal direction. — is
J

where 0;; =

the tangent stiffness matrix evaluated for a displacement u = n;¢;, as follows:

oK (u=¢ml,)
= o, L (2.12)

JK

eq
eq

To solve Eq. (2.11), an additional constraint will be required as the coefficient
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matrix (Kl eq — w? M) in Eq. (2.11) is singular. Thus, the mass normalization of the

free vibration modes regarding the constant mass matrix will be employed as follows:

¢;"M6; =0 (2.13)
Generally, the modal derivative computation may incur significant cost because
the large-dimensional matrices need to be factorized for each modal derivative. Thus,
a cost-effective version of the modal derivatives, usually called as the static modal

derivatives [65], was proposed, which was obtained by neglecting the mass term in

Eq. (2.11):

OK(u = ¢fnf|eq)
on;

Gij =

= —K|;} ¢, (2.14)

61]1 eq
eq

Herein, the static modal derivatives are symmetric, which was proved in [65]:

_09;

_ 09,

g M

= 0. (2.15)
eq

These static modal derivatives have been successfully utilized for the
geometrically nonlinear multibody dynamics [66, 67].

Figure 2.3 shows an example of the first three free vibration modes and the
corresponding static modal derivatives for the flat rectangular plate supported at both
ends. It is observed that the vibration modes illustrate the out-of-plane displacement
only, whereas the modal derivatives contain the in-plane contribution to capture the
geometrically nonlinear coupling effect. Moreover, the symmetry property of the
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static modal derivatives is observed as shown in Fig. 2.3 (i.e., 01, =05, 043 =
031, and 0,3 = 03;).

Hence, when a set of ng free vibration modes are selected, ng(ne + 1)/2
modal derivatives will be obtained. Consequently, n vectors of the reduced basis V

will correspond to (3/2 + ng/2) ne basis vectors:

V=[d1, bz s Dry 011,012, 1, Ongny |,
i;j € {1I "':nd)}

(2.16)
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Flat retangular plate

Fig. 2.3 First three free vibration modes and the corresponding static modal

derivatives for the flat rectangular plate [65].
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2.2.3 Proper Orthogonal Decomposition (POD)

POD formulates an optimal basis required to represent a nonlinear dynamical
system. It has been applied to many engineering and scientific systems, including
the lower-dimensional dynamics modeling.

In the POD-based MOR framework, a reduced-order representation will be
defined based on the precomputed full-order solution, considering the parameter
variations, e.g., time-transient displacement response. Those precomputed results are
arranged into a so-called snapshot matrix W, € R¥*Ns | where ¢ denotes the
discretized state solution obtained by FOM, N the number of DOFs of the full-order
representation, S the number of snapshots at each parameter u, and N the total

number of snapshots.

ql(lvl) e ql(slvl) ql(lvz) e ql(SZrZ) ql(LH) “ee ql(suru)

W, = (2.17)

qN(lvl) e qN(Slvl) qN(le) e qN(SZIZ) qN(lrﬂ) e qN(Suru)

If the neutral point of the displacement response in time domain is zero, the mean
value will be used. Otherwise, it will be composed of an instantaneous fluctuation

except for the mean value, as follows:

q(x,t) = Qoriginal (x,8) — Qaverage (). (2.18)
The reduced basis V will be obtained by implementing the snapshot method [68]

or the singular value decomposition (SVD).
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In the snapshot method, the eigenvalue expression will be defined. Thus, the
average operator is evaluated as a space average over the domain. Then, a temporal-

correlation function from the snapshot can be obtained as:

C=W,"w,. (2.19)
In addition, it is possible to formulate an eigenvalue problem to compute the

reduced basis.
CQ = AQ, (2.20)
V=[¥,¥,.., ¥l (2.21)

1 2.22
Vi=—=W,Q; ief{l,..,n} e

%

where n and A are the selected number of the reduced basis vectors and the
energy ratio in the full-order representation, respectively.

When SVD is employed, the snapshot matrix will be decomposed into W, =
Py AT Here, ¥ € RV*Ns| ¥ = diag(oy,..., oy,), and AT € RNs*N The reduced
basis vectors V are composed of the first # column vectors of the left singular matrix
W in the resulting SVD.

A suitable number of the basis vectors n may be selected based on the ratio
between the accumulated and total energies quantified by the singular values, as

follows:
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Energy ratio(%) = % X100 = €pgp (n K N). (2.23)

i=1"1

The relevant POD procedure is summarized in Algorithm 1.

Algorithm 1 Compute the POD basis

Input: POD basis Ty, = [tq, ..., tp]
Output: Interpolation indices py = [P1, ) Pinl
Procedure POD
Implement SVD of W; = WY AT
Select the dimension of POD basis n, which is evaluated by Eq. (2.23).

Construct V by using the selected POD basis vectors V; = [¥y, ..., P, ]

It is noted that samples of the snapshot can be collected from the different

instances of the parameters so that V may not rely on the parameter p.
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2.3 Representation of the Projection-based MOR

2.3.1 Full-order Representation

A reduced-order representation by the reduced basis is presented with a focus on
the nonlinear dynamics, especially the time-transient formulation of a rotating
component which exhibits large displacement. To achieve it, the relevant full-order
representation will be first described in this subsection.

For a nonlinear time-transient formulation, the solution to Eq. (2.1) will be
obtained by an implicit generalized-a time integration [69]. The relevant procedure
is summarized in Table 1, where a,,, af, B, and y are the algorithm-relevant
parameters. The subscripts t and t + At denote the current and next time step,
respectively. When it is written as a non-subscript expression, At will denote the size
of the time increment.

These nonlinear equations are solved by Newton-Raphson approach, introducing

the residual force vector r{ ., as follows:

ko _ k sk ok
Yiint = fexternt—ap = fine (ut+At—af) — Migi g, — CUipr—qp (2.24)

[ﬁAltZ M+ ﬁc +(1- af)K(“I;+At)] AU pe = Tnes (2.25)

where the superscript k indicates an iteration index for Newton-Raphson procedure
in a single time step, and K(u’t‘+ At) is the tangent stiffness matrix in terms of the
displacement vector.

The updated-Lagrangian (UL) formulation [70] will be employed to consider
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geometrical nonlinearity. The local elemental-stiffness matrix K®(u) and elemental
internal-force vector ff,,(u), which respectively comprise the global tangent
stiffness matrix and internal force vector in Egs. (2.24) and (2.25), are defined in the

deformed (current) configuration, as follows:

K¢(u) = f BfCB,dV + f B, tBy.dV, (2.26)

A% \%

fe . (u) = f BldV, (2.27)
v

where v is the volume of the deformed elements, and C is the constitutive matrix
of the corresponding linear elastic material. B; and By, are the linear and
nonlinear strain-displacement matrices, respectively. T and T are Cauchy (true)
stress matrix and vector, respectively. As mentioned previously, all the quantities are
derived with respect to the deformed configuration. The stress stiffening effect is
included in the second term on the right-hand side, as shown in Eq. (26).

For a rotating structure, the centrifugal force will vary owing to the deformation.
When significant axial elongation occurs, a relevant increase in the centrifugal force
will become equivalent to a decrease in the stiffness under a constant centrifugal
force. In this context, a full-order representation will implement a spin-softening
matrix Kg,. This will be required to precisely reflect the contribution of the
centrifugal-force variation, in accordance with the deformation when the rotational

speed is imposed. To consider the contribution of the constant mass, the elemental
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spin-softening matrix K¢, will be defined in the undeformed coordinate, and is

expressed as follows [71]:

K¢, = f pNTQTQNAV, (2.28)
\'4

where V and p are the volume and density of the undeformed configuration,
respectively. N and Q are the interpolation and skew-symmetric matrices for the
rotational velocity, respectively. Hence, Eqgs. (2.24) and (2.25) are substituted with

the following equations for the rotating component:

kK k k
evar = fexterat—ap = fine (ut+At—af) + (Ksp“)t +At—o

(2.29)
..k . k
—Miig pe—q,,, — Clpiat—ap
k
where (KSpu)t+At—af = (1 - a5)Kgprur + arKgp rarlyy, and
[ M+ 2 €+ (1= ) (K(uane) — Kipse) | B = Paes 230
BAt2 BAt P

where K, ; and Kgp;4a; indicate the spin-softening matrices corresponding to
the rotational speed for the current and next time step, respectively. The centrifugal
force estimated with respect to the undeformed configuration is included as an
external force vector in Eq. (2.29).

It is noted that all the sparse global matrices, e.g., M, C, K, Kg,, and the sum of
the square bracket in Eq. (2.30), can be treated in the symmetric compressed-row
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storage (CRS) format. The row and column indices required for the CRS format are
efficiently arranged based on the element connectivity, without explicitly generating
the dense matrix format. In other words, only the terms related to the elemental
connectivity will need to be stored. In most finite-element formulations, the CRS
format has shown a better performance than the conventional skyline format, in
terms of the storage requirement and equation-solving capability [72]. The CRS
format is also capable of exploiting the sparse matrix routines provided by the Intel
math kernel library (MKL) [73].

The nonlinear formulation in Eq. (2.30) and the relevant updated solution are
expressed as the following simplified linearized expression, using Newton-Raphson

approach.
Kp*(u*(W); w)du() = r*(u*(w); ), (231)

w1 () = u(u) + Au(p) (2.32)

where Kg denotes the tangent stiffness matrix as a square bracket on the left-hand

side of Eq. (2.30), and ¢ denotes an input parameter.
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Table 2.1 Generalized-o method for the nonlinear time-transient formulation

1. Equilibrium

Mii; p¢-q,, + Clrae-a, = fexterat—ay = fine (ut+At—af)

2. Time integration

Wpppe = ﬁ (Wepar —ug) — (% - 1) u; — (% - 1) Ati,

" 1 1. 1 "
Ueiae = ﬁth (Wpsnr —ug) — ﬁTtUt - (ﬁ - 1) u;

3. Time average
Upnt—a, = (1 — ap)iy + apilpa;
ﬁt+At—af = (1 - “f)‘lt + e
Utiat-a; = (1 —ap)ue + apup
fext,t+At—af = (1 - af)fext,t + affext,t+At

fine (ut+At—af) = (1 - af)fint(ut) + “ffint(ut+At)
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2.3.2 Reduced-order Representation

The order reduction via the projection-based MOR procedure converts the full-
order representation into an overdetermined equation. Thus, to define ROM, the
Galerkin projection approach will be introduced for projecting the nonlinear
equations. By applying Galerkin projection to the governing equation, Eq. (2.31),
onto a smaller-dimensional subspace, the reconstructed solutions will be

approximated into a weighted linear combination of the set of reduced basis vectors.

u@ =~ V n) and du(w) = V An(w), (2.33)
NX1 X1 NXn  nxi ’

While considering Eq. (2.31), the resulting ROM at the iteration step & using
Galerkin projection will be expressed as

Rf = VI Ke(W* () V, (2.34)
N T Nxn ‘

¢ = VT r(Vn*(w); u). (2.35)

nxXN Nx1

By adopting Newton-Raphson scheme, the updated approximate solution will

become as follows:

1w = nF (W + (. (2.36)

k

. . k1 1a . :
Herein, the increment Amn = —[K’f] r* Dbecomes optimized because it

minimizes the discrepancy between the solution by ROM and that by FOM, in terms
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of K-norm in [74]:

An = arg min|[Vz — [K7* ]| (2.37)

It is noted that the reduced tangent stiffness matrix will become symmetric
positive definite.

The projection-based ROM will cause the number of degrees of freedom included
in the nonlinear simultaneous equations to be decreased significantly, further
reducing the computational cost. Nonetheless, Galerkin projection approach still
relies on the full-order representation, as indicated in the matrix and vector
multiplication in Egs. (2.34) and (2.35), respectively. Such operations are required
for each Newton-Raphson iteration and time step. Hence, additional relieving
manipulation will be needed, with regard to this aspect.

On the other hand, considering the geometric nonlinearities, the resulting internal
forces may be explicitly written as a tensorial third-order polynomial in terms of u

[76] for the linear elastic constitutive law and Green-Lagrange strain tensor:

fine(w) = ;Ku+ 3K: (u®@u)+ ,K:i(u®@u@ u), (2.38)
where K€ RV*N =~ K e RV*NXN " and ,K € RV*NXNXN are the stiffness
tensor coefficients for the linear, quadratic, and cubic internal forces, respectively.

Herein, the number in the left-subscript of each tensor indicates the order of
tensors, whereas the symbols &, :, and : denote the dyadic product, and the
double and triple contraction operations, respectively. For example, by using

Einstein summation convention, 3A : ,B will yield a vector ¢ (i. e.,c; = 3A:
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ZB = AIUBU)
By substituting Eq. (33) into (38), the reduced-order representation will be

obtained as follows:

fine () = QN+ 3Q: M@ M) + Qi MO M@ ), (2.39)
where ,Q € R™", Q€ R™™" and ,Q € R™™™M are the reduced
stiffness tensor coefficients for the linear, quadratic, and cubic internal forces,
respectively.

Such tensorial approach results in the straightforward computation of the
nonlinear terms by introducing a displacement function alone. In particular, pre-
computing high-order constant tensors prevents the evaluation and element-wise
assemblage of the displacement-dependent nonlinear term at every NR iteration.

However, computing the full-order tensor (third- and fourth-order) would be
prohibitive owing to limited computational resources. Therefore, the projection-
based MOR technique will be employed to construct reduced tensors. During the off-
line stage, the full-order tensor dimension is reduced by projecting the element-level
tensor by the selected reduced basis. Accordingly, the online computation time will
be significantly reduced, considering that the resulting ROM only relies on the
reduced basis dimension by virtue of the explicit tensorial representation.

The detailed derivation of reduced tensors will be described in Chapter 5 which

presents DpROM based on the tensorial approach.
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Chpater 3

Hyper-reduction approach

3.1 Discrete Empirical Interpolation Method (DEIM)

The hyper-reduction technique is crucial for preventing the time-consuming
multiplication in the full-order representation matrices. The larger-dimensional
nonlinear terms are approximated to reduce their dimensions. Therefore, the
computational cost for Egs. (2.34) and (2.35) will be substantially diminished, and
the relevant reduced-order representation will be defined with regard to the hyper-
reduction technique.

DEIM technique allows the residual force vector to be properly approximated as
a linearized expression by the independent terms. A column vector r(Vn(uw); ) for

an arbitrary 1 can be expressed as an orthogonal expansion, as follows:

r(Vn(u); p) = Tme(w), (3.1)
where Ty, € RV*™ represents POD basis, which is obtained by POD procedure
(Algorithm 1), based on the snapshots of the residual force vector Wy during
Newton-Raphson iterative computation. The subscript m denotes the number of the
selected interpolation locations.

As Eq. (3.1) is an overdetermined representation and T,, is modified by

introducing a Boolean matrix P,
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PTr(Vn(); 1) = (P™Ton)e(n), (32)

where P is considered as a matrix composed of m vectors.

P=le,,...e, | € RV™, (3.3)

where e, denotes the pmcolumn of N X N identity matrix. The coefficients
of ¢ are obtained by solving Eq. (3.2) and substituting it into Eq. (3.1); the

approximated residual force vector is expressed as follows:

c() = (P™Tw)  PTr(VR(); ), (3.4)
~ -1
f~ Tpe(u) = Ty (PTTw) ~ PTr(Vn(w); w). 3.5)
NXxm mx1
Similar to Eqg. (3.5), the tangent matrix is approximated as follows:
=~ -1
Ky = T (PTTy) PTKr(VN(); ). (3.6)

Nxm mxN

The approximated nonlinear terms are handled by using only m components
defined by P. The unknown value of P can be determined using Algorithm 2.
Algorithm 2 provides DEIM basis vector, which contains the interpolation indices

and extracts the optimal section of m rows, based on POD basis vector Ty,.
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Algorithm 2 Compute DEIM indices

Input: POD basis Ty, = [ty, ..., t]
Output: Interpolation indices py = [P1, ) Pm]
procedure DEIM
set p; = maxloc{t,}
T = [t:1], P = [e, ]
fork=2tomdo
solve ¢ = (PTT,)  PTt,
w=t, —-T,c
pr = maxloc{w}
T < [Tmtel, P<[Pe,]
end for

end procedure

By combining DEIM approximation with Galerkin projection, the resulting ROM

at an iteration step & will be expressed as follows:

. -1 ~
tf = VIT,(PTT,)  PTr(Vm(u);p) = VT§

(3.7)
nxm mx1
—~ -1 V¢
Rf = VITu(PTTy)  PTKr(V(w); )V = VIRV | (3.8)

nxm mxn

-1 .
where, once n and m are selected, the first term VTT,(PTT,,) ~ will become an
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invariant component; therefore, it will be determined in the off-line phase.

In contrast to the approach of solely applying Galerkin projection, i.e., Egs. (2.34)
and (2.35), it will be noted that Kt and r in Egs. (3.7) and (3.8) are not explicitly
generated during the iterative procedure. Instead, the row-reduced matrix PTKry
and vector PTr are directly applied, which will enable the algorithm to become
more efficient by avoiding the assemblage of matrices and vector entries, specifically
preventing the selection of irrelevant rows. PTKy and the other reduced-sized
matrices for generating PTr, e.g., PTM and PTC, are also the sparse matrices. As
those matrices are treated in the non-symmetric CRS manipulation, multiplication
with the other matrices and vectors will be needed infrequently, in proportion to the

sparsity of the matrix.
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3.2 Gauss-Newton with Approximated Tensors (GNAT)

As expressed in Eq. (2.37), an optimal solution for the projection-based ROM is
obtained, such that the discrepancy between ROM and FOM may be minimized
when the tangent stiffness matrix is symmetric. In DEIM, however, the approximated
tangent matrix Ky is no longer guaranteed to be symmetric [37, 74]. Consequently,
the matrices reduced by Galerkin projection in DEIM approach may often lead to
inappropriate solution.

As an alternative combination with Galerkin projection, GNAT will mitigate the
drawback mentioned in the previous paragraph by solving it using a nonlinear least-

squares approach, e.g., Gauss-Newton method.

An = arg min||Re(Vn(); iz — (W0 ; W, (3.9)
In GNAT, using DEIM approximation for the nonlinear terms, the resulting ROM

at the k™ iteration step will be expressed as

sk — (PTTm)_l PTr(Vn(w);w), (3.10)

mxm mx1

RE = (PTT,) " PTKr(V(); V. (3.11)

mxm mxn

The relevant updated approximate solution will result in the following.
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an = arg min || (PTT) ™ P Ky (VR(0); p)V2

_ 3.12
— (PTTy) 1PT1‘(V11(M);M)||2, G2

where 1 denotes Moore-Penrose pseudo-inverse.

Figure 3.1 presents the computational algorithm for DEIM and GNAT, in which
the relevant equations are distinguished between DEIM (green) and GNAT (red). In
the off-line stage, the full-order representation is used to solve the range of
appropriately selected parameters. For the various parameters, the displacement
results u(y;) and the residual force vector r(uk (up); yi),i =1,...,ng, are stored
in the snapshot matrices Wy and Wy, respectively. The former is stored at each
time step, and the latter at each Newton-Raphson iteration k. Subsequently, the
reduced bases V and T, for Galerkin projection and DEIM approximation are
respectively extracted.

Next, DEIM algorithm is employed to compute the interpolation location for Ty,
and define the reduced meshes. Finally, the off-line terms are required during the
online stage, and the online stage is executed. The nonlinear time-transient analysis
requires only the assemblage of the reduced meshes and the solution of the smaller-

dimensional representation at each iterative procedure.

45



I. Off-line stage II. Online stage DEIM GNAT

-

[ Input parameter () ]
Collect samples from FOM

L 4

L 4

SR

Assemble the reduced nonlinear terms ]

[ Construct snapshot matrix ] with respect to the reduced meshes

W, W, v
[ ROM construction ]

[ Extract reduced basis for displacements, residual forces ]

. -1 - 1
Ki=v'r, (P'1,) P'K;v | Kf=(P'T,) P'K.V
V. T, \ ) . )

¥ t* =V'T, (P'T,) P'r o =(P'T, )_1 P'r
[ Find DEIM indices and relevant reduced meshes ]

¥

[ Time-transient analysis with the ROM ]

Pw

¥

2

[ Compute the offline terms related to hyper-reduction ]

Ty (pTp ) - 1
V'L, (P T J (_PTTm J 11k+1 = “k + 4an

1
J

[ Update time-varying quantities

Fig. 3.1 Computational algorithm for DEIM and GNAT
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3.3 Energy-Conserving Sampling and Weighting (ECSW)

Unlike in DEIM and GNAT, the projected Galerkin nonlinear terms can be directly
approximated in ECSW. A subset of elements E in a finite element mesh (|E| K
N,) is used to approximate only the reduced nonlinear terms that are related to the
selected element level. Specifically, ECSW conserves the virtual work (energy) done
by the internal force vector f;,; or tangent stiffness matrix Ky, along the set of the
reduced basis V on the reduced FE mesh. Consequently, the approximated tangent
stiffness matrix is guaranteed to be symmetric, and the resulting ROM can be
constructed without losing the numerical stability of the full-order representation
[48].

For an FE-based dynamical system with N, the total number of elements, the
reduced internal force vector f;,,, at the k™ iteration step will be expressed as the

summation over the selected elements:

Ne
fhe = Y VI (VNG = ) WV I (VN ), (3.13)
e=1

e€E

where W, € RNe is the weights of element e used to provide the optimal
approximation of the reduced nonlinear term.

Similar to Eq. (3.13), the reduced tangent stiffness matrix can be approximated as

follows:
Ne
RE = > VIRV Ve~ ) WVTRE (VRGO vE. (3.14)
e=1 e€cE
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It is noted that this procedure is analogous to Gaussian quadrature method in
which a certain integral is approximated by the integral function evaluation at
specified points and then weighted by pre-defined weighting factors.

The elements and weights can be determined from the training dataset specified
by the displacement results, using the snapshot matrix with Ng; number of time
steps). The relevant training dataset can then be computed using the least-squares

approach as follows:

«® = (VTV)‘IVTu(i), (3.15)
where the superscript i indicates the i" training vector in the training data set.
For each of the training vectors, the element-level contribution of the projected
internal force can be assembled into a matrix G and vector b as follows:
b,

€ R™Ns¥Ne_ b= [eR"™s, (3.16)
by

811 - 81w,
G=| : )

8n,1 " BNgN, <

where g, = VI, (V1) €R™ and b; = Yo¢, 8. € R represent the
elemental reduced nonlinear internal force vector and their element-wise summation
evaluated at the i training vector, respectively.

The unknown element weights W and the subset of relevant elements E are
obtained by solving a sparse non-negative least-squares (NNLS) problem [47] as

follows:
W=arg min [[GW—bl|, < enuslibll, . (3.17)
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where W and W = [Wl, WZ,...,WNE] € RNe are the sparse vector and set of
positive weights associated with each element, respectively. €,,;s € [0,1] denotes
a training tolerance for controlling the sparsity of W.

The relevant sparse NNLS procedure for ECSW is summarized as Algorithm 3.

Algorithm 3 Compute the sparse NNLS for ECSW

Input: G, b, €,
Output: element weight W € R™e, selected elements E c {1, ..., N.}
procedure NNLS
E=null, Z={1,..,N,}, W=0, f\}'S=b
while |[R]|; < €xpslibll do
p = maxloc{GTf;,;}
E-Eu{p} Z<Z\{p}
loop
solve g = Glb
(z=0
if {g> 0 then
W={¢
break
end if
a=min{Wy/ (W, — ) | < 0, k € E}
WeWH+a(d—W)
E<«Eu{k|W,=0}, Z<Z\{k| W, =0}
end loop
£35S = b — GEW;

end while

end procedure
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3.4 Quadratic Manifold-based ECSW

As mentioned earlier, it is necessary to generate the training dataset (snapshots)
for sampling the elements in ECSW, which would comprise the full-order time-
varying displacement results. However, these numerous full-order simulations result
in a computationally expensive off-line stage.

Jain [51] suggested the QM-based reduction approach to collect the training set
for ECSW in an inexpensive manner. In this approach, the full-order nonlinear time-
transient solution (t) is obtained by nonlinearly mapping the inexpensive reduced

linear solution q(t), without the nonlinear FOM simulation:

u(t) ~ I(q(v), (3.18)
where T : R®™ - RY is the nonlinear mapping function.
The relevant reduced linear solution is usually obtained via the mode
superposition method. For a linear dynamic system with Rayleigh damping, the
reduced-order representation by the selected ng free vibration modes is expressed

as follows:

I —f—JA .
win (t) = @q(2), (3.20)

where I € R™*"® and A = diag{w?, w3, ..., w3, } € R™*™® are the identity
and diagonal eigenvalue matrices, respectively. @ € RN*"® and q(t) € R™® are

the linear reduced basis comprising the selected free vibration modes and the
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resulting time-varying displacement vector in terms of the reduced coordinate,
respectively.
Then, the nonlinear mapping I‘(q(t)) is defined as a quadratic function, which

is referred to as QM:

1
u(® ~ r(q(®) = ®q(®) +2: (a() ® q(1)), (3.21)

where Q € RV*"eX"e g the quadratic component composed of static modal
derivatives derived from the free vibration modes, which helps reflect the
geometrically nonlinear (second-order) effects, as shown in Fig. 3.2.

It is noted that the free vibration modes and associated modal derivatives in Eq.
(3.21) are pre-computed basis vectors used to construct the reduced-order
representation in the projection-based MOR. Algorithm 4 summarizes the relevant

computational procedure of ECSW, including QM-based training set generating.
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Fig. 3.2 Schematic of the QM-based training set generation [51, 75].
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Algorithm 4 ECSW including QM-based training set generation

Input: free vibration modes & € R¥*"e static modal derivatives

n¢(n¢+1)

0cRV" 2 | €nnis, NOMinal FE representation (Eq. (2.1))

Output: element weight W € RMe, selected elements E c {1, ..., N, }

procedure QM-based ECSW
<Generation of the training data set>
Q « third-order null tensor € RV*"e*ne
for j =1 to nge do
for i=1 to ng do
Qi =0k, k€{L,.. N}

if i #j then
Quij = (6,
endif
end for
end for

Define QM: T'(q(t)), Eq. (3.21)
Compute q(t) using Eq. (3.19)
for i=1 to Ny do

Compute u® = T(q(¢))

Compute T® = (VTV) 'vTu®
end for

<Sampling of the elements and associated weights>

Assemble G and b using Eg. (3.16)
Acquire W and E by solving the sparse NNLS problem (Algorithm 3)

end procedure
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Chpater 4

Evaluation on Hyper Reduced-order Model

4.1 POD-based MOR including Hyper-reduction

As mention in the previous chapter, the hyper-reduction approaches, DEIM,
GNAT, and ECSW, can alleviate such computational bottleneck, allowing the
reconstruction of the nonlinear term in the reduced dimension by using either a few
sampling points or a reduced number of meshes. As a result, the computational cost
for constructing the reduced-order representation will be decreased significantly by
using the reduced nonlinear term during the recursive projection. Such hyper-
reduction-based ROMs have been applied to numerous engineering fields.

However, a thorough comparison of the aforementioned hyper-reduction-based
ROMs has not been reported, specifically those related to the geometrically
nonlinear structural dynamics. Therefore, the parameterized POD-based MOR
framework that includes hyper-reduction approach will be developed and
systematically evaluated for the resulting ones regarding the prediction capability for
the nonlinear formulations accurately and fast. To achieve this goal, a full-order
representation is developed to provide a set of samples over a range of selected
parameters. A nonlinear structural analysis, based on the updated Lagrangian
formulation, is developed and applied to rotating components undergoing large

displacements. The variation in their dynamic characteristics, owing to the rotation
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effect, is included in the updated Lagrangian formulation. Then, POD-based ROMs
combined with the hyper-reduction technique are developed to construct a reduced-
order representation. The relevant reduced nonlinear terms are approximated using
DEIM, GNAT, and ECSW approaches. The resulting ROMs are applied to the
structural dynamics of a propeller blade, including geometric nonlinear parametric
variations. Finally, the obtained results are compared to those obtained using the
other ROM approaches, in terms of accuracy, stability, and computational efficiency.
Figure 4.1 illustrates the POD-based ROM framework, including the hyper-
reduction approach. In the off-line stage, a sampling analysis is carried out using the
full-order representation, and the reduced basis is extracted from these results. In the
online stage, the ROM is defined by assembling the reduced basis and the nonlinear
terms at each iteration step. Herein, the hyper-reduction technique is employed to
overcome the computational bottleneck due to the recursive computation.

The mathematical expressions for the relevant ROMs are summarized in Table 4.1
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Fig. 4.1 General POD-based framework, including the hyper-reduction.

Table 4.1 Comparison of the reduced nonlinear terms between the POD-based ROMs

Reduced nonlinear terms (at k'™ iteration)

K& = VTKV
POD
£ =vVvTr

KX =vTT,(PTT,) 'PTK;V
POD-DEIM

% = VI, (PTT,) PTr

RE = (PTT,) PTK,V
POD-GNAT
£% = (PTT,) PTr

Rf = Z AT A'S

ecE

fr = Z w,ve're

e€E

POD-ECSW
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4.2 Numerical Results

A nonlinear time-transient analysis is performed based on the proposed framework,
and its validation is presented in this section. The numerical example is the 54H60
propeller blade, which is mainly installed on the C-130 or P-3 aircraft. It has a slender
configuration with a twisted surface and a high aspect ratio. The relevant
configuration and analysis conditions are shown in Fig. 4.2. The three-dimensional
propeller-blade configuration is discretized by ten-node tetrahedral elements (5,903
nodes with 17,709 degrees of freedom). The base surface of the blade is clamped,
and harmonic excitation is applied to all the nodes of the top surface. The relevant
amplitude of the excitation is chosen to be 500 N. Moreover, to investigate the
geometrically nonlinear behavior involving large displacements, the blade is excited
at a frequency of 150 rad/s, which corresponds to the first bending mode. Point A,
a,.,and w, represent the nodes showing the maximal displacement, excitation load,
and frequency factor, respectively.

To examine the performance of the parametric variations, three parameters
( My, o, p3) , ie., Young’s modulus E = u; GPa (u; € [70,75]), density p =
Uy kg/m3 (u, € [2,500,3,000]) , and constant rotational velocity Q=
us rpm (u3 € [1,000,1,500]), are utilized. Eight relevant training points (red
circles) are selected at the upper and lower bounds (Fig. 4.3), and four test cases
(green triangles) with different variables are randomly selected to investigate the
performance of the parametric variation. The material properties are assumed to

correspond to 7,000-series aluminum alloys with a 1% damping ratio [77]. An
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inertial Rayleigh damping is considered for the structural viscous damping, C =
BmM, where f3,, denotes the coefficient for Rayleigh damping.

To wvalidate the present full-order representation, a time-transient analysis is
conducted for up to 0.2 s (200 steps) for Case 1 (a, = 1.0, w, = 1.0). These results
are validated using the ANSYS commercial simulation software [78]. Figure 4.4-a
shows a comparison of the tip-displacement history between ANSYS and the FOM.
The FOM results show good agreement with those obtained using ANSYS.
Considerable differences are found when comparing the linear and nonlinear
analysis results. The geometrically nonlinear results show that the maximum
response and resonant frequency are different, when compared with those of the
linear analysis results (Fig. 4.4-b). Hence, the geometric nonlinearity may
significantly influence the dynamic property prediction of the blade, and it should
also be included in the reduced-order representation.

To construct the reduced-order representation, a sampling analysis using the full-
order representation is conducted at the upper and lower bounds of the eight training
points. A nonlinear transient solution is obtained over 200 steps. Moreover, 1,600
and 7,806 snapshots are collected from the displacements (at each time step) and
residual force vectors (at each iteration), respectively. The sampling procedures are
summarized in Table 4.2. Subsequently, the POD and DEIM bases are extracted from

the snapshots and used for the successive comparison of ROMs.
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Fig. 4.2 Configuration and analysis conditions for a S4H60 propeller blade.
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Fig. 4.3 Eight training points and four test cases for the parametric variations.

Table 4.2 Sampling analysis results for extracting the reduced basis

No. of snapshots

No. of Time-step

training points Sampling time /o (At)  Displacements R?(S)lr‘i‘elal
0-0.2s
8 (200 time steps) 0.001s 1,600 7,806
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4.2.1 Accuracy Factor

The accuracy of the present ROMs, namely POD, POD-DEIM, POD-GNAT, and
POD-ECSW, is evaluated using five accuracy factors proposed based on different
levels of interest. Each factor e; is the normalized value, which varies from 0 to 1
through comparisons with the solutions obtained from the full- and reduced-order
representations; the closer the value is to 1, the better is its accuracy. Negative factor
values are set to 0 while computing the accuracy factor. Several factors (e, e4, and
es) are cited from Ref. [31].

i. Relative discrepancy of the energy

e = max<0, 1- 2 E@OL ),

N TN (4.1)
V2t Erom ()]
where E(t) isthe sum of the kinetic and linear deformation energies.
E(t) = ;u(t)™Ma(t) +;u()TKu(b),
(4.2)
AE(t) = Erom(t) — Egom (D).
ii. Relative discrepancy of the displacement
Au(t)TAu(t
e, = max (0, __JEdu® M) ) (4.3)
VEe[upon () Tupon (1]
where
Au(t) = upom(t) — ugom(t). (4.4)
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iii. Relative discrepancy of the velocity

Au(t)TAa(t
e; = max (0, 1- \/Zt[ ® ' ®] ), (4.5)
VEelipom () Tapom (8]
where
Au(t) = upgm(t) — ugom(t). (4.6)
iv. Relative oscillatory deviation at the blade tip
2
_ 1 Orom,i — OROM,i
es, = max| 0, 1- ) 4.7
Niip . OFomM,i
lEItip

where I, € RNti»  contains Niip , the number of displacement indices

corresponding to the degree of freedom of the blade-tip surface.

0; = max[u;(t)] — min[u;(t)]. (4.8)

V. Relative discrepancy of the displacement at the blade-tip node

_VEdAutP (OTAuP (1)

es = max| 0, 1 ’ (4.9)
(Edui, O, o]
where
AutP(t) = Aub? ()T — AubP (©). (4.10)
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4.2.2 Comparison among POD-based ROMs

Based on the proposed accuracy factors, the POD-based ROMs are assessed in
terms of accuracy and robustness. A nonlinear time-transient simulation is performed
for up to 0.5 s (500 steps) in the first test case, which has an analysis condition of
a, = 1.0 and w, = 1.0. The tolerance concerning the nonlinear force residual is set
tobe € < 10™> for the converged solutions. If the ROM fails to obtain a converged
solution, it is indicated by an "x" in the subsequent results figure.

In hyper-reduction-based ROMs, both POD-DEIM and POD-GNAT can be used
to define a reduced mesh by considering the number of POD (n) and DEIM (m) bases
independently, whereas POD-ECSW can only be used to define a different reduced
mesh that depends on the number of POD bases and the training tolerance €yy;s in
Eq. (3.17). In this example, the training tolerance €yy.s Was setto 10™* [48]. The
number of selected elements was determined by examining the number of PODs
used. Information about the number of the selected elements is summarized in Table

4.3.

Table 4.3 Summary of the selected elements for POD-ECSW

No.of PODbases(n) 10 20 30 40 5 60 70 8 90 100

No. of sampled 73 109 218 288 357 427 512 584 664 755
elements (E)

Figure 4.5 shows the five accuracy factors used for the various number of POD

and DEIM bases. In all the POD-based-ROMs, it is observed that the accuracy
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factors tend to increase as the number of POD bases increase. However, the POD-
DEIM approach shows numerical instability in all the accuracy factors, failing to
converge when a certain number of bases are selected. Specifically, when more than
90 POD bases are used, POD-DEIM will not converge for any number of DEIM
bases. Considering the convergence tendency, a sufficient number of DEIM bases
will be needed when the number of POD bases is increased. Such instability may be
due to the loss of the symmetric property when the tangent matrix K is
approximated by applying the Galerkin projection in the hyper-reduction approach.
From that perspective, POD-DEIM may lead to unstable situations for multi-query
or parametric formulations when using a variety of arbitrary inputs.

By contrast, POD-GNAT shows good convergence characteristics for all the
selected numbers of POD and DEIM bases. When the number of POD bases is
constant, even if the number of DEIM bases increased, the effect on the accuracy
factors is much smaller than that of POD-DEIM. It should be noted that in POD-
GNAT, accuracy increases almost linearly in proportion to the number of POD bases
used, and even a smaller number of DEIM bases is capable of guaranteeing
converged solutions. The stability of POD-GNAT is due to the minimization of the
global residual by applying the Gauss-Newton approach in Eq. (3.12) to the non-
symmetric tangent matrix K. POD-ECSW exhibits improved numerical stability by
achieving high accuracy and convergence characteristics for all the selected numbers
of POD bases. Specifically, sufficient accuracy is exhibited for only a small number
of POD bases, similar to the result obtained in the approach that solely applied the

65



POD-Galerkin projection. This improvement is owing to the application of ECSW
that preserved the symmetric properties and energies of the full-order representation,
as shown by the trend in Fig. 4.6. Consequently, POD-GNAT and POD-ECSW build
a more robust reduced-order representation than POD-DEIM.

Additionally, the computational costs of CPU time during the off-line and online
stages are compared to evaluate the computational efficiency. The value of the CPU
time during the online stage corresponds to the time-transient simulation (1,000 steps)
for Case 1 (@, = 1.0, w, = 1.0). Moreover, all computations are performed using
serial operations (single CPU).

Each ROM is constructed using numbers of bases with accuracy factors exceeding
0.95, as shown in Fig. 4.5. Hence, 350 and 200 DEIM bases are used to approximate
the nonlinear terms in POD-DEIM and POD-GNAT, respectively. It is noted that
POD-GNAT is used with a relatively larger number of POD bases than that of POD-
DEIM, while the DEIM bases used are significantly fewer than those of POD-DEIM.
In contrast, POD-ECSW is applied using a comparatively smaller number of POD
bases than both POD-DEIM and POD-GNAT. Subsequently, 218 selected elements
associated with the 30 POD bases are obtained to define the reduced meshes. The
relevant configuration of the reduced meshes is presented in Fig. 4.7, and the

information about the bases is summarized in Table 4.4.
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Fig. 4.5 Comparison of the accuracy factors in terms of the number of reduced bases.
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Fig. 4.5 Comparison of the accuracy factors in terms of the number of reduced bases (cont.).
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a) POD-DEIM b) POD-GNAT c) POD-ECSW
(350 DEIM bases) (200 DEIM bases) (218 selected elements)

Fig. 4.7 Accuracy factors with respect to increased reduced bases.

Table 4.4 Number of the reduced bases used for ROM

POD POD-DEIM POD-GNAT POD-ECSW
POD bases (n) 30 50 100 30" * No. of sampled
DEIM bases (m) - 350 200 - elements : 218
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Figure 4.8-a compares the computational time between FOM and the POD-based
ROMs during the online stage. Applying POD alone improves the computational
time by only twice, when compared to FOM. In contrast, the hyper-reduction-based
ROMs (POD-DEIM, POD-GNAT, and POD-ECSW) exhibit significant
improvements in the computational time (11.1, 14.8, and 20.7 times faster than the
FOM prediction, respectively). In particular, POD-ECSW, which is applied using a
smaller number of POD bases than POD-DEIM and POD-GNAT, exhibits the
optimum online computational efficiency (its CPU times are 1.9 times and 1.4 times
faster, respectively). It should be noted that POD-GNAT, which is used with a
smaller number of DEIM bases and a larger number of POD bases than POD-DEIM,
shows improved computational efficiency. This implies that the computational
efficiency of a hyper-reduction-based ROM combined with DEIM approximation
mainly depends on the number of DEIM bases used. This determines the scale of the
repetitive computations for constructing the reduced-order representation during the
online stage.

The total computational time, including the oft-line stage, in terms of the number
of computations, is compared between FOM and POD-based ROMs. The off-line
time consists of a sum of the time for sampling analysis, time for extracting the
reduced-order basis, and time for constructing off-line terms related to the reduced
meshes. Herein, POD-DEIM and POD-GNAT extract DEIM bases from the huge
snapshots of the residual-force vectors. POD-ECSW extracts the selected elements

from an enormous training dataset. Then, they consume more off-line computational

72



phase time than that by the POD. Among those, POD-ECSW shows the highest off-
line computational time because it solves a time-consuming sparse NNLS problem
(Fig. 4.8-b). Such off-line computational time is required once at the beginning of
the computation. Then, the online computational time is obtained and accumulated
for computational cost. Hence, it is expected that the total computational cost in the
ROM framework will generally improve as similar computations are repeated.
Specifically, the hyper-reduction-based ROMs, which has a remarkably larger speed-
up factor compared to POD in the online stage, show a significant reduction in the

cumulative CPU time while the similar computation is repeated.
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Fig. 4.8 Computational cost among FOM and POD-based ROMs.
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4.2.3 Parametric Study of POD-based ROMs

To demonstrate the performance of the ROMs within the parametric variations,
three test cases are examined. The number of bases used for ROM construction is
identical to that shown in Table 4.4. The relevant analysis conditions for the

parametric study are listed in Table 4.5.

Table 4.5 Summary of test conditions for the parametric study

Condition No Case No. Excitation factor
) (E,p, Q) Loading (@,)  Frequency (w,)
2
I (73, 2850, 1260) 1.0 1.0
3
1 (74, 2910, 1340) 1.5 1.0
11T 4 0.5 2.0

(72, 2640, 1470)

The deformation history at Point A (the trailing edge at the blade tip) is used to
evaluate the accuracy of the ROMs. Moreover, the relative discrepancy in the
deformation field between the FOM and ROMs is introduced. The total deformation

is defined as follows:

it = J(uen)” + (wya)” + ()’ (4.12)

where uy 4, Wy 4, and u, 4 denote the displacement component of each direction
at the Point A.
Figure 4.9 shows the total deformation history at Point A. For Conditions I and II,

all ROMs are in good agreement when compared to the FOM. Herein, the solution
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history from the ROMs is recovered using POD bases. For Condition III, which has
a larger nonlinearity than Conditions I and II, POD-DEIM does not deliver an
accurate solution and diverged. However, POD, POD-GNAT, and POD-ECSW show
a better correlation with FOM.

To quantify the discrepancy in the hyper-reduction-based ROMs, the root mean
squared relative error (RMSRE) of the total deformation history at Point A is
considered. Table 4.6 provides a comparison of the RMSRE values between the
ROMs. POD-GNAT and POD-ECSW achieve a significantly higher accuracy for
Conditions I and II (the average relative discrepancy was within 2%). However,
POD-GNAT shows a relative difference for Condition III. The accuracy trend of the
number of reduced bases indicate that the accuracy will improve when the number
of reduced-order bases is increased (Figs. 4.6 and 4.7).

The reduced-order representations based on hyper-reduction reveal that the
stability of POD-GNAT and POD-ECSW is better than that of POD-DEIM. Thus,
POD-ECSW can accurately address broad parametric variation. This is determined
by comparing the von Mises stress field between FOM and hyper-reduction-based
ROMs. Figure 4.10 demonstrates von Mises stress field, which is computed at the
time of maximum deformation in each condition. When compared against FOM

results, POD-ECSW shows better correlation for all the conditions.
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Fig. 4.9 Comparison of the total deformation for the different conditions.
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Table 4.6 Comparison of the RMSRE (%) regarding the total deformation

POD-DEIM POD-GNAT POD-ECSW
Condition | 4.205 1.915 1.620
Condition Il 6.312 1.638 1.013
Condition |1 N/A 7.911 1.429
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Fig. 4.10 Comparison of von Mises stress for the different conditions.
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4.3 Extension to Other Frameworks

Based on the results presented in the foregoing sections, it is found that POD-
ECSW approach provide the most robust reduced-order representation for the
nonlinear time-transient formulation, including parametric variations.

In this section, POD-ECSW will be further extended to modal and forced vibration
frameworks of rotating component. The rotating component is frequently subjected
to various vibratory loads that may cause catastrophic failures such as high cycle
fatigue [79]. There have been two approaches to prevent HCF problems [80]. The
first approach is to design to avoid dangerous resonances in the operating range. This
is a qualitative standard design practice to avoid resonance using the Campbell
diagram. Generally, the resonance should be avoided in the lower-order structural
modes (first bending, torsion modes, etc.). The second approach is to allow
resonance in the operating range and to quantitatively assess the associated response
level of the blades in resonant conditions. This approach is required to accurately
predict the structural response under the resonant condition by conducting a forced
vibration analysis. Therefore, in the design process of a rotating component, the
modal and forced vibration analyses need to be performed to investigate their
vibration characteristics. However, rather expensive nonlinear static and linear
frequency response analyses are usually accompanied by a frequency domain
analysis. The traditional mode superposition method (MSM) effectively reduces the
cost of the frequency response analysis. However, the nonlinear static analysis of

earlier processes remains as the computational bottleneck.
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In this section, the application of POD-ECSW regarding the modal and forced
vibration analyses of turbomachinery rotating blades will be investigated,
respectively. Moreover, as in the previous subsection (time-transient analysis), the

present results are validated by comparison with those obtained using FOM.

4.3.1 Modal Analysis

In this subsection, the modal analysis is executed. The relevant example is the
transonic fan blade, NASA Rotor 67. The three-dimensional fan-blade configuration
is discretized by 10-node tetrahedral elements with N, = 8,384, and corresponding
number of the displacement DOFs is N = 50,268. The material of the blade
structure is titanium alloy, i.e., Young’s modulus E = 117 GPa, density p =
4,539.5 kg/m3 , and Poisson’s ratio v = 0.3.

To construct the reduced-order representation, a sampling analysis using the full-
order representation under the pure centrifugal load condition, in which the number
of time steps is 100 at intervals of 0.0001s. The base surface of the blade is clamped.

For POD-ECSW, the training tolerance €yy.s is set to be 1073. Then, 148
selected elements and corresponding weights are determined by using 30 POD basis
vectors with a 98% energy ratio (Eq. (2.23)) to FOM.

Table 4.7 shows a comparison of the natural frequencies. When compared with
the results obtained by FOM, POD-ECSW shows good agreement within 0.5% of
the average discrepancy. In addition, the online computational time consumed by

POD-ECSW is 0.42 s, and that by FOM is 7.5s. Therefore, the computational cost is
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significantly improved as it is reduced by 95%.

It is important to create a Campbell diagram to evaluate the resonance under
excitations. To do this, dynamic analyses within operating ranges are performed, and
this will require a significant amount of computation. In the projection-based MOR
framework, once the ROMs are constructed, it will be straightforward to perform the
modal analysis at various rotating conditions. This advantage makes it easier to
create the Campbell diagram for resonance evaluation. Figure 4.12 shows a
Campbell diagram for resonance evaluation. POD-ECSW exhibits a satisfactory
correlation with FOM prediction. Specifically, when the rotational speed is increased,
the natural frequency of each mode is also increased by the rotational effect.
However, there is a difference in its increase rate for each mode. This may be
explained by Southwell effect [81], by which coupling between the flapping and
lead-lag modes occurs, owing to the difference in their natural frequencies’ increase

rate among the modes as the blade rotates.
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(a) Discretized fan blade (b) Reduced mesh (148 elements)

Fig. 4.11 NASA Rotor 67 fan blade for the modal analysis

Table 4.7 Comparison of the natural frequencies in the rotating condition (Hz)

Avg.
Model Mode2 Mode3 Moded Mode35 discrepancy, %
POD-ECSW 536.8 1240.8 1759.9 25443 28223 0.5%

Reference (FOM)  535.8 1238.8 1770.1 25233 2838.2 -
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4.3.2 Forced Vibration Analysis

In this subsection, a comparison of the computational performance will be

examined among the different MOR frameworks when applied to rotating

component forced vibration analysis. The procedure of the forced vibration analysis

includes the nonlinear static solution for the evaluation of the stiftness variation by

the centrifugal force and time-harmonic solution to obtain the steady-state frequency

response. The relevant approaches considered in this study are as follows:

o FOM: The pre-stressed stiffness matrix K is obtained by the nonlinear static

analysis. Then, linear frequency response analysis is conducted. This will be a

reference representation.

e POD: The nonlinear static- and linear frequency analyses are conducted in

sequence by solely applying POD-Galerkin projection.

o POD-ECSW: The nonlinear static- and linear frequency analyses are conducted

by using a small number of selected elements determined via ECSW.

To evaluate the accuracy of the present MOR, two indices representing the relative

displacement field and von-Mises stress discrepancies are defined as follows:

5 Jugor — upom?
EL,(%) = x 100

e ol
i=1 1 2

s [|oFom — gfom |2
El, (%) = x 100

2
ZiZillo M,
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where ng denotes the number of imposed frequencies. u and ¢ are the complex
displacement and the maximum von-Mises stress obtained from the alternating stress,
respectively. In addition, to compare the computational efficiency between FOM and
ROM, the online speed-up factor S (tFOM /tROM) is introduced.

The relevant example is the first-stage blade of a 75-MW GT11N gas turbine. The
three-dimensional turbine blade configuration is discretized by 10-node tetrahedral
elements with N, = 376,538, and corresponding number of the displacement DOFs
is N =1,774,512. The material of the blade structure is Alloy In-738LC with a
Rayleigh damping mass matrix multiplier of 50s™1 (i.e., Young’s modulus E =
200.6 GPa, density p = 8,420 kg/m3 , and Poisson’s ratio v = 0.28). For the
frequency response analysis, a transverse tip harmonic force of 1,000 N is imposed
using the frequency band extending from 500 to 4,500 Hz at the interval of 40 Hz.

Regarding the off-line stage, the snapshot matrix W is constructed based on the
nonlinear time-transient analysis results. The relevant sampling analysis is
performed under the sinusoidal angular velocities of amplitude 3,600 RPM are
imposed along the transverse, longitudinal and rotation axes for each. The relevant
sinusoidal function oscillates during 5 periods with the frequency of 1,000 Hz. Then,
50 POD basis vectors are extracted, which have a 98% energy ratio to FOM.

For POD-ECSW, the training tolerance €yp.s is set to be 1073. Then, 605
selected elements and corresponding weights are determined by using 50 POD basis
vectors, as shown in Fig. 4.13.

Table 4.8 compares the relative discrepancy and speed-up factor between FOM
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and ROMs. Both POD and POD-ECSW achieve a significantly higher accuracy (the
average relative discrepancies within 1.78% and 2.19% for EI, and El;).
Moreover, POD-ECSW shows an improved speed-up factor compared to POD.
Figure 4.14 shows the variations of the relative discrepancies in terms of the
parametrized rotational velocity. In all the cases, the relevant discrepancies are
observed to be within 2%. Specifically, the maximum transverse displacement is
demonstrated for different rotational velocity, as shown in Fig. 4.15. Except for the
slight deviation in the high frequency range, the peak location and corresponding

displacement responses of ROMs are identical to those by FOM.

Sections of this chapter have been published in the following relevant journal articles:

Kim, Y., Cho, H., Park, S., and Shin, S.-J., “Advanced Structural Analysis based on
Reduced Order Modeling for Gas Turbine Blade,” AIAA4 Journal, Vol. 56, No. 8, 2018,
pp- 3369-3373.

Kim, Y., Kang, S., Cho, H., and Shin, S.-J., “Improved Nonlinear Analysis of a
Propeller Blade based on Hyper-reduction,” AIAA Journal, Vol. 60, No. 3, 2022, pp.
1909-1922.

Kang, S., Kim, Y., Cho, H., and Shin, S.-J., “Improved Hyper-reduction Approach for
the Forced Vibration Analysis of Rotating Components,” Computational Mechanics, Vol.

69, 2022. pp. 1443-1456.
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Chpater 5
Parametric Hyper Reduced-order Model for a

Geometrically Imperfect Component

As mentioned in Introduction, if the FE representation varies owing to the
geometric imperfection, the reduced-order representation will be expensively
reconstructed. In this dissertation, to overcome such limitation, both defect-
parametric reduced-order model (DpROM) and hyper-reduction will be used.

DpROM constructs a geometrically nonlinear ROM that is capable of describing
parameterized shape defect. In its off-line stage, a set of the shape defects that may
occur during manufacturing or operation will be defined as a displacement field with
respect to the nominal FE representation. The reduced basis is extracted by using the
model-based approach based on the nominal FE formulation and pre-defined defect-
displacement subspace alone. Subsequently, the reduced stiffness tensor is
constructed by projecting the element-level full-order tensor with the reduced basis.

In the online stage, ROM, which parametrically relies on the defect amplitude, is
defined as a polynomial function comprising the reduced stiffness tensors with
regard to the reduced coordinate. In the following sections, the relevant formulation

and framework of the proposed ROM will be presented.
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Fig. 5.1 Two-step movement of a continuum body regarding the defected geometry.

5.1 Modified Strain Approximation

In the current DpROM framework, the geometric imperfections are described as
a set of the user-defined displacement fields (i.e., an additional assumed
displacement), which will be integrated into the conventional strain formulation.
This idea was suggested by Budiansky [82] for the post-buckling behavior in the
presence of defects. Therefore, the total displacement fields of a structural object
may be decomposed into the following two components: a defect-displacement
(constant component) and an actual displacement (variable component). Beyond the
deformation, a material point of the final coordinate in terms of the nominal (initial)

configuration is defined as follows:

X=Xy +u,; +u, (5.1)

where Xy = {x, Vo, 20}, Uy = {ug, vy, wy}, and u = {u, v,w} are the nominal
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coordinates, and the defect- and actual displacement fields, respectively. Herein,
u, is a user-defined displacement field that represents the shape defect. The final
coordinate X can be described by going through a two-step movement approach
from the nominal coordinate X, as shown in Fig. 5.1.

Assuming a continuous mapping, the differential line segments dx,; and dx in
the defected and deformed configuration can be expressed with respect to dx, as

follows:

dxd = FddXO' (52)

dx = Frdx4 = FF,dx,. (5.3)

where deformation gradients F; and Fy are rearranged as follows:

0%y Jduy,
Fd=a—=l+a—=I+Hd, (54)
Xo X0
LI UL R 5.5
f_(‘)xd_ axd_ f’ ()

where F; and F; are the defect-deformation gradient in terms of the nominal
coordinates and the final-deformation gradient in terms of the defected coordinates,
respectively. Hy and Hy are the displacement gradients in the defected and
deformed configuration, respectively.

By the chain rule, the displacement gradient with respect to the nominal

coordinates is defined as follows:
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Jdu Ju 0xg4
== = H :HF_l. 5.6
0x, O0x40X, HiF, < Hy d 6)

Using the relationship between Eqgs. (5.2) - (5.6), the stretch between the deformed

and defected configurations can be expressed as follows:

S =dxTdx — dx;" dx,
= dx," Fj (F{F; —I)F,dx, (5.7)
= dx," (H+H" +H"H + H{H + H"H_) dx,.

Considering the strain measure with regard to the defected configuration, the

modified Green-Lagrange strain tensor (second-order) is expressed as follows:

S = 2dx}Edx, = 2dx(FEF dx,. (5.8)

This leads to

1
Er =5 (F/Fr —1)

(5.9)
1
= EFd—T(H +H” + H'H + HIH + H™H,))F; .

Assuming the shape defects are small (i.e., ||Hy|| < 1), an inverse of the defect-
deformation gradient F;1 of Eq. (5.9) will be expanded via Neumann series [83] as

follows:

N
F;l=(1+H,) "~ Z(—Hd)", (5.10)
n=0

where N is the order for trimming the Neumann expansion sum.
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Considering the first-order Neumann series in Eq. (5.10) (i.e., F;1 = (I—Hp)),
and substituting it into Eq. (5.9), the modified Green-Lagrange strain tensor can be

written as follows while neglecting term O(Hdz):

1
Efy = E(H +H" + H"H + HJH” — HH; — HJH"H — H"HH,,). (5.11)
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5.2 Finite Element Formulation

For the FE-based nonlinear representation using the three-dimensional (3D)

continuum element, the modified strain tensor, Eq. (5.11), can be rewritten as follows:

where

1 —
Ef,N = (G + EA]_ + AZ + A3A1> Bue,

Ug x

ud,F

U,z
0

1 0 0 0

0O 0 0 O

0 0 0

0o 1 1

(] 0
[0 0 0 O
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wy 0 0

0 u, 0
u, 0 wv,
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-Zud,x 0 0 Uy x Wy 0
0 Zvd.y 0 ud!y 0 wd'y
A3 - _% % 0 0 de,z 0 ud,z Ud,z , (516)
Zud!y ZUd,x 0 Ugy T Ugy Wy y Wg x
2Md‘z 0 2wd,x Ud z Ug x + Wy z Udx
| 0 2ug; 2wgqy Uz Ugy Udy + W4z |

where B € R%™e and u® € R are the shape function derivative matrix and
elemental deformed-displacement vector of the 3D continuum finite element in n,
DOFs, respectively. G € R is the constant localization matrix. A;, A,, and
A; € R®¥9 are the displacement gradient matrices corresponding to the nominal
configuration (e.9., u, = du/dxyand wy, = dw,/dy,, by using Voigt notation),
respectively.

While considering Eq. (5.16), the strain variation in the virtual work expression

can be expressed as follows:

5Ef,N = (G + Al + A2 + 2A3A1)§5ue
(5.17)
= B du®,

where B is the strain-displacement matrix.

The element-level internal force from the virtual work of the FE-based

representation can be written as follows:

fo - f BTCE, ydVg, (5.18)
Ve

d

where C € R®*® is the constitutive matrix of the corresponding linear elastic
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material and V5 is the element-level volume in the defected configuration.
By substituting Egs. (5.12) and (5.17) into Eq. (5.18), the element-level internal

force can be explicitly written as follows:

fe, = f BT(G+A; +A, +2A;A)TC
Vi

(5.19)
1 _
(G +5A +A; A3A1> BuedVyg,

Herein, to explicitly compute the stiffness coefficients of the internal force, the

displacement gradient matrices can be rewritten as follows:

A, =L, - (Bu®), (5.20)
A, =L, - (Bu?), (5.21)
A;A; = (L3 - (Bug)) - (Bu®), (5.22)

where Ly, L, € R®%9%9 and L; € R6*9*9%9 are the constant localization matrices,
whose detailed expression is provided in Appendix A.
Equation (5.19) can be divided into contributions that represent the linear,

quadratic, and cubic terms for the displacement u®, as follows:

8 oar = f B7(G"CG+ G'CA, + A,"CG + A, CA,) BuédVy, (5.23)
Vi
fquadratic = B EG CA; +A; CG+ EAZ CA; +A, CA;
Vi
+2A;7A;"CG + GTCAzA, +2A,7A;7cA, (5.24)
+ AZTCAgAl) Bufdvy,
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_ /1
€ pic = f BT (EAlTCAl +2A,;TA;TCA;A; + A TASTCA,
41

(5.25)
+ AlTCA3A1) Bufdvy.

These full-order terms will be expressed in the form of the following tensor

relationships:
ffnear = K (UY) " UE, (5.26)
feuaararic = ;K (Ug) : (U ® ue), (5.27)
fomic = JK(UG) i (u° Q@ u® @ ue), (5.28)

where

KO(uG) = 2K + 3K ug + 400K : (ug ® u), (5.29)
KO(ug) = 3K + 4K ug + 500K (uf ® up), (5:30)
KUY = 4K+ 5K - ug + 640K (u§ ® uf), (5.31)

where the left-subscript of each tensor is its order. The letters “n” and “d” represent
the tensor associated with only the nominal and defected geometry, respectively.
Furthermore, "dd" indicates the higher tensor operand that is multiplied with the

elemental defect-displacement vector u§ twice.
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5.3 Reduced Tensors and Nonlinear Terms

To compute the reduced stiffness tensors, a suitable reduced basis V €
RN*™ (m « N) and a set of displacement vectors U € RVN*™a that represent mg
predefined shape defects are designated. Then, elemental displacements u® and uj
are approximated in a weighted linear combination of the set of basis vectors as

follows:
u® =~ Vey, (5.32)

uf ~ U%, (5:33)
where n € R™ and & € R™4 are the reduced coordinate vector and defect
amplitude vector, respectively. V€ € R™*™ and U¢ € R™*™d are the element-
level contributions of V and U, respectively.

A reduced basis comprises three basis vectors via the following model-driven
approaches: free vibration modes &, modal derivatives @, and defect sensitivities
E (i.e.,, V=[®,0,E]), which can be directly obtained from the nominal FE
representation.

Recalling Egs. (2.7) and (2.14), the free vibration modes & and modal

derivatives ® are computed as follows:

(Kleg — w?M); =0, (5.34)
od; 0Kr(dm;,0
8 =—a¢l = —K|;} —T(a m:0) g, (5.35)
Njl,, nj eq

where
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OKr(jm;,0)

= f BT(GTCA; + 2A,7CG) BdV, (5.36)
\Z

eq n
where K|., represents tangent stiffness matrix Kr(u,ug) at the equilibrium
position (u=0,u; =0) w; and ¢; are the i"™ eigenvalue and its associated
eigenvector, respectively. Moreover, the contribution of the spin-softening effect is
considered for the rotating component (i.e., K|, = K7(0,0) — Ky,).

Analogous to the modal derivatives, the defect sensitivities Z can be obtained by
differentiating the free vibration modes with respect to the defect amplitude, and

are expressed as follows:

o 0K (0,Uj%;)
. = = —K|jl —— PV 5.37
ij af} . eq af] eq ' ( )
where
0K+(0,U;¢&; = R
K (0,U6))]  _ f B"(G"CA, + A,"CG) BdV,. (5.38)
afj eq Vn

When a set of mg free vibration modes and m, shape defects are selected,
mg (Mg + 1)/2 modal derivatives and mgmg defect sensitivities are obtained.
Consequently, m vectors of the reduced basis V correspond to (3/2 + mg/2 +
my) Mg basis vectors. in the form of the following tensor relationships:

By substituting Egs. (5.32) and (5.33) into (5.23) - (5.25), the elemental reduced
tensors can be obtained along with Einstein’s notation:

1) = f [ GGy Graliy AV, (5.39)
VE

d
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1
n@ii = | T (5 GCiebawtalar + LujialarcGiGia ) lydVE, (540)
Ve

d

20 = f 11 (G CreLamaa Yo + LajiaYeok Gy G )Ty AV (5.41)
Ve

d

1
4nQIe]KL =5 GILljiaraKCjklelebL[i]dVde , (5.42)
2 ve

5 LyjiaYarCik Likin bk

4008k, = fe Iy | tlujialakCGlawwYor | 1,dVE, (5.43)
Vi +2L3jiap VoL ax CikGia
+G;iCikLaxiap Yorlax

2aa@f kL :j L Ly jiaYak CikLzjiaYor Iy dVy, (5.44)
41
—LiiyyalwCir L Y.ul
SdQIe]KLM = fe 1—21 2 1jlataK“jk*~3klbc*cM*bL H]dV;, (545)
Va +L3jiapYomlak CikLrcliL

2L2iio0 Y1 [ Cir L Y,
3jiab {bLlak UjkL2kic CM)n]dVde: (5.46)
+Loj1aYar CikLarncYem bk

5ddQIe]Km =f le(
Vi

eaaQ iy = 2 f Iy Ls i You Tt Co LyetcaYan Torc Ty AV (5.47)
Ve

where T =BV® and Y = BU® denote the projections of the shape function
derivative matrix over the element-level bases. The right-subscript of each tensor is
its dimensions. Accordingly, the capital letter represents m size (for the underlined
one, my size), €.0., ¢qqQ° € RMXMXMXMXMaxMa,

The global reduced tensor for each contribution can be obtained as the summation
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over all element-level tensors:

Ne
Q=)".0°, *=2n3n,..6dd (5.48)
e=1

Herein, *Qe is computed over the nominal volume. If the volume changes due to
defects, an approximated volume integration is considered to include the defect
contribution [57].

Consequently, the reduced nonlinear internal force is defined as a polynomial

representation comprising the global reduced tensor:

fine = 2Q) 1+ QO : MM+ Q) : M),

. (5.49)
linear quadratic cubic
where
2Q(6) = 2,Q + 34Q - § + 4404Q: § R ), (5.50)
3Q(6) = 3,Q+ 44Q §+ 544Q: V), (5.51)
4Q) = 4nQ+5aQ-§+6aaQ: E®F), (5.52)

Herein, spin-softening matrix Kg, isaddedto ,,Q for the rotating component.

Similar to Eqg. (5.49), the reduced tangent stiffness matrix is obtained as follows:

af-int _

o ,QE) + 25Q(6)  m+3 Q) : (). (5.53)

KT =
It is worth noting that fast online computation can be achieved because the

resulting reduced nonlinear terms (Egs. (5.49) and (5.53)) have the same dimension

as the reduced basis owing to the tensorial formulation. However, for a larger
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dimensional nonlinear representation, reducing the high-order tensors up to the
sixth-order will require extensive computational time and resources during the off-
line stage. Mitigation of such computational load can be achieved via the hyper-

reduction method.
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5.4 Hyper-reduced Tensors and Nonlinear Terms

The hyper-reduction approach constructs the nonlinear terms only at a few
optimally selected nodes or elements, which approximates the large number of
nonlinear terms to reduce their dimension. Among the hyper-reduction methods,
ECSW is considered suitable for FE-based structural applications, considering it
directly approximates the reduced nonlinear terms while preserving the symmetric
property [48]. Therefore, this thesis proposes the DpROM framework, including the
ECSW method. The set of reduced high-order tensors are obtained by using only a
small number of selected elements determined via ECSW. Consequently, the oft-line
expense for Egs. (5.39) — (5.48) decreases substantially. The expression and
computational procedure for the proposed DpROM are presented in this section.

Based on QM-based ECSW (Section 3.4), the global reduced tensor for each
contribution, Eq. (5.48), can be approximated as the summation over the selected

elements only.

Q= .Qp = Z We( Q). *= 2n,3n, .. 6dd. (5.54)

ecE

where the letter “A” represents the hyper-reduced tensor via ECSW and W, is the
weight of each selected element e used to provide the optimal approximation of the
global reduced tensor.

Using the hyper-reduced tensors, the hyper-reduced nonlinear terms are obtained

as follows:
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finen = 2Qu©) M+ 3QE):MOM+ Q@ :M®N®M).,  (5.55)

7 _ afint,h _

Kin = m 2@ (§) + 23Q,() ' m+3 ,Qu(H)(n @ M). (5.56)

Figure 5.2 shows the proposed computational algorithm of the proposed DpROM
framework, including the ECSW method. In the off-line stage, the nominal full-order
representation in Eq. (2.1) and the defect field are specified first, and then the
relevant reduced basis is extracted. Next, the hyper-reduction approach, i.e., ECSW,
optimally selects the elements and their weights. Herein, the QM approach is
employed to mitigate expensive off-line computations on the full nonlinear FE
representation required for the ECSW training vector (the reduced internal force, Eq.
(3.16)). Then, the hyper-reduced-order tensors ,Qy,, which linearly contribute to the
reduced internal force, are separately computed based on the selected elements and
corresponding weights. Such QM-based ECSW would significantly reduce the oft-
line computational cost associated with handling the high-dimensional tensors
required to build the existing DpROM.

Once the reduced basis V and hyper-reduced tensors ,Qj are pre-computed in
the off-line stage, the defect-parametric hyper-reduced-order representation is
cheaply defined in polynomial form in the online stage. Then, the repeated static and
dynamic simulations may be rapidly performed for the different defect amplitudes
without going through the off-line stage process.

The following is worth noting in the proposed approach:
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e The dimension of the resulting ROM and the existing DpROM is m (the size
of the reduced basis). Thus, the online computational cost will be
approximately the same for both approaches. However, the proposed DpROM
will reduce the overall cost compared with the existing one via its low-cost

off-line stage process.

e The reduced basis is selected conservatively, including me(me + 1)/2
modal derivatives and mgmg defect sensitivities related to all mg, free
vibration modes up to the higher-order. In other words, the size of the reduced
basis V features a quadratic growth with respect to the free vibration modes.
Considering the large amount of reduced basis vectors, this will affect both the
off-line and online expense. To reduce the number of bases by pre-selecting only

a few modal derivatives, several approaches [65, 85, 86] can be employed.

e If the defect parameter changes, the reduced mass M, and damping C,4
matrices can be computed over the defected configuration during the online
stage. Additionally, for the rotating component, the centrifugal force vector
and spin-softening matrix will also be considered based on the defected
configuration. However, the computational cost of such terms may be small

in the online execution, and hence, will be negligible.

e The proposed DpROM is built using the tensorial formulation based on a linear
elastic material (i.e., a constant constitutive matrix C). In case of a nonlinear
elastic material, the higher-order stiffness tensors should be reformulated along

with the tensorial expansion of the corresponding material property expression.
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Shape defect amplitude (¢)

Off-line stage [x 1]
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Extract reduced basis V higher-order tensors 4Qh($) = 471Qh + Sth ° E e 6dth: (E ® f)
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‘ e=E N
o
_ (*=2n,3n,..,6dd ) 7l < e
Subset of |E| < N, —
elements and Yes =
their weights E={ec{1,..|E}] w, > 0}
Obtain solution

Fig. 5.2 Computational algorithm of the proposed DpROM framework in the off-line and online stages.
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5.5 Numerical Results

5.5.1 Setup

Herein, the validity of the proposed DpROM framework will be evaluated by

comparing the computational performance of the five different approaches when

applied to the geometrically nonlinear simulation, including the shape defect. The

relevant representations considered in this dissertation are as follows:

FOM-d: The FOM with a shape defect involved by shifting the nominal FE

discretization node locations. This will be a reference representation.

ROM-d: The ROM in tensorial form is obtained via FOM-d. Its reduced basis
comprises free vibration modes and modal derivatives computed over the
defected configuration.

ROM-n: The ROM in tensorial form is obtained via the nominal FE
representation (i.e., no shape defect). Its reduced basis comprises free
vibration modes and modal derivatives computed over the nominal
configuration.

DpROM: The DpROM in tensorial form is obtained via the nominal FE
representation and the set of pre-defined displacement fields. Its reduced basis
comprises free vibration modes, modal derivatives, and defect sensitivities
computed over the nominal configuration. The reduced tensors are up to the
sixth-order (Eq. (5.48)). This was previously proposed by [57].

DpHROM: The proposed DpROM, proposed for the first time in this

dissertation, based on hyper-reduced tensors, comprises up to the sixth-order
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(Eq. (5.54)) obtained via QM-based ECSW. Its reduced basis will be identical
to that of DpROM.

The aforementioned ROM frameworks are developed and implemented based on
the open-source MATLAB package “YetAnotherFEcode” [87], which is a generic FE
solver. All simulations are performed in MATLAB 2022a (compatible with
MATLAB Tensor Toolbox [88]), using a single core Intel(R) i7-11700K @3.60 GHz
and 128-GB RAM.

To evaluate the accuracy of the ROM, an index representing the relative

displacement field discrepancy is introduced as follows:

2
5 upor — o]

2
iz flwi M1

El(%) =

x 100, (5.57)

where u; is the displacement vector for the i step of FOM-d or the ROMs, i.e.,
ROM-n ROM-d, DpROM, and DpHROM. ng is the number of the time steps (for
the time-transient analysis) or the number of the imposed frequencies (for the
frequency response analysis). To compare the computational efficiency between
FOM and ROM, the online speed-up factor S and the total speed-up factor S;,;are

respectively defined as follows:

tFOM tFOM

nOTL

S

~ {ROM ’ Stor = tROM’ (5.58)

Nofrloff + Non

tFOM , tROM

where , and t,rr are the online computational time consumed for

FOM-d and ROM, and the off-line stage (t,5f = 0 for FOM-d), respectively. In
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particular, t,rr comprises the sum of the reduced basis extraction time and the
reduced tensor computation time (for DpHROM, the element selection time is also
added). n,,;, is the number of the online simulations and n,ss refers to the number
of the off-line terms constructed.

In the following numerical examples, the generalized-a method is used to perform
the nonlinear time-transient analysis. The tolerance concerning the nonlinear force
residual was set as € < 107® for the converged solutions. For the proposed
approach, the positive tolerance is set as the range 10™* < €,,,,;,s < 1072, which
was suggested in previous studies [48, 89] to select the set of elements E in QM-

based ECSW.

5.5.2 Three-dimensional slender beam

The first example is a 3D slender beam clamped at both ends, similar to the one
in [56]. The beam configuration, having length [, = 2m, width b, = 0.2m, and
thickness t, = 0.05m, is discretized into 20-node hexahedral elements with N, =
375, and the corresponding number of the displacement DOFs is N = 6, 636. A time
varying force is applied to the central node. Furthermore, the imposed frequency w
is chosen as the average of the first and second natural frequencies of the undamped
linear component to investigate the geometrically nonlinear behavior involving large
displacements. Rayleigh damping is used as the structural damping determined from
a modal damping factor of 0.5 % for the first two natural frequencies.

The single shape defect field U = [ug, vy, wy]T is pre-defined as shifting the
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vertical (z-direction) nominal FE discretization node location, given as follows:

Wa(x,§) = £tsin (1), (5.59)

and u; = v4 = 0. Such displacement field represents the shallow-arch defect, and
the defect amplitude & = 1 corresponds to the maximum displacement of t, m for
U. The relevant analysis condition is shown in Fig. 5.3.

Regarding the off-line stage, the reduced basis comprises the first five free
vibration modes (mg =5) and the corresponding modal derivatives mg =
me(mge + 1)/2 = 15, for a total of 20 reduced basis vectors. For DpROM and
DpHROM, five defect sensitivities (derivatives of five free vibration modes with
respect to the single shape defect) are additionally included for a total of 25 reduced
basis vectors.

For DpHROM, the training dataset (i.e., time-varying displacement result) is
obtained using the QM-based approach for over 200 time steps with a uniform
timestep size of At = T,/50. Herein, T, is the period of the harmonic force (i.e.,
Ty = 2m/w). Then, 103 selected elements and associated weights are determined by
the sparse NNLS with a tolerance of €,,,,;s = 1073, as shown in Fig. 5.4.

After the reduced tensors are constructed for each ROM in the off-line stage, a
time-transient online simulation is performed for up to 1,000 time steps. The relevant
simulation is carried out for each defect amplitude & = {0, 0.25,0.5,0.75,1}, i.e.,

simulations for a total of five cases.
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p

— Nominal geometry

3 1 Defected geometry

2,700 kg/m?

Fig. 5.3 Analysis condition of the 3D slender beam.

Fig. 5.4 Reduced number of meshes for the 3D slender beam (103 selected elements).
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First, the vertical displacement history at a certain node is selected to evaluate the
accuracy of the ROM. Fig. 5.5 compares the displacement history at that node and
shows the maximal displacement between the FOM and ROM predictions. ROM-d,
DpROM, and DpHROM are found to be in good agreement when compared to FOM-
d. However, ROM-n yields an inaccurate solution owing to the defect. Then, the
relative discrepancy is investigated. The relevant comparison is shown in Fig. 5.6.
For all the cases, ROM-d, DpROM, and DpHROM achieve a significantly higher
accuracy (the average relative discrepancy is within 2%). Conversely, ROM-n
exhibits an unacceptable discrepancy even for a small defect amplitude. In addition,
Fig. 5.7 illustrates a comparison of the von-Mises stress field at the time of maximum
displacement (for a defect amplitude of ¢ = 1). Both DpROM and DpHROM show
good agreement when compared with the FOM-d prediction.

Next, to assess the accuracy and robustness of the proposed approach, the
sensitivity analysis is performed with respect to a few numerical parameters.

Figure 5.8 compares the model accuracy in terms of the number of reduced basis
vectors (for a defect amplitude of & = 1). In all ROMs except for ROM-n, it is
observed that the accuracy tended to increase with the number of free vibration
modes. When the number of free vibration modes is constant, DpDHROM including
defect sensitivities shows better accuracy than DpHROM without defect sensitivities.
Specifically, when more than five free vibration modes and associated defect
sensitivities are used, both DpROM and DpHROM build a robust reduced-order
representation. Moreover, the QM-based ECSW of the proposed approach is
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examined according to the choice of tolerance €,,,,;5. Table 5.1 provides information
regarding the number of selected elements and the corresponding relative
discrepancy in terms of tolerance €,,;s. As the tolerance €,,,;; decreases, a larger
number of elements are selected, resulting in better accuracy. In particular, when the
number of reduced basis is constant, even if the tolerance €,,;; is smaller than
1073, a satisfactory accuracy is achieved with a relative discrepancy of
approximately 2%. When considering the above two comparison results, the
proposed approach achieves both improved accuracy and computational efficiency
by selecting a proper reduced basis and tolerance €.

The influence of the defect amplitude on accuracy is also investigated, as shown
in Fig. 5.9. As the defect amplitude increases above unity, the accuracy of both
DpROM and DpHROM tend to decrease. Such inaccuracy may be due to a deviation
due to the small shape defect assumption (||Hg|| < 1). Therefore, quantitative
bounds for the small defect hypothesis need to be further investigated. Finally, the
computational cost based on the speed-up factor S and Si,;, Eq. (5.58), is
investigated. Table 5.2 summarizes the corresponding comparison.

The online speed-up factor S is found to be remarkably high considering that the
online time required for time integration depends only on the reduced basis
dimension owing to the explicit tensorial form. In particular, ROM-d demonstrates
an improved speed-up factor compared to DpHROM, which includes additional
basis vectors, the defect sensitivities, and the reduced basis. However, considering
the total speed-up factor S;,; including the off-line time, both DpROM and
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DpHROM yield a higher computational efficiency as the off-line cost for the reduced
tensors is required once. Conversely, ROM-d requires a repeated off-line cost
whenever the defect amplitude changes, as shown in Fig. 5.10.

Additionally, it is worth noting that DpHROM achieves a significant reduction in
terms of the off-line cost compared to both ROM-d and DpROM owing to the
application of ECSW, which computes the reduced higher-order tensors by using
only selected elements, as shown in Fig. 5.11. Furthermore, DpHROM is more

computationally efficient for a larger-dimensional representation.
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Fig. 5.5 Comparison of the displacement history at the maximal displacement location for the 3D slender beam.

117

o A

r)
e

_I:j -
il

10

-

of) 8}



EI(%)
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ROM-d
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Fig. 5.6 Comparison of the relative discrepancy for the 3D slender beam.
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Fig. 5.7 von-Mises stress comparison at the time of the maximum displacement.
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© DpROM < DpHROM /A DpHROM (w/o defect sensitivities, m;)

100 /s
:\J 60 ﬁ
R 40 t A A A A

20 ¢ (@) 8 A

0 j . o Q Q D
2 3 4 5 6 7 8

(mg) (3) (6) (10) (15) (21) (28) (36)
(mgz) (2) 3) 4) (5) (6) (7) (8)

No. of free vibration modes (mg,)

Fig. 5.8 Relative discrepancy comparison in terms of the number of the

reduced basis vectors.

Table 5.1 Comparison between the selected elements and the relative

discrepancy in terms of the tolerance €,,,.

Enns 107* 1072 1073 10™*  10°°
|E| 37 77 103 142 178
EI (%) 100.45 35.25 2.15 1.85 1.66
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Fig. 5.9 Relative discrepancy comparison in terms of the defect amplitude
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(§/1, indicates the shape defect to beam length ratio).
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Fig. 5.10 Computational time comparison among ROMs.
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Table 5.2 Computational expense between FOM and ROMs for the 3D slender beam

Off-line [s]
Model Online [s] Non Total time [s] S Stot
Reduced basis QM-ECSW Tensors
FOM-d - - - 791 5 3,955 - -
ROM-d 5.1 - 12.8 2.9 5 94.1 909.2 42.1
DpROM 6.5 - 48.8 3.6 5 54.3 719.1 72.9
DpHROM 6.5 35.25 12.3 3.6 5 31.2 719.1 127
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Fig. 5.11 Off-line cost in terms of the number of discretized elements.
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5.5.3 54H60 propeller blade

Turbomachinery rotating blades may exhibit geometric imperfections owing to
the presence of the manufacturing defect or potential damage during operation (e.g.,
resonant vibration or bird strikes). Therefore, a numerical study is conducted to
validate whether the proposed DpROM is capable of considering the influence of
probable shape imperfections on a rotating blade. A 54H60 propeller blade of a C-
130H transport aircraft, which has a slender and twisted-surfaced configuration with
a high aspect ratio, is taken as an example. The relevant configuration and analysis
condition are shown in Fig. 5.12. The blade configuration is discretized using 24,151
quadratic tetrahedral elements with 133,857 DOFs. The inner surface of the blade
hub is clamped, and the harmonic excitation is applied to all nodes of the tip surface,
at a constant rotational speed of 1,050 rpm. Herein, the imposed frequency w is
chosen as the first natural frequency to induce a high degree of geometric
nonlinearity. The material properties corresponds to 7,000 series aluminum alloys
with a Rayleigh damping mass matrix multiplier of 50 s~

The defect-displacement field is pre-defined as the linear superposition of two
shape defects: twist and bending, i.e., U = [U,,U,] with their amplitude parameter
vectors & = [&;,&,]7. The first twist-shape defect U; = [ugq, Vg1, Wyqe]? (Fig.
5.13-a) is defined as follows:

uqq(x,v,2,&) = &rsin <arctan(x, z) + 6, (%)) , (5.60)
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wa1(x,¥,2,&1) = & reos <arctan(x, z) + 0, <}L/ : ;)) , (5.61)

where y <y <L and vz; =0. r and 6, are the nodal positions converted to
polar coordinates representing the radial distance from the rotation axis and pre-twist
angle (setto be 1°), respectively. § is y-coordinate corresponding to the beginning
of the twist-defect at 40% in the span-wise position from the propeller blade hub.

The second bending-shape defect U, = [ugy, Vg, Wap]” (Fig. 5.13-b) is given

as follows:

Waz(¥,$2) = 520-016( (5.62)

and ugy, = vy, =0.

For all ROMs, the reduced basis is selected by the first seven free vibration modes
and the corresponding 28 modal derivatives for a total of 36 reduced basis vectors.
However, in for DpROM and DpHROM, 14 defect sensitivities (derivatives of the
seven free vibration modes with respect to each shape defect) are additionally
included for a total of 49 reduced basis vectors.

For DpHROM, the QM-based training dataset is generated for up to 0.2 s (200
time steps with At = 0.001), and a set of selected elements E is obtained by the

sparse NNLS with a tolerance of €,,;; = 1074, as shown in Fig. 5.14.
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E =71GPa

Y p = 2,570 kg/m? I
y= 033
=17
¢=0.5m
F,(t) = 500sin(wt) N Q =1,050 rpm

Fig. 5.12 Configuration and analysis condition for the 54H60 propeller blade.
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Nominal geometry
Defected geometry

(a) First defect, U;: twist

(b) Second defect, U,: bending

Fig. 5.13 Shape defects for the S4H60 propeller blade

(the color map indicates the total displacement).

127
LR e

1



Fig. 5.14 Reduced number of meshes for the 54H60 propeller blade

(166 selected elements).
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In this example, an on-line simulation will be executed in both the time- and
frequency domains. First, a nonlinear time-transient simulation was conducted for
up to 1 s (1,000 time steps). The simulation was carried out for each defect amplitude
selected by combining & = {—3, —1.5,0,1.53} and &, = {—1, —0.5,0,0.5 1},
i.e., the simulation is conducted for a total 25 cases.

The total deformation history at the blade-tip surface is evaluated to assess the

ROM accuracy. The total deformation was defined as follows:

ufet = J(ue) + (0,0 + (00" (€ Ny, (5.6

where N¢;, and w,; are the list of nodes on the tip surface and displacement
component in the x-direction at the " node (same for u,,; and u;), respectively.
Figure 5.15 compares the total deformation history for the different defect
conditions. Both DpROM and DpHROM exhibit a satisfactory correlation with the
FOM-d prediction. In addition, the relative discrepancy ET is considered. As shown
in Fig. 5.16, both DpROM and DpHROM yield a high accurate solution for all cases
(average relative discrepancy is within 5%). However, ROM-n shows a reduced
displacement accuracy when the defect amplitude increased. In particular, the
relative discrepancy increases as the amplitude of the bending-defect ¢, increases,
whose direction corresponded to the first (bending) mode of the propeller blade.
Furthermore, to evaluate the discrepancy at Point A (trailing edge at the blade tip)
where the dominant shape defect occurs, the local error €,(t) is computed by

||u£0M — ufoM || Figure 5.17 shows a comparison of the local error history at Point
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A. As shown in the figure, DpHROM exhibits a good accuracy, similar to ROM-d
and DpROM.

Next, a frequency response analysis is conducted to obtain the steady-state
displacement within a specific frequency range. The rotating component is subjected
to the sinusoidal load in the resonant condition, resulting in high cycle fatigue.
Therefore, the frequency response analysis was useful for predicting its vibration
characteristics. The relevant procedure for the rotating component is realized by
conducting nonlinear static- and linear frequency response analyses in sequence. In
particular, the stiffness variation, that is, the stress-stiffening and spin-softening
effect, is evaluated from the nonlinear static solution owing to the centrifugal force.
For the linear frequency response analysis, a transverse tip harmonic force of 500 N
is imposed using the frequency band ranging from 0-200 Hz at 1-Hz intervals.

The online simulation is executed for 50 defect cases to examine the performance
of the ROM within broad parametric variations. The set of defect parameter vectors
& =[¢1,&]" are chosen randomly from &, , € [0, 1], which is generated using the
Latin hypercube sampling method [90], as shown in Fig. 5.18-a. The reduced basis
and reduced tensors are similar to those used in the time-transient simulation, without
going through the off-line stage. Fig. 5.18-b shows the relative discrepancy EI of the
displacement field between FOM and ROMs. In all cases, the relevant discrepancies

are observed to be within 2 %, except for ROM-n. In particular, the maximum

transverse displacement is demonstrated for the different cases, as shown in Fig. 5.19.

Depending on the defect parameter, slight deviations are observed owing to the peak
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location and corresponding displacement responses, thereby indicating that the shape
defect for the rotating component will vary based on the underlying system (i.e., Kr,
M;., and C;) and the centrifugal force, which will affect their vibration
characteristics. Additionally, the maximum von-Mises stress obtained from the
alternating stress, which plays an important role for the fatigue prediction of the
turbomachinery component, is investigated. Figure 5.20 illustrates a comparison of
von-Mises stress field at 150 Hz, where large structural oscillation occurs for Case
#31. DpHROM is observed to be in good agreement when compared with the FOM-
d prediction. Moreover, as shown in Table 5.3, DpHROM yields an accurate solution
at the peak stress location, similar to ROM-d and DpROM (with a relative
discrepancy within 3%).

Finally, the computational cost during the off-line and online stages is compared
to evaluate the computational efficiency, as summarized in Table 5.4. Among the
ROMs, DpROM shows the largest off-line time considering it performs the time-
consuming computation of reduced high-order tensors using the entire FE
discretization. Therefore, parallel computing might be considered for such larger
dimensional off-line DpROM computations, as shown in [56]. Conversely,
DpHROM exhibits a significant improvement in terms of the off-line time (34 times
faster than DpROM). Figure 5.21 compares the total speed-up factor, including the
off-line cost, among the ROMs. Unlike ROM-d, DpHROM off-line time is required
once at the beginning of the computation. Then, the online time is accumulated for

the total computational cost. Therefore, the total computational cost in the proposed
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DpHROM framework is expected to improve as similar computations (n,,) are

repeated. In particular, DpHROM, which has a noticeably larger total speed-up factor

compared to other ROMs, will be significantly efficient for large-size dynamic

simulation with broad defect-parametric variations.

Sections of this chapter have been published in the following relevant journal articles:

Kim, Y., Kang, S., Song, D., Cho, H., and Shin, S.-J., “Efficient Nonlinear Dynamic
Analysis of a Rotating Blade with Shape Defects,” GPPS paper 2022-0139, September.
2022.

Kim, Y., Kang, S., Cho, H., Kim, H., and Shin, S.-J., “Parametric Reduced-order
Modeling Enhancement for a Geometrically Imperfect Component via Hyper-reduction,”
Computer Methods in Applied Mechanics and Engineering, published online, October.

2022.

132



Total deformation [m]

Total deformation [m]

5

0.015 T
0.01 [ 1
0.005
0 1
0.3 04 0
Times(s)
El = 0> fZ =0
0.015
0.01 1 0
0.005 /\/
0 1
0.3 0.4
Times(s)
fl — _3a EZ =0

0.5

== FOM-d ROM-n ROM-d DpROM = = =DpHROM
EO.015 T
c
2
s 001
£
o
% 0.005 -
=
2 . |
0.3 0.4 0.5
Times(s)
§1=-8; fa=—1
20.015 T
o
o
£ 0017 1
£
=]
% 0.005 i
=
g |
0.3 0.4 0.5
Times(s)
$1=3, §=1

Fig. 5.15 Total deformation comparison for the different defect conditions.
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Fig. 5.16 Relative discrepancy comparison for the S54H60 propeller blade.
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Fig. 5.20 von-Mises stress comparison (150 Hz, Case #31).
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Table 5.3 Relative discrepancy comparison at the peak von-Mises stress location

(150 Hz, Case #31).

ROM-n ROM-d DpROM  DpHROM

EI (%) 19.51 2.65 2.72 2.88

Table 5.4 Computational cost for the off-line and online stages for the S4H60

propeller blade
Model FOM-d ROM-d DpROM  DpHROM
Reduced
eduee : 5.5 6.2 6.2
Off-line basis
[min] QM-ECSW - - - 4.4
Tensors - 21.9 587.8 6.9
Onli Time-
e fme 310.7 0.19 0.34 0.34
[min] transient
* for a single  Frequency 203 0.07 0.09 0.09
execution response
298.17 46.1]
12.9
11.3
2 10 32 1.7
© ©
0.7
0 0
ROM-d DpROM  DpHROM ROM-d DpROM  DpHROM
Non = 25, noff =1 Non = 509 nuff =i
(nogy = 25, only for ROM-d) (no5s = 50, only for ROM-d)
(a) Time-transient (b) Frequency response

Fig. 5.21 Total speed-up factor comparison among ROMs.
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Chpater 6

Conclusion

In this dissertation, a projection-based MOR framework including hyper-
reduction is developed for representing the geometrically nonlinear characteristics.
In the presented framework, a geometrically nonlinear full-order representation,
including the rotation effect, is developed to obtain the solutions required to build a
reduced-order representation.

To systematically evaluate the hyper-reduction-based ROMs, POD-based MOR
framework that includes hyper-reduction approaches, i.e., POD, POD-DEIM, POD-
GNAT, and POD-ECSW, are compared in terms of accuracy, robustness, and
computational efficiency. The following results are obtained:

e POD-DEIM approach might not maintain the symmetry of the approximate
tangent matrix, which could lead to numerical divergence.

e Compared to the POD-DEIM, the POD-GNAT and POD-ECSW approaches
exhibit better convergence characteristics owing to the minimized global
residual error and preservation of the symmetric property, respectively,
thereby enabling accurate predictions of the nonlinear formulations.

e The POD-ECSW approach achieves a high level of accuracy for parametric
problems, with a less than 2% average relative error

e POD-ECSW shows the best computational improvement when compared to
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FOM, POD-DEIM, and POD-GNAT (CPU times were 20.7, 1.9 and 1.4 times
faster, respectively).

Consequently, ECSW approach provides the most robust reduced-order
representation for the geometrically nonlinear formulations, including the broad
parametric variation. It exhibits a higher computational efficiency than other hyper-
reduction-based ROMs. Moreover, because of the smaller number of reduced basis
used, ECSW is more advantageous in terms of computational efficiency. This
dominated the construction of reduced-order representation during the online stage.

Based on the comparison results of the hyper-reduction approaches, a DpROM
framework including hyper-reduction, named as DpHROM, is proposed to represent
the geometric imperfection of solid components. ECSW approach is employed to
reduce the computational expense in the existing DpROM. The relevant reduced-
order tensors are obtained based on only a few selected elements. Herein, the QM-
based reduction approach is applied to efficiently obtain the full-order solution
required for ECSW execution. Two examples, a 3D slender beam and 54H60
propeller blade, are investigated to verify the accuracy and computational efficiency
of the proposed framework. Based on the results, the following conclusions are
drawn:

e DpROM approach combined with hyper-reduction can successfully conduct
the parametric handling of the prescribed shape defect and geometrically
nonlinear formulation.

e The proposed approach achieves a satisfactory accuracy while significantly
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reducing the online computational time (with an average relative displacement
field discrepancy smaller than 5%)

e In conjunction with QM-based ECSW, the proposed approach significantly
decreases the off-line expense compared to the existing approach (the CPU
time decreased by a factor of 34).

e In terms of speed-up performance, the proposed approach demonstrates an
advantage for larger-dimensional representations.

Accordingly, the proposed DpHROM framework provides reliable accuracy for
geometric nonlinearity within broad defect-parametric variations. Also, it exhibits an
improved computational efficiency when compared to currently available ROMs.
Such computational improvement can be advantageous for the uncertainty
quantification of shape design optimization, involving a large number of FE
discretization.

In future work, a technique to optimally select the reduced basis will be
investigated to pre-select only a small number of reduced basis vectors. Moreover,
the proposed approach could be applicable to more complex configurations, such as

mistuned or damaged turbomachinery components.
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Appendix

A

Expression of the matrices L, L,, and L;

The constant localization matrices Lq, L,, and L3 are defined as follows:

Li11 =1, Lyp1 =1 Lsz1 =1,
Ly = |L1aa =1, Lysg =1, Lsega =1,
Li77 =1, Lygz =1, Lso7 =1,

Ly =1,
Lz =-1x L124 = 1,
Liz7 =1,

Lysn =1, Ls;1 =1,
Lysa =1, Lsga=1,
Lag7 =1, Lsg7 =1,

L4z =1,
Lyss =1,
Lyzg =1,

Lazg =1,
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Ly, =1, Lezz =1,

Lass =1, Lggs =1,

Lygg =1, Lgog = 1,
Lyz =1, Lyux=1, Lgn=1,
Lips =1, Lass =1, Legs =1,

Lygs =1, Lgog =1,

Lsi3 =1,
Lsie = 1,
Lg79 =1,

Ls;3=1,
Lsze =1,
Lszo =1,

Lezz =1,
Lese = 1,
Legg = 1,

Lesz = 1,
Lese = 1,
Leeo = 1,

L33z =1,
L3ee = 1,
L399 =1,

L3753 =1,
L3ge =1,
L3g9 =1,

(A.1)

(A.2)



[L1111 = 2,
Lssgr = 1,
Lz122 =1,
Leg72 = 1,
Lesaz =1,
Liz1a=1,
Lsses =1,
Lezzs =1,
Laggs = 2,
Lgase = 1,
Liz17 =1,
Lsge7 = 2,
Lyz3g =1,
Lizog = 1,
[ Lggso = 1,

Liz11 =1,
Li771 =2,
Le1z2 =1,
Ly7g2=1,
L3gaz =1,
Li12a=1,
Lig7a =1,
Lezzs =1,
Leogs = 1,
Lgsse = 2,
Lazz7 =1,
Lig77 =1,
Leazg = 2,
L2gos = 1,
Lsae0 = 1,

Ls311 =1,
Lig71 =1,
Lygsr =2,
Le792 = 1,
Lesss =1,
Lyz24 =2,
Li7g4 =1,
Lisas =1,
Legos =1,
L3gse = 1,
Li1z7 =1,
Lyog7 =1,
Lygag = 1,
Leoog = 2,
Lgsgo = 1,

Ly121 =1,
Lsg71 =1,
Lasyp =1,
L5113 =2,
L3se3 =1,
Lszzq =1,
Lyggs =2,
Lygss =1,
Lsz16 =1,
L3see =1,
Lyzz7 =1,
Li797 =1,
Logsg = 1,
L5319 =1,
L3ese = 2,

Lsi3, =1,
Ly7g1 =1,
Legsz =1,
Lez13 =1,
Ls773 =2,
Ls34 =1,
Lsogs = 1,
Lasss = 2,
Lsi26 = 1,
Lsgre = 1,
Lszz7 =2,
Lygo7 = 1,
Laseg =1,
Lezzo =1,
Lsg79 = 1,
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Lysa1 =2,
Ls791 =1,
Lo4sz =1,
L3313 =1,
Leg7z =1,
Lisas =1,
Lsgos = 1,
Leess = 1,
Le226 = 2,
Ls7ge = 1,
Liga7 =1,
Lsgg7 = 2,
Laseg = 1,
Lsiz9 =1,
Leogo = 1,

Lisar =1,
Ly112 =2,
Legsz = 1,
Le1zz = 1,
L3973 =1,
Liasa =1,
Lyzis =1,
Leses = 1,
L3326 = 1,
Legge = 2,
Lags7 = 1,
Lz =1,
Legsg = 2,
Leazo = 1,
Ls799 = 1,

Lsear =1,
Ly212 =1,
Lyz72 =2,
L3133 = 1,
Le7gz =1,
Lysse =2,
Lgrzs =1,
Lygrs =1,
L3z36 = 1,
L3gge = 1,
Lisg7 =1,
Ly328 =1,
Lyg7g = 1,
L3339 = 2,
Legge = 1,

Lyss1 =1,
Lez1z =1,
Lag72 =1,
Lsaa3 = 2,
L3793 =1,
Lsgse =1,
Lazzs =2,
Lyzgs =1,
Lgsae =1,
L3gos = 1,
Lyse7 = 1,
Ly13g =1,
Ly98s = 1,
Lsgqo = 1,
L3999 = 2,]

X2t 8]

(A.3)
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