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Abstract

Analysis of Consumer Preference Structure
with Threshold Effect Using Discrete Choice
Model and Neural Network

MIN SANG KIM
Technology Management, Economics, and Policy Program
The Graduate School

Seoul National University

The purpose of this dissertation is to provide insights into combining discrete choice
model and artificial neural network in the context of analyzing consumer preference
structure. The recent efforts in the academia has provided many possibilities in the
integration of the two fields, yet there are still many more to be made. This dissertation
first observes consumer preference with a behavioral discrete choice model, the threshold
model, in order to observe whether there are minimal perceptible thresholds that the
consumers need to surpass in order to respond with a change in their utility. Threshold is
a powerful tool for decision-makers, as it can capture how much the level of the attribute

of a product or a service needs to be changed for the consumers to feel a change in their
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preference structure. Then this dissertation utilizes a hybrid form of neural network,
which brings together two neural networks, the Convolutional Neural Network and Dense
Neural Network in linear and non-linear forms, respectively, and adds an additional
convolution filter to capture the effect of thresholds. The model is tested in the empirical
analysis, which aims to compare two different strategies for promoting the diffusion of
discrete choice models. The findings indicate that thresholds do exist in the consumers’
preference structure, which allows the implications for decision-makers, in terms of
which aspect of a product or service they need to prioritize in order to maximize the

effects.

Keywords: Discrete choice model, Behavioral model, Threshold model, Neural network,
Convolutional Neural Network, Consumer preference, Consumer choice

Student Number: 2018-34251
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Chapter 1. Introduction
1.1 Research Background

Over the course of the last half a century, the field of discrete choice models have
evolved greatly. Consequently, as technology started to advance rapidly, new products
and markets emerged sporadically, which gave the consumers a wide variety of
alternatives to choose from. This has resulted in a completely different paradigm in the
traditional mainstream economics, the neoclassical economics. In the field, consumers are
assumed to maximize utility based on the information given and rational preferences.
However, this has received wide criticisms, stemming from cognitive psychology that
under the surface, humans are not rational beings, and we are bound to act according to
our behavior and different decision processes (Kitamura, 1990; Tversky & Kahneman,
1974). Many factors affect the behavior and decision process of individuals, and these
factors are dynamic and change continuously (Cantillo et al., 2006). These changes can
come in macroscopic scale or microscopic scale, and it has now become more important
than ever for decision makers, in both public and private sectors, to establish the behavior
of individuals in respect to the changes. Moreover, not everyone is endowed with reliable
and complete information, so the amount of knowledge is not complete, and therefore
must rely on their own decision-making process when the time comes to make a choice.
Sometimes, this may depend on the individual’s reference point or their indifference to

the small perceivable changes.



This has led to the need for researchers to understand the heterogeneity of the
consumers. In the last couple decades, consumer heterogeneity has been dealt with using
distributional approaches. The heterogeneity can be understood through stochastic terms
in utility coefficients, assuming that the utility of respondents is influenced by random
terms and has different values in utility coefficients grouped with individuals that have
the same choice behavior or similar individual characteristics, or both.

With the development of advanced statistical techniques allowed by the advancement
in computing power, this phenomenon has led to the birth of another recent mainstream
economics in recent years, the behavioral economics, where researchers streamline their
focus into modeling the actual behaviors of the consumers to understand the
heterogeneity in the decision-making process. Some consumers may act according to
their loss-aversion tendencies and some consumers may act to minimize the potential
regret that arouses from their decisions.

Another noteworthy movement in the field of economics is the emergence of machine
learning via Artificial Neural Networks (ANN). The power of ANN models lies in the fact
that they can process any time of input data, may it be texts, voices, photos, and numbers,
due to their universal function approximator. This has naturally permeated into the field
of economics, and it has become a popular area of research to improve the predictive
ability of the existing models. However, the crucial downside of the machine learning
models came to light, which is the interpretability of the machine learning models, which

gave the labeling term ‘black box model.” In order to enhance and equip the models with



the power to explain causal relationships, many researchers are proactively attempting
many different approaches.

The above phenomenon and aspects are where the objective of this study stems from.
To further the understanding of the behavior of the consumers, this study explorers
another key aspect relative to the choice process, which is the potential existence of limits,
boundaries or cut-offs of perceptions and appraisal of attributes by individuals that can
vary within the population. This is referred to as thresholds. Thresholds have been treated
in the context of non-compensatory choice such as in the Elimination by Aspects model
(Tversky, 1972). Thresholds have also been incorporated as minimum perceptible
changes in attributes, but they have mainly been modeled in the context of making
consecutive choices, which limits the models from products and services which are not
yet launched in the market (Cantillo et al., 2006).

Moreover, due to the restraints in the interpretability of machine learning models, the

behavioral aspects of consumers have rarely been explored.

1.2 Research Objective

The objective of this dissertation is to explore the behavioral aspects of consumers in
a more realistic context, where consumers not only has reference points, but are also
indifferent to any small changes in the level of the products or services that they are using.
Moreover, this dissertation further explores the behavioral aspects in machine learning

context, mainly to provide the means of maintaining the interpretability of the traditional
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models and also propose a method to embed behavioral aspects in the model, bridging the
gap between the two fields of studies.

First, this dissertation suggests a method to model thresholds in the context of
reference points unlike previous studies which analyzes threshold effects through
consecutive choices. For example, consumers may not feel the need to change their
regular product even though its price increases by a small amount, as the utility gained
from staying with the product outweighs the utility from switching to the other product,
and the usage from the regular product has formed their standard or reference points. The
specification of the model with reference points allows the evaluation of products and
services that are relatively new to the market and also allow their behavior to be
dependent on another aspect of their behavior.

Secondly, this dissertation suggests a hybrid approach to replicating discrete choice
model as a neural network model. This is achieved through utilizing techniques suggested
by previous studies by dividing the deterministic term of the utility into theory-driven
part and data driven part by utilizing Convolutional Neural Network (CNN) and Dense
Neural Network (DNN). This dissertation further expands the model to adopt multiple
convolutional filters to replicate hierarchical form of estimation models.

Lastly, through empirical analysis, the performance and the implications of the models

are compared, to present an example how threshold models can be used in policy context.

1.3 Research Outline



This study is organized as follows. Previous literature on discrete choice model,
compensatory and non-compensatory models, neural networks, and activation functions
will be examined in Chapter 2. In Chapter 3, the methodologies used in this dissertation
will be discussed. The empirical study is conducted in Chapter 4, where the proposed
models of this dissertation will be tested with the data on Electric Vehicle (EV) and its
infrastructure. Lastly, the discussion of the findings of this dissertation will be carried out

in Chapter 5.



Chapter 2. Literature Review

2.1 Discrete Choice Model
2.1.1 Multinomial Logit Model

The discrete choice models have been widely used in the context of consumer choice,
consumer preference, and consumer decision making, in terms of single choice, multiple-
choice, rank-ordered and rating, which was first proposed by McFadden (1974) with the
Multinomial Logit Model (MNL). Discrete choice experiment is a methodology widely
used to evaluate consumer’s acceptability and their welfare towards goods, service, or
policies (Train, 1999; McFadden & Train, 2000). Specifically, discrete choice experiment
with the stated preference (SP) approach provides hypothetical alternatives composed of
core attributes to survey respondents, who then either rank the alternatives in the most
preferred order or select the most preferred alternative (Hall et al., 2018). In addition to
SP data, revealed preference (RP) data also enables the analysis of consumer preference
toward each attribute (Kim et al., 2019). Discrete choice models are based on random
utility theory, and the random utility model is derived under the assumption of the utility
maximization behavior of individuals (McFadden, 2001). Specifically, if a respondent
faces multiple alternatives, he or she chooses the alternative that provides the greatest

utility (Hall et al., 2004).



In the MNL model, a consumer chooses the best alternative based on the deterministic

part a researcher can observe and an unobserved, random part. Since there are
unobservable parts in the individual’s utility, I' | which denotes the utility of
individual choosing J in choice situation U can be split into two parts: "

represents the deterministic part, while ™" denotes the stochastic part of the utility.

The structure of a consumer’s utility is as follows:

Unjt :ant + gnjt """"""""""""""""""""""""""""""""""""" Eq 1
where N represents the consumers making the choice, j the alternative, and t
the choice situation.

The logit model, which is the basic model of discrete choice models, assumes that the

error term, St , follows type 1 extreme value distribution. The logit model is
characterized by independence of irrelevant alternatives (I1A) due to the assumption of
the distribution of error terms (Train, 2009). The I1A indicates that the ratio of the choice
probability between different alternatives is always consistent, even if a new alternative is
introduced or a correlation exists between two alternatives. This is a strong restriction
toward the substitution and correlation between the alternatives and is extremely

unrealistic (Train, 2009). These restrictions have led to the development of various
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general and realistic models, such as nested logit model, probit model, and mixed logit

model, which can mitigate I1A restrictions.

U njt — Z ﬁnjtxnjt + gnjt """"""""""""""""""""""""""""""""" Eq. 2

where :ant represents the marginal utility of consumer N.

Based on this framework, the choice probability of consumer N choosing alternative

I can be estimated according to Eq. (4):

P =PrU, >U, Vj=i)=Pr(V,+z >V, +&, Vjzi)
=Pr(g,;—&, <V, -V,j=i)

The stochastic term ¢, in Eq. (4) has the same structure as the cumulative density
function, indicating that the probability density function of ¢, can be calculated by
integrating f (&,) . Therefore, the final formulation of the discrete choice model can vary

depending on the definition of f (&) .

2.1.2 Mixed Logit Model
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Although similar to the MNL, the Mixed Logit Model (MXL) relieves some of the
constraints of the MNL model for the main purpose of modeling the heterogeneity of the
utility structure of the individual consumers. Whereas the MNL model assumes that each
individual has the same utility towards each attribute, the MXL model assumes a
distribution based on the attribute parameters estimated for the alternative. Also, the
researcher is given the freedom to assume the distribution for the individuals for each
attribute, making the model highly flexible relative to other discrete choice models.
Although a normal distribution is most frequently assumed, other distributions including
log-normal, truncated, or censored normal distribution, can also be used according to the
context and the circumstances.

The utility function of the MXL is presented in Eq. (5), where the consumer utility

U, consists of determinant V,; and a stochastic random term ¢, which, similar to

the MNL model, is assumed to follow the Type | extreme value distribution. However,
the preference parameter f, takes into account individual heterogeneity, following

normal distribution with mean b and variance W (McFadden & Train, 2000).

Unj =an +é&y =Zﬂnkxjk + & B ~ NOW) e Eq. 4
k
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The choice probability of the mixed logit model is as shown in Eqg. (6). Here, the

choice probability is an integral form of the multinomial logit probability, L. (3,),

where the density function of S, is assumed to follow the f (4, |b,W) distribution.

P = [ L (B) T (B, b,W)dB,
eth eﬁr;xmt ________________________________________________ Eq 5

Z eVnn = Z eﬁr’mxnjr
i i

I—nit (ﬂn) =

where the likelihood function of consumer n choosing alternative i in choice
situation t is denoted as Y., =1, and otherwise Y, =0. Consumer N’s likelihood

function is described by the following equation:

P = [TTTTHL (B)Y™ £ (8, [bW)d,

Likelihood =ﬁ P = j ﬁHH{Lmt (BY™ T (B, |b,W)dz,

n=l t i

2.2 Consumer Preference in the Context of Behavior

As technology advances rapidly, consumers have gained access to vast amounts of
information, products, and services, making their decision-making process more

complicated. Scientists are studying consumer decision-making and how to incorporate it
13



into models. There are two main types of consumer decision-making models:
compensatory and non-compensatory. Compensatory models assume that consumers take
all attributes of a product into consideration before making a decision, while non-
compensatory models believe that consumers only look at certain attributes. Non-
compensatory models include conjunctive, disjunctive, lexicographic, and elimination by
aspect models (Cantillo & Ortazar, 2005). The conjunctive model states that a product
must meet all minimum attribute requirements to be considered by a consumer. The
disjunctive model, a less stringent version, says a product is viable if it meets some of the
minimum requirements, based on the satisfaction of important attributes. The elimination
by aspects (EBA) model eliminates options that don't meet certain attribute levels, until
only one option remains. In the EBA model, consumers prioritize attributes and set
minimum values. The lexicographic model has consumers prioritize attributes and make
decisions based on the most important one. The reference-dependent model, developed by
Kahneman and Tversky (1979), takes into account different reactions to positive and
negative outcomes and separates attributes into Gain and Loss domains. The Gain domain
consists of attributes preferred over the current status and the Loss domain includes
attributes not preferred. The random regret model, introduced by Loomes & Sugden
(1982), evaluates consumer preferences based on the difference in attribute levels
between the chosen and unchosen options. These models are summarized in Table 1

(Tversky, 1972; Chorus et al., 2014).
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2.2.1 Threshold in Choice Models

Threshold models were originally created based on the idea that there are potential
limitations, boundaries, or cutoff points in the perception and evaluation of attributes
during the choice process. These limits can vary among individuals and the threshold
effect is the main component of the models used in this dissertation. One type of
threshold is inertia, habit, or resistance to change, where individuals can form habits that
make them reluctant to change their behavior. This can result in the same behavior being

maintained even after a change, as changing their usual choice requires both physical and

psychological effort and costs. If at an initial time t, an individual used alternative A,
with an associated utility U, , then the relationship between the chosen alternative and

the other alternatives would be U >U; VA € A, . However, the level of certain

attributes can change at t+1, causing the utility of another alternative to exceed the
utility of A,, but the individual continues choosing the initial option. This phenomenon

can be explained by the theory that a consumer will only switch from the initial

U >0,

1) 2 Orjasyr Where 0, is a

alternative A, to alternative Aj if U o (t+1)

jatsd)
threshold that reflects the consumer’s reluctance to change or the inertia effect. Typically,
a positive threshold reflects the impact of transaction costs or inertia, but it may be
negative if there is a strong inclination towards change or an excessive reaction to the

presence of a completely new option.
15



In the field of transportation, it has been commonly observed that daily travel patterns
are repeated in a certain pattern for individuals as time passes by (Pendyala et al., 2000),
indicating that travel behavior may be habit-forming or influenced by inertia. Behavioral
scientists generally postulate that individuals are adaptable and will tend to stay with
previous choices that are more comfortable and less risky for them if the cost of searching
for and implementing new alternatives is too high or uncertain, representing their
tendencies to stay with the status quo (Payne et al., 1993; Verplaken et al., 1997). The
concept of inertia in the context of travel behavior has been developed quite a long time
ago, but it continues to be a significant issue because of its impact on transport policies
(ex. changing the pattern of vehicle use) (Goodwin, 1977).

The notion of inertia in decision making is complicated by various factors, such as
factors that influence choice over different time frames, such as car accessibility or
ownership of public transport season tickets. Inertia can also be seen in stated preference
(SP) surveys, where the preferred choice from revealed preference (RP) data is used to
create the set of options in the stated preference survey. The study of inertia in discrete
choice modeling has been addressed using flexible dynamic models with a focus on panel
data analysis, where decisions are based on previous choices (Heckman, 1981). The
multinomial probit model was used for panel data analysis by Daganzo and Sheffi (1979,
1982), and the method was applied to a two-period panel data set by Johnson and
Hensher (1982). According to their model, the utility of the individual in a certain period

depends on the choice made in the previous period:

16



qut = Hthqt B QU e Eq. 7

Jq(t=1)?

where 0, is distributed normally and ¢ is a habit parameter. The larger the ¢, the

higher the chance of the previous choice being repeated. If that is the case, the threshold

for inertia, as defined above in terms of the previous choice 4,, would be as follows:

517/!1 = ¢(Urq(t—1) — qu(t—l) )’ ............................................................ Eq 8

Furthermore, in the context of marketing, Guadagni and Little (1983) introduced a
model for capturing consumer inertia or brand loyalty through exponential smoothing.

They took a different approach and formulated the utility function as follows:

qul:Qlqul+pL . e Eq. 9

Jat Jat

where L, is the loyalty or the tendency to stay to alternative 4 ;» an inertia

indicator, defined as:

qut = 7/qu([_1) + (1 — )/) qu(l_l) ...................................................... Eq. 10

17



where y is a smoothing parameter and qu(t,l) is a dummy variable that takes the

value of 1if A; was chosen attime (t-1) or 0 if it was not.

Ben-Akiva and Morikawa (1990) developed a method for modeling changes in
behavior using a mix of revealed preference (RP) and stated preference (SP) data. They
introduced a threshold parameter for the stated intention, but it was complicated by the
modal constants. Hirobata and Kawakami (1990) created a binary model to predict how
changes in transportation services will affect travelers' mode of transportation, taking into
account resistance to change. They proposed two different specifications for the inertia
threshold: one that treated inertia as a constant like Ben-Akiva and Morikawa (1990) and
another that saw the inertia threshold as a function of the attribute levels prior to the

transport service change, expressed as:

where A Xq(t_l) is the vector of attribute differences between the current and

alternative modes before the change and & is a parameter vector to be estimated. The
main limitation to this model is the choice is binary and the thresholds are not considered
to be stochastic.

Swait et al. (2004) suggested a method to measure the models of discrete choice that

take into account previous behavior and earlier evaluations of attributes in a temporal
18



context. They defined the utility of alternative AJ— attime t as a function of the product

of utilities in the current and previous periods:

t
qut = H(st eXp(qut—s)’ """"""""""""""""""""""""""""""" Eq 12
s=0

where « denotes weights associated with previous periods. Cantillo and Ortuzar
(2005) formulated a general random specification for inertia that is a function of the
earlier valuation of alternatives, the set of objectives motivating, and the conditions

characterizing the choice process. The following describes the inertia threshold at t+1:

5:1-;1 = ﬂ’q (¢¢j;—1 + (Vrtq _Vjtq )) """"""""""""""""""""""""""""" Eq 13

t t
-V . . I . .
where " 19 js the difference between the utilities of alternatives r and j at the

initial time period. ¢ is the vector of parameters affecting the set socio-economic

characteristics and objectives motivating the choice go}q” at the current time period. A
is a parameter reflecting the individual preferences that vary randomly among
individuals. When it is above 0, then inertia, or resistance to change, exists, while a value
equal to zero indicates no resistance. As such, when inertia is equal to 0, the person was

not satisfied with the previous choice and wants a change.
19



Thresholds are also defined as minimum perceptible changes, which only occur above
a certain level, whereas those below it would not cause any consumer reaction. Therefore,

if X' is the value that attribute X takes at time t, then the change in utility of a
consumer will only be perceived between t and t+1 when |AX' || X" —X"'|>45

(Cantillo et al., 2006). Krishnan (1977) introduced an early threshold model in the binary
logit model. This model only considered the threshold as the minimum perceivable
difference in the total utility function rather than in individual attributes. Later, Swait
(2001) improved on this by proposing an extension to the traditional utility maximization
framework that took into account individual attribute perception by incorporating cut-offs
in the utility functions.

Thresholds serve as the acceptance or rejection criteria for options. This concept is
evident in Tversky's EBA model (1972), which assumes that individuals have a ranking
of attributes and minimum acceptable thresholds for each of them. The decision-making
process starts with the most significant attribute and its threshold is retrieved, eliminating
all alternatives with attribute values below the threshold. This is repeated for the
remaining attributes, following their order of importance, until only one alternative meets
all threshold requirements. If multiple options meet all threshold restrictions, the
preferred one may be selected based on compensatory decision-making.

Krishnan (1977) was the first to propose a model using this concept, incorporating the

minimum perceivable difference in a binary logit model, but not focusing on each
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attribute's individual worth. Han et al. (2001) later presented a model that included

reference price effects and set up the utility function as follows:

qut = ngqt + ﬂlass (Pjt - R})th )Ith,loss () + IBgain (Rijt - Pjt )Ith,gain () + qul ’ Eq 14

where P

. 1s the selling price of the alternative and the indicator function, and

I(-) is equal to 1 when the difference between the selling and reference price
exceeds 0. Furthermore, Han et al. (2001) formulated thresholds with

deterministic and random components, which can be expressed as follows:

T = aqut + é’th ..................................................................... Eq. 15

Table 1. Decision Rules in Choice Model

Decision Rule Mathematical Formulation of Decision Rule

Elimination-by-aspects y=1 &

= v
xim 2 xm ? m

X . aspiration level for m-th attribute

m

Lexicographic y=1 o

xim = maXVjeC [xjm:l

21



Reference Dependent
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Vi
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Random Regret (I) v =1 & R < Rj’ vj cC
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Threshold (JND)
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2.3 Modeling Consumer Choice: Machine Learning

2.3.1 General Form of Artificial Neural Network

Artificial neural networks (ANNs) are one of the most widely used frameworks
machine learning studies that replicates the functioning of our actual brain networks.

Unlike other algorithms, ANNs are capable of learning tasks without being explicitly
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programmed, much like the human brain. ANNs were developed initially as a non-linear
algorithm that modeled the human brain's processes mathematically (McCulloch and
Pitts, 1943). The learning performance improved with the development of the perceptron,
which allowed for repeated learning and weight adjustment (Rosenblatt, 1957). The real-
world application of ANNs began with the development of the multi-layer perceptron
(Minsky and Papert, 1986). The multi-layer ANN is the basic structure of current ANNSs,
allowing for the stacking of multiple layers to form a learning network that adjusts its
weights to minimize output error. With multi-layer neural networks, layers were
designated based on their function, with the first layer, where data enters the network,
being the input layer; the layer where the output or prediction value is produced, being
the output layer; and any layers in between being designated as hidden layers.

An Acrtificial Neural Network (ANN) performs tasks using artificial neurons, which
are interconnected and represent the synapses of a biological brain. The signals
transmitted between neurons are computed using a non-linear function, and their strength
is determined by the weight of the signal. During the learning process, the weights of the
signals are adjusted based on the training data. The neurons are then grouped into layers,
and the number of layers can be adjusted according to the complexity of the learning
process. The data enters the network through the input layer, and the signals from the
input layer travel through the hidden layers to reach the final output layer.

The ANN model can be categorized based on the type of learning process, which

typically involves feed-forward and backpropagation methods. In the feed-forward
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model, the values are transferred from the input to the hidden layers without any
circulating paths, while in the backpropagation model, the weights are updated by
computing the error between the predicted and actual output values (Svozil et al., 1997;
Hecht-Nielsen, 1989).

The most common type of artificial neural network is the multi-layer feed-forward
neural network. In an artificial neural network, there are three types of units involved:
input, hidden, and output layers. In a typical network, the information is transferred from
input to output layers. The input layer receives the initial input data, which is then passed
on to the next layer. The output of each layer becomes the input of the following layer.

The training of a neural network involves computing the weights within the network.
This starts with randomly assigning the connection weights when the input and target
outputs are introduced into the network. Next, the network calculates an output and
compares it to the actual output data to determine the error. The error is then used to
adjust the connection weights of the nodes by transmitting the error in a backward
direction from the output layer. This results in the network trying to minimize the mean
squared error and enhance the prediction accuracy by finding the optimal adjustment of

the inter-neuron weights.

2.3.2 Convolutional Neural Network (CNN)
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The CNNSs are similar to traditional ANNSs in that they are consisted of self-optimizing
neurons. Each neuron still receives an input and performs an operation, just like in
traditional ANNSs. The entire network still represents a single perceptual score function,
and the loss functions associated with the classes are still present in the last layer. The
tips and tricks for traditional ANNSs are also applicable to CNNs.

The main difference between CNNs and traditional ANNSs is that CNNs are used
primarily in image recognition. This allows for image-specific features to be used as input
data in the network architecture, making it more suitable for image-focused tasks while
reducing the required parameters.

CNNs have been successful in processing images and other types of data, with a
convolutional layer containing filters that extract the characteristics of the input data. The
local features are then extracted by a pooling layer. The basic architecture of a CNN
consists of three layers: convolutional, pooling, and fully connected, with input data
being passed through a convolutional filter to extract characteristics.

The example CNN can be divided into four key areas of functionality. The input layer
holds the image's pixel values, similar to other forms of ANNSs. In the convolutional
layer, the output of neurons is determined by calculating the scalar product between the
weights and the region connected to the input volume. The rectified linear unit (ReLU) is
used to apply an activation function, such as the sigmoid, element-wise to the output
produced by the previous layer. The 2D convolutional filter is calculated using the

following equation.
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N —M
Yi+1:(YixF)+b:ZZ(YiXF)+b’ ...................................................... Eq. 16
N M

where Y and Yin are the data before and after passing through the convolution
filter, respectively; F is the filter, and b the bias.

The pooling layer reduces the spatial dimensions of the input, reducing the number of
parameters in the activation. It extracts information from the feature map and reduces its
dimensions, typically using either average or maximum pooling. Maximum pooling
extracts the maximum value within a filter kernel in the feature map. The resulting

geometry from the filter kernel is obtained through this operation.

A= [aij](i, J SN e Eq. 17

MaxXPOOIiNG(A) = MAX(Ay), ---resreressreesemssereseressenesseeee e Eq. 18

where A is the filter kernel and a;; is an element of the filter kernel.

Lastly, the fully connected layers in this architecture perform the same functions as
those in a standard artificial neural network (ANN) and aim to produce class scores for
classification. It is recommended to use ReLU activation between the layers to enhance

performance.
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The convolutional layer, as the name suggests, is a crucial component in the

functioning of a Convolutional Neural Network (CNN). This layer uses learnable kernels

that are small in spatial dimensions but cover the entire depth of the input. During

processing, the convolutional layer slides each filter across the spatial dimensions of the

input to generate a 2D activation map. As the filter moves, a scalar product is calculated

for each value in the kernel by taking the center element of the kernel and computing a

weighted sum of itself and surrounding pixels. This allows the network to learn kernels

that activate in response to specific features at certain spatial positions of the input,

resulting in activations.
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Figure 1. Visual representation of the process of CNN
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Each kernel generates a corresponding activation map, which is stacked along the

depth dimension to form the complete output of the convolutional layer.

As aforementioned, training ANNSs on inputs such as images results in models that are

too large to be efficiently trained. This is due to the fully connected nature of standard

ANN neurons. To overcome this, each neuron in a convolutional layer is only connected
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to a small region of the input volume, referred to as the neuron's receptive field size. The
depth of the connection is nearly always equal to the depth of the input.

For instance, if the input to the network is a 64 x 64 x 3 (RGB) image, and the
receptive field size is set to 6 x 6, each neuron in the convolutional layer would have 108
weights (6 x 6 x 3). This is compared to the 12,288 weights in each standard neuron in
other forms of ANNs. The complexity of the model can also be reduced through output
optimization with the help of three hyperparameters: depth, stride, and zero-padding.

The stride in which the depth of the input is set to place the receptive field can also be
defined. A stride of one, for instance, would result in a heavily overlapped receptive field
producing large activations. On the other hand, setting the stride to a higher value would
decrease the overlap and produce an output with lower spatial dimensions.

The purpose of pooling layers is to decrease the dimensionality of the representations
and simplify the model's complexity. Typically, max pooling layers with a 2x2 kernel and
a stride of 2 are used, reducing the activation map to a quarter of its original size while
maintaining the depth. This scales the activation map down to 25% of the original size
whilst maintaining the depth volume at its standard size. There are only two generally
used methods of max pooling. The commonly used methods of max pooling include
setting both the stride and filter to 2x2, or using overlapping pooling with a stride of 2
and a kernel size of 3. Note that larger kernel sizes can negatively affect the model's
performance. Additionally, CNNs can include general pooling layers with pooling

neurons that perform operations like L1/L2 normalization and average pooling.

28



In the fully connected layer, the neurons are directly connected to the neurons in the
adjacent layers, with no connections to the neurons within the same layer. This setup is

similar to the arrangement of neurons in conventional artificial neural networks (ANNS).

2.3.3 Activation Functions of Artificial Neural Network

The activation function is a crucial aspect of artificial neural networks (ANNS)
alongside the nodes and layers. In creating an ANN, designing the neuron models is key
as neurons are the fundamental units in biological neural networks. The activation
function of a node decides the output that is generated given an input in the ANN model.
As learning occurs, the activation function modifies the weights and bias, transforming
from 0 to 1. There are two types of activation functions: linear and non-linear. However,
only non-linear activation functions are effective for building complex networks with
limited number of nodes.

The linear activation function is clear and direct, as it assumes a linear relationship
between the input and output. However, its simplicity makes it unsuitable for analyzing
complex data, as it cannot capture the complexity of various parameters. On the other
hand, non-linear activation functions are widely used to model and generalize the
complexity of data for producing an output. These functions come in different forms,
based on their range or curve shape, with the most common being sigmoid or logistic,

tanh, ReLU, and Softplus.
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Table 2. Types of Activation Function

Type Equation Derivative
Linear/Identity f(x)=x f'(x)=1
0 f 0 0 fi 0
| £(x) = or X< £1(%) = or X#
Binary Step 1 forx>0 ? forx=0
Logistic/sigmo 1 ,
. f(X)=c(X)=—% f'(x) = f(x)(1- f(x))
id l+e
e*—e”
Tanh F0) =tanh() = e 100 =1- 1 (0"
F(y) e’ here i i
¥i)= WREIEJ#1 - £r(x) =  (x,)A-[ f (x,
Softmax >’ (x) = f(x;)A-[F(x)])
J
x ' 1
SoftPlus f(x)=In(L+¢€") f'(x) = —
l+e
ifi 0 f 0 0 f <0
- RECtIer-d (x) = or x< F1(x) = or X
Linear Unit X forx>0 1 forx >0
(ReLU)
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Leaky
Rectified Linear
Unit (LReLU)

Parametric
Rectified Linear
Unit (PReLU)

Randomized
Rectified Linear
Unit (RReLU)

Exponential
Linear Unit
(EReLU

Multiple
Parametric
Exponential
Linear Unit
(MPELU)

x 1If x>0 i
f(x)= . 1if x>0
0.01x if x<O0 f'(x)= .
0.01 otherwise

x if x>0
f(x)= .
ax if x<0

£(x) x if x>0 a~U(AB),A<BandA Be[0,])
X =
ax if x<0

1 if x>0

X if x>0
f(yi):
ae® if x<0

a(e’-1) if x<0 f’(x)={

f(y)= X if x>0
W= a(@”-1) if x<0

The sigmoid or logistic activation function, which is the most widely used activation

function, is a smooth, S-shaped function that outputs values ranging from 0 to 1. Its

formula is as follows:

F(xX) = —2

1+e™*

------------------------------------------------------------------------ Eq. 19
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Despite the ease of computing its derivatives, the sigmoid function is rarely used in
deep neural networks as it leads to zero gradient in the limit, causing difficulties in
training deep neural network models. This is particularly relevant when the sigmoid

function is utilized in the output layer.

lim f'(x)=0
ANA e Eq. 20
lim f'(x)=0

The optimization of the loss function leads to the derivatives of the sigmoid function
becoming close to zero in the saturation area, leading to reduced contributions in the early
layers. This is known as the vanishing gradient, and is typically a problem in networks

with more than five layers (Glorot & Bengio, 2010; Han & Moraga, 1995).
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Figure 2. Shape of sigmoid function and its derivative

The tanh function, also known as the hyperbolic tangent function, extends the sigmoid
function in an S-shape and outputs values between -1 and 1. It is defined as the ratio of

the sine function and the cosine function.

sinh(x) e*—e”

tanh(x) = = -
cosh(x) e*+e™”

Eq. 21
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Being similar to the sigmoid function, the tanh function can be deducted from the

sigmoid function:

tan h(X) = 2SIgMOId (2X) =1 - eenemmmmmmmm e Eq. 22

1 .
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Figure 3. Shape of hyperbolic tangent function and its derivative

Like the sigmoid function, the tanh function is also differentiable, but it similarly
encounters the issue of the vanishing gradient. The sigmoid and tanh functions have the

possibility of producing a vanishing gradient, which arises from inputting a large number
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of information. The problem becomes evident especially when the researcher uses many
number of layers in the network, and consequently, the gradient between the layers
become too small to be trained by the network. The gradient of a neural network is
calculated using backpropagation, which involves computing the derivatives of the
network as it moves backward from the final layer to the initial layer. According to the
chain rule, the derivatives of each layer are multiplied as the network moves back, to
obtain the derivatives of the initial layer. However, if the gradient becomes too small at a
certain hidden layer, the next derivative may become exponentially small, which could
leave the weights and biases without being updated. Thus, small gradients can interfere
with the training process and the performance of the model overall (Hochreiter, 1998). To
avoid this computational challenge and the vanishing gradient problem, different
activation functions have been developed.

The ReLU function, which is a rectified linear unit activation function, has become a
popular choice in artificial neural network modeling. This is due to insights from
neuroscience suggesting that activation functions in the brain can be modeled with
rectifiers. Unlike the sigmoid and tanh functions, where over half of the neuron units are
activated simultaneously, in the brain only a small percentage (1-4%) of neurons are
activated at once, leading to the need for a change in the neural network design.

Unlike the sigmoid function, ReLU has a value between 0 and 0, meaning that it is
half rectified from 0. The derivative is a constant when the input is X >0. The definition

and derivative of ReLU are as follows:
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F(x)=max(0,x) =1 X T X0 Eq. 23

S0 i x<0 a

f0)=max(@x) =1 " *=° Eq. 24
S0 i x<0 a
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Figure 4. Shape of ReL.U activation function
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Compared to the sigmoid or tanh activation functions, using the ReLU activation
function has many advantages, including its computational simplicity and reduced risk of
vanishing gradients. Unlike sigmoid or tanh functions that require computation of
exponential functions, the ReLU function only involves a simple calculation. Networks
with ReLU functions also converge much faster during training with gradient descent
compared to those with saturating activation functions. The ReLU function also enables
networks to easily obtain sparse representations, where the output is 0 when the input is

less than 0, leading to sparse activation of neuron units and improved efficiency in data
learning. When the input is X >0, the features of the data can largely be retained.

Finally, deep neural networks with ReLU activation functions can perform optimally
without undergoing any unsupervised pre-training in supervised tasks using large, labeled
data sets.

However, the ReL.U function's assumption of setting all negative values to 0 can lead
to many activations in the layers becoming 0. This is because the gradient is 1 for all
positive values and 0 for negative values, which can result in relative weights not being
updated and cause some neurons to "die" by never being activated when needed. This
issue is known as the "dying ReLU problem". To address this, the leaky ReLU function
was created as a modification of ReLU, assigning non-zero slopes to negative values. The
form of the leaky RelLU varies depending on the assignment of values lower than 0. The
leaky ReLU function and its derivative are generally defined as follows (Maas et al.,

2013):
37



X if x>0
f (x) =max(0, x) = L eeseseseseseserererersrsrsrnssnsisieaae. Eq. 25
) 0. {O.le if x<0 i
1if x>0
F(x) = RN Eq. 26
0.01 otherwise

The parametric leaky ReLU (PReLU) model assumes the same functional form except
that it defines the value of & as learned during training in the back-propagation process

(Sun & Yu, 2016).

To summarize, ReLU, leaky RelLu, and PReLU can be distinguished according to the

following conditions:

If o, =0, ReLU
If @, >0, LeakyReLU ~ cooeeeeeeeee e Eq. 28
If o, can be learned, PReLU
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Figure 5. Shape of PReLU activation function

The Randomized Rectified Linear Unit (RReLU) is another variation of the ReLU
activation function. Unlike leaky ReLU, where the slope for negative values is set as a
constant or learnable parameter, in RReLU the slope is randomly assigned within a

specified range during the training phase, and then fixed during the testing phase. The

definition of RReLU is:

X if x>0
F(X) =9 e Eq. 29
ax if x<0
where
a~U(AB),A<BandA,B €[0,1) ---eeeemmemmmmmmii Eq. 30
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In the training set, & is a random number sampled from the uniform distribution

U (A, B). In the testing set, the average of all parameters ¢ in the training set is taken

and the parameter is setas (A+B)/2.
In order to get the activation means closer to zero to decrease the bias shift effect of a
ReLU function, the Exponential Rectified Linear Unit (ELU) was proposed with ¢ >0,

where the definition and derivative is defined as:

(y) = if x>0 Eq. 31
W= (e -1) if x<O +
£/(%) 1 if x>0 Eq. 32

’X = < iiaasssassssssssssssssssssssssssssssssssssssssssssssssE=Ess
ae” if x<0 |

The drawback of ELU and LReLU is that searching for & is time consuming.

Therefore, the following Parametric Exponential Linear Unit was proposed (Li et al.,

2018):

if x>0

X
F(y) =4 Eq. 33
() {a@m—b if x<0 |
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2.3.4 Fundamental Difference Between Machine Learning
and Discrete Choice Model

Although many researches now attempt to formulate consumer preference structure
through machine learning, seemingly making it as if the two fields are closely related.
However, discrete choice models and machine learning are fundamentally different.
Discrete choice models are based in economic theories. Therefore, it is referred to as
knowledge driven or theory driven. Also, as is the case for all economic models, the
pinnacle of discrete choice model is its interpretability that comes with the accumulated
theories and techniques including the Random Utility Theory, simulation technigques

such as Markov Chain, and assumptions of distributions of variables.

Table 3. Comparison between Logit and Machine Learning Models

Type Logit Models Machine-learning Models

' '
U njt :V (ant ' snjt) + gnjt = ﬂnjt + ant + anjtsnt + 8njt

Model formulation Poic = .[ L (B) T (B, [DW)AS,y f(Z|6),Y €{L,...K}

\ it :Brgxmt
e e
I—nit (ﬂn) - ZevnjI - Zeﬂ,',xnjI

j j
Commonly used Multinomial Logit, Mixed NB, CART, BAG, BOOST,
models Logit, Nested Logit RF, SVM, NN
Prediction type Class probability Classification

Layer structure, Tree

Model topology Layer structure

structure, Case-based
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reasoning, etc.

Maximum likelihood ] )
Back propagation, gradient

o estimation, ) o
Optimization ) i descent, recursive partitioning,
Simulated maximum ) S
method o structured risk minimization,
likelihood,
. .. etc.
Bayesian estimation
Evaluation criteria Log-likelihood, AIC, BIC Resampling-based measures
Variable o ) ]
) Relative importance (RI) Variable importance
importance
) Sign and magnitude of f )
Variable effects Partial dependence plots

coefficients

Machine learning models are considered data-driven, lacking a theoretical
foundation or prior knowledge. Instead, they rely solely on the data they are trained on
and prioritize performance and prediction accuracy. As a result, some researchers argue
that machine learning models cannot be replaced by traditional models, as they operate
differently.

Despite the differences between machine learning models and traditional models,
efforts are still being made to replicate the latter. Neural networks have become
increasingly popular due to their ability to identify complex relationships between
variables. In the marketing industry, ANNSs are used for a variety of tasks including

market segmentation, predicting market response, forecasting sales, and predicting
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consumer choices. The use of ANNSs to determine the effect of marketing variables and
to estimate price elasticities has grown significantly over time (Dasgupta et. al., 1994;
Thieme et al., 2015).

Studies have shown that machine learning models have the ability to supersede
traditional models in terms of performance, however, they lack interpretability and do not
provide insight into the cause-and-effect relationships.

Studies have shown that machine learning models have the potential to surpass
traditional models in performance, but they lack interpretability and provide
limited insight into the causal relationships. To address this, some researchers
have combined the elements of discrete choice models and neural networks to
create hybrid models. One such example is the NN-MNL model introduced by
Bentz and Merunka (2000), which follows a two-step process of estimating a NN
model to identify non-linear effects in the utility function and then modifying the
MNL model to incorporate these effects through new variables.

Sifringer (2018) aimed to combine the predictive power of NN with the
interpretability of DCM by linking the mathematical derivation of the multinomial
logit model to the NN equivalent. This enabled the formation of a connection
between the linear and non-linear parts by using unused variables in DCM in the

non-linear layer through a Dense Neural Network (DNN).
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Figure 6. The schematic of Learning Multinomial Logit (L-MNL) Model

(Sifringer et al., 2018)

Subsequently, Sifringer et al. (2020) advanced the previous work by
introducing two new hybrid models, the Learning Multinomial Logit (L-MNL)
and Learning Multinomial Nested Logit (L-NL) models. The models feature a
linear layer representing the systematic part of the utility function, and a non-
linear dense layer that learns a representation term from a set of additional socio-
demographic variables for which no prior relationship is assumed. The present
study is largely based on this work, and the methodology will be explained in

more detail in the following chapter.
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Figure 7. The schematic of Learning Multinomial Logit (L-MNL) Model

(Sifringer et al., 2020)

Wong and Farooq (2021) created the Residual Logit Model (ResLogit), which
combines a Deep Neural Network (DNN) with a Multinomial Logit (MNL) model. This
model outperformed previous ones and provided more interpretability, as the residual
network's parameters can be used to uncover valuable economic indicators. Arkoudi et
al. (2021) also proposed a DCM that is based on neural network with fully interpretable

parameters. They were able to derive such parameters by introducing an embedding
45
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layer as part of the model’s architecture that can effectively encode discrete input

variables with high cardinality into alternative-specific continuous values.

Figure 8. The architecture of Embeddings Multinomial Logit (E-MNL) Model

(Arkoudi et al., 2021)

2.4 Result of Literature Review

As mentioned in the previous section, many researches have shown great
performances. However, machine learning models are still criticized for only having
predictive abilities when in real life, interpretability also matters greatly. On the other
hand, researchers in traditional academic fields, mainly economics, still dwell around
machine learning because of the powerful predictive capacity of the neural network

models. Also, because machine learning models lack interpretability, there have been
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many restrictions in replicating behavioral models of discrete choice models, which is
another prominent area of research in modern day economics that stems from the prospect
theory.

According to the review of the previous studies, it has come to light that in order to
enhance the interpretability and embed behavioral characteristics of the existing models,
and if the two models cannot replace each other, they should be combined. This study
follows the framework of the previous literature that employed hybrid model approach,
where the model maintains the interpretability of the discrete choice model by
formulating one part of the neural network as linear and the other part as non-linear.
Many efforts have already been taken in that aspect, but this study attempts to provide
further development and open the doors to providing additional options to explore the
various aspects of choice models. Specifically, this study will attempt to implement the
concept of thresholds, one of the behavioral models of choice models, into the hybrid
neural network model. The attempt to combine neural networks and compensatory/non-
compensatory is not the first (West et al., 1997), but it is one of the first attempts to
implement it into the hybrid models.

However, in the perspective of the existing choice models, this study attempts to
resolve one of the few limitations, the restrictions from accessible data. For example, in
the previous literature regarding threshold models, although the threshold levels were
stochastic and were distributed randomly throughout the population (Cantillo et al., 2006),

the researcher still needed the data on the individuals’ reference points (Han et al., 2001).
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However, by using the power of neural network models, the threshold levels can be
trained by itself without the knowledge and actually provide the clues where the actual
reference points of the individuals might be located.

Therefore, this study made a hybrid approach to formulating a model that incorporates
the traditional aspects, the linear part, and the data driven aspects, the non-linear part.
First, a modified discrete choice model is proposed that implements a decision rule based
on thresholds. Then, a neural network approach was taken to separate the utility function
of the discrete choice models into the theory-driven part and data-driven part. The theory-
driven part maintains the interpretability of the original model, while enhancing the
predictive performance of the model through additional neural network that utilizes as

much data as possible, which is explained in the following chapter.
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Chapter 3. Methodology

3.1 Threshold as ‘Just Noticeable Difference’ in Discrete
Choice Model

The methodology used in this study that implements thresholds is based on discrete
choice experiment. Although previous behavioral models that utilized discrete choice
models have the advantage of observing the asymmetric preference structure of the
consumers, recent studies have examined the possibility of the existence of thresholds in
addition to reference effects. In short, threshold posits that there is a certain region in
consumers’ preference, where their utility does not change despite the changes in attribute
levels. This phenomenon is referred to as “just noticeable difference.” In fact, the
concept of thresholds is not a completely new idea. It was first introduced in
psychological experiments, and the concept was developed by classical economists, who
analyzed consumer choice of goods using indifference curves. Slutsky (1952) discovered
that between any two bundles of goods, consumers had three attitudes: 1) X is preferred
to Y 2) Y is preferred to X 3) is indifferent to both X and Y. Krishnan (1977) introduced
this concept to the field of discrete choice experiment, specifically designing the choice
situation to include a third alternative in addition to two normal alternatives, to reflect the
indifferent attitude.

More recent studies have implemented thresholds as a part of existing discrete choice

models. Han et al. (2001) combined reference price effect and threshold effect, suggesting
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that there is a latitude of acceptance or zone of indifference around the reference point,
such that minor changes in price around the reference point do not have any significant
impact on consumer choice. In other words, consumers have differential thresholds for
gains and losses. Unless the difference between actual and reference price is higher than
these thresholds, consumers do not experience any shifts in utility. However, the
limitation of this study is that despite the fact that thresholds may exist for any attribute,
the study have considered thresholds for only the price attribute. Cantillo et al. (2006)
utilized multinomial logit model and structured the threshold to be randomly distributed,
to determine how the threshold levels would differ across individuals. The results of the
study indicated that where thresholds exist in the population, not taking them into
consideration would lead to errors in estimation and prediction. Although this study
observed the heterogeneity of the consumers’ thresholds, the study did not observe the
heterogeneity in the coefficients. Therefore, a model is proposed in this study that
incorporates thresholds into mixed logit model, a more advanced model that considers
heterogeneity in preferences for each respondent, meaning that it can identify an
individual respondent’s preference for every attribute.

First, based on the random utility theory, the mixed logit model with random
parameters is used to capture the consumers’ preferred directions for the attributes of the
alternative and each random parameter is set as having a normal distribution to consider
the differences in a preferred direction. When using the mixed logit model, individual-

level marginal utility can be derived with Bayes’ theorem (Hensher & Greene, 2003).
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Individual marginal utility shows the direction of consumers’ preferences for the increase
of the attribute levels. If it is larger than 0, then the consumers prefer the increase of

levels, and otherwise, they do not prefer. The random utility model is expressed as Eq.
. U » represents the utility respondent # gains from their selected alternative ;.

— — '
U . _an+€n/‘ =p',X, +¢

nj M

Ian ~ N(b’ W) ........................................... Eq 34

In Eq. (1), respondent n’s utility U » can be divided into the deterministic term, an ,

and the stochastic term, €,;. Then, the deterministic term can be further expressed as the
product of the vector (X, ), which refers to the attribute of the alternatives, and the

coefficient vector (5, ). The deterministic term refers to the the attribute of the product

that can be explained, and the stochastic term refers to the uncertainties. This study
assumed that the coefficient followed normal distribution with mean (b ) and variance
(W), and the stochastic term followed independent and identically distributed type I

extreme value distribution.

Secondly, by using individual-level marginal utility ( l) and the difference between
level (X, ) of attribute( k )of alternative( ;) and the reference point (r,,) for attribute
(k) of respondent (7 ), the relative attribute levels can be divided into gain and loss

domains, as in Eq.(2). If (x -r ) , or the difference of X; and r,, has the same sign as

B, , then this means that the respondents prefer the relative attribute levels (considered as
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gain) and otherwise, they do not (considered as loss). Here, the reference point is obtained
as a stated preference data from survey, where the respondents state their expectation

towards each of the attributes.

Gain, if (,B:k ZO&Xjk = rnk) or (ﬁ:k <0&Xjk < rnk) .................................. Eq 35
Loss, if (B <0&x, =r,)or (B 20&X; <Tr,)

n

Thirdly, in addition to the relative attribute levels considered in the conventional
reference dependence studies, this study input the threshold levels for each attribute ().
As mentioned before, consumers do experience shifts in utility only when the difference
between the actual attribute level (x) and the reference point (r) is higher than these
thresholds. Therefore, the relative attribute levels with thresholds can be divided into gain

and loss domains again, as in Eqg. (3).

Gain, if (B 20&X; 21, &0< 6y i < X5 =Ty ) OF (B <0&X; < Ty &O< Sy i STy —Xg) Eq. 36

nk,gain —

Loss, if (B, <0&X; 21y &0< Sy 10 <X =1y ) OF (B 20&X;, <1y &0<E, 0 ST —X;,)

nk,loss —

Finally, the influence of relative attribute levels with thresholds on the utility of
respondent n can be modeled as Eq. (4). The deterministic term of the utility function was
split into traditional term, which is the first term in the equation, and the modified terms,
which include the remaining terms. The traditional term reflects the attributes that do
not consider the reference and threshold effects, while the modified terms reflect those

that consider the reference and threshold effects.

52



an =B X
+ﬂgain.ij/(_rn/r‘_§nk,gain|.]{(ﬂrik20&ogé‘ <Xy _rnk)or(ﬂr:A<O&OS6 <ry —x))

nk ,gain nk ,gain Jjk

+ﬁ10.cs'|‘xjk_rnk‘_é‘nk,gain|'[{(ﬁ;k<0&035 ijkin,k)or(ﬂ:k20&0§5 S’;zk_xjk)}

nk gain nk ,gain

Eq. 37

By substituting Eq. (4) into Eq. (1), the final form of the utility function can be

expressed as Eq. (5).

Unj =ﬂ,nank
+ﬂgain.ijk_rnk|_5rxk,ga[n|'[{(ﬂrik20&()£5 ijk_r/w)or(ﬁ;k <0&0S5 S’/;1/{_')C/'k)}Eq. 38

nk,gain nk ,gain

+ﬂl{:.m.“xjk_rnk|_§nk,guin|.]{(ﬂ1:k <0&0<5, <xy =t )or (,Blk 20&0<5, Srnk_xjk)}

nk ,gain Jj nl nk ,gain

+¢

nj

In general, threshold levels are usually unknown to the researcher, as the consumers
are unaware of its existence and magnitude themselves (Cantillo et al., 2006). Therefore,

in the utility model, the threshold terms are stochastically defined by individual
characteristics ( Z,, ) and the absolute difference between the actual attribute level (X )

and the reference point (7, ) as shown in Eq. (6). This phenomenon is complicated
because consumers do not appraise a product or service just once, but their evaluation of
them can accumulate over time and exceed the threshold, or a change in their behavior
and taste might occur, which would cause a change in their threshold levels. Therefore, in
the general case thresholds are treated as dynamic which depends on the characteristics of
the individuals and consequently distributed randomly within the population (Georgescu-

Roegen, 1958).
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O =| Xi — Mk |><pnank +&0 §nj ~ N(0,Z) «oeveermeeeie Eq. 39

In this study, Markov Chain Monte Carlo (MCMC) Gibbs sampler is used in Bayesian

estimation procedure by the following order.

Pz, B,
S| By o wrrrrrr e Eq. 40
B.lpZ

3.2 Hybrid Formulation of CNN and DNN
Based on the literature review, this study applies advanced utility specification to
form a hybrid model consisting of both a discrete choice model and machine learning.
Divided utility specification is deployed into the interpretable and data driven (learning)
parts (Sifringer et al., 2020). The main goal of research in machine learning to try to
implement machine learning into the traditional econometric models to avoid losing
interpretability of the machine learning model as much as possible. Machine learning
has widely been regarded as ‘black box’ models, where the coefficients were unable to
be derived and interpreted, which is the fundamental aspect of an economic model.
Therefore, in recent years many hybrid models have appeared that formulate the model
in a way that could still be interpreted through various assumptions.
A neural network consists of a function that maps the input space to an output of

interest through the medium known as the hidden layers (h"):
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U = hg),
with  q® =h@(qU?), vj=1,..,L,

where q® =x and L is the last representation layer.

This study utilizes a CNN to retrieve the MNL formulation. What differentiates
CNN from other NN models is that the weights of CNN are represented by a
convolutional filter that connects one layer h' to the following hidden layers or the
output layer by applying a convolution. Convolution is commonly used in the area of
image processing, where a filter with a fixed number of weights is applied to an equal
number of inputs by multiplying the terms together and then summing them over to
obtain a single new value. A new image is obtained by sliding the filter over all the input
data, a process referred to as the stride. In the case of this study, the model employs CNN
model without applying the filter out of the boundaries, reducing the size from one layer
to the next, referred to as the paddling. In other words, the layers are directly connected.

Therefore, the value of a neuron i in the next layer (j+1) can be written as:

d
RO = GOND B +aD), crrrrrrreeereneeereereeseeeeeeseesssss Eq. 42
k=0

where W B} =B s the filter size X% d) . Sthe stride of the convolution, &

a bias term, and 9() an activation function.
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The MNL formulation is retrieved by employing only a single layer, setting the
activation function to identity (g(x) =x) and the stride S to d . This differs from the
general formulation, as the nodes are directly connected between each layer 1 to 1. The
original deterministic term of the utility function can be obtained this way.

Finally, the probability function, which much resembles that of the discrete choice

model, can be obtained by using a SoftMax activation layer as follows:

e(Vin)
e e o S B Eq. 43
Zj eC, €
which can be identified as the same probability function of the MNL.
The output of the network then goes through a loss function:
Hn(o-’ yn) = _Z yin IOg[o-| (Vn)] '''''''''''''''''''''''''''''''''''''''''''''''''' Eq 44

ieC,

Minimizing the above equation is equivalent to maximizing the log likelihood
function when summed over all individuals, n.
As mentioned above, in this study, the deterministic part of the utility function is

divided into two parts as follows:
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Vin — ]F[(Xn,ﬂ)+,,}(Qn,W), ......................................................... Eq. 45

where f,(X,; /) is the interpretable part driven by theory and knowledge, and as a

result the function is now defined so that the unknown parameters ( £ ) are an
interpretable by its attributes; 7,(Q,;w) is the data-driven learning part, learned from set

of socio-demographic variables where no previous relationship is assumed in any case.

Substituting Eq. 16 into the utility function gives the following:

Ur,:f,-(Xna,B)+V,-(QnaW)+€n ..................................................... Eq.46

Intuitively, this indicates that the data driven or learning part, 7,(Q,;w), is taken out

of the residual of the function, which enhances the performance of the model, such that:

E_'m :’/;(anw)_l_em ............................................................................

A similar formulation has been proven to be highly effective through the use of a
residual network (He et al., 2016).

The likelihood of selecting the choice alternative i for individual 7 given the
values of the model parameters, attributes, and influencing variables can be expressed as

follows:

o7

Eq. 47



e/;- (X, )47 (9, w)

£@)= s 7., Brer, (0, )
jecn e

Regarding the learning part, 7,(Q,;w), this study used a Dense Neural Network

(DNN), where 7, is the resulting function of a DNN with L layers of H neurons and a

single output per utility function:

(L-1)

H
Fn =
k=

1

(L-1)

(L)
w,g(q, W,

+a")+a,

)

where g(-) isthe ReLU activation function.

The schematic of the model is visualized in Figure 3.

Input

©-OO

£

Convolition
Filter

Hidden
layer

Tnput
layer

Q
O

®,
O.

Hidden
layers

OO
OO

@
®

Figure 9. Hybrid machine learning model schematic
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Here, what distinguishes the hybrid model from the traditional models is that the
connection between the input to the convolution layer is not fully connected, and that
they are matched 1:1 between the weight and the variable of the input layer (Sifringer et.
al., 2020). This leads to some concerns that, as the nodes are not fully connected, the
model might sacrifice some of the advantages of a neural network model. However, as
can be seen in the results in a later chapter, the addition of variables into the DNN

enhanced the prediction accuracy of the model.

In addition, in order to formulate a threshold model with machine learning, this study
added another convolution layer to the theory driven part of the utility function. The filter
is set to a 1 x 1 size with the stride set to 1. The ReLU activation function is used. By
formulating the model in this way, the disadvantage is a loss of the ability to capture the
asymmetric structure of preference. However, as in the case of evaluating thresholds, it is
to the researcher’s interest to observe the range where the utility of the consumers does
not change, i.e., the indifference zone, and the range where the utility starts to increase.
Therefore, this study implemented the ReLU function to capture the threshold effect.
Consequently, the likelihood of selecting the choice alternative i for individual n,

visualized in Figure 4, is as follows:

e fi (xn ’ﬁ'6)+ri (Qn 'W)
R.()= O P (o K R Eq. 50
ZjeC €
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Figure 10. Hybrid machine learning model schematic with 2 convolution filters

One of the major challenges in training a neural network is deciding how much and
how well to train the model. When the model is not trained enough, then the model will
underfit the training and test sets of data. On the other hand, when the model is trained
too much, it will be vice versa, where the mode is overfit and result in poor performance
on the test set. Therefore, a compromise needs to be made to train on the training dataset
until the performance on the test dataset starts to degrade. This method is referred to as
early stopping which is intuitively very simple, but it has shown high performance and it

has been widely used to train neural networks (Prechelt, 1998; Raskutti et. al., 2014).

60

MqET

1 8}

TU



One of the approaches to solve the problem is treating the number of training epochs
as a hyperparameter, training the model repeatedly with different number of epochs, and
selecting the number of epochs that finally presents the best results. The disadvantage of
this approach is that it requires the manual work of the researcher to train and discard
multiple models, which can be highly inefficient computationally and defeats the purpose
of using machine learning models.

The alternative approach to early stopping method is to start the training process with
a large number of epochs. Once the dataset starts to get trained, the model is evaluated on
a holdout validation dataset after each epoch. If the performance of the model on the
validation dataset starts to degrade, then the training process is stopped. The reason
behind it is that when the training process stops, it means that the loss starts to increase,
or the accuracy begins to decrease. The early stopping method has been widely used to

prevent overestimation in neural network models.
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Chapter 4. Empirical Studies

4.1 Background

In an effort to curb the upcoming of the global warming, governments around the
globe has gathered to adopt the Paris Agreement 2015, which became the guiding
principle of environmental policies. The Agreement requires all countries to implement
their own GHG reduction targets, and South Korea has also set a 37% reduction in GHG
emissions compared to BAU by 2030 as its national target. However, despite the
countries’ efforts to reduce greenhouse gas emissions through regulations, the GHG
emission continues to be a serious issue, especially in the transportation sector from
internal combustion engines (ICEVs). More than 95% of the vehicles registered around
the globe are gasoline and diesel vehicles, accounting for more than 50% of crude oil use.

As the demand for a dramatic change to this landscape rapidly increased, governments
across the globe initiated several notable changes. Most notably, European countries have
adopted the Alternative Fuel Infrastructure Directive, setting the standard of charging
infrastructure and recommending that at least 1 charging station be installed for every 10
registered EVs. The Korean government has also joined this rally and imposed key
regulations. In February 2021, the government announced the “4™ Basic Plan for
Environment Friendly Vehicles.” In this plan, the government revealed its ambitious
goals to reduce the GHG emission level in the transportation sector by 24% and achieve

the rollout of 7.85 million alternative fuel vehicles (AFVs) by the year 2030. Also, the
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government has expanded the charging infrastructure, and as a result, South Korea
currently has the highest ratio of public charging infrastructure per registered EV (0.5)
compared to the global average (< 0.1) (IEA, 2021). Additionally, the government has
also funded R&D to drastically reduce the charging time and ultimately aims to remove
any barriers that hinder consumers from purchasing EV until 2030. However, despite the
effort, the government fails to meet its policy target each year. As the diffusion of EVs is
already behind schedule, many are now arguing that the government should uptake a new
strategy, to divide and conquer by prioritizing the aspect that would boost the penetration
rate of EVs in short term, on either the quantity of the infrastructure or the quality of the
infrastructure.

Given the context, there is a need to analyze consumer preference to catalyze the
process. Consumer choice has widely been studied in terms of their utility, under the
assumption that consumers make choices that brings them maximum satisfaction.
Because consumer data for innovative products introduced in the market is not readily
available, researchers can use product attributes for virtual alternatives to analyze
consumer preferences (Train, 2009). In this study, key characteristics of EVs, such as
price, fuel cost, maximum distance, charging/fueling time, and accessibility to charging
stations are used in the survey. The traditional models that encompass this assumption are
structured in the way that the utility of the consumers immediately increase with the
immediate change in the attribute levels. However, recent studies on behavioral

economics have discovered that individual consumers rarely change their behavior
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immediately when the attribute levels of products or services change, as can be seen in
Elimination by Aspects Model (Tversky, 1972). More recently, this is explained as the
potential existence of limits, boundaries or cutoff points that can vary within the

population, which is referred to as thresholds (Cantillo and Ortdzar, 2005).

4.2 Research Goal

Unlike other studies on consumer preference for EVs, this study performs a consumer
utility analysis and examine the effect of thresholds for EVs and its core attributes by
setting the consumers’ expected future purchase of vehicles. In particular, by using the
thresholds that can analyze not only attributes with the same preference direction but also
the cutoff points, the model captures consumer behavior at a higher dimension. This
study further carries out simulation analysis to examine the future market share of EV
market as the infrastructure and charging time improve and compares the policies that can

accelerate the diffusion of EVs.

4.3 Empirical Analysis Framework

In order to derive both methodological and policy implications, this study has utilized
total of 4 models including traditional models and proposed models. 1) Mixed Logit
Model (MXL) 2) Threshold Model (TL) 3) Hybrid Neural Network Model (HNNM) 4)
Threshold Hybrid Neural Network Model (THNNM). To directly compare the results and

the performance of each model, this study employed the same data set for all four models,
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which will be described later in this chapter. The overall framework of is presented

below.
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Figure 11. Framework of the Empirical Study

4.4 Data and Model

To carry out the estimation of the model, maximum likelihood estimation (MLE), a
traditional estimation method, can be used to estimate the coefficients of each attribute.
However, the calculation process of MLE is complex and can seldom have problems in
locating the maximum likelihood value depending on the initial value. Therefore, this
study used the Bayesian estimation method. The method carries the advantages of
consistency and efficiency in more flexible conditions that the MLE (Edwards and
Allenby, 2003). The Bayesian estimation method uses attribute coefficient, the prior

distribution for marginal utility and the posterior distribution of the likelihood function.
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The data used in the analysis of this research was obtained from an experimental
survey conducted against 665 people by Gallup Korea in May 2019. The survey was
carried out in the largest regions in Korea with the highest number of populations: Seoul,
five largest metropolitan cities, and several new towns in Gyeonggi Province. The survey
respondents were aged between 20 and 59, who were selected accounting for the
minimum driving age and the requirement of understanding a survey concerning purchase
of the next vehicle.

The sample was allocated based on the characteristics of the population, using
demographics such as gender and age. Called purposive quota-sampling, it ensures that
component ratio of the actual population is maintained (Sudman, 1966). The
demographic characteristics of the survey respondents are provided in Table 1. The
reference points for vehicle properties were set to expectations for future purchase of
vehicles rather than past experience and present-day status. The reasoning behind this was
that the market of EVs and FCEVs is not fully mature, and the number of owners of such
vehicles were not sufficient to represent the population. Moreover, a discrepancy can
occur where the consumers’ reference point may differ between the vehicles they own
right now and what they expect to purchase in the future, due to the expensive and
durable characteristics of vehicles. Therefore, future expectation was set as the reference
point for the main attributes of a vehicle in this study.

Table 4. Characteristics of survey respondents

Group Number of respondents (%)
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Male 337 (50.7%)
Sex
Female 328 (49.3%)
20to <30 152 (22.9%)
30to <40 160 (24.0%)
Age
40 to <50 177 (26.6%)
50 to <60 176 (26.5%)
Seoul 271 (40.7%)
Busan 91 (13.7%)
Incheon 85 (12.8%)
Region Daegu 69 (10.4%)
Daejeon 41 (6.2%)
Gwangju 42 (6.3%)
Gyeonggi 66 (9.9%)
< 4,000 102 (15.3%)

Average Monthly House
Income

(thousand KRW)

4,000 to < 5,000

5,000 to < 6,000

6,000 to < 7,000

>7,000

131 (19.7%)
168 (25.3%)
139 (20.9%)

125 (18.8%)

The attributes of vehicles used in this study were based on the attributes used in

previous studies, and the attribute levels were set according to the current level of
67



technology. In choosing the number of attributes to be used, maximum of eight are
recommended, as higher number of attributes can lead to fatigue in the survey
respondents. Therefore, this study used seven attributes as shown in Table 2, which best
represents the core factors considered when purchasing vehicles. All other attributes are
assumed to be the same across the respondents (Moon et al., 2018). Then, the total

number of alternatives is 8,640, with all attributes at each level

(5%x3x4x3x3x4x4) |(5 X3X4xX3x3x%x4x4). As presenting all number of

possible alternatives is time consuming and costly, orthogonal design was then used to
produce 32 alternative cards. Then, the cards were divided into 8 choice sets, each
containing 4 alternatives. Respondents were therefore asked to answer eight choice

problems, selecting each alternative that would provide them with the highest utility.

Table 5. Attributes and levels used in the discrete choice experiment

No. Attributes Description Levels
1 Fuel type The type of fuel needed to power up gasoline, diesel,
the vehicle LPG, hybrid, EV,
HFCV
2 Charging/fueling The duration of fully charging/fueling 5,15, 25
time the vehicle when empty. For fuel types
(minutes) other than EV, fuel time was fixed to 5
minutes.
3 Fuel cost The cost for driving 10km 500, 1,000, 1,500,
(KRW/10km) 2,000
4 Maximum Maximum distance a vehicle can travel 400, 600, 800
Distance (km) on full fuel/charge

68



5 Vehicle body

Type of vehicle distinguished by its (sub) compact,

type size large/luxury,
SUV/RV
6 Accessibility The level of gas stations is set as 10, 40, 70, 100

(%)

100%, and accessibility of fueling station
for each fuel type is defined in proportion

to that number

7  Purchase cost
(ten thousand
KRW)

The price a consumer pays to purchase 1,500, 3,500, 5,500,
a vehicle 7,500

The example of the choice set and the example of the survey is as follows. The

respondents are presented with 8 choice sets with 4 alternatives each. Here, the

combination of the attribute levels does not reflect those of the real market levels. The

combinations are hypothetical, which accounts for the trade-offs among the attribute

levels within the same alternative.

Table 6. Example of conjoint survey and its alternatives and attribute levels

Attributes Alternative Alternative Alternative Alternative
A B C D
Fuel type EV Diesel Gasoline LPG
Charging/fueling
time 5 minutes 5 minutes 5 minutes 5 minutes
(minutes)
1,000 won/ 1,000 won/ 500 won/ 1,500 won/
Fuel cost
10km 10km 10km 10km
Maximum
) 800 km 600 km 800 km 800 km
Distance
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Vehicle body

SUV/ RV Large sedan Small sedan SUV/RV
type
o 70% (of gas 100% (of gas 100% (of gas 70% (of gas
Accessibility . ) ) )
stations) stations) stations) stations)
Purchase cost 15 mil KRW 15 mil KRW 75 mil KRW 15 mil KRW

According to the previous literature on choice modelling, it is recommended to use
the status quo or the no-choice alternative in the analysis is highly important for multiple
reasons, one of them being whether there is status-quo bias, which is the tendency of a
decision-making to favor a previously chosen alternative more than they should have, had
it not been chosen in the past (Maniquet & Nosratabadi, 2022). Therefore, this study
received responses to the experiment as a 2-part response: First the respondents choose an
alternative along with the no-choice alternative, and secondly, the no-choice alternative is
excluded from the choice set, and the respondents were asked to choose one of the other
four alternatives. Instead of using the responses that include no-choice alternative, this
study used the data that excludes the alternative, as including the data caused problems in
relation to the interpretation of the no-choice alternative in the neural network models.
Moreover, the Threshold Model is flexible that it allows thresholds to be estimated for
only the selected attributes, but this is not possible for neural network models, hence the
no-choice alternative was not used in this study.

Also, to obtain the reference point levels to be used in the estimation process as part
of the indicator function in the Threshold Model, this study directly asked the respondents

of the survey the expected levels of the vehicle attributes of their next purchase, a priori
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to the conjoint survey as follows. It was specified that the respondents must respond with
the expected attribute levels for their next purchase of a vehicle. The threshold levels

were never collected from the survey, and was obtained only via estimation process.

Table 7. Survey questions for reference point

Q. If you were to purchase a vehicle in the future, please respond to what you would

expect for each attribute of the vehicle

Attributes Expected attribute level
Fuel type 1. Gasoline 2. Diesel 3. LPG 4. Hybrid 5. EV 6. HFCEV
Charging/fueling time For EV, within minutes
(minutes) (5 minutes for all other fuel types by default)
Fuel cost Within won /10 km
Maximum Distance More than km per full charge/fuel
Vehicle body type 1. Compact, small sedan 2. Large sedan 3. SUV/ RV
o More than % compared to the current number of
Accessibility

gas stations

Purchase cost Within won

Additionally, for the estimation of the machine learning models, this study used
various socio-demographic variables additional to those used to estimate the thresholds in

discrete choice model as follows. Variables were selected based on the relationship to the
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respondent’s basic demographic characteristics, characteristics related to their attitude

and behavior towards the environment that could impact their choice towards

environmentally friendly vehicle, and driving habits.

Table 8. Socio-demographic variables used in neural network models

Variables

Demographic

Age

Gender

Ownership of vehicle

License

Household income

Driving distance per month

Education level

Environment

Aware of emission level

Considers the environmental impact of vehicles

Plans to purchase eco-friendly vehicle in the future

Driving habit

Leisure

Commute

Business

Daily (shopping, etc.)

4.5 Estimation Results
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This study analyzed consumer preference towards new vehicle purchases based on

total of 4 models. The results are presented in consecutive order from Table 5. The

combined results are presented at the end of this section.

Table 9. Estimation results of individual-level marginal utility for Mixed Logit Model

Variables Mean Std. D
Diesel -0.4518™" 0.4444
LPG -0.5495™" 0.0264
Fuel types Hybrid 0.2551™ 0.2264
Electric 0.3633™" 0.8412
Hydrogen -0.6580™" 0.4793
Large -0.5075 0.0248

Vehicle body type
SUV -0.1281 0.1984
Charging/fueling time -0.2047 0.0045
Fuel Cost -0.0621™ 0.0882
Maximum Distance 0.0792™ 0.1243
Accessibility 0.0182™ 0.0065
Price -0.5798™ 0.3832

*x* ** and * indicates statistical significance at the 1%, 5%, and 10% level

As presented in Table 5, other than vehicle body types, marginal utilities of all

attributes were significant. The estimation results of each attribute are as follows. In the
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case of fuel types, the consumers generally preferred gasoline vehicles over hydro fuel
cell, diesel, and LPG vehicles, but preferred hybrid and electric vehicles over gasoline
vehicles. Even though electric and hydro fuel cell vehicles are under the same
environment friendly vehicle fleet, the preference structure of the consumers displayed
clear difference according to fuel types. On the other hand, vehicle body type did not
have significant impact on the consumers’ vehicle choice process. This can be interpreted
as consumers having different taste of wvehicle size across different demographic
characteristics.

Consumers’ preference increases when charging/fueling time decreases, when fuel
cost decreases, when maximum driving distance increases, when accessibility increases,

and finally when the price of the vehicle decreases.

Table 10. Estimation results of individual-level marginal utility for Threshold Model

Variables Mean Std. D

Diesel -0.2838*** 0.1575

LPG -0.4099*** 0.1545

Fuel types Hybrid 0.5119** 0.1460
Electric 0.8599*** 0.2470

Hydrogen -0.8920*** 0.1614

Large 0.2475 0.1381

Vehicle body type
SUV 0.3086 0.1142
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Gain 2.3429%** 0.3174

Threshold 15 minutes
Charging/fueling time

Loss -3.1713*** 0.7904
Threshold -

Gain 1.1358*** 0.0855

Fuel Cost Threshold -

Loss -0.9216*** 0.0824
Threshold 1,400 won / 10 km

Gain 2.2573*** 0.5085

Maximum Distance Threshold

Loss -2.3552%** 0.4475
Threshold -

Gain 2.4556*** 0.3858

Accessibility Threshold 49%

Loss -2.6211*** 0.3649
Threshold 12%

Gain 1.7587*** 0.0874

Price Threshold 33 mil won

Loss -1.7809*** 0.0730

Threshold

**x ** and * indicates statistical significance at the 1%, 5%, and 10% level

Overall, excluding vehicle body types, marginal utility of all attributes was significant

under 1% significance level. The estimation results of each attribute are as follows. In the
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case of fuel types, the consumers generally preferred gasoline vehicles over hydro fuel
cell, diesel, and LPG vehicles, but preferred hybrid and electric vehicles over gasoline
vehicles. Even though electric and hydro fuel cell vehicles are under the same
environment friendly vehicle fleet, the preference structure of the consumers displayed
clear difference according to fuel types. On the other hand, vehicle body type did not
have significant impact on the consumers’ vehicle choice process. This can be interpreted
as consumers having different taste of vehicle size across different demographic
characteristics.

Among the five attributes, for charging time, fuel cost, and price, the change in utility
according to the decrease in the attribute level is the marginal utility in the gain territory
and the change in utility according to the increase in the attribute level is the marginal
utility in the loss territory. On the other hand, for maximum distance and accessibility
attributes, the marginal utility is presented as the opposite as the previous three attributes.
To our expectation, as charging time, fuel cost, or price decreased or maximum distance
or accessibility increased, the utility of the consumers increased in the gain territory.
Unlike the previous two attributes (fuel type and vehicle body type), the preference of
each attribute was analyzed based on reference dependence tendencies for the remaining
attributes. As the consumers evaluate alternatives based on their reference points,
marginal utility is estimated for gain and loss territories.

This study compared and analyzed two strategies for the penetration and diffusion of

electric vehicles, the reduction of charging time through development of charging

76



technology and expansion of charging infrastructure. To this end, the estimated
thresholds for charging time and accessibility were compared in the following Table 12.
Only the threshold in the gain region was reported because the focus of this study is to
observe the increase in utility as the level of the attributes are improved. Also, for the
other attributes, when the estimation result of the thresholds exceeded the range of the
attribute levels of the study, then it was assumed that the respondents do not have any
thresholds towards that that attribute. According to the analysis of the effect of
demographic characteristics on thresholds based on Eqg. (6), the residents in non-capital
areas were more sensitive to the increase in accessibility. In other words, the thresholds
for accessibility were lower for residents in non-capital areas than those residing in

capital region.

Table 11. Threshold results

Charging time Accessibility
Threshold_gain 15 minutes 49%
Non-capital residents 1.0631** -
* 1.1267***
Monthly income level - 0.0186
1.2701***

Next, this study employed a hybrid neural network model to as an attempt to improve

the performance of the existing discrete choice models without losing interpretability.
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Therefore, this study combined CNN, which was formulated as the discrete choice model,

and DNN, which fully takes advantage of neural network, using 14 variables to enhance

the performance accuracy of the model. The loss graph and the estimation result is as

follows:
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Figure 12. Loss function graph of hybrid neural network model

Table 12. Hybrid Neural Network Model Results

Variables Mean
Fuel types Diesel -0.0810
LPG -0.1085

Hybrid 0.2228
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Electric 0.2625

Hydrogen 0.0947

Vehicle body type Large 0.2613
SUVv 0.0968

Charging/fueling time -0.0048
Fuel Cost -0.0344
Maximum Distance 0.0170
Accessibility 0.0006
Price -0.2818

The result of the model was highly similar to that of mixed logit model. First, in the
case of fuel types, electric vehicle was the most preferred type followed by hybrid and
gasoline. Diesel, LPG, and hydrogen fuel cell vehicles were shown to be less preferred
than gasoline. The consumers’ preference increases as charging/fueling time, fuel cost
and price of the vehicle decreases, whereas the preference increases when maximum
distance and accessibility increases.

Next, for the Threshold-Hybrid Neural Network model, to check for the best
performance condition, this study tested out different number of hidden layers and
number of epochs. As the linear portion of the model is restricted in adjusting the number

of layers, as it is not fully connected, only the number of layers in the non-linear portion
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of the model was adjusted. The number of epochs applies to the entire model. Refer to

Appendix for the entire set of visual materials.

Table 13. Model Validation

Number of No. of Early Best Training Test
hidden layers epoch stop epoch valid loss Accuracy Accuracy

1 100 6 49.6423 0.7416 0.8000
200 25 62.6436 0.7628 0.7964

300 132 50.6153 0.7416 0.8000

2 100 86 50.8474 0.7516 0.8115
200 199 49.2336 0.7504 0.8100

300 14 57.5333 0.7540 0.7300

3 100 32 59.2954 0.7558 0.7200
200 82 62.29 0.7628 0.7800

300 65 56.2335 0.7504 0.7500

4 100 42 59.2954 0.7558 0.7233
200 97 62.6870 0.7628 0.6800

300 238 57.3057 0.7522 0.7400

5 100 100 57.3449 0.7522 0.7400
200 76 62.6869 0.7628 0.6800

300 8 55.1200 0.7487 0.7600
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100 24 50.6346 0.7416 0.800

200 55 64.0436 0.7628 0.6800

300 57 50.8517 0.7416 0.800

100 21 57.7908 0.7540 0.7300

200 35 62.6870 0.7628 0.6800
52.8519

300 14 9 0.7451 0.7800

In order to choose the best performing model, this study tested the number of layers

from 1 to 7 and number of epochs from 100 to 300. The general pattern of the test

indicates that running the model with 300 epochs generally led to the overfitting of the

model and 200 epochs showed better performance on average, as shown below.

0.75

070

065

0.60 4

0.55

062

0.61

056

0.60

0.59 1

0.58 4

0.57 4

]

T
25

50

75

T T
100 125

T
150

T T
175 200

]

50

T
100

T
150

T
200

T
250

T
300

Figure 13. Comparison of loss function between 3 layers with 200 epochs (left) and 3 layers
with 300 epochs (right)
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Also, as the number of layers increased, the models showed a pattern of being overfit
and the test accuracy turned out to be lower than the training accuracy, suggesting that
using a smaller number of layers was better in terms of performance.

The best performing model was selected based on the Best valid loss and test
accuracy. Additionally, as this study implemented the early stop algorithm to prevent the
overfit of the data, it was also assumed that if the early stop epoch is too early, then the
model has been overfit and was thus rejected. According to the test results, the model
with 2 layers with 200 epochs showed the best performance. Although the test accuracy
was 81% and not the highest among the test sets, the early stop epoch for the model was
199, almost close to 200, the best valid loss value was relatively low compared to other
test sets. For example, the loss graphs of the model with 2 layers and 200 epochs shows a
smooth curve, while the model with 5 layers and 100 epochs show a sharp drop in the
early epochs. Also, considering that the validation loss, number of epoch, and accuracies
of the former model outperformed the latter model, the former was chosen as the analysis

model of this study. The comparison of the two loss graphs is as below.
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Figure 14. Comparison of loss function between 2 layers with 200 epoch (left) and 5 layers
with 100 epoch (right)

Table 14. Threshold-Hybrid Neural Network Model Results

Variables Mean
Diesel -0.2800
LPG 0.1348
Fuel types Hybrid 0.1267
Electric 0.4411
Hydrogen -0.8268
Large 0.1443
Vehicle body type
SUV 0.1122
gain -0.1608
Threshold 14.61 minutes
Charging/fueling time
Loss -0.1608
Threshold 19.76 minutes
Gain -0.2393
Fuel Cost Threshold 1,003 won/10km
Loss -0.2393
Threshold 1,570won/10km
Gain 0.7477
Maximum Distance Threshold 7,686 km
Loss 0.7477
Threshold 5,466 km
Accessibility Gain 1.4124
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Threshold 72%

Loss 1.4124
Threshold 47%
Gain -0.8249
Price Threshold 37.7 million won
Loss -0.8249
Threshold 58.6 million won

*x* ** and * indicates statistical significance at the 1%, 5%, and 10% level

The result of the Threshold-Hybrid Neural Network Model presented slightly
different result that other models. First, in the case of fuel types, all fuel types other than
diesel were shown to be preferred than gasoline vehicles. All other attributes showed the
same direction for both models.

The use of PReLU activation function allows parametric formulation of the model,
allowing the thresholds to be trained on both the gain and loss domain. According to the
results, thresholds existed for all continuous attributes. The threshold for the gain of the
threshold was 14.61 minutes and loss 19.76 minutes, indicating that the consumers do not
experience any changes in utility between approximately 15 minutes to 20 minutes of
charging time, i.e., they will start to feel an increase in their utility when the charging
time decreases below the 15-minute threshold. For accessibility, the threshold for gain
was 72%, meaning that the respondents will feel a change in the utility when the number

of charging stations exceeds 72% of the number of current gas stations and feel loss of
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utility when the level is below 47%. Likewise, to the Threshold Model, it was assumed
that thresholds does not exist for the respondents if the threshold value did not fall within
the logical range of the attribute levels, but in the case of this empirical analysis, all the
threshold levels were within the range of the attribute levels.

Another interesting point to notice here is that this study initially collected the
reference points of each individuals via survey, meaning that they specifically stated their
expected levels of the attributes, which will be referred to as the stated reference point.
Then for Threshold Model, the reference point data was directly used in the model. In the
neural network model, the reference point data is not used, but intuitively, it can be
assumed that the reference point falls within the range of the gain and loss thresholds as
thresholds are dependent on reference points. For purpose of comparison, the unknown
reference point level will be referred to as latent reference point. However, in some cases
according to the results of the neural network model, the stated reference point did not
fall within the range of the thresholds. For example, for charging time, the stated
reference point of the individuals was 9.3 minutes, and the latent reference point is in the
range between 14.61 minutes and 19.76 minutes. This indicates that the reference point or
the standard of the individuals towards the attribute levels differs between the survey data
and the estimated result. Although it cannot be determined whether which is more
accurate in the scope of this study, this adds to one of the benefits of the proposed neural
network model as in can present the range where the latent reference points of the

individuals are located.
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Table 15. Predictive accuracy of the two models

Mixed Logit

Threshold Model

HNNM

T-HNNM

Accuracy 65%

68%

78%

81%

Next, to compare the performance capability of the four models used in the empirical
study, the predictive accuracies of the models are presented in Table 16 above. As in
previous studies, discrete choice models have shown an accuracy in the 60% range (Zhao

et al., 2019). Both hybrid neural networks were superior in terms of predictive accuracy

with 78% and 81% accuracy respectively.

Table 16. Combined results of the estimation models

Mixed Hybrid Threshold
Threshold
Variables Logit (sD) Neural Hybrid Neural
(SD) Network Network
-0.4518™" 0.2838***
Diesel -0.0810 -0.2800
(0.4444) (0.1575)
-0.5495™" -0.4099***
LPG -0.1085 0.1348
(0.0264) (0.1545)
] 0.2551™" 0.5119**
Fuel types  Hybrid 0.2228 0.1267
(0.2264) (0.1460)
) 0.3633"" 0.8599***
Electric 0.2625 0.4411
(0.8412) (0.2470)
-0.6580™" -0.8920***
Hydrogen 0.0947 -0.8268
(0.4793) (0.1614)
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-0.5075 0.2475
Large 0.2613 0.1443
Vehicle body (0.0248) (0.1381)
type -0.1281 0.3086
SUvV 0.0968 0.1122
(0.1984) (0.1142)
-0.2047™
Mean -0.0048 0.1608
(0.0045)
2.3429***
Gain 14.61 minutes
Charging/fue (0.3174)
ling time Threshold 15 minutes - 0.1608
-3.1713***
Loss 19.76 minutes
(0.7904)
Threshold - 0.2393
-0.0621™ 1,003
Mean -0.0344
(0.0882) won/10km
1.1358***
Gain -0.2393
Fuel Cost (0.0855)
Threshold - 1,570won/10km
0.9216***
Loss 0.7477
(0.0824)
1,400 won /
Threshold 7,686 km
10 km
0.0792™"
Mean -0.7477
(0.1243)
Gai 2201 0.0170 5,466 k
Maximum an : , m
ximd (0.5085)
Distance
Threshold 1.4124
2.3552%***
Loss 72%
(0.4475)
Threshold -1.4124
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0.0182"

Mean 0.0006 47%
(0.0065)
2.4556%***
Gain 0.8249
o (0.3858)
Accessibility
37.7 million
Threshold 49%
won
-2.6211***
Loss -0.8249
(0.3649)
58.6 million
Threshold 12%
won
-0.5798™"
Mean -0.2800
(0.3832)
) 1.7587***
Gain -0.2818 0.1348
Price (0.0874)
Threshold 33 mil. won 0.1267
-1.7809***
Loss 0.4411
(0.0730)
Threshold -0.8268

*x* ** and * indicates statistical significance at the 1%, 5%, and 10% level

4.6 Simulation

As aforementioned, the purpose of this study is to compare the performance of the
proposed models in the context of the two potential strategies the government can
implement to achieve the goal of electric vehicle penetration rate. The Korean
government has also joined the global rally of decreasing the level of emission in the
transportation sector and imposed key regulations. The effort has continued in the last 10

years, but most notably, in February 2021, the government announced the “4th Basic Plan
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for Environment Friendly Vehicles.” In this plan, the government revealed its ambitious
goals to reduce the GHG emission level in the transportation sector by 24% and achieve
the rollout of 7.85 million alternative fuel vehicles (AFVs) by the year 2030. However,
there are many criticisms towards the effort and many doubts. The Korean government
has invested nearly 4 trillion won but has failed to achieve its target goal. Among the 4
trillion won, most of the budget has been allocated to purchase subsidies, surmounting to
82% and 18% for subsidies for installing charging stations. But the result fell far short
from the policy target. For example, the target rollout was 65,000 EVs in the year 2020,
but the actual rollout was only 48.2% of the target at 31,000 vehicles. Therefore, although
the government plans to deviate the budget of purchase subsidies to other areas, many
specialists still advocate that there is a need to focus on deviating from the initial course
of solely providing cash in exchange to vehicle purchases and focus on the fundamentals
on how to persuade the consumers to purchase environment-friendly vehicles. The aspect
that has been much of the issue regarding the use of EVs is the condition and the
environment of charging the vehicles. Most of the complaints from the use of EVs are
related to charging, notably the duration of the time it takes to charge, the queue in line,
and the lack of infrastructure.

Therefore, based on the assumption that the budget is not of the utmost importance in
the diffusion of EVs, this study has set up two scenarios to analyze the effects of
thresholds to compare the effects of two aspects of charging infrastructure of EVs. The

two strategies are 1) R&D investment to decrease charging time and 2) expansion of
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charging infrastructure. To satisfy our research purpose, this paper has set two scenarios

accordingly as below to analyze the market share of electric vehicles according to the

change in the attribute levels of charging time and accessibility. The baseline scenario

was set to current levels of the attributes

The scenarios to be examined in this study is as follows:

Scenario 1: the average charging time reaches 10 minutes by the year 20

25 and 5 minutes by the year 2030

Scenario 2: The accessibility of the charging infrastructure reaches 75%

by the year 2025, and 150% by the year 2030.

Table 17. Baseline scenario

Attributes Gasoline Diesel LPG Hybrid EV FCEV
Diesel 0 1 0 0 0 0
LPG 0 0 1 0 0 0
Hybrid 0 0 0 1 0 0
Electric 0 0 0 0 1 0
Hydrogen 0 0 0 0 0 1
Sedan 1 1 1 1 1 1
SUvV 0 0 0 0 0 0
Fueling time (minutes) 5 5 5 5 30 10
Fuel Cost (Won/10km) 1,199 862.69 866.06 865.94 451.27 825.62

90



Maximum Distance

800 800 700 800 600 400
(km)
Accessibility 100 100 17.2 100 10.8 0.08
Price 2,504 2,563 2,239 2,866 3,489 5,084

Table 18. Baseline probability

Alternative Choice Probability
Gasoline 27.43%
Diesel 22.57%
LPG 10.08%
Hybrid 29.12%
EV 8.39%
FCEV 2.40%

First, Figure 20 and Figure 21 represent the market share of each fuel type as the level
of charging time and accessibility of charging stations improves by the year 2030. As can
be witnessed, in the case of charging time, the market share of EV immediately starts to
increase as soon as charging time starts to decrease. On the other hand, in the case of
accessibility, the market share of EV only increases by a slight amount over the span of

the decade.
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Market Share (%)
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Figure 15. Market share by fuel type with the development of charging time (Mixed
Logit Model)
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Figure 16. Market share by fuel type with the development of accessibility (Mixed Logit
Model)
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However, this does not necessarily mean that the mixed logit model is at a
disadvantage, as it reflects the strong preference of consumers for shorter charging time.
This would mean that if the duration does indeed fall to 5-minute level, the market share

of electric vehicles would drastically increase.

Comparison of Chargetime and Access

30.0%
25.0%
20.0%
15.0%
10.0%

5.0%

0.0%
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

e==FV_Chargetime EV_Access
Figure 17. Comparison of market share between charge time and accessibility
(Mixed Logit Model)
However, the research question of this study focuses on whether this perfectly reflects
a real-life scenario that is likely to be the case. For example, would consumers really not
experience a change in their utility when the accessibility to charging stations improve by
nearly a 10-fold over the decade? Although mixed logit model is considered to be a

powerful tool to forecast future market share, there are still critics that point out that the
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model can sometimes be overestimated according to the survey data. Therefore, the

purpose of this research was to formulate a behavioral model that implements thresholds
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Figure 18. Market share by fuel type with the development of charging time
(Threshold Model)
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Figure 19. Market share by fuel type with the development of accessibility
(Threshold Model)
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Figure 23 and Figure 24 each shows the market share of each fuel type according to
the decrease in charging time of electric vehicles and increase in level of accessibility.
First, in the case of Figure 9, it can be witnessed that the level of charging time decreases
to 20 minutes by the year 2022 to surpass the market share of LPG vehicles. The market
share continues to increase as charging time decreases, taking the most market share from
hybrid vehicles. When charging time becomes 5 minutes with rapid advancement in
technology by the year 2030, the market share of electric vehicles becomes approximately
18%.

Next, in the case of Figure 10, the level of accessibility to charging infrastructure
expands beyond 50% after the year 2026, surpassing the market share of LPG vehicles.
The market share of electric vehicles continues to rapidly increase, and when the level of
charging infrastructure equals the number of gas stations in the year 2030, the market
share of electric vehicles reaches approximately 15%. Combining the results of the two
scenario analyses, one notable result is that the growth rate of the electric vehicle is
relatively constant for the decrease in charging time, while the growth rate of the market
share according to the expansion of accessibility starts to rapidly increase from the year
2027 when the level of accessibility exceeds 60% under the influence of thresholds.

Additionally, when the two results are compared as in Figure 25, interestingly enough,
the threshold for accessibility comes into effect and the two lines cross each other. This

indicates that in the short-term perspective, the decrease in charging time attributed to
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faster market penetration than the expansion of charging stations. However, in the long-
term perspective, the market share of electric vehicles between the two scenarios grows
further apart, where accessibility exercises more impact to market penetration closing in

on the government target when the level of accessibility reaches 250%.
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Figure 20. Comparison of long-term simulation results of accessibility and charge time
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Chapter 5. Conclusion

5.1 Concluding Remarks and Contribution

This study proposed a new hybrid neural networks model that incorporates behavioral
aspects neural network model. In order to achieve the research goal, this study first
explored the behavioral dimension of consumers and formulated a discrete choice model
that includes threshold effect. Then, with the recent hybrid models in the field of neural
networks, this study incorporated the concept of thresholds as an additional convolutional

layer in a model that incorporates CNN as linear and DNN as non-linear parts.

Behavioral Models
(Compensatory and Non-compensatory)

"""""" { Machine learning models ‘

Explore different aspect of decision rule ‘ ‘ Formulate a hybrid neural network model ‘

.y

Formulate a threshold-hybrid neural network model to bridge the gap

Figure 21. The concept of the model of this study

This study implemented the concept of just noticeable difference or threshold into
discrete choice models to analyze consumer preference and simulate future market share

of EVs. This is not the first attempt, but previous studies have only examined the effect of
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thresholds on price related attributes or failed to fully consider the heterogeneity in
consumers. This study advanced the threshold model by incorporating thresholds for all
attributes for all individuals, estimated in the manner of hierarchical Bayesian estimation
method. This allowed the model to draw from the distribution to estimate the precise
threshold values for all attributes. The results indicated that although thresholds did not
exist for all attributes, thresholds that were estimated provided fruitful implications to
understanding the preference structure of the individuals. Namely, thresholds existed for
both charging time and accessibility attributes, which was the focus of the empirical
study, indicating that the utility of the consumers increased after a shorter range of
improvements in the levels of charging time attribute, while the utility of the consumers
increased in the longer term for improvements in accessibility.

Secondly, this study achieved the research goal of incorporating the concept of
threshold into the existing hybrid neural network models as an additional convolutional
layer. Although there would have been better ways to go about it, such as incorporating
thresholds as conditions for convolution of the filters, the study still was successful in
training the data to locate the threshold points of the data. The results of the Threshold-
Hybrid Neural Network model generally performed better than the discrete choice models,
with higher predictive accuracy.

The limitation of this study is as follows. According to the previous literature on
choice modelling, it is recommended to use the status quo or the no-choice alternative in

the analysis is highly important for multiple reasons, one of them being whether there is
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status-quo bias, which is the tendency of a decision-making to favor a previously chosen
alternative more than they should have, had it not been chosen in the past (Maniquet &
Nosratabadi, 2022). Therefore, this study received responses to the experiment as a 2-part
response: First the respondents choose an alternative along with the no-choice alternative,
and secondly, the no-choice alternative is excluded from the choice set, and the
respondents were asked to choose one of the other four alternatives. Instead of using the
responses that include no-choice alternative, this study used the data that excludes the
alternative, as including the data caused problems in relation to the interpretation of the

no-choice alternative in the neural network models.
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Appendix 1: Model Validation
Layers=1
Epoch = 100

Epoch 6: Train Loss: 0.5907, Train Acc: 0.7416, Valid Loss: 0.4964, Valid Acc: 0.8
Save model, Best valid loss: 49.64233794808388
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Figure Appendix 1.1. Loss function for 1 layer, 100 epochs
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Figure Appendix 1.2. Early Stiop for 1 layer, 100 epochs
Layers =1
Epoch =200
Epoch 25: Train Loss: 0.5643, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc: .68
Save model, Best valid loss: 62.64360550045967
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Figure Appendix 1.3. Loss function for 1 layer, 200 epochs
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Figure Appendix 1.4. Early Stop for 1 layer, 200 epochs
Layers =1
Epoch =300
Epoch 132: Train Loss: 0.5748, Train Acc: 0.7416, Valid Loss: 0.5062, Valid Acc: .8
Save model, Best valid loss: 50.61527119576931

109

S Eoa keidT



05825 1

05800 1

05775

05750 1

05725 1

05700 1

05675 1

05650 -

T T T T
o 50 100 150 200 250

300
Figure Appendix 1.5. Loss function for 1 layer, 300 epochs
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Figure Appendix 1.6. Early Stop for 1 layer, 300 epochs
Layers =2
Epoch =100

Epoch 86: Train Loss: 0.5764, Train Acc: 0.7416, Valid Loss: 0.5085, Valid Acc: 0.8
Save model, Best valid loss: 50.84741874039173
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Figure Appendix 1.7. Loss function for 2 layer, 100 epochs
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Figure Appendix 1.8. Early Stop for 2 layer, 100 epochs

Layers =2
Epoch =200
Epoch 199: Train Loss: 0.5692, Train Acc: 0.7504, Valid Loss: 0.5623, Valid Acc:

0.75
111

A&l & i

—



Save model, Best valid loss: 56.233616918325424
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Figure Appendix 1.9. Loss function for2 layer, 200 epochs

070 A

(.68 4

066 1

(64 4

062 1

060 +

(.58 4

=== Be:ct

(.56 1

T T T T
0 5 50 =] 00 125 150 175 200

Figure Appendix 1.10. Early Stop for 2 layer, 200 epochs
Layers =2
Epoch =300
Epoch 14: Train Loss: 0.565, Train Acc: 0.754, Valid Loss: 0.5753, Valid Acc: 0.73

Save model, Best valid loss: 57.53332984447479
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Figure Appendix 1.11. Loss function for 2 layer, 300 epochs
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Figure Appendix 1.12. Early Stop for 2 layer, 300 epochs
Layers =3
Epoch =100

Epoch 32: Train Loss: 0.5551, Train Acc: 0.7558, Valid Loss: 0.593, Valid Acc: 0.72

Save model, Best valid loss: 59.29541540145874
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Figure Appendix 1.13. Loss function for 3 layer, 100 epochs
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Figure Appendix 1.14. Early Stop for 3 layer, 100 epochs

Layers =3
Epoch =200
Epoch 77: Train Loss: 0.5669, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc:

0.68
114

A&l & i

—



Save model, Best valid loss: 62.68702256679535
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Figure Appendix 1.15. Loss function for 3 layer, 200 epochs
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Figure Appendix 1.16. Early Stop for 3 layer, 200 epochs
Layers =3
Epoch =300
Epoch 65: Train Loss: 0.5566, Train Acc: 0.7504, Valid Loss: 0.5623, Valid Acc:

0.75
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Save model, Best valid loss: 56.23351112008095
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Figure Appendix 1.17. Loss function for 3 layer, 300 epochs
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Figure Appendix 1.18. Early Stop for 3 layer, 300 epochs
Layers =4
Epoch =100
Epoch 42: Train Loss: 0.5623, Train Acc: 0.7558, Valid Loss: 0.593, Valid Acc: 0.72

Save model, Best valid loss: 59.295369386672974
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Figure Appendix 1.19. Loss function for 4 layer, 100 epochs
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Figure Appendix 1.20. Early Stop for 4 layer, 100 epochs

Layers =4
Epoch =200
Epoch 97: Train Loss: 0.5674, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc:
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Save model, Best valid loss: 62.68706953525543
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Figure Appendix 1.21. Loss function for 4 layer, 200 epochs
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Figure Appendix 1.22. Early Stop for 4 layer, 200 epochs

Layers =4

Epoch =300

Epoch 238: Train Loss: 0.5564, Train Acc: 0.7522, Valid Loss: 0.5731, Valid Acc:

0.74
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Save model, Best valid loss: 57.305710792541504
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Figure Appendix 1.23. Loss function for 4 layer, 300 epochs
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Figure Appendix 1.24. Early Stop for 4 layer, 300 epochs

Layers =35

Epoch =100

Epoch 100: Train Loss: 0.5644, Train Acc: 0.7522, Valid Loss: 0.5734, Valid Acc:

0.74
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Save model, Best valid loss: 57.34490090608597
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Figure Appendix 1.25. Loss function for 5 layer, 100 epochs
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Figure Appendix 1.26. Early Stop for 5 layer, 100 epochs
Layers =35
Epoch =200
Epoch 76: Train Loss: 0.5702, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc:

0.68
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Save model, Best valid loss: 62.686986804008484
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Figure Appendix 1.27. Loss function for 5 layer, 200 epochs
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Figure Appendix 1.28. Early Stop for 5 layer, 200 epochs
Layers =35
Epoch =300
Epoch 8: Train Loss: 0.5605, Train Acc: 0.7487, Valid Loss: 0.5512, Valid Acc: 0.76
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Save model, Best valid loss: 55.12002617120743
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Figure Appendix 1.29. Loss function for 5 layer, 300 epochs
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Figure Appendix 1.25. Early Stop for 5 layer, 300 epochs

Layers =6
Epoch =100
Epoch 24: Train Loss: 0.5712, Train Acc: 0.7416, Valid Loss: 0.5063, Valid Acc: 0.8
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Save model, Best valid loss: 50.63462734222412
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Figure Appendix 1.31. Loss function for 6 layer, 100 epochs
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Figure Appendix 1.32. Early Stop for 6 layer, 100 epochs
Layers =6
Epoch =200
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Epoch 55: Train Loss: 0.5483, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc:
0.68
Save model, Best valid loss: 64.04361641407013
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Figure Appendix 1.33. Loss function for 6 layer, 200 epochs
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Figure Appendix 1.34. Early Stop for 6 layer, 200 epochs
Layer =6
Epoch =300
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Epoch 57: Train Loss: 0.5699, Train Acc: 0.7416, Valid Loss: 0.5085, Valid Acc: 0.8
Save model, Best valid loss: 50.851761773228645
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Figure Appendix 1.35. Loss function for 6 layer, 300 epochs
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Figure Appendix 1.36. Early Stop for 6 layer, 300 epochs

Layer =7
Epoch =100
125

s B ke

—



Epoch 21: Train Loss: 0.5588, Train Acc: 0.754, Valid Loss: 0.5779, Valid Acc: 0.73
Save model, Best valid loss: 57.79086282849312
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Figure Appendix 1.37. Loss function for 7 layer, 100 epochs

0620 - PRy
0615 -
0610
0.605 -
0600 -
0.595 -
0590 -
0.585 -

0580 -

= 1 ———

Figure Appendix 1.38. Early Stop for 7 layer, 100 epochs
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Epoch 35: Train Loss: 0.567, Train Acc: 0.7628, Valid Loss: 0.7964, Valid Acc: 0.68
Save model, Best valid loss: 62.68703269958496
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Figure Appendix 1.39. Loss function for 7 layer, 200 epochs
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Figure Appendix 1.40. Early Stop for 7 layer, 200 epochs
Layer =7

Epoch =300
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Epoch 14: Train Loss: 0.573, Train Acc: 0.7451, Valid Loss: 0.5285, Valid Acc: 0.78
Save model, Best valid loss: 52.85199749469757
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Figure Appendix 1.41. Loss function for 7 layer, 300 epochs
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Figure Appendix 1.42. Early Stop for 7 layer, 300 epochs
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