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Abstract 

 
Self-supervised learning achieved remarkable advancement 

comparable to supervised learning in image classification. However, 

its achievement is confined to test samples independently and 

identically distributed (IID) with a training dataset. As in supervised 

learning models, poor robustness to out-of-distribution (OOD) 

distortions still exists in self-supervised learning models. On the 

contrary, humans are robust to OOD distortions, and it is attributed to 

their shape-oriented representation with lower reliance on texture. 

Several previous methods were suggested to induce the image 

classifiers to concentrate more on shape by augmenting training 

images with modified textures. However, they focused on supervised 

learning settings rather than self-supervised ones and brought a 

decreased accuracy on IID test samples as a trade-off. Thus, this 

paper introduces shape-emphasizing augmentation, a novel data 

augmentation scheme for self-supervised learning. This method 

highlights the object’s shape in an image by applying random 

augmentations independently to the foreground and background of the 

object. The self-supervised learning model learns more shape-based 

representation with the proposed method. Extensive experiments 

present its effectiveness in improving robustness to OOD distortions 

without sacrificing the performance on IID test samples. 

 

Keyword : Self-supervised learning, Texture bias, Shape-based 

representation, Robustness to out-of-distribution distortions 

Student Number : 2021-24432 
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Chapter 1. Introduction 
 

 

1.1. Purpose of Research 
 

Since the first advent of a convolutional neural network (CNN)-

based approach, i.e., AlexNet (Krizhevsky et al., 2012), in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

(Russakovsky et al., 2015), neural networks with deep layers opened 

a new era in object recognition. With the consistent progress in the 

deep learning algorithm, ResNet (He et al., 2016) eventually surpassed 

the performance of humans in the challenge. 

This brilliant advancement of the deep learning model in the object 

recognition task was accomplished in a supervised manner, requiring 

a bunch of labeled data per single instance to learn visual 

representation. However, in contrast to supervised learning, self-

supervised learning does not require label information for learning 

visual representation. Accordingly, it has recently attracted many 

researchers’ interest due to its efficiency in that expensive and time-

consuming manual data annotation is unnecessary (Doersch et al., 

2015; Pathak et al., 2016; Larsson et al., 2017; Gidaris et al., 2018; 

Chen et al., 2020; He et al., 2020; Grill et al., 2020). 

Instead of label supervision, self-supervised learning methods 

learn visual representations by solving auxiliary pretext tasks 

predicting pseudo-labels inherently derived from training samples 

(Doersch et al., 2015; Pathak et al., 2016; Larsson et al., 2017; Gidaris  
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Figure 1.1 The example of shape-emphasizing augmentation. (a) 

Image sample of ‘wallaby’ in ImageNet dataset. (b) Same image 

sample that shape-emphasizing augmentation is applied. 
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et al., 2018) or by contrastively discriminating instances with using the 

concept of positive and negative pairs augmented from training images 

(Chen et al., 2020; He et al., 2020; Grill et al., 2020). 

Along with the remarkable algorithmic development in recent 

years, self-supervised learning models, such as SimCLR (Chen et al., 

2020), have shown comparable performance to supervised learning 

models in the classification accuracy on test samples independently 

and identically distributed (IID) with the training dataset. 

However, despite the stark difference in the learning mechanism 

between supervised and self-supervised learning, Geirhos et al. (2020) 

empirically showed that self-supervised learning models exhibit 

similar properties to supervised learning models in some aspects. First, 

the image classification models based on CNN architecture heavily 

relied on texture information in images when predicting their labels, 

regardless of supervised or self-supervised learning models. Besides, 

they were vulnerable to classifying images with out-of-distribution 

(OOD) distortions, e.g., modified style or texture and added synthetic 

noises. 

In this regard, the current image classification models tend to learn 

a shallow correlation between the superficial attributes in an image 

and its label as a shortcut to classify images rather than understanding 

more complex visual concepts inherent in objects of the images (Beery 

et al., 2018; Geirhos et al., 2020). Beery et al. (2018) empirically 

showed that the classification model correctly recognizes cows in a 

common context, cows on green grass, while it fails to classify cows 

on the beach or seaside.  
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More specifically, Geirhos et al. (2019) evaluated the label 

predictions of the CNN models trained on ImageNet (Deng et al., 2009) 

and human observers on image samples whose texture and shape cues 

conflict with each other, e.g., an elephant's skin texture covers an 

image of a cat. They measured the ratio of how many times classifiers, 

including human observers, correctly predicted the image's label by 

shape cue out of the total number of their correct predictions to either 

shape or texture cue. In this experiment, ImageNet-trained CNN 

models showed a high frequency of classifying images by local texture 

cues. In contrast, humans predicted image labels by the global shape 

features of the objects. Geirhos et al. (2019) also insisted that training 

these CNN models to learn more shape-oriented representation helps 

the improvement of their robustness to OOD distortions. 

In this context, previous works (Geirhos et al., 2019; Hermann et 

al., 2020; Sauer & Geiger, 2021) took an approach to reduce the image 

classification model's high dependency on local texture cues to 

encourage them to concentrate more on global shape features of the 

objects. They proposed various methods of removing existing texture 

cues in the original training samples by replacing them with modified 

ones. Geirhos et al. (2019) changed the texture in ImageNet samples 

to the texture of artistic paintings. Sauer and Geiger (2021) generated 

image samples where the texture in the foreground and background of 

the object are independently modified to the texture of other ImageNet 

object classes, respectively. Hermann et al. (2020) analyzed the effect 

of data augmentations changing the appearance of images in mitigating 

the classifier's reliance on texture information. 
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Though these methods substantially induced the classifier to focus 

more on the object's global shape features rather than local texture 

cues in images, however, they accompanied decreased classification 

accuracy on IID test samples as a trade-off (Geirhos et al., 2019; 

Hermann et al., 2020; Sauer & Geiger, 2021). Moreover, these 

previous academic efforts to mitigate a high degree of texture bias in 

image classification models have primarily focused on the supervised 

learning setting, not the self-supervised learning one. 

Hence, this paper casts a research question on how a self-

supervised learning model can be trained to be more robust to OOD 

distortions by focusing more on the object’s shape rather than local 

texture without sacrificing accuracy on IID samples. 

 

1.2. Research Content 
 

As shown in Figure 1.1, this work introduces a simple yet effective 

novel data augmentation method, shape-emphasizing augmentation. 

The proposed method encourages the self-supervised contrastive 

learning model to learn shape-based representation for improving the 

model's robustness to OOD distortions without sacrificing its 

classification accuracy on IID test samples. ① 

The key idea of this method is that a set of random data 

augmentations is independently applied to the object's foreground and 

background, which are partitioned by the object's shape mask 

 
① A preliminary version of this work was presented at CVPR 2022 workshop 

on Human-Centered Intelligent Services: Safe and Trustworthy. 
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generated from a pre-trained salient object detection model. 

Consequently, the object's shape in the image becomes emphasized by 

the disparately augmented texture on each side of the shape contour.  

Shape-emphasizing augmentation can be applied to the self-

supervised contrastive learning models by replacing their existing data 

augmentation processes for generating multi-viewed samples from 

each image in a mini-batch. Then, the model learns shape-based 

representation by contrastively discriminating the emphasized shape 

features common in positive samples from those in negative samples. 

Consequently, the proposed method induces the model to rely less on 

local texture cues and refer more to the global shape feature. 

Earlier works (Hermann et al., 2020; Geirhos et al., 2020; Geirhos 

et al., 2021) revealed that SimCLR (Chen et al., 2020) has outstanding 

robustness to OOD distortions over other self-supervised learning 

models due to its particular configuration of data augmentations. This 

work delves into the more orthogonal add-on effect of shape-

emphasizing augmentation on the self-supervised contrastive learning 

model by applying it to SimCLR (Chen et al., 2020) with the same kinds 

and hyperparameters of data augmentations of the vanilla model.  

With plenty of experiments based on SimCLR (Chen et al., 2020) 

and another base model, this work demonstrates the effects of shape-

emphasizing augmentation in encouraging the self-supervised 

contrastive learning model to learn shape-based representation and 

improving the model's robustness to OOD distortion without losing its 

classification accuracy on IID test samples. 
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1.3. Outline of Research 
 

This section delineates the overall outline of this paper. 

Chapter 1 introduces this paper's research idea, goal, background, 

and a brief blueprint regarding the proposed method. 

Chapter 2 presents previous works related to this paper. This part 

explains the preceding research stream to deliver the motivation and 

background of this work. It also narrows vague concepts within 

equivocal expressions down to the specific viewpoint that this paper 

targets. 

Chapter 3 explains the details of shape-emphasizing augmentation 

and its application process to a self-supervised contrastive learning 

model. This chapter also provides the experiment results 

demonstrating the proposed method's effectiveness and compares it 

to other baselines. 

Chapter 4 provides the experiment results indicating shape-

emphasizing augmentation's effect on encouraging a self-supervised 

contrastive learning model to learn shape-based representation. 

Finally, Chapter 5 concludes this paper's research by summarizing 

the experiment results, describing the limitations of this work, 

delineating some discussion points, and providing the direction of 

future research. 
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Chapter 2. Related Works 
 

 

2.1. Self-supervised contrastive learning 
 

Self-supervised learning does not require label information when 

learning visual representation from an image dataset. There are two 

types of self-supervised approaches to substitute label supervision: 

auxiliary pretext tasks and contrastive learning (Albelwi, 2022). 

Earlier approaches (Doersch et al., 2015; Pathak et al., 2016; 

Larsson et al., 2017; Gidaris et al., 2018) utilized auxiliary pretext 

tasks to train a model in a self-supervised manner. These tasks have 

self-derived pseudo-labels from the data, and the model learns visual 

representation by solving these tasks. 

Doersch et al. (2015) made the model to predict the relative 

positions of each sliced patch of an image from the center of the image. 

In this case, relative positions around the center of the image are 

pseudo-labels. Gidaris et al. (2018) suggested another pretext task in 

which a model predicts the degree of rotation of the rotated image 

from its original degree. The degree of rotation, e.g., 0, 90, 180, or 

270 degrees, works as a pseudo-label in this task. Pathak et al. (2016) 

defined an inpainting task in which a model with an encoder-decoder 

architecture generates an omitted part of an image when given the 

whole image with the missing part. They took the missing part from 

the original image as a pseudo-label and used reconstruction loss and 

adversarial loss. Also, Larsson et al. (2017) introduced a colorization 
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task. To solve this task, a model restores each pixel's color 

information from the grayscaled image. These auxiliary pretext tasks 

were defined differently by each research's inductive bias regarding 

learning visual representation (Albelwi, 2022). 

However, in recent years, the approach based on contrastive 

learning has come to the front of self-supervised learning (Chen et al., 

2020; He et al., 2020; Grill et al., 2020). This approach contrastively 

discriminates an instance from others by maximizing the similarity 

between positive samples augmented from the same image and 

minimizing the similarity with negative samples augmented from other 

images. 

Chen et al. (2020) proposed SimCLR, a simple framework for self-

supervised contrastive learning. SimCLR is trained by NT-Xent loss 

(Sohn, 2016) which pulls the representations of positive samples 

augmented from the same image closer in an embedding space and 

pushes the representations of positive samples away from those of 

negative samples augmented from other remaining images of a mini-

batch. SimCLR adopts a projection head to give a nonlinear 

transformation to representation from the backbone encoder. He et al. 

(2020) suggested another method called MoCo, utilizing a dynamic 

dictionary built as a queue containing plenty of key embeddings. The 

dictionary is updated as a queue, which means the oldest key 

embeddings are dequeued when new embeddings from each mini-

batch are newly enqueued. A contrastive loss between a query 

embedding from the backbone encoder and key embeddings from a 

momentum encoder is calculated by utilizing InfoNCE loss (Oord et al., 
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2018). Only the backbone encoder is updated by backpropagation of 

the contrastive loss. The weights of the momentum encoder are 

updated by the exponential moving average of those of the backbone 

encoder. 

Grill et al. (2020) presented a slightly different method called 

BYOL, a self-supervised contrastive learning method without negative 

samples. BYOL utilizes only two positive samples augmented from the 

same original image. Each sample is fed to an online network and a 

target network, respectively. Then, the mean square error between 

each network’s final representation is calculated as a loss. Only the 

online network is updated with it. The weights of the target network 

are updated by the exponential moving average of those of the online 

network. 

The previous works (Geirhos et al., 2020; Geirhos et al., 2021) 

provided the experiment results about the robustness of self-

supervised learning models to OOD distortions, and SimCLR (Chen et 

al., 2020) showed its superiority over other self-supervised learning 

models. Hermann et al. (2020) and Geirhos et al. (2021) analyzed that 

the robustness of SimCLR came from its data augmentations utilized 

for generating multi-viewed samples. SimCLR (Chen et al., 2020) is 

set as the base framework of self-supervised contrastive learning in 

this work. Shape-emphasizing augmentation utilizes the same kinds of 

augmentations and its hyperparameter setting of the vanilla model to 

investigate the orthogonal effect of the proposed method while 

preventing the influence of data augmentations itself. 
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2.2. Data augmentation for improving generalization 
 

As claimed in earlier works (Chen et al., 2020; Hermann et al., 

2020; Geirhos et al., 2020; Geirhos et al., 2021), data augmentation 

took a critical role in the self-supervised contrastive learning model’s 

generalization on both IID and OOD samples. 

Unlike other approaches for improving a model’s generalization on 

data samples unseen during training, such as dropout (Srivastava et al., 

2014), batch normalization (Ioffe & Szegedy, 2015), transfer learning 

(Yosinski et al., 2014), and pre-training (Erhan et al., 2010), data 

augmentation provides a data-space solution dealing with a training 

dataset as the root of the problem (Shorten & Khoshgoftaar, 2019). 

Shorten and Khoshgoftaar (2019) categorized various approaches 

to image data augmentation into two broad contexts: basic image 

manipulation without utilizing deep learning models and other 

approaches based on deep learning models. 

Basic image manipulations are grouped into subgroups (Shorten & 

Khoshgoftaar, 2019). The first one is geometric transformations. A 

flipping augmentation flips an image by a horizontal or vertical axis. A 

cropping augmentation crops the center of an image or the random 

position of an image with a specific size. A rotation augmentation 

rotates an image to the right or left side with a range of degrees from 

1 to 359. A translation augmentation pushes an image left, right, up, or 

down in the fixed view frame. Shifting an image causes the empty part 

in the image, and this part is filled with values of 0, 255, random 

numbers, or gaussian noise. 
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Next, the color space transformations modify the value of RGB 

color channels in an image data, e.g., isolating the image data by each 

color channel or adjusting the image's brightness by changing pixel 

value in RGB channels (Shorten & Khoshgoftaar, 2019). There are 

image processing functions with these color space transformations, 

e.g., color jittering that randomly alters an image's brightness, contrast, 

saturation, and hue and gray scaling that converts the RGB color image 

to grayscale. They are widely used in self-supervised contrastive 

learning models (Chen et al., 2020; He et al., 2020; Grill et al., 2020). 

There are also manipulation methods utilizing kernel filters. The 

kernel filter with a specific 2-dimensional size modifies an image by 

sliding across the image. For instance, the Gaussian blur filter is 

utilized in self-supervised contrastive learning models (Chen et al., 

2020; Grill et al., 2020) to blur the image. 

Explicitly erasing a randomly selected part in an image is another 

research stream in image data augmentation (DeVries & Taylor, 2017; 

Zhong et al., 2020). Their approaches were motivated by dropout 

(Srivastava et al., 2014), which stochastically paused the neural 

activations in each layer of CNN. Instead, they discarded the value of 

a randomly selected rectangular or square part in an input image and 

filled it with zero or random values. 

Mixing up two randomly sampled data in a mini-batch is another 

data augmentation approach (Zhang et al., 2018; Yun et al., 2019). 

Zhang et al. (2018) proposed a method called MixUp, linearly 

interpolating two randomly selected images from a mini-batch with the 

combination ratio sampled from a beta distribution. The labels of 
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images are also mixed by following the ratio. Yun et al. (2019) 

suggested another mixup strategy called CutMix. CutMix pastes the 

patch cropped from an image on another image. Both images are 

randomly chosen from a mini-batch. The labels of two images, i.e., the 

image where a patch was cropped and another image where the patch 

was pasted, are mixed by following the ratio of the patch's area to the 

whole image's area. 

On the other hand, deep learning models are also employed as an 

effective tool to augment image data. 

Gatys et al. (2016) introduced neural style transfer transferring a 

specific image's style to another image with maintaining its original 

contents. Geirhos et al. (2019) generated additional training samples 

called stylized-ImageNet, where the styles of artistic paintings are 

transferred to the original ImageNet samples by utilizing the neural 

style transfer (Gatys et al., 2016). They also proposed to train the 

image classification model jointly on the original ImageNet samples 

and stylized-ImageNet samples to improve the model's robustness to 

OOD distortions. 

Sauer and Geiger (2021) suggested the counterfactual generative 

network, which utilizes BigGAN (Brock et al., 2018) as a base 

generative model to create counterfactual images where the texture 

in the foreground and background of the object are independently 

generated as the texture of other object classes in ImageNet, 

respectively. For instance, a counterfactual image can consist of an 

ostrich's shape, the strawberry's foreground texture, and the water's 

background. They suggested utilizing these counterfactual images as 
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the additional training samples with the original ImageNet samples to 

train the classifier to be invariant to the specific element in an image. 

The concept of meta-learning is also utilized to optimize the best 

configuration of data augmentations. AutoAugment (Cubuk et al., 2019) 

and RandAugment (Cubuk et al., 2020) are approaches to automatically 

find an effective data augmentation policy for a target dataset. 

AutoAugment (Cubuk et al., 2019) leveraged reinforcement learning 

as a search algorithm to find the best composition and sequences of 

image processing functions with the optimal search of probabilities and 

magnitude of data augmentations. RandAugment (Cubuk et al., 2020) 

suggested the practical version of AutoAugment (Cubuk et al., 2019) 

by simplifying the search space, i.e., optimizing a single distortion 

magnitude and setting the probability of each image processing 

function to uniform. RandAugment (Cubuk et al., 2020) exhibited 

higher efficiency than AutoAugment (Cubuk et al., 2019) in terms of 

computational expense while achieving comparable or better 

performance.  

In this paper, shape-emphasizing augmentation utilizes the same 

data augmentations with its base self-supervised contrastive learning 

model to observe the pure effect of the proposed method. For example, 

the same augmentation types and hyperparameters in the vanilla model 

are utilized when the proposed method is applied to SimCLR (Chen et 

al., 2020). Hence, the introduced method in this paper is primarily 

based on geometric transformations, color space transformations, and 

kernel filters, which are prevalently leveraged in self-supervised 

contrastive learning models. 
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2.3. Improving shape bias for robustness to distortions 
 

Humans recognize and distinguish a particular object from others, 

even if they do not know how to call them. It indicates that the label 

with which people call the object may not be necessary for object 

recognition in human vision. Coincidentally, self-supervised 

contrastive learning models (He et al., 2020; Chen et al., 2020; Grill et 

al., 2020) also aim to learn visual representations without labels. This 

learning framework got a burgeoning interest by alleviating the 

inefficiency in preparing the labeled dataset necessary for the 

conventional supervised learning framework. It also achieved 

remarkable accomplishments in object recognition in recent years. 

However, the previous works (Geirhos et al., 2020; Geirhos et al., 

2021) empirically showed that self-supervised contrastive learning 

models still showed many analogous properties with supervised 

learning models in generalization on OOD distortions while revealing a 

striking difference from humans. Specifically, they reported the 

experiment results showing that the supervised and self-supervised 

contrastive learning models have a high degree of texture bias and 

vulnerability to OOD distortions, unlike human observers. 

Geirhos et al. (2019) argued that the distinct robustness of humans 

to OOD distortions comes from their shape-oriented representation, 

compared to the image classification models heavily depending on 

local texture cues in images regardless of supervised or self-

supervised contrastive learning models.  

In this regard, Geirhos et al. (2019) measured each classifier's 
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degree of dependence on one of the features between the object's 

shape and local texture cues when classifying images by evaluating 

the model on the texture-shape cue conflict set. This dataset consists 

of test samples whose original texture is modified to the texture of 

another object class by utilizing neural style transfer (Gatys et al., 

2016). Hence, each sample in the dataset has two labels per sample, 

i.e., labels for shape and texture, respectively. Then, they measured 

each classifier's ratio of the number of correct predictions by a shape 

label to the total number of correct answers on either the shape or 

texture label. This ratio is termed shape bias, indicating how much a 

specific classifier recognizes objects by their global shape features 

rather than by local texture cues. As a result, they argued that CNNs 

trained on ImageNet highly depend on texture when classifying images. 

On the contrary, humans predict image labels by the shape of objects 

in the images. 

The previous research (Geirhos et al., 2019; Hermann et al., 2020; 

Sauer & Geiger, 2021) suggested methods to train image classification 

models to work with human-like characteristics in object recognition, 

such as a high degree of shape bias and robustness to OOD distortions. 

These methods commonly removed the existing texture cues in the 

original training samples to prohibit the classifiers from relying on 

texture information and encourage them to concentrate more on the 

object’s global shape features. 

Geirhos et al. (2019) and Sauer and Geiger (2021) proposed to 

train the classifiers jointly on ImageNet training samples and newly 

generated samples of modified textures from the original ImageNet 
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samples. In detail, Geirhos et al. (2019) introduced stylized-ImageNet, 

whose styles are transferred from artistic paintings by employing 

neural style transfer (Gatys et al., 2016). Sauer and Geiger (2021) 

proposed the counterfactual generative network generating 

counterfactual images where the foreground and background of the 

object are separately filled with the texture of other object classes in 

ImageNet. 

Hermann et al. (2020) analyzed the effect of data augmentations 

in reducing the texture bias of image classifiers. They demonstrated 

that random cropping increases the texture bias while appearance-

modifying augmentations, e.g., color distortion, gaussian blur, and 

gaussian noise, relieve the model's reliance on texture. They also 

figured out that the effect of these data augmentations works 

cumulatively. 

However, unfortunately, the removal of local texture cues in the 

training dataset showed a trade-off between increased shape bias of 

the classifiers and decreased accuracy on the IID test set (Geirhos et 

al., 2019; Hermann et al., 2020; Sauer & Geiger, 2021; Tuli et al., 

2021). In other words, the previous methods promote the image 

classification model to refer relatively more to global shape features 

by restraining the model from focusing on texture information while 

degrading the classifier's accuracy on the IID test samples. 

Moreover, the concerns in these previous approaches were not in 

enhancing the self-supervised contrastive learning model’s 

robustness to OOD distortions. 

Hermann et al. (2020), Geirhos et al. (2020), and Geirhos et al. 
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(2021) revealed that SimCLR's (Chen et al., 2020) outstanding 

robustness to OOD distortions compared to other self-supervised 

learning models comes from its data augmentations. However, their 

curiosity was targeted at checking the effect of SimCLR's data 

augmentations when applied to supervised learning models. In short, 

their interest was in verifying the importance of SimCLR's data 

augmentations in reducing the image classification models' texture 

bias rather than improving the self-supervised contrastive learning 

model's robustness to OOD distortions. 

On the contrary, Chen et al. (2020) experimented with different 

combinations of data augmentations and proposed the best 

configuration of augmentations to increase SimCLR's performance. 

However, their concerns were to find a better set of transformations 

to increase the model's accuracy on IID test samples rather than on 

OOD distortions. Interestingly, they also found that AutoAugment 

(Cubuk et al., 2019), a more sophisticated data augmentation policy 

devised in a supervised learning setting, failed to facilitate SimCLR's 

generalization on the IID test set. 

In this context, this paper proposes a novel data augmentation 

scheme more directly aiming at strengthening the self-supervised 

contrastive learning model's robustness to OOD distortions without 

declining the performance on IID test sets. 
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Chapter 3. Shape-Emphasizing Augmentation 
 

 

3.1. Problem Statement 
 

The previous methods (Geirhos et al., 2019; Hermann et al., 2020; 

Sauer & Geiger, 2021) struggled to mitigate the image classifier's 

heavy reliance on local texture cues by diversifying the existing 

texture in training images to overcome its poor generalization to OOD 

distortions. Like human observers robust to OOD distortions due to 

shape-oriented representation (Geirhos et al., 2019), the prior works 

pursued to encourage the image classification model to focus more on 

the object's shape. They took the approach of removing the existing 

texture cues in the training images to accomplish it. However, their 

approach deteriorated the classifier's performance on the IID test sets 

as a trade-off. Interestingly, it was also reported that self-supervised 

learning models also show similar characteristics in robustness to OOD 

distortions with supervised learning ones (Geirhos et al., 2020; 

Geirhos et al., 2021). However, unfortunately, the previous 

augmentation methods assumed a supervised learning setting, not a 

self-supervised learning one. 

Accordingly, this paper proposes a novel data augmentation policy, 

shape-emphasizing augmentation, suitable for self-supervised 

contrastive learning models. Shape-emphasizing augmentation applies 

a set of random augmentations to training images but separately to the 

foreground and background of the objects in images. As displayed in 
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Figure 3.1 The overall processes of the shape-emphasizing augmentation.  
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Figure 1.1, the discrepancy of texture between the inside and outside 

of the object's shape mask visually emphasizes its global shape while 

also diversifying texture in the original training images. When applied 

to self-supervised contrastive learning models, they contrastively 

learn shape-based representation by comparing highlighted shape 

features common in positive samples with those of negative samples. 

More details about the proposed method are explained below. 

 

3.2. Method 
 

The detailed process of shape-emphasizing augmentation is 

portrayed in Figure 3.1. 

Given an original image augmented by geometric transformations, 

e.g., cropping and flipping, the non-geometric transformations, e.g., 

color jittering, gray scaling, and gaussian blurring, are randomly 

applied to the original image two independent times. This process 

produces two dissimilarly augmented views: foreground and 

background images. Those two images are merged into the output 

image by the object’s shape mask generated from the pre-trained 

salient object detection model.  

The shape-emphasizing augmentation can be easily applied to the 

self-supervised contrastive learning model. The overall flow is 

depicted in Figure 3.2. Given two images differently augmented from 

the same image by geometric transformations, i.e., an anchor image 

and its positive sample, the shape-emphasizing augmentation is 

applied to each image respectively. Consequently, two output images 



 

 ２２ 

  

Figure 3.2 The overview of the application of shape-emphasizing 

augmentation to a self-supervised contrastive learning model. 
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with emphasized shapes are created and represented in an embedding 

space through the network. In the embedding space, a contrastive loss 

maximizes the similarity between the representations of positive 

samples and minimizes their similarity with negative samples. 

Consequently, the self-supervised contrastive learning model learns 

shape-based representations by contrasting accentuated shape 

features common in positive samples with negative samples. The 

additional crucial point is that shape-emphasizing augmentation still 

utilized the same data augmentation setting of the vanilla self-

supervised contrastive learning model. 

Algorithm 1 indicates more detailed procedures for applying 

shape-emphasizing augmentation to one of the self-supervised 

contrastive learning models, SimCLR (Chen et al., 2020). The gray-

colored part is the same as the original SimCLR paper; only the black-

colored part is changed with a few additive steps. 

From a set of random data augmentations 𝑇 related to geometric 

changes, two different transformations, 𝑡 and 𝑡!, are independently 

drawn and applied to the image 𝑥"  sampled from a minibatch, 

respectively. Accordingly, two differently augmented views from the 

image 𝑥"  with geometric transformations are generated, which are 

notated as 𝑥$#"$% and 𝑥$#". 

Then, a transformation 𝑟 is sampled from another set of random 

data augmentations 𝑅  related to non-geometric modification and 

applied to 𝑥$#"$% and 𝑥$#", which are geometrically augmented images. 

The non-geometric transformation 𝑟 is applied two independent times 

per image to create each pair of the foreground and background views, 
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Algorithm 1 Shape-Emphasizing Augmentation on SimCLR 

Input: batch size 𝑁, constant 𝜏	, structure 𝑓, 𝑔, 𝑇, 𝑅, 𝑢, 𝑛 

for sampled minibatch {𝑥"}"&%'  do 

  for all 𝑘	 ∈ 	 {1, … ,𝑁	} do 

    draw two geometric transformations 𝑡~𝑇, 𝑡!~𝑇 

 

    # the first shape-emphasizing augmentation     
    𝑥$#"$% = 𝑡(𝑥") 
    draw a non-geometric transformation 𝑟~𝑅 

    𝑥$#"$%
()*+,*)-./ = 𝑟(𝑥$#"$%) 

    draw a non-geometric transformation 𝑟!~𝑅 

    𝑥$#"$%
012",*)-./ = 𝑟!(𝑥$#"$%) 

    𝑥$#"$%
3415+613" = 𝑢(𝑥$#"$%) 

    𝑚:#"$% = 𝑥$#"$%
3415+613" ⊙	𝑥$#"$%

()*+,*)-./ + (1 − 𝑥$#"$%
3415+613") ⊙ 𝑥$#"$%

012",*)-./
 

    𝑚:#"$%.)*61789+/ = 𝑛(𝑚:#"$%) 
    ℎ#"$% = 𝑓(𝑚:#"$%.)*61789+/) 
    𝑧#"$% = 𝑔(ℎ#"$%) 
 

    # the second shape-emphasizing augmentation 
    𝑥$#" = 𝑡!(𝑥") 

draw a non-geometric transformation 𝑟!!~𝑅 

    𝑥$#"
()*+,*)-./ = 𝑟!!(𝑥$#") 

draw a non-geometric transformation 𝑟!!!~𝑅 

    𝑥$#"
012",*)-./ = 𝑟!!!(𝑥$#") 

    𝑥$#"
3415+613" = 𝑢(𝑥$#") 

    𝑚:#" = 𝑥$#"
3415+613" ⊙	𝑥$#"

()*+,*)-./ + (1 − 𝑥$#"
3415+613") ⊙ 𝑥$#"

012",*)-./
 

    𝑚:#".)*61789+/ = 𝑛(𝑚:#") 
    ℎ#" = 𝑓(𝑚:#".)*61789+/) 
    𝑧#" = 𝑔(ℎ#") 
  end for 

 

  for all 𝑖 ∈ 	 {1, … ,2𝑁	} and 𝑗 ∈ 	 {1, … ,2𝑁	} do 

    𝑠8,; = 𝑧8⊺𝑧;/‖𝑧8‖F𝑧;F 
  end for 

 

  define ℓ(𝑖, 𝑗) as ℓ(𝑖, 𝑗) = −log =>?	(3!,# B⁄ )
∑ 𝕝[%&!]=>?	(3!,% B⁄ )()
%*+

 

  ℒ = %
#'
∑ ['
"&% ℓ(2𝑘 − 1,2𝑘) + ℓ(2𝑘, 2𝑘 − 1)] 

  update networks 𝑓 and 𝑔 to minimize ℒ 

end for 

return encoder network 𝑓(∙), and throw away 𝑔(∙) 
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𝑥$#"$%
()*+,*)-./

 and 𝑥$#"$%
012",*)-./

, and  𝑥$#"
()*+,*)-./

 and 𝑥$#"
012",*)-./

. Here, 

the 𝑟 is newly sampled from 𝑅 on every implementation. 

Each pair of foreground and background views is merged into the 

output image, 𝑚:#"$% and 𝑚:#", by multiplying a shape mask 𝑥$#"$%	()*	#")
3415+613"  

to the foreground view and 1 − 𝑥$#"$%	()*	#")
3415+613"  to the background view and 

then summing the output values. The pre-trained salient object 

detection model 𝑢 extracts the shape masks from each image, 𝑥$#"$% 

and 𝑥$#". The merged images are normalized and fed into the backbone 

encoder f(∙) and projection head g(∙) sequentially to obtain 

representations, 𝑧#"$% and 𝑧#", in the embedding space. 

The above procedures are done for all images in the minibatch, 

and pairwise similarity 𝑠8,; is calculated between whole embeddings of 

multi-viewed samples augmented from the images in the minibatch. 

Eventually, a contrastive loss for a positive pair of samples (𝑖, 𝑗) is 

calculated by NT-Xent (the normalized temperature-scaled cross-

entropy) loss with a temperature parameter τ as defined below: 

 

𝑠8,; = 𝑧8⊺𝑧;/‖𝑧8‖F𝑧;F                     (3.1) 

 

ℓ(𝑖, 𝑗) = − log =>?G3!,# B⁄ H
∑ 𝕝[%&!] =>?G3!,% B⁄ H()
%*+

               (3.2) 

 

The final objective function is calculated as defined below: 

 

ℒ = %
#'
∑ ['
"&% ℓ(2𝑘 − 1,2𝑘) + ℓ(2𝑘, 2𝑘 − 1)]         (3.3) 
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Accordingly, the backbone encoder f(∙) and projection head g(∙) 

are trained to minimize the objective function ℒ. 

 

3.3 Experimental Setup 
 

The shape-emphasizing augmentation is applied to SimCLR (Chen 

et al., 2020), and its performance is compared with the vanilla model 

to assess the effect of the proposed method on the self-supervised 

contrastive learning model. Various strategies of data augmentation 

methods were presented to develop the image classification model's 

generalization beyond training data. However, unfortunately, their 

interest was confined to the supervised learning setting. Then, 

extending the employment of these methods to a self-supervised 

learning setting and comparing them with shape-emphasizing 

augmentation is a meaningful way to demonstrate the appropriateness 

and necessity of the proposed method in a self-supervised learning 

setting. 

 

3.3.1 Baselines 
 

In addition to the vanilla SimCLR (Chen et al., 2020), the shape-

emphasizing augmentation is compared with other types of data 

augmentation methods described in section 2.2: RandAugment (Cubuk 

et al., 2020), CutMix (Yun et al., 2019), and counterfactual generative 

network (Sauer & Geiger, 2021). 

RandAugment (Cubuk et al., 2020) and CutMix (Yun et al., 2019) 
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are applied to SimCLR (Chen et al., 2020) by replacing its original data 

augmentation process for generating multi-viewed samples from each 

training image. For the employment of the counterfactual generative 

network (Sauer & Geiger, 2021) on SimCLR (Chen et al., 2020), it 

generates counterfactual images as the additional training samples and 

SimCLR is trained jointly on these counterfactual images and the 

original ImageNet training images. In a supervised learning setting, 

CutMix (Yun et al., 2019) and counterfactual generative network 

(Sauer & Geiger, 2021) utilized label information of the sampled pair 

of images to be mixed up or the components comprising a 

counterfactual image. However, they are employed just for augmenting 

training samples without utilizing label information when applied to 

SimCLR (Chen et al., 2020), learning visual representation from 

unlabeled data in a self-supervised manner. 

 

3.3.2 Datasets 
 

Each model is trained on the ImageNet (Deng et al., 2009) training 

set. ImageNet is one of the most prevailing datasets for visual 

representation learning in the deep learning era. It consists of 

1,281,167 training images of 1,000 object classes and 50,000 

validation samples. 

After training, the models are evaluated on the validation set of 

ImageNet (Deng et al., 2009) and the OOD benchmark dataset (Geirhos 

et al., 2021), respectively. The OOD benchmark dataset comprises 17 

subsets, and each subset contains distorted ImageNet samples by a 
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specific modification. The distortions include changes to style and 

texture or the addition of synthetic noises, e.g., sketch, stylized, edge, 

silhouette, cue conflict, colour vs. grayscale, low contrast, high-pass, 

low-pass (blurring), phase noise, true power spectrum vs. power 

equalisation, true vs. opponent colour, rotation, eidolon I, eidolon II, 

eidolon III, and uniform noise. The detailed source of each subset is 

delineated in the previous work (Geirhos et al., 2021). 

However, the experiment in this paper targeted only ten subsets 

from a total of 17 subsets. The nine subsets assess the model's OOD 

distortion robustness, and the one remaining subset, cue conflict, is 

for measuring the degree of shape bias, indicated in section 4.2. Seven 

omitted subsets here are colour vs. grayscale, low-pass (blurring), 

true vs. opponent colour, contrast, rotation, eidolon I, and eidolon II. 

Out of these subsets, colour vs. grayscale, low-pass (blurring), true 

vs. opponent colour, and contrast are not used due to the relevance to 

SimCLR's data augmentation types, i.e., color jittering, gray scaling, 

and gaussian blurring. Geirhos et al. (2018) empirically showed that 

the image classifiers handle well the distortion type on which they are 

trained but still fail to generalize toward new types of distortion. Hence, 

subsets of distortions related to SimCLR's data augmentations are 

ignored to rule out these augmentations' influence in evaluating the 

OOD distortion generalization of baselines based on SimCLR. The 

remaining unused subsets are due to irrelevance to research scope, 

e.g., rotation, and duplication in types of distortions, e.g., eidolon I and 

eidolon II. 
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3.3.3 Metrics 
 

Throughout this paper, the models are appraised by their accuracy 

on test sets. Accuracy is a conventional and fundamental evaluation 

metric for measuring an image classifier’s performance. However, one 

metric is additionally adopted to examine more in-depth properties of 

baseline models toward OOD distortion generalization. It is error 

consistency. 

Geirhos et al. (2020) suggested gauging the agreement in decision 

strategy between two object recognition models by measuring error 

consistency between them. Error consistency is the metric to measure 

the ratio of how many times two different models make the same 

decisions for each stimulus to the total number of trials in the 

experiment, reflecting how much consistency exceeds the expected 

overlap due to chance. The fundamental assumption in adopting this 

metric is that two systems use a similar decision strategy if they make 

similar errors (Geirhos et al., 2020). Error consistency between two 

models, 𝑖 and 𝑗, is formulated by Cohen’s kappa (Cohen, 1960) as 

defined below: 

 

𝜅8,; =
2,-.!,#$2/01!,#
%$2/01!,#

                      (3.4) 

 

𝑐)03!,# is calculated by 𝑐)03!,# =
+!,#
.

 , where 𝑒8,; is the number of the 

same decisions of two models, i.e., either both right or both incorrect, 

to each image in the test set and 𝑛 is the total number of samples in 
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the test set. 𝑐+I5!,# is the expected error overlap due to chance and it 

is calculated by 𝑐+I5!,# = 𝑝8𝑝; + (1 − 𝑝8)(1 − 𝑝;) , where 𝑝8  and 𝑝;  are 

the accuracies of each observer, respectively. 

Geirhos et al. (2021) provided the OOD benchmark dataset 

together with human observers' image-level decision data on the 

benchmark to measure error consistency between humans and other 

image classification models. This paper utilizes error consistency with 

human observers as one of the additional metrics to know more 

sophisticated characteristics of baselines regarding OOD distortions 

by comparing them with humans. 

 

3.3.4 Implementation Details 
 

The code-level implementation of SimCLR (Chen et al., 2020) is 

based on the GitHub repository of da Costa et al. (2022). The shape-

emphasizing augmentation is also implemented on top of this code. 

Each baseline model has a ResNet-50 (He et al., 2016) backbone. 

The backbone encoder is pre-trained for 100 epochs using SGD with 

an initial learning rate of 1.2, a weight decay of 0.000001, a batch size 

of 1,024, and layer-wise adaptive rate scaling (You et al., 2017) to 

adjust the learning rate during pre-training. After pre-training, a linear 

classifier is added to the backbone encoder. They are fine-tuned on 

ImageNet training samples with label information, using SGD with a 

learning rate of 0.4 and a batch size of 1,024. During fine-tuning, two 

random data augmentations are applied, i.e., random resized cropping 

and random horizontal flipping. Each model is fine-tuned until the 
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validation loss is converged to prevent the model from being overfitted 

to training samples, which was ten epochs here.  

Shape-emphasizing augmentation utilizes the same five data 

augmentations as the vanilla SimCLR (Chen et al., 2020). However, 

they are applied differently, as described in section 3.2. Out of five 

data augmentations, random resized crop and random horizontal flip 

are from PyTorch’s implementation and applied with the probability of 

1 and 0.5, respectively. The remaining color jitter, random grayscale, 

and random gaussian blur are from the implementation of Kornia (Riba 

et al., 2020) and applied with the probability of 0.8, 0.2, and 0.5, 

respectively. Further details of hyperparameters for each data 

augmentation are described in the SimCLR (Chen et al., 2020). For the 

salient object detection model to extract a shape mask from an image, 

a pre-trained U2-Net (Qin et al., 2020) was employed. 

For the experiment of testing RandAugment (Cubuk et al., 2020) 

on SimCLR (Chen et al., 2020), the existing augmentation steps in the 

vanilla model were replaced with RandAugment. The implementation 

was from the library of timm (Ross, 2019). The specific parameter of 

RandAugment here is ‘rand-m9-mstd0.5-inc1’, which means that the 

magnitude of 9, the number of transformation operations of 2, the 

standard deviation of the magnitude noise of 0.5, and the use of 

augmentations increasing in severity with magnitude. 

The SimCLR (Chen et al., 2020) jointly trained on ImageNet 

samples and counterfactual images is also evaluated in this paper. The 

dataset configuration followed the previous work (Sauer & Geiger, 

2021), i.e., half of the total samples for training are around 600,000 
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counterfactual images. The original paper's classifier has a shared 

CNN backbone and three multiple heads to independently predict each 

label, i.e., shape, foreground texture, and background texture in a 

counterfactual image. On the other hand, for SimCLR, just a backbone 

encoder was pre-trained in a self-supervised manner without any 

label information. After pre-training, a linear classifier is attached to 

the backbone encoder and fine-tuned by a shape label's supervision. 

The implementation of CutMix (Yun et al., 2019) was adopted from 

the library of timm (Ross, 2019). The combination ratio between two 

images to be mixed up is sampled from the beta distribution, and the 

alpha value for it is set by 1. 

Training took around seven days per baseline by multi-GPU 

training with distributed data-parallel module in PyTorch using 4 

GeForce RTX 3090 machines. 

 

3.4. Results and Analysis 
 

SimCLR trained with the shape-emphasizing augmentation is 

compared with other baselines by testing each model on the ImageNet 

validation set and each subset of the OOD benchmark dataset. The 

classification accuracy of each model on each dataset is presented in 

Table 3.1. Also, the average accuracy across whole subsets of the 

OOD benchmark is represented in Figure 3.3. 

Remarkably, the shape-emphasizing augmentation method 

demonstrates a superior result over the vanilla model on most OOD 

benchmark datasets. Especially, the proposed method boasts the most  
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Dataset SimCLR 
+Shape-

Augment 

+Rand- 

Augment 
+CGN +CutMix 

ImageNet 67.10 
68.32 

(+1.22) 

64.57 

(-2.53) 

66.99 

(-0.11) 

65.01 

(-2.09) 

edge 18.13 
24.38 

(+6.25) 

18.13 

(+0.00) 

15.63 

(-2.50) 

16.25 

(-1.88) 

silhouette 38.75 
40.00 

(+1.25) 

34.38 

(-4.37) 

43.13 

(+4.38) 

40.63 

(+1.88) 

sketch 55.00 
58.00 

(+3.00) 

54.00 

(-1.00) 

55.13 

(+0.13) 

52.38 

(-2.62) 

stylized 29.88 
34.13 

(+4.25) 

26.75 

(-3.13) 

29.25 

(-0.63) 

29.13 

(-0.75) 

power-

equalisation 
80.98 

82.41 

(+1.43) 

74.11 

(-6.87) 

76.88 

(-4.10) 

78.48 

(-2.50) 

eidolon III 33.67 
33.20 

(-0.47) 

31.88 

(-1.79) 

32.19 

(-1.48) 

34.30 

(+0.63) 

uniform-

noise 
40.47 

41.41 

(+0.94) 

33.05 

(-7.42) 

41.79 

(+1.32) 

41.80 

(+1.33) 

high-pass 29.22 
32.66 

(+3.44) 

31.41 

(+2.19) 

31.56 

(+2.34) 

33.20 

(+3.98) 

phase-

scrambling 
47.32 

48.84 

(+1.52) 

44.82 

(-2.50) 

45.98 

(-1.34) 

46.88 

(-0.44) 
 

Table 3.1. Top-1 classification accuracy (%) on IID and OOD test sets. 

+ShapeAugment, +RandAugment, and +CutMix denote SimCLRs pre-

trained with shape-emphasizing augmentation, RandAugment, and 

CutMix as their data augmentation methods, respectively. +CGN is 

SimCLR jointly pre-trained on ImageNet samples and counterfactual 

images. Numbers in parenthesis are the accuracy difference on each 

dataset between the vanilla SimCLR and each model. Bold and 

underlined numbers stand for the best and second-best classification 

accuracy, respectively. 
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significant boost, 6.25%p, for SimCLR’s performance on the edge 

subset. The edge subset comprises samples where only an outline of 

the object remains without any texture information. It supports the 

hypothesis that the shape-emphasizing method induces the self-

supervised contrastive learning model to focus more on global shape 

features than local texture cues in images. 

Another encouraging point is that this enhanced generalization on 

OOD distortions comes without sacrificing the accuracy on IID test 

samples, ImageNet validation set here; instead, it comes with slightly 

increased accuracy. 

The intensified robustness to OOD distortions from the proposed 

method stands out more exceptionally when compared with other 

baselines. Figure 3.3 indicates that the naive application of the 

augmentation methods devised in supervised learning settings is not 

extended smoothly to the self-supervised learning model. Moreover, 

Table 3.1 shows that they hurt the SimCLR’s accuracy on IID test 

samples. 

Specifically, RandAugment (Cubuk et al., 2020) exhibits poor 

accuracy on IID test samples when applied to SimCLR (Chen et al., 

2020). This result is along the same line as the experiment by Chen et 

al. (2020). The experiment revealed a disappointing result in the 

accuracy on IID test samples when AutoAugment (Cubuk et al., 2019) 

was employed on SimCLR (Chen et al., 2020). AutoAugment is another 

method to automatically find the effective configuration of data 

augmentation policy like RandAugment, but with much more extensive 

search space. Both methods assume the supervised learning setting 
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Figure 3.3 OOD accuracy averaged across datasets. The notation for 

each model is the same as the explanation in the caption of Table 3.1.  

Figure 3.4 Image-level error consistency with human observers 

across OOD benchmark dataset. 
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during their search procedures for augmentation policy. The 

experiment results in SimCLR (Chen et al., 2020) and this paper imply 

that the data augmentation policies found by AutoAugment and 

RandAugment are not transferred well to a self-supervised learning 

setting. Additionally, Figure 3.3 exposes RandAugment is also 

ineffective in terms of generalization to OOD distortions. 

The experiment results of the remaining two baselines, CGN 

(Sauer & Geiger, 2021) and CutMix (Yun et al., 2019), are also inferior 

to the shape-emphasizing augmentation and the vanilla model. These 

methods combine the visual components taken from different images 

of different object classes into the augmented image. For example, the 

counterfactual generative network (Sauer & Geiger, 2021) fills two 

sections divided by a specific object's shape mask with texture from 

other different object classes. CutMix (Yun et al., 2019) pastes the 

cropped patch from one image on top of another. When the supervised 

learning model is trained on these images, it is supervised by all labels 

of object classes that comprise the augmented image. In this regard, 

Table 3.1 and Figure 3.3 imply that just naively utilizing these 

approaches as an augmentation method for self-supervised learning 

without label information is not beneficial for its generalization to both 

IID and OOD samples. 

The experiment results regarding each baseline model's error 

consistency with human observers are presented in Figure 3.4. 

Interestingly, SimCLR trained with the shape-emphasizing 

augmentation displays higher error consistency with human observers 

on OOD distortions than other baselines. It signifies that the proposed 
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method induces SimCLR to adopt a more similar decision strategy on 

each OOD sample with humans. Humans recognize objects more by 

global shape cues in images than local texture information and are 

more robust to OOD distortions than most object recognition models 

(Geirhos et al., 2019; Geirhos et al., 2020; Geirhos et al., 2021). 

In addition to the above experiments mainly based on SimCLR 

(Chen et al., 2020) with ResNet-50 (He et al., 2016) backbone, the 

shape-emphasizing augmentation was also tested to SimCLR with the 

vision transformer (ViT) (Dosovitskiy et al., 2020) backbone. ViT is a 

novel architecture that recently came to the fore in the computer 

vision field by surpassing the standard CNN-based model's 

performance on the conventional image classification benchmark, and 

its operation is based on the self-attention mechanism of the 

transformer (Vaswani et al., 2017). After the advent of ViT and its 

impressive performance in a supervised learning setting, there have 

been trials to utilize ViT in a self-supervised learning framework as 

its backbone model, and it was also shown in prior work (Chen et al., 

2021) that SimCLR is implemented with ViT backbone. 

For the experiment in this section, the ViT backbone is 

implemented from the library of timm (Ross, 2019). Specifically, the 

ViT-Small model with the main configuration of a 16 x 16 input patch 

size, a hidden dimension size of 384, and 6 heads of multi-head 

attention is utilized. The details of training and evaluating the model 

are the same as in section 3.3, except for the batch size of 512. 

Figure 3.5 and Figure 3.6 presents the evaluation result on the 

OOD benchmark dataset. 
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Figure 3.5 OOD accuracy averaged across datasets. SimCLR_ViT 

stands for a vanilla SimCLR with ViT backbone, and +ShapeAugment 

denotes a model pre-trained with shape-emphasizing augmentation. 

Figure 3.6 Image-level error consistency with human observers 

across OOD benchmark dataset. 
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As shown in Figure 3.5 and Figure 3.6, when the shape-

emphasizing augmentation is applied to SimCLR with ViT backbone, 

the accuracy on the OOD benchmark is marginally decreased, while 

the error consistency with human observers is slightly increased. 

However, compared to the experiment on SimCLR with ResNet-50 

backbone, the shape-emphasizing augmentation's influence on the 

OOD robustness of SimCLR with ViT backbone is minute. 

This experiment results imply that just naively applying the 

suggested method to SimCLR with ViT backbone does not significantly 

impact the model's robustness to OOD distortions. The convolution 

operation in CNN models like ResNet-50 (He et al., 2016), which this 

paper mainly employed as a backbone model, has an entirely different 

learning mechanism from the self-attention of the ViT model 

(Dosovitskiy et al., 2020). Hence, further study is necessary to fit 

shape-emphasizing augmentation more suitably to a self-supervised 

contrastive learning model with a ViT backbone. This consideration 

will be deferred to future research. 
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Chapter 4. Shape-based Representation 
 

 

4.1. Measuring the effect of the proposed method 
 

The shape-emphasizing augmentation is expected to encourage 

the self-supervised contrastive learning model to learn shape-based 

representation by contrasting accentuated shape features common in 

positive pairs with those of negative samples. Hence, this chapter 

empirically validates the effect of the proposed method in 

strengthening the shape-based representation of the self-supervised 

contrastive learning model through relevant experiments: Measuring 

shape bias and employing the suggested method to supervised 

contrastive learning (Khosla et al., 2020). The basic setups for the 

experiments are the same as in section 3.3, with a few exceptions. 

 

4.2. Shape bias 
 

The shape bias is a metric indicating a specific classifier's degree 

of reliance on shape information. It is measured by testing the 

classifier on a texture-shape cue conflict set proposed by Geirhos et 

al. (2019). Each sample in this dataset has texture and shape cues 

conflicting with each other, i.e., a cat's image covered by an elephant's 

skin texture. Accordingly, there are two labels per image, a texture 

label, and a shape label. The degree of shape bias is defined 

analytically as below (Geirhos et al., 2019): 
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Figure 4.1 The degree of shape bias. The color code for each model 

is the same as in Figure 3.3. A green star and blue, yellow, red, and 

purple circle indicate shape-emphasizing augmentation, vanilla model, 

CutMix, CGN, and RandAugment, respectively. Vertical lines stand for 

each model's averaged value across object classes. 
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   (3.5) 

 

Hence, the degree of shape bias can be one indicator of how much 

the classifier's representation is based on global shape features rather 

than local texture information in an image.  

This section compares the influence of the shape-emphasizing 

augmentation in SimCLR's degree of shape bias with the same 

baselines as in chapter 3. Following the earlier research (Tuli et al., 

2021) saying that a classifier's degree of shape bias can be affected 

by fine-tuning procedures, each model in this experiment is pre-

trained as depicted in section 3.3.4 but fine-tuned for only one epoch. 

This adjustment of the length of fine-tuning is to prevent the influence 

of fine-tuning process from affecting the examination of each baseline 

method's effect on cultivating SimCLR's shape-based representation. 

The results of the experiment are shown in Figure 4.1. 

Interestingly, human observers display a significantly higher 

fraction of their decisions based on shape cues than texture signals. 

This result is the same as the outcome from the earlier work (Geirhos 

et al., 2019). On the other hand, there is still a considerable gap 

between humans and SimCLR-based baselines, as presented in the 

previous research (Geirhos et al., 2020; Geirhos et al., 2021). However, 

as a silver lining beyond the cloud, shape-emphasizing augmentation 

pulls the direction of SimCLR's fraction of decisions based on one of 

two conflicting cues, either shape or texture, toward the side of the 

shape with some degree of a margin than other baselines. 
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4.3. Supervised contrastive learning 
 

The supervised contrastive learning (Khosla et al., 2020) method 

also contrastively learns visual representations by maximizing 

similarities between representations of positive samples while 

minimizing them with negative samples. However, there is a difference 

with SimCLR regarding the utilization of label information when 

comprising a positive pair. The positive pair in SimCLR (Chen et al., 

2020) consists of an anchor image and its multi-viewed sample by 

random data augmentations. In contrast, the supervised contrastive 

learning (Khosla et al., 2020) method has a group of positive samples 

containing the multi-viewed samples of all images in the mini-batch 

whose labels are the same as the anchor image. Accordingly, the 

supervised contrastive learning model is expected to learn highlighted 

shape features common in more positive samples than SimCLR when 

shape-emphasizing augmentation is applied. 

Hence, this section delves into how the introduced method works 

on supervised contrastive learning's shape-based representation 

through several experiments. The experiments compare the effect of 

shape-emphasizing augmentation on supervised contrastive learning 

with SimCLR's case. The supervised contrastive learning models are 

pre-trained with the same setting of hyperparameters as SimCLR's 

training, except for using a supervised contrastive loss. 

Each model’s accuracy on each subset of the OOD benchmark and 

averaged accuracy across all subsets are presented in Table 4.2 and 

Figure 4.2, respectively. 
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Dataset SimCLR 
+Shape-

Augment 
SupCon 

+Shape-

Augment 

ImageNet 67.10 
68.32 

(+1.22) 
68.09 

69.25 

(+1.16) 

edge 18.13 
24.38 

(+6.25) 
19.38 

30.00 

(+10.62) 

silhouette 38.75 
40.00 

(+1.25) 
46.25 

46.25 

(+0.00) 

sketch 55.00 
58.00 

(+3.00) 
55.38 

55.63 

(+0.25) 

stylized 29.88 
34.13 

(+4.25) 
31.00 

33.63 

(+2.63) 

power-

equalisation 
80.98 

82.41 

(+1.43) 
80.63 

82.14 

(+1.51) 

eidolon III 33.67 
33.20 

(-0.47) 
34.30 

33.52 

(-0.78) 

uniform-

noise 
40.47 

41.41 

(+0.94) 
44.38 

39.45 

(-4.93) 

high-pass 29.22 
32.66 

(+3.44) 
33.44 

35.00 

(+1.56) 

phase-

scrambling 
47.32 

48.84 

(+1.52) 
46.79 

47.95 

(+1.16) 
 

Table 4.1. Top-1 classification accuracy (%) on IID and OOD test sets. 

SupCon stands for supervised contrastive learning model. 

+ShapeAugment denotes a model pre-trained with shape-

emphasizing augmentation. Numbers in parenthesis are the accuracy 

difference on each dataset between its vanilla model. Bold values are 

the classification accuracy of the proposed method on the OOD 

benchmark subset in which the margin of improvement over the vanilla 

model is the largest. 
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Shape-emphasizing augmentation enhances the supervised 

contrastive learning model’s classification accuracy across most 

subsets of the OOD benchmark dataset, as seen in SimCLR’s case. 

However, the most impressive outcome is the accuracy improvement 

on the edge subset. As appeared in its name, the edge subset is 

composed of samples where only edges of objects exist, and the 

original texture information of each object is cleared away. The 

proposed method already showed an accuracy boost of a 6.25%p on 

this subset when applied to SimCLR. However, shape-emphasizing 

augmentation gave a 10.62%p advancement of the accuracy to the 

supervised contrastive learning model on the edge subset, even if the 

vanilla supervised contrastive learning model already has a slightly 

better performance on this subset than the vanilla SimCLR. 

This outcome implies that the effect of shape-emphasizing 

augmentation could be synergized with a more extensive size of 

positive samples in a supervised contrastive learning model in terms 

of learning shape-based representation. Figure 4.3 also partly 

supports it. There was more boost to the supervised contrastive 

learning model than to SimCLR in image-level OOD error consistency 

with human observers recognizing objects by shape features when 

shape-emphasizing augmentation was applied. Additionally, Figure 4.4 

shows that the introduced method also enhanced the supervised 

contrastive learning model’s shape bias. These results are impressive, 

considering they occurred without degrading accuracy on IID test 

samples, as shown in Table 4.1. 
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Figure 4.2 OOD accuracy averaged across datasets. The notation for 

each model is the same as the explanation in the caption of Table 4.1. 

Figure 4.3 Image-level error consistency with human observers 

across OOD benchmark dataset. 
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Figure 4.4 The degree of shape bias. The color code for each model 

is the same as in Figure 4.2. Orange and blue circles are the vanilla 

version of each model: SupCon and SimCLR. Light blue and green stars 

indicate each model with shape-emphasizing augmentation, 

respectively. Vertical lines stand for each model's averaged value 

across object classes. 
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Chapter 5. Conclusion 
 

 

5.1. Summary of Research 
 

This paper introduced a novel data augmentation scheme, shape-

emphasizing augmentation. The suggested method applies different 

modifications to the texture in the inner and outer regions of the shape 

mask of the object in a training image by applying a set of random 

augmentations, respectively. When the proposed method is applied to 

the self-supervised contrastive learning model, it learns shape-based 

representation from the multi-viewed samples whose texture on each 

side of the object contour is differentiated by shape-emphasizing 

augmentation. The results of relevant experiments and the in-depth 

analysis demonstrated the effectiveness of the proposed method. 

In detail, shape-emphasizing augmentation improved SimCLR's 

classification accuracy on most subsets of the OOD benchmark dataset. 

Specifically, on the edge subset where images do not have any local 

texture information of the object classes, the proposed method brought 

a 6.25%p of accuracy improvement. Moreover, SimCLR trained with 

shape-emphasizing augmentation displayed enhanced image-level 

error consistency with human observers on the OOD benchmark 

dataset. It means the model utilizes a similar decision strategy on OOD 

samples with humans of more shape-oriented representation and 

stronger robustness to OOD distortions. The increased degree of 

shape bias by applying shape-emphasizing augmentation also implies 
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it. The most encouraging thing is that this enhancement of robustness 

to OOD distortions occurred without the decreased accuracy on IID 

test samples. The employment of shape-emphasizing augmentation in 

the supervised contrastive learning model, which has more positive 

samples than SimCLR, indicates the efficacy of the introduced method 

in encouraging the model to learn shape-based representation. 

The effectiveness and necessity of the proposed method are more 

remarkable when considering that previous augmentation methods in 

a supervised learning setting were not extended smoothly to a self-

supervised learning setting. Moreover, the application of shape-

emphasizing augmentation to the self-supervised contrastive learning 

model is more prospective in terms of the practicality in the actual use 

case. It is because robust OOD generalization is desirable for the self-

supervised contrastive learning model's training mechanism, i.e., pre-

training on the large-scale unlabeled dataset first and then finetuning 

with the labeled dataset that the users target specifically. 

However, when the shape-emphasizing augmentation was applied 

to the self-supervised contrastive learning model with ViT backbone 

(Dosovitskiy et al., 2020), the proposed method did not show a 

noticeable influence on the model’s robustness to OOD distortions. It 

is unlike the experimental results of the CNN-based self-supervised 

contrastive learning model, and further research would be needed to 

figure it out in future works. 
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5.2. Limitations 
 

Shape-emphasizing augmentation presents promising results in 

improving the self-supervised contrastive learning model’s 

robustness to OOD distortions without decreasing performance on IID 

test samples. However, the research of this paper still has limitations 

in some aspects described below. 

First, the proposed method's effectiveness may depend on the 

performance of the salient object detection model. Suppose the model 

is terrible at segmenting the contour of the specific object due to 

occlusion in the scene or deformability of the object's shape. 

Consequently, it can hurt a self-supervised contrastive learning 

model's performance on related object classes when applying shape-

emphasizing augmentation. However, using U2-Net as this paper's 

salient object detection model can be validated as a reasonable choice 

when considering the same model's employment in other recent papers 

(Sauer & Geiger, 2021; Wang et al., 2022) aiming to understand an 

image more structurally. 

Also, the self-supervised contrastive learning models in this paper 

were not trained by the best training setups from their original papers 

due to the lack of available computing power. For example, Chen et al. 

(2020) and Khosla et al. (2020) reported the best performance of each 

vanilla model trained with much larger batch sizes and bigger 

backbones. 

In addition, applying shape-emphasizing augmentation can 

increase computational and memory costs. It may come from applying 
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random augmentation to the image two independent times and 

extracting the object’s shape mask from each sample of a mini-batch 

by utilizing the additional model for salient object detection. However, 

they are in the range of negligible degrees. 

Moreover, the shape-emphasizing augmentation of this paper is 

conceptually confined in its application to 2-dimensional image data 

where the concept of the object or its shape can be defined visually. 

Hence, it is inapplicable to data with 1-dimension, such as time series 

data, and also data augmentation methods for this data type have 

different aspects from augmentations for image data (Wen et al., 2020). 

On the other hand, the concept of the object or its shape can also be 

visually defined in 3-dimensional image data with depth information. 

Hence, applying the concept of shape-emphasizing augmentation also 

can be considered, and it will be deferred to one of the promising 

directions for future research. 

Lastly, this paper also showed that just naively applying shape-

emphasizing augmentation in the same manner as the experiment on 

SimCLR with CNN backbone did not significantly impact the OOD 

robustness of the one with ViT backbone. The further discourse 

regarding this limitation will be a meaningful future work direction, as 

described more concretely in section 5.4. 
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5.3. Discussions 
 

Unlike texture-shape bias and robustness to OOD distortions, 

which this paper dealt with, there have been various viewpoints and 

interests toward the definition of bias and robustness by different 

researchers. Some researchers assumed the image classification 

models have a bias toward the image’s background or context where 

the objects are placed (Mo et al., 2021; Wang et al., 2022). Nam et al. 

(2020) and Lee et al. (2021) even did not predefine the specific types 

of bias in their works. Northcutt et al. (2021) raised the problem of 

robustness to label noise in the dataset. Hence, it will be an interesting 

point of discussion to consider how shape-emphasizing augmentation 

deals with other kinds of bias or robustness. 

Also, this paper primarily focused on the object recognition task 

whose target objects are in the scope of the general domain in our 

everyday life. Accordingly, it may be meaningful to discuss the effect 

of shape-emphasizing augmentation in handling the data from more 

specific domains, such as medical images, or working on other 

computer vision tasks, such as object detection. 

 

5.4. Future Works 
 

Nowadays, the vision transformer (ViT) (Dosovitskiy et al., 2020) 

has gradually become the de facto backbone architecture of self-

supervised learning models (Chen et al., 2021; Caron et al., 2021) for 

visual representation learning. These ViT-based self-supervised 
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learning models have continuously been renewing the state-of-the-

art (SOTA) performance in self-supervised image classification by 

surpassing their counterparts based on CNN backbone. 

Dosovitskiy et al. (2020) argued that ViT lacks the inductive 

biases that CNN architecture had, i.e., the locality, due to its learning 

strategy that images are sliced into patches, and the relevance 

between patches is measured via self-attention and position 

embedding. However, on the contrary, the deficiency of this inductive 

bias makes ViT more suitable for understanding the global context in 

images. In this regard, Tuli et al. (2021) presented experimental 

results that ViT has a higher degree of shape bias and error 

consistency with humans than standard CNN-based models. 

However, recent research shed much less light on the ViT-based 

self-supervised learning model's robustness to OOD distortions. This 

paper also showed that the shape-emphasizing augmentation, which 

encouraged SimCLR with ResNet-50 backbone to be robust to OOD 

distortions, was not naively extended to the ViT-based SimCLR model. 

Hence, it would be an interesting future research direction to delve 

into the ViT-based self-supervised learning model's robustness to 

OOD distortions and develop further this paper's proposed method to 

be fitted to it. 
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 ６１ 

국문 초록 

  

자기지도 학습은 이미지 분류에서 지도학습 모델에 비견되는 놀라운 

발전을 이루었다. 하지만, 이러한 성과는 훈련 데이터셋과 독립적이고 

동일하게 분포된 샘플들을 대상으로 한정되어 있다. 지도학습 모델과 

같이, 자기지도 학습 모델은 여전히 분포 외 왜곡에 대한 낮은 강건성을 

보인다. 이와 반대로, 사람은 분포 외 왜곡에 대해 강건함을 보이는데, 

이는 형태 지향적인 표상과 낮은 질감 의존도에 기인한다. 이에, 최근 

훈련 데이터셋의 질감을 변화시켜 이미지 분류 모델이 이미지 내 객체의 

형태에 보다 집중하도록 유도하는 몇 가지 방법들이 제안되었다. 하지만, 

해당 방법들은 자기지도 학습이 아닌 지도 학습에 중점을 두었을 뿐만 

아니라, 독립적이고 동일하게 분포된 데이터들에 대해 오히려 성능 

감소를 보였다. 이에, 본 논문에서는 자기지도 학습을 위한 새로운 

데이터 증강 전략인 형태 강조 증강을 제안한다. 이 방법은 객체의 

전경과 배경에 독립적으로 무작위 증강을 적용하여 이미지 내 객체의 

형태를 강조한다. 다양한 실험을 통해 본 논문에서 제안하는 데이터 

증강 방법이 독립적이고 동일하게 분포된 데이터들에 대한 자기지도 

학습 모델의 성능 하락 없이 분포 외 왜곡에 대한 강건성을 향상시키는 

데에 효과가 있음을 보인다. 
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