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Abstract

State Representation for Efficient
Task Adaptation in Reinforcement

Learning

Eunseok Yang

Interdisciplinary Program in Artificial Intelligence

The Graduate School

Seoul National University

An intelligent agent is expected to make a series of proper decisions in order to

solve a new task by leveraging its own previous experience. The scheme of unsuper-

vised reinforcement learning is analogous: the agent is equipped with generalized

ability after it learns a set of potentially useful behaviors or extracts the informa-

tion from dynamics without any explicit reward from the environment. However, a

couple of major challenges remain such as how to obtain a compact yet rich state

representations at the pretraining phase and how agents can efficiently adapt to

the task at the fine-tuning phase. To this end, this study proposes two different

methods to tackle both concerns. First, mixing discovered skills improve the sam-

ple efficiency by interpreting the skills as a perspective of how an agent transforms

the state. The experiment shows that the various mixing methods affect the final

performance. Second, contrastive learning plays a key role in temporal state repre-

sentation which has an explicit meaning of reachability from one state to another.
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viIt is shown that the agent can directly adapt to the given task without further

training when it is optimized.

Key words: Reinforcement learning, unsupervised learning, representation learn-

ing, pretraining

Student Number: 2021-29014
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Chapter 1

Introduction

Reinforcement learning (RL) has demonstrated great success in solving sequential

decision making problems such as games and robotics manipulation [19, 31]. When

interacting with the environment, the agent usually takes positive or negative feed-

back, which is called a reward, predefined depending on the task to solve, and its

behavior is updated with trial-and-errors [33]. However, this approach results in

poor performance when even slight changes occur in the task, which is different

from human behavior.

The unsupervised reinforcement learning paradigm aims to address this issue.

The agent first learns either a representation of state space, a set of possibly useful

behaviors, or the environment dynamics without any signal during a pretraining

phase, then adapts to the downstream task once it is given. There are a couple of

lines of work: exploration-based methods [6, 26] and competence-based methods

[10, 24].

The exploration-based methods aim to maximize the number of visiting state

for discrete state space. When state space is continuous, the entropy of visited
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space is estimated either directly or indirectly. The limitation of this approach

is that the pretrained agent has only one strategy to cope with various unknown

tasks. On the other hand, competence-based methods introduce a skill or task

variable z to align each behavior. For both of these methods, state representation

and task adaptation play an essential role.

State representation is a low-dimensional abstraction of a state that reflects

the structures of state space and the relationship among states. A good state

representation is crucial for sample efficiency and robustness and is achieved by

extracting the core semantics and removing distracting noise. Besides, there are

exploration methods to leverage the information from the state representation with

such as reconstruction [16, 17], bisimulation [12, 7, 13], and contrastive learning

[37, 11]. Theoretical works [1, 35] also exist on the impact of representation on

performance.

Task adaptation is also critical in determining the performance of the pretrained

agent. The task-agnostic agent has no straightforward way to find the optimal

behavior for each task, and even for the skill-dependent agent, it is challenging

to decide which and when to choose the learned skill. There are several basic

approaches to solving this issue. For example, one [10] chooses the skill with the

initial best performance and finetune, which does not guarantee the optimality

of the chosen skill. Another work [30] considers planning with learned dynamics

or utilizing the hierarchical controller choosing proper skill. A recent study [22]

points out that the current methods need a better finetuning strategy to achieve a

significantly better performance than training from scratch.

This dissertation focuses on both state representation and efficient adaptation,

and proposes the following methods. Firstly, mixing discovered skills is key to ef-
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ficient task adaptation. When there is a pretrained agent with finite skills, mixing

those skills helps improve performance with a few additional computational bur-

dens. Here, in the sense that state representation is changed depending on the skill,

mixing skill is to create abundant representations. Sample efficiency is evaluated to

determine which mixing is the best. Secondly, contrastive learning can be viewed as

a universal reinforcement learning by estimating the future state distribution. The

state representation contains a temporal meaning of reachability from one state to

another, and this method offers the possibility of direct adaptation with a small

number of task guidance.

1.1 Preliminaries

In the standard RL setting, the agent interacts with an unknown environment to

learn the optimal behavior given sequential feedback. The environment is modeled

with Markov Decision Process (MDP) [27] defined as a tuple M = (S,A, P, r, γ)

with state space S, action space A, transition probability P , reward function r :

S → R, and discount factor γ ∈ [0, 1). S and A are either discrete or continuous.

From the initial state s0 ∈ S, the agent takes action a0 ∈ A, and see reward r1 =

r(s1) with the next state s1 ∼ P (s1 | s0, a0). Sequentially the agent experiences

the trajectory τ = {s0, a0, r1, s1, . . . st, at, rt+1, . . . }. The goal of the agent is to

maximize the expected discounted cumulative reward (return) E[
∑

t≥0 γ
trt]. A

policy π : S → ∆(A), a mapping from state space to the distribution of action

space, decides which action to take for each time step. It is called the optimal

policy when it maximizes the return.

Value function measures the return depending on the current policy. A state

3



value function V π(s) of a state s is defined as

V π(s) := E

[ ∞∑
t=0

γtrt | s0 = s, π

]
. (1.1)

Similarly, an action value function (Q-function) Qπ(s, a) of a state-action pair (s, a)

under a policy π is defined as

Qπ(s, a) := E

[ ∞∑
t=0

γtrt | s0 = s, a0 = a, π

]
. (1.2)

The relationship between state value function and action-value function is clear

with the following Bellman equations

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a) (1.3)

Qπ(s, a) =
∑
s′

P (s′ | s, a)
(
r(s′) + γV π(s′)

)
(1.4)

for discrete state and action space, and summations are replaced by integration

for continuous case. The value function of optimal policy π∗ is called the optimal

value function, then it now satisfies the Bellman optimality equations

V π∗
(s) = max

a∈A
Qπ

∗
(s, a) (1.5)

Qπ
∗
(s, a) =

∑
s′

P (s′ | s, a)
(
r(s′) + γV π∗

(s′)
)
. (1.6)

In unsupervised reinforcement learning setting, the model is MDP without re-

ward M = (S,A, P, γ). Without an external reward function, the agent has to

behave with its own intrinsic motivation. Therefore, the state value function and
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the action value function are defined with the intrinsic reward. The method of

designing intrinsic reward is one of the main goals of unsupervised reinforcement

learning.

In task-dependent reinforcement learning, the policy depends on some vector

z, denoted as π(a | s, z). z is called a task, skill, or the goal depending on the

context. In this case, the reward function rz changes by z. Sometimes z consists

of an explicit meaning (e.g. goal-conditioned RL [29]), but sometimes it is implicit

(e.g. skill learning [14]).
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Chapter 2

Related Work

In this chapter, detailed works on unsupervised reinforcement learning and con-

trastive learning are introduced.

2.1 Skill Learning

Skill learning [14, 10, 30] is a type of unsupervised reinforcement learning that

allows the agent to learn various behaviors through interaction with the environ-

ment without explicit rewards. With a latent vector z, the skill dependent policy

π(a | s, z) is trained by maximizing mutual information between states S and skills

Z,

I(S;Z) = H(Z)−H(Z | S) (2.1)

= H(S)−H(S | Z). (2.2)

Intuitively, the first equation indicates that the agent prefers visiting as many

state as possible, but the visited space is better determined by skill. The second

6



equation is derived from the symmetry of mutual information and demonstrates

that the roles of state and skill can be exchanged.

Due to the difficulty of calculating the exact form of I(S;Z), it is optimized by

the variational lower bound as following

I(S;Z) = DKL(p(s, z) ‖ p(s)⊗ p(z)) (2.3)

= Es,z∼p(s,z)[log qφ(z | s)]− Ez∼p(z)[p(z)] + Es∼p(s)[DKL(p(z | s) ‖ qφ(z | s))]

(2.4)

≥ Es,z∼p(s,z)[log qφ(z | s)]− Ez∼p(z)[p(z)], (2.5)

where z is a discrete random variable. In this case, the skill-dependent reward is

defined to rz(s) := log qψ(z | s) − log p(z). qψ learns to discriminate skills given

the current state, then push the agent towards those states aligned with each

skill. There are several extensions to use two consecutive states or whole trajectory

instead of one state to match with one skill.

In another line of works, states are predicted given skills seen in equation (2.2).

DADS [30], for example, learns dynamics to optimize the variational lower bound

I(S′;Z | S) = Es,s′,z∼p(s,s′,z)
[
log

qφ(s
′ | s, z)

p(s′ | s)

]
+ Es,z∼p(s,z)

[
DKL(p(s

′ | s, z)) ‖ qφ(s′ | s, z)
]

(2.6)

≥ Es,s′,z∼p(s,s′,z)
[
log

qφ(s
′ | s, z)

p(s′ | s)

]
(2.7)

with the skill-dependent reward rz(s) := log qψ(s′ | s, z)− log p(s′ | s).

The limitation of skill learning methods is that they lack how to utilize each

skill for task although the agent learns various behaviors. Therefore, they perform

7



bad in a specific setting compared to other unsupervised learning methods [22].

2.2 Successor Features

Successor features [5] are the continuous extension of successor representation [9]

for discrete state space. Assuming that state is represented to φ(s) ∈ Rd, and there

is an important assumption that reward r(s) is linear to this feature

r(s) = φ(s)T z, (2.8)

where z ∈ Rd is a task vector. Then, the successor features with task-dependent

policy πz are defined as the discounted cumulative sum of the successive state

features.

ψπz(s, a) := E

∑
t≥0

γtφ(st+1) | (s0, a0) = (s, a), πz

 (2.9)

The key observation here is that action value function is linear to the successor

feature.

Qπz(s, a) = E

∑
t≥0

γtr(st+1) | (s0, a0) = (s, a), πz

 (2.10)

= ψπz(s, a)T z (2.11)

Denoting the successor feature ψπz(s, a) by ψ(s, a, z) for simplification, multi-

dimensional Bellman equation [3] holds for successor feature.

ψ(s, a, z) = Es′∼P (s′|s,a),a′∼πz(a′|s′)
[
φ(s′) + γψ(s′, a′, z)

]
(2.12)
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If the action space is discrete, the policy is learned with Q-learning [36] style.

Otherwise, Q function and the policy is alternatively updated in DDPG [23] style.

When the reward function is given after the policy is learned, the task vector z is

simply calculated with solving linear regression:

z∗ = arg min
z∈Rd

E
[
(r(s)− φ(s)T z)2

]
. (2.13)

2.3 Contrastive Learning

The goal of contrastive learning [2] is to learn a representation by pushing the

positive pairs closer and the negative pairs farther. The positiveness and negative-

ness are defined depending on the domain of problems. Firstly, in computer vision

[8, 18], the positive sample of an image is an augmented version of it. Secondly,

in natural language processing [25], the positive sample of an word is a context in

which the word is related. Lastly, in reinforcement learning, pairs are defined in a

visual or temporal sense. If a state is an image (pixel-based RL), same augmenta-

tion technique as in computer vision can be adopted to achieve a sample efficiency

[21]. On the other hand, temporal criteria reflects a sequential nature of reinforce-

ment learning [32]. In this case, the positive example of a state is one of its future

state followed by a given policy. Recent work shows that goal-conditioned RL can

be viewed as a contrastive learning [11]. Also, there is a theoretical work which

shows contrastive state representation helps an efficient exploration [28].

Noise contrastive estimation (NCE) [15] is one of the famous contrastive learning

method. Assume that a positive pair is sampled from a distribution p(x, x+), and

9



a negative pair is sampled from p(x)p(x−). Then the objective to maximize is

L(θ) = E(x,x+)∼p(x,x+),x−∼p(x−) [logσ(fθ(x, x+)) + log(1− σ(fθ(x, x−)))] , (2.14)

where σ is a sigmoid function, and fθ is a parametrized estimation. When this

binary classification objective is optimized, it is known that

f∗(x, x+) ∝ log p(x, x+)
p(x)

. (2.15)

With this property, contrastive learning is used for density estimation of data.

10



Chapter 3

Method

In this section, two main methods are introduced. The first method deals with the

problem of efficient fine-tuning after the agent has learned diverse behaviors. The

second method learns state representation with contrastive learning to capture the

temporal relationship between states.

3.1 Efficient Task Adaptation by Mixing Discovered

Skills

The main idea of the approach is to combine the learned skills to utilize for down-

stream tasks. The agent acquire skills in the pretrain phase following DIAYN [10]

framework which is generally used as a skill discovery baseline.

11



Policy

Skills

State

Action

Optional

Figure 3.1: Overview of methods to mix a set of learned skills in fine-tuning phase.
It is optional whether the current state affects how the skills combine together.

3.1.1 Understanding Skill Fusion

Note that the skill z is a k-dimensional discrete random variable sampled from the

distribution p(z). Then a policy can be written as

π(a|s) = Ez∼p(z|s)[π(a|s, z)]. (3.1)

One can fine-tune a controller p(z|s) as in a hierarchical RL framework [30], or

simply sample skill from p(z) [22] under the assumption that skill distribution is

independent to the state distribution. In both cases, skill z is first sampled from

p(z) or p(z|s), and action a is derived from the policy depending on the skill. The

limitation of those methods is that they just sequentially perform skills rather than

12



Table 3.1: Fine-tuning method for skill discovery algorithm. Class shows whether
the skill of each method is sequentially performed or combined. Each method
samples the skill z from either p(z) or p(z|s), and finetune either only policy or all.
Two previous works, URLB DIAYN [22] and Original DIAYN [10] are compared.

Class Method p(z) p(z|s) Finetune

Sequential DIAYN (URLB) Uniform - π(a|s, z)
Sequential DIAYN (orig.) Dirac delta - p(z) & π(a|s, z)

Fusion Same (ours) Uniform - π(a|s, z)
Fusion Simple (ours) Cat. - p(z) & π(a|s, z)
Fusion Scratch (ours) - Cat. p(z|s) & π(a|s, z)
Fusion Controller (ours) - Cat. (init.) p(z|s) & π(a|s, z)

combine and mix the skills in an underlying representation level.

Instead, the policy can be formulated as

π(a|s,Ez∼p(z|s)[ψ(z)]) (3.2)

for some representation function ψ. In this work, ψ is fixed as a one-hot vector

representation of each discrete skill z in a natural manner. With this formulation,

the skill space is expanded to the k-dimensional simplex {z̃ | 1>z̃ = 1, z̃ � 0}. In

the following sections, state-agnostic perspective fusion and state-aware perspec-

tive fusion are introduced, respectively depending on which distribution the skill z

follows, p(z) or p(z|s).

3.1.2 State-agnostic Fusion

First, let the skill follow the distribution p(z) regardless of the input state. The

simplest way of fine-tuning a policy is to choose one best skill, p(z) is fixed as Dirac

delta, as in the original DIAYN paper. However, it utilizes just one skill for a task

13



which has a clear limitation when the task is complicated that only one skill is not

enough, also, it is often expensive to know which skill is best-performing especially

when the skill set is large.

Now, two state-agnostic fusion methods proposed alleviate these issues. First,

p(z) is fixed to be uniform distribution, which combines the learned skills in the

same weight. This simply takes advantage of mixing every skill without any addi-

tional parameters. Second, p(z) is trained as a categorical distribution, with ad-

ditional trainable parameter wi for Ez∼p(z)[ψ(z)] =
∑

iwiψ(zi), where
∑

iwi = 1

and wi ≥ 0. The latter is generalized version of the original DIAYN and the former

method.

The representation level skill mix is interpreted as follows. Since the skill z is

represented as a one-hot vector, the weight parameters in a policy are switched

on up to the location of 1 in a skill vector. Therefore, if all positions of a skill

vector are non-zero, all weights are activated and more diverse representations are

obtained. We can view this as the same state from different perspectives through

skill.

3.1.3 State-aware Fusion

In the method above, skill is combined without considering the input state. How-

ever, it is expected that better performance can be achieved if the combination of

skills is changed adaptively according to the state. While it is possible to train the

controller p(z|s) from scratch, we propose a method to reuse a skill discriminator

qφ(z|s) trained in the pretraining phase. In DIAYN, the skill discriminator qφ(z|s)

predicts which skill is in charge of the input state so that each skill visits distinct

states. Therefore, it is possible to guide the agent in the natural direction rather

14



than randomly combining skills by using a discriminator as an initializer of the

controller.

3.2 Contrastive State Representation for Unsupervised

RL

The core idea of the method is to learn contrastive state representations with which

the agent can directly adapt to the given reward function.

3.2.1 Contrastive State Representation

First, the discounted state occupancy measure is defined.

pπz(s′ | s, a) := (1− γ)

∞∑
t=0

γtP (st+1 = s′ | (s0, a0) = (s, a)) (3.3)

This measure has meaning how likely the state s′ is visited starting from the state s

and action a following the policy πz. Also, assume the ratio of the state occupancy

measure pπz to an arbitrary state measure ρ from which a negative sample is drawn

is linearly factorizable.

pπz(s′ | s, a)
ρ(s′)

= ψ∗(s, a, z)Tφ∗(s′) (3.4)

Note that it is an extension of low-rank MDP, which assumes the transition P (s |

s, a) can be linearly factorized. Then it is possible to find the representations ψ∗

and φ∗ by contrastive learning argued in section 2.3. In detail, the equation 3.4

15



holds when the objective

max
f

Et∼Geo(1−γ),s−∼ρ(s)
s+∼pπz (st|s,a)

[
log 1

1 + f(s, a, z, s−)
+ log f(s, a, z, s−)

1 + f(s, a, z, s−)

]
(3.5)

is optimized, where f(s, a, z, s′) = ψ(s, a, z)Tφ(s′). Similar approaches are in-

troduced in recent works, but they only use for exploration or deal with goal-

conditioned RL.

What matters now is which criteria the policy is updated on without the explicit

reward function. The answer here is to choose an action to maximize

ψ∗(s, a, z)T z (3.6)

given a task z. The reason for it is clear with the following guarantee. [4] has

shown that Q-function with respect to any reward function r(s) is written as

Qπz(s, a) =

∫
pπz(s′ | s, a)r(s′) ds′ (3.7)

=

∫
pπz(s′ | s, a)

ρ(s′)
ρ(s′)r(s′) ds′ (3.8)

= Es′∼ρ
[
ψ∗(s, a, z)Tφ∗(s′)r(s′)

]
(3.9)

= ψ∗(s, a, z)TEs′∼ρ
[
φ∗(s′)r(s′)

]
. (3.10)

Therefore, given a reward function, the optimal policy with respect to this is di-

rectly driven by choosing z = Es′∼ρ [φ∗(s′)r(s′)] and act with arg maxa ψ∗(s, a, z)T z.

16



Algorithm 1: Contrastive state representation
Input: number of episodes Ne, length of episode Nt, replay buffer (D),

discount factor γ, initialized ψ(s, a, z) and φ(s′), and initialized
policy πθ

1 for e = 1, . . . , Ne do
2 Sample z ∼ Unif(z)
3 Observe the initial state s1
4 for t = 1, . . . , Nt do
5 Select an action at ∼ πθ(at | st, z)
6 Observe the next state st+1 ∼ P (st+1 | st, at)
7 Sample k ∼ Geo(1− γ)
8 Sample a batch {(si, ai, si+k, z̃)} from the replay buffer D
9 Update ψ(s, a, z) and φ(s′) with the objective (3.5)

10 Update the policy πθ with the objective (3.6)
11 end
12 Store z-augmented trajectory (z; s1, a1, s2, a2, . . . , sNt) to the replay

buffer D
13 end

17



Chapter 4

Experiment

Note that the experiments are conducted for the methods in Section 3.1.

4.1 Experiments

The methods are evaluated on Deepmind Control Suite [34], which contains three

continuous control environments and twelve downstream tasks. The environments

include 6-DOF Walker, 12-DOF Quadruped, and 9-DOF Jaco arm.

Figure 4.1: Continuous control environments from DeepMind Control Suite. Left:
Walker, center: Quadruped, right: Jaco arm.

The experiments follow the same evaluation process to URLB [22]. We pretrain

18



each agent without explicit rewards, then finetune for the downstream task. In the

case of skill discovery method, the agent learns a set of useful behaviors which we

call skills. Then the agent uses these skills to achieve higher cumulative rewards

quickly in fine-tuning. The pretrained agent is fixed to DIAYN based on DDPG

[23] and finetune it in various ways.

4.1.1 Sample-efficiency and Final Performance

DDPG URLB
DIAYN

Original
DIAYN

Same
importance

Simple
importance

Scratch
controller

DIAYN
controller

Method

0

100

200

300

400

500

600

Re
tu

rn

Figure 4.2: Results of 100k steps finetuning of skill adapting methods on the task
Walker Run. Simple importance and Same importance method shows better sample
efficiency than the others.

We compare our methods to three baselines, DDPG trained from scratch, DI-

AYN implemented in URLB (URLB DIAYN ) and DIAYN proposed in the original

paper (Original DIAYN ). For Original DIAYN, we did not count the steps for se-
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lecting the best skill in order to make a baseline more challenging. Also, we choose

the task Walker-run for the comparison because it is known as the most challenging

task among the twelve downstream tasks in URLB [22]. We fine-tune each method

for 100k steps. The experiment in other environments is shown in section 4.1.2.

Same importance and Simple importance are both state-agnostic fusion meth-

ods, but the former fixes p(z) and latter finetunes. DIAYN controller initializes a

controller p(z|s) with DIAYN skill discriminator, but scratch controller does not.

The detail of our methods is in Table 3.1.

We observe the following results in Figure 4.2. URLB DIAYN underperforms

other methods even including DDPG trained from scratch, showing that it does not

fully use the potential of learned skills, and suggesting that fine-tuning is critical to

measure the performance of the skill discovery method. On the other hand, both of

our state-agnostic methods perform well, showing that the simple skill mix methods

help to achieve high return quickly. The performance of state-aware methods is

worse than state-agnostic methods and similar to the baseline (Original DIAYN )

at 100k step. We presume training additional parameters for controller disturbs

the fast adaptation.

We also compare our methods for the final performance. We show in figure 4.3

that state-aware fusion method outperforms state-agnostic fusion at some point.

Followed by a certain amount of steps, the capacity of state-aware methods works.

Moreover, we observe that DIAYN controller outperforms the Scratch controller.

This shows that the DIAYN discriminator trained at pretrained stage is a good

initializer for the skill controller. This transferred weight not only helped better

performance at the final step, but also helped robust training which has lower

variance.

20



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
step 1e6

0

200

400

600

800

Re
tu

rn

DDPG
URLB DIAYN
Original DIAYN
Same importance
Simple importance
DIAYN controller
Scratch controller

Figure 4.3: 2M steps finetuning results on Walker run task. State-agnostic methods
shows fast learning, but state-aware method achieves higher return at the end.

4.1.2 Comparison to Other URLB Methods

We evaluate how quickly the agent adapt to twelve downstream tasks in the same

setting to URLB [22], 2M pre-train steps and 100k fine-tune steps. Among our

proposed methods, as we have seen on the experiment above, same importance

method is the most sample-efficient. Therefore, we finetune pretrained DIAYN

with same importance for 3 seeds per task. We compared our method with 9

unsupervised RL algorithms including DIAYN with a vanilla fine-tuning. Expert

performance is a DDPG result after 2M steps of fine-tuning [20]. Other best is a

state-of-the-art among twelve unsupervised RL reported in URLB.

As shown in Table A.1, although the simple fine-tune method without any
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Figure 4.4: Results of finetuning for 100k on twelve tasks and three environments.
Returns are normalized by the expert score which is trained for 2M steps with
DDPG.

additional weight is applied, it outperforms every other methods in 9 out of 12 tasks.

Even for the tasks that other methods work better(Quadruped-stand, Jaco-reach-

bottom-right, Jaco-reach-top-right), proposed method just slightly underperforms.

Especially, it achieves an enormous improvement compared to the reported original

DIAYN. From this experiment, we can recognize how important the fine-tuning

method is for evaluating a skill discovery methods.
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Chapter 5

Conclusion

This work studies two unsupervised reinforcement learning methods through the

lens of state representation and efficient task adaptation. Skill mixing method

hypotheses that different skill converts a state into a different representation. Ad-

ditional state representation is derived by expanding skill space continuously by

mixing skills. The experiments show that this helps improve performance by a

high margin. The contrastive method shows that the temporal relationship be-

tween states can be learned with contrastive learning. It is possible for the agent

to directly adapt to the downstream task by iteratively updating the representa-

tions and policy. The experimental guarantee remains for future work.
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Appendix A

Miscellaneous

Table A.1: Result of fine-tuning for 1 × 105 frames after pre-training for 2 × 106

frames.

Domain Task Expert Other best URLB DIAYN Ours (same imp.)

Walker Flip 799 515±17 381±17 658±51
Run 796 439±34 242±11 537±22

Stand 984 923±9 860±26 936±11
Walk 971 828±29 661±26 917±23

Quadruped Jump 888 590±33 578±46 645±20
Run 888 465±37 415±28 558±43

Stand 920 840±33 706±48 719±158
Walk 866 721±56 406±64 845±74

Jaco bottom left 193 134±8 17±5 136±36
bottom right 203 122±4 31±4 119±39

top left 191 124±20 11±3 127±9
top right 223 140±7 19±4 138±42

A.1 Results

We compare our method same importance to expert which is trained by DDPG

with 2M steps from [20], other best which shows the best performance among 9
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unsupervised RL algorithms in URLB [22], and URLB DIAYN.

A.2 Hyperparameters

We present the best performing hyperparamter borrowed from URLB [22].

Table A.2: Hyperparameters in our experiments.

DDPG hyperparameter Value

Replay buffer capacity 106

Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 24
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames 2× 106

Number fine-tuning frames 1× 105

DIAYN hyperparameter value

Skill dim 16
Skill sampling frequency (steps) 50
Discriminator net arch. 512 → 1024 → 1024 → 16 ReLU MLP
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국문초록

지능형에이전트는자신의이전경험을활용하여새로운작업을해결하기위해일

련의적절한결정을내릴것으로예상된다. 이는 비지도강화학습체계와유사한

데, 에이전트는환경으로부터명시적인보상없이잠재적으로유용한행동들을학

습하거나환경에서정보를추출한후일반화된능력을갖추게된다. 그러나사전

학습단계에서어떻게간결하면서도풍부한상태표현을얻을것인지, 그리고미세

조정단계에서어떻게에이전트가작업에효율적으로적응할수있을지에관한주요

과제가남아있다. 이를위해본연구에서는두가지과제를모두해결하기위한두

개의서로다른방법을제안한다. 첫째, 발견된기술을혼합함으로써에이전트가

상태를변환하는방법에대한관점으로기술을해석하여샘플효율성을향상시킨다.

실험결과다양한혼합방법이최종성능에영향을미치는것으로나타났다. 둘째,

대조학습은어떤상태에서다른상태로의도달가능성에대한명시적인의미를갖는

시간적상태표현에핵심적인역할을한다. 에이전트가최적화될때주어진작업에

직접적응할수있는것으로나타났다.

주요어휘: 강화학습, 비지도학습, 표현학습, 사전학습

학번: 2021-29014
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