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Abstract 

Data-driven Soft Sensor 

Development for Multi-grade 

 and Time-varying Processes 
 

Min Jun Song 

School of Chemical and Biological Engineering 

The Graduate School 

Seoul National University 

 

The prediction of the qualities and properties of chemical products and reactor 

conditions during process operation is essential for chemical processes where real-

time online quality measurement is not available. In order to decrease off-

specification products and increase process efficiency, the prediction is required to 

be more accurate and rapid. Therefore, there has been a great effort to build an 

accurate and fast soft sensor for industrial chemical processes using first principles 

or machine learning regression methods. However, there exist several challenges 

which make it much more difficult to accurately predict qualities in industrial 

chemical processes. 

First, a prediction model needs to be able to deal with the high nonlinearity of 

process dynamics resulting from complex interactions between chemical species, 

chemical reactions, energy and mass transportations, and phase transitions. 

Additionally, the high nonlinearity makes the construction and interpretation of a 

soft sensor model significantly more difficult. Second, industrial chemical processes 

exhibit time-varying process dynamics. Many chemical processes are operated 
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alternately in multiple modes to satisfy fluctuating market demands. However, 

unsteady state operations including grade transition and startup result large settling 

time and overshoot. In most batch processes, furthermore, the dominant reaction 

taking place in the reactor is constantly changing as the reaction progresses and the 

concentrations of chemical species change. In addition, industrial chemical 

processes are subject to process drifts such as catalyst deactivation and fouling. The 

process drifts may lead to the model-plant mismatch and large discrepancy between 

the predictions from the trained soft sensor model and actual quality measurement. 

Therefore, in order to obtain more accurate and robust predictions, the 

aforementioned problems must be dealt with during modeling procedure. 

In this regard, this thesis proposes novel soft sensor development methods with 

improved accuracy and robustness by addressing modeling problems in industrial 

chemical processes. First, a hybrid soft sensor modeling framework for online 

quality prediction of polymer products from industrial polymerization process is 

proposed. When compared to conventional first principles models and data-only 

machine learning models, the proposed hybrid model provides more accurate 

prediction by combining prior process knowledge including reaction mechanisms 

and data-driven regression methods such as neural networks. Additionally, the 

generalizability of a machine learning prediction model is improved by applying the 

proposed hybrid modeling approach. The hybrid model has more robust prediction 

performance when the process undergoes grade changeover and unsteady state 

operation, compared to data-only machine learning models. 

Second, a time series-based just-in-time learning soft sensor modeling method 

combined with dynamic time warping is proposed. The process data obtained from 

a multi-grade or time-varying process shows multimodal distribution, which is 

difficult for a single global model to learn. Rather than training a global model with 

the full training dataset, a just-in-time learning model makes prediction based on a 

local model trained only with selected training samples which are similar to the query 



 

 iii 

sample, allowing a soft sensor to adapt to process changes. Additionally, the 

proposed model takes a time series as an input rather than a data point at a certain 

time in order to account for dynamic behavior of a process. The prediction 

performance of a just-in-time learning model is strongly affected by how to select 

similar samples among large database. The proposed modeling method utilizes 

dynamic time warping method in calculation of similarities between the query and 

stored data samples. Dynamic time warping is one of the most widely used 

synchronization methods for data sequences. Additionally, the similarity between 

two distinct data sequences can be calculated with dynamic time warping by 

stretching the sequences. 

The proposed modeling approach achieves two main contributions by combining 

just-in-time learning and dynamic time warping in soft sensor development for 

multi-grade and time-varying chemical processes. First, complex process dynamics 

is accounted in the proposed model by taking time series process data as an input. 

Second, more accurate selection of similar data sequences from the database is 

achieved by applying dynamic time warping in similarity calculation. The 

improvements in the prediction performance achieved by the proposed modeling 

approach are demonstrated using case studies of multi-grade processes.  

In addition, the effects of the model hyperparameters on the prediction 

performance are thoroughly investigated via simulation studies. As a result of the 

sensitivity analysis, the optimal input length is determined by the cross-correlation 

between the input and output variables. Furthermore, prediction accuracy and 

computational speed can be improved by applying the width constraint on the 

dynamic warping path. Therefore, this thesis provides hyperparameter-optimized 

just-in-time learning modeling approach combined with dynamic time warping by 

introducing width constraint on the warping path and calculating cross-correlations 

between the input and output.  

In summary, this thesis proposes novel soft sensor development methods with 
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improved prediction accuracy and generalizability for industrial chemical processes 

which are highly nonlinear and exhibit multi-grade or time-varying process 

dynamics. The proposed modeling approaches demonstrate improved modeling 

performance compared to conventional modeling methods when applied to 

simulation data and actual polymerization process data. 

 

Keywords: Soft sensor, Machine learning, Hybrid model, Just-in-time learning, 

Dynamic time warping 
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Chapter 1. Introduction 

 

1.1. Research motivation and previous works 

 

The quality variables of the chemical products provide essential information to 

determine not only the properties and grade of the product but also whether the 

product is off-specification or not. For example, the molecular characteristics of a 

thermoplastic polymer determines the mechanical properties and processability of 

the polymer product [1]. However, it is difficult to measure the quality variables of 

chemical and biological products online during the operation in most industrial 

processes because of the lack of real-time measurement technology or its high cost. 

Instead, offline laboratory analysis is conducted infrequently to measure the quality 

variables of a sample collected from the final product. However, infrequent product 

analysis imposes several challenges in process monitoring and control. First, there 

exists time lag between the analyzed product sample and the currently produced 

product, resulting in quality deviation. Second, many chemical processes are 

operated in multiple mode to produce multiple grades of products. Additionally, 

industrial processes exhibit time-varying process dynamics due to the process drifts 

such as catalyst deactivation and fouling. However, offline quality measurement has 

difficulty in capturing fast process changes due to its long time delay between each 

measurement. 

Therefore, there is a growing interest in the developments of soft sensors for 

various types of industrial processes. In earlier studies, most soft sensor models have 

been developed using first principles obtained from chemical and thermodynamic 

knowledge. Therefore, the first principles models provide robust predictions when 

process dynamics has already been thoroughly investigated and available. 

Additionally, the first principles models are easier to interpret compared to black-

box or data-driven models because the model prediction is the result of known 
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process dynamics. However, the first principles modeling approach is not suitable 

for some types of industrial processes. For instance, it is impossible to build a first 

principles model if precise chemical reaction mechanisms or interaction between 

chemical species are not available because of the lack of prior investigation. 

Furthermore, the model-plant mismatch where there exists a difference between 

model assumption and actual plant may result in large deviations in quality 

prediction. For instance, most of the first principles are derived from the assumptions 

that the interactions between chemical species are performed in ideal condition, such 

as perfect mixing. Lastly, the development of a first principles model for a large-

scale industrial process requires a lot of time and computations.  

Therefore, with the rapid growth of data storage and computer technologies, it has 

become more popular to build a data-driven prediction model using machine learning 

regression methods rather than to develop a soft sensor model using process 

knowledge. Data-driven approaches only require process and quality measurement 

data obtained from the sensors and laboratory analyses. Thus, a prediction model can 

be developed without prior process knowledge such as reaction kinetics and 

thermodynamic properties of chemical species. Soft sensor models based on latent 

variables methods such as principal component analysis (PCA) and partial least 

squares (PLS) have been developed for chemical processes [2-6]. Additionally, 

machine learning methods such as vector machines (SVM) [7-10] and Gaussian 

process regression (GPR) [11-15] have been applied to soft sensor developments. In 

recent years, soft sensors based on various types of neural networks, including radial 

basis function neural networks (RBFNNs) [16-21], fuzzy neural networks (FNNs) 

[22, 23], wavelet neural networks (WNNs) [24], fuzzy wavelet neural networks 

(FWNNs) [25], deep belief networks (DBNs) [26], and dilated convolution neural 

networks (DCNNs) [27], have demonstrated good prediction performance in MI 

prediction problems for polymerization processes.  

However, when it comes to industrial large-scale processes, there are several 
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challenges which make it significantly more difficult to build an accurate data-driven 

soft sensor model. First, process data variables obtained from the operation of 

industrial processes show highly nonlinear and complex relationships derived from 

numerous chemical reactions, which imposes difficulties in training and interpreting 

machine learning models. In order to build a soft sensor which can account for 

nonlinear dynamics, nonlinear regression methods including SVM, GPR, and neural 

networks have been widely applied to soft sensor development for chemical and 

biological processes [7-27]. However, these nonlinear machine learning models are 

susceptible to overfitting and require hyperparameter optimization to obtain 

optimized prediction performance.  

Second, most industrial processes have time-varying process dynamics derived 

from multiple operation modes and process drifts. The modeling performance of a 

global machine learning model trained using fixed training dataset can be severely 

deteriorated when the process dynamics change since data-driven regression models 

have inherently low extrapolation and generalization abilities. Therefore, a machine 

learning model that are able to continuously adapt to process changes have been 

developed for time-varying systems. For example, soft sensor models, including 

recursive PCA [28-30] and recursive PLS [31-33], that are updated iteratively with 

new measurement data have been developed to account for time-varying process 

dynamics in quality prediction. However, recursive models have difficulty in 

modeling chemical processes with rapidly changing dynamics because their 

adaptability are only guaranteed for slow time-varying dynamics. 

Therefore, aforementioned challenges in industrial-scale soft sensor developments 

need to be investigated and addressed for more accurate and robust predictions. In 

other words, there is an academic and industrial demands for soft sensor models with 

improved modeling and generalization performance that can account for time-

varying dynamics as well as nonlinear relationships between data variables.   
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1.2. Statement of contributions 

 

The main objective of the thesis is to propose novel soft sensor modeling 

approaches with improved prediction accuracy and generalizability for industrial 

processes by solving modeling problems stated in subsection 1.1. In order to 

accomplish the research objectives, two modeling approaches are proposed: hybrid 

soft sensor modeling and just-in-time learning soft sensor modeling based on 

dynamic time warping. 

The first work of this thesis, the hybrid soft sensor modeling approach for an 

industrial polymerization process, achieves quality prediction for styrene-

acrylonitrile polymer product with improved prediction accuracy and 

generalizability by combining mechanistic modeling and data-driven modeling 

approaches. The target process is a commercial polymerization process which 

produces multiple grades of styrene-acrylonitrile polymer products. Therefore, the 

process experiences frequent grade changeovers and operation condition changes, 

resulting in large deviations in product qualities. Furthermore, infrequent quality 

measurements make it more difficult to monitor and control the qualities of the 

products produced during unsteady states, which affects process efficiency and 

profitability negatively. 

In earlier studies, most soft sensors have been developed based solely on the first 

principles modeling approach or data-driven modeling approach. However, each 

modeling approach has its pros and cons. For instance, the first principles modeling 

approach provides more fundamental insight into the system and how the properties 

of the final products are determined. However, the model-plant mismatch and thus 

large prediction error would occur when the model assumptions are not applicable 

to the actual process because of the changes in the process dynamics. On the other 

hand, data-driven soft sensor models have been applied to various types of industrial 

processes and have demonstrated good prediction performance without prior process 
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knowledge, given sufficient measurement data. However, data-driven approaches 

are inherently susceptible to new data obtained outside training region and therefore 

have weak generalization ability.  

Therefore, a novel hybrid modeling approach which integrates advantages of the 

first principles approach and the data-driven approach is proposed to obtain a soft 

sensor model with improvements in both prediction accuracy and generalizability. 

The proposed hybrid model is constructed using a serial model structure where 

mechanistic modeling of the target process and polymerization reaction is performed 

first, followed by training MI prediction model based on black-box machine learning 

regression modeling methods. The proposed model is verified using multi-grade 

polymerization process data and its prediction performance is compared to the 

models based solely on first principles or data-driven approaches. As a result, the 

proposed model has achieved better prediction accuracy and robustness even when 

the target process suffers rapid and abrupt changes due to grade changeovers and 

process failures.  

The second work of this thesis, soft sensor modeling based on just-in-time learning 

and dynamic time warping, proposes a novel modeling framework which is able to 

address multi-grade and time-varying characteristics of industrial processes. It is 

very challenging to build an accurate global soft sensor for multi-grade processes 

because the process data exhibit multimodal distribution. Furthermore, already 

trained data-driven model’s prediction may deviate largely from actual measurement 

data when process dynamics changes along with new operation mode. For a soft 

sensor to address aforementioned challenges in quality prediction of multi-grade and 

time-varying processes, it requires adaptation ability to newly updated data.  

In the proposed modeling approach, three main contributions are achieved. First, 

the proposed model takes time series as an input by augmenting raw process data 

variables into time series segments in order to account for process dynamics. Second, 

dynamic time warping is implemented in calculating similarities between different 
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time series data, resulting in more appropriate training dataset for local model 

training in the just-in-time learning modeling. Third, the effects of the model 

parameters on the modeling performance are discussed and a soft sensor modeling 

approach with the hyperparameter optimization is proposed. As a result of 

aforementioned contributions, the proposed model has demonstrated improved 

modeling performance for frequently changing processes when verified using 

several case studies of chemical processes. 

In summary, this thesis contributes to industrial-scale soft sensor modeling by 

proposing novel modeling methods with improved prediction accuracies and 

generalization abilities.  

 

1.3. Outline of the thesis 

 

The remainder of this thesis is organized as follows. In Chapter 2, the research 

background and preliminaries necessary for the later developments of the proposed 

modeling approaches are provided, including just-in-time learning and dynamic time 

warping.  

Chapter 3 proposes a novel hybrid modeling method that combines first principles 

and machine learning modeling approaches for MI prediction in an industrial 

styrene-acrylonitrile polymerization process. The improved prediction accuracy of 

the proposed hybrid model is demonstrated using about 17 months of process 

measurement data, compared to those of classical first principles models and data-

only machine learning models. 

In Chapter 4, just-in-time soft sensor modeling approach combined with dynamic 

time warping is proposed. It is very challenging to build an accurate soft sensor 

model for a process with multi-grade characteristics and time-varying process 

dynamics. In the proposed model, a local soft sensor model is trained using only data 

samples that are similar to the query sample, which makes the prediction model adapt 
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to process changes. Additionally, data sequences are used as a model input and the 

similarity between two different sequences are calculated using dynamic time 

warping. The proposed modeling approach’s modeling performance is evaluated 

using simulation case studies. As a result, the proposed model has demonstrated 

improved prediction accuracy and robustness compared to classical Euclidean 

distance-based just-in-time learning soft sensor models. Additionally, the effects of 

the modeling parameters on prediction performance are analyzed and the modeling 

method with correlation-based parameter optimization is proposed.  

Finally, Chapter 5 provides concluding remarks derived from the research results 

introduced in the previous chapters, and suggests future works for further 

improvement of modeling performance.  
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Chapter 2. Background and Preliminaries 

 

This chapter introduces fundamental background and preliminaries required for 

the novel soft sensor modeling approaches proposed in later chapters, including just-

in-time learning modeling method, dynamic time warping, and machine learning 

regression models.  

 

2.1. Just-in-time learning modeling 

 

Just-in-time learning modeling approach is a modeling method developed to 

accurately model systems having time-varying process dynamics and multimodal 

process data. Most classical modeling approaches aim to build a global model which 

can explain general process dynamics of a system using entire training dataset. 

However, when it comes to processes which have multiple operation modes or time-

varying process dynamics, it is very challenging for a single global model to 

accurately simulate entire process dynamics. Therefore, instead of modeling a whole 

process with a single model, just-in-time learning modeling approach trains a local 

model for every query data in an online manner using data samples similar to the 

query sample.  

By training a local model rather than a global model, just-in-time learning models 

have two main advantages in process modeling. First, a new model is trained every 

time new query data is obtained. Therefore, just-in-time learning models have 

adaptability to process changes. On the other hand, the prediction of a data-driven 

global model deviates significantly from actual measurement data when the 

operating condition is outside training region because of the low extrapolation ability.  

Second, a local model is trained using only similar samples from the database. 

Therefore, the required time for training a machine learning model is much shorter 

when compared to using an entire training dataset. Additionally, the training samples 
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are selected from the database consisting of past process data, which indicates that 

just-in-time learning soft sensors have ready-to-use memories of previous operating 

conditions. On the other hand, other adaptive modeling approaches, including 

recursive and moving window approaches, either have slow adaptability or past 

process data are rarely considered.  

Figure 2.1 and Figure 2.2 illustrate the differences between basic algorithms of 

classical global learning approaches and just-in-time learning approaches. As shown 

in Figure 2.1, the classical global learning approaches train an offline model using 

fixed historical database. Then, the predictions are made using the trained offline 

global model. Therefore, the prediction performance of a classical global model is 

only guaranteed for training region. The prediction model is not updated even if the 

query sample is obtained outside the training region. 

On the contrary, as shown in Figure 2.2, just-in-time learning modeling for soft 

sensors consists of three main steps. First, when a new query sample is obtained from 

the online sensors, similarities between the query sample and samples in the 

historical database are calculated. Next, the fixed number of most similar historical 

samples are selected and used to train a local prediction model. Lastly, the prediction 

for the query sample is made using the local model trained during the second step. 

After above three steps are performed, the trained local model is discarded and the 

historical database is updated using actual measurement data. Since a new model is 

trained every time a new query data is obtained, just-in-time learning models are able 

to adapt to process changes. Therefore, just-in-time learning soft sensors have been 

applied to various chemical processes and demonstrated good prediction 

performance and adaptabilities [12, 13, 34-46]. 
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Figure 2.1. Basic algorithm of classic global learning approach. 
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Figure 2.2. Basic algorithm of just-in-time learning approach. 



 

 １２ 

One of the distinct features of the just-in-time learning models is selection of 

similar samples from historical database. Since a local model is trained using the 

dataset of similar samples only, the modeling performance of just-in-time learning 

models is drastically affected by the way of how to calculate similarities different 

data samples. 

One of the most widely used similarity metrics in the just-in-time learning models 

is the Euclidean distance because of its simplicity and short calculation time. The 

Euclidean distance calculates the distance between two different data points without 

transforming data variables. The Euclidean distance, 𝑬𝑫, between a query sample 

𝒙𝑞 and a sample 𝒙𝑛 from the database is calculated as in (2.1).  

 

 𝑬𝑫(𝒙𝑞 , 𝒙𝑛) = √∑(𝑥𝑞,𝑖 − 𝑥𝑛,𝑖)
2

𝑛𝑣𝑎𝑟

𝑖=1

 (2.1) 

 

where 𝑛𝑣𝑎𝑟 is the number of variables of the data vector 𝒙, and 𝑥𝑞,𝑖 is the 𝑖-th 

variable of the vector 𝒙𝑞. 

Additionally, another similarity metric where accounting for not only distance 

between the points but also the angle between them is applied to similarity 

calculation in just-in-time learning models. The cosine value of the angle rather than 

the angle itself is used in similarity calculation, which is calculated as in (2.2).  

 

 cos(𝜃𝑞𝑛) =
〈𝒙𝑞 , 𝒙𝑛〉

‖𝒙𝑞‖2
‖𝒙𝑛‖2

 (2.2) 

 

where 𝜃𝑞𝑛 is the angle between the query data sample 𝒙𝑞 and data sample 𝒙𝑛 of 

the historical database. In just-in-time learning modeling, only data samples having 

positive cosine values to the query sample are considered in similar sample selection 
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because the negative cosine values indicate that two samples are significantly 

different.  

In contrast to above metrics where the information from two data points is 

considered only, similarity calculation methods based on statistical information of 

multiple data points have been also applied in just-in-time learning modeling. 

Among statistical similarity measures, the Mahalanobis distance and Kullback-

Leibler divergence are the most widely studied and applied in just-in-time learning 

models.  

The Mahalanobis distance is a measure of the distance between a data point and a 

distribution. The Mahalanobis distance, 𝑴𝑫, between a point 𝒙 and a distribution 

𝑷 is calculated as in (2.3). 

 

 𝑴𝑫(𝒙,𝑷) = √(𝒙 − 𝜇)T𝑆−1(𝒙 − 𝜇) (2.3) 

 

where 𝜇 and 𝑆 are the sample mean and covariance matrix of the distribution 𝑷, 

respectively. Additionally, the Mahalanobis distance between two data points, 𝒙 

and 𝒚 can be calculated with respect to a distribution 𝑷 as in (2.4). 

 

 𝑴𝑫(𝒙, 𝒚|𝑷) = √(𝒙 − 𝒚)T𝑆−1(𝒙 − 𝒚) (2.4) 

 

Another statistical similarity metric is Kullback-Leibler divergence which is also 

known as relative entropy. The Kullback-Leibler divergence measures dissimilarity 

between two different distributions. The Kullback-Leibler divergence, 𝑲𝑳𝑫 , 

between two continuous probability distributions, 𝑷 and 𝑸, is calculated as in (2.5). 

 

 𝑲𝑳𝑫(𝑷||𝑸) = ∫ 𝑝(𝑥)
log(𝑝(𝑥))

log(𝑞(𝑥))

∞

−∞

 (2.5) 
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where 𝑝 and 𝑞 are the probability densities of 𝑷 and 𝑸, respectively. In order to 

calculate the Kullback-Leibler divergence, the probability distributions of variables 

need to be known in advance. Therefore, the transformation of the process variables 

into the latent variables whose probability distributions are expressed by Gaussian 

distribution is first performed in just-in-time learning soft sensors based on the 

Kullback-Leibler divergence [45-47].  

 

2.2. Dynamic time warping 

 

Dynamic time warping is one of the most widely used synchronization methods 

for different data sequences. The distance between two sequences with different 

lengths is unable to measure using classic distance measures including the Euclidean 

distance. Sequences need to be synchronized first before measuring the distance. 

Dynamic time warping synchronizes data sequences to identical length by stretching 

them. Additionally, the distance between synchronized sequences can be measured. 

With its ability to synchronize data sequences with different lengths, dynamic time 

warping has been applied to various types of dynamic time series problems, 

including handwriting recognition [48], gesture recognition [49], traffic speed 

prediction [50], state of health estimation [51], fault detection [52], and uneven batch 

trajectory synchronization [53].  

Dynamic time warping finds the optimal warping path 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘} of 

length 𝑘, which minimize cumulative distance between warped data sequences. For 

two time series of different lengths, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}  of length 𝑚  and 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑛}  of length 𝑛 , the warping path 𝑊  must satisfy the following 

constraints. First, the boundary conditions at the initial and final points must be 

satisfied.  
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 𝑤1 = (1,1) (2.6) 

 𝑤𝑘 = (𝑚, 𝑛) (2.7) 

 

where 𝑤𝑖 = (𝑎, 𝑏)  indicates that 𝑋𝑎  corresponds to 𝑌𝑏  in the path 𝑊 . Second, 

the warping path must be continuous. If 𝑤𝑖 = (𝑎, 𝑏)  and 𝑤𝑖+1 = (𝑎’, 𝑏’) , then 

𝑎′ − 𝑎 ≤ 1 and 𝑏′ − 𝑏 ≤ 1. Lastly, the warping path must be monotonic in order 

to prevent the warping path from moving backward in time. Therefore, if 𝑤𝑖 =

(𝑎, 𝑏)  and 𝑤𝑖+1 = (𝑎’, 𝑏’) , then 𝑎′ − 𝑎 ≥ 0  and 𝑏′ − 𝑏 ≥ 0 . The above two 

constraints can be combined and expressed as follows. 

 

 0 ≤ 𝑎′ − 𝑎 ≤ 1 (2.8) 

 0 ≤ 𝑏′ − 𝑏 ≤ 1 (2.9) 

 

which indicates that 𝑤𝑖+1  can have only three values, including (𝑎 + 1, 𝑏) , 

(𝑎, 𝑏 + 1)  or (𝑎 + 1, 𝑏 + 1) . However, there exist numerous warping paths 

satisfying the above constraints. Therefore, dynamic time warping finds the warping 

path with minimum cumulative distance using dynamic programming. Finally, the 

distance, 𝑫𝑻𝑾, between two data sequences 𝑋 and 𝑌 calculated using dynamic 

time warping is defined as follows. 

 

 𝑫𝑻𝑾(𝑋, 𝑌) = min
𝑊

∑𝑑𝑖

𝑘

𝑖=1

 (2.10) 

 

where 𝑑𝑖  is the distance between 𝑋(𝑎)  and 𝑌(𝑏)  when a warping path passes 

through 𝑤𝑖 = (𝑎, 𝑏). The distance 𝑑𝑖 is calculated using the Euclidean distance as 

in (2.11).  
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 𝑑𝑖 = ‖𝑋(𝑎) − 𝑌(𝑏)‖2 (2.11) 

 

When data sequences become longer, the performance of dynamic time warping 

algorithm suffers from drastically growing computational requirement and outliers 

in the sequences. For instance, a single outlier in a sequence can severely affect 

warping path, resulting in excessive stretching of the sequences. Under the 

circumstances of excessive warping, the dynamics and characteristics of the original 

data sequences are too distorted to measure similarity precisely. Therefore, another 

constraint on the warping path has been introduced in order to prevent excessive 

calculation and stretching in dynamic time warping. Limiting the maximum warping 

window width to 𝛿 reduces the number of possible warping paths and makes the 

warping paths closer to diagonal connecting 𝑤1 = (1,1)  and 𝑤𝑘 = (𝑚, 𝑛) . As a 

result, the computational requirement for finding the optimal warping path is reduced 

and excessive stretching of the sequences is prevented. Figure 2.3 and Figure 2.4 

illustrate the differences between the alignments of two different time series using 

dynamic time warping with and without the warping window width constraint. The 

example time series used in Figure 2.3 and Figure 2.4 are based on sine functions 

of different frequencies and delays. Without warping window width constraint, DTW 

stretches both data sequences excessively in order to synchronize them as much as 

possible as shown in Figure 2.3. As a result, the warped time series perfectly matches 

each other. On the other hand, only the nearby peaks in original time series are 

synchronized when the maximum warping window width is constrained to a fixed 

value, as shown in Figure 2.4. In order to prevent excessive warping, peaks that are 

apart from each other are not synchronized.  
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Figure 2.3. Example of warping two data sequences using DTW without 

warping window width constraint. 
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Figure 2.4. Example of warping two data sequences using DTW under warping 

window width constraint. 
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2.3. Data-driven regression models 

 

In this section of Chapter 2, the preliminaries and background of the regression 

models applied in the proposed modeling approaches in later chapters for the 

reader’s understanding. In the proposed modeling approaches of this thesis, a 

prediction model is trained based on widely studied data-driven regression models. 

A total of four regression models are introduced including partial least squares (PLS), 

support vector machine (SVM), and Gaussian process regression (GPR). 

 

2.3.1. Partial Least Squares 

 

Partial least squares (PLS) model is one of the latent variable models where raw 

data variables are projected onto the lower-dimensional latent variable space. By 

transforming original variables into the lower-dimensional latent variables that are 

independent to each other, two main advantages are achieved. First, the dimensions 

of the process data obtained from industrial processes are very high in general, which 

requires more calculation and time in data preprocessing and training a model. The 

computational requirement can be reduced by using the latent variables which are 

fewer than raw process variables. Second, process variables are correlated with each 

other. The multicollinearity inherent in the process data makes it more difficult to 

interpret the modeling result. Additionally, the modeling performance of a linear 

model can be drastically reduced when data variables are highly correlated. PLS 

method transforms highly correlated variables into the linearly independent variables, 

addressing the multicollinearity-related problems.  

While principal component regression (PCR), another most widely used 

regression model based on a latent variable method, only transforms the input 

variables into the latent variables, PLS transforms both the input and output variables. 

For a matrix of process variables 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑛] ∈ ℝ𝑛×𝑝 and a matrix of the 
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quality variables 𝒀 = [𝒚1, 𝒚2, … , 𝒚𝑛] ∈ ℝ𝑛×𝑞, PLS decomposes 𝑿 and 𝒀 so that 

the covariance between the projections of them are maximized. The decompositions 

of the 𝑿 and 𝒀 matrices are expressed as follows. 

 

 𝑿 = 𝑻𝑷T + 𝑬 (2.12) 

 𝒀 = 𝑼𝑸T + 𝑭 (2.13) 

 

where 𝑻 and 𝑼 are scores that are the projections of the 𝑿 and 𝒀, respectively. 

𝑷  and 𝑸  are orthogonal loading matrices and 𝑬  and 𝑭  are residual matrices. 

There are several algorithms, including nonlinear iterative PLS algorithm (NIPALS) 

[54] and SIMPLS [55], to find score and loading matrices. Since detailed 

descriptions of the statistical algorithms are beyond the scope of this thesis, the 

details on algorithms are not provided and can be found in the literature [54-56]. 

With its simplicity and ability to address multicollinearity, PLS has been widely 

applied in process monitoring and soft sensing of a variety of chemical processes [3-

6, 31-33].   

 

2.3.2. Support vector machine 

 

Support vector machine (SVM) is a machine learning algorithm developed based 

on Vapnik-Chervonenkis (VC) theory and has been demonstrated good modeling 

performance in both classification and regression problems [57-59]. When SVM 

algorithm is applied to a regression problem, it is also referred as support vector 

regression (SVR). While classical modeling methods employ the empirical risk 

minimization in general, SVM employs structural risk minimization. In contrast to 

the empirical risk minimization where a learning algorithm minimizes a loss function 

of the empirical risk, the structural risk minimization considers both minimization of 

the training error and overall generalization performance [60]. Therefore, an SVM 
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model is obtained by balancing data fitting and the model’s complexity, which 

addresses the overfitting problem common in machine learning algorithms. A 

general empirical risk minimization problem can be expressed as in (2.14). 

 

 ℎ̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ

(
1

𝑛
∑𝐿(ℎ(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

) (2.14) 

 

where ℎ and 𝐿 are hypothesis and loss function, respectively. On the other hand, 

a general structural risk minimization problem optimizes both the training error and 

weight regularization simultaneously as in (2.15).    

 

 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

(
1

2𝑛
∑𝐿(ℎ(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

+
𝜆

2
∑𝜃𝑗

2

𝑚

𝑗=1

) (2.15) 

 

where 𝜃  and 𝜆  are model parameter and regularization parameter, respectively. 

Smaller 𝜆 relaxes regularization, and if 𝜆 is zero then the model is obtained by 

only minimizing the training error. On the other hand, larger 𝜆 regularize model 

parameters more tightly while reducing the model’s fitting to the training dataset. 

A linear 𝜖-insensitive SVR problem, which is to find the optimal linear function 

𝑓(𝑥) = 𝑥𝑇𝜃 + 𝑏 whose error is less than or equal to a margin 𝜖 while regularizing 

the model parameter 𝜃, can be formulated using the structural risk minimization 

problem as follows. 
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min
𝜃,𝜉,𝜉∗

𝐽(𝜃, 𝜉, 𝜉∗) =
1

2
𝜃T𝜃 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

subject to 

𝑦𝑖 − (𝑥𝑖
T𝜃 + 𝑏) ≤ 𝜖 + 𝜉𝑖   

(𝑥𝑖
T𝜃 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖

∗  

0 ≤ 𝜉𝑖   

0 ≤ 𝜉𝑖
∗ 

(2.16) 

 

where 𝜉  and 𝜉∗  are slack variables and 𝐶 ≥ 0  is the box constraint. The 

Lagrange dual formulation of the above linear 𝜖 -insensitive SVR problem is 

expressed as in (2.17).  

 

 

min
𝛼,𝛼∗

𝐽(𝛼, 𝛼∗) =
1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑥𝑖

T𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝜖 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑛

𝑖=1

+ ∑𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑛

𝑖=1

 

subject to 

∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

= 0 

0 ≤ 𝛼𝑖 ≤ 𝐶 

0 ≤ 𝛼𝑖
∗ ≤ 𝐶 

(2.17) 

 

where 𝛼  and 𝛼∗  are the Lagrangian multipliers. The above dual formula for a 

linear 𝜖 -insensitive SVR problem can be extended to a nonlinear problem by 

introducing a nonlinear kernel function, 𝐾(𝑥𝑖 , 𝑥𝑗). The Lagrangian dual formulation 

of a nonlinear 𝜖 -insensitive SVR problem is formulated by replacing the inner 

product with a nonlinear kernel function as follows. 
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min
𝛼,𝛼∗

𝐽(𝛼, 𝛼∗) =
1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝜖 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑛

𝑖=1

+ ∑𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑛

𝑖=1

 

subject to 

∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

= 0 

0 ≤ 𝛼𝑖 ≤ 𝐶 

0 ≤ 𝛼𝑖
∗ ≤ 𝐶 

(2.18) 

 

The above optimization problems can be solved using quadratic programming (QP) 

techniques, such as decomposition methods and sequential minimal optimization 

(SMO) [5, 61-63].  

 

2.3.3. Gaussian process regression 

 

Gaussian process regression (GPR), also known as Kriging in geostatistics field, 

is data-driven regression method based on an assumption that the output variable is 

expressed as a regression function with a Gaussian prior distribution [64, 65]. In 

contrast to other black-box data-driven regression models, a GPR model provides 

the probabilistic information of its prediction.  

A Gaussian process (GP) is defined as a collection of the finite number of random 

variables which have a joint Gaussian distribution [65]. Consider the training dataset 

of the input 𝑿 = {𝒙𝒊} and output 𝒚 = {𝑦𝒊}. Since the variables of a GP have the 

joint Gaussian distribution, the mean and covariance functions of a GP, {𝑓(𝒙)|𝒙 ∈

𝑿}, can be expressed as follows. 
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 𝑚(𝒙) = 𝔼[𝑓(𝒙)] (2.19) 

 𝑘(𝒙, 𝒙′) = 𝔼[(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))] (2.20) 

 

where 𝑚(𝒙)  and 𝑘(𝒙, 𝒙′)  are the mean function and covariance function, 

respectively. A linear regression model, 𝑔(𝒙) can be formulated using explicit basis 

functions, ℎ(𝒙) and a GP, 𝑓(𝒙). 

 

 𝑔(𝒙) = 𝑓(𝒙) + ℎ(𝒙)T𝜷 (2.21) 

 

where 𝜷 is the basis function coefficient vector and 𝑓(𝒙)~𝐺𝑃(0, 𝑘(𝒙, 𝒙′)), which 

indicates that the mean function of 𝑓(𝒙)  is zero. The probability of 𝑦𝑖  given 

𝑓(𝒙𝒊) and 𝒙𝒊 can be expressed as in (2.22).  

 

 𝑃(𝑦𝒊|𝑓(𝒙𝒊), 𝒙𝒊)~𝑁(𝒚𝒊|ℎ(𝒙𝒊)
T𝜷 + 𝑓(𝒙𝒊), 𝜎

2) (2.22) 

 

where 𝜎2 is the noise variance assumed that the noise of the regression function, 

𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜖 , follows Gaussian distribution. For a new test data 𝒙𝑛𝑒𝑤 , the 

predictive distribution is a Gaussian distribution with mean and variance expressed 

as follows.  

 

 𝒚̂(𝒙𝑛𝑒𝑤) = 𝒌T(𝒙𝑛𝑒𝑤)𝑲−𝟏𝒚 (2.23) 

 𝜎𝒚̂
2(𝒙𝑛𝑒𝑤) = 𝑐(𝒙𝑛𝑒𝑤, 𝒙𝑛𝑒𝑤) − 𝒌T(𝒙𝑛𝑒𝑤)𝑲−1𝒌(𝒙𝑛𝑒𝑤) (2.24) 

 

where 𝒌 = [𝑐(𝒙𝑛𝑒𝑤 , 𝒙1),… , 𝑐(𝒙𝑛𝑒𝑤, 𝒙𝑛)] is the vector of covariance between the 

newly obtained data and the training data. 𝑲 is the covariance matrix where 𝑲𝑖𝑗 =

𝑐(𝒙𝑖, 𝒙𝑗) . The covariance function, 𝑐(𝒙𝑖 , 𝒙𝑗) , is approximated using a kernel 
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function in general. A detailed description of GPR and the derivations of probability 

distributions can be found in the literature [64, 65]. 
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Chapter 3. Hybrid Modeling Approach 

for Industrial Polymerization Process1 

 

3.1. Introduction 

 

The melt index (MI), also known as the melt flow index (MFI), of a thermoplastic 

polymer is a critical quality variable that affects the flow and mechanical properties 

of the polymer product. MI is defined as the weight of melted polymer samples 

flowing through a die over a specified period of time, typically 10 min [66-69]. Thus, 

MI is inversely proportional to the viscosity of melted polymer and is used as an 

indirect measure of molecular weight. MI is used to determine the grade of a polymer 

product and whether it is off-spec or not for the majority of commercial 

polymerization processes. Therefore, the monitoring and control of MI is essential 

for the operation of a polymerization process. However, due to the lack of online 

measurement technology, MI cannot be measured in real-time during polymerization. 

Instead, MI is typically measured offline in a laboratory only once every 2 or 4 hours, 

which is much less frequent than the measurement of process variables such as 

reactor temperature, pressure, and flow rate. MI measurements are delayed and 

infrequent, posing challenges for real-time quality control of products. Additionally, 

polymerization processes produce a continuous stream of different grades of 

polymer products. The process suffers from significant settling time and overshoot 

during grade changeover, complicating the monitoring and control of polymer 

properties. As a result, it is critical to estimate MI as accurately and rapidly as 

                                                      

1 This chapter is an adapted version of M. J. Song, S. H. Ju, S. Kim, S. H. Oh, and J. M. 

Lee, “Hybrid modeling approach for polymer melt index prediction”, Journal of Applied 

Polymer Science, 2022, vol. 139, no. 41, e52987. 
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possible from the easy-to-measure process variables and to control based on the 

estimation in order to minimize off-specification products and maximize process 

efficiency.  

Numerous studies have been conducted over the last several decades to infer the 

MI of a polymer product using readily available process variables. Previously, 

mechanistic models derived from first principles such as material and energy 

balances and reaction kinetics, as well as empirical models derived from 

experimental data, were developed primarily on the basis of the relationship between 

MI and molecular weight or viscosity. As a result, models for instantaneous and 

cumulative MI inferences have been constructed using the logarithm of the linear 

combination of the process variables [66, 67, 70, 71]. In addition, MI prediction 

models have been proposed using a mathematical modeling [72] and a continuum 

mechanics method [73]. While carefully developed mechanistic models make 

accurate MI predictions, the complex correlations and high nonlinearities inherent in 

industrial polymerization processes make developing accurate mechanistic models 

more difficult and time-consuming.  

Recent advances in computer and data technologies have enabled the availability 

of high-dimensional process measurement data, allowing for more extensive 

research on data-driven soft sensor models for MI prediction. Only historical 

operation data obtained from the process and laboratory quality measurements is 

used to build an inference model in data-driven models. Thus, data-driven models 

are significantly easier to develop than mechanistic models, as they do not require 

prior knowledge of the process, such as reaction mechanisms and relationships 

between variables. In order to address the multicollinearity and computational load 

associated with high-dimensional process data, PLS method which projects both 

process and quality data onto the lower-dimensional latent space has been widely 

applied for MI prediction [4-6, 33]. However, the PLS model’s performance in 

predicting MI is limited because it is based on linear relationships between variables, 



 

 ２８ 

whereas polymerization processes are highly nonlinear.  

Rather than that, nonlinear machine learning modeling methods such as SVM [5, 

6], least squares SVM [8-10], relevance vector machines [74], and GPR [11-15] have 

been used. In addition, MI inference models based on various types of artificial 

neural networks (ANNs) [75, 76] have been developed including radial basis 

function neural networks (RBFNNs) [16-21], fuzzy neural networks (FNNs) [22, 23], 

wavelet neural networks (WNNs) [24], fuzzy wavelet neural networks (FWNNs) 

[25], deep belief networks (DBNs) [26], and dilated convolution neural networks 

(DCNNs) [27]. While the aforementioned nonlinear machine learning soft sensor 

models demonstrated good prediction performance for industrial polymerization 

processes, there are still academic and industrial demands for a prediction model 

with improved performance and generalization ability.  

Rather than developing a model solely through mechanistic or data-driven 

modeling, there has been a growing interest in developing a hybrid model through 

the combination of prior process knowledge and data-driven modeling methods, 

particularly in chemical and biochemical engineering [77]. Hybrid modeling offers 

several advantages over traditional mechanistic and machine learning modeling 

techniques, including increased prediction accuracy, improved calibration properties, 

and enhanced extrapolation properties. In the field of chemical engineering, hybrid 

models based on neural networks and first-principles calculations have been 

developed and demonstrated improved modeling performance for a polymerization 

process [78], fed-batch bioreactor [79, 80], continuous stirred tank reactor (CSTR) 

[81], hydrocracking unit [82], and fluidized catalytic bed reactor (FBR) [83]. 

In this chapter, a hybrid modeling approach for predicting MI in an industrial 

polymerization process is proposed. The proposed modeling approach is based on 

the idea of enhancing prediction and generalization performance through the 

integration of prior process knowledge and machine learning modeling methods. The 

proposed hybrid model is constructed in a serial structure, beginning with a white-
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box submodel ending with a black-box submodel. First, the white-box submodel, 

which is based on the mechanistic modeling method, calculates information about 

the current state of the process and the polymer product. White-box submodel’s 

information is then passed along with the process measurement data to the black-box 

submodel, which is a machine learning MI inference model used to predict the MI 

of the polymer product. The inclusion of polymerization information from the white-

box submodel is critical for more accurate prediction of polymer quality. The 

proposed approach is evaluated in terms of prediction performance using a 

commercial styrene-acrylonitrile (SAN) polymerization process in South Korea and 

compared to the performances of data-only soft sensor models and mechanistic soft 

sensor models. In addition, to demonstrate that the proposed hybrid modeling 

approach’s improvement in prediction performance is not limited to a single black-

box modeling method, a total of five machine learning methods are used as the black-

box submodel. The models considered in this study are the most widely used 

regression models in machine learning, including PLS, decision tree, SVM, ANN, 

and GPR. This chapter demonstrates that the proposed hybrid modeling approach 

outperforms conventional machine learning modeling approaches in terms of 

prediction accuracy. 

The remainder of this chapter is organized as follows. Subsection 3.2 briefly 

describes the target process and the data and variables obtained from the process. In 

Subsection 3.3, the overall structure of the proposed hybrid model is first introduced 

and the modeling procedures for the white-box and black-box submodels are 

presented. Finally, Subsection 3.4. contains the modeling results and a comparison 

of the proposed hybrid modeling approach to the traditional data-only modeling 

methods.  
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3.2. Process and data description 

 

Styrene-acrylonitrile resin is a thermoplastic polymer that is widely used in a 

variety of industrial products due to its high resistance to heat and chemicals. The 

purpose of this paper is to predict the MI of a SAN polymer product that is 

commercially produced in South Korea. In contrast to commonly produced SAN 

resin, α -methylstyrene is added as a third monomer during the target process in 

order to increase the polymer’s heat resistance. Thus, the polymerization reaction 

involves a total of three monomers: styrene, acrylonitrile, and α -methylstyrene. 

Figure 3.1 shows the simplified schematic of the SAN polymerization process which 

consists of two reactors, two devolatilizers, and a pelletizer. First, three different 

types of monomers are mixed with the initiator and the monomers and solvent 

recovered from the devolatilizers. The reaction mixture is then subjected to 

sequential free radical bulk polymerization in the liquid phase in the first and second 

reactors. Due to the high reactor temperature and exothermic polymerization reaction 

in the second reactor, a portion of the reaction mixture is vaporized. The vaporized 

molecules are transferred to a tank connected to the reactor, where they are 

condensed and reintroduced. Additionally, a small amount of monomer-initiator 

mixture is fed to the tank to keep the monomer concentrations in the second reactor 

high. Consequently, the second reactor produces more polymers. After achieving the 

monomer conversion of about 65% in the reactors, the reaction mixture is conveyed 

to the devolatilizers for drying. The reaction mixture, excluding polymer particles, 

is vaporized and recycled in the devolatilizers. The final step is to pelletize the 

polymer products and transport them to the storage silos. The SAN polymerization 

process produces two distinct grades of SAM polymer products with varying MI 

values, mechanical and chemical properties.  
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Figure 3.1.5 Schematic of SAN polymerization process. 
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The measurement data obtained from the process contains two types of variables: 

process variables and quality variables. Process variables are readily measurable 

online via sensors and provide information about the current operating condition of 

the process. Every hour, a total of 27 process variables are measured in the SAN 

polymerization process. The process measurement includes temperature, pressure, 

and level of the reactors and tank. Additionally, the flowrate measurements of 

monomers, initiator, and recycled stream are available. Finally, the required current 

for pump operation in the process is measured. On the other hand, quality variables 

are typically measured offline every 4 hours via laboratory analysis, which is much 

less frequent than process variables. MI and color of polymer samples collected from 

the pelletizer are considered to be quality variables. If one of the quality variables in 

a polymer product does not meet the specification standard, it is considered off-

specification. MI of a SAN polymer sample is measured in a laboratory analysis 

where molten polymer samples are flowing through a die over 10 min. Process and 

quality measurement data were collected for approximately 17 months from January 

2, 2020 to May 23, 2021 for the research. After removing mismeasured and 

shutdown data, a total of 2285 MI measurement data are available for modeling. 

 

3.3. Proposed hybrid modeling approach 

 

In this subsection, a hybrid modeling procedure for MI prediction in the 

commercial SAN polymerization process described in Subsection 3.2 is proposed. 

First, the structure of the proposed model is introduced. Then, the procedures for 

modeling white-box and black-box submodels are discussed.  
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3.3.1. Hybrid model structure 

 

A hybrid MI inference model is proposed in this study. It consists of a white-box 

submodel that is a mechanistic model and a black-box submodel that is a machine 

learning model. A hybrid model composed of a white-box and a black-box submodel 

can be structured in one of two ways: parallel or serial [77]. As illustrated in Figure 

3.2, the proposed hybrid model is constructed on a serial structure, with the output 

of the white-box submodel serving as an input to the black-box submodel. In this 

study, the disadvantages of two modeling approaches are compensated by adopting 

the serial structure. While the polymerization mechanisms of radical bulk 

polymerization have been extensively studied in the past, the relationships between 

MI and process or kinetic variables remain unknown or inaccurate because of the 

deviations between reality and assumptions, imposing difficulties in the accurate 

prediction of MI using first principles. The data-driven black-box regression model 

compensates for the low accuracy of white-box MI prediction model derived from 

the model-plant mismatch. On the other hand, the black-box models have low 

extrapolation abilities, which is compensated by considering process knowledge in 

first principles models.  

In the proposed hybrid model, the white-box submodel calculates polymerization-

related variables such as molecular weights, polymerization rates, and degree of 

polymerization using process knowledge such as reaction kinetics and mass and 

energy balances. The white-box submodel predictions and process data are then used 

as inputs to the black-box submodel that predicts the value of MI. The output of the 

white-box submodel provides information about the process and its current state to 

the black-box submodel, which improves prediction accuracy and generalizability 

when compared to a black-box model based solely on measurement data. 
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Figure 3.2.6 Proposed hybrid model structure. 
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3.3.2. White-box modeling 

 

The mechanistic modeling procedure of the white-box submodel is based on the 

dynamic modeling of a modified SAN polymerization process [84]. For dynamic 

simulation of the polymerization process, Aspen Dynamics is used to apply the 

segment-based polymer non-random two-liquid (polymer-NRTL) activity 

coefficient model based on the local composition model developed by Chen [85], the 

group contribution method and the method of moments. The nomenclature for the 

modeling is listed in Table 3.1. The white-box submodel employs a segment-based 

approach, in which each polymer chain in the system is defined as a sequence of 

segments or repeating units. A polymer’s segments are made of several functional 

groups. For substances whose thermophysical properties have not been instigated are 

thus unavailable, the properties of the segments such as heat capacity and density are 

calculated by the Van Krevelen group contribution method and the functional group 

properties. Additionally, the properties of a polymer can be calculated by examining 

the polymer segments. UNIFAC, another group contribution method, is used to 

estimate the binary interaction parameters of polymer-NRTL. The UNIFAC group 

contribution method is a method for predicting liquid-phase nonelectrolyte activity 

coefficients in nonideal liquid mixtures [86]. Using group contribution methods, the 

phase equilibria of the SAN polymerization system are calculated using the poylmer-

NRTL activity coefficient model and the Soaves-Redlich-Kwong (SRK) cubic 

equation of state.  
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Table 3.1. Nomenclature for white-box modeling. 

Symbol Description 

𝐼 Initiator 

𝑆 Solvent 

𝑅 ⋅ Primary radicals 

𝑀𝑖 Monomer of type 𝑖 

𝑃𝑛
𝑖 

Live polymer chain of length 𝑛 having an active segment of 

type 𝑖 

𝐷𝑛 Dead polymer chain of length 𝑛 

𝐷𝑛
𝑖= 

Dead polymer chain of length 𝑛 having a terminal double 

bond of type 𝑖 

𝑘 Reaction rate constant 

𝑘0 Pre-exponential factor 

𝐸𝑎 Activation energy 

𝛥𝑉 Activation volume 

𝑇𝑟𝑒𝑓 Reference temperature for reaction rate constant 

𝑥𝑖 Segment-based liquid phase mole fraction 

𝑟𝑖 Degree of polymerization 

𝑛𝐼 Number of moles 

𝑚𝐼 Ratio of the free volume of polymer 

𝜙𝐼 Segment mole fraction 

𝜏𝑖𝑗 Binary interaction parameter 

𝛼𝑖𝑗 Non-randomness factor 

𝛾𝐼 Activity coefficient of the species 𝐼 
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In the polymer-NRTL model, the Gibbs energy of mixing for a polymer solution 

is defined as the sum of entropy of mixing and the enthalpy of mixing. 

 

 
Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔

𝑅𝑇
=

Δ𝐻𝑚𝑖𝑥𝑖𝑛𝑔
𝑁𝑅𝑇𝐿

𝑅𝑇
−

Δ𝑆𝑚𝑖𝑥𝑖𝑛𝑔
𝐹𝐻

𝑅
 (3.1) 

 

The preceding equation for the Gibbs energy of mixing may be modified by 

substituting the entropy of mixing and the enthalpy of mixing from the Flory-

Huggins and NRTL theories. 

 

 

Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔

𝑅𝑇
= ∑𝑛𝑠

𝑠

∑ 𝑥𝑗𝐺𝑗𝑠𝜏𝑗𝑠𝑗

∑ 𝑥𝑗𝐺𝑗𝑠𝑗
+ ∑𝑛𝑝

𝑝

∑𝑟𝑖,𝑝
𝑖

∑ 𝑥𝑗𝐺𝑗𝑖𝜏𝑗𝑖𝑗

∑ 𝑥𝑗𝐺𝑗𝑖𝑗

+ ∑𝑛𝐼 ln(𝜙𝐼)

𝐼

 

(3.2) 

 

Likewise, the activity coefficient of each species can be expressed as the sum of 

two contributions from the Flory-Huggins and NRTL theories. 

 

 ln(𝛾𝐼) = ln(𝛾𝐼
𝑁𝑅𝑇𝐿) + ln (𝛾𝐼

𝐹𝐻) (3.3) 

 

where, 

 

 ln(𝛾𝐼
𝐹𝐻) = ln (

𝜙𝐼

𝑥𝐼
) + 1 − 𝑚𝐼 ∑(

𝜙𝐽

𝑚𝐽
)

𝐽

 (3.4) 

 

For the solvent and polymer activity coefficients, ln(𝛾𝐼
𝑁𝑅𝑇𝐿)  is expressed as 

follows.  
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ln(𝛾𝐼=𝑠
𝑁𝑅𝑇𝐿) =

∑ 𝑥𝑗𝐺𝑗𝑠𝜏𝑗𝑠𝑗

∑ 𝑥𝑗𝐺𝑗𝑠𝑗

+ ∑
𝑥𝑗𝐺𝑗𝑠

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
(𝜏𝑠𝑗 −

∑ 𝑥𝑘𝐺𝑘𝑠𝜏𝑘𝑠𝑘

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
)

𝑗

 

(3.5) 

 

ln(𝛾𝐼=𝑝
𝑁𝑅𝑇𝐿) = ∑𝑟𝑖,𝑝

𝑖

(
∑ 𝑥𝑗𝐺𝑗𝑖𝜏𝑗𝑖𝑗

∑ 𝑥𝑘𝐺𝑘𝑖𝑘

+ ∑
𝑥𝑗𝐺𝑗𝑖

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
(𝜏𝑖𝑗 −

∑ 𝑥𝑘𝐺𝑘𝑗𝜏𝑘𝑗𝑘

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
)

𝑗

) 

(3.6) 

 

The binary parameter, 𝜏𝑖𝑗, and non-randomness factor, 𝛼𝑖𝑗, are considered to be 

dependent on the temperature.  

 

 𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗

𝑇
+ 𝑒𝑖𝑗 ln(𝑇) + 𝑓𝑖𝑗𝑇 (3.7) 

 𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗(𝑇 − 273.15) (3.8) 

 

where 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗, 𝑑𝑖𝑗, 𝑒𝑖𝑗, and 𝑓𝑖𝑗 are the NRTL parameters. 

The terpolymerization reaction of the SAN process is free radical bulk 

polymerization. Thus, chain initiation, propagation, chain transfer, terminal double 

bond polymerization, and termination reaction mechanisms are considered in 

modeling the white-box submodel. In chain initiation, initiator decomposition and 

thermal initiation of styrene monomers resulting from high reaction temperature are 

considered to produce primary radicals which lead to primary chain initiation 

reaction. Then, live polymer chains propagate by reacting with monomers.  
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Initiator decomposition 𝐼 → 2𝑅 ⋅ (3.9) 

Styrene thermal initiation 3𝑀1 → 𝑅 ⋅ (3.10) 

Chain initiation 𝑅 ⋅ +𝑀𝑖 → 𝑃1
𝑖 (3.11) 

Propagation 𝑃𝑛
𝑖 + 𝑀𝑗 → 𝑃𝑛+1

𝑗
 (3.12) 

 

Chain transfer reactions to monomer, solvent, and polymer have the following 

mechanisms. While chain transfer to small molecules such as monomers and solvent 

decreases the molecular weight of the polymer, chain transfer to polymer produces 

a long chain branch in the polymer molecule. 

 

Chain transfer to monomer 𝑃𝑛
𝑖 + 𝑀𝑗 → 𝐷𝑛 + 𝑃1

𝑗
 (3.13) 

Chain transfer to solvent 𝑃𝑛
𝑖 + 𝑆 → 𝐷𝑛 + 𝑅 ⋅ (3.14) 

Chain transfer to polymer 𝑃𝑛
𝑖 + 𝐷𝑚 → 𝐷𝑛 + 𝑃𝑚

𝑗
 (3.15) 

 

In terminal double bond reaction, growing polymer chains react with dead 

polymer chains that contain terminal double bonds, resulting in the formation of long 

chain branches.  

 

Terminal double 

bond polymerization 
𝑃𝑛

𝑖 + 𝐷𝑚
𝑗=

→ 𝑃𝑛+𝑚
𝑗

 (3.16) 

 

Finally, polymer growth stops when one of the following termination reactions 

occur.  

 

Termination by combination 𝑃𝑛
𝑖 + 𝑃𝑚

𝑗
→ 𝐷𝑛+𝑚 (3.17) 

Termination by disproportionation 𝑃𝑛
𝑖 + 𝑃𝑚

𝑗
→ 𝐷𝑛 + 𝐷𝑚

=  (3.18) 
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It is assumed that the reaction rate constants of all chemical reactions follow the 

Arrhenius equation. 

 

 𝑘 = 𝑘0𝑒
[−

𝐸𝑎+Δ𝑉𝑃
𝑅

(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)]
 

(3.19) 

 

The NRTL parameters and kinetic parameters including 𝑘0 , 𝐸𝑎  and Δ𝑉  are 

fitted in an offline manner using molecular weight distribution data obtained during 

the process, except for the parameters which are already available from previous 

studies. For instance, the kinetic parameters for the SAN polymerization reaction, 

whose values are not available, are initially guessed from the results of previous 

copolymerization studies and fitted using process data. 

The chain length distribution has always been most demanded data, since it has 

direct effect on the mechanical and fluid properties of polymer products. The method 

of moments is one of the most widely used techniques for estimating the average 

properties of a polymer. While calculating the whole chain length distribution 

throughout the polymerization process is time-consuming, the method of moments 

is significantly faster. The moments of the chain length distribution are defined as in 

(3.20). 

 

 𝜆𝑛 = ∑ 𝑘𝑛[𝐷𝑘]

∞

𝑘=1

 (3.20) 

 

Due to the fact that the number of live polymer chains is significantly fewer than 

the number of dead polymer chains due to their high reactivity, the moments of the 

dead chains are assumed to be equal to the moments of the bulk polymer chains. The 

moments can be used to compute the average polymer properties such as the number-

average and weight-average degrees of polymerization, as well as polydispersity 

index (PDI). For example, the degree of polymerization on a number-average and 
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weight-average basis is computed as 𝐷𝑃𝑛 = 𝜆1/𝜆0  and 𝐷𝑃𝑤 = 𝜆2/𝜆1 . The 

kinetics and moments are used to calculate a total of 17 polymerization-related 

output variables for the white-box submodel. The descriptions of the output variables 

of the white-box submodel are listed in Table 3.2. 
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Table 3.2. Output variables of the white-box submodel. 

Symbol Description 

𝜆𝑛 𝑛𝑡ℎ moment of chain length distribution, 𝑛 = 0,1,2 

𝜆1
𝑖  Mole flow of segment of type 𝑖 

𝐹𝑖 Mole fraction of segment of type 𝑖 

𝐷𝑃𝑛 Number-average degree of polymerization 

𝐷𝑃𝑤 Weight-average degree of polymerization 

𝑀𝑊𝑛 Number-average molecular weight 

𝑀𝑊𝑤 Weight-average molecular weight 

𝑃𝐷𝐼 Polydispersity index 

𝑅𝑝 Polymerization rate 

𝐿𝐶𝐵 Number of long chain branches 

𝛥𝐹𝐿𝐶𝐵 Long chain branching frequency 
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The majority of the white-box output variables represent the molecular structure 

of the polymer product. These molecular characteristics of the polymer are known 

to affect the polymer’s properties and processability. For instance, mechanical and 

chemical properties such as transparency, tensile strength, cold resistance, and 

chemical resistance are all dependent on the molecular weight and its distribution 

[1]. In addition, long chain branching of the polymer affects its tensile and impact 

strengths, as well as processability characteristics such as bubble stability and 

extrusion torque [1]. Furthermore, it has been extensively examined and established 

that the MI of a thermoplastic polymer is inversely proportional to its molecular 

weight [67, 69]. For instance, a relationship between MI and molecular weight has 

been developed for high density polyethylene [87]. 

 

 MI = 𝑎(𝑏𝑀𝑊𝑤 + 𝑐𝑀𝑊𝑛)𝑑 (3.21) 

 

where 𝑎 , 𝑏 , 𝑐 , and 𝑑  are constant model coefficients. Additionally, a simpler 

relationship between MI and molecular weight has been developed based on the 

Pouiselle Equation [67].  

 

 MI−1 = 𝐺𝑀𝑊𝑤
𝑥 (3.22) 

 

where 𝐺  and 𝑥  are constant model coefficients. Another modeling study 

established the relationship between MI and process variables using the linear 

combination of logarithms [72, 88]. For instance, a theoretical model for predicting 

MI in a high density polyethylene reactor has been developed based on the reactor 

temperature and ratio of monomer concentrations [1].  
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ln(MI) = 𝛽 + 𝛼1 𝑙𝑛 (
[𝐻2]

[𝑀1]
) + 𝛼2 𝑙𝑛 (

[𝑀2]

[𝑀1]
)

+ 𝛼3 𝑙𝑛 (
[𝑀3]

[𝑀1]
) + 𝛼4 𝑙𝑛([𝑅]) + 𝛼5 𝑙𝑛(𝑇) 

(3.23) 

 

where 𝛼𝑖 and 𝛽 are model parameters and [𝑀𝑖], [𝐻2], and [𝑅] represent the 

concentrations of the 𝑖𝑡ℎ monomer species, hydrogen, and cocatalyst, respectively. 

In conclusion, MI has relationships with the white-box output variables acquired 

from the mechanistic modeling. Therefore, the white-box output variables aid in 

more precise prediction of MI in the proposed hybrid modeling approach.  

 

3.3.3. Black-box modeling 

 

Both the measurement data for the process variables and the output from the 

white-box submodel were utilized as predictors in the black-box submodel to 

estimate MI using machine learning modeling methods. The modeling procedure for 

the black-box submodel consists of two steps: data preprocessing and model training. 

All variables, including process and quality variables, as well as the white-box output, 

were normalized first to have zero means and unit variances during the data 

preprocessing step. Then, because the process and MI measurements use different 

sampling times, the input variables to the black-box submodel were averaged over a 

4-hour period. Finally, the averaged input variables were subjected to principal 

component analysis (PCA) in order to obtain the newly constructed variables that 

are linearly independent of one another. The process variables that comprise 

measurement data are highly correlated. For instance, there are four temperature 

measurements for the first reactor, including the average reactor temperature. In 

addition, the output variables of the white-box submodel, such as the weight-average 
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and number-average molecular weights, are highly correlated. Thus, by applying 

PCA in the data preprocessing step, multicollinearity between the input variables is 

eliminated. Additionally, the computational cost of training a machine learning 

model was reduced by using only 10 principal components (PCs) out of a total for 

44 PCs as inputs, which makes sense given that the first 10 PCs account for 

approximately 93.1% of the variance in the data, as illustrated in Figure 3.3.  

After preprocessing the data, a MI prediction model was trained using machine 

learning. Approximately 80% of the sample data obtained from the process was used 

for training, while remaining 20% was utilized to evaluate the model’s performance. 

The black-box submodel in this work was constructed using five popular machine 

learning modeling methods: PLS, decision tree, SVM, ANN, and GPR. Table 3.3 

summarizes the features and hyperparameters of the black-box submodels. To avoid 

further linear transformation of the variables, the PLS modeling technique omits the 

PCA preprocessing step. Instead of PCs, the PLS model predicts MI using 10 linearly 

independent PLS components. To determine the optimal approach to split nodes, the 

binary decision tree model was trained using the standard classification and 

regression tree (CART) algorithm. As a result, the tree structure with the lowest mean 

squared error (MSE) was obtained for prediction. For the kernel functions of the 

SVM and GPR models, Gaussian and exponential kernels were used, respectively. 

The ANN model structure is based on a multi-layer perceptron with an activation 

function of hyperbolic tangent. The weights of the ANN network were initialized by 

Glorot initialization, and each layer’s initial bias was set to 0. Finally, the ANN 

model was trained for 1000 iterations using the LBFGS algorithm. Except for the 

PLS model, the hyperparameters of the black-box models presented in Table 3.3 

were tuned using Bayesian optimization. As a result, for each model, the set of 

hyperparameters with the minimum 5-fold cross validation error was obtained.  
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Figure 3.3.7 Scree plot of variances explained by PCs. 
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Table 3.3. Machine learning models used for training of the black-box 

submodel. 

Model Property Hyperparameter 

PLS 
Projection of data onto 

linear latent space 

Number of PLS  

components 

Decision tree Binary regression Minimum leaf size 

SVM 
Nonlinear regression 

using Gaussian kernel 

Box constraint 

Kernel scale 

Width of the 

𝜖-insensitive band 

ANN Multi-layer perceptron 

Regularization strength 

Number of hidden layers 

Number of nodes 

GPR 
Exponential covariance 

kernel function 

Initial value of the noise 

standard deviation 

 

 

 

 

 

 

3.4. Results and discussions 
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To compare the prediction performance of the proposed modeling approach to that 

of a conventional data-driven approach, five hybrid models based on the proposed 

approach and five data-only models were trained using PLS, decision tree, SVM, 

ANN, and GPR. The modeling procedure for a data-only model is identical to the 

procedure described in Subsection 3.3.3, except that the model inputs are limited to 

measurement data for process variables. Over a 4-hour period, moving averages of 

the normalized process variables were taken and then linearly transformed into the 

10 PCs. In addition, the data-only models optimized the same set of hyperparameters 

using Bayesian optimization. 

A total of 2285 data samples from the industrial plant were available for this study. 

A total of 457 data samples, or 20% of the whole dataset, were randomly chosen as 

a testing dataset for performance comparison. On the testing dataset, the models’ 

prediction abilities were evaluated using four statistical indices: root mean squared 

error (RMSE), mean absolute percentage error (MAPE), Theil’s inequality 

coefficient (TIC), and standard deviation of absolute error (STD).  

 

 RMSE = √
1

𝑁
∑(𝑦𝑘 − 𝑦̂𝑘)2

𝑁

𝑘=1

 (3.24) 

 MAPE = 100 ×
1

𝑁
∑ |

𝑦𝑘 − 𝑦̂𝑘

𝑦𝑘
|

𝑁

𝑘=1

 (3.25) 

 TIC =
√∑ (𝑦𝑘 − 𝑦̂𝑘)2𝑁

𝑘=1

√∑ 𝑦𝑘
2𝑁

𝑘=1 + √∑ 𝑦̂𝑘
2𝑁

𝑘=1

 (3.26) 

 STD = √
1

𝑁 − 1
∑(𝑒𝑘 − 𝑒̅)2

𝑁

𝑘=1

 (3.27) 
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where 𝑁 is the number of test samples, 𝑒𝑘 = 𝑦𝑘 − 𝑦̂𝑘, 𝑒̅ =
(∑ 𝑒𝑘

𝑁
𝑘=1 )

𝑁
, and 𝑦𝑘, 𝑦̂𝑘 

represent the measured and predicted value of MI, respectively. The RMSE and 

MAPE measure the prediction accuracy of a model. The TIC evaluates the agreement 

between the trained model and the process. The TIC value becomes zero when the 

predicted and measured sequences are identical. Smaller STD values indicate that a 

model is more stable.  

Table 3.4 summarizes the prediction performance of the hybrid and data-driven 

models on the testing dataset, as well as their differences. It is clear that hybrid 

models outperform data-only models in all modeling methodologies. PLS models 

perform the lowest in terms of prediction accuracy, whereas GPR models perform 

the best in terms of prediction accuracy for both hybrid and data-only modeling 

methods. Due to the highly nonlinear and dynamic nature of the polymerization 

process, PLS models have difficulty in capturing the process behavior, resulting in 

the worst prediction performance. However, the hybrid PLS model outperforms the 

data-only PLS model by 5.442%, 3.922%, 5.427%, and 5.434% in terms of RMSE, 

MAPE, TIC, and STD. The improved prediction performance of the hybrid PLS 

model suggests that mechanistic knowledge derived from the white-box submodel 

can be advantageous even when using linear modeling approaches. The binary 

decision tree models predicted MI more accurately than the PLS models, and the 

hybrid modeling approach also improved the prediction accuracy of the tree model, 

with percentage decreases in the RMSE, MAPE, TIC and STD of 8.787%, 6.325%, 

8.784%, and 8.782%, respectively. 
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Table 3.4. MI prediction performances of all trained models on the testing 

dataset. 

Modeling method RMSE MAPE TIC STD 

PLS 

Data-only 0.3600 2.948 0.01918 0.3604 

Hybrid 0.3404 2.832 0.01814 0.3408 

(Difference) -5.444% -3.922% -5.427% -5.434% 

Decision 

tree 

Data-only 0.3509 2.871 0.01869 0.3512 

Hybrid 0.3200 2.689 0.01705 0.3204 

(Difference) -8.787% -6.325% -8.784% -8.782% 

SVM 

Data-only 0.2845 2.413 0.01517 0.2846 

Hybrid 0.2544 2.157 0.01357 0.2545 

(Difference) -10.56% -10.59% -10.56% -10.59% 

ANN 

Data-only 0.2854 2.415 0.01521 0.2857 

Hybrid 0.2553 2.179 0.01361 0.2556 

(Difference) -10.56% -9.745% -10.57% -10.55% 

GPR 

Data-only 0.2637 2.212 0.01406 0.2640 

Hybrid 0.2366 1.994 0.01261 0.2368 

(Difference) -10.30% -9.873% -10.30% -10.30% 
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Figure 3.4.8 Prediction performances of data-only and hybrid models. 
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Nonlinear machine learning methods such as SVM, ANN, and GPR perform 

significantly better than PLS and decision tree models in terms of prediction 

performance. Additionally, the improvements in the prediction performance are 

greater for the nonlinear machine learning approaches. For instance, the RMSE, 

MAPE, TIC, and STD of the hybrid GPR model are 0.2366, 1.994, 0.01261, and 

0.2368, respectively, resulting in a reduction of 10.30%, 9.873%, 10.30%, and 

10.30%, respectively, when compared to the data-only GPR model. 

Figure 3.4 shows visual comparisons of the measured and predicted MI values of 

the testing dataset for each modeling approach. The red curves with circles represent 

predictions from trained hybrid and data-only models, whereas the black curves with 

circles represent the measured MI values. Apparently, the predictions of the hybrid 

models correspond more closely with the measurements than the data-only models’ 

forecasts do. The testing data samples with a sample number greater than 424 were 

collected when the process experienced rapid changes in operating conditions and 

process failures, resulting in the creation of off-spec polymer products. For instance, 

during polymerization, the process’s temperature control system failed for almost 19 

hours. In such unsteady and unstable circumstances, precise MI prediction is critical 

for polymer quality control in order to minimize economic losses caused by off-spec 

products. 

Table 3.5 summarizes the prediction performance of the hybrid and data-driven 

models under unsteady states using testing data samples 424-457. The prediction 

performance on the unsteady testing dataset is lower than the prediction performance 

on the overall testing dataset. Since the number of data samples obtained under 

unsteady states is not large enough to learn from, the data-driven models exhibit 

lower prediction accuracy. Additionally, the operating condition during the unsteady 

states is changing rapidly, imposing difficulties in training the data-driven models. 

However, with the exception of the PLS model, the disparities in prediction 

performance between the data-only and hybrid models are much larger in the 
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unsteady condition. For example, the RMSE, MAPE, TIC, and STD of the GPR 

models differ by -20.30%, -21.45%, -20.16%, and -19.58%, respectively. This is also 

true for the remaining three machine learning models: decision tree, SVM, and ANN. 

The results from the unsteady state testing dataset reveal that the benefits of the 

proposed hybrid modeling technique not only increase prediction accuracy but also 

aid in achieving higher degree of generality in predicting MI.  

Additionally, Figure 3.5 illustrates the measured and predicted MI values in a 

two-dimensional space. When the points are dispersed about the 𝑦 = 𝑥  line, the 

model and process are said to be in good agreement. For example, the plot of the 

hybrid GPR model that is most consistent with the process demonstrates that the 

points on the plot are close to 𝑦 = 𝑥 line than the points on the other models. On 

the other hand, the points on the plots of data-only models are more widely scattered 

around the plane.  

Figure 3.6 illustrates the prediction errors for the data-only model and hybrid 

model. The blue solid lines with circles indicate the prediction errors of the data-only 

models, whereas the red dashed lines with circles represent the prediction errors of 

the hybrid models. As illustrated in Figure 3.6, the prediction errors of the hybrid 

models are closer to zero than those of the data-only models. In summary, the hybrid 

models outperform the data-only models in terms of prediction accuracy. 

Furthermore, the GPR models demonstrated the best prediction performance with 

the smaller number of hyperparameters compared to other data-driven models. 
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Table 3.5. MI prediction performances of all trained models on the testing 

dataset under unsteady state. 

Modeling method RMSE MAPE TIC STD 

PLS 

Data-only 0.5981 5.329 0.03343 0.1621 

Hybrid 0.5624 5.269 0.03150 0.1532 

(Difference) -5.962% -1.130% -5.788% -5.461% 

Decision 

tree 

Data-only 0.4513 3.955 0.02525 0.1225 

Hybrid 0.4000 3.552 0.02242 0.1091 

(Difference) -11.36% -10.20% -11.24% -10.96% 

SVM 

Data-only 0.3542 2.964 0.01984 0.0963 

Hybrid 0.2663 2.175 0.01491 0.0721 

(Difference) -24.83% -26.63% -24.84% -25.13% 

ANN 

Data-only 0.3857 3.451 0.02159 0.1048 

Hybrid 0.2706 2.320 0.01517 0.0739 

(Difference) -29.86% -32.76% -29.73% -29.49% 

GPR 

Data-only 0.3263 2.644 0.01826 0.0882 

Hybrid 0.2601 2.077 0.01458 0.0709 

(Difference) -20.30% -21.45% -20.16% -19.58% 
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Figure 3.5.9 Parity plot of measured and predicted MI values of data-only and 

hybrid models. 
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Figure 3.6.10 Prediction errors of all trained models on the testing dataset (a) 

PLS (b) decision tree (c) SVM (d) ANN (e) GPR. 
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Additionally, two mechanistic MI prediction models were developed in order to 

compare the accuracy of their predictions. First, mechanistic model is developed 

based on the relationship between MI and weight-average molecular weight as in 

(3.22). Due to the lack of molecular weight measurement data for the SAN 

polymerization process, the weight-average molecular weight derived from the 

white-box submodel was used for modeling. The model parameters were determined 

using 1828 training data samples. 𝐺  and 𝑥  have respective parameter values of 

4.0315 × 1010 and −1.9143. Another mechanistic model was developed on the 

basis of the linear combination of the logarithms of the monomer concentration ratio 

and the temperature, as in (3.23). Since the concentrations of monomers in the 

reactors are unavailable, the inputs to the model were adjusted. Instead of monomer 

concentrations, the ratio of flowrates of monomer feed streams was used as a model 

input. In addition, temperatures of both the first and second reactors served as input 

variables. The modified mechanistic model for the SAN polymer is finally defined 

as follows.  

 

 ln(MI) = 𝛽 + 𝛼1 𝑙𝑛 (
[𝑀2]

[𝑀1]
) + 𝛼2 𝑙𝑛 (

[𝑀3]

[𝑀1]
) + 𝛼3 𝑙𝑛(𝑇𝑎𝑣𝑔) (3.28) 

 

where 𝑇𝑎𝑣𝑔 is the average temperature of the two reactors. The trained parameter 

values are −23.226, −0.608427, 0.31785, and 5.4202 for 𝛽, 𝛼1, 𝛼2, and 𝛼3, 

respectively. 

Table 3.6 provides a summary of the predictions made by the two mechanistic 

models. In comparison to data-driven models, the predictions of mechanistic models 

are significantly less reliable.  
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Table 3.6. MI prediction performances of mechanistic models on the testing 

dataset. 

Input variables RMSE MAPE TIC STD 

MWw 0.6296 5.097 0.03362 0.6299 

Ratio of monomer 

flowrates and 

reactor temperature 

0.4180 3.570 0.02229 0.4184 
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In addition, Figure 3.7 depicts the outcomes of two mechanistic models’ 

predictions on the testing dataset, where there are significant differences between the 

predictions and measurements. One of the main reasons for the low prediction 

accuracy of mechanistic models is that they were designed based on assumptions 

that are unsuitable for actual industrial plants. For instance, polymer samples are 

assumed to have constant density in the mechanistic model whose input is weight-

average molecular weight [67]. The other mechanistic model assumes that the 

structures of the polymer samples are comparable and determined by the 

instantaneous operating conditions [88]. However, a variety of polymers with 

different structures and properties are produced in real polymerization processes. As 

a result, the predictions of mechanistic models are less accurate than those of the 

data-driven and hybrid models. A cumulative MI prediction model has been 

developed from the instantaneous model given in (3.23) for mixed polymer samples 

with different MI [88]. However, the cumulative model requires residence time of a 

polymer at each reactor, which is impossible to measure in industrial plants. In 

summary, the proposed hybrid models outperform mechanistic models and 

conventional data-only machine learning models in terms of prediction performance 

and generalizability.  
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Figure 3.7.11 Prediction performances of mechanistic models based on molecular 

weight (above) and monomer flowrate ratios (below). 
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Chapter 4. Just-in-time Learning Modeling 

 Approach Combined with Dynamic Time Warping2 

 

4.1. Introduction 

 

There is an increasing market need in the chemical sector for the manufacturing 

of a variety of chemical products with specific applications. To satisfy fluctuating 

demands of the market, many chemical processes produce multiple grades of 

products with distinct qualities within the same facility. For example, thermoplastic 

polymer products are manufactured in a variety of grades with varying chemical and 

mechanical properties, such as melt index, tensile strength, and transparency [1, 89, 

90]. Due to the frequent grade transitions in multi-grade operations, fast changes in 

operating conditions are unavoidable. As a result, large settling times and overshoots 

in product quality occur during process transitions, resulting in off-specification 

products. Additionally, online measurements of the quality of chemical products are 

not available in most industrial processes. Therefore, a soft sensor model with high 

prediction accuracy is necessary for quality monitoring and control of multi-grade 

processes. 

There are two main types of soft sensor modeling approaches: mechanistic 

modeling and data-driven modeling. The mechanistic models require process 

knowledge, including reaction mechanisms and thermodynamic properties. However, 

development of accurate mechanistic models for multi-grade processes is difficult 

due to the process’s strong nonlinearity and time-varying dynamics.  

                                                      

2 This chapter is an adapted version of M. J. Song, S. H. Ju, and J. M. Lee, “Soft sensor 

development based on just-in-time learning and dynamic time warping for multi-grade 

processes”, Korean Journal of Chemical Engineering, accepted. 
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Data-driven approaches, as opposed to mechanistic modeling approaches, utilizes 

simply process data and quality measurements to construct a soft sensor. Due to the 

rapid growth of data technology in recent decades, it has become possible to collect 

massive quantities of high-dimensional process data from industrial processes. In 

order to construct soft sensor models for the quality prediction of chemical processes, 

multiple data-driven modeling approaches have been implemented. Latent variable 

methods such as principal component analysis (PCA) [91-93] and partial least 

squares (PLS) [5, 6, 94-97], which transform process variables into linearly 

independent latent variables, are among the most common data-driven modeling 

approaches. Additionally, machine learning modeling approaches based on support 

vector machines (SVM) [5, 6, 98], Gaussian process regression (GPR) [99-101], 

artificial neural network (ANN) [5, 102, 103], and long short-term memory (LSTM) 

network [104, 105] have been used to predict the quality of chemical and 

biochemical processes. 

However, multi-grade process modeling presents various issues that are difficult 

for a single global model to address. First, one grade’s operating conditions are 

distinct from those of other grades. As the number of product grades increases, it 

becomes more challenging for a single soft sensor to precisely mimic all process 

variables for each grade. When estimating the quality of a new product grade that 

was not included in the training dataset, for instance, a model’s prediction 

performance could be drastically reduced. Furthermore, industrial processes exhibit 

time-varying dynamics due to the drift of process characteristics such as catalyst 

deactivation, instrument degradation, and fouling. These process drifts result in the 

gradual degradation of the prediction performance of a soft sensor model. The wide 

disparity between the amount of samples of each grade poses an additional difficulty 

for training a global soft sensor model. To build an accurate model of a soft sensor, 

sufficient samples of each grade are necessary. However, the measurement data from 

a specific grade may be very limited because the operating mode changes based on 
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market demands. Due to the short duration of a grade changeover, only a small 

number of measurement samples are available for simulating the transient dynamics. 

Therefore, numerous investigations have been conducted to build soft sensors that 

can account for multi-grade and time-varying characteristics of chemical processes. 

One approach is to iteratively update a soft sensor model with new measurement 

data. Examples include recursive PCA [28-30] and recursive PLS [31-33], which are 

based on latent variables method. While recursive models have demonstrated 

enhanced prediction performance for systems with slow time-varying dynamics, 

they are not suitable for multi-grade chemical processes where abrupt and rapid 

changes in operating conditions occur during grade changeovers. 

In recent years, just-in-time learning (JITL) soft sensors have been used to a 

variety of chemical processes and have exhibited good prediction performance with 

various data-driven modeling methods [12, 13, 34-47, 89, 90]. In the JITL 

framework, a local model is trained online only using the most similar historical data 

samples to the query sample. Thus, the similarity measurement employed in JITL 

modeling has a substantial effect on the performance of a model. One of the most 

widely used metrics for calculating the similarity between two samples is the 

Euclidean distance. Additionally, the information regarding the angle between two 

samples was combined with the Euclidean distance to determine similarity [40]. JITL 

soft sensors have embraced additional similarity metrics, including the Mahalanobis 

distance [43, 44] and the Kullback-Leibler divergence [45-47]. However, temporal 

correlations inherent in process data are not considered in the computations of 

similarity described above. The process data from industrial chemical processes 

exhibit highly nonlinear, complicated, and temporally correlated dynamics. In order 

to build an accurate JITL soft sensor for multi-grade chemical processes, a similarity 

measurement that takes temporal correlations of process variables into account is 

required. 

In this chapter, a JITL soft sensor modeling framework where the similarity 
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between two multivariate time series data is calculated using dynamic time warping 

(DTW) is proposed. DTW is a similarity measurement method for two different data 

sequences [106, 107]. The similarity between two time series of different lengths can 

be calculated using DTW by stretching or compressing a times series to match 

another. In recent years, DTW has been utilized for a variety of dynamic time series 

problems, including handwriting recognition [48], gesture recognition [49], traffic 

speed prediction [50], state of health estimation [51], fault detection [52], and batch 

trajectory synchronization [53].  

Three main contributions are accomplished in the proposed DTW-based JITL 

modeling approach. First, the process dynamics and temporal correlations in the 

process data are considered by training a machine learning model with time series 

data as opposed to data points. Previous studies have shown that the prediction 

performance of latent variable models and machine learning models can be improved 

by augmenting input data with time-lagged data [108, 109]. Second, the ability of 

selecting the most relevant time series from the historical database is improved by 

utilizing DTW as a similarity measurement. Third, the implications of the DTW path 

constraint and input-output cross-correlation on the modeling performance are 

discussed and a DTW-based JITL soft sensor modeling approach with the 

hyperparameter optimization is proposed. The prediction performance of the 

proposed DTW-based JITL soft sensor is evaluated with three multi-grade dynamic 

simulation studies and compared to that of the conventional JITL method based on 

the Euclidean distance. 

The remainder of this chapter is structured as follows. In Subsection 4.2, a DTW-

based JITL soft sensor modeling method for multi-grade processes is proposed. 

Subsection 4.3 provides the results of sensitivity analysis of the hyperparameters of 

the proposed modeling approach. In Subsection 4.4, a DTW-based JITL modeling 

approach with the optimized model hyperparameters is proposed and the modeling 

results is discussed. 
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4.2. DTW-based JITL modeling approach 

 

In this subsection, a JITL soft sensor modeling method for multi-grade processes 

is developed by applying DTW to calculating similarities between data sequences. 

There are two main advantages of the proposed modeling approach. First, the data 

sequence is used as a model input in order to consider process dynamics and temporal 

correlations in the process data. By augmenting the input variables with time-lagged 

data, the modeling performance of a data-driven model for a dynamic system may 

be increased. Second, the similarity between two data sequences is measured using 

DTW. The similarity measurements introduced in Section 2, including DTW, are 

summarized in Table 4.1. The Euclidean distance and angle between two data 

samples are easier to calculate, but temporal correlations in the data are ignored. The 

statistical methods, the Mahalanobis distance and Kullback-Leibler divergence, 

require the probability information of the variables. DTW measures distance 

between two data sequences without any probabilistic information or transformation 

of variables. Additionally, DTW can calculate similarity even when a data sequence 

is distorted by frequency change or process drift. 

The core algorithm of the proposed modeling approach is illustrated in Figure 4.1. 

First, the query sample, 𝒙𝑞, is collected from online sensors. Then the historical and 

query data are normalized so that the variables have zero means and unit variances, 

as described below. 

 

 𝑥̃𝑞,𝑖 = 
𝑥𝑞,𝑖 − 𝜇𝑖

𝜎𝑖
 (4.1) 

 

where 𝑥𝑞,𝑖  is the 𝑖 -th variable of 𝑥𝑞 . 𝜇𝑖  and 𝜎𝑖  are the mean and standard 

deviation of the 𝑖-th variable, respectively. The next step is to augment a single data 

sample 𝒙̃𝑞 into a data sequence 𝑿̃𝑞 with time-lagged data as in (4.2). 
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𝑿̃𝑞 = [𝒙̃𝑞−𝑛+1, 𝒙̃𝑞−𝑛+2, … , 𝒙̃𝑞] 

=

[
 
 
 

𝒙̃𝑞−𝑛+1,1 𝒙̃𝑞−𝑛+2,1 ⋯ 𝒙̃𝑞,1

𝒙̃𝑞−𝑛+1,2 𝒙̃𝑞−𝑛+2,2 ⋯ 𝒙̃𝑞,2

⋮ ⋮ ⋱ ⋮
𝒙̃𝑞−𝑛+1,𝑛𝑣𝑎𝑟

𝒙̃𝑞−𝑛+2,𝑛𝑣𝑎𝑟
⋯ 𝒙̃𝑞,𝑛𝑣𝑎𝑟]

 
 
 

 
(4.2) 

 

where 𝑛  is the fixed window length for data augmentation. As a result of data 

preprocessing, data samples are transformed into data sequences of length 𝑛. In the 

second step of JITL modeling, the similarities between the normalized data sequence 

𝐗̃𝑞  and the sequences of the database are calculated using DTW. Then a local 

machine learning soft sensor model is trained with the historical data sequences 

which are most similar to 𝐗̃𝑞. Two data-driven modeling methods, SVM and GPR, 

are used to construct a local model in this study. Finally, the prediction 𝑦̂𝑞 for the 

quality of the query sample 𝑥𝑞 is made with the trained local model. The local model 

is discarded and the above modeling steps are repeated when a new query sample is 

acquired.  
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Table 4.1.7 Comparison of distance measures used in JITL modeling. 

Method Data type Definition 

Euclidean distance Data point 

𝐸𝐷(𝒙𝑞 , 𝒙𝑛)

= √∑ (𝑥𝑞,𝑖 − 𝑥𝑛,𝑖)
2𝑛𝑣𝑎𝑟

𝑖=1
 

Euclidean distance 

with angle 
Data point cos(θqn) =

〈𝒙𝑞 , 𝒙𝑛〉

∥ 𝒙𝑞 ∥2 ∥ 𝒙𝑛 ∥2 
 

Mahalanobis distance 
Data point & 

distribution 

𝑀𝐷(𝒙, 𝒚;𝑷)

=  √(𝒙 − 𝒚)𝑇𝑆−1(𝒙 − 𝒚) 

Kullback-Leibler 

divergence 
Distribution KLD(𝑃||𝑄) =  ∫ 𝑝(𝑥)

log(𝑝(𝑥))

log(𝑞(𝑥))

∞

−∞

 

Dynamic time warping Data sequence 𝐷𝑇𝑊(𝑋, 𝑌) =  min
𝑊

∑𝑑𝑖

𝑘

𝑖=1
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Figure 4.1. Algorithm of the proposed DTW-based JITL model.12  
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4.3. Sensitivity analysis of model hyperparameters 

 

This section evaluates the effects of model hyperparameters on the performance 

of the proposed DTW-based JITL model by simulating two multi-grade systems. The 

prediction accuracy and computational requirement for the proposed DTW-based 

JITL modeling approach are highly dependent on three hyperparameters: the input 

length, the width of the warping window, and the number of similar samples chosen 

from the database. Two multi-grade simulation case studies are considered in order 

to undertake sensitivity analysis on these hyperparameters. 

The first simulation case study is a simple nonlinear dynamic system where the 

output is determined by the past 10 samples of the inputs. Additionally, the inputs 

change periodically depending on the grade to simulate multi-grade characteristics. 

The system is defined as follows. 

 

 y1 = 𝐴1 ⋅ 𝑋1 + 𝐵1 ⋅ 𝑋2 + 𝐶1 ⋅ 𝑋1 ⋅ 𝑋2 (4.3) 

 y2 = 𝐴2 ⋅ 𝑋1 + 𝐵2 ⋅ 𝑋2 + 𝐶2 ⋅ 𝑋1 ⋅ 𝑋2 (4.4) 

 𝑦 = log (𝑦1 ⋅ 𝑦2) (4.5) 

 

where X1 = [𝑥1,𝑡−9, 𝑥1,𝑡−8, … , 𝑥1,𝑡] and 𝑥𝑖,𝑘 is the 𝑖-th input variable at time 𝑘. 𝐴, 

B, and 𝐶 are the coefficient vectors of length 10. Gaussian random noise is added to 

the inputs and output. The values of coefficients, including 𝐴, B, and 𝐶, are present 

in Table 4.2. A total of 520 data samples were obtained as a simulation result, which 

is shown in Figure 4.2. The first 50 percent of the samples were used as the original 

training dataset, and the remaining 50 percent of the samples were used as the testing 

dataset. 
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Table 4.2.8 Values of coefficient vectors of numerical example. 

Symbol Value 

𝐴1 [0.0403, 0.0543, 0.1291, 0.1995, 0.3456, 0.4454, 0.6008, 0.8935, 0.9363, 0.9462] 

𝐴2 [0.1578, 0.1715, 0.3566, 0.4147, 0.4849, 0.5166, 0.6569, 0.6865, 0.9870, 0.9916] 

𝐵1 [0.0579, 0.1318, 0.1556, 0.2551, 0.6964, 0.7609, 0.8176, 0.8575, 0.8957, 0.9820] 

𝐵2 [0.0184, 0.1433, 0.2459, 0.3627, 0.3914, 0.4347, 0.7435, 0.7720, 0.8422, 0.8483] 

𝐶1 [0.0112, 0.0244, 0.0272, 0.0450, 0.0581, 0.0684, 0.0711, 0.0718, 0.0736, 0.0933] 
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Figure 4.2. Simulation data obtained from the nonlinear numerical example.13  
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In the second case study, a sequence of three continuous stirred tank reactors 

(CSTRs) was used to simulate a multi-grade chemical system with time delay and 

multi-grade products. The simple schematic of the CSTR system is illustrated in 

Figure 4.3 and the nomenclature and nominal operating conditions are summarized 

in Table 4.3. 

The process model of each reactor consists of two nonlinear ordinary differential 

equations [110]. Two chemical species, A and B, exist in the reactors and undergo 

irreversible and exothermic chemical reaction, A → B. 

 

 𝐶̇𝐴𝑖  =
𝑞𝑖

𝑉𝑖
(𝐶𝐴(𝑖−1) − 𝐶𝐴𝑖) − 𝑘0𝐶𝐴𝑖 𝑒𝑥𝑝 (−

𝐸

𝑅𝑇
) (4.6) 

 

𝑇̇𝑖 =
𝑞𝑖

𝑉𝑖

(𝑇𝑖−1 − 𝑇𝑖) +
(−Δ𝐻)𝑘0𝐶𝐴𝑖

𝜌𝐶𝑝
exp (−

𝐸

𝑅𝑇
) 

+
ρcCpc

𝜌𝐶𝑝𝑉
𝑞𝑐[1 − exp (−

ℎ𝐴

𝑞𝑐𝜌𝑐𝐶𝑝𝑐
)](𝑇𝑐𝑓 − 𝑇𝑖) 

(4.7) 

 

 

Since the flowrates of all streams are set equal, the reactor volumes are equal and 

remain unchanged during simulation. Additionally, transport delays of 3 minutes are 

added between the reactors. The manipulated variable of the system is the flowrate 

of the coolant for the first reactor, 𝑞𝑖𝑛 . It is assumed that only the manipulated 

variable, 𝑞𝑖𝑛, and the temperature of the first reactor, 𝑇1, are measured. The output 

of the process is the effluent concentration of A from the third reactor, 𝐶𝐴3. Figure 

4.4 illustrates the simulation result of the CSTR system. A total of four grades and 

their grade changeovers were simulated by manipulating the coolant flowrate or the 

first reactor. Additionally, the Gaussian random noise was added to the input and 

output variables. The simulation time was 500 minutes and a total of 1001 data 

samples were obtained as a result. The first 501 samples were used as the original 

training dataset and the remaining 500 samples were used as the testing dataset. 
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Figure 4.3. Schematic of the chemical system consisting of three CSTRs in 

series.14 
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Table 4.3.9 Nomenclature and nominal operating conditions of the CSTR system. 

Symbol Description 
Operating 

condition 
Unit  

𝐶𝐴0 
Concentration of A in the feed stream 

into the first reactor 
1.00 mol l-1  

𝐶𝐴𝑖 Concentration of A in the 𝑖-th reactor 0.0836 mol l-1  

𝐶𝑝 Heat capacity of the reaction mixture 1.00 cal g-1 K-1  

𝐶𝑝𝑐 Heat capacity of the coolant 1.00 cal g-1 K-1  

𝐸/𝑅 
Fraction of the activation energy 

divided by the gas constant 
9.95×103 K  

ℎ𝐴 
Product of the heat transfer coefficient 

and heat transfer area 
7.00×105 cal min-1 K-1  

𝑘0 Pre-exponential factor 7.20×105 min-1  

𝑞𝑐 
Flowrate of coolant for the second and 

third reactor 
103.41 l min-1  

𝑞𝑖 
Flowrate of feed stream into the 𝑖-th 

reactor 
100 l min-1  

𝑞𝑖𝑛 
Flowrate of coolant for the first 

reactor 
103.41 l min-1  

𝑇0 
Temperature of the feed stream into 

the first reactor 
350 K  

𝑇𝑐 Temperature of coolant 350 K  

𝑇𝑖 Temperature of the 𝑖-th reactor 440.2 K  

𝑉𝑖 Volume of the 𝑖-th reactor 100 l  

Δ𝐻 Heat of reaction -2.00×105 cal mol-1  

𝜌 Density of the reaction mixture 1000 g l-1  

𝜌𝑐 Density of coolant 1000 g l-1  
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Figure 4.4. Simulation data obtained from the CSTR system.15  
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SVM and GPR models were trained for the sensitivity analysis of the 

hyperparameters for both case studies. The prediction accuracy of the soft sensors 

was evaluated using the root mean squared error (RMSE) defined as in (18). 

 

RMSE =  √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (4.8) 

 

where 𝑁  is the number of samples, 𝑦𝑖  and 𝑦̂𝑖  are the measured and predicted 

outputs, respectively. Additionally, the CPU time was measured on an Intel Core i7-

8700 CPU @3.20 GHz in order to evaluate the computational requirement.  

 

4.3.1. Input length and number of similar samples 

 

The length of the input sequence and the number of similar samples used in local 

modeling affect not only the required calculation time but also the prediction 

accuracy of the proposed model. Therefore, the effects of the hyperparameters on the 

prediction performance of the DTW-based JITL models is analyzed for both case 

studies in this subsection. Figure 4.5 and 4.6 depict the prediction accuracy of the 

DTW-based JITL models with varying input lengths and the number of similar 

samples on the testing datasets of the numerical and CSTR examples, respectively. 

Both the SVM and GPR models for the numerical example reach the lowest RMSE 

values at the input length of 6, regardless of the number of samples used for local 

modeling. On the other hand, the DTW-based JITL models for the CSTR system 

achieve the best prediction accuracy at the input length close to 18. 
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Figure 4.5. Prediction accuracy of models with different input lengths and 

number of similar samples for the numerical example (a) SVM models (b) GPR 

models. 16 
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Figure 4.6. Prediction accuracy of models with different input lengths and 

number of similar samples for the CSTR example (a) SVM models (b) GPR 

models. 17 
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The cross-correlations between the input and output variables of the numerical 

example and CSTR system are shown in Figure 4.7 and 4.8, respectively. The 

absolute values of cross-correlations reach their maxima at time lags of 4 and 54 for 

the numerical example. Furthermore, the cross-correlations exhibit periodical 

changes because the grade and input variables change periodically with a period of 

50 time steps. On the other hand, the output variable of the CSTR system is most 

correlated with the first and second input variables at time lags of 16 and 15, 

respectively. 

The results from varying input lengths and cross-correlations suggest that the best 

modeling performance is achieved when a model takes time series of length slightly 

longer than the time lags of maximum cross-correlation between input and output. 

Additionally, the modeling performance of the JITL models decreases as the input 

length become longer or shorter than the optimal time lags as shown in Figure 7 and 

Figure 8, which represents the importance of finding the optimal length for input 

data sequences. If the input data sequence is longer than the cross-correlation 

between the input and output, the sequences are more likely to lose their original 

characteristics and dynamics through warping. On the other hand, if the input time 

series is too short, the temporal correlations of the variables are not sufficiently 

considered in modeling, resulting in poor prediction performance. Therefore, it is 

necessary to find the optimal length for input augmentation by calculating the cross-

correlation between the input and output variables. 
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Figure 4.7. Cross-correlation between input and output variables of the 

numerical example.  18 
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Figure 4.8. Cross-correlation between input and output variables of the CSTR 

example. 19 
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In addition, Figure 4.5 and 4.6 illustrate the effect of the number of similar samples 

selected from the database on the prediction accuracy of the proposed model. The 

prediction accuracy of the proposed model increases as the more samples are used 

in the numerical example for the optimal input length, 6. Since the nonlinear system 

changes periodically between two distinct operation mode, there exist many samples 

for each mode. Therefore, the local models trained with more samples predict the 

output more accurately. Additionally, the numerical example’s system is much 

simpler than the reactor systems, making it easier for regression models to learn 

when provided more data samples.  

On the other hand, the DTW-based JITL models for the CSTR example achieved 

the best prediction performance when 40 similar samples with an input length of 18 

were utilized. When too many samples are used in model training, it is more likely 

that the training dataset will contain samples that are not similar or relevant to query 

data, particularly for grade changeovers whose duration is short compared to steady-

state operations, thereby decreasing the performance of the model. In addition, 

Figure 4.9 illustrates the CPU required to compute a whole testing procedure for the 

proposed GPR-based model. As the number of training samples increases, the CPU 

time required by the proposed model increases. In order to achieve the optimal 

prediction accuracy in an acceptable amount of time, it is crucial to examine the 

tradeoff between prediction accuracy and computation time by selecting an adequate 

number of similar samples for each target system. 
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Figure 4.9. CPU time spent calculating the proposed modeling approach based 

on GPR (a) numerical example (b) CSTR example.  20 
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4.3.2. Warping path constraint 

 

In this subsection, the effect of the temporal constraint on the warping window 

size of DTW on the modeling performance in the DTW-based JITL modeling 

approach is analyzed. Without the warping path constraint, DTW stretches and 

compresses data sequences as much as possible to make the warped sequences as 

similar as possible. However, the unconstrained warping is susceptible to outliers in 

the time series. Additionally, the unconstrained warping may distort data sequences 

excessively that the temporal correlations and dynamics of the raw sequences are 

rarely remained in the warped sequences. Therefore, the accuracy of distance 

measure and computational efficiency can be improved by constraining the warping 

window width, δ, in a fixed range [107].  

 Figure 4.10 and 4.11 show the average CPU time required to calculate the 

similarities between the query and stored data sequences using the Euclidean 

distance, unconstrained DTW, and constrained DTW for the numerical and CSTR 

examples, respectively. For both case studies, the computation times for the 

Euclidean distance were less than 0.001 seconds, which is significantly less than 

those of DTW. On the other hand, unconstrained DTW calculations for data 

sequences of length 10 required 0.011571 and 0.022339 seconds in the numerical 

and CSTR examples, respectively. As illustrated in Figure 4.10 and 4.11, the 

constrained DTW with a narrower warping window width takes less computation 

time than the unconstrained DTW because only a small number of warping pathways 

must be determined. Moreover, longer data sequences necessitate additional 

calculation time, which is especially evident for the unconstrained DTW. 

Nevertheless, unconstrained DTW computations with an input length of 100 required 

0.022965 and 0.047334 seconds for the numerical and CSTR examples, respectively, 

demonstrating that the proposed modeling approach can be utilized for online 

applications with short sampling periods.  
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Figure 4.10. CPU time spent calculating similarities between samples of the 

numerical example.  21 
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Figure 4.11. CPU time spent calculating similarities between samples of the 

CSTR example. 22 
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Figure 4.12 and 4.13 illustrate, for numerical and CSTR examples, respectively, 

a comparison of the prediction accuracy of the proposed models with different 

similarity measures and constraints as measured by root mean square error (RMSE). 

The models were trained using 40 similar samples and the input data sequences with 

a length of 6 and 18 for the numerical and CSTR examples, respectively. For both 

case studies, the prediction accuracy of the models improves as the width of the 

warping window increases. On the other hand, a constraint on the warping window 

width that is overly stringent may reduce prediction performance because only 

warping paths close to the raw time series are evaluated. As shown in Figure 4.12 

and 4.13, RMSE decreases and reaches plateaus when the warping window 

constraint is approximately half the input length. Therefore, by limiting the warping 

window width to half the length of the input sequence, it is possible to attain optimal 

prediction accuracy with a reduced computing demand. 
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Figure 4.12. Prediction accuracy of models using the Euclidean distance and 

DTW with different warping window width constraint for the numerical example 

(a) SVM models (b) GPR models.  23 
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Figure 4.13. Prediction accuracy of models using the Euclidean distance and 

DTW with different warping window width constraint for the CSTR example (a) 

SVM models (b) GPR models.  24 
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4.4. Optimized DTW-based JITL modeling approach 

 

4.4.1. Proposed modeling approach 

 

In this section, we propose a DTW-based JITL soft sensor modeling approach with 

the optimized model hyperparameters. The results from Section 4 reveal that the 

prediction accuracy and computational requirement of the DTW-based JITL model 

depend on three hyperparameters: input length, number of similar samples, and 

width constraint of the warping window. Figure 4.14 illustrates the algorithm of the 

proposed modeling approach. The proposed modeling algorithm differs from the 

previous DTW-based JITL modeling algorithm introduced in Subsection 4.3 in that 

the input length and DTW constraint are optimized by analyzing cross-correlation 

between the input and output variables. First, the cross-correlation coefficients 

between the input and output variables are calculated using the stored data samples 

in the historical database. Then, the data samples are augmented to data sequences 

of length slightly longer than the time lags of maximum cross-correlation. In this 

study, the length of the augmented input is determined by adding two to the time lag 

of maximum cross-correlation, which is the optimal value from the results of 

Subsection 4.3.1. Then, the similarities between the augmented data sequences are 

calculated using DTW under the constraint of the warping window width. The 

maximum warping width, δ, is determined to be half the length of the input sequence. 

The subsequent steps are identical to the original DTW-based JITL modeling 

procedure. 
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Figure 4.14. Algorithm of the proposed DTW-based JITL model with 

hyperparameter optimization.  25 
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4.4.2. Results and discussions 

 

In this section, multi-grade case studies were simulated and used to evaluate the 

prediction performance of the proposed DTW-based JITL model to verify the 

effectiveness of the proposed modeling approach. Additionally, conventional JITL 

soft sensors based on the Euclidean distance were developed for performance 

comparison. The prediction accuracy of the soft sensors was evaluated using four 

statistical indices: root mean squared error (RMSE), mean absolute percentage error 

(MAPE), Theil’s inequality coefficient (TIC), and coefficient of determination (𝑅2).  

 

MAPE =
100

𝑁
∑|

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑁

𝑖=1
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TIC =  
√∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

√∑ 𝑦𝑖
2𝑁
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2𝑁
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𝑅2 =  1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 (4.11) 

 

where 𝑁 is the number of samples, 𝑦̅ is the mean value of 𝑦, 𝑦𝑖 and 𝑦̂𝑖 are 

the measured and predicted output variable, respectively. For both case studies, two 

machine learning regression models, SVM and GPR, are utilized as local predictive 

models and the number of similar samples drawn from the database for local model 

training is 40. The augmented input lengths are 6 and 18 for the numerical and CSTR 

examples, respectively. Thus, the respective maximum DTW window width are 3 

and 9 for the numerical and CSTR examples.  

Table 4.4 and 4.5 summarize modeling results of the proposed optimized DTW-
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based JITL models and Euclidean distance-based JITL models for the numerical and 

CSTR examples, respectively. Since the simulated output was determined by both 

current and past inputs, the models taking time series as input outperform the models 

taking data points as input. Additionally, the DTW-based JITL models demonstrate 

better prediction accuracy than the Euclidean distance-based JITL models. For 

instance, the RMSE, MAPE, TIC, and 𝑅2  of the constrained DTW-based GPR 

model for the CSTR system are 3.000, 10.41, 0.04424, and 0.9527, respectively, 

which represents the better prediction accuracy than the Euclidean distance-based 

GPR model whose RMSE, MAPE, TIC, and 𝑅2  are 3.044, 10.65, 0.04490, and 

0.9513, respectively. Additionally, the prediction performance of a constrained 

DTW-based JITL model is comparable to that of an unconstrained DTW-based JITL 

model. 

In order to further demonstrate the efficiency of the proposed model, a distillation 

process where methylcyclohexane (MCH) is recovered from a mixture was 

simulated. Figure 4.15 illustrates the schematic of the process in which the purity of 

MCH, which is the output variable, is controlled by manipulating the flowrate of the 

phenol inlet stream, which is the input variable. The sampling time and total 

simulation time were 0.01 h and 30 h, respectively. Thus, a total of 3000 samples 

were obtained, of which 50% were used as the testing dataset. Table 4.6 summarizes 

prediction performance of the proposed models and conventional Euclidean 

distance-based JITL models on the testing dataset of the distillation example. The 

window length calculated from the cross-correlation analysis and warping window 

width for the proposed model were 30 and 15, respectively. For both data-driven 

regression models, the proposed constrained DTW-based JITL models demonstrate 

better prediction accuracy compared to the Euclidean distance-based models. In 

summary, the modeling results indicate that improved prediction accuracy with 

reduced computation can be achieved by the proposed DTW-based JITL modeling 

approach with hyperparameter optimization. 
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Table 4.4. Prediction results of all trained models on the testing dataset of the 

numerical example.  10 

Data-driven 

model 

Input 

length 

Similarity 

measure 
RMSE 

MAPE 

 (%) 
TIC 𝑹𝟐 

SVM 1 
Euclidean 

distance 
0.2067 5.425 0.03497 0.7312 

SVM 6 
Euclidean 

distance 
0.1204 3.421 0.02024 0.9089 

SVM 6 
DTW 

(δ = 3) 
0.1175 3.320 0.01977 0.9131 

SVM 6 
DTW 

(δ = ∞) 
0.1175 3.318 0.01976 0.9131 

GPR 1 
Euclidean 

distance 
0.2056 5.617 0.03473 0.7341 

GPR 6 
Euclidean 

distance 
0.09699 2.737 0.01631 0.9408 

GPR 6 
DTW 

(δ = 3) 
0.09494 2.676 0.01598 0.9433 

GPR 6 
DTW 

(δ = ∞) 
0.09489 2.675 0.01597 0.9433 
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Table 4.5. Prediction results of all trained models on the testing dataset of the 

CSTR example. 11 

Data-driven 

model 

Input 

length 

Similarity 

measure 

RMSE 

(× 𝟏𝟎𝟑) 

MAPE 

 (%) 
TIC 𝑹𝟐 

SVM 1 
Euclidean 

distance 
7.634 21.93 0.1127 0.6934 

SVM 18 
Euclidean 

distance 
3.069 10.81 0.04530 0.9504 

SVM 18 
DTW 

(δ = 9) 
3.058 10.71 0.04512 0.9508 

SVM 18 
DTW 

(δ = ∞) 
3.057 10.71 0.04510 0.9509 

GPR 1 
Euclidean 

distance 
7.529 22.13 0.1118 0.7018 

GPR 18 
Euclidean 

distance 
3.044 10.65 0.04490 0.9513 

GPR 18 
DTW 

(δ = 9) 
3.000 10.41 0.04424 0.9527 

GPR 18 
DTW 

(δ = ∞) 
2.998 10.41 0.04421 0.9527 
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Figure 4.15. Schematic of the MCH distillation process.  26 
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Table 4.6. Prediction results of all trained models on the testing dataset of the 

distillation example. 12 

Data-driven 

model 

Input 

length 

Similarity 

measure 

RMSE 

(× 𝟏𝟎𝟑) 

MAPE 

 (%) 

TIC 

(× 𝟏𝟎𝟑) 
𝑹𝟐 

SVM 1 
Euclidean 

distance 
2.521 0.1321 1.2792 0.6179 

SVM 18 
Euclidean 

distance 
0.5751 0.02568 0.2919 0.9801 

SVM 18 
DTW 

(δ = 9) 
0.4556 0.02020 0.2312 0.9875 

SVM 18 
DTW 

(δ = ∞) 
0.4635 0.02043 0.2353 0.9871 

GPR 1 
Euclidean 

distance 
2.348 0.1348 1.192 0.6686 

GPR 18 
Euclidean 

distance 
0.3407 0.01478 0.1729 0.9930 

GPR 18 
DTW 

(δ = 9) 
0.3124 0.01348 0.1585 0.9941 

GPR 18 
DTW 

(δ = ∞) 
0.3072 0.01339 0.1559 0.9943 
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Chapter 5. Concluding Remarks 

 

5.1. Conclusions 

 

This thesis proposes novel modeling approaches to improve prediction accuracy 

and generalizability for multi-grade and time-varying processes. The prediction of 

product qualities and reactor conditions from easy-to-measure process variables is 

required to process monitoring and quality control. However, industrial plants suffer 

from frequent dynamics changes derived from multi-grade operation and process 

drifts, posing challenges in accurate prediction. The modeling approaches proposed 

in this thesis contribute to more accurate prediction of time-varying processes, while 

achieving improved generalization ability. 

First, a hybrid modeling approach that combines mechanistic modeling and data-

driven machine learning modeling is proposed for accurate prediction of the quality 

of polymer products of commercial plants. The proposed hybrid model consists of 

two submodels in series. The first part of the hybrid model is a white-box submodel 

which is based on the mechanistic modeling approach. Polymerization-related 

variables including molecular weight and polymerization rate are calculated using 

process knowledge such as polymerization mechanisms and material and energy 

balances. The white-box submodel outputs a total of 17 variables that cannot be 

measured in real plant but significantly affect the quality of the polymer product, 

which aids in more accurate and robust quality prediction. The second part of the 

hybrid model is a black-box submodel which predicts MI from process variables and 

the white-box submodel’s outputs. A machine learning regression model is trained 

using latent variables obtained by applying PCA to the raw variables. Additionally, 

their hyperparameters are optimized using Bayesian optimization. The proposed 

hybrid model demonstrates more accurate MI for a commercial SAN polymerization 

process compared to conventional mechanistic models and data-only machine 
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learning models. Additionally, the results on the unsteady state data indicate that the 

proposed hybrid model achieves improved generalizability by combining prior 

process knowledge into soft sensor modeling.  

Second, a JITL modeling approach combined with DTW is proposed for processes 

with consistently changing dynamics. A global data-driven soft sensor model’s 

prediction performance drastically reduced when the operating condition deviates 

from the training region. Therefore, a soft sensor model able to address changes in 

the data distribution is required for the robust prediction in industrial chemical 

processes. The proposed DTW-based JITL model focuses on training a local model 

for every new query data using time series. First, in order to account for temporal 

dynamic behaviors of the process, the raw data variables are augmented into the data 

sequence, which is used as a model input. Next, the similarities between the query 

data sequence and the data sequences in the historical database are calculated using 

DTW. DTW accurately calculates distance between two different data sequences 

even when they are distorted. Based on the similarity calculation results, the most 

similar data sequences are selected for local prediction model training. Lastly, the 

prediction for the query data is made using the trained local model which is discarded 

after the prediction is made. The proposed modeling approach achieves more 

accurate prediction performance and fast adaptation ability for time-varying 

dynamic systems compared to the conventional JITL models based on the Euclidean 

distance. Additionally, the optimality of model parameters is examined in the thesis 

to give direction to more improved modeling performance.  
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5.2. Future Works 

 

The two modeling approaches proposed in this thesis demonstrates improved 

prediction performance and generalizability for an actual polymerization process and 

simulation case studies. Nevertheless, there are still room for further improvement 

in the proposed methods. In this last part of the thesis, several possible directions for 

further research are suggested.  

In Chapter 3, the serial hybrid modeling approach is developed for a specific 

thermoplastic polymerization process. In order to apply the proposed modeling 

method to various types of industrial plants, the modeling performance of the hybrid 

model should be validated for other chemical processes. The white-box submodel in 

this thesis focuses on the bulk radical polymerization reaction in continuous serial 

reactors. However, changes in reaction conditions, such as reactor type, temperature, 

and pressure, require revision of the modeling procedure for the white-box submodel. 

Therefore, a generalized mechanistic model should be developed so that the 

proposed hybrid model can be applied to various types of industrial processes.  

Next, there are suggestions for improving the performance of the DTW-based 

JITL modeling approach. First of all, the just-in-time learning method has limited 

modeling performance for processes where similar inputs and operating conditions 

yield different outputs. For instance, fed-batch processes have product qualities that 

are cumulative over the various reaction phases, while most process inputs remain 

unchanged. Therefore, in order to improve the modeling performance of the 

proposed modeling approach, the past measurement data may be augmented into the 

model inputs. By considering recent measurements, a just-in-time learning model 

can be more accurate in dividing similar process conditions. Additionally, batch 

indices can be considered when applying the proposed modeling approach to batch 

processes where batches close to one another have high similarities.  

Lastly, the two proposed modeling methods may be combined to provide 
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synergistic effect to further improve modeling performance. Most chemical 

processes inherently exhibit dynamic behaviors. Additionally, multi-grade operation 

and process drifts are common in actual plants. Therefore, by considering the time-

varying nature of not only the process variables but also the white-box output 

variables that can be calculated using mechanistic modeling, both the prediction 

accuracy and generalizability are expected to be improved. Additionally, GPR 

models have demonstrated good prediction performance when applied to both 

proposed modeling approaches. Unlike other popular regression models, GPR 

models provide not only predicted values but also prediction uncertainties. The 

prediction performance of the proposed models may be improved by utilizing the 

uncertainty information obtained from GPR models. For example, ensemble 

approach can be implemented where multiple GPR models are trained and their 

predictions are combined.  
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초 록 

 

실시간 온라인 품질 측정이 불가능한 많은 수의 산업 화학 공정에서는 

운전 중 반응기의 상태 및 화학 제품의 성질과 품질을 예측하는 것이 매

우 중요하다. 불량 제품 생산 감소 및 공정 효율 증대를 위해서 더욱 정

확하고 보다 빠른 예측이 필수적이다. 따라서 제일 원리 혹은 기계 학습 

회귀 방법론 등을 활용하여 산업 화학 공정의 정확하고 빠른 소프트 센

서를 구축하기 위한 다양한 연구들이 지속적으로 수행되어왔다. 그러나 

실제 산업에서 운전되는 화학 공정의 품질 예측을 어렵게 하는 몇 가지 

문제점들이 존재한다.  

첫째, 화학 공정의 공정 동역학은 다양한 화학 반응 및 에너지와 물질 

전달, 그리고 상전이 등의 복잡한 상호 작용의 결과로써 예측 모델도 이

러한 높은 수준의 공정 비선형성을 다룰 수 있어야 한다. 또한 공정의 

높은 비선형성은 구축된 소프트 센서 모델의 해석을 더욱 어렵게 만들어 

공정 모니터링 및 제어의 난이도가 높아진다. 둘째, 산업 화학 공정은 운

전 중 동역학이 변화하는 시변 (time-varying) 공정인 경우가 많다. 고분

자 중합 공정을 비롯하여 많은 수의 화학 공정들은 계속해서 변화하는 

시장의 수요에 맞추기 위해 다양한 운전 조건에서 여러 제품을 번갈아 

생산한다. 그러나 공정 초기 안정화 단계 및 등급 변경 등 비정상 상태

에서 공정이 운전될 때에는 긴 안정화 시간 및 과도한 오버슈트 

(overshoot) 등의 문제에 취약하다. 또한 대부분의 회분식 공정에서는 시

간이 지남에 따라 반응기 내 화학 물질들의 농도가 변화하면서 지배적인 

반응이 바뀌게 되어 공정은 이전과 다른 양상으로 진행된다. 실제 산업 

현장에서 운전되는 공정에서는 위와 같이 공정의 특성으로 인한 동역학

의 변화뿐만 아니라 촉매 비활성화 및 반응기 내 각종 오염으로 인해 의
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도치 않은 공정 드리프트 (process drift)의 발생으로 인하여 공정 동역학

이 변화하기도 한다. 이러한 공정 드리프트는 모델과 공정 간의 괴리를 

야기하고 이로 인하여 구축된 소프트 센서 모델의 예측과 실제 품질 측

정 값 간의 큰 편차가 발생할 수 있다. 따라서 더욱 정확하고 강건한 예

측을 수행하기 위해서는 앞서 언급한 문제점들이 모델링 과정에서 적절

하게 해결되어야 한다. 

이러한 관점을 기반으로 본 논문은 산업 현장에서의 화학 공정의 모델

링 과정에서 수반되는 문제점들을 해결하여 개선된 예측 정확도 및 강건

함을 지닌 새로운 소프트 센서 개발 방법론들을 제안한다. 첫째, 실제 운

전 중인 상업용 고분자 중합 공정에서 생산된 고분자 제품의 실시간 품

질 측정을 위한 하이브리드 소프트 센서 모델링 방법론을 제안한다. 기

존의 제일 원리 기반의 예측 모델 및 데이터만을 활용한 기계 학습 기반 

예측 모델과 비교하였을 때, 제안한 하이브리드 모델은 반응 메커니즘과 

같은 공정에 대한 사전 지식과 인공 신경망과 같은 데이터 기반 회귀 방

법론을 결합함으로써 더욱 정확한 품질 예측을 수행할 수 있다. 또한 제

안한 하이브리드 기법을 적용하여 얻어진 예측 모델은 공정에 대한 물리

적, 화학적 정보를 통해 데이터 기반 예측 모델의 단점인 외삽 성능을 

보완하여 더욱 뛰어난 일반화 성능을 나타낸다. 대상 고분자 중합 공정

에서 얻어진 등급 변경과 같은 비정상 상태의 운전 데이터에 대하여 하

이브리드 모델은 단순한 형태의 데이터만을 활용한 기계 학습 모델들에 

비해 더 강건한 예측 성능을 보인다. 

둘째, 동적 시간 왜곡 (dynamic time warping) 이 결합된 시계열 기반의 

적시 학습 (just-in-time learning) 소프트 센서 모델링 기법을 제안한다. 다

등급 공정 혹은 시변 공정에서 얻어진 공정 데이터는 여러 종류의 운전 

조건이 혼합되어 다봉분포 (multimodal distribution)을 나타낸다. 이러한 형
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태의 데이터는 단일한 전역 예측 모델만으로는 학습하기 어렵고 정확한 

예측을 기대하기 어렵다. 적시 학습 모델링 기법에서는 모든 학습 데이

터를 활용하여 단 하나의 전역 모델을 구축하는 대신 품질 예측이 필요

한 현재 시간 스텝에서의 샘플과 유사한 샘플들만 추려내어 지역 모델을 

학습한다. 따라서 적시 학습 기법으로 구축된 소프트 센서 모델은 시간

에 따른 공정의 변화에도 적응할 수 있다는 장점이 있다. 또한 제안하는 

모델링 기법에서는 특정 시간에서의 데이터 포인트 대신 시계열 형태의 

데이터를 입력받음으로써 공정 데이터의 동적 양상을 고려한다. 적시 학

습 기법에서는 어떠한 방식으로 샘플 간의 유사도를 계산하는지에 따라

서 예측 성능이 크게 영향을 받는다. 따라서 시계열 간의 유사도를 보다 

정확히 계산하기 위해서 동적 시간 왜곡을 제안한 모델링 기법에 적용한

다. 동적 시간 왜곡은 데이터 배열 간의 정렬을 위해 널리 쓰이는 기법 

중 하나로 배열을 늘이거나 압축하여 서로 다른 배열 간의 유사도를 정

확히 계산할 수 있다.  

제안한 모델링 방법론은 적시 학습 기법과 동적 시간 왜곡을 결합함으

로써 다등급 및 시변 화학 공정에서의 소프트 센서 개발에 대해 다음 두 

가지의 주요 기여를 달성한다. 첫째, 시계열을 모델의 입력으로 활용함으

로써 복잡한 동역학을 지닌 공정에 대해 더 정확한 예측을 수행할 수 있

다. 둘째, 테스트 시계열과 데이터베이스 내 시계열 간의 유사도 계산에 

동적 시간 왜곡을 활용함으로써 유사한 샘플들을 더 정확하게 추려낼 수 

있다.  

또한 모델의 파라미터가 모델의 예측 성능에 미치는 영향을 연구한다. 

민감도 분석 결과, 최적의 입력 길이는 공정의 입력 및 출력 변수 간의 

상호 상관에 의해 결정되며 동적 시간 왜곡의 경로 너비를 제한함으로써 

더 높은 예측 정확도와 계산량 감소 효과를 얻을 수 있다. 따라서 본 연
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구에서는 최적화된 하이퍼파라미터 기반의 동적 시간 왜곡 기반이 결합

된 적시 학습 소프트 센서 모델을 제안하며, 이 때 모델링 성능은 입출

력 변수 간의 상호 상관 계수를 미리 계산하고 왜곡 경로의 너비를 제한

하여 최적화된다. 제안한 모델링 방법론은 다등급 공정의 시뮬레이션 사

례 연구들을 통해 개선된 예측 성능을 입증한다. 

요악하면 본 논문은 높은 비선형성 및 다등급 혹은 시변 특성을 지닌 

산업 화학 공정에 대해 개선된 예측 정확도와 일반화 성능을 지닌 새로

운 소프트 센서 개발 방법론들을 제시한다. 시뮬레이션 및 실제 고분자 

중합 공정의 데이터를 활용하여 기존 방법론들 대비 제안한 모델링 방법

론의 우수한 예측 성능을 입증한다. 
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