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Abstract 
 

 

Deep Learning-Aided 

Autonomous Materials Discovery: 

Goal-Directed Inverse Molecular Design  

 

Hyunseung Kim 

School of Chemical and Biological Engineering 

Graduate School of Seoul National University 

 

 

As the discovery of bronze marked the end of the Stone Age, the advancement 

of human civilization is closely related to the discovery of better materials. Modern 

materials discovery spans various fields ranging from electrical and electronic 

materials, energetic materials, ceramics, catalysts, nanomaterials, and biomaterials. 

In these kinds of materials development, it is challenging to search for the desired 

materials efficiently and quickly. In the past, searching for the desired materials 

relied on expert knowledge or intuition. However, this is not effective to search the 

vast chemical space efficiently and quickly. Therefore, attempts have been made to 

integrate the materials development process as a closed-loop system and drive it with 

AI/ML. The closed-loop materials discovery system driven by AI/ML consists of 

inter-module interactions such as inverse materials design, materials scoring, 

reaction pathway synthesis, and process design. Among the modules listed above, 

this study covers the module on inverse materials design. In this thesis, two kinds of 
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models have been addressed. One is a model for a goal-directed inverse molecular 

design using chemical language, which discovers realistic and chemically feasible 

molecular structure that hits a set of target properties. It is a model that embeds 

Transformer—a state-of-the-art natural language processing model—in a 

conditional variational autoencoder. It designs realistic and chemically feasible 

molecules by recognizing the patterns of linguistic sequence representing molecular 

structure. The other is a goal-directed inverse molecular design based on AI-driven 

combinatorial chemistry, which enables materials discovery with extreme properties; 

note that existing probability-distribution learning models such as neural machine 

translator, generative adversarial network, and variational autoencoder-based inverse 

molecular design models cannot generate molecules with such rare and extreme 

properties out of known materials (training data) distribution. The original 

combinatorial chemistry is a method that generates molecules from the combination 

of randomly selected molecular fragments. Hence, this method can generate 

materials with all possible properties that can be obtained from the combination of 

molecular fragments, even materials with extreme properties. However, it lacks the 

policy of selecting molecular fragments to hit the target properties. For this reason, 

the proposed method uses reinforcement learning to learn the policy of selecting 

molecular fragments to guide it to the desired target. Considering the models work 

their tasks accurately in sub-seconds, it is believed that deep learning-aided models 

will contribute to accelerating the materials development process. 
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Chapter 1. Introduction 

 

1.1. Objectives and scope 
 

This thesis aims to contribute to accelerating the material development process 

through AI/ML-aided materials discovery research. Accelerating the materials 

development process is attracting a lot of attention since it can reduce the cost of 

materials development in the material industry and help preoccupy intellectual 

property rights and the market. 

 

 

Figure 1 A closed-loop system for AI/ML-driven materials discovery. 

 

Efforts to accelerate the process of materials development began in earnest 

when the practical use of big data began to increase along with the rapid 

advancement of hardware. With big-data technology, data-based material 

development projects have begun since the term material genome was first used in 

2002. [1] In particular, the material genome initiative launched in the United States 

in 2011 aimed to cut the material development period by half, thereby innovatively 
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reducing the material development period. In addition, the rapid development of 

AI/ML in the past decade has provided an atmosphere that can further accelerate 

materials discovery; the European materials modeling council, launched in 2016, 

aims to reduce the material development period to minutes. [2]  

The closed-loop material discovery system driven by AI/ML will help to find 

the desired material accurately and quickly without human intervention. [3] It 

effectively reduces the cost required for material development. A closed-loop system 

for product and process discovery driven by AI/ML can be composed of the 

interaction of four modules (Figure 1): the inverse materials design module, the 

materials scoring module, the reaction path synthesis/planning module, and the 

process design module. Such a closed-loop materials discovery system is expected 

to contribute greatly to future materials discovery research as AI/ML autonomously 

and automatically handles the decision-making. 

Existing material development research has used a method of evaluating a set 

of potential target material candidates through experiments and computer-aided 

simulations and screening the materials that meet the given conditions step by step. 

Since there was no methodology capable of accurately and rapidly designing 

molecular structures (desired output) from target properties or functionality (given 

inputs), the screening method has been the best to use. However, recent advances in 

deep learning (DL) and machine learning (ML) have made it possible to derive 

models that can effectively infer the desired output from given input via trained 

patterns of inputs and outputs represented in empirical data. This makes it possible 

to develop inverse molecular design models that can directly infer the hit-like 

materials from the given task. This not only effectively reduces the number of 

materials to be evaluated, but also effectively increases the potential of the material 
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candidates to be tested. 

The goal-directed inverse materials design module can generate potential target 

material candidates, but it does not inform which of the generated materials is closest 

to the desired use. Note that even with goal-directed materials design module, the 

generated molecules are not exactly matched to the set of target properties. Therefore, 

a materials scoring module is needed to sort the generated molecules in the order of 

fit for a given task. The reason why such a sorting process is necessary is that the 

costs of subsequent processes are high, e.g., searching feasible reaction paths to 

generate the designed product from commercially available raw materials, and 

process design for it. 

In this thesis, two major problems are addressed for goal-directed inverse 

materials design. One relates to the inverse design of natural molecules that hits a set 

of multi-objective properties and/or functionalities. The other is the problem of 

inverse molecular design to be used even when there are no known molecular 

samples that hit the set of given target properties or are not enough to train the 

artificial neural network models. This problem is related to materials discovery that 

founds better materials with extreme properties and/or functionalities which have 

never been observed. All the models listed above are expected to enable autonomous 

material discovery driven by AI/ML by combining these with the additional modules 

of materials scoring, reaction path synthesis, and the process construction module. 

 

1.2. Thesis organization 
 

 Chapter 2. Molecular representation methods: 

In this chapter, methods of representing molecules as quantitative data are 
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introduced, and the advantages and disadvantages of each representation 

method are summarized. 

 

 Chapter 3. Materials design with context-awareness: 

This chapter describes a problem of natural molecules design (like real 

molecules) that hits multi-objective properties. In this problem, after 

training the chemical language representing molecules through the 

language model embedded in the conditional generative model (namely, 

generative chemical Transformer, GCT [4]), hit-like & realistic materials 

are generated with the understanding of the patterns of the corpus (referring 

the patterns of molecular substructures) of the chemical compounds. The 

attention-mechanism inherent in the GCT helps to generate molecules that 

conform to the chemical valence rule by recognizing the structural 

information of molecules hidden within the chemical language. 

 

 Chapter 4. Materials design with extreme properties: 

This chapter describes the problem of discovering materials with extreme 

properties out of known materials’ distribution. The problem is that it is 

hard to gauss the molecular structure of potential molecules from no similar 

samples or few known samples. It is also a problem for the probability-

distribution learning models (e.g., translator and generative model-based 

models) which are dominantly used to inverse molecular design. These 

models that learn the empirical data-distribution are not suitable for 

inferring materials outside the trained-data-distribution. In contrast, 

combinatorial chemistry can generate all materials with properties that can 
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be obtained from random combinations of predefined molecular fragments. 

However, combinatorial chemistry has a problem in that it has no policy to 

select fragments to combine, which is needed to derive hit-like materials. 

For this reason, reinforcement learning (RL) is introduced to combinatorial 

chemistry to give a fragment selection policy to it. 

 

 Chapter 5. Closing remarks: 

This chapter states the conclusions of this thesis. It summarizes the 

contribution of this thesis to AI/ML-aided materials discovery and 

discusses the challenges and opportunities. 
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Chapter 2. Molecular representation methods 

2.1. Tribes of molecular representation methods 

To learn molecular data in artificial neural networks, it is necessary to represent 

molecular data in the form of structured data. There are many tribes to represent 

molecules e.g., fingerprints, molecular graph, chemical language, potentials, 

coulomb matrix, bag of bonds, fragments, 3D geometry, and electronic density. Here, 

fingerprints, molecular graph, and chemical language are the most popular and 

widely used. In this chapter, the pros and cons of these representation methods are 

summarized (Table 1). 

The fingerprint is a method that represents molecules as a hash function. It has 

a predefined dictionary constituting a molecular fragment list. Extended-

Connectivity Fingerprints [5] and Morgan Fingerprints [6] are popularly used. The 

fingerprint representations have the advantages of fixed-size representation. It 

represents various-sized molecules as the data of fixed-sized vectors. In addition, if 

the molecular fragment list is set by considering the reaction path, it can be used to 

design materials that have a reaction path to produce them. 

Another molecular representation method is the molecular graph. It represents 

molecules as node features and edge features. The node and edge correspond to the 

atom and bond, respectively. Hence, the nature of molecules resembles graph 

representation. However, it is not easy to use to design materials since the node 

features and edge features are highly correlated. For example, to convert a molecular 

graph into a molecule, the chemical valence rule must be satisfied. To do this, the 
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combination of node features and edge features must be feasible. However, data 

generated by generative models may contain artifacts, and the molecular graph data 

with a single defect cannot be converted into a normal molecule. For this reason, 

using the graph representation method in molecular generation tasks, well-designed 

constraints should be needed. Another characteristic of graph representation is 

permutation variation. Even for the same molecule, different representations occur 

depending on the order in which each atom or bond is written. In other words, various 

representations are possible according to the order in which each atom or bond is 

written. This can be both an advantage and a disadvantage. For problems with small 

data, it has the advantage of amplifying data by representing permutation differently. 

On the other hand, there are various problems caused by the expression of one 

molecule not being matched one-to-one. 

The other method is chemical language representation, which represents a 

three-dimensional molecular structure as a one-dimensional sequence. It is easy to 

store and retrieve data by representing complex molecular structures in a one-

dimensional sequence. In particular, since natural language processing models 

actively being studied in the field of deep learning are based on sequence data, there 

is an advantage in that advanced natural language processing models can be applied 

to chemical language learning. However, as the size of the molecule increases, an 

information gap may occur in representing the three-dimensional structure in a one-

dimensional sequence. Furthermore, this method also has the same characteristic of 

graph representation, a permutation variation. 
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Table 1 Molecular representation methods 

Methods  

F
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er
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ts

 

P
ro
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- Hash Function: Molecules can be represented as vectors 

of predefined size, regardless of molecular size 

- Molecules can be fragmented or combined with specific 

rules; this can be applied to reaction pathway synthesis 
P

ro
s 

&
 

C
o

n
s - During inverse design, the exact molecular structure 

cannot be specified 

M
o
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cu
la

r 
g
ra

p
h
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ro

s - The molecular structure itself and the representation are 

most similar 

P
ro

s 
&

 

C
o
n
s - Depending on the permutation of vertices and edges, 

there are various representations for the same molecule 

C
o
n
s - Generation of intact molecular graph data without 

constraint rules is difficult 

C
h

em
ic

al
 l

an
g
u
ag

e 

P
ro

s 

- Easy to store and utilize molecular data 

- High-level natural language models are available; 

context recognition ability can be highly utilized 

P
ro

s 
&

 

C
o
n
s - Depending on the permutation of vertices and edges, 

there are various representations for the same molecule 

C
o

n
s - As the molecular size increases, information loss may 

occur in representing the three-dimensional molecular 

structure as a one-dimensional representation 
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2.2. Which is the best representation method for deep learning? 

    As stated in the previous section, there are many ways to represent molecules 

as structured data. Each has advantages and disadvantages, and it is hard to specify 

which method is the best at present. One of the reasons is that it has not been long 

since this field has been actively researched. Figure 2 summarizes the publication 

years of papers found by searching for the keyword 'deep learning + materials' on 

Scopus (accessed on Nov. 16, 2022). In my opinion, since it was March 2016 when 

Deep Mind’s AlphaGo won the Go against the best Go player, Lee Se-dol, studies 

that applied deep learning to the material field began to be actively reported in 2017 

or 2018. Therefore, it seems that it is still too early to reach a consensus on which 

methods are most appropriate for each task. Another reason is that it is difficult to 

ascertain whether the difference in performance between models is due to a 

difference in representation methods (e.g., graph, language, and fingerprints) or a 

difference in the performance of the model itself. For example, even though a model 

using a graph-based methodology showed higher performance than a model using a 

chemical language-based methodology, it cannot be generalized that the graph-based 

methodology is better than the language-based methodology. For this reason, 

research that presents metrics that can quantitatively evaluate the performance of 

each model and a benchmarking platform composed of them is very important for 

the development of this field. [7] Note that Prof. Vijay Pande’s group presents the 

latest benchmarking results with various models for the fields of quantum mechanics, 

physical chemistry, biophysics, and physiology. [8] 
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Figure 2 The publication years of papers found by searching for the keyword 

'deep learning + materials' on Scopus (accessed on Nov. 16, 2022). 



 

 １９ 

Chapter 3. Materials design with context-awareness 

3.1. Introduction 

Materials discovery is a field of research that finds materials that are suitable 

for the desired use. The hit-like materials must satisfy some given target properties 

or functionalities. Traditionally, the discovery was conducted by evaluating the 

properties of the candidates through computational simulations and experiments for 

obtained candidate materials to find the best material that hit the given target 

properties (forward materials design). High-throughput screening is a typical 

example. This kind of approach still occupies the mainstream of materials discovery, 

but there are also problems. For example, it could be difficult in securing a group of 

potential candidates that are likely to contain the hitting materials for the given 

targets. In addition, there is a problem of high cost in the evaluation of numerous 

candidates. On the other hand, goal-directed inverse materials design can solve 

problems by directly designing materials that are likely to hit the given target 

properties or functionality at the same time. For this kind of approach, it is difficult 

to derive a generalized function (white-box model) using a theoretical formula to 

specify the molecular structure from the input target properties or functionalities. 

Hence, a black-box model such as deep-learning can be a good solution to this kind 

of problem where a clear mechanism for determining potential outputs from an input 

is not known. This is because deep learning can derive an approximation function 

that infers the desired outputs from a given input by learning the relationship between 

input and output hidden in empirical data. 

To learn the molecular structures in artificial neural nets, the molecular 
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structures must be represented as structured data. Molecules are made up of atoms 

and connecting bonds. The molecules can be represented as graphs constituting 

nodes and edges. Also, line notation can be used to represent the molecular structure, 

namely, chemical language. The chemical language represents a molecule with a line 

notated sequence with various symbols indicating the type of atom and type of bond. 

It also has grammar like natural language. This kind of chemical language was 

introduced to efficiently record and retrieve the structural information of molecules. 

[9-13] Simplified molecular-input line-entry system (SMILES) [11-13]—developed 

in the 1980s—is the most popular chemical language.  

Several approaches have demonstrated that Natural Language Processing (NLP) 

models are applicable to inverse molecular design problems. The NLP models design 

molecules by generating chemical language. It generates chemical language by 

iteratively selecting a character that follows the currently generated string. [14-18] 

Some studies proposed a language model combined with a variational autoencoder 

(VAE) [19]. It represents molecular information into compressed latent space and 

generates chemical language from resampled latent code. [20,21] Some others 

proposed a language model combined with a generative adversarial network (GAN) 

[22]. It also generated chemical language from sampled noise. [23] Reinforcement 

learning (RL) is also applicable to this problem to obtain a policy to select a character 

constituting a chemical language. [24] 

An important point in materials discovery is to find hit-like materials that meet 

multiple desired target properties. The desired molecules can be discovered in two 

steps by applying additional optimization or navigation process to the generative 

model: Bayesian optimization, [20,25] particle swarm optimization, [26] genetic 
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optimization, [27-29] or Monte Carlo tree search. [30-32] In the first step, it 

generates random molecules. Then select the best molecule in the second step. 

Another kind of method is to use conditional models which generate molecules with 

the given target conditions in a single step. It can shorten the time consuming to 

discover the desired molecules and directly control the molecules to be generated by 

manipulating the input conditions (goal-directed inverse materials design). A 

conditional recurrent neural network (cRNN) [33] is a neural machine translator 

(NMT) that generates desired molecules by translating input target conditions to 

corresponding chemical language. Unlike generative models, it is limited to 

generating various molecular candidates with a single condition set. This is because 

the recurrent neural network (RNN) is fundamentally a one-to-one matching 

translator, not a generative model; here, the generative models refer to models that 

can output various results by decoding noise (actually, latent code). 

In this chapter, generative chemical Transformer (GCT), [4] which embeds 

Transformer [34]—a state-of-the-art architecture that became a breakthrough for 

NLP problems by using an attention mechanism [35]—into a conditional variational 

autoencoder (cVAE) is proposed. From the point of view of data recognition and 

processing, GCT is close to a conditional generator that embeds the Transformer’s 

language recognition ability based on the attention mechanism. It is designed to take 

advantage of both the high-performance language model and the conditional 

generative model. Trained GCT is analyzed by quantitatively evaluating the 

generated molecules. GCT shows many strong points. When analyzing the attention-

score calculated by GCT, it is confirmed that a high attention-score is given between 

correlated parts in molecular structure. Chemical languages generated by GCT were 
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more likely to satisfy chemical rules than those generated by other models used for 

benchmarking. It is believed that a deep understanding of the molecular structure by 

paying attention to each character in chemical strings sparsely helps the generation 

process (grammar understanding). In addition, the chemical strings are parsed into 

highly realistic molecules (context-awareness). And also, it is demonstrated that the 

conditional variational generator, which is the skeleton of GCT, helps to generate 

molecules that satisfy multiple given conditions simultaneously (conditional 

generator) and varies for a single set of conditions (variational generator). In addition, 

the autoencoder, a substructure of GCT, makes the molecular size controllable. 
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3.2. Backgrounds 

3.2.1 SMILES Representation 

SMILES, a chemical language, represents molecules as one-dimensional text. 

It is a powerful language since a one-SMILES string is converted into an exact 

molecule. It represents the atoms, bonds, and rings that makeup molecules as a string. 

An atom is represented by the alphabet of the element symbol (e.g., C, N, O, and H), 

and a bond is represented by a single bond (-), double bonds (=), and triple bonds 

(#), depending on the type. In general, a bond that can be easily inferred through the 

atoms or ring structure of the surrounding atom is omitted. The notation of hydrogen 

is also omitted in the SMILES string if single-bond hydrogen can be explicitly 

inferred by the chemical valence rule, however, single-bond hydrogen can be 

indicated by using [H] if the bond is implicit. For charged atoms, where the number 

of hydrogen bonds cannot be determined explicitly, atoms and formal charges are 

written together in brackets [ ]. The beginning and end of each ring are represented 

as the same digit, and the pair must be correct; if a ring is open, it must be closed. 

The atoms present in the aromatic ring are written in lowercase, while the atoms 

outside the ring are capitalized. The branches in molecules are indicated by opening 

and closing parentheses (see Figure 3b). A more detailed description of SMILES is 

in the ref. [4-6]. 

 

3.2.2 Limitation of Language Representation 

Unfortunately, language representation has a limitation since most molecules 
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are non-Hamiltonian graphs. Here, the Hamiltonian graph refers to a graph that can 

derive a path that passes through all edges in a graph only once. And non-

Hamiltonian graph refers to a graph that cannot derive the path. It is self-evident that 

semantic discontinuity occurs whenever a branch in a molecule is translated into a 

one-dimensional string (Figure 3a). SMILES distinguishes each branch with open 

and close parentheses and creates a gap between the distance of two characters within 

the string and the distance of the corresponding two atoms in the molecular graph. 

An example is shown in Figure 3b. Even though atom2 and atom13 in Figure 3b 

are neighbors in the molecular graph, they are placed far from each other in the string. 

For this reason, the longer the branch is, the harder it is to imagine the molecular 

structure by reading the chemical string in sequence order (similar to memory cells). 

A similar phenomenon happens in natural language (Figure 3c). The longer the 

sentence is, the larger the gap between the characters' placement and the semantic 

similarity. Unfortunately, in chemical language, there are more areas where semantic 

discontinuity occurs. In the field of NLP, by introducing an attention mechanism to 

this problem, language models find correlated parts beyond the placement of words 

by paying attention to semantically related parts; it is a departure from the traditional 

way of perceiving context in the order of sentences (memory cells). The Transformer 

is an architecture involving an attention mechanism in the form of a neural network, 

and it became a breakthrough in context-aware ability. This study started with the 

expectation that the attention mechanism could help structural understanding beyond 

the semantic discontinuity of chemical language. 
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Figure 3 Structural limitation of language forms. a An example of a non-

Hamiltonian graph. A Hamiltonian graph has a path that passes through all the points 

in the graph only once, and a non-Hamiltonian graph does not have such a path. b 

An example of a non-Hamiltonian molecular graph and its SMILES string: 4-(2-

aminopropyl)-2-methoxyphenol. Each atom is labelled with a circled number. 

Different colors refer to different branches. c In natural language, words that are 

semantically close within a sentence are not always structurally close within a 

sentence. Reprinted with permission from ref. [4]. Copyright 2021 American 

Chemical Society. 
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3.3 Methods 

3.3.1 Tokenization and Token Embedding 

To input SMILES string to language models, the process of tokenizing by 

semantic units is necessary. The SmilesPE[29] tokenizer was used to tokenize the 

SMILES strings included in the training data of Molecular Sets benchmarking 

platforms (MOSES).30 In total, 28 types of tokens are used: 4 special tokens 

(<unknown>, <pad>, <sos>, and <eos>), 13 atom tokens (<C>, <c>, <O>, <o>, <N>, 

<n>, <F>, <S>, <s>, <Cl>, <Br>, <[nH]>, and <[H]>), 3 bond tokens (<->, <=>, and 

<#>), 2 branch tokens (<(> and <)>), and 6 ring tokens (<1>, <2>, <3>, <4>, <5>, 

and <6>). Note that tokens related to charged atoms (e.g. <[O-]>, <[n+]>) and tokens 

related to stereochemistry (e.g. </> , <\>) were not considered as they are not covered 

by the MOSES database. Each token that constitutes the SMILES string is one-hot 

encoded in 28 dimensions and embedded in 512 dimensions. The condition of GCT 

is also embedded in 512 dimensions. 

 

3.3.2 Attention Mechanism 

The attention mechanism is the core of the Transformer's language cognition 

abilities. The attention mechanism allows the Transformer to self-learn which token 

of the input string is better to focus on to perform a given task better. The attention 

mechanism uses three vectors: the query 𝑄 , the key 𝐾 , and the value 𝑉 . The 

attention mechanism calculates the similarity between 𝑄 and all keys in 𝐾, and the 
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calculated similarity is multiplied by the value corresponding to the key to calculate 

the attention scores. The scale-dot attention used in the Transformer is calculated as 

follows [27]: 

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (1) 

where 𝑑𝑘 is the dimension of 𝐾 and 𝑑𝑘 must correspond to the dimension 𝑑𝑞 of 

𝑄. The Transformer uses multi-head attention instead of single-head attention (eq. 2) 

[34]: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

(2) 

where 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝑂 ∈

ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑑𝑚𝑜𝑑𝑒𝑙 = 𝑑𝑘 × ℎ = 𝑑𝑣 × ℎ Here, h is the number of multi-head 

and 𝑑𝑣  is the dimension of 𝑉 . Each head (ℎ𝑒𝑎𝑑𝑖 ) calculates an attention score 

between 𝑄  and  𝐾  from different viewpoints using the different weights 

belonging to each head (𝑊𝑖
𝑄

, 𝑊𝑖
𝐾, and 𝑊𝑖

𝑉). 

 

3.3.3 Generative Chemical Transformer 

    GCT, an architecture that embeds Transformer—one of the most advanced 

language models—into a cVAE [37] which generates SMILES hitting target 

properties based on a deep understanding of chemical language is proposed. 

Transformer, the core of GCT's language recognition ability, is mainly used as an 
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NMT. It consists of an encoder and a decoder (Figure 4a). The encoder receives a 

sentence to be translated and understands the received sentence through self-

attention. Then, the processed information from sentence comprehension is passed 

to the decoder. The decoder iteratively selects the next token that will follow the 

translated sentence up to this point, referring to the information received from the 

encoder and the sentences translated up to the previous step; if there is no translated 

sentence at the beginning of translation, the special token ‘start of sentence <sos>’ is 

used. The decoder uses the input information to iteratively select the next token that 

will follow the translated sentence up to the previous step. Finally, the translation 

ends when the decoder selects a special token 'end of sentence <eos>'. 

    GCT is a structure that inserts a low-dimensional conditional Gaussian latent 

space between the encoder and the decoder of the Pre-Layer Normalization (Pre-LN) 

Transformer. [38] (Figure 4b). Pre-LN Transformer is a modified version of the 

original (Post-Layer Normalization, Post-LN) Transformer. The combination of 

language models and variational autoencoders is vulnerable to posterior collapse. 

[39] A complete solution to posterior collapse has yet to be identified; however, it is 

known that Kullback-Leibler divergence (KL) annealing can alleviate this problem. 

[40] Since KL annealing (KLA) controls the gradient size, adopting Pre-LN 

Transformer—designed to stabilize the gradient flow of the (Post-LN) 

Transformer—can facilitate KLA manipulation. The loss function of GCT is as 

follows: 

𝐿(∅, 𝜃; 𝑥𝑒𝑛𝑐 , 𝑥<𝑡 , 𝑥𝑡 , 𝑐)

= 𝑘𝑤𝐷𝐾𝐿(𝑞∅(𝑧|𝑥𝑒𝑛𝑐 , 𝑐) ∥ 𝑝(𝑧|𝑐))

− 𝐸𝑞∅(𝑧|𝑥𝑒𝑛𝑐 , 𝑐)[log 𝑔𝜃(𝑥𝑡|𝑧, 𝑥<𝑡 , 𝑐)]   

(2) 
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where 𝐷_𝐾𝐿 (∙)  is the KL divergence, and 𝐸[∙]  is the expectation.  𝑞∅  is a 

parameterized encoder function, 𝑔∅  is a parameterized decoder function 

(generator), 𝑝(∙ |𝑐) is a conditional Gaussian prior. Here, ∅, 𝜃, 𝑥𝑒𝑛𝑐, 𝑥<𝑡, 𝑧, 𝑥𝑡, 

𝑐, 𝑘𝑤 are the parameter set of the encoder, the parameter set of the decoder, the 

input of the encoder, the input of the decoder, the latent variables, the reconstruction 

target, the conditions, and the weight for KLA, respectively. The encoder and 

decoder each consist of six Pre-LN Transformer blocks. Each block has dimensions 

of 512 and 8-head attention, and the dimension of the feed-forward block is 2,048. 

The Gaussian latent space is designed in 128 dimensions. 

    The self-attention block of the encoder obtains the concatenated array of the 

SMILES string and three different properties: the octanol-water partition coefficient 

(logP), [41] the topological polar surface area (TPSA), [42] and the quantitative 

estimate of drug-likeness (QED) [43]. The encoder-decoder attention block in the 

decoder obtains the concatenated array of latent code and condition (three properties), 

and the self-attention block in the decoder obtains only the SMILES string. In the 

training phase, GCT performs the task of reconstructing the SMILES string—input 

through the encoder—by referring to the given hints on the molecular properties. In 

this process, the low-dimensional latent space acts as the model's bottleneck to find 

as much meaningful information that can be restored to the decoder as possible by 

exploiting the limited information passed through the bottleneck. Then, meaningful 

latent variables for molecular structures and properties are represented in the low-

dimensional continuous latent space. In the inference phase, a sampled latent code 

and target properties are input into the learned decoder, and the decoder selects the 

next tokens iteratively through a 4-beam search [44] (a kind of tree search method). 
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    A dropout [45] rate of GCT is 0.3 applied. Learning is conducted by the Adam 

optimizer [46]. The initial learning rate is 10−4 . The expansion rate of the 

momentum is 0.9 and the expansion rate of the adaptive term is 0.98. Two methods 

are applied to schedule the learning rate (GCT-WarmUP and GCT-SGDR in Table 

2). One is to use the warm-up scheduler (eq. 3) [34]: 

𝜂 = 3 𝑑𝑚𝑜𝑑𝑒𝑙
−0.5 ∙ min (𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡

−0.5 , 𝑠𝑤𝑎𝑟𝑚𝑢𝑝
−1.5) (3) 

where 𝜂  means learning rate, 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡  means the current training step, and 

𝑠𝑤𝑎𝑟𝑚𝑢𝑝  means warm-up steps. 𝑠𝑤𝑎𝑟𝑚𝑢𝑝  is set to 100,000. The other is to use 

stochastic gradient descent with warm restart (SGDR) of one epoch cycle (eq. 4) 

[47]: 

𝜂 =  𝜂𝑚𝑖𝑛 + 0.5(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (1 + 𝑐𝑜𝑠 (
𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑠𝑐𝑦𝑐𝑙𝑒

𝜋)) (4) 

where, 𝜂𝑚𝑖𝑛 means minimum learning rate, 𝜂𝑚𝑎𝑥 means maximum learning rate, 

𝑠𝑐𝑦𝑐𝑙𝑒 is learning rate scheduling step cycle. Here, 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥, and 𝑠𝑐𝑦𝑐𝑙𝑒 are set 

to 0, 0.0001, and one-epoch steps, respectively. KL annealing was applied to increase 

𝑘𝑤 from 0.02 to 0.50 at 0.02 intervals per epoch for a total of 25 epochs. 
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Figure 4 De novo molecular generation using GCT. a Transformer model for 

NMT: an example of translating Latin into English. It iteratively selects the next 

English word by referring to the Latin sentence and the English sentence translated 

up to the previous step. b In the process of learning to reproduce the input chemical 

formula, GCT learns the molecular structure and three different properties: logP, 

TPSA, and QED. It represents the information on molecular structure and properties 

in the latent space during the learning process. c The trained GCT generates a de 

novo molecule that satisfies the target properties by decoding the molecular 

information sampled from the latent space and the given preconditions. Reprinted 

with permission from ref. [4]. Copyright 2021 American Chemical Society.  
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3.3.4 Datasets & Benchmarking Metrics 

    The GCT model was trained and benchmarked using a database of MOSES 

benchmarking platforms. The MOSES database is a benchmarking dataset for drug 

discovery created by sampling molecules from the ZINC [48] is Not Commercial 

(ZINC) database—composed of commercially available compounds—that satisfy 

specific conditions: molecular weight in the range from 250 to 350 daltons, number 

of rotatable bonds is not greater than 7, not containing charged atoms or atoms other 

than C, N, S, O, F, Cl, Br, and H or cycles longer than eight atoms. The MOSES 

database consists of training samples (1.7 M), test samples (176 k), and scaffold test 

samples (176 k), which have scaffolds that never appear in the training samples. It is 

also designed to closely match the distribution between the datasets. The three 

additional properties (logP, TPSA, and QED) computed from RDKit [49] are used 

for GCT learning. 

    In general, the quality of network training can be evaluated by measuring how 

different the model's predicted and the actual labels are. However, for molecular 

generative models, the small mean loss does not guarantee that the generative model 

performs well because the artifacts in the generated molecules, which are not 

observed in the mean loss measurement, may not fit the chemical valence rule or 

may make the molecules unrealistic. For this reason, the quality of the generated 

molecules needs to be checked against the following criteria: 

 How plausible are the generated molecules? 

 Do the generated molecules satisfy the target properties? 
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 Can multiple candidates be generated for a single precondition set? 

 Can de novo molecules be created in a short time? 

    In total, 30,000 SMILES strings are generated by the trained GCT model and 

evaluated by MOSES benchmarking score metrics (Table 2). In addition to relatively 

simple scores such as validity, uniqueness, internal diversity, filters, and novelty, the 

MOSES benchmarking platform also provides metrics that can measure similarity 

with reference molecules such as the Similarity to a Nearest Neighbor (SNN), [7] 

Fréchet ChemNet Distance (FCD), [50] Fragment similarity (Frag), [7] and Scaffold 

similarity (Scaf). [7]  

    The SNN score is calculated as follows: 

SNN(𝐺, 𝑅) =
1

|𝐺|
 ∑ max

𝑚𝑅∈𝑅
𝑇(𝑚𝐺 , 𝑚𝑅)

𝑚𝐺∈𝐺

 (5) 

where 𝐺 and 𝑅 refer to the set of molecules generated and reference molecules, 

respectively, 𝑚  stands for Morgan fingerprints, [8] and 𝑇(𝐴, 𝐵)  stands for the 

Tanimoto similarity [51] between set 𝐴 and set 𝐵. SNN is a metric to evaluate the 

similarity to the nearest neighbor 𝑚𝑅 ∈ 𝑅 , which has the highest Tanimoto 

similarity for the molecule 𝑚𝐺  to be evaluated. Thus, the more similar two 

molecules 𝑚𝐺 and 𝑚𝑅 are, the higher the SNN score is. 

    The FCD uses activation of the penultimate layer in ChemNet and is designed 

to predict bioactivity. It calculates the difference in the distributions between 𝐺 and 

𝑅 is calculated as follows: 
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FCD(𝐺, 𝑅) =  ‖𝜇𝐺 − 𝜇𝑅‖2 + 𝑇𝑟 (∑ +
𝐺

∑ −
𝑅

2 (∑ ∑  
𝑅𝐺

)
1/2

 )  (6) 

where 𝜇  is the mean, ∑  is the covariance, and 𝑇𝑟(∙)  is the trace operator. The 

more similar the two sets of G and R, the lower the FCD value. 

    The Frag score is calculated as follows: 

Frag(𝐺, 𝑅) =  
∑ (𝑐𝑓(𝐺) ∙ 𝑐𝑓(𝑅))𝑓∈𝐹

√∑ 𝑐𝑓
2(𝐺)𝑓∈𝐹 √∑ 𝑐𝑓

2(𝑅)𝑓∈𝐹

  
(7) 

where 𝐹  is the set of 58,315 unique BRICS fragments, [52] and 𝐶𝑓(𝐴)  is the 

frequency with which fragment 𝑓 ∈ 𝐹  appears in the molecules in set 𝐴 . It is a 

metric that measures the similarity of the frequency in which each fragment 

belonging to BRICS appears in both sets of G and R. Thus, the more similar the 

distributions of the two sets are, the higher the Frag score is. 

The Scaf score is calculated as follows: 

Scaf(𝐺, 𝑅) =  
∑ (𝑐𝑠(𝐺) ∙ 𝑐𝑠(𝑅))𝑠∈𝑆

√∑ 𝑐𝑠
2(𝐺)𝑠∈𝑆 √∑ 𝑐𝑠

2(𝑅)𝑠∈𝑆

 (8) 

where 𝑆 is the set of 448,854 unique Bemis-Murcko scaffolds [53] and 𝐶𝑠(𝐴) is 

the frequency at which scaffold 𝑠 ∈ 𝑆  appears in the molecules in set A. The 

scaffold set S used for evaluation is curated by MOSES. The more similar the 

distributions of the two sets are, the higher the Scaf score is. 

 

3.3.5 Condition Sampling 

    The properties considered in this problem are logP, TPSA, and QED. A three-

dimensional histogram was derived after dividing each property into 1,000 equal 
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sections between the maximum and minimum values in the training data. Then, the 

cells were sampled according to the probability that data samples exist in each cell; 

here, the probability is the number of samples in that cell out of the total samples. 

Next, uniform noise was added at the center value of the cell to create condition sets 

for the 30,000 molecules to be generated; the sizes of the uniform noise for the logP-

axis, TPSA-axis, and QED-axis are applied to not exceed the size of the cell sides in 

each axis direction. 

 

3.3.6 Latent Variable Sampling 

    As mentioned earlier, the dimension of latent variables is set to 128; 128-

number of latent variables. However, since the number of tokens constituting a 

SMILES string is various for each molecule, the sequence length of the latent 

variables is applied differently each time; ℝ128×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ . Here, the 

sequence length means the number of tokens constituting the SMILES string. The 

sequence length used for each molecular generation was sampled from a normal 

distribution. The mean and variance of the normal distribution were derived from the 

number of tokens constituting the SMILES strings in the MOSES training dataset. 

After the sequence length is determined, the values of the latent variables are 

sampled from the standard normal distribution. 
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3.4 Results and Discussion 

3.4.1 How Plausible Are the Generated Molecules? 

To evaluate whether the generated SMILES strings represent plausible 

molecular structures, analysis from two perspectives is required. The first analysis is 

whether the generated SMILES strings can generate valid molecular graphs, in other 

words, whether the generated SMILES strings satisfy both the chemical valence rule 

and the syntax of the SMILES language. From the benchmarking results, it was 

found that more than 98.5% of the generated SMILES strings are valid; GCT-

WarmUp shows a validity of 98.5% and GCT-SGDR shows the validity of 99.2%. It 

is the highest value among language-based models (Table 2a). This ability depends 

on how well the generative machine can understand the geometry of molecules 

through SMILES strings. To determine the character (corresponding to atom, bond, 

or branch) followed by the given chemical string that satisfies the chemical valence 

rule and the grammar of the SMILES language, the geometry of the molecules 

(connectivity of each atom and the branches) present in the string must be understood. 

It seems that the attention mechanism applied to GCT helps the neural network to 

understand the grammar of chemical language beyond the semantic discontinuity of 

the SMILES language. It tends to be consistent with the results (visualized example 

of attention score for diproxadol) shown in ref. [54]. 

 Figure 5 shows the results for two extreme examples of how to pay attention 

to the characters within the SMILES string. Atom1, atom2, and atom13 in Figure 5a 

are located close to each other in the molecular graphs but far away from each other 

within the SMILES string. Although only a SMILES string was provided to GCT, it 
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is recognized that atom1, atom2, and atom13 are related to each other (♠); Figure 

5b shows that GCT-SGDR recognizes the relationship between atom2 and atom22, 

23 (♦). It also recognizes atoms corresponding to a particular branch (♣) and 

recognizes the ring type of branch (♥). Each attention-head recognizes the 

molecular structure according to different viewpoints. In summary, the attention 

mechanism applied to GCT seems to help GCT to recognize the molecular structure 

hidden in the one-dimensional text. This claim is consistent with the claim of ref. 

[54] regarding the role of the attention mechanism. 

In addition, it was confirmed that the GCT showed the highest SNN score 

among the compared models for the indicators (SNN, FCD, Frag, Scaf) that measure 

the similarity to the real molecules. However, FCD, Frag, and Scaf were not as good 

as the evaluation results of other compared models. Note that among the compared 

similarity metrics, SNN has a characteristic that distinguishes it from other metrics. 

As can be seen from eq. 5-8, FCD, Frag, and Scaf are metrics that compare the 

distribution between the generated molecular set and the reference molecule set (real 

molecular set). On the other hand, SNN is a metric that measures the mutual 

similarity between a generated molecule to be evaluated and a real molecule having 

the highest similarity (nearest neighbor). Hence, SNN is a metric independent of the 

distribution between the two sets. Note that artificial neural networks are universal 

approximators that approximate empirical probability distributions. Therefore, the 

distribution of the generated data approximates the distribution of the trained data 

very well. However, in the case of GCT, since the distribution of the generated 

molecular population may be manipulated according to given input conditions, the 

distribution of the generated molecular population may deviate from the distribution 



 

 ３８ 

of the trained molecular population. Since the test set and TestSF are intentionally 

designed to be similar to the distribution of the training set, it is believed that higher 

FCD, Frag, and Scaf scores were obtained in the unconditional models used for 

comparison. However, GCT showed the highest score for the SNN score, which is 

evaluated by one-to-one comparison rather than the comparison of two sets’ 

distribution. For further verification, the structures of molecules generated by GCT 

and real molecules were compared (Figure 6). As can be seen from the figure, it was 

confirmed that the molecules generated by GCT contained substructures similar to 

those of real molecules.
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Table 2 Comparison of the MOSES benchmarking. Adapted with permission from ref. [4]. Copyright 2021 American Chemical Society. 
   GCT (This works) MOSES Reference Models 

   GCT 

-WarmUp 

GCT 

-SGDR 

VAE AAE Char 

RNN 

Latent 

GAN 

JTN 

-VAE [55] 

Validity ↑  0.9853 0.9916 0.9767 

±0.0012 

0.9368± 

0.0341 

0.9748 

±0.0264 

0.8966 

±0.0029 

1.0±0.0 

Unique@1k ↑  1.0 0.998 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 

Unique@10k ↑  0.9981 0.9797 0.9984 

±0.0005 

0.9973 

±0.002 

0.9994 

±0.0003 

0.9968 

±0.0002 

0.9996 

±0.0003 

Novelty ↑  0.8144 0.6756 0.6949 

±0.0069 

0.7931 

±0.0285 

0.8419 

±0.0509 

0.9498 

±0.0006 

0.9143 

±0.0058 

SNN ↑ Test 0.6179 0.6513 0.6257 

±0.0005 

0.6081 

±0.0043 

0.6015 

±0.0206 

0.5371 

±0.0004 

0.5477 

±0.0076 

TestSF 0.5771 0.5990 0.5783 

±0.0008 

0.5677 

±0.0045 

0.5649 

±0.0142 

0.5132 

±0.0002 

0.5194 

±0.007 

FCD ↓ Test 0.4017 0.7980 0.0990 

±0.0125 

0.5555 

±0.2033 

0.0732 

±0.0247 

0.2968 

±0.0087 

0.3954 

±0.0234 

TestSF 0.8031 0.9949 0.5670 

±0.0338 

1.0572 

±0.2375 

0.5204 

±0.0379 

0.8281 

±0.0117 

0.9382 

±0.0531 

Frag ↑ Test 0.9973 0.9922 0.9994 

±0.0001 

0.9910 

±0.0051 

0.9998 

±0.0002 

0.9986 

±0.0004 

0.9965 

±0.0003 

TestSF 0.9952 0.8562 0.9984 

±0.0003 

0.9905 

±0.0039 

0.9983 

±0.0003 

0.9972 

±0.0007 

0.9947 

±0.0002 

Scaf ↑ Test 0.8905 0.8562 0.9386 

±0.0021 

0.9022 

±0.0375 

0.9242 

±0.0058 

0.8867 

±0.0009 

0.8964 

±0.0039 

TestSF 0.0921 0.0551 0.0588 

±0.0095 

0.0789 

±0.009 

0.1101 

±0.0081 

0.1072 

±0.0098 

0.1009 

±0.0105 
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Figure 5 Visualized examples for self-attention scores of an attention head in encoder blocks. a Visualization results of the fourth head in 

the second encoder block for 4-(2-aminopropyl)-2-methoxyphenol. b Visualization results of the third head in the second encoder block for 

5,6-bis(p-methoxyphenyl)-3-methyl-1,2,4-triazine. The visualization scheme is borrowed from ref. [56]. Reprinted with permission from ref. 

[4]. Copyright 2021 American Chemical Society.
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Figure 6 Comparison between the generated molecules and real molecules. The 

molecules in the dotted line are the real molecules in the MOSES training set, and 

the molecules outside are the generated molecules. 
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3.4.2 Do the Generated Molecules Hit the Target Properties? 

GCT generates molecular structures that hit multiple target properties. Figure 

7a-c are the results of comparing the properties of 30,000 molecules generated from 

GCT (calculated from RDKit) and target properties (preconditions given in GCT). 

Since logP and TPSA are physical properties directly related to the molecular 

structure, it is possible to generate a molecular structure corresponding to the target 

property based on an understanding of the molecular structure. However, the QED 

is an artificial index designed to determine the likeness to drugs quantitatively 

through geometric averages of eight different properties, so it is relatively difficult 

for the QED; this phenomenon is also found with cRNNs. The absolute mean errors 

between the target conditions for each property and the properties of the generated 

molecule are 0.177 (logP), 2.923 (TPSA), and 0.035 (QED). 

The length of the generated SMILES string depends on the length of the latent 

code since GCT has an autoencoder (AE) structure; it is trained to reconstruct 

information input into the encoder. In the training phase, the length of the latent code 

appears equal to the length of the string input into the encoder and the length of the 

string output from the decoder; in fact, these are slightly different depending on 

whether the <sos> and <eos> tokens are used in the input and output design. In the 

inference phase, the length of the input latent code and the length of the generated 

SMILES string did not match perfectly and GCT does not learn the distribution of 

sequence lengths (Figure 7d). However, it seems that the length of the generated 

SMILES string which is related to the size of the molecule can be manipulated to 

some extent by adjusting the length of the latent code. 
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To check whether the multiple given target properties are satisfied 

simultaneously, the properties of generated molecules were compared to the 10 

precondition sets that were sampled from the distribution of training data (Figure 

7e-g). The conditional model, which is a skeleton of GCT, generates molecules that 

simultaneously satisfy multiple target properties well. Furthermore, the variational 

generator in GCT makes it possible to generate various molecules under the same 

precondition set (Figure S1-10). 
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Figure 7 Evaluation of target hitting ability. a-d Parity plots between the target properties and the properties of 30,000 generated 

molecules. e-h Parity plots between target properties (red line) and properties of generated molecules for each set of targets (blue dots). 

10,000 generation trials were conducted for each set of targets. Reprinted with permission from ref. [4]. Copyright 2021 American Chemical 

Society.
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3.4.3 Can De Novo Molecules Be Created? 

Whether a generative model can create de novo molecules is an important 

criterion that determines its applicability for material discovery. The novelty score 

refers to the probability of generating a new molecule that does not exist in the 

training data (Table 2). Note that only a high novelty score does not guarantee that 

it is a good generator since odd and unrealistic molecules can increase the novelty 

score. Hence, the novelty score should be used in conjunction with indicators to 

evaluate whether the generated molecules are realistic. Figure 8 shows a scatter plot 

of each model’s novelty score and validity score. The dotted line is a linear regression 

of the reference model scores (VAE, AAE, CharRNN, GAN, JTN-VAE). 

Interestingly, for all reference models, it is observed that the novelty score decreases 

as the SNN score increases. Conversely, the higher the novelty score, the lower the 

SNN score. This means that it is not easy to create new molecules that are similar to 

real molecules. However, it can be confirmed that GCTs (GCT-WarmUp, GCT-

SGDR, GCT-Exp1~3) generate new and similar molecules better than the reference 

models; Here, GCTs mean trained models using different hyperparameters or 

different learning rate schedules. The detailed conditions and scores for each GCT 

are summarized in Table 3. 

The model using the SGDR (GCT-SGDR) shows lower novelty and higher 

validity than the models using the warm-up scheduler (GCT-WarmUp). A scheduler 

that cyclically reduces the learning rate has a loss in reducing the KL divergence 

term of the VAE loss function, however, it has a benefit in reducing the 

reconstruction error term. [57] It seems that the SGDR scheduler, a kind of cyclic 
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annealing scheduler, makes GCT-SGCR have high validity and low novelty. The 

time taken per molecule generation was 507 ms in the environment of an 8C/16T 

CPU and an NVIDIA GTX 1080 Ti and 440 ms with a 12C/24T and an NVIDIA 

Tesla T4. 

 

3.4.4 Limitations 

Not all properties of molecules used for drug discovery were considered, and 

only properties of drug molecules covered by the MOSES dataset were considered; 

charged atoms and stereochemistry are not considered and these are limitations of 

this study. Furthermore, it is hard to extrapolate outside of the property window GCT 

was trained on since VAE, which is a model that learns the distribution of data and 

generates data by sampling the latent variables from the learned distribution of latent 

variables, cannot learn the distribution of data properly for regions where there are 

no data samples or for sparse regions. For this reason, the target properties are not 

satisfied relatively well for precondition #10 in Figure 7e-h; the low QED area has 

few data samples (see Figure 7c).  
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Figure 8 Novelty-SNN relationship. Reprinted with permission from ref. [4]. 

Copyright 2021 American Chemical Society.
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Table 3  MOSES benchmarking results with various training conditions set-up. Reprinted with permission from ref. [4]. Copyright 2021 

American Chemical Society. 

  GCT-Exp1 

(baseline) 

GCT 

-WarmUp 

GCT 

-Exp2 

GCT 

-Exp3 

GCT 

-Exp4 

GCT 

-SGDR 

Training Conditions 
 Epochs 25 25 25 25 50 25 
 KLA weight ( 𝑘𝑤 ) 

[start:step:end] 

[0:0.02:0.5] [0:0.02:0.5] [0:0.02:0.5] [0:0.01:0.25] [0:0.01:0.5] [0:0.02:0.5] 

 Learning rate (lr) Baseline lr Baseline lr 

× 𝟑 (= eq. 3) 

Baseline lr 

× 𝟓 

Baseline lr Baseline lr eq. 4 

 Learning rate 

schedular 

Warm-Up Warm-Up Warm-Up Warm-Up Warm-Up SGDR 

MOSES Benchmarks 
 Validity 0.9757 0.9853 0.9808 0.9692 0.9813 0.9916 
 Unique@1k 1.0 1.0 1.0 1.0 1.0 0.998 
 Unique@10k 0.9977 0.9981 0.9977 0.9983 0.9986 0.9797 
 Novelty 0.8019 0.8144 0.8043 0.8114 0.8572 0.6756 
 SNN (Test) 0.6204 0.6179 0.6206 0.6081 0.6131 0.6513 
 SNN (TestSF) 0.5784 0.5771 0.5791 0.5693 0.5744 0.5990 
 FCD (Test) 0.4181 0.4017 0.3813 0.3883 0.7180 0.7980 
 FCD (TestSF) 0.8560 0.8031 0.8411 0.7855 1.221 0.9949 
 Frag (Test) 0.9977 0.9973 0.9980 0.9979 0.9944 0.9922 
 Frag (TestSF) 0.9957 0.9952 0.9956 0.9960 0.9910 0.8562 
 Scaf (Test) 0.9021 0.8905 0.8935 0.8644 0.8893 0.8562 
 Scaf (TestSF) 0.0883 0.0921 0.1039 0.1049 0.0969 0.0551 
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3.5 Conclusion 

In this chapter, a GCT architecture that embeds Transformer—a language 

model that has been a breakthrough in the field of NLP using an attention 

mechanism—into a conditional variational generator was studied. The trained GCT 

can generate SMILES strings that meet the desired conditions based on a deep 

understanding of chemical language. It learns molecular structures and three 

different properties as a form of language: the logP, TPSA, and QED. Quantitative 

evaluations have been performed by scoring molecules converted from the generated 

SMILES strings. In this process, the characteristics of the metrics (the SNN, FCD, 

Frag, and Scaf) that measure the plausibility of the molecules were analyzed, and the 

limitations were discussed. The performance of GCT has been benchmarked by the 

MOSES benchmarking platform. By analyzing the results, it has been demonstrated 

that GCT can utilize both the advantages of a language model and a conditional 

variational generator. The conclusions obtained are summarized as follows: 

 (1) The attention mechanism in GCT helps to deeply understand the 

molecular structures beyond the limitations of chemical language 

semantic discontinuity resulting from converting a non-Hamiltonian 

molecular graph to a one-dimensional string by paying sparse attention 

to chemical formulas. 

 A deep understanding of chemical language makes the generated 

SMILES strings (2) satisfy the syntax of SMILES language, (3) satisfy 

the chemical rules, and (4) are realistic. 
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 The conditional variational generator in GCT makes the generated 

molecules (5) satisfy multiple target properties simultaneously and (6) 

vary. 

 The AE structure of GCT (7) makes the molecular size controllable. 

 GCT (8) creates de novo molecules that have never been seen in the 

training process, and (9) creates a molecule in hundreds of milliseconds. 

Well-trained GCT (GCT-WarmUp) generates valid SMILES strings with 98.5% 

probability. 84.1% of the generated SMILES strings were new molecules that had 

never been learned, and their similarity with real molecules was 0.681 (their SNN 

score was 0.681). It is difficult to create a new molecule that is similar to the pattern 

of existing real molecules even never been seen before. Among the compared models, 

GCT showed the best performance in making new molecules that are similar to real 

molecules. Additionally, the generated molecules satisfied multiple target properties 

simultaneously, and the mean absolute errors for the three different properties were 

0.177 (logP), 2.923 (TPSA), and 0.035 (QED). In addition, it has been confirmed 

that GCT can control the molecular size; the averaged difference in the number of 

generated SMILES tokens compared to the given length of latent code is 0.332. 

Molecular generation took 507 ms per molecule on a personal computer. 

Furthermore, conditions applicable to GCT can be adjusted. It is believed that GCT 

can be extended to Transformer-based architectures such as BERT, [58] GPT, [59] 

and T5 [60]. Considering the time required versus the advantages listed above, it is 

expected that our proposed model can contribute to accelerating the process of 

materials discovery. 
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Chapter 4. Materials design with extreme properties 

4.1 Introduction 

    Practical material discovery tasks often require the discovery of materials with 

rare properties rather than those commonly present. For example, polymers with 

better mechanical properties or drugs with better activity. These are related to 

materials discovery with extreme properties or functionality, which are superior to 

those of the already discovered. [61-63] In another case, there is a need for materials 

in which two or more properties or functionalities are difficult to appear together. 

[64] For example, engineering plastics used in automobiles need to be light while 

the mechanical strength is as strong as metal. [64-66] The problem is that these 

materials are relatively rare in nature. It means that there aren't many known 

molecular structures for reference. If many examples of molecular structures with 

properties similar to the desired properties are known, the molecular structure of the 

desired materials can be inferred from their common characteristics and expert 

knowledge. However, in the opposite cases, it is difficult to infer the desired 

molecular structure from nothing or insufficiently few known samples. 

Unfortunately, it is true not only for human experts but also for models learning the 

data. 

    As for the inverse molecular design, data probability distribution learning 

models based on NMT or generative models such as VAE and GAN have been 

mainly used. All these are models that approximate the probability distribution of 

training data. In the case of using NMT-based models, these design molecules 

inversely by translating input target properties into their molecular structures. These 
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are kinds of a method that learn the relationship between the properties and 

molecular structures. In the cases of using VAE or GAN-based models, these 

generate molecules from sampled noise. The generators are trained to approximate 

the probability distribution of data to be generated by the generator to the distribution 

of training data. Figure 9 compares the distribution of the training data provided by 

the MOSES benchmarking platform and the molecules inferred by the models 

trained on it. As can be seen from the figure, the generated data is similarly 

distributed to its training data. It means that the probability distribution learning 

models approximate the distribution of training data very well. Therefore, 

paradoxically, these probability distribution learning models do not guarantee that 

these models will operate as intended for the region out of trained data-distribution. 

In other words, it may not be suitable to use these models for the problems of 

discovering materials out of training data distribution, which is to be solved in this 

chapter. 

    On the other hand, combinatorial chemistry [67] can infer various materials that 

deviate from the distribution of known material samples. Combinatorial chemistry 

is a methodology for generating molecules by combining predefined molecular 

fragments with rules for combining them. Therefore, even for the target properties 

that have never been discovered, combinatorial chemistry can generate materials that 

hit the target if the target is included in the set of obtainable properties form the 

combination of predefined fragments. Hence, it would be more suitable for the 

problem of materials discovery with extreme properties. However, combinatorial 

chemistry has a critical limitation on the fragment selection policy; it randomly 

selects molecular fragments to be combined. In other words, there is no policy of 

molecular fragment selection to guide the compound to the desired target. This 
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means that it entails a problem of combinatorial explosion. It can be an obstacle to 

quickly and effectively discovering the desired material. 

    In this chapter, a model for learning the molecular fragment selection policy 

that leads combinatorial chemistry to derive hit-like materials through RL has been 

proposed (fragment-based RL). Through this, the proposed model can utilize the 

strengths of combinatorial chemistry (the ability to discover materials with extreme 

properties), while solving the disadvantages of combinatorial chemistry (the absence 

of a fragment selection policy). Studies that attempt inverse molecular design using 

fragment-based RL are not entirely new. [68-70] However, to the best of the author’s 

knowledge, no study insists on the use of fragment-based RL for materials discovery 

with extreme properties. This study contributes to three major points. Firstly, it is 

theoretically reviewed that the probability distribution learning models such as NMT 

and generative models (e.g., VAEs and GANs) do not guarantee the materials 

discovery out of trained data distribution. Secondly, it has been empirically 

confirmed that the probability-distribution learning models cannot discover 

materials out of trained data distribution, however, fragment-based RL can do it. 

Thirdly, it has been confirmed that the fragment-based RL is a universal solution to 

various materials discovery with extreme properties by conducting several case 

studies: multi-objective hitting materials discovery and lead molecules discovery to 

a protein target. 
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Figure 9 Distribution of MOSES training data and data generated by MOSES 

baseline models that learn MOSES training data. 
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4.2 Theoretical Review of Probability-Distribution Learning 

Models 

    For inverse molecular design problems, sequential classification models based 

on NMT or generative models based on VAE or GAN are mainly used. All these are 

models that learn the empirical probability-distribution of training data. In this 

section, it is theoretically shown that minimizing the loss functions of the models 

mentioned above is equal to an approximation of the probability distribution of 

training data with its generator. 

    Let the training data including N-samples and their labels be 𝑋, 𝑌 =

(𝑋1, 𝑌1), … , (𝑋𝑁 , 𝑌𝑁)  where each 𝑋𝑖 = (𝑥𝑖,1, … , 𝑥𝑖,𝑇) is a chemical language 

consisting of 𝑇  one-hot encoded tokens 𝑥𝑖 , and 𝑌𝑖 = (𝑦𝑖,1, … , 𝑦𝑖,𝑇′)  are 𝑇′ 

labeled properties corresponding to 𝑋𝑖. First, let the NMT model 𝐺𝜃
𝑁𝑀𝑇(𝑋|𝑌) be a 

𝜃-parameterized model that translates the input target property 𝑌 into the chemical 

language 𝑋. NMT calculates 𝜃∗ that maximizes the maximum likelihood for the 

training data to derive the optimal model 𝐺𝜃∗
𝑁𝐿𝑃(𝑋|𝑌). This is equivalent to deriving 

𝜃∗  that minimizes the negative log-likelihood − log 𝐺𝜃∗
𝑁𝑀𝑇(𝑋|𝑌)  for the training 

data. It is equal to minimizing the expectation of negative log-likelihood for all data 

samples present in training data sets: − ∑ 𝑃(𝑋𝑖|𝑌𝑖)𝑁
𝑖 log 𝑃 (𝐺𝜃

𝑁𝑀𝑇(𝑋𝑖|𝑌𝑖)) =

− ∑ 𝑃(𝑋𝑖|𝑌𝑖)𝑁
𝑖 log 𝑃𝜃(�̂�𝑖|𝑌𝑖)  where �̂�𝑖  is the hypothesis. Therefore, the negative 

log-likelihood loss is equal to the cross entropy 𝐻 ((𝑋, 𝑌), (�̂�, 𝑌)), which can be 

rewritten in terms of entropy ((𝑋, 𝑌)) and the KL-divergence term as follows: 
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   𝐻 ((𝑋, 𝑌), (�̂�, 𝑌)) = ∑ 𝑃(𝑋𝑖|𝑌𝑖) log 𝑃𝜃(�̂�𝑖|𝑌𝑖)
𝑁

𝑖
  

                                     = ∑ 𝑃(𝑋𝑖|𝑌𝑖) log 𝑃𝜃(𝑋𝑖|𝑌𝑖)
𝑁

𝑖
 

                                                + 𝑃(𝑋𝑖|𝑌𝑖) log 𝑃𝜃(�̂�𝑖|𝑌𝑖) − 𝑃(𝑋𝑖|𝑌𝑖) log 𝑃𝜃(𝑋𝑖|𝑌𝑖) 

                                     = 𝐻((𝑋, 𝑌)) + 𝐷𝐾𝐿 (𝑃(𝑋|𝑌) ∥ 𝑃𝜃(�̂�|𝑌))  

 

(9) 

where 𝐻((𝑋, 𝑌))  denotes the entropy of the training data 𝑋, 𝑌 . Since the 

𝐻((𝑋, 𝑌))  is a term independent of the trainable parameter 𝜃 , minimizing 

𝐻 ((𝑋, 𝑌), (�̂�, 𝑌))  is equivalent to minimizing 𝐷𝐾𝐿 (𝑃(𝑋|𝑌) ∥ 𝑃𝜃(�̂�|𝑌)) . Here, 

𝑃(𝑋|𝑌) in the KL-divergence term is a fixed term from the training data. Therefore, 

by tuning the trainable parameter 𝜃 to make 𝑃𝜃(�̂�|𝑌) closed to 𝑃(𝑋|𝑌), 𝜃∗ that 

minimizes 𝐷𝐾𝐿 (P(X) ∥ 𝑃𝜃(�̂�))  is obtained. In other words, training the NMT 

model is equal to obtaining 𝐺𝜃∗
𝑁𝑀𝑇(𝑋|𝑌) in the way mentioned above, which derives 

a generator that approximates empirical data distribution.  

    VAE is a model that generates the target 𝑋. It represents the training data 𝑋 in 

the latent space using the ∅-parameterized encoder 𝑄∅
𝑉𝐴𝐸. Then, after concatenating 

the sampled latent code 𝑧  and the target property 𝑌 , inputting it into 𝐺𝜃
𝑉𝐴𝐸  to 

reconstruct 𝑋 . In the case of VAE, the same conclusion can be drawn by 

transforming the loss function of VAE into cross-entropy. It can be rewritten in terms 

of entropy and the KL-divergence term. The loss function of VAE is as follows: 

∑ 𝔼𝑄∅
𝑉𝐴𝐸(𝑧|𝑋𝑖)

𝑁

𝑖
[log 𝐺𝜃

𝑉𝐴𝐸(𝑋𝑖|𝑧, 𝑌𝑖)] + 𝐷𝐾𝐿(𝑄∅
𝑉𝐴𝐸(𝑧|𝑋𝑖) ∥ 𝑃(𝑧)) 

 
(10) 

where 𝑄∅
𝑉𝐴𝐸 and 𝑧 mean ∅-parameterized encoder and latent code, respectively. 

In the training process, the KL-divergence term approximates the distribution of the 
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encoded latent code to the prior distribution 𝑃(𝑧) and acts like a regularizer. The 

expectation term acts like a reconstruction error. Looking at the reconstruction error 

from the point of view of the generative model, it can be understood as calculating 

the trainable parameters ∅  and 𝜃  that minimize the log-likelihood 

log 𝐺𝜃
𝑉𝐴𝐸(𝑋𝑖|𝑧, 𝑌𝑖) in the process of minimizing the loss. As mentioned earlier, log-

likelihood is ∑ 𝑃(𝑋𝑖|𝑧, 𝑌𝑖)𝑁
𝑖 log 𝑃 (𝐺𝜃

𝑉𝐴𝐸(𝑋𝑖|𝑧, 𝑌𝑖))  with 𝑧~𝑄∅
𝑉𝐴𝐸(𝑧|𝑋𝑖) , and this 

can be simply expressed as ∑ 𝑃(𝑋𝑖|𝑧, 𝑌𝑖)𝑁
𝑖 log 𝑃𝜃(�̂�𝑖|𝑧, 𝑌𝑖)  with 𝑧~𝑄∅

𝑉𝐴𝐸(𝑧|𝑋𝑖) . 

This is equivalent to cross-entropy 𝐻 ((𝑋, 𝑧, 𝑌), (�̂�, 𝑧, 𝑌)) which can be rewritten 

in terms of entropy 𝐻((𝑋, 𝑧, 𝑌))and the KL-divergence term: 

𝐻 ((𝑋, 𝑧, 𝑌), (�̂�, 𝑧, 𝑌)) = ∑ 𝑃(𝑋𝑖|𝑧, 𝑌𝑖) log 𝑃𝜃(�̂�𝑖|𝑧, 𝑌𝑖)
𝑁

𝑖
  

                                          = ∑ 𝑃(𝑋𝑖|𝑧, 𝑌𝑖) log 𝑃𝜃(𝑋𝑖|𝑧, 𝑌𝑖)
𝑁

𝑖
 

                                                      + 𝑃(𝑋𝑖|𝑧, 𝑌𝑖) log 𝑃𝜃(�̂�𝑖|𝑧, 𝑌𝑖) 

                                                      − 𝑃(𝑋𝑖|𝑧, 𝑌𝑖) log 𝑃𝜃(𝑋𝑖|𝑧, 𝑌𝑖) 

                                          = 𝐻((𝑋, 𝑧, 𝑌)) + 𝐷𝐾𝐿 (𝑃(𝑋|𝑧, 𝑌) ∥ 𝑃𝜃(�̂�|𝑧, 𝑌)) 

 

(11) 

Here, minimizing 𝐻 ((𝑋, 𝑧, 𝑌), (�̂�, 𝑧, 𝑌))  is the same as deriving 𝐺𝜃
𝑉𝐴𝐸(𝑋𝑖|𝑧, 𝑌𝑖) 

that makes 𝑃𝜃(�̂�|𝑧, 𝑌) approximate 𝑃(𝑋|𝑧, 𝑌) with 𝑧~𝑄∅
𝑉𝐴𝐸(𝑧|𝑋𝑖). That is, 𝐺𝜃

𝑉𝐴𝐸 

is a model that approximates the empirical probability-distribution of the training 

data by tuning 𝜃 to make the probability distribution of data generated by 𝐺𝜃
𝑉𝐴𝐸 

closed to the probability distribution of training data. 

    In the case of GAN, 𝐺𝜃
𝐺𝐴𝑁 has been trained to generate data with noise until 

the discriminator 𝐷∅
𝐺𝐴𝑁  cannot distinguish the generated and the real correctly. 

Note that GAN has been proven in the ref. [22] to be a global minimum of the virtual 

training criterion of the generator is achieved if and only if 𝑃(𝑋) = 𝐺𝜃
𝐺𝐴𝑁(𝑧). That 
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is, the GAN is also a model that makes the distribution of the data generated by the 

generator approximate the empirical probability-distribution of the training data. 

    The problem is that the true probability of the considering system cannot be 

obtained. Therefore, it is impossible to check whether the empirical probability-

distribution that the generator approximates is close to the true probability. 

Furthermore, in the case of materials discovery with extreme properties covered in 

this chapter, which is hard to get sufficient data samples, the distribution of the 

gathered data (training data) is likely to deviate from the true probability of the 

considering system. Therefore, it is hard to be guaranteed that the probability-

distribution learning models based on NMT, VAE, and GAN work as intended in the 

problem of materials discovery with extreme properties. 

 

4.3 Fragment-based RL 

    Fragment-based RL is a methodology that uses RL to learn the molecular 

fragment selection policy required for combinatorial chemistry. RL is a method that 

derives a mature policy through trial and error according to the reward derived from 

the results of the agent’s action in the environment. So, it is not a method that learns 

the probability distribution of training data. 

    Before training the RL model, a basic configuration is required (Figure 10a). 

First, it is necessary to understand a given task. It is used to design a reward function 

suitable for the task. For example, in the case of a multi-objective hitting problem, 

the reward function can be an inverse form of the sum of errors for each objective. 

If the given task is to maximize or minimize some score, the score itself can be used 
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as a reward. That is, the reward function can be designed to output the higher the 

reward if the better the given task is performed. Next, a penalty function can be 

applied to prevent undesired results. For example, if only too small molecules are 

generated, the sufficient diversity of the discovered materials cannot be secured. To 

prevent this, a penalty may be given in the range where the molecular weight (MW) 

is too small. The next thing to do is to set the termination conditions. Termination 

conditions are the criteria for deciding whether to attach additional molecular 

fragments to the potential molecular structures or finish the game without further 

fragment selection. For example, not selecting any more fragments if the reward 

exceeds a threshold can be used as one of the termination conditions. If any one of 

the termination conditions is satisfied, the potential molecular structure completed 

so far is output as a final product. For reference, there are cases that the hit-like 

material has been found until the game is terminated, but there are also cases that the 

hit-like material cannot be found despite going through too many rounds of 

molecular fragment selection. In the latter case, not selecting any more fragments if 

the reward exceeds a given threshold can be one of the termination conditions. Here, 

a maximum MW could be one of the termination conditions. The next thing to do is 

to set up the combinatorial library, a set of molecular fragments to use. In this study, 

about 2K fragments were selected from the BRICS 4K fragment set provided by 

breaking of retrosynthetically interesting chemical substructures (BRICS) [52] and 

used as a combinatorial library. BRICS also provides rules for combining molecular 

fragments (Figure 10d). The original BRICS combination rules support 

combinations that can be combined among 16 templates (union set of solid lines and 

blue dotted lines). In this study, the modified BRICS combination rule provided by 

RDKit is adopted (union set of solid lines and red dotted lines). The modified BRICS 
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combination rule uses 14 templates. Each template is a generalized BRICS fragment. 

Each template represents multiple BRICS fragments. All templates have combinable 

site(s) (𝐿𝑥:1:16 ). If there is a BRICS combination rule that two templates can be 

combined, two BRICS fragments which are corresponding to each template can be 

combined by attaching a binding site. 

    After the basic configuration is completed, the fragment selection policy will 

be trained (Figure 10b). In the training process, the initial fragment is randomly 

selected from among the predefined combinatorial library (Step 2a). This method is 

adopted to secure the versatility of the final product. The next step is masking 

fragments which can be combined with the current intermediate; if it is the first round 

for molecular fragment selection, the initial fragment is the current intermediate. 

Then, the policy selects a fragment among the masked fragments (Step 2b). It is a 

kind of action masking method to reduce the action space efficiently. The newly 

selected fragment is attached to the current intermediate. There are two cases of the 

state of the current intermediate. One is that the current intermediate has one or more 

unoccupied binding sites. In this case, a hydrogen atom(s) is attached to the 

unoccupied binding site according to the chemical valence rule. This process is 

necessary to make the current intermediate intact since only intact molecules can be 

evaluated. The other is that the current intermediate has no unoccupied binding site. 

In this case, the current intermediate is intact. So, it does not need any attachment to 

evaluate it (Step 2c). The intact molecule is named potential output. The potential 

output is evaluated with the evaluator(s) (Step 2d). Then, the game is terminated and 

update the policy with an obtained reward if one of the termination conditions is 

satisfied. (Step e). In the other case, return to Step 2b and repeat Step 2b to Step 2d 

if none of the termination conditions is satisfied. 
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    RL is conducted using the proximal policy optimization (PPO) algorithm [71]. 

After training is completed, the hit-like materials are inversely designed using the 

trained policy (Figure 10c). To empirically confirm that fragment-based RL can be 

a universal solution to the various problems of materials discovery with extreme 

properties, four case studies have been conducted. The two case studies of them are 

about the discovery of materials that hit multi-objective indicators used for drug 

discovery. The two problems are addressed in Section 4.3 and Section 4.4, 

respectively. One of the remaining case studies is a lead molecule discovery for the 

5-HT1B protein target and the other is the discovery of human immunodeficiency 

virus (HIV) inhibitors. These are addressed in Section 4.5 and Section 4.6, 

respectively. 
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Figure 10 Overview of fragment-based RL. a Configuration. b Training process. c Inference process. d BRICS combination rules.
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4.4 Case Study 1: Materials Discovery with Seven-Drug 

Indicators 

4.4.1 Problem description 

    Case study 1 deals with the problem of discovering materials that hit multiple 

target values for seven-auxiliary indicators used in drug development. The seven 

indicators covered here are logP, TPSA, QED, the number of hydrogen bond 

acceptors (HBA), the number of hydrogen bond donors (HBD), MW, and drug 

activity to human dopamine receptor D2 (DRD2). The drug indicators used as the 

target are set to be the same as the target used in the cRNN. Since cRNN is distributed 

as unmodifiable and training completed, fragment-based RL also used the same 

indicators as the target to compare the results with cRNN. The used target values are 

set to deviate from the distribution of common properties. Here, the common 

properties mean that are covered from the distribution of ChEMBL [72, 73] training 

data consisting of 1,347,173 molecular samples. 

 

4.4.2 Configuration Setup for Fragment-based RL 

    Before training the policy, it is necessary to set the basic configuration of 

fragment-based RL: reward function, termination conditions, and combinatorial 

library. Here, the reward is set to be evaluated by using the error 𝜀. 𝜀 is calculated 

as follows: 
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𝜀 = ∑ (
𝑦𝑒𝑣𝑎𝑙.

(𝑖)
− 𝑦𝑡𝑟𝑔.

(𝑖)

𝜎𝑖
)

2

𝑖∈𝑠𝑒𝑡 𝐼
 (12) 

where 𝑠𝑒𝑡 𝐼 , 𝑦𝑒𝑣𝑎𝑙
(𝑖)

 , 𝑦𝑡𝑟𝑔
(𝑖)

 , and 𝜎𝑖  denote a set of target indicators, evaluated 

property 𝑖 of the molecule, target property of 𝑖, and standard deviation of 𝑖 for 

training data, respectively. Except for DRD2, the rest of the indicators are evaluated 

using RDKit. In the case of DRD2, it is evaluated by a predictive model (quantitative 

structure-activity relationship, QSAR) provided by ref. [33]. From calculated 𝜀 ,  

the reward 𝑟 is evaluated as follows:  

Potential_output = Add_Hs(‘Current_mol.’) 

if num_of_connectable_site(‘Current_mol.’) == 0: 

    if MW(‘Potential_output’) < MWmin 

        or num_of_frag. (‘Potential_output’) < min_frag.: 

        return r = -50 

    elif 𝜀 < 𝜀𝑏𝑜𝑢𝑛𝑑: 

        return r = 100 / (𝜀+1) 

    else: 

        return r = 30 / (𝜀+1) 

 

else: 

    if MW(‘Potential output’) < MWmax 

          and num_of_frag. (‘Potential_output’) < max_frag.: 

        if MW(‘Potential output’) < MWmin 

            or num_of_frag. (‘Potential_output’) < min_frag.: 

        return find_next_frag. (‘Current_mol.’) 

 

        elif 𝜀 < 𝜀𝑏𝑜𝑢𝑛𝑑: 

            return r = 100 / (𝜀+1) 

        else: 

            return find_next_frag. (‘Current_mol.’) 

    else: 

        elif 𝜀 < 𝜀𝑏𝑜𝑢𝑛𝑑: 

            return r = 100 / (𝜀+1) 

        else: 

            return r = 30 / (𝜀+1) 
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where ‘Current_mol.’ and ‘Potential_output’ denote the molecule in the current state 

and the intact molecule obtained by filling the remaining unoccupied bonding site of 

‘Current_mol.’, respectively. MWmin=500 and min_frag.=6 denote a minimum 

molecular weight and a minimum number of fragments, respectively. These are 

adopted to avoid generating too small molecules. MWmax=3500 and max_frag.=50 

denote the maximum molecular weight and the maximum number of fragments, 

respectively. These are set to terminate the game if the fragment-based RL couldn’t 

discover a hit-like molecule in limited rounds. 𝜀𝑏𝑜𝑢𝑛𝑑=0.05 denote the desired error 

bound. Next, it is necessary to construct a combinatorial library corresponding to the 

action space of the agent. The combinatorial library was constructed by selecting 

2,102 BRICS molecular fragments among fragments present in BRICS 4K, which 

appeared more than 100 times for molecules present in the MOSES training data. 

 

4.4.3 Experimental Setup 

    Before confirming whether fragment-based RL is suitable for discovering 

materials with extreme properties, experiments are conducted to empirically confirm 

that probability-distribution learning models are not suitable for discovering 

materials with extreme properties out of trained data distribution. probability-

distribution learning models used in the experiments are two types of neural 

networks. One is NMT-based cRNN and the other is cVAE-based generator GCT. 

The data used to train both models are borrowed from ref. [33], which are curated 

data from ChEMBL. The curated data were constructed by filtering molecules that 

included only H, C, N, F, S, Cl, and Br. The molecules in the curated data are drug-
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like compounds that have fewer than 50 heavy atoms. The curated data are split into 

training data and test data. The training data includes 1,347,173 molecular samples, 

and the test data includes 149,679 molecular samples. [33] 

    For the trained cRNN and GCT, the general performances of the two models 

have been evaluated. Here, the general performance means that the target hitting 

ability for goal-directed inverse molecular design with target properties sampled 

from test data. For this, all molecular properties of the 149,679 test molecules are 

given as the target for the 149,679 molecular generation trials. Note that the 

distribution of the test set is similar to the distribution of the training set. Thus, this 

is closed to an evaluation of general performance for the trained area. The results of 

the evaluation were summarized in Table 4. 

    Root mean squared error (RMSE) can be used to evaluate how well the 

generated molecule satisfies each target indicator on average, however, it does not 

inform whether all given targets are simultaneously hit. Hence, to evaluate whether 

the generated molecule hits the given target properties at the same time, a new 

criterion is required to evaluate whether each target property is satisfied or not. In 

this experiment, by providing a target bound for each indicator, it is evaluated 

whether the property of the generated molecule is hit or not. In the phase of designing 

the target bounds, two methods were concerned. The first one is using a method of 

setting a certain percentage margin for each given target value; for example, to set 

each target's ±10% bound. This method can provide uniform target bounds, however, 

it has some drawbacks. The deviation of the bound size is quite large depending on 

the size of the input target value. For the evaluation of materials discovery with 

extreme properties, excessively large or small target bounds may be applied if a 
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highly extrapolated target is given. Another problem is that it does not consider the 

difficulty level to hit each target; the difficulty level to hit is not the same for the 

target indicators. Hence, the second method is adopted for the evaluation. The second 

method is to give ± RMSE bounds as the target bounds. It is shown in Table 4. The 

RMSE-based target bond is considering not only the difficulty level of hitting each 

indicator target but also the scale for each indicator. Note that the average of RMSE 

for each indicator shown in Table 4 is used for the target bound for each indicator.  

    Figure 11 shows the training data and 10 sets of target properties (C1 to C10) 

out of training data distribution. If the 10 sets of target properties are set by an 

arbitrary combination of values for seven indicators, the sets of the target may be 

physically impossible. For this reason, 10 molecules were selected in the set of 

PubChem SARS-CoV-2 clinical trials [74] and their properties were adopted as 

target properties. Note that the set of PubChem SARS-CoV-2 clinical trials has a 

wider distribution than the training data. Since the 10 target sets are the sets of real 

molecular properties, generating molecules that hit the target sets is possible if the 

molecules can be derived from the combination of predefined molecular fragments. 

Note that the reference molecules for the 10 target sets were able to be fragmentized 

perfectly with the molecular fragments constituting the combinatorial library. The 

targets C1 to C5 are set to deviate from the logP-TPSA distribution and the targets 

C6 to C10 are set to deviate from the TPSA-QED distribution. 
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Table 4 RMSE for the target indicators and the target bounds 

 logP TPSA QED HBA HBD MW DRD2 

cRNN 0.379 5.476 0.081 0.932 0.223 5.954 0.113 

GCT 0.368 5.109 0.075 1.204 0.247 8.272 0.098 

Average 0.373 5.292 0.078 1.068 0.235 7.113 0.105 

 

Target 

bound 
±0.373 ±5.292 ±0.078 ±1.068 ±0.235 ±7.113 ±0.105 

 

 

Table 5 Target sets (C1 to C10) for materials discovery with extreme properties 

 logP TPSA QED HBA HBD MW DRD2 

C1 13.61 293.63 0.0128 15 7 1312.84 0.0150 

C2 3.31 464.92 0.0610 19 9 1269.63 0.0422 

C3 -12.15 483.41 0.0682 29 18 1026.38 0.0006 

C4 -7.83 810.5 0.0153 28 27 1921.81 0.2455 

C5 -14.62 1447.9 0.0110 48 51 3324.74 0.0679 

C6 -1.77 526.91 0.0391 20 16 1421.75 0.2228 

C7 6.48 775.42 0.0289 27 27 2467.83 0.0005 

C8 3.48 926.85 0.0192 31 40 2086.96 0.0315 

C9 11.22 1336.88 0.0072 40 51 3123.68 0.1637 

C10 -18.09 1456.35 0.0251 49 49 3106.50 0.0099 
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Figure 11 Training data and target sets (C1 to C10). 
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4.4.4 Results and Discussion 

    Table 6 and Figure 12 summarize the results of trying to generate molecules 

for the sets of target properties (C1 to C10) that are out of the distribution of the 

training dataset. The results for target C0 shown in Table 6 and Figure 12 are the 

evaluated results for the 149,679 sets of target properties which are gathered from 

molecules in the test set.  

    Molecular generations have been attempted 10,000 times for each set of target 

properties (C1 to C10). Table 6a shows how many valid molecules were generated 

among 10,000 generation attempts. Here, the valid molecules denote the molecules 

that do not violate the chemical valence rule. The percentage number in parentheses 

means the percentage of unique molecules among the generated valid molecules. 

Table 6b shows the number of valid molecules that simultaneously satisfy the target 

bounds of logP, TPSA, QED, HBA, and HBD, excluding MW and DRD2 targets 

among 10,000 generation attempts. In parentheses, the percentage of unique 

molecules among them is written down. Table 6c shows the number of generated 

molecules that simultaneously satisfied all seven targets, including MW and DRD2 

targets, among 10,000 molecule generation attempts. The ratio of unique molecules 

among them is written in parentheses. Table 6d-j shows the number of molecules 

that have met the target bound of each single target value among 10,000 molecule 

generation attempts. 

    The results of target set C0 are the evaluated results for the molecular generation 

with 149,479 target sets gathered from 149,479 reference molecules in the test set. 
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The results for target set C0 were rescaled to compare; 149,479 → 10,000. These 

show the general performance of the inverse molecular design with cRNN. As can 

be seen in Table 6 and Figure 12, both probability distribution-learning models 

showed good performance for the inverse molecular design that hit the given target 

properties C0. cRNN generated valid molecules in 84.8% of the 149,479 molecular 

attempts. In addition, 34.8% of trials succeeded to generate molecules that hit all 

seven target properties at the same time, and 44.5% of the total trials generated 

molecules hitting five target properties except for MW and DRD2 at the same time. 

In the case of GCT, valid molecules were generated in 87.2% of the 149,479 

generation attempts. In addition, 26.64% of the total attempts succeeded to generate 

molecules hitting the given seven target properties simultaneously. 39.9% of total 

generation trials succeeded to hit the five targets except for MW and DRD2. It means 

that the probability-distribution learning models work well for the targets distributed 

in their trained area. However, the models failed to generate molecules for the targets 

that deviated from the trained data distribution (see results C1 to C10 in Table 6 and 

Figure 12), which corresponds to the materials discovery with extreme properties. 

In contrast, it is confirmed that fragment-based RL is possible to some extent for 

inverse molecular design with extreme targets. For C1, C2, C3, C4, and C6, 

molecules that simultaneously satisfy all the seven target properties were discovered. 

In the cases of generation for targets C5, C7, C8, C9, and C10, any molecule that 

hits all the seven target properties at the same time was not discovered, but the 

molecules that hit the five target properties (logP, TPSA, QED, HBA, and HBD) 

simultaneously were discovered. Therefore, it is believed that fragment-based RL 

can solve the materials discovery problem with extreme properties to some extent, 

which is not possible with probability-distribution learning models.  
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    Then, the question remains why the fragment-based RL failed to generate for 

the targets C5 and C7 to C10. As can be seen in Figure 11, the target C5 and C7 to 

C10 deviate more from the distribution of the trained data than the other targets 

(succeeded targets: C1 to C4 and C6). The farther the distance from the center where 

the CheMBL data are distributed, the farther it is from the properties of materials 

commonly found in nature. For example, the target value of logP for target set C10 

is −18 . It means that materials to be discovered have an affinity to water 1018 

times more than lipids. This is not a common characteristic of a fairly large molecule 

with a molecular weight of 3106.5 g/mol (target MW for target set C10). The target 

C5 is similar; −14.6  logP for 3324.7  g/mol MW. That is, considering that the 

unsuccessful targets are not commonly found in nature, it is believed that the 

probability that molecules—generated by the combination of randomly selected 

molecular fragments—have such target properties is low. Considering that fragment-

based RL is a model that starts learning from random molecular fragment selection 

and combination at the beginning of learning, the frequency of obtaining a good 

reward may be low. 

    Figure 13 shows the change in the maximum reward obtained at each training 

step. For the succeeded targets C1 to C4 and C6, it is confirmed that a high maximum 

reward was obtained frequently during the training. However, a relatively low 

maximum reward and low frequency of hitting high reward were observed for the 

unsuccessful targets C5 and C7 to C10. Interestingly, for targets C7 and C8, there 

was no significant difference in the maximum reward compared to those of 

successful targets. However, the frequency of obtaining the maximum reward near 

100 was relatively low compared to those of the successful targets. When an 
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additional 10,000 attempts were made for each unsuccessful target, one molecule 

was found that simultaneously hits all the target properties for C8. On the other hand, 

for targets C5, C9, and C10, a significantly lower maximum reward was observed 

compared to those of the successful targets. When looking at the above-mentioned 

results comprehensively, the number of occurrences of events that can obtain a 

desired level of reward is relatively poor for the more extreme targets. Such a 

problem is called a sparse reward problem, the frequency of obtaining the desired 

level of reward from the environment is low. Studies to solve or alleviate the sparse 

reward problem are steadily progressing. Thus, this study left the issue of the sparse 

reward problem as a point for improvement in future studies. 

    Additionally, it is possible to find the reason from the point of view of the target 

bound. The target bounds of MW and DRD2 used as evaluation criteria are ±7.113 

and ±0.105, respectively. The target bound of MW is too tight to include even a single 

atom error. Considering the target MWs of failed targets (C5 and C7 to C10) were in 

the range of 2,000 to 3,000 g/mol, the target bound of MW was set to tight. If the 

target bound is increased, the number of molecules—generated by fragment-based 

RL—that are evaluated as hitting the target bounds are increased. This can be 

confirmed through the design error (pRMSE) for each target property of the 

generated molecules shown in Figure 12. That is, the criterion for determining the 

success or failure of molecular discovery is highly dependent on the size of the target 

bound. Thus, it is difficult to conclude that the molecular generations for the targets 

C5 and C7 to C10 failed. However, be aware that it is difficult to conclude that the 

failure reason for cRNN and GCT is also related to the issue of target bound size. 

Because all the molecules they generated were molecules such as methane or ethane 
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with one or two heavy atoms. Just considering the level of target MW, it didn’t seem 

to be working correctly.  

    There are also concerns regarding the accuracy of the QSAR model used to 

evaluate DRD2. In general, the QSAR model that evaluates drug activity from a 

molecular structure is not very accurate. In addition, even in the cRNN paper, target 

hitting ability for DRD2 was not evaluated. In the paper, the QSAR model for DRD2 

was used as a binary classifier. The test molecules are evaluated as active if the 

QSAR model of DRD2 predicted a value of 0.5 or higher. The others are evaluated 

as inactive. Therefore, using MW and DRD2 as evaluation criteria may cause 

problems in the objective analysis of model performance. For this reason, in Case 

Study 2, the inverse molecular design was performed for the five target properties 

except for MW and DRD2. 
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Table 6 Molecular generation results for extreme targets and interpolation targets 

*Experimental results for 149,679 targets obtained from molecules in the test set. The values are rescaled: 149,679 → 10,000
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C10 10,000 (100%) 23 (100%) 0 (   -  %) 820 1,133 9,978 5,533 2,618 0 35 

C9 10,000 (100%) 289 (  83%) 0 (   -  %) 3,919 1,432 9,995 7,880 3,223 1 15 

C8 10,000 (100%) 181 (100%) 0 (   -  %) 2,999 974 9,992 6,273 2,379 466 133 

C7 10,000 (100%) 321 (100%) 0 (   -  %) 3,686 1,420 9,971 7,832 3,588 531 28 

C6 10,000 (100%) 1,708 (100%) 311 (100%) 3,769 3,450 9,890 8,636 7,301 1,445 8,729 

C5 10,000 (100%) 14 (100%) 0 (   -  %) 1,607 1,377 9,981 7,381 2,363 0 26 

C4 10,000 (100%) 439 (100%) 50 (100%) 1,972 1,452 9,809 7,283 4,384 572 9,493 

C3 10,000 (  99%) 913 (  96%) 233 (  96%) 3,143 2,296 9,940 8,392 7,143 1,128 8,310 

C2 10,000 (100%) 2,424 (100%) 366 (100%) 6,738 3,145 9,928 8,415 8,635 1,388 4,970 

C1 10,000 (100%) 1,317 (100%) 355 (100%) 5,202 2,282 9,918 9,347 8,622 1,849 9,406 
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C10 422 (   -  %) 0 (   -  %) 0 (   -  %) 422 0 0 0 0 0 422 

C9 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C8 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C7 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C6 6 (100%) 0 (   -  %) 0 (   -  %) 0 0 6 1 0 0 5 

C5 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C4 9,836 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C3 3,022 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 4 2 1 0 3,022 

C2 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C1 1,768 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 4 1 1 0 1,788 

 

*C0 *8,475 (100%) *4,453 (100%) *3,479 (100%) *7,391 *7,732 *7,622 *9,001 *9,531 *8,139 *9,200 
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C10 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C9 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C8 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C7 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C6 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C5 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C4 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C3 3 (100%) 0 (   -  %) 0 (   -  %) 0 0 3 1 0 0 3 

C2 0 (   -  %) 0 (   -  %) 0 (   -  %) 0 0 0 0 0 0 0 

C1 4 (100%) 0 (   -  %) 0 (   -  %) 0 0 1 0 0 0 4 

 *C0 *8,715 (  99%) *3,994 (  99%) *2,664 (100%) *7,217 *7,937 *7,680 *8,048 *9,409 *6,759 *9,312 
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Figure 12 Parallel coordinates plots for comparison of materials discovery 

performance between fragment-based RL and probability-distribution learning 

models. Yellow lines indicate target properties. Each blue-red colored line indicates 

a set of properties of a molecule that hits the Bound (green). Here, Bound indicates 

the intersection of five target bounds of logP, TPSA, QED, HBA, and HBD. Each 

grey-colored line indicates a set of properties of a molecule that does not hit the 

Bound. Score indicates ∑ 𝟏/𝒑𝑹𝑴𝑺𝑬𝒊𝒊 . 
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Figure 13 Maximum reward plots for training steps. Opaque lines denote the 

maximum reward curve for failed targets (C5, C7, C8, C9, and C10) and the 

transparent lines denote the maximum reward curve for successful targets C1, C2, 

C3, C4, and C6.  
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4.5 Case Study 2: Materials Discovery with Five-Drug 

Indicators 

4.5.1 Problem description 

    Case study 2 is a supplementary experiment to Case study 1. Case study 2 is 

conducted for the target logP, TPSA, QED, HBA, and HBD. Here, MW and DRD2 

which caused problems in model evaluation in Case study 1 are not considered. Since 

the training code of cRNN is not disclosed and released as a trained state, so 

modifying the network structure and re-training is impossible. Hence, Case study 2 

is conducted only on GCT and fragment-based RL. Case study 2 uses the MOSES 

data set. 

 

4.5.2 Configuration Setup for Fragment-based RL 

    In this section, error 𝜀 and reward 𝑟 are calculated in the same way as in the 

previous section. The parameter values applied here are MWmax=500, MWmin=50, 

max_frag.=10, min_frag.=2, and 𝜀𝑏𝑜𝑢𝑛𝑑=0.1. The combinatorial library consists of 

2,102 molecular fragments among BRICS 4K fragments. The sampled molecular 

fragments appear more than 150 times for molecules present in the MOSES training 

set. 
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4.5.3 Experimental setup 

    The MOESS training data and target sets (M1 to M10) to be used in this section 

are shown in Figure 14. 10 Target sets are the sets of properties gathered from 10 

molecules in a curated data set. The data set is curated from PubChem anti-cancer 

molecules with a molecular weight of 500 g/mol or less. The exact target values for 

the 10 target sets are shown in Table 7. The general performance for M0—176,074 

targets gathered from 176,074 molecules in the MOSES test set—is also evaluated. 

The RMSE for each indicator is summarized in Table 8. Since the min-max scale of 

each indicator in the MOSES training set is changed, the target bounds are reset as 

the RMSE summarized in Table 8. 

 

Table 7 Target sets (M1 to M10) for materials discovery with extreme properties 

 logP TPSA QED HBA HBD 

M1 7.28884 47.67 0.281783 4 1 

M2 6.45712 90.54 0.274407 5 2 

M3 5.18752 123.57 0.221414 9 1 

M4 3.8689 155.3 0.255532 5 5 

M5 1.947 186.58 0.421275 10 2 

M6 1.0672 50.41 0.192539 2 3 

M7 4.6269 97.15 0.17826 8 1 

M8 5.71644 139.78 0.184438 5 4 

M9 0.71837 178.24 0.212291 9 4 

M10 -0.48843 220.83 0.206826 9 8 

 

 

 

Table 8 RMSE for the target indicators and the target bounds 

 logP TPSA QED HBA HBD 

GCT 0.214 3.225 0.037 0.180 0.106 

Target bound ±0.214 ±3.225 ±0.037 ±0.180 ±0.106 
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Figure 14 MOSES training data and target sets (M1 to M10). 
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4.5.4 Results and Discussion 

    The experimental results are summarized in Table 9 and Figure 15. In this 

experiment, it was confirmed that the general performance of GCT is good (for target 

M0). In the case of GCT, valid molecules were generated in 97.5% of the 176,074 

generation attempts. In addition, 53.7% of the total attempts succeeded to generate 

molecules hitting all five target properties simultaneously. It means that the 

probability-distribution learning models work well for the targets distributed in their 

trained area. However, GCT almost failed to generate hit-like materials with target 

properties out of trained data distribution, except for target M9. For target M9,  

six attempts succeeded out of 10,000 generation attempts. However, there were only 

two unique molecules. In contrast, fragment-based RL succeeded to generate 

molecules that hit all five target properties simultaneously for all the target sets 

except M6. The reason why fragment-based RL failed in molecular design for the 

target set M6 lies in the composition of the combinatorial library. Figure 15b shows 

the molecular weight distribution of the molecular fragments constituting the 

combinatorial library and the molecular weight distribution of the reference 

molecules for each target set (M1 to M10). The molecular weight of the reference 

molecule corresponding to M6 is 167 g/mol. In fact, since logP, TPSA, HBA, and 

HBD are highly correlated with molecular size, the molecules to be generated must 

have an MW of approximately 167 g/mol to hit the target properties of M6. However, 

the molecular weight of some molecular fragments was larger than this. In addition, 

since the initial fragment was randomly selected, there may be insufficient room to 

match the target. Therefore, it seems necessary to consider molecular weight when 

constructing the combinatorial library when the target material is small.  



 

 ８２ 

Table 9 Molecular generation results for extreme targets and interpolation targets 

Experimental results for 149,679 targets were obtained from molecules in the test set. The values are rescaled: 176,074 → 10,000

Model Target type Target 

a. 

# of valid mol. 

(% of unique mol.) 

 

 

b. 

# of all prop. hit 

(% of unique mol.) 

 

 

d. 

logP 

 

 

e. 

TPSA 

 

 

f. 

QED 

 

 

g. 

HBA 

 

 

h. 

HBD 

 

RL 

(MOSES) 
Extreme targets 

M10 10,000 (  81%) 949 (  67%) 4,345 3508 5,429 5,482 6,858 

M9 10,000 (  92%) 1,767 (  90%) 6,143 5186 4,050 7,867 7,897 

M8 10,000 (  98%) 4,108 (  96%) 6,159 5194 6,320 7,007 6,984 

M7 10,000 (  80%) 271 (  66%) 6,232 4630 721 8,140 8,847 

M6 10,000 (  48%) 0 (   -  %) 3,158 2085 5 2,121 2,500 

M5 10,000 (  77%) 46 (  61%) 8,519 7455 234 9,158 9,505 

M4 10,000 (  92%) 3,240 (  89%) 7,176 6434 5,159 7,998 8,333 

M3 10,000 (  94%) 1,325 (  92%) 7,289 6618 1,972 8,094 8,883 

M2 10,000 (  98%) 4,432 (  97%) 5,970 5679 6,732 7,407 7,730 

M1 10,000 (  86%) 3,016 (  82%) 5,363 5021 6,340 7,772 8,118 

GCT 

(MOSES) 

Extreme targets 

M10 2,014 (     3%) 0 (   -  %) 43 427 1,383 570 218 

M9 4,603 (     7%) 6 (  33%) 1,598 878 109 1,732 3,542 

M8 1,788 (     2%) 0 (   -  %) 263 1 163 1,418 1,378 

M7 3,743 (  17%) 0 (   -  %) 1,695 433 34 2,392 2,747 

M6 5,645 (     6%) 0 (   -  %) 1,147 2188 50 3,778 4,914 

M5 1,255 (     2%) 0 (   -  %) 1,151 25 4 63 1,028 

M4 1,498 (     4%) 0 (   -  %) 32 235 24 217 1,143 

M3 1,185 (     6%) 0 (   -  %) 133 42 0 284 553 

M2 5,084 (     3%) 0 (   -  %) 2,151 282 772 2,385 2,463 

M1 5,026 (     2%) 0 (   -  %) 207 902 106 2,862 4,908 

Common targets *M0 9,749 (  96%) 5,365 (  92%) 7,058 7,650 8,572 9,436 9,639 
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Figure 15 Experimental results for Case study 2. a Parallel coordinates plots for 

comparison of materials discovery performance between fragment-based RL and 

probability-distribution learning models. Yellow lines indicate target properties. 

Each blue-red colored line indicates a set of properties of a molecule that hits the 

Bound (green). Here, Bound indicates the intersection of five target bounds of logP, 

TPSA, QED, HBA, and HBD. Each grey-colored line indicates a set of properties of 

a molecule that does not hit the Bound. Score indicates ∑ 1/𝑝𝑅𝑀𝑆𝐸𝑖𝑖  . b 

Distribution of molecular weights for molecular fragments and source molecules of 

the target set M1 to M10. 
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4.6 Case study 3: Ligands Discovery for Ligand—5-HT1B 

Protein Receptor Docking 

4.6.1 Problem description 

    Case study 3 deals with the discovery of molecules that dock to 5-

hydroxytryptamine receptor 1B (5-HT1B), a protein encoded by the human HTR1B 

gene. [69] 5-HT1B receptors are widely distributed throughout the human central 

nervous system and are known to play different roles depending on their location. 

[74-79] In particular, the 5-HT1B receptor has been reported that inhibits the release 

of various neurotransmitters such as dopamine, serotonin, gamma-aminobutyric acid, 

acetylcholine, and glutamate. [80] It is also related to vasoconstriction, migraine 

treatment, and major depressive disorder treatment. [78, 81-84] In this chapter, the 

fragment-based RL is trained to discover materials that are likely to dock to the 5-

HT1B receptor.  

 

4.6.2 Setup for Fragment-based RL 

    The task of Case Study 3 is to discover docking materials that maximize the 

binding affinity to the 5-HT1B receptor. In this problem, Quick Vina 2 (QVina2) 

[85]—which can quickly calculate a docking score that is inversely proportional to 

binding affinity—is used as a docking score evaluator; The docking score is 

inversely proportional to the binding affinities. QVina2 searches the optimal 

conformation of docking material in the simulation box using an optimization 

algorithm and evaluates the docking score for the found optimal conformation. The 
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exhaustiveness parameter—which plays a role that is similar to the population of the 

genetic algorithm—is set to eight. The reward is evaluated as a negative docking 

score and RL finds the policy that maximizes the reward.  

 

4.6.3 Results and Discussion 

    10,000 attempts have been made to design ligand materials using the trained 

fragment-based RL and 9,369 unique ligands have been obtained. Figure 16a shows 

the results of comparing the docking score between the designed ligands and 

reference molecules. The reference molecules were obtained by random sampling of 

10,000 molecules among the ChEMBL test set used in Case study 1. Note that the 

ChEMBL test set consists of drug-like molecules. The median docking score of the 

designed ligands was -12.9, and the minimum value was -18.1. On the other hand, 

the median docking score of the reference molecules was -9.2, and the minimum 

value was -14.2; Note that the lower the calculated docking score, the better to dock 

to the protein receptor. It means that it could be more effective to discover the 

potential drugs with fragment-based RL rather than screening the known reference 

materials. 

    Furthermore, it was tried to find the matched ChEMBL materials with the 

designed ligands. Since the some of ChEMBL materials are labeled with 

experimental results of drug activity, if we could find the active ligands among the 

matched molecules, it means that some of the unidentified generated ligands would 

the potential to be used as new drugs. When checking whether there are matched 

molecules in ChEMBL, seven matched molecules were found. Unfortunately, there 
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is no drug activity labeled molecule among the seven. Since the number of drug-like 

molecules that a molecular weight of less than 500 Da is estimated bigger than 1060, 

finding the matched and labeled molecules among 2.2 million molecules constituting 

ChEMBL would be hard to succeed. Hence, when trying to search the matched 

molecules with 100% of Tanimoto similarity, 18 matched molecules were found. 

Five among the 18 matched molecules had active labels. Note that there are countless 

kinds of drug targets, and the experiment results of drug activity are labeled with 

only the tested target. Hence, the rest of them—the remaining 13 molecules—does 

not mean these are inactive to the 5-HT1B receptor. In fact, for the five active drugs, 

the labeled targets were not 5-HT1B. However, three of them target the protein 

receptor of Homo sapiens and the target disorders were similar to the target disorders 

of 5-HT1B inhibitors; the others target fungus. It implies that the designed ligands 

have the potential. The results are summarized in Figure 16b-f and Table 10. 
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Figure 16 Results of lead molecules discovery for 5-HT1B receptor. a Boxplot 

comparison between 10,000 molecules randomly sampled from the curated 

ChEMBL test set and 10,000 molecules generated by fragment-based RL. b-f The 

five Chembl molecules that show 100% Tanimoto similarity with 10,000 designed 

molecules. The left indicates molecules that were generated by fragment-based RL 

and the right indicates molecules that matched ChEMBL molecules. 
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Table 10 Drug activity of matched molecules 

Matched molecule Drug activity Description Target disorder 

CHEMBL1726441 Active NRF2 inhibitor Neurodegenerative diseases (Parkinson's disease; chronic central nervous 

system degenerative diseases caused by progressive loss of dopaminergic 

neurons) 

Active TDP1 inhibitor Neurodegenerative disorder with axonal neuropathy 

Active GMMN Involved in cell replication (anticancer drug target), self-renewal and 

survival of enteric nervous system progenitor cells related 

Active EPAC2 antagonist Traumatic brain, spinal cord, and nerve damage 

insulin secretion promotion, heart failure, dopamine release related 

CHEMBL1583499 Active TDP-43 Inhibitors Accumulation of TDP-43 aggregates in the central nervous system causes 

neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), 

frontotemporal dementia (FTD), and Alzheimer's disease (AD) (a target for 

the treatment of neurodegenerative diseases) 

CHEMBL412355 Active  LMP-1 inhibitors Latent membrane protein-1 (LMP-1) encoded by Epstein-Barr virus (EBV) 

induces unregulated cell growth (EBV-related anticancer drug target) 

CHEMB2261013 Active Antifungal activity 

against Penicillium  

chrysogenum 

Not human target 

CHEMBL99068 Active Sporosarcina 

pasteurii 

CCM 2056 urease 

inhibitor 

Not human target 

 

5-HT1B receptor: 

- Distributed throughout the central nervous system [86-88] 

- Control the release of neurotransmitters such as acetylcholine, glutamate, dopamine, noradrenaline, and gamma-aminobutyric acid 

[89] 

- Drug target for major depressive disorders [81,82] 

- Facilitation in excitatory synaptic transmission [90] 

- Pulmonary vasoconstriction to treat migraines [83,84] 

- Increase the osteoblasts, bone mass, and bone formation rate [91-95] 
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4.7 Conclusion 

    Chapter 3 describes the problem of materials discovery hitting extreme and rare 

properties out of known materials’ distribution. Here, it has been theoretically and 

empirically demonstrated that inverse molecular design models based on 

probability-distribution learning (e.g., NMTs, VAEs, and GANs) are improper to 

design materials with extreme properties out-of-training-data-distribution. In 

contrast, fragment-based RL can design materials with extreme properties, which 

cannot be solved using probability-distribution learning models. It has been 

demonstrated that the fragment-based RL can solve various materials discovery 

problems to find better materials: multi-objective materials discovery and specific 

property maximized materials discovery for ligand-protein docking. Considering 

these results, it is believed that the fragment-based RL could be a universal solution 

to the problem of materials discovery with extreme properties out of known data 

distribution. In addition, the limitations of fragment-based RL regarding an issue of 

constructing the combinatorial library and another issue regarding the sparse reward 

problem have been discussed.  
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Chapter 5. Conclusion 

5.1 Summary of contributions 

    This thesis has studied deep learning-aided materials discovery that can be used 

to accelerate the process of materials development. Two kinds of goal-directed 

inverse molecular design models have been proposed. One is the generative chemical 

Transformer (GCT), a generative model that embeds a Transformer in cVAE 

(addressed in Chapter 3). It can generate realistic and chemically feasible molecules 

hitting a set of target properties by understanding the sequential meaning of chemical 

language. This study has shown the advantages of adopting the attention mechanism-

based natural language model to the generative model. It is confirmed that the 

attention mechanism helps to understand the molecular structure hidden in the line 

notated chemical language by attention to the tokens constituting the chemical string. 

High attention scores have been observed for the structurally related key tokens from 

given query tokens. Considering the results, it has been confirmed that the attention 

mechanism in the natural language model helps to understand the molecular 

structural meaning hidden in one-dimensional chemical language. Furthermore, 

when considering the benchmarking results that the validity of generated molecules 

with GCT—an attention mechanism-based model—was higher than those of the 

other language-based models that do not use an attention mechanism, it is believed 

that the structural understanding based on attention mechanism helps the chemically 

feasible molecular generation. In addition, when considering the results that the 

substructural patterns of the generated molecules and real molecules were shared and 

it makes the generated molecules seem more realistic, the ability to understand the 
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patterns of corpus obtained from the natural language model helps the molecular 

generation be more realistic. Note that it has been quantitatively analyzed that the 

similarity between the generated molecules and the real molecules is quite high. In 

conclusion, the study of GCT—an attention mechanism-based language model 

embedded generative model—has shown the advantages of embedding a natural 

language model in the molecular generator, realistic and chemically feasible 

molecular generation. 

   The other goal-directed inverse molecular generation model (addressed in 

Chapter 4) is a fragment-based RL that can generate the molecules with a set of 

extreme and rare target properties, which are not possible with probability-

distribution learning such as NMTs, VAEs, and GANs-based inverse molecular 

design models. This study has theoretically and empirically shown that the 

probability-distribution learning models are not proper to the molecular generation 

out-of-training-data-distribution. It regards the problems of materials discovery with 

extreme properties that were not observed or rarely observed. Since the probability-

distribution learning models are trained to obtain a generator that approximates the 

empirical probability of training data, the models are not proper to generate data out 

of training data distribution. The true probability of the considering system cannot 

be known and the empirical probability of training data cannot be equal to the true 

probability. That is because the training data are gathered only for the observable 

cases. Hence, the probability-distribution learning models are not proper to generate 

the molecules out of training data distribution. In contrast, it is confirmed that the 

proposed fragment-based RL—a goal-directed molecular generator that generates 

molecules by combining molecular fragments—can design molecules with a set of 

extreme and rare properties. That is because combinatorial chemistry—a base 
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environment of the fragment-based RL—can generate all possible molecules that 

can be obtained by random combinations of predefined molecular fragments. 

Furthermore, this study has solved the disadvantage of combinatorial chemistry by 

giving an AI-driven policy that guides the selection of molecular fragment which is 

proper to combine to get the desired products. In addition, it has been demonstrated 

that the fragment-based RL is applicable to various materials discovery problems 

from multi-objective molecular design to molecular design with maximizing certain 

properties. It is believed that the ability of molecular generation out of observed 

samples’ distribution will contribute to the practical materials discovery problems to 

find better materials than already discovered materials.  

    In conclusion, considering that the goal-directed inverse molecular design 

models do their work in sub-seconds, it is believed that the deep-learning aided 

materials discovery will contribute to accelerating the materials development 

process.  

 

6.2 Challenges and opportunities 

    In the field of process system engineering, there have been a lot of efforts to 

integrate the system from the product design to the process design. Since the 1980s, 

especially AI (e.g., knowledge-based systems and expert systems) adopted studies to 

integrate multi-domain knowledge and drive the integrated system autonomously 

have been reported. [96-100] Although many meaningful results have been reported, 

it is still hard to design intact hand-craft knowledge. Even for a problem that human 

answers easily (e.g., classification of cat and dog images), it is hard to be coded. 
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    However, in the recent decade, deep learning and machine learning have shown 

that data-driven models can solve problems by recognizing the patterns of data 

without hand-crafted features. Due to this big advance of data-driven AI, many 

problems linking the traditional models that were hard to be coded are solved, e.g., 

goal-directed inverse molecular design, product characterization, recommendation 

of operating conditions, experimental condition planning, theory discovery, and self-

decision making. [101-106] It enables the integration of processes from the product 

design to the process design. In more recent years, successful research on AI-driven 

integrated system have begun to be reported, e.g., self-driving laboratory and AI-

driven flow chemistry systems. [107-109] Therefore, it is believed that AI-aided 

materials discovery will greatly contribute to material science research. 
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Appendix: Results of molecular generation using GCT 

The four numbers below the molecular image indicate logP, TPSA, QED, and the number of tokens in SMILES, respectively. 

 

 
Figure S1 Generated molecules with target condition #1 shown in Figure 7.  
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Figure S2 Generated molecules with target condition #2 shown in Figure 7.  
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Figure S3 Generated molecules with target condition #3 shown in Figure 7.  
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Figure S4 Generated molecules with target condition #4 shown in Figure 7.  
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Figure S5 Generated molecules with target condition #5 shown in Figure 7.   
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Figure S6 Generated molecules with target condition #6 shown in Figure 7.  
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Figure S7 Generated molecules with target condition #7 shown in Figure 7.  
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Figure S8 Generated molecules with target condition #8 shown in Figure 7.  
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Figure S9 Generated molecules with target condition #9 shown in Figure 7.  
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Figure S10 Generated molecules with target condition #10 shown in Figure 7. 
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Abstract in Korean 

 

국문 초록 

 

딥러닝을 활용한 자율적 물질 발굴: 

목표지향적 분자 역설계 
 

 
김 현 승 

화학생물공학부 

서울대학교 대학원 

 

청동의 발견이 석기 시대의 종지부를 찍었듯이, 인간 문명의 진보는 

더 나은 물질을 발굴하는 것과 밀접한 연관이 있다. 현대의 물질 발굴은 

전기 전자 소재, 에너지 물질, 세라믹, 촉매, 나노 물질, 바이오 물질, 

그리고 바이오 물질에 이르기까지 여러 분야에 걸쳐 있다. 이러한 물질 

개발 연구들에 있어, 화학물질이 존재하는 공간은 매우 방대하기에 

효율적인 탐색을 통해 원하는 물질을 찾아내는 것은 매우 도전적인 

일이다. 과거에는 전문가의 지식이나 직관에 의존해 원하는 물질을 

탐색했으나 이는 방대한 공간을 효율적으로 빠르게 탐색하기에는 

효과적이지 못하다. 때문에 물질 개발 프로세스 자체를 하나의 closed-

loop system으로 구성하고 이를 AI/ML이 운전함으로써 보다 빠르고 

효율적으로 원하는 물질을 개발하려는 시도가 이어지고 있다. AI/ML에 

의해 운전되는 closed-loop 물질 발굴 system은 물질 역설계, 물질 scoring, 
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반응경로 합성, and process construction 등의 모듈간 상호작용으로 

이루어진다. 

본 연구에서는 위에서 열거한 모듈들 중 분자 역설계 모듈에 대해서 

두 가지 모델을 다룬다. 하나는 화학 언어를 사용하는 목표 지향 역분자 

설계 모델로, 목표하는 물성들을 동시에 만족하는 자연스러운 분자 

역설계가 가능하다. 이 모델은 조건부 생성모델에 Transformer라는 

자연어 처리 모델을 내장한 구조를 갖는데, 분자 구조를 나타내는 

언어적 순서의 패턴을 인식하여 화학 규칙을 만족하면서도 실제 분자와 

유사한 가상의 분자를 설계한다. 다른 하나는 극단적인 물성을 만족하는 

분자 설계를 위해 combinatorial chemistry와 강화학습을 활용한 모델이다. 

Neural machine translator, variational autoencoder, 그리고 generative adversarial 

network에 기반한 기존의 확률 분포 학습 모델에 근거한 분자 역설계 

모델들은 알려진 물질 (훈련 데이터) 분포를 근사하는 학습 모델을 

도출하기에 알려진 물질의 분포를 벗어난 (극단적인 물성을 가진) 

물질을 생성하지 못한다. 그러나 제안된 모델은 combinatorial chemistry가 

분자 조각 조합에서 나타날 수 있는 모든 물성을 가진 분자를 생성할 수 

있다는 점과 강화학습 기법이 목표 물성을 만족하는 분자 조각 선택 

정책을 학습시킬 수 있다는 점을 결합하여 극단적인 물성을 만족하는 

분자 역설계가 가능하다.  

제안된 모델들은 sub-second 안에 목표하는 분자 구조를 역설계가 

가능하다. 이런 점을 고려할 때 AI/ML을 활용한 물질 발굴 기법들이 

물질 개발 프로세스를 가속화하는 데 크게 기여할 수 있을 것으로 
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기대한다. 

 

주요어: 물질 발굴, 목표지향적 분자 역설계, 화학 언어, 분자 조각 기반 

분자 역설계, 인공지능에 기반한 자율적 조합 화학 분자 역설계 
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