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Abstract 
 

Precise estimation of the number of trees and individual tree location 

with species information all over the city forms solid foundation for 

enhancing ecosystem service. However, mapping individual trees at 

the city scale remains challenging due to heterogeneous patterns of 

urban tree distribution. Here, we present a novel framework for 

merging multiple sensing platforms with leveraging various deep 

neural networks to produce a fine-grained urban tree map. We 

performed mapping trees and detecting species by relying only on 

RGB images taken by multiple sensing platforms such as airborne, 

citizens and vehicles, which fueled six deep learning models. We 

divided the entire process into three steps, since each platform has 

its own strengths. First, we produced individual tree location maps 

by converting the central points of the bounding boxes into actual 

coordinates from airborne imagery. Since many trees were obscured 

by the shadows of the buildings, we applied Generative Adversarial 

Network (GAN) to delineate hidden trees from the airborne images. 

Second, we selected tree bark photos collected by citizen for species 

mapping in urban parks and forests. Species information of all tree 

bark photos were automatically classified after ‘non-tree’ parts of 

images were segmented. Third, we classified species of roadside 

trees by using a camera mounted on a car to augment our species 

mapping framework with street-level tree data. We estimated the 

distance from a car to street trees from the number of lanes detected 

from the images. Finally, we assessed our results by comparing it 

with Light Detection and Ranging (LiDAR), GPS and field data. We 

estimated over 1.2 million trees existed in the city of 121.04 km² 

and generated more accurate individual tree positions, outperforming 
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the conventional field survey methods. Among them, we detected the 

species of more than 63,000 trees. The most frequently detected 

species was Prunus yedoensis (21.43 %) followed by Ginkgo biloba 

(19.44 %), Zelkova serrata (18.68 %), Pinus densiflora (7.55 %) and 

Metasequoia glyptostroboides (5.97 %). Comprehensive 

experimental results demonstrate that tree bark photos and street-

level imagery taken by citizens and vehicles are conducive to 

delivering accurate and quantitative information on the distribution of 

urban tree species. 

 

Keyword: urban trees, tree mapping, tree species detection, city-

scale, multiple sensing platforms, deep learning 
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Chapter 1. Introduction 
 

Urban trees, which play pivotal roles in increasing urban 

biodiversity (Rhodes et al., 2011; Roy et al., 2012; Savard et al., 

2000), storing carbon (Bae & Ryu, 2015; Burns et al., 1997; Chen et 

al., 2020; Edmondson et al., 2012), moderating local climate (Gaffin 

et al., 2012; Li et al., 2019; Schwaab et al., 2021) and improving 

citizens’ mental well-being (Bratman et al., 2019; Kardan et al., 

2017; Moreira et al., 2021), are a critical asset to cities. Hence, there 

are crucial needs to estimate the number and locations of urban trees 

(Escobedo et al., 2011; Song, 2005). To overcome periodic labor-

intensive and time-consuming field surveys (Alonzo et al., 2014), 

recent studies increasingly applied airborne- or satellite-derived 

datasets as they provide abundant information on a wide range of 

environments (Fassnacht et al., 2016; Jensen et al., 2012). One of 

the most largely used techniques is Airborne Laser Scanning (ALS) 

because of its effectiveness at extracting structural traits of 

individual trees (Kaartinen et al., 2012). However, preprocessing 

point cloud data or merging other data was prerequisite for vegetation 

segmentation due to an influence of urban infrastructures (Alonzo et 

al., 2014; Budei et al., 2018; Dalponte et al., 2014; Liu et al., 2017). 

Deep learning and high spatial-resolution imagery for tree mapping 

has also been explored in various ecosystems (Aval et al., 2018; 

Brandt et al., 2020; Schiefer et al., 2020; Sun et al., 2022; Tong et 

al., 2021; Yao et al., 2021; C. Zhang et al., 2020; Zheng et al., 2020). 

Yet, none of them covered hidden trees under the shadow of buildings, 

which led to potential discrepancies in the city. Indeed, there is an 

urgent need to develop an innovative alternative for tree mapping at 

a city-scale. 

Moreover, species information is a key element included in urban 

tree inventories. In most cases, multi- or hyperspectral images have 

been regarded as a data sources for efficient tree species mapping 

since physiological traits can be extracted (Ferreira et al., 2019; 

Hemmerling et al., 2021; Key et al., 2001; Pu & Landry, 2012; Tigges 
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et al., 2013). These promising approaches, however, have critical 

shortcomings. For instance, spectral signals are easily influenced by 

artificial structures (Alonzo et al., 2014) and similarity among 

species hampers precise classification in heterogeneously planted 

areas (Pu & Landry, 2012). Thus, most studies predicted the 

approximate distribution of each species in the narrow area of the 

forests, which implies cities were still challenging sites (La Rosa et 

al., 2021; Mäyrä et al., 2021; B. Zhang et al., 2020). Another rapidly 

growing platform is street-level imagery, which enables fine-

grained vegetation analysis along urban street networks (Li et al., 

2017, 2018; Li et al., 2015; Richards & Edwards, 2017; Seiferling et 

al., 2017; Xia et al., 2021). Yet, vehicle-borne data was insufficient 

to locate target trees since street images provide few cues for 

measuring the exact locations of trees (Choi et al., 2022; Laumer et 

al., 2020; Lumnitz et al., 2021). In this respect, species detection at 

a ground-level while leveraging a conventional remotely-sensed 

data can be a solution for producing city-scale tree maps which 

provide accurate geolocations and species information of individual 

trees. 

Here, we present a novel method merging multiple sensing 

platforms (i.e., airborne, citizen and vehicle) for producing city-scale 

tree maps. We automated the whole process of handling big data by 

using deep learning techniques, which has powerful feature learning 

capacity (Krizhevsky et al., 2012). Our framework can be divided 

into 3 parts; individual tree mapping from the air, tree species 

detection through ground-level data and evaluation of the results. 

First, we localized urban trees whose crown width is greater than 2 

m that was clearly detected from airborne imagery. As many trees 

were obscured by the shadows of buildings, we applied Generative 

Adversarial Network (GAN) to delineate hidden trees. From these 

images, we estimated the geolocations of individual trees by simply 

extracting center points of deep learning results, which were 

commonly called ‘bounding boxes’. Second, geotagged species 

information collected by citizens and a vehicle was mapped onto a 

previously generated tree maps. In detail, we classified species from 
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tree bark photos which were transmitted by citizens. We also 

classified species of street trees from street-level imagery. Citizens 

and vehicles are promising sensors for mapping urban tree species 

as they could provide abundant data covering urban parks (Dickinson 

et al., 2012; Theobald et al., 2015) and streets (Branson et al., 2018; 

Wegner et al., 2016) respectively. Finally, we extensively assessed 

our results by comparing with other data sources. Owing to 

inaccuracy of Global Positioning System (GPS) under dense canopies, 

individual tree maps were evaluated by GPS- and ALS-based tree 

location measurements in streets and forests respectively. We 

validated tree species detection results through field surveys. We 

highlight that exploiting deep learning models and merging data from 

multiple platforms can facilitate the process of generating detailed 

urban tree maps. 
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Chapter 2. Methodology 
 

2.1. Data collection 
 

 
Fig. 1. Location of Suwon city, Republic of Korea. 1.18 million of citizens 

live in an area of 121.04 km². Land cover types were presented based on 

the data provided by the Korea Ministry of Environment. Most of the study 

site consists of built areas, with forests in the north and croplands in the 

west. The airborne image examples, recorded GPS locations of citizens’ 

photos and driving routes for collecting street-level images are also 

presented. 
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Table. 1. Target tree species. For tree species detection, dominant species 

in urban parks and streets were determined respectively based on field 

survey. Accordingly, a total of 20 tree species were selected for parks and 

urban forests, and a total of 12 tree species were selected for streets. 

 

Our target site of this study is Suwon city, Republic of Korea. 

About 1.18 million of citizens live in an area of 121.04 km². 

Landcover types were presented based on the data provided by the 

Korea Ministry of Environment in Fig. 1. Most of the study site 

consists of built areas, with forests in the north and croplands in the 

west. The airborne image examples, recorded GPS locations of 

citizens’ photos and driving routes for collecting street-level 

images are also presented. For tree species detection, dominant 

species in urban parks and streets were determined respectively 

based on field survey. Accordingly, a total of 20 tree species were 

selected for parks and urban forests, and a total of 12 tree species 

were selected for streets. 

 

 
Fig. 2. Overall flowchart of methodology 
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For tree counting and mapping, airborne images taken in May 

2020 under clear sky conditions were automatically downloaded 

through an HTTP URL request from the website of Suwon city①. 

These orthorectified images were acquired in three channels (i.e., 

Red, Green, Blue), with a spatial resolution of approximately 0.25 m. 

The website also provides the airborne imagery which was taken 

over the past several years. Therefore, it was possible to clearly 

identify the tree canopies hidden in the shadows of buildings at a 

certain year by observing the imagery of other years. 

For tree species detection in the parks and urban forests, we 

carried out a living lab project with the help of a CADA application② 

which collects tree bark photos with a GPS coordinates taken by 

citizens. Tree bark was chosen as the part of the tree that citizens 

can easily photograph from the closest distance. We obtained a total 

of 45,300 location data for tree bark images in our study area from 

May 2021 to March 2022, and our own 3,034 images were added as 

they were not used for training the deep learning models. Besides, 

we promoted the project with reward money of 50 (KRW) for each 

image. 

For tree species detection in the streets, we drove over 333.75 

km of the roads with a RGB camera (FLIR Blackfly) facing forward 

and a GPS device (APX15 for evaluation board and Trimble AV18 for 

antenna) mounted on the top of the car. For stable data collection, we 

tried to drive the vehicle at about 40 km/h and the camera was set to 

take a photo at a rate of 10 Hz. We obtained 705,897 frames of street 

view images in our study area from August 2021 to October 2021, 

and among them, 617,616 frames that contained GPS information 

correctly were selected for analysis. 

 

                                            
① https://www.suwon.go.kr:38083/citizenIntranetMain.do 
② © 2021. Paprika Inc., Seoul, Republic of Korea. 
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Fig. 3. Detailed diagrams of each part of methods 

 

2.2. Deep learning overall 
 

We did not change the architectures of the original networks. 

Whether to include the transfer learning process was determined by 

a subjective judgment (i.e., we started training the DeepForest model 

from pre-trained weights, as there was a model trained with other 

airborne images). By monitoring the change in loss values and 

figuring out the epoch where the training loss decreases but the 

validation loss increases, we determine the number of training epochs 

before the models begin to overfit. The implementation of 6 deep 

learning models adopts Python 3, TensorFlow (Abadi et al., 2016) 

and PyTorch (Paszke et al., 2019) according to frameworks 

implemented in original studies. 
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Objective 
Airborne sensing Citizen sensing Vehicle sensing 

Shadow removal 
Counting and 

localizing trees 
Image background 

segmentation 
Tree bark 

classification 
Distance estimation 

Street tree 

detection 

Network Pix2Pix DeepForest U-net Xception LaneNet YOLOv3 

Backbone network 
generator: U-Net 

discriminator: 

PatchGAN 

object detector: 

RetinaNet 

classification: 

Resnet-50 

U-Net Inception E-Net DarkNet-53 

Loss function 
Binary Cross-

Entropy loss 
Focal loss 

Binary Cross-

Entropy loss 
Categorical Cross-

Entropy loss 
Focal loss 

bounding box: 

Generalized IoU 

classification, 

objectness: BCE 

loss 

Transfer learning X O (NEON) X O (ImageNet) O (TuSimple) O (ImageNet) 

Train/Val/Test 
10,000 / 2000 / 

visual inspection 

(images) 

3680 / 1229 / visual 

inspection 

(bounding boxes) 

1200 / 400 / 400 

(images) 
6877 / 2290 / 1900 

(images) 
3780 / 1260 / visual 

inspection (images) 
7133 / 2377 / 390 

(images) 

Input image size 

(w×h×c) 
512×256×3 2560×2560×3 512×512×1 512×512×3 

1280×720×3 

(raw) 
1280×800×3 

(processed) 

Batch size 4 1 2 8 64 16 

Augmentation 

Random [flip, shift, 

rotate, shear, 

brightness, 

contrast] 

Random flip Random flip 

Random [flip, shift, 

scale, rotate, 

brightness, 

contrast, dropout, 

CHALE, blur] 

Random [flip, 

brightness, 

contrast, saturation, 

hue] 

Mosaic 

augmentation, 

Random [flip, 

translate, scale, 

hue] 
Maximum learning 

rate 
0.0002 0.001 0.001 0.0001 0.0001 0.001 

Optimizer Adam SGD Adam Adam SGD Adam 
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Epochs 150 50 50 
300 (Early stopped 

at 31) 
300 (Early stopped 

at 58) 
500 

Final results 

generator loss = 

0.054, real image 

discriminator loss = 

0.010, fake image 

discriminator loss = 

0.002 

train regression 

loss = 0.027, train 

classification loss = 

0.086 

train loss = 0.036 train loss = 0.008 train loss = 0.112 

train bounding box 

loss = 0.034, train 

classification loss = 

0.013, train 

objectness loss = 

0.032 

validation 

regression loss = 

0.227, validation 

classification loss = 

0.302 

validation loss = 

0.092 
validation loss = 

0.003 
validation loss = 

0.214 

validation bounding 

box loss = 0.031, 

validation 

classification loss = 

0.011, validation 

objectness loss = 

0.026 

Framework PyTorch TensorFlow PyTorch TensorFlow PyTorch PyTorch 

GPU Single-GPU / NVIDIA GeForce RTX 3070 / CUDA Version: 11.3 Multi-GPU / NVIDIA A100 PCIE 40GB / CUDA Version: 11.4 

Table. 2. Training settings and performance evaluation of 6 deep neural networks. 
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2.3. Tree counting and mapping 
 

To remove the shadows cast by the buildings in airborne imagery, 

we applied a conditional adversarial network designed for an image-

to-image translation task (Isola et al., 2017). It was because the 

website did not provide original values of red, green and blue 

channels of images, which led to the unavailability of conventional 

image processing approaches. This generative model, called Pix2Pix, 

consists of a discriminator and a generator which learn to compete 

with each other. We prepared a set of train datasets with manually 

removed shadows and colored trees by referring to airborne imagery 

from past years and different seasons provided by the website. In 

these contexts, we expected the trained model to not only remove 

the shadows but also generate hidden trees with vivid colors. 

To carry out tree counting and localizing automatically from the 

images with the shadow removed, we revised the DeepForest python 

package prebuilt for RGB-based tree crown delineation (Weinstein 

et al., 2020). This deep learning model performs tree detection 

thereby drawing bounding boxes on the detected objects. We fine-

tuned the model with our hand labeled trees and conducted tree 

detection to extract the center pixels of the bounding boxes. To 

convert them into actual coordinates, we collected 120 GPS 

reference points around Suwon city and computed the linear 

regression between ground truth and pixel locations. 
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2.4. Tree species detection 
 

 
Table. 3. Target species and the number of collected photos to train the tree 

bark classification model and sample images 

 

 
Fig. 4. Recorded accuracy metrics for training the Xception network. 

Training process was early-stopped at 31st epoch as validation loss was 

not improved for 10 epochs. Learning rate was tuned while training the 

model. Confusion matrix of target species for tree bark classification. 

Performance of the trained network was evaluated through the proportion 

of correctly classified photos. Empty cells represent there is no prediction 

by the network. 
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For tree species detection from citizens’ photos, we selected 

solely relying on bark due to its several advantages (Carpentier et 

al., 2018; Remeš & Haindl, 2019). First, tree bark images could be 

sustainably collected regardless of seasonal changes. Second, to take 

photography of bark, citizens have to get closer to trees thereby the 

recorded locations of photos can be used for useful references. Third, 

texture and color of bark are clearly different among tree species. 

However, several studies pointed out that intra-class differences 

and inter-class similarities between tree bark could be an 

obstruction to recognize species (Misra et al., 2020; Zhao et al., 

2020). Therefore, we prepared various ages of tree bark datasets 

completely separated from citizens’ photos. 

To classify tree species from bark imagery, we applied Xception 

network (Chollet, 2017) after segmented background images using 

U-Net (Ronneberger et al., 2015). Segmentation of image 

background was necessary, since we took multiple bark pictures from 

a single tree which may lead the image classification model to learn 

the similar context of surroundings, not only bark texture itself. 

Annotations for training the U-Net model include two classes: tree 

or not tree. After that, these segmented images served as inputs of 

the Xception model for identifying tree species. The Xception model 

was chosen for its unique architecture which successfully reduced 

the number of parameters and the amount of computation so that 

overfitting and vanishing gradient problems could be improved. We 

monitored the training process of the Xception model with the 

Categorical Cross-Entropy loss function (Fig. 4). Training of the 

Xception network was early-stopped at 31st epoch as validation loss 

was not improved for 10 epochs. Categorical Cross Entropy is one of 

the most commonly used loss function for multi-class classification 

tasks, which is defined as: 

 

Categorical Cross Entropy =  − ∑ 𝑦𝑖 log 𝑝𝑖

𝑛

𝑖=1
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where n is the number of target classes, pi is the probability of class 

i and yi is 1 if the inference is correct, otherwise 0. To evaluate the 

performance of our classification model, we created a test dataset 

which contains 1,900 tree bark photos of 20 classes with the 

background removed (Fig. 4). 

To estimate the tree species distribution, all collected citizens’ 

data were mapped based on the deep learning inference results and 

recorded coordinates. To minimize the uncertainties of the quality of 

citizens’ data, we filtered the photos over several steps. For 

instance, human resources manually filtered out photos that were 

difficult to be used such as ‘taken from far away’ or ‘shaky’. We 

also implemented the Xception network to automatically exclude the 

images as ‘others’ class if they achieved lower than 0.4 of 

confidence score. Moreover, as the recorded location of citizen’s 

data did not represent the actual tree points, we used a voronoi 

diagram (Aurenhammer, 1991) and point-sampling tool built in 

Geographic Information System (GIS) software to transmit tree 

species information to nearby tree points. Assuming that the average 

distance error of smartphone GPS is around 5 m, we fixed the radius 

of the voronoi diagram as 5 m and used euclidean distance. 

 

 
Table. 4. Target species and the number of bounding boxes drawn to train 

the street tree detection model and sample images 
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Fig. 5. Recorded accuracy metrics for training the YOLOv3 network. Each 

insets of the figure shows the decrease of the loss and the increase of the 

mean average precision (mAP), precision and recall. b, Confusion matrix of 

target species for street tree detection. Performance of the trained network 

was evaluated through the proportion of correctly detected street trees. 

Empty cells represent there is no prediction by the network. 

 

For tree species detection from street-level imagery, we applied 

the YOLOv3 network (Redmon & Farhadi, 2018) to extract features 

on the pre-processed photos. Annotating the species for raw images 

of low brightness and contrast is problematic. Therefore, it is 

essential to pre-process the raw data by adopting image processing 

techniques, such as histogram equalization or contrast-limited 

adaptive histogram equalization. In contrast to tree bark photos, 

preparing an equal number of training data for each species poses a 

significant challenge since a few species comprise most of the street 

trees in the study site. After that, these annotated images served as 

train datasets of the YOLOv3 model for detecting street tree species. 

We evaluated the performance of the YOLOv3 model by 

monitoring mAP, precision and recall, which are commonly used 

evaluation metrics for object detection frameworks (Table. 2). We 

measured mAP over multiple average precisions which is defined as 
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the area under the precision-recall curve. Precision and recall are 

defined as follows: 

 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where TP, FP, and FN are the number of true positive, false positive, 

and false negative results, respectively. To evaluate the performance 

of our object detection model, we prepared a test dataset consisting 

of 390 street level images of 13 classes (Fig. 5). 

We needed the distance references from the GPS points of the 

photos to the street trees which is similar to applying a voronoi 

diagram in a citizen sensing approach. Since the distance should be 

variable because the width of the road continuously changes, we used 

the LaneNet network (Neven et al., 2018) for counting the number 

of lanes from the images so that we could estimate the distance from 

a vehicle to street trees. We applied DBSCAN clustering (Ester et al., 

1996) to LaneNet binary segmentation results due to its ability to 

discover clusters of arbitrary shape. After we counted the number of 

lanes from the images, we set the width between two lanes as 4 m 

and estimated the distances from a vehicle to trees on the left and 

right sides. 

To estimate the tree species distribution in the streets, we used 

the deep learning inference results of all street-level imagery and 

converted them into text files that contain tree species and distance 

information on the left and right sides with coordinates recorded. 

However, there might exist errors of inference results such as 

misclassified tree species or miscounted number of lanes. We 

assumed that most street tree species were usually consistent in a 

single block. Therefore, we applied a majority voting approach to 

filter out the outliers and used the output as an input of a single-side 

buffer and point-sampling tool built in GIS software to transmit tree 

species information to nearby tree points. 
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2.5. Evaluation 
 

For more reliable study results, point cloud data were scanned 

over the city by airborne laser scanning (ALS) and GPS coordinates 

were collected. The canopy height model derived by ALS and lidR R 

package (Roussel et al., 2020) served as the ground truth for the 

number and location of trees in urban parks and forests due to poor 

accuracy of GPS measurements under the dense canopy layer 

(Holopainen et al., 2013). Conversely, GPS data were used for the 

ground truth of the street trees, considering the feasibility and high 

accuracy of GPS devices under the sparse tree stands area. We 

selected 50 sites (30 x 30 m) in urban parks and forests and 50 sites 

(30 x 30 m) along streets, respectively, and compared tree counts 

results. Additionally, we validated produced tree geolocations by 

analyzing the closest distance between our results and reference tree 

positions which were based on ALS and GPS data (Branson et al., 

2018). In Table. 5 and Fig. 18, we present the detailed information 

of LiDAR devices and image samples of processed point cloud data. 

We also conducted field survey to analyze the accuracy of the species 

map created by citizen- and vehicle-sensed datasets. We 

investigated about 10 % (1,572 trees) of trees mapped with citizens’ 

data, and about 10 % (4,713 trees) of trees derived from street-

level imagery. Additionally, we counted mis-classified species of 

trees within the buffer boundary as 'over-mapped' to analyze the 

feasibility of the point-sampling methodology using the buffer (see 

inset of Fig. 16). 
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Chapter 3. Results 
 

3.1. Evaluation of deep learning performance 
 

 
Fig. 6. Examples of deep learning results for shadow removal and tree 

detection (Green color of bounding boxes in the third image indicate tree 

detection from the airborne images) 

 

 
Fig. 7. Examples of image background segmentation and tree bark 

classification results (Red horizontal lines in the plots indicate the threshold 

of confidence score to filter out low quality photos) 

 

 

Fig. 8. Examples of deep learning results of lane segmentation and street 

tree detection (Various situations of roadside images were selected to show 

the performance of deep neural networks) 
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Automation of tree mapping and species detection at the city-

scale were enabled, since all 6 deep neural networks showed 

considerable inference results after training process. For image 

shadow removal in complex urban situations, fake images 

synthesized by the Pix2Pix model showed hidden trees were 

generated realistic with colorization, although the values of the RGB 

channels were not provided. After fine-tuning with 50 epochs, the 

DeepForest model showed good performance for individual tree 

detection in the study site. Green color of bounding boxes in the third 

image indicate tree detection from the airborne images (Fig. 6). For 

tree bark classification, Fig. 7 presented that if the target tree was 

taken from far away, the performance of the U-Net model decreased. 

Then, the classification score became smaller accordingly and the 

photo would be filtered out automatically. Red horizontal lines in the 

plots indicate the threshold of confidence score to filter out low 

quality tree bark photos. Fig. 8 represented the consistent 

performance of the LaneNet model in various situations of street 

images. Our trained YOLOv3 network detected species with high 

accuracy for street trees with unique traits. Various situations of 

street images were selected to show the performance of deep neural 

networks. 

 

3.2. Tree counting and mapping 
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Fig. 9. The number of trees per crown width and the evaluation of tree 

counts. Crown width was defined as the mean value of the width and height 

of bounding box. Most detected trees showed around 4 to 6 m of crown 

width. Additionally, our estimation of the number of trees and the ground 

truth presented high correlation. 

The final tree base map demonstrated that a total of about 1.29 

million trees existed in the study area. In this study, we targeted 

trees whose crown width is greater than 2 m that was clearly 

detected from airborne imagery. Crown width of most detected trees 

were distributed around 5 m. Among them, the number of trees for 

each land cover type is the highest in the forest (57.4%) which was 

followed by grassland (21.0%), built area (14.6 %), cropland (4.0 %), 

barren (1.8 %). In Fig. 9, a comprehensive evaluation showed the 

comparison between our tree counting results and other data sources 

which were derived from Airborne Laser Scanning (ALS) and field 

survey with GPS devices (see Evaluation section in Methods). 

Notably, there appeared a strong linear relationship between our 

deep learning-based results and ground truth among 100 sites (30 x 

30 m) in the study areas (R2 = 0.95, see inset in Fig. 9). 

 
Fig. 10. Distance errors of the expected geolocations of urban trees. We 

selected 50 sites for urban parks and 50 sites for streets. The distributions 

of closest distance between our results and reference tree positions which 

were based on ALS and GPS data are presented. 

 



 

 ２５ 

 

Fig. 11. Comparison of tree positions among our results, stem locations and 

top of crowns. Discrepancy of tree geolocations was calculated. Definition 

of tree location based on three methods is presented in the center part of 

the figure. 

 

Our results provided reliable individual tree positions as the mean 

distance discrepancy between ground truth and predicted tree geo-

locations were around 2.0 m. Assuming that the distance from 

predicted tree geo-locations to the closest ground truth larger than 

5 m was measured from two different trees, we filtered out those 

occurrences. Fig. 10 indicated that the range of location error is 

slightly higher for trees in park and forest areas than the error for 

trees in streets. Additionally, assuming the lowest part of the tree 

stem as ground truth, we compared tree geolocation accuracy 

between ours and ALS-based results from point cloud data collected 

by Terrestrial Laser Scanning (TLS, Fig. 11). As a result, tree 

positions created by central points of bounding boxes were much 

closer to ground truth compared to the top of crowns. This indicates 

our methods performs better than ALS-based conventional approach 

which needs to be pre-processing steps and site-specific 

parameters to locate individual trees. Detailed information about the 

outcomes of individual tree mapping was described in Fig. 13. Also, 

visualization samples of TLS data and tree positions are presented in 

Fig. 12. 
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Fig. 12. Visualization samples of TLS point cloud data and tree positions 

based on each method (ours, stem and crown-based approaches). 

 

Fig. 13. Detailed information of tree counts results according to land cover 

types and image samples of tree positions (Each number in the samples 

represents locations of sites in Fig. 16) 
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3.3. Tree species detection with citizen and vehicle sensors 
 

 
Fig. 14. Detailed information of the tree species map created by citizens’ 

tree bark photos. Bar chart (left) indicates the number of trees by species 

which were detected by citizens. Representative tree species map results 

(right) visualize the tree species positions of the sample sites. Each number 

in the samples represents locations of sites in Fig. 16. 

 

Tree bark photos, which were taken by citizens, provide 

unprecedented detailed information of tree species distribution in the 

urban areas. Fig. 4 presents our experimental evaluations of the 

trained network, which show the majority of classes are perfectly 

predicted. Although some errors arose due to misclassification of 

Aesculus turbinata as Quercus acutissima and Pinus strobus as Pinus 

koraiensis, we achieved the 95.9 % of overall accuracy for tree 

species detection from the bark images. After species mapping 

process was completed, the most frequently detected species from 

the species map was Zelkova serrata (13.38 %), followed by Prunus 

yedoensis (10.94 %), Pinus densiflora (9.06 %) and Ginkgo biloba 

(6.61 %). The least detected species was Quercus palustris, with 118 

trees mapped. In particular, 3.99 % of trees were classified as 

'OTHERS' because the classification score was lower than the 

confidence score threshold of 0.4. Our field survey indicated that 

80.29% of trees were mapped to the correct species, and 15.27% of 
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the trees were classified as wrong species. Additionally, Fig. 16 

shows that only 2.54% of the trees were ‘over-mapped’, implying 

the feasibility of our approach, which simply transmits species 

classification results to nearby tree points. And about 4% of trees 

were found to be a minority species not included in deep learning 

training. 

 

 
Fig. 15. Detailed information of the tree species map created by street-

level imagery. Bar chart (left) indicates the number of trees by species 

which were detected by a vehicle. Representative tree species map results 

(right) visualize the tree species positions of the sample sites. Each number 

in the samples represents locations of sites in Fig. 16. 

 

Our species mapping framework for roadside trees was robust, 

since a single species exists in a single block for most cases in urban 

areas. We achieved the 66.9 % of overall accuracy for street tree 

detection from street-level imagery. Fig. 5 implies the inaccuracy of 

the model was observed for Quercus palustris and Aesculus turbinata 

for which a few training data were collected. Only Metasequoia 

glyptostroboides and Platanus occidentalis, which have clearly 

distinct tree shapes, present high scores of inference results. 

Although we had an insufficient number of train datasets for several 

minor species, which led to misclassification results of the YOLOv3 

model, a large proportion of them were converted to correct species 
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through a majority voting process. As a result, most street trees 

were detected as Prunus yedoensis (25.41 %), Ginkgo biloba (24.8 %) 

or Zelkova serrata (20.81The evaluation of the vehicle-sensed 

species map shows 66.29 % of trees were mapped to the correct 

species and 17 % of trees were over-mapped (Fig. 16). The 

proportion of ‘out-of-class’ was lower (2.71 %) for street trees, 

implying that several major species make up the most roadside trees. 
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Chapter 4. Discussion 
 

4.1. Multiple sensing platforms for urban areas 
 

 
Fig. 16. Validation of species-mapping results derived from citizens’ 

photos and vehicle-sensed imagery. The doughnut plots on the left and right 

indicate the proportion of “classified”, “misclassified” and “unclassified” 

tree species. The definition of each term is also described in the insets of 

the figure. In the middle of the figure, the top map is a tree species map 

generated from citizens’ datasets, and the middle one is generated from 

vehicle-sensed imagery. 

 

In this study, we demonstrated that merging multiple sensing 

platforms was effective for heterogeneously planted urban areas, 

since remotely-sensed imagery and ground-level data complement 

each other in terms of spatial extents and resolution (Suel et al., 

2021). The remote sensing approach still performs well for individual 

tree delineation at the city-scale. Our tree localization results are 

also promising, because the accuracy of tree positions outperforms 

some previous studies (Lumnitz et al., 2021), which only relied on a 

single sensing platform and were even conducted in small areas of 

sites. These locations can be used as the starting point for generating 

tree inventories (La Rosa et al., 2021; Laumer et al., 2020), since 

each position can include its metadata such as species, canopy height 
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and diameter of breast height (Fassnacht et al., 2016). Particularly, 

tree species maps are essential for urban practitioners, since species 

diversity and spatial distribution are important indicators of the 

environment and citizens’ well-being. We proved that ground-level 

data collected by citizens and vehicles could provide individual tree-

level species information in urban areas. We conducted all these 

processes of individual tree counting and localizing with species 

detection at large spatial extents, and our multiple platforms-based 

approach was compared to other studies, as shown in Table. 7. 

 

 

 
Fig. 17. Total number of trees whether their species were detected and 

circular bar chart representing the number of trees by species. Final species 

map is visualized inside the chart (right). Top 5 tree species which were 

frequently detected by citizen and vehicle are also presented. 

 

We have shown that around 1.29 million trees exist in the study 

area (Fig. 13). Meanwhile, comparison between our results and other 

data sources implied there might be more trees under the dense 

canopies. Although our estimation of tree detection from the airborne 

imagery is highly correlated to GPS- and ALS-derived tree counts 

(Fig. 9), we expect that the number of tree tops estimated by ALS is 

underestimated in the sites with high planting density. This is 
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because, when several trees are densely planted, they often share 

canopies with each other and underlying vegetation is prone to be 

undetectable. Considering that a large proportion of trees exist in 

forests (Fig. 13), the actual number of trees in the site will be more 

than expected. Additionally, since Pine trees are frequently planted 

in the site, the gap between our results and ground truth can be 

attributed to the insufficiency of the DeepForest model to identify 

these conifers. Although there were trees, we could not annotate ill-

defined conifers from the image when labeling tree bounding boxes 

for fine-tuning the model (see Fig. 22). Therefore, even if the model 

has been trained well, it will inevitably be different from the real 

number of trees. Nevertheless, we considered the trees under the 

top canopies were out of extents of this study, since trees which had 

clearly visible canopies from the aerial images were pre-defined as 

target trees. 

We stress that our localizing process for individual tree position 

provides an efficient baseline to elucidate the current status of urban 

trees at a city-scale. As mentioned above, the positioning database 

of these individual trees is the essential element of building an urban 

tree inventory, since we can add numerous information. We simply 

extracted the center points of the bounding boxes which were the 

inference results of the deep neural networks and the mean distance 

errors were around 2 m, which showed the remarkable performance 

of our method for localizing trees at the city-scale. As tree detection 

within a 4 m radius of ground truth was regarded as true positive 

(Branson et al., 2018), our deep learning based results are reliable. 

This approach is a more simplified version of the tree mapping 

framework compared to conventional ALS-based methods which 

need preprocessing to segment vegetation and selecting the site-

specific parameters to locate tree tops. As shown in Fig. 18, it is 

noteworthy that the tree does not grow upright under the influence 

of sunlight or water, and the location of the stem and the top of the 

canopy are inevitably different. In addition, in urban areas with low 

planting density, such as parks, man-made structures such as light 

poles may be detected as trees in the ALS data. Thus, we concluded 
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that ALS could not be a universal solution for individual tree 

localization in urban areas. It was one of the reasons why most of the 

previous studies prepared the ground truth of tree positions by visual 

interpretation of images (Brandt et al., 2020; Weinstein et al., 2020; 

Zhao et al., 2022; Zheng et al., 2020). In this study, we considered 

tree stem points and tree canopy tops as ‘geolocation’ of trees for 

sparsely and densely planted areas, respectively. We still need 

further exploration to define which can represent the location of trees 

for future studies. Comparison between ALS and TLS based tree 

point cloud data are visualized in Fig. 18. 

 

 
Airborne Laser 

Scanning 

Terrestrial Laser 

Scanning 

Global Positioning 

System 

Device name 
Leica TerrainMapper 

(Leica-Geosystems Inc., 

Heerbrugg, Switzerland) 

Leica BLK360 

(Leica-Geosystems Inc., 

Heerbrugg, Switzerland) 

Trimble R4s GNSS 

Receiver 

(Trimble Inc., California, 

U.S.) 

Operational 

settings 

Flight altitude: 4,800 ft 

(reference plane 

elevation 20 m) 

Scanning angle: 28 ° 

Scanning rate per 

second: 1,563 kHz 

Mean point density: 20.4 

pts/m2 

Scanning distance: 

0.6 - 60 m 

Scanning angle: 

horizontal 360 °, 

vertical 300 ° 

Scanning rate per 

second: about 360,000 

points 

Mean point density: 65 

pts/m2 

240 channels: GPS, 

GLONASS, SBAS, 

Galileo, Beidou 

Less than 1 m horizontal 

error in VRS, SBAS 

survey 

Data 

acquisition 

period 

(year/month) 

2020/09 
2021/04, 

2022/03 

2021/11, 

2022/02, 

2022/03 

Table. 5. Name and operational settings of each device 
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Fig. 18. Comparison between ALS and TLS based tree point cloud data 

 

4.2. Potential of citizen and vehicle sensors 
 

Our proposed new method presents the potential of citizen and 

vehicle sensors for producing fine-grained urban tree species maps. 

Most conventional studies have focused on forest sites (Fassnacht et 

al., 2016) since it has been difficult to map a large number of species 

in cities using multi- or hyperspectral imagery due to the influence 

of human-made ground, soil conditions, and the complexity of the 

underlying vegetation (Alonzo et al., 2014; Pu & Landry, 2012). In 

this respect, we highlight that citizens and vehicles are the most 

commonly found sensors in densely populated and road-meshed 

cities as they can cover different types of green spaces (i.e., urban 

parks and streets) although only 63,453 (4.91 %) trees were 
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detected with species information (Fig. 17). This was expected 

results since most trees were located in mountain areas (Fig. 13) 

which was difficult to be accessed by citizens or vehicles. Note that, 

the precise geolocations of each tree species collected over a long 

period also enables time series analysis of urban vegetation. For 

example, phenological changes of plants were analyzed via citizen 

data over two centuries (Fuccillo Battle et al., 2022) and the variation 

of street trees was estimated via vehicle data during two periods 

(Branson et al., 2018). In addition, we expect that our method for 

generating the tree species map could perform as ground truth for 

training the model to classify the other areas, such as mountains. 

However, since the major tree species constituting the mountains 

were highly different from the urban areas, we considered this 

analysis to be outside the boundaries of this study. 

We proved that mapping species information derived from 

citizens’ tree bark photos is a promising framework for tree species 

classification in the city. Our classification model was trained quickly 

even with insufficient data, and showed high inference performance 

(Fig. 4). This is because image segmentation of U-Net is applied and 

only the textural features of tree bark images are used for training 

the Xception model. Fig. 7 shows that the Xception model is 

successfully classifying tree species, by filtering out the photos of 

low quality or other species which were not included in the training. 

Our assessment of citizen-sensed species maps implies that only 

4.44 % of all trees are not filtered properly, although they are 

minority species. In addition, only 2.54 % of tree points were ‘over-

mapped’ in the entire citizen-sensed species map, which shows that 

5 m is suitable as the radius of the boundary from the geographical 

coordinates of acquired citizen data (Fig. 16). The high accuracy of 

the citizen-sensed species map (80.29 %) is attributed to the 

characteristics of urban landscape design in Korea, which is prone to 

colonize the same species in parks and forests. Therefore, although 

the classification result of the tree bark photo collected from one 

location was mapped to all trees within a radius of 5 m, there were 

few errors since trees of the same species existed nearby. Most of 
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the trees evaluated as ‘wrong’ were not due to misclassification of 

the deep neural network but rather because of GPS errors in the 

citizens’ smartphones under the dense canopy. For instance, even 

if a tree bark photo of certain species was correctly classified, there 

were some cases where it was inaccurately mapped to other trees. 

On the other hand, mapping street tree species with street-view 

imagery alone needs further improvements. Since street trees are 

pruned frequently, even different species often show similar tree 

shapes. As shown in Fig. 5, only Metasequoia glyptostroboides and 

Platanus occidentalis present high inference score, because of their 

unique tree shape and colorful bark, respectively. Biased number of 

training data due to only a few tree species constituting the majority 

of street trees also led to the inaccuracy of the YOLOv3 model. For 

example, it showed high accuracy for Ginkgo biloba, Prunus 

yedoensis and Zelkova serrata, which were labeled frequently. 

Nevertheless, since street trees of a certain species are often planted 

for each block, our approach was effective. Although we found our 

model missed some trees since there was a large proportion of False 

Negative (Fig. 5), the ‘correct’ ratio of species map validation 

results reached 66.29 % by simply filtering out the outliers within a 

single road. This approach also complements the uncertainty of the 

YOLOv3 model, because the created buffers covered tree positions 

that the model missed. In addition, a slight lane detection error did 

not significantly affect the mapping result, as shown in Fig. 16. If the 

expected number of lanes is greater than the real situation, there will 

be a larger boundary of the buffer. There is a possibility that species 

information will be transmitted to tree positions that are not street 

trees. But in most cases, the results were mapped to adjacent 

roadside trees only because street trees are usually planted in a row 

next to buildings. 
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Fig. 19. Revised land classification map and the coverage of citizen and 

vehicle data 

 

Additionally, we analyzed the coverage of citizens’ and street-

level data for tree species detection in urban areas. Species 

information which was inferred from citizens and vehicle data 

covered 11.9% of the total area of the study site. However, there 

were some landcover types which could not be regarded as urban 

areas such as mountainous sites, croplands, and water bodies within 

the target site. Therefore, we produced our new land classification 

map composed of 'urban park', 'paved area', 'road' and 'non-urban' 

by revising the landcover map and road data provided by the Korean 

government. Since Korean law stipulates that the minimum width of 

sidewalks is about 2 m in consideration of traffic safety, we defined 

the road data and a buffer of 2 m from road as 'road'. In addition, in 

the case of 'paved area', apartment complexes and residential areas 

are included except for urban parks. 'Non-urban' areas include 

mountainous sites, military bases, lakes and croplands which are 

difficult to access by citizens and vehicles. The newly produced land 

classification map showed that 'urban park' was 14.99 km² (12.4 %), 

'paved area' was 35.27 km² (29.1 %), 'road' was 26.79 km² 

(22.1 %), and 'non-urban' was 44.27 km² (36.5 %). In other words, 

the ratio of the actual urban areas within the study site is about 

63.51%. Using this, we estimated about 18.75% of the urban areas 

within the study site was covered by citizens and vehicles data. In 
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detail, we proved that about 60.79% of trees of which species 

detected from citizens’ data exist in urban parks and apartment 

complexes. Additionally, we found that 80.52% of the trees of which 

species detected from the street-level imagery were street trees 

located on the road. Notably, citizens and vehicles data detected 

species of only 7.51% and 2.63% of total trees in mountains and 

croplands, respectively, indicating that there are limitations for 

citizens and vehicles to cover ‘non-urban’ areas. Then, we 

analyzed how many trees got species information from citizens and 

vehicles. We found that 28.2% of trees out of about 149,000 trees 

existing on 'road' were detected from citizens and vehicles. Among 

them, 90.7% were mapped from vehicles, showing that most of the 

street trees were mapped from street-level imagery. Also, species 

information of 5.5% and 4.9% of trees were mapped in 'urban park' 

and 'paved area', respectively. Citizens’ tree bark photos mapped 

tree species information to about 3.1% of all trees detected in 'urban 

park' and 'paved area'. Although the majority of citizen data was 

recorded in 'urban park' and 'paved area', only 3.1% of trees were 

mapped, implying that alternatives are needed to boost citizens to 

participate in living lab projects across a wide range of areas. As a 

result, excluding the 'non-urban' in the study site, about 12.61% of 

trees among all the trees existing in the urban areas got the species 

information from inference results of deep neural networks. Detailed 

information about the coverage of citizen and vehicle data is 

presented in Fig. 19. 
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ID 1 2 3 4 5 6 7 

Citizens’ 

photos 

       

Tree bark 

classification 

Acer palmatum 
(correct) 

Ginkgo biloba 
(correct) 

Metasequoia glyptostroboides 
(correct) 

Aesculus 
turbinata 
(correct) 

Zelkova 
serrata 

(correct) 

OTHERS 

(correct) 

Zelkova 
serrata 

(correct) 

Vehicle-

sensed 

imagery 

   
Street tree 

detection 
Ginkgo biloba (correct) Prunus yedoensis (correct) Platanus occidentalis (correct) 

Cause of 

species 

differences 

GPS inaccuracy 

of smartphones 
- GPS inaccuracy of smartphones 

Inaccuracy of 

LaneNet 

inference 

results 

GPS 

inaccuracy of 

smartphones 

- 
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ID 8 9 10 11 12 13 

Citizens’ 

photos 

      

Tree bark 

classification 

Zelkova serrata 
(correct) 

Prunus yedoensis 
(correct) 

Pseudocydonia 
sinensis 
(correct) 

Prunus yedoensis 
(correct) 

Platanus occidentalis 
(correct) 

Cornus officinalis 
(wrong) 

Vehicle-

sensed 

imagery 

  

Street tree 

detection 
Metasequoia glyptostroboides (correct) Ginkgo biloba (correct) 

Cause of 

species 

differences 

GPS inaccuracy of smartphones 

Inaccuracy of 

LaneNet inference 

results 

Xception error - 
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ID 14 15 16 
Example image of species differences between 

citizen- and vehicle-based species maps 

Citizens’ 

photos 

   

 

Tree bark 

classification 

Zelkova serrata 
(correct) 

Prunus yedoensis 
(correct) 

Prunus yedoensis 
(correct) 

Vehicle-sensed 

imagery 

 

Street tree 

detection 
Ginkgo biloba (correct) 

Cause of 

species 

differences 

Inaccuracy of 

LaneNet inference 

results 

GPS inaccuracy of smartphones 

Table. 6. Field survey of tree species which were mapped from citizen and vehicle datasets. 

 

  



 

 ４２ 

We also tried to identify the potential and limitations of each data 

source by analyzing trees which have tree species information 

mapped from both citizen and vehicle data. As expected, most trees 

with overlapping tree species information from both data sources 

exist in the 'road' (86.5%). We selected some trees with different 

species information detected from citizen data and vehicle data and 

performed on-site survey. As a result, 30.9% of trees showed citizen 

data detected correctly, and 52.2% of trees showed vehicle data 

detected correctly. Notably, 16.9% of trees were found to be other 

species that were not covered in this study, which implied the need 

for improvement of deep learning-based methodologies that depend 

heavily on train data. Even if the tree species information based on 

vehicle data was more precise than citizen data, citizens could access 

the inside of a block that vehicles could not cover. Therefore, in this 

study, when different tree species were mapped from citizens and 

vehicles, we followed the results based on citizens’ data. In general, 

the cause of the error in the tree species map based on citizen data 

was the inaccuracy of the smartphone GPS. While performing field 

survey, we found that most of the tree bark photos was precisely 

classified by the Xception network. However, most of tree 

geolocations which were mapped by both citizen and vehicle data 

showed these tree bark photos were taken from the trees inside the 

block, not the roadside trees. In other words, even if the tree bark 

classification was performed well, the tree species information was 

incorrectly mapped to the adjacent street tree due to the smartphone 

GPS error. Therefore, in order to increase the accuracy of this study, 

which used citizens’ data to map urban tree species, the smartphone 

GPS performance needs to be improved. Therefore, we believe that 

if citizen data is accumulated over a long period of time and the 

performance of smartphones is improved, this study will emerge as 

an innovative alternative for managing trees on a city scale. Similar 

to Fig. 16, we found that one drawback of the street-level imagery-

based methodology was a lane detection error on a curved road. 

Some of trees which got species information from both tree bark 

photos and street-level imagery showed that street tree detection 
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results excessively transmitted to trees inside the blocks. Since the 

lane width or the shape of lanes are inconsistent in the city, the 

distance from a vehicle to street trees were overestimated when the 

vehicle turned right or left. In this case, the citizen data results were 

often correctly mapped. An example of a tree in which citizen data 

and vehicle data are mapped to different tree species can be seen in 

Table. 6. 

 

 

Fig. 20. Comparison of distance errors between study results and field data 

(only street trees) provided by Suwon city government 
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Fig. 21. Comparison of the number of street trees between study results 

and field data provided by Suwon city government. The sample plots i–iv, 

which show big difference with ground truth, are also presented with site 

photos provided by NaverMap (https://map.naver.com/v5/). The yellow 

boxes in the above figures indicate the cause of tree detection errors in this 

study (e.g., large areas of shrubs were often detected as trees). 

 

Nevertheless, we demonstrated strengths of our method 

compared to previous studies and field data provided by city 

government. In order to assess the novelty of our methodology, we 

compared several representative studies (Alonzo et al., 2014; Aval 

et al., 2018; Brandt et al., 2020; Laumer et al., 2020; Liu & An, 2019; 

Liu et al., 2017; Lumnitz et al., 2021; Martins et al., 2021; Pu & 

Landry, 2012; Sun et al., 2022; Tong et al., 2021; Yang et al., 2022) 

which were conducted for similar purposes. Most previous studies 

relied on a single platform, although the data types were different. 

Not only urban areas, we also covered research which were 

conducted in other land cover types of regions. As shown in Table. 
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7, a few studies performed counting, mapping individual trees and 

species detection in urban areas and the number of target species 

was small. One study achieved the highest accuracy targeting the 

largest number of tree species. Note that the price of airborne LiDAR 

and hyperspectral imagery is expensive compared to our data. 

Nevertheless, since the mountain areas were not included in our 

study and the locations of acquisition of citizen data were not evenly 

distributed, our results still need to be improved to cover the whole 

sites. In addition, we compared the results of this study with the 

street tree data provided by the Suwon city government. Note that 

although our study is not limited to street trees, the accuracy of our 

results outperformed the government data. Suwon city data in Figure. 

21 recorded that there were no trees at all in some sample sites 

despite the existence of trees. We confirmed that the Suwon city data 

underestimated the actual number of trees. On the other hand, our 

results of the number of trees were similar to the ground truth. 

Additionally, the estimated locations of the detected trees were also 

more precise than those of city data. The average distance error 

between tree positions in GPS data which were collected by our field 

survey was concentrated around 1~2 m. However, in the distribution 

of errors, we confirmed that our results were more concentrated than 

the Suwon city data, which means that our methodology shows much 

more stable accuracy than labor-intensive data collection. We have 

demonstrated that our deep learning-based approach was superior 

to the conventional time-consuming and labor-intensive field survey 

which were conducted by the city government. 
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Name 
Sensing 

platform 
Data type 

Study 

area 

(km²) 

Landcove

r type 

Counting 

trees 

Individual 

tree 

mapping 

Species 

detection 

Number of 

target 

species 

Accuracy 

Tree counts  

Positional 

error 

(m) 

*Tree 

species 

detection 

(%) 

Sun et al. 

(2022)  
Airborne RGB 7434.4 Urban O X X - R2: 0.88 - - 

Aval et al. 

(2018)  

Airborne, 

contextual 

information 

Hyperspect

ral, DSM, 

GIS data 

street-

level-only 
Urban O O X - 

F-score: 

0.91 
- - 

Brandt et 

al. (2020)  
Satellite 

Multispectr

al 
1.3 million Dryland O O X - R2: 0.97 - - 

Tong et al. 

(2021)  

Unmanned 

Aerial 

Vehicle 

RGB no info Cropland O O X - RMSE: 3 to 6 - - 

Yang et al. 

(2022)  
Airborne RGB 3.41 Park O O X - 

F-score: 

0.90 
- - 

Laumer et 

al. (2020)  
Vehicle RGB 

street-

level-only 
Urban O O X - - - - 

Lumnitz et 

al. (2021)  
Vehicle RGB 

street-

level-only 
Urban O O X - 

Detect rate:  

> 0.70 
4 to 6 - 

Choi et al. 

(2022)  
Vehicle RGB 

street-

level-only 
Urban X O O 5 - 43.2 56.4 

Pu and 

Landry 

(2012)  

Satellite 
Multispectr

al 
30 Urban X X O 7 - - 63.0 

Liu and An 

(2019)  
Satellite 

Hue, 

Saturation, 

Value 

2.45 Urban X X O 7 - - 77.6 
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Martins et 

al. (2021)  
Airborne RGB 3.25 Urban X X O 9 - - 79.3 ± 8.6 

Alonzo et 

al. (2014)  
Airborne 

LiDAR, 

hyperspect

ral 

no info Urban X O O 29 - - 83.4 

Liu et al. 

(2017)  
Airborne 

LiDAR, 

hyperspect

ral 

316 Urban X O O 15 - - 70.0 ± 3.1 

This study 

Airborne, 

Citizen, 

Vehicle 

RGB 121.04 Urban O O O 21 0.95 2.0 to 2.2 

80.3 (park, 

forest), 

66.3 (street) 

Table. 7. Comparison between our study and others which were performed for similar purposes. Detailed methods of accuracy 

measurement are not the same. 
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4.3. Implications 
 

We propose several suggestions for the improvement of future 

study. First, the citizens’ data collected in this study is prone to be 

concentrated in a specific area (Fig. 1). They were mainly collected 

in parks that are visited by a lot of people or easily accessible 

apartments. We expected that this citizens’ behavior implied the 

reward money for the living lab project was somewhat insufficient. 

Therefore, in the future study, we will induce active movement of 

citizens by providing higher rewards for areas that are difficult to 

access, or by setting a distance threshold of the data acquisition 

location rather than the time interval. Second, the performance of our 

camera mounted on a car was not enough to capture clear differences 

among street tree species. Although some species had distinctive 

traits, the features of most species were slightly different at the 

leaf-level rather than the canopy-level. We believed that these 

subtle differences might be omitted by resizing images to capture 

abstract features of objects on images while training CNNs. 

Although deep learning is able to process city-scale data 

automatically, a simpler model and sufficient training data which 

contains a larger number of tree species are highly desirable for 

future study. Recent years have witnessed the development of 

ecological analysis led by incorporating deep learning into accessible 

sensors, thereby increasing available data sources (Tuia et al., 2022). 

In this study, we suggested solutions for each purpose (i.e. tree 

counting, localization, and species detection) step by step. Since deep 

learning has the problems of lacking theoretical explanation and so-

called black box issues, the performance of multiple deep neural 

networks is hard to be identifiable (Shwartz-Ziv & Tishby, 2017). 

Therefore, improving the overall accuracy of this study was not easy 

because the uncertainty of each model stacked little by little. 

Designing a single network that performs multiple tasks is 

challenging due to the difficulty of preparing good quality data and 

huge computational costs. Deep neural networks are also heavily 

affected by the data itself. For instance, there were 4 % of remaining 
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tree species not included in this study in urban parks (Fig. 16). In 

other words, we cannot detect every species all over the city since 

it is hard to include all species for training the models. 

 

 
Fig. 22. Examples of airborne imagery which show various planting patterns 

in the study area 

 

 
Fig. 23. Distributions of each smartphone device ID and the number of 

participation by citizens who participated in the living lab project 

 

 
Fig. 24. Street-level imagery which show interspecies similarity and the 

intra-species variability 
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We analyzed detailed implications of airborne, citizen and vehicle 

sensing. Fig. 22 illustrates the heterogeneous planting patterns of 

urban trees. The first and second airborne photos show that young 

trees and conifer street trees which have ambiguous canopy 

boundaries are difficult to be distinguished clearly. Conifers in the 

park were one of the major causes of uncertainty in tree count and 

location results. In particular, shadows from conifers adversely 

affected the deep learning model's performance to detect trees. In 

mountain areas, since most trees have large canopy size, delineating 

the canopy boundaries is easier than in urban areas. However, aerial 

photos alone do not imply how many more trees there will be under 

the canopy. Fig. 23 shows the device information of citizens who 

participated in the living lab project. The color of each point 

represents each smartphone ID. That is, location records of the same 

color mean they were transmitted from the same device. We analyzed 

the total number of photos sent by actively participating citizens, and 

tabulated the results. Among 45,300 photos, 1,779 photos were sent 

by the most enthusiastically engaged citizens. We confirmed that the 

number of photos collected by the top 10 people reached 20.5 % of 

the total tree bark photos. This suggests that more effective public 

relations are needed for the collection of extensive citizen data. 

Street trees are strongly pruned in urban areas, since buildings are 

located next to trees in most cases. Fig. 24 present interspecies 

similarity of street trees. Although there were subtle differences in 

color, shape, and texture of the canopy among Chionanthus retusus, 

Prunus yedoensis, Styphnolobium japonicum, Zelkova serrata and 

Quercus palustris, they are pruned in such a similar shape that it is 

difficult to identify the species without an expertise. Even the same 

Ginkgo biloba looked more similar to another species depending on 

the strength of the pruning. Aesculus turbinata looked much similar 

to Ginkgo biloba which was strongly pruned in this figure. 
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Chapter 5. Conclusion 
 

In this study, we developed a novel framework for mapping individual 

trees at the city-scale by merging multimodal data and deep learning. 

We demonstrated the applicability of various deep neural networks 

for producing urban tree maps; we also showed tree bark photos and 

street-level imagery for tree species mapping. First, our trained 

generative network successfully generated the trees, which were 

hidden in the shadows. Second, it was possible to create a tree map 

by extracting the central point of the bounding boxes, which were the 

results of the tree detection. Third, we demonstrated that tree bark 

photos with the background removed provided clear information for 

tree species detection, and the high accuracy of validation results 

implied the capability of citizens’ data for species mapping. Finally, 

we confirmed that a street imagery-based approach should be 

improved for mapping tree species, since it was difficult to collect 

tree traits with a camera alone. Our results highlight that deep 

learning and data derived from multiple platforms could be used for 

generating a city-scale tree map. We believe our study provides a 

precise estimation of the number of trees and individual tree location 

with species information which is essential for urban tree 

management. 
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Abstract 

 

도시 전역에 존재하는 모든 수목의 숫자와 개별 위치, 그리고 수종 분포

를 정확하게 파악하는 것은 생태계 서비스를 향상시키기 위한 필수조건

이다. 하지만, 도시에서는 수목의 분포가 매우 복잡하기 때문에 개별 수

목을 맵핑하는 것은 어려웠다. 본 연구에서는, 여러가지 센싱 플랫폼을 

융합함과 동시에 다양한 딥러닝 네트워크들을 활용하여 세밀한 도시 수

목 지도를 제작하는 새로운 프레임워크를 제안한다. 우리는 오직 항공사

진, 시민, 차량 등의 플랫폼으로부터 수집된 RGB 이미지만을 사용하였

으며, 6가지 딥러닝 모델을 활용하여 수목을 맵핑하고 수종을 탐지하였

다. 각각의 플랫폼은 저마다의 강점이 있기 때문에 전 과정을 세 가지 

스텝으로 구분할 수 있다. 첫째, 우리는 항공사진 상에서 탐지된 수목의 

딥러닝 바운딩 박스로부터 중심점을 추출하여 개별 수목의 위치 지도를 

제작하였다. 많은 수목이 도시 내 고층 빌딩의 그림자에 의해 가려졌기 

때문에, 우리는 생정적 적대적 신경망 (Generative Adversarial 

Network, GAN)을 통해 항공사진 상에 숨겨진 수목을 그려내고자 하였

다. 둘째, 우리는 시민들이 수집한 수목의 수피 사진을 활용하여 도시 

공원 및 도시 숲 일대에 수종 정보를 맵핑하였다. 수피 사진으로부터의 

수종 정보는 딥러닝 네트워크에 의해 자동으로 분류되었으며, 이 과정에

서 이미지 분할 모델 또한 적용되어 딥러닝 분류 모델이 오로지 수피 부

분에만 집중할 수 있도록 하였다. 셋째, 우리는 차량에 탑재된 카메라를 

활용하여 도로변 가로수의 수종을 탐지하였다. 이 과정에서 차량으로부

터 가로수까지의 거리 정보가 필요하였는데, 우리는 이미지 상의 차선 

개수로부터 거리를 추정하였다. 마지막으로, 본 연구 결과는 라이다 

(Light Detection and Ranging, LiDAR)와 GPS 장비, 그리고 현장 자료

에 의해 평가되었다. 우리는 121.04 km² 면적의 대상지 내에 약 130만

여 그루의 수목이 존재하는 것을 확인하였으며, 다양한 선행연구보다 높

은 정확도의 개별 수목 위치 지도를 제작하였다. 탐지된 모든 수목 중 

약 6만 3천여 그루의 수종 정보가 탐지되었으며, 이중 가장 빈번히 탐
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지된 수목은 왕벚나무 (Prunus yedoensis, 21.43 %)였다. 은행나무 

(Ginkgo biloba, 19.44 %), 느티나무 (Zelkova serrata, 18.68 %), 소나

무 (Pinus densiflora, 7.55 %), 그리고 메타세쿼이어 (Metasequoia 

glyptostroboides, 5.97 %) 등이 그 뒤를 이었다. 포괄적인 검증이 수행

되었고, 본 연구에서는 시민이 수집한 수피 사진과 차량으로부터 수집된 

도로변 이미지는 도시 수종 분포에 대한 정확하고 정량적인 정보를 제공

한다는 것을 검증하였다.  
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