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Abstract 

 

 

Cold-start item recommendation is a long-standing challenge in 

recommendation systems. A common approach to tackle cold-start 

problem is using content-based approach, but in movie 

recommendations, rich information available in raw video contents or 

textual descriptions has not been fully utilized. In this paper, we 

propose a general cold-start recommendation framework that learns 

multimodal content representations from the rich information in raw 

videos and text, directly optimized over user-item interactions, 

instead of using embeddings pretrained on proxy pretext task. In 

addition, we further exploit multimodal alignment of the item contents 

in a self-supervised manner, revealing great potential in content 

representation learning. From extensive experiments on public 

benchmarks, we verify the effectiveness of our method, achieving 

state-of-the-art performance on cold-start movie recommendation. 

 

Keyword : video representation learning, multi-modal learning, cold-

start recommendation, content-based recommendation, transformers 
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Chapter 1. Introduction 

 

 

Recommendation systems are widely adopted for a variety of real-

world applications, e.g., online retails, video sharing platforms, and 

more, as the scale of items that people should choose from has been 

rapidly growing. Collaborative filtering (CF) [3, 15], recognizing 

preference patterns observed in user-item interactions, has been 

successfully applied to personalized recommendation systems to 

provide potentially preferred items in a personalized manner. 

Despite its success, CF approaches suffer from several challenges, 

one of which is the cold-start problem. Since CF relies only on user 

and item interaction, it is not capable of generating personalized 

recommendations for a new user without any records. Likewise, a 

brand-new item with no user feedback cannot be recommended to the 

right customers who are most likely to prefer that item. 

Indeed, cold-start is actually common and important in modern 

recommendation systems. In YouTube, for example, 500 hours of 

contents are being uploaded every minute [21]. With a standard CF 

recommendation system, those fresh contents can only be 

recommended to some random users until sufficient interaction data is 

collected. Another example is Netflix, where new movies or TV series 

often compete for the main advertisement space. Since this space is a 

limited resource, it is extremely important for the supplier to select 
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users who will most likely enjoy the new contents to maximize its 

revenue. Again, cold-start item recommendation would play a key role 

in selecting the right set of users for each fresh content that has not 

gathered any user feedback. 

A common approach to tackle the cold-start problem is using side 

information of the users or items to get prior knowledge of them. 

Unlike collaborative filtering, which relies only on user and item 

interactions, content-based (CB) approaches utilize attributes or 

properties of the users and items, e.g., demographic information of the 

users or metadata of the items. Since content information becomes 

available at the time of release, it is possible to retrieve a set of 

neighboring items that are of similar content, and it may be 

recommended to users who like this kind of items. Traditionally, 

metadata like genre or artist was mainly used. [29, 33, 41, 50] 

With recent advances in deep learning, there have been attempts 

to learn more powerful item representations directly from raw 

contents, e.g., music or movie. CDML [27] and GCML [26] propose to 

learn video embeddings from raw contents (e.g., pixels), trained on 

co-watch statistics among videos aggregated over multiple users. 

These models turn out to be strong on video retrieval and classification 

tasks, while performance on personalized recommendation is reported 

marginal. This is probably because the item representation is trained 

on a signal aggregated over multiple users, instead of individual user 

feedback, and thus this representation may not provide sufficiently 

fine-grained details needed for a personalized recommendation. 
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CLCRec [46] is another recent work that is relevant to our approach. 

Adopting a hybrid approach, CLCRec is equipped with both a CF and a 

CB module, combining their predictions to work on both cold and warm 

items. According to their experiments, this model achieves the current 

state-of-the-art on the cold-start recommendation problem on 

MovieLens. From their ablation study, however, the best performance 

is actually achieved with significantly unbalanced weights towards the 

CF part. This indicates there may be a large headroom to further 

improve cold-start performance with stronger content features. 

Here, we pose the key question: have we been using the rich 

content information in raw videos sufficiently and properly for video 

recommendations? For this question, we find at least two areas with 

high potential for improvement. 

First, the content representations that have been pervasive in 

literature may not be suitable for recommendation tasks. Including the 

aforementioned methods, most content-based recommendation 

models have used features extracted from models pretrained on tasks 

other than recommendation. To be specific, most video 

recommendation models that utilize visual content as side information 

rely on features trained on image classification, e.g., ImageNet [8], 

where the model learns to classify images into 1,000 classes. A few 

fully-connected layers are usually added and trained on 

recommendation data, expecting them to transform the embeddings 

optimized for image classification into some useful representation for 

content-based recommendation. Are we confident that embeddings 
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learned to distinguish only 1,000 general classes are aware of fine-

grained visual details subtle enough for recommendation? 

For a good movie recommendation, we may expect the features to 

contain information like story or mood, not just which objects exist in 

the video or high-level genres. Since the highest bottleneck layer, 

which is most frequently used to represent the video in previous 

papers, is trained to compactly represent each example with the most 

essential information for the target task, i.e., classification, we may 

not expect such fine-details about the movie to be present in this 

content embedding. Even if additional layers are trained on top of the 

image classification embeddings, they may not be able to learn any 

details if the content embedding is already too general, without 

preserving any details. For this reason, it is hard to expect the features 

trained for a significantly different objective to convey good 

representation for recommendation. 

Second, previous content-based movie recommendation models 

have been ignorant of the multimodality of the items. Movies contain 

rich side-information of diverse modalities, such as videos, synopsis, 

or other metadata, that represent the characteristic of the contents. 

Recently, multimodal video representation learning has been notably 

advanced and applied to video or clip retrieval from a text query [31, 

35, 40, 48], taking advantage of powerful contextualization capability 

of Transformers [43]. Most content-based recommendation models, 

however, have been using a simple late-fusion, concatenating 

embeddings from different modalities [13, 46]. 
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It is time for us to reconsider the decision of naively reusing 

embeddings pretrained on a proxy task which requires content 

understanding at a much coarse level, separately from each modality. 

In this paper, we propose a general cold-start recommendation 

framework to learn item representations purely from raw content, 

directly optimized to estimate user-item interactions without relying 

on weakly relevant pretraining tasks. In other words, our model maps 

the raw content to an embedding space where users and items with 

similar taste are clustered, and this representation is generalizable to 

unseen users and items. Our model is end-to-end trainable, without 

requiring a pretrained model. We also take an initial step towards 

elaborating multimodal learning for content-based recommendation by 

adding a loss that exploits multimodal correspondence of the content 

feature pairs for the same item. 

Specifically, our model takes multimodal content signals as input. 

Each modality is represented as a sequence of its atomic unit; e.g., a 

word for text or a small image patch for visual modality. Each 

sequence is aggregated to represent the entire video using 

Transformers [43]. Additionally, video-level representations for 

multiple modalities are aligned. Then we put a rating ranking head 

predicting how much a user will like an item by collaborative filtering. 

This prediction is compared to the known preference in the training 

data, and the loss arisen from this backpropagates all the way back to 

the lowest level of the model, treating pixels or word tokens. 

From extensive experiments, we verify that content 
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representations directly trained on the recommendation domain 

generalize significantly better than the ones transferred from weakly 

relevant proxy domains. Thereby, our model achieves state-of-the-

art performance on cold-start video recommendation, demonstrating 

strong adaptation capability to another movie dataset. 

Our main contributions are summarized as follows: 

l To the best of our knowledge, our model is the first attempt to 

learn video content representations directly on individual 

user-item interactions from the raw content. 

l Our model exploits the multimodality of the item contents in a 

self-supervised manner, significantly improving cold-start 

recommendation performance. 

l From extensive experiments, we demonstrate that our 

proposed method achieves state-of-the-art performance on 

cold-start movie recommendation task. 
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Chapter 2. Related Work 

 

 

2.1. Cold-start Recommendations 

 

CF has contributed a lot to enhance the performance of recommender 

systems in the existence of plentiful historical data [19, 28, 36, 37, 39, 

49], but the cold-start problem is its long-standing challenge, where 

no historical interaction record of user or item exists. To tackle this 

problem, diverse approaches have been proposed. 

MWUF [53] proposes to warm up cold item embeddings with 

meta-scaling and shifting networks. DropoutNet [44] randomly 

dropouts item or user embeddings to make the model better adapt to 

the cold-start condition. Heater [54] tackles the problem with a 

randomized training mechanism and mixture-of-experts 

transformation. Recently, various meta-learning approaches tackle 

cold-start recommendation, i.e., MAMO [10], Meta-E [34], MetaHIN 

[32], MeLU [25], and PAML [47]. 

 

2.2. Content-based Recommendations 

 

Auxiliary information like content features integrated in CF models has 

been beneficial for alleviating cold-start problem [6, 7]. CLCRec [46] 

maximizes the mutual dependencies between item content and 
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collaborative signals using contrastive learning. CLCRec shares a 

common theme with our model in that both utilize content features to 

tackle cold-start recommendation. However, CLCRec trains 

embeddings on image classification data and transfers them to 

recommendation, while our model learns the video representations 

directly on the recommendation task. Also, CLCRec uses an image 

model ignoring temporal dependencies, while we use a spatio-

temporal video model to extract item features. Although CLCRec 

claims that it combines CF and CB, in reality it relies heavily on CF, 

according to their experiment. 

CDML [27] is another model that uses content features (audio-

visual) and proves to be useful in cold-start scenario. Its refined model, 

GCML [26], learns video embeddings from a relational graph and 

shows better performance than CDML. However, both models are not 

personalized in that they learn item-item co-watch similarity 

aggregated over all users, not at individual user level. On the other 

hand, our model explicitly uses individual user feedback to learn the 

item representations. 

Recently, CVAR [50] proposes model-agnostic framework to 

generate enhanced warmed-up item embeddings for cold items using 

content information. DUIF [14] is a feature learning approach for 

image recommendation. MTPR [12] and CC-CC [38] use item content 

features to leverage collaborative signals. Although there are many 

content-based approaches to tackle the cold-start problem, our model 

is distinctive in that it is the first vision transformer specialized for 
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content-based recommendation to fully optimize the feature extractor 

for the recommendation task. 

 

2.3. Contrastive Learning 

 

Contrastive learning is a self-supervised task, learning to discriminate 

which pairs of data points are similar and different from the dataset, 

widely used in computer vision and NLP [4, 5. 16. 18, 20, 22]. Recent 

works employ contrastive learning in recommender systems to 

optimize the representations of users and items. For instance, Liu et 

al. [30] proposes a graph contrastive learning for a general 

recommender system, introducing debiased contrastive module to 

alleviate the sample bias. CLRec [51] employs contrastive learning to 

improve DCG in recommendation. CLCRec [46] adopts contrastive 

learning to preserve collaborative signals in the content 

representations. Our method also employs contrastive loss for rating 

prediction and multi-modal alignment. Unlike other methods [46, 51] 

that use fixed negative samples or adopt additional module for 

negative sampling, we use other samples in the mini-batch, shuffled 

each time. Seeing more diverse negative samples without extra cost, 

our method demonstrates a superior generalization capability on cold-

start recommendations. 
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Chapter 3. Problem Formulation and Notations 

 

 

In this paper, we assume implicit feedback from the items so there are 

only two types of ratings: preferred or unknown. Given a binary 

preference matrix 𝑅 ∈ {0,1}!×#  with 𝑀  users and 𝑁  items, an 

element 𝑅$% = 1 indicates that the item 𝑗 is preferred by the user 𝑖, 

while 𝑅$% = 0 means unknown. The matrix 𝑅  can be split into two 

parts: 𝑅& with warm items and 𝑅' with cold items, where all entries 

within 𝑅' are zeros. The cold-start recommendation task is predicting 

preferable items within 𝑅'; in other words, retrieving a list of items 

that each user 𝑖 may prefer among the cold items. 

Each item is provided with a set of content attributes. Our 

framework is general enough to treat arbitrary number of sequence 

attributes, but for the ease of explanation, we will use two concrete 

types, visual (e.g., raw frames) and text (e.g., synopsis) modalities 

throughout this section. The visual side information for item 𝑗  is 

denoted by 𝑋(%) ∈ 𝑅*!×+×&×𝟛, where 𝑇% is the number of frames of the 

item 𝑗 and h	 × 𝑤 is the frame size. Each frame at timestamp 𝑡 is 

denoted by 𝑥-
(%)

. Similarly, the text side information for item 𝑗  is 

denoted by 𝑤(%) ∈ {1,… , |𝑉|}.!, where 𝑉 is the vocabulary set and 𝐿% is 

the length of the text for item 𝑗. 

We target only cold-start items with no interaction records with 

any user, and we assume no cold-start user. Although cold-start users 
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can be modeled in a similar way, we do not tackle this problem because 

no public dataset provides meaningful user side information due to 

privacy issues. Cold-start item recommendation performance is 

evaluated by ranking all unseen items for each user and comparing the 

top 𝐾 items from the ranked list with the items that the user actually 

gave positive feedback to. 
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Chapter 4. Preliminary 

 

 

We briefly review Transformers [43], a powerful model that achieves 

state-of-the-art performance on sequence-to-sequence (Seq2Seq) 

tasks like machine translation. It applies a self-attention mechanism in 

an encoder-decoder structure to learn context by tracking 

relationships in sequential data. We first describe the Transformer 

encoder in detail, followed by how it is utilized for language and visual 

modalities by representative models. We do not cover the decoder 

since it is not used in our model. 

 

4.1. Transformer Encoder 

 

Given an input sequence of tokens (e.g., words or frames) of length 𝑇, 

they are first embedded to vectors, 𝑍 ≡ {𝑧/, … , 𝑧*} , where z0 ∈ 𝑅1 . 

Then, 𝑍 is fed to a series of encoder blocks, where each block is 

composed of a self-attention layer and a feed-forward network, that 

enrich token representations with contextual information from other 

tokens in the sequence. 

First, the token embeddings Z  ∈  R2 × 4 are transformed to three 

special representations, namely, query (Q  ∈  R2 × 4"), key (𝐾 ∈ 𝑅*×1"), 

and value ( 𝑉 ∈ 𝑅*×1" ), by linear transformation, where 𝑑5  is not 

necessarily same as 𝑑. Then, the self-attention is defined by 
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 Attention(𝑄, 𝐾, 𝑉) = softmax Q
𝑄𝐾*

√𝑑5
S𝑉. (1) 

   

Intuitively, attention of each token is represented as a weighted 

average of other token embeddings (using 𝑉) in the same sequence, 

where the weight is proportional to the relevance score (computed 

using 𝑄 and 𝑉) between them. The learnable parameters are linear 

mappers from token embeddings to 𝑄, 𝐾, and 𝑉. Since each token may 

have more than one semantics depending on the neighboring tokens, 

Transformer adopts multiple heads to allow the token to represent 

different semantics depending on the context. 

After the multi-head self-attention, the embeddings are fed into a 

position-wise feed-forward network, allowing further transformation. 

These steps are repeated by stacking 𝐿 blocks. The output of the last 

encoder block is the final embedding of each token. Optionally, we may 

put an additional classification token ([CLS]) to learn aggregated 

representation of the entire sequence. Without having specific 

meaning, [CLS] aggregates tokens without being biased towards itself 

as other regular tokens do. The Transformer is often trained by losses 

arisen from a downstream task like classification, performed based on 

this aggregated embedding from [CLS] token. 

 

4.2. BERT 

 

Bidirectional Encoder Representations from Transformers (BERT) [9] 

is a language model that learns representations from unlabeled text by 
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self-supervised learning. BERT uses only the encoder of the 

Transformer. The main training objectives are to predict masked 

tokens in sentences (Masked language modeling; MLM) and to predict 

whether two input sentences are consecutive (Next Sentence 

Prediction; NSP). With MLM, the randomly masked tokens are 

classified based on context (remaining tokens). For NSP, the 

embedding corresponding to the [CLS] token is fed to a classifier 

determining if the two input sentences are consecutive. For both, a 

classification loss (e.g., cross entropy) is used to train the model. 

BERT is powerful in precisely learning semantics of words when 

trained on large-scale corpus, achieving state-of-the-art 

performance on various NLP tasks. 

 

4.3. Vision Transformers 

 

Vision Transformer (ViT) [11] is a Transformer-based object 

recognition or image classification model. While text Transformers 

like BERT use words in a sentence as input tokens, ViT employs a 

Transformer over fixed-size (e.g., 16 × 16) patches split from the 

input image. Each image patch is linearly transformed to a patch 

embedding, added with a positional encoding and fed into the 

Transformer encoder. Optionally, multiple blocks of Transformers may 

be stacked. ViT adds a special learnable classification token ([CLS]) 

to the sequence. At the end of the last block, this [CLS] token encodes 

the learned representation of the entire image by contextualizing over 
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all patches. It is fed into an MLP head performing the downstream task, 

e.g., image classification. We adopt this architecture to embed video 

frames. 
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Chapter 5. The Proposed Method 

 

 

For a user 𝑖 and an item 𝑗, the goal of our model is estimating the 

preference score 𝑅$% . The user representation 𝑢($) ∈ 𝑅1  is simply 

learned with an embedding layer, similarly to the traditional 

collaborative filtering models. In order to treat cold-start items, 

however, our model learns to represent the items from their content 

signals (side information). Fig. 1 illustrates an example of using visual 

and text features to represent an item 𝑗, denoted by 𝑧(%) ∈ 𝑅1# and 

𝑠(%) ∈ 𝑅1$, respectively, where 𝑑6 is the embedding dimensionality of 

the visual modality and 𝑑7 is that of the textual modality. More details 

on how to represent each modality will be described subsequently. 

Note that our model is general enough to take arbitrary number of 

features of any type. 

 
Figure 1: Overall architecture of the proposed model. Given a raw video and 

its text description, the model extracts features using the visual (left) and 

text (right) representation modules. Overall item representation is computed 

by an MLP, and the final rating is predicted by dot product with the target 

user embedding, learned in the manner of collaborative filtering. 
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5.1. Visual Representation Learning 

 

The left box marked as Visual Representation in Fig. 1 illustrates our 

visual representation learning module. From 𝑇%  video frames of an 

item 𝑗, we first randomly sample a clip consisting of 𝐹 consecutive 

frames, {𝑥/
(%), 𝑥8

(%), … , 𝑥9
(%)} . Next, we adopt a two-step architecture 

where we compute frame-level embeddings for each frame using 

Spatial Encoder (𝐸:) and then obtain the entire clip representation (𝑧(%)) 

by Temporal Encoder (𝐸*) from the frame embeddings. We choose this 

two-step architecture in order to effectively capture the spatio-

temporal semantics of the video, including both details at frame level 

and overall information flow through temporal dimension. The 

architecture is similar to the model 2 of the Video Vision Transformer 

(ViViT) [2], reported as most efficient and cost-effective. In order to 

learn complex underlying spatio-temporal dynamics from videos, 

choosing a computationally efficient architecture is critically important. 

 

Spatial Encoder (𝐸:). Each frame 𝑥 ∈ {𝑥-
(%): 𝑡 = 1,… , 𝐹} is divided 

into 𝑃	 × 𝑃 image patches, forming a set {𝑥;,=: 𝑎 = 1,… , ℎ/𝑃, 𝑏 = 1,… ,𝑤/

𝑃} to be fed into the spatial encoder 𝐸:. Adopting the ViT architecture 

[11] introduced in Sec. 4, 𝐸: first embeds the input image patches 

{𝑥;,=} with a linear layer, denoted by {𝑧;,=}. Then, it adds learnable 

positional encodings {𝑝;,=} to the patch embeddings, depending on the 

location of each patch within the image. Together with the [CLS] 
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token, patch embeddings are fed into 𝐿: Transformer encoder blocks. 

During this process, each patch embedding is updated to capture 

diverse semantics in the image. The output embedding corresponding 

to the [CLS] token, denoted by 𝑧-
(%)

, encodes semantics of the entire 

image 𝑥-
(%)

. 

 

Temporal Encoder (𝐸* ). Now, the clip sampled from item 𝑗 is 

represented as a sequence of frame-level embeddings,	{𝒛𝟏
(𝒋), … , 𝒛𝑭

(𝒋)}. In 

order to aggregate them into a single clip-level embedding, we feed 

this sequence to another Transformer blocks, Temporal Encoder (𝐸*). 

Similar to 𝐸: , each frame embedding is added with a learnable 

temporal positional encoding, {𝑝/, … , 𝑝9} , and a classification token 

([CLS]) is concatenated to the sequence. While 𝐸:  captures the 

spatial semantics of each frame, the temporal transformer encoder 𝐸* 

is in charge of capturing temporal semantics in the clip. We take the 

final [CLS] token output 𝑧A
(%)

 from 𝐸* , followed by an MLP that 

outputs our final visual content representation, 𝑧(%). 

 

5.2. Text Representation Learning 

 

Similar to the visual modality, we use a Transformer-based 

architecture to encode content signals in text modality. Unlike the 

visual encoder, which adopts a two-step architecture for spatial and 

temporal aggregation, we choose a single-stage encoder architecture 
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for the text. Specifically, we adopt the BERT [9] described in Sec. 4. 

 

Language Encoder (𝐸.). Given a sequence of 𝐿% words, the word 

embedding layer encodes them into a sequence of word embeddings, 

{𝑤/
(%), … , 𝑤.!

(%)}. A [CLS] token is inserted and also passes through the 

word embedding layer, denoted by 𝑤A
(%)

. Then, they are added with the 

positional encoding {𝑞A, 𝑞/, … , 𝑞.!} . Unlike the learnable positional 

encodings used for visual modality, we follow the fixed positional 

encodings in BERT [9], as it is more suitable for text. The position-

aware word embeddings pass through the language Transformer 

encoder 𝐸. which contextualizes the word embeddings throughout the 

entire text and produces another sequence of transformed word 

representations, denoted by {𝑠A, 𝑠/, … , 𝑠.!}. The final embedding of the 

[CLS] token, 𝑠A
(%)

, from 𝐸. passes through an MLP and becomes our 

text representation embedding, 𝑠(%). 

 

5.3. Training Objectives 

 

Once computed, each modality representation is concatenated and 

passed through MLP layers, producing the final item embedding 𝑣(%) ∈

𝑅1 . The final preference 𝑅$%  is the dot-product of user and item 

embeddings; that is, 𝑅BCc = 𝑢($)
DE(!)

. Given the ground truth 𝑅$%, we train 

the model by maximizing {𝑅BCc:𝑅$% = 1}  and minimizing {𝑅BCc:𝑅$% = 0} 

using contrastive loss. 
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Rating Ranking Loss. For Top- 𝐾  recommendations, we are 

interested only in the relative relevance among the items to the target 

user's taste. Thus, we train the model to generalize well to predict 

higher scores for preferred items and lower scores for the others, 

rather than regressing to a fixed scale. 

For this reason, we choose contrastive learning, which is recently 

widely adopted for representation learning [18, 24, 45]. Unlike other 

supervised learning where we explicitly fit to a fixed label, contrastive 

learning trains the model to distinguish positive and negative examples 

based on relative relevance. Particularly, SimCLR [4] applies 

contrastive learning to a self-supervised setting, where the positive 

example is created by data augmentation while all other examples in 

the same mini-batch are considered as negatives. In our 

recommendation setting, the contrastive loss can be applied similarly 

to predict the ratings from user and item embeddings. Specifically, for 

each user, the item paired in the same example (which means that this 

user actually likes the item) is used as the positive, while all other 

items belonging to different pairs in the mini-batch are considered as 

negatives. With contrastive loss, the encoder is trained to maximize 

the dot product between the user and item embeddings in the same 

pair, while minimizing that of the different pairs in the mini-batch. 

Rating ranking loss ℒF for each mini-batch consisting of 𝐵 pairs of 

user and item is formulated by 
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 ℒF = −g
𝑢($∗)

DE((∗)

∑ 𝑢($∗)DE
(!∗)G

%H/

G

$H/

−g
𝑢($∗)

DE((∗)

∑ 𝑢(%∗)DE
((∗)G

%H/

G

$H/

, (2) 

   

where 𝒊∗	denotes the actual index of a user or an item in the training 

dataset for the 𝑖-th example in minibatch. 

Here, from ℒF , false negative issue arises when applying 

contrastive loss to pair-wise recommendation training batches. Unlike 

other contrastive models like SimCLR where other examples in the 

mini-batch are negatives for sure, a user has multiple positive items 

and an item also has multiple positive users. Thus, an item 𝑗/ paired 

with a user 𝑖/ might be actually positive for another user 𝑖8, although 

𝑖8  is paired with another item 𝑗8  in the particular batch. We may 

optionally remove these false negatives from the denominator of Eq. 

(2) for more precise training. We report empirical performance with or 

without false negative filtering in Sec. 7. 

 

Multi-modality Loss. With multiple content features from more 

than one modalities, we may take further advantage of self-

supervision by training the model to learn multi-modal 

correspondence. In a simple setting, item content embeddings from 

each modality for the same item are concatenated and passed through 

another MLP, projected to the same embedding space. This embedding 

is our final item content representation, which contains latent 

representation of multi-modal item content that relates the item 

characteristics and general patterns of user preference observed in 

the data. 
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Although this simple design reasonably fuses multimodal signals, 

we further exploit multimodal correspondence. Specifically, we apply 

contrastive loss to all item embeddings within each mini-batch, 

maximizing the similarity between embeddings from the same item 

with different modalities, while minimizing the similarity between all 

other combinations. Multimodality loss ℒ!  for a mini-batch with 𝐵 

pairs of visual and text representation is 

   

 ℒ! = −g
𝑧($∗)

D7((∗)

∑ 𝑧($∗)D7
(!∗)G

%H/

G

$H/

−g
𝑧($∗)

D7((∗)

∑ 𝑧(%∗)D7
((∗)G

%H/

G

$H/

, (3) 

   

where 𝑧($∗) and 𝑠($∗) denote the visual and text representation of the 

𝑖-th item in the mini-batch, respectively. 

Note that the two approaches above are the simplest ones that we 

can easily try, while more complicated multimodal losses are also 

possible, e.g., cross-modal attention [31]. 

 

Overall Objective. We linearly combine the two loss functions 

above to form the overall objective ℒ,  

   

 ℒ = ℒF 	+	𝜆ℒ! , (4) 
   

where 𝜆 is a hyperparameter that controls relative importance of the 

two loss components. 

 

5.4. Inference 

 

Recall that we randomly sample a clip with 𝐹 frames from the target 
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video during training, as it helps the model to observe various aspects 

of each movie, serving as data augmentation. At inference, we sample 

𝐶	 > 	1	clips and predict movie preference scores with each clip. Then, 

we aggregate those scores by taking the max: 

   

 𝑅BCc = max
'H/,…,K

𝑢($)DE(!)) , (5) 

   

where 𝑗'  indicates our embedding for the clip 𝑐 randomly sampled 

from item 𝑗 . In this way, we cover wider range of the video and 

compute the score based on a clip that the user most likely prefers. 
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Chapter 6. Experimental Settings 

 

 

We conduct extensive experiments to verify the effectiveness of our 

method by comparing it with competing models on cold-start 

recommendation tasks. In this section, we describe our evaluation 

protocol, including the datasets, baselines and metrics. 

 

Table 1: Overview of Our Datasets 

 

Datasets. We use two widely-used standard recommendation 

benchmarks: MovieLens 25M①[17] and Yahoo Movies②. Both datasets 

provide explicit user ratings from 1 (least preferred) to 5 (most 

preferred), so we convert them to implicit ones by taking only ratings 

3.5 or above as positives following [27, 52]. We also exclude items 

with any missing content information for both datasets. Also, we filter 

out the users with less than 20 ratings from MovieLens. However, as 

Yahoo Movies has a small number of items and sparse ratings, we do 

 
① https://grouplens.org/datasets/movielens/ 
② https://webscope.sandbox.yahoo.com/ 

Dataset  
Before 

filtering 

After filtering 

Train Validation Test 

MovieLens 

Users 162,541 28,542 28,527 28,522 

Items 62,423 4,198 378 277 

Ratings 25,000,095 2,024,323 496,130 659,783 

Yahoo 

Movies 

Users 7,642 4,506 2,542 2,898 

Items 11,915 1,802 402 400 

Ratings 211,231 41,572 8,357 10,163 
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not filter by the number of ratings. After filtering, we randomly split 

the items into three parts--warm, cold validation, and cold test--with 

the ratio of 85:7.5:7.5 for MovieLens and 70:15:15 for Yahoo Movie. 

The warm partition is used for training, and the cold validation is used 

to tune hyper-parameters. The cold test set is used to evaluate the 

final performance of each model. The scale of datasets after filtering 

and split is summarized in Table 1. The number of overlapping movies 

between the two datasets is 891. 

 

Content Features. Our proposed model is feature-agnostic, 

meaning that the content features can be of any modality or format, 

depending on the item type or the choice of feature extractor model. 

In our experiments, we choose to use video and text features. 

For visual content, we use movie trailers provided by MovieLens 

[1] and MovieNet③, since the full videos are publicly unavailable for 

most movies due to copyright. From each video, frames are sampled 

at 2 fps. We drop the first and last 10% of the sampled frames, since 

they often include age rating screen or ending credits. The average 

length of the trailers is 137 seconds for MovieLens dataset and 140 

seconds for Yahoo Movies, so we get around 220 frames per video on 

average for both datasets. For each mini-batch, we randomly sample 

𝐵	 = 	48 trailers, and a single sub-clip of length 𝐹	 = 	32 is randomly 

sampled within each trailer. This allows the model to see various parts 

 
③ https://movienet.github.io/ 
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of the video uniformly throughout the whole training process, after 

sufficient number of epochs. 

For text content, we use movie synopsis collected from IMDB④ 

for MovieLens. Yahoo Movies dataset self-contains synopsis. These 

synopses are two to three sentences that summarize the movie 

overview. The sentences are first tokenized into word tokens with a 

maximum length of 512, using uncased BERT large tokenizer [9]. 

Average number of tokens in text contents is 54.7  and 83.0  for 

MovieLens and Yahoo Movies, respectively. 

 

Evaluation Metrics. Following CLCRec [46], we treat all users 

with varied number of ratings equally by averaging the score for each 

user. We use three widely-used metrics for ranking tasks: {Precision, 

Recall, NDCG}@𝐾 with 𝐾	 = 	 {1, 5, 10, 20}. 

 

Competing Models. We compare three recent cold-start item 

recommendation models using content information: CLCRec [46], 

DropoutNet [44], and CVAR [50]. For a fair comparison, we use the 

public code released by the authors to train the competing models on 

our dataset. For the side-information of the baselines, we use ViT [11] 

embeddings pretrained on ImageNet [8] and BERT [9] embeddings for 

the text features. The weights for the pretrained models are kept 

frozen during training. We empirically choose hyperparameters by 

 
④ https://www.imdb.com/ 
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cross-validation. 

 

Model Hyperparameters. We experiment with 𝑑	 =

	{32, 64, 128, 256} for the dimensionality of users (𝑢($)) and items (𝑣(%)), 

while fixing 𝑑6 and 𝑑7 to 128, respectively. For visual features, we 

spatially split each frame to 𝑃	 × 𝑃, where 𝑃	 = 	16. Within the Spatial 

Transformer Encoder 𝐸: , we stack 𝐿: = 4  blocks of Vision 

Transformers. For the Temporal Encoder 𝐸*, we again stack 𝐿* = 4 

blocks. For both 𝐸: and 𝐸*, positional encodings 𝑝 are learned from 

data, similarly to ViT [11]. For text features, we follow the 

architecture of BERT [9]. For the MLPs after visual and text 

representation modules, we try several single-layer or two-layer 

fully-connected networks, compared in Sec. 7. The MLP after 

concatenation of modality-specific features consists of a single fully-

connected layer. We perform grid search for λ within the range [0,1]. 

We randomly sample 𝐶 = 10 clips for inference. 

 

Training Hyperparameters. We use Adam optimizer [23] with 

β/ = 0.9, β8 = 0.999, and ϵ = 10LM. We warm-up the learning rate by 

linearly increasing during the first 3 epochs, and train up to 200 epochs. 

After 70% of training, we decay the learning rate to 20% of the initial 

one, which is found by grid search among {10LN, 10LO, 10LP, 10LQ, 10L8}. 

We use mini-batch size 𝐵	 = 	48. 
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Chapter 7. Results and Discussion 

 

 

In this section, we describe detailed experimental results and provide 

insightful discussions from our observation. 

 

7.1. Comparison to the Baselines 

 

In Table 2, we report the performance on cold-start recommendation 

evaluated by NDCG@𝐾, Prec@𝐾, and Recall@𝐾 with 𝐾	 = 	 {1,5,10,20}. 

 

Table 2: Comparison with the Baselines on MovieLens & Yahoo Movies (%) 

Dataset Method 
NDCG (­) Precision (­) Recall (­) 

@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20 

MovieLens 

DropoutNet [44] 7.33 4.99 4.72 5.29 7.33 4.36 4.27 4.79 7.33 4.38 4.34 5.54 

CLCRec [46] 9.09 6.59 6.77 8.62 9.09 6.02 6.31 7.19 9.09 6.06 6.71 10.27 

CVAR [50] 8.89 9.11 9.09 9.49 8.89 9.12 9.10 9.56 8.89 9.13 9.12 9.71 

Ours 14.05 11.41 10.16 10.40 14.05 10.77 9.13 8.14 14.05 10.80 9.39 11.33 

Yahoo 

Movies 

DropoutNet [44] 1.10 1.68 2.40 3.29 1.10 1.12 1.10 1.01 1.10 2.16 4.05 6.40 

CLCRec [46] 0.75 6.50 6.47 6.65 0.75 3.87 2.24 1.24 0.75 7.95 8.34 8.97 

CVAR [50] 1.07 1.74 2.31 3.09 1.07 1.34 1.17 1.05 1.07 2.67 4.13 6.49 

Ours 6.79 8.53 11.66 12.48 5.39 5.87 6.04 6.27 6.79 8.86 14.54 16.24 

 

According to Table 2, our model outperforms all baselines under 

all metrics except for Precision@20 on MovieLens. Especially, our 

model significantly outperforms other models on Yahoo Movies, where 

observations are far sparser than MovieLens. This indicates that our 

content features directly trained on user-item interaction data turn out 
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to be even stronger on a sparser condition, when cold-start 

recommendation is more important. 

Another noticeable observation is the relationship between the 

models' performance and the value of 𝐾 for metrics@𝐾 on MovieLens, 

where the average number of positive items in the test set is 

23.1(±14.0). For instance, our approach tends to be stronger with a 

smaller 𝐾, so it will be more suitable for cases like watch next, where 

only the top one item is important. Baseline models like CVAR, on the 

other hand, tend to be stronger with a larger 𝐾, so they will be more 

suitable for homepage recommendations, where multiple items are 

presented at the same time. On Yahoo Movies, the average number of 

positive items is 3.5(±6.1), much lower than 20. Thus, all methods tend 

to show higher scores with larger 𝐾. 

 

7.2. Ablation Study 

 

Modality Ablation. To explore the effectiveness of multimodal 

features and alignment loss (ℒF), we compare the performance of our 

model with visual content only, visual and text features with and 

without applying ℒ!  on MovieLens. With λ = 	0 in Eq. 3, the final 

embedding is simply generated from concatenated visual and text 

representation, }𝑧(%); 𝑠(%)�, without applying ℒ!. 

As reported in Table 3, using multimodal features and alignment 

loss between them improve the overall recommendation performance. 

One notable thing in the result is that the performance is even lower 
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than that of the model trained with a single modality, if the multimodal 

features are not aligned by ℒ! . In other words, just concatenating 

multimodal embeddings and stacking MLPs on top is insufficient to 

fully utilize the multimodality of the item contents. However, the model 

trained with λ > 	0 (we use λ = 	0.5) outperforms both the visual-only 

model and the concatenated visual-text model. This result implies that 

exploiting multimodality has a great potential for cold-start 

recommendation, since what we demonstrate in this experiment is just 

a simple loss that encourages higher similarity between multimodal 

representations for the same content. More advanced form of 

multimodal correspondence learning (e.g., [31, 48]) may further 

improve cold-start recommendation performance, and we leave this 

as a promising future work. 

 

Table 3: Modality Ablation Study (MovieLens) 

Modality NDCG@10 Prec@10 Recall@10 

Visual 9.41 8.68 9.06 

Visual +Text 8.14 7.37 7.64 

Visual + Text +ℒ! 10.16 9.13 9.39 

 

Model Architecture Search. We explore specific architecture of 

our model from two perspectives: the dimensionality 𝑑 of the final 

content and user embeddings, and the depth and width of MLP layers 

on top of the learned content representations, mapping 𝒛𝟎
(𝒋)

 and 𝒔𝟎
(𝒋)

 to 

𝒛(𝒋) and 𝒔(𝒋), respectively. 
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Table 4: Embedding Dimensionality Exploration (Yahoo Movies) 

d NDCG@10 Prec@10 Recall@10 

32 6.87 3.81 10.17 

64 8.91 4.41 10.58 

128 10.20 5.52 12.82 

256 11.66 6.04 14.54 

 

First, Table 4 summarizes embedding size (𝑑) search result trained 

on Yahoo Movies. As expected, larger embedding size leads to better 

performance in general, although the gain per additional dimension 

diminishes as 𝑑 gets larger. For other experiments, we use 𝑑	 = 	128 

for computational efficiency. 

 

Table 5: Model Architecture Search (MovieLens; visual only) 

Model NDCG@10 Prec@10 Recall@10 

[1024-128] 9.41 8.68 9.06 

[1024-512-128] 9.50 8.80 9.09 

[1024-1024-128] 9.98 8.78 9.06 

[2048-128] 9.82 7.94 8.26 

[2048-1024-128] 9.17 6.33 8.45 

 

For the MLP structure, we experiment on MovieLens with visual 

contents only, with different number of layers and dimensionality. We 

try one to two layers of MLPs, with different widths among 

{128, 512, 1024, 2048} as summarized in Table 5. Stacking more layers 

shows marginal performance gain, while expanding the dimensionality 

of the layers does not always improve the performance. From this 

point, we conclude that the complexity of content representations is 

learned well enough at the feature extraction modules, so the MLP 



 

 ３２ 

layers can be concise. 

 

Table 6: False Negative Filtering (MovieLens) 

 NDCG@10 Prec@10 Recall@10 

With Filtering 9.85 9.14 9.21 

Without Filtering 10.16 9.13 9.39 

 

False Negatives Filtering. To quantify the effect of false negatives 

in pair-wise recommendation training, we compare two models 

learned with and without false negative filtering in our rating ranking 

loss ℒF, on MovieLens. Table 6 shows marginal impact of applying 

false negative filtering. We conjecture that this is partly because false 

negatives are less likely to be included in a small number of mini-batch 

as the scale of the dataset gets larger. Therefore, considering the 

computational overhead coming from false negative filtering, we 

conduct all other experiments without false negative filtering unless 

noted otherwise. 

 

7.3. Content Representation Evaluation 

 

To verify if our video embeddings are properly trained to capture 

users' watch behavior in general, we conduct a couple of additional 

studies of transfer learning. 

First, we compare our full model against the same model where 

the feature extractor is replaced with ViT [11] features pretrained on 

ImageNet, average-pooled over temporal axis. Table 7 reports the 
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experimental results. Comparing the first four rows, we observe that 

the performance of our model trained from scratch outperforms the 

same model using ViT pre-trained embeddings on both MovieLens and 

Yahoo Movies. From this, we confirm the importance of direct training 

on recommendation signals, instead of using a proxy pretraining task. 

Next, we evaluate transferability of our learned content 

representation from one dataset to another. If so, we verify the learned 

content model is general enough to be competent not just on unseen 

items in the same dataset but also on different set of users. 

 

Table 7: Experimental Result on Content Representations 

Pretraining Target NDCG@10 Prec@10 Recall@10 

From scratch 
MovieLens 

9.50 8.80 9.09 

ViT (ImageNet) 5.32 5.31 5.50 

From scratch 
Yahoo 

Movies 

7.25 3.63 9.24 

ViT (ImageNet) 1.59 0.79 2.66 

Ours (MovieLens) 5.22 2.63 6.90 

 

The last row in Table 7 shows the performance of cold-start 

recommendation on Yahoo Movies, using content embeddings trained 

on MovieLens. The result indicates that the MovieLens embeddings 

significantly outperform the ViT embeddings, proving again that 

directly training on the recommendation signals is far more effective 

than using commonly-used classification models. In other words, our 

content representation is well-generalized to collect useful 

information from the raw input contents, explaining why our model 

strongly outperforms all other baselines in cold-start recommendation. 
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7.4. Qualitative Analysis 

 

 
Figure 2: t-SNE Visualization of Learned Video Embeddings 

 

We visualize the learned video embeddings in 2D for qualitative 

understanding. Fig. 2 presents the t-SNE plot [42] of the video 

embeddings learned by our best model using both visual and text 

content on MovieLens. 

We observe a few interesting examples where similar movies are 

positioned nearby each other in the embedding space. For instance, 

Fig. 2 illustrates four clusters with highly relevant movies in different 

colors; where the red, orange, green, and blue clusters consist of 

heroes, romantic comedies from mid-2000s, science fictions, and 

western movies from mid-1900s, respectively. The full list of colored 

dots is listed in Table 8. 
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Table 8: Full list of the movie titles in the colored clusters in Fig. 2 

Red Cluster Orange Cluster Green Cluster Blue Cluster 

Batman: The Dark Knight 

Returns, Part 1 (2012) 

Batman: Year One (2011) 

Superman Unbound (2013) 

Captain America: The First 

Avenger (2011) 

Captain America: The Winter 

Soldier (2014) 

Iron Man 2 (2010) 

Iron Man 3 (2013) 

Thor: The Dark World (2013) 

Guardians of the Galaxy (2014) 

Fantastic Four (2005) 

LEGO Batman: The Movie - 

DC Heroes Unite (2013) 

Son of Batman (2014) 

Batman: Assault on Arkham 

(2014) 

Love Actually (2003) 

Break-Up, The (2006) 

Notebook, The (2004) 

How to Lose a Guy in 10 Days 

(2003) 

12 Dates of Christmas (2011) 

Princess Diaries 2: Royal 

Engagement, The (2004) 

P.S. I Love You (2007) 

Elizabethtown (2005) 

Bridget Jones: The Edge of 

Reason (2004) 

Catch and Release (2006) 

 

I, Robot (2004) 

Star Trek VI: The 

Undiscovered Country (1991) 

Star Wars: Episode I - The 

Phantom Menace (1999) 

Star Wars: Episode II - Attack 

of the Clones (2002) 

Back to the Future Part II 

(1989) 

Back to the Future Part III 

(1990) 

Matrix, The (1999) 

Matrix Revolutions, The (2003) 

Battlefield Earth (2000) 

Pitch Black (2000) 

Spaceballs (1987) 

Battle of Los Angeles (2011) 

Highlander II: The Quickening 

(1991) 

Time Machine, The (2002) 

Duel in the Sun (1946) 

Ride Lonesome (1959) 

Montana (1950) 

Man of the West (1958) 

Man Who Never Was, The 

(1956) 

Unforgiven, The (1960) 

Bonnie and Clyde (1967) 

She Wore a Yellow Ribbon 

(1949) 

Rio Bravo (1959) 

Hombre (1967) 

Cimarron (1960) 

Bad Day at Black Rock (1955) 

Spartacus (1960) 

Easy Rider (1969) 
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Chapter 8. Summary and Future Work 

 

 

In this work, we focus on how to tackle the item cold-start problem in 

recommendation. We propose a general cold-start recommendation 

framework that first attempts to learn multimodal content 

representations from the rich information in raw videos and text, 

directly optimized to estimate user-item interaction. Also, our model 

further exploits the multimodality of the item contents (visual-text) in 

a self-supervised manner and attains better recommendation 

performance under a cold-start condition. We conduct extensive 

experiments on two public datasets to verify the effectiveness of our 

proposed method, which outperforms the state-of-the-art baselines 

on cold-start movie recommendation. 

To the best of our knowledge, this is the first attempt to fully 

optimize the item content representation learner with personalized 

user feedback. Additionally, our model introduces a great potential in 

item content representation learning by aligning multimodal signals in 

a self-supervised manner. Our simple multimodal loss achieves a great 

performance gain on cold-start recommendation, suggesting the 

potential of implementing more complicated multimodal architectures 

for content representation learning. 
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Abstract in Korean 

  

 

콜드 스타트 아이템 추천은 추천시스템 연구에서 오래된 문제 중 

하나이다. 콜드 스타트 문제를 해결하기 위해 흔히 사용해온 방법은 

컨텐츠 기반 접근 방식을 사용하는 것이지만, 영화 추천 시스템 

분야에서는 원본 비디오 및 원문 설명 등에 내재된 풍부한 정보를 

충분히 활용해오지 못했다. 본 논문에서 제안하는 콜드 스타트 추천 

프레임워크에서는 원본 비디오와 텍스트의 풍부한 컨텐츠 정보를 

기반으로 멀티모달 컨텐츠 표현을 학습하는 과정에서, 다른 태스크에 

사전 학습된 임베딩을 활용하는 대신 유저-아이템 상호작용 정보를 

이용하여 직접 임베딩을 최적화하는 방법을 제안한다. 더 나아가, 본 

연구는 자기 지도 학습 방법을 통해 여러 모달리티로 표현되어 있는 

아이템 컨텐츠를 고려함으로써 컨텐츠 표현 학습의 발전 가능성을 

재조명한다. 최종적으로 주요 벤치마크 데이터셋에 대한 다양한 실험을 

통해 본 연구에서 제안하는 방법론의 효과를 입증함과 동시에 콜드 

스타트 영화 추천 분야에서 해당 분야 최고 성능을 보이는 사실을 

확인하였다. 

 

주요어 : 비디오 표현 학습, 멀티모달 학습, 콜드 스타트 추천, 컨텐츠 

기반 추천, 트랜스포머 모델 

학  번 : 2021-22861 
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