creative
commons

C O M O N § D

Ol2XtE= otele =2E 2= R0l 8ot 7S

o Ol == SH, HHE, 85, Al SH L 58 = U
o OIXH MAEESE HdE = UsLICH
Ol HHES del SR 0|8 = AsU T

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

o 7lot=, Ol M& =2 MOISO0ILE HHEZ2l H<, 0l A =0l HE= 0125
S Bt LIEHLHO10F B LICH
o MNAEAXNZRE EE2 3IIE &2 0lE ZHE2 HEL X ZSLICH

AEAYH OHE 0I8XA2 dele f12 W20l 26t gets 2 X ZSLICH

01X 2 0l Ed = 772 (Legal Code)S OloiotIl &Ml kst 23 LI CY.

Disclaimer |:|._'|

Collection

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

Master’s Thesis of Data Science

Efficient Exploration in
Reinforcement Learning for
Online Slate Recommender System

75k 7] eatel Lo
Z7 A 2Rl A o] 58 e by
February 2023

Graduate School of Data Science
Seoul National University
Data Science Major

Seung Joon Park

Efficient Exploration in
Reinforcement Learning for
Online Slate Recommender System

Adviser Min-hwan Oh

Submitting a master’s thesis of
Data Science

December 2022

Graduate School of Data Science
Seoul National University
Data Science Major

Seung Joon Park

Confirming the master’s thesis written by
Seung Joon Park

January 2023
Chair Wen-Syan Li (Seal)
Vice Chair Min-hwan Oh (Seal)

Examiner Hyung-Sin Kim (Seal)

Abstract

Deep reinforcement learning (RL) is a promising approach for recommender sys-
tems, of which the ultimate goal is to maximize the long-term user value. However,
practical exploration strategies for real-world applications have not been addressed.
We propose an efficient exploration strategy for deep RL-based recommendation, RESR.
We develop a latent state learning scheme and an off-policy learning objective with
randomized Q-values to foster efficient learning. Online simulation experiments con-

ducted with synthetic and real-world data validate the effectiveness of our method.

Keyword: Deep RL, Recommender System, Exploration, Simulation, POMDP
Student Number: 2021-28044

Table of Contents

Abstract

Table of Contents

1 INTRODUCTION

2 RELATED WORKS

3 PROBLEM STATEMENT

4 METHOD
4.1 Tractable Decomposition of Action Space
4.2 Latent User Representation
43 UserChoice Model

4.4 Exploration via Randomized Q-Functions

5 EXPERIMENTS
5.1 Oanline Simulation Environment
5.2 User Arrival and Departure
5.3 Fully Simulated Recommendation
5.4 Simulation using the Real-World Data
5.5 Results.

5.5.1 Fully Simulated Recommendation

ii

ii

10
10
13

5.5.2 Simulation using the Real-World Data

6 CONCLUSION

A APPENDIX

Al Notation e

A.2 Details of the Experiment

A.2.1 Fully Simulated Recommendation
A.2.2 Simulation using the Real-World Data
A3 Algorithm

Bibliography

Abstract in Korean

iii

26

27
27
30
30
34
37

38

43

Chapter 1

INTRODUCTION

Online recommender systems are widely applied in various domains where the system
repeatedly interacts with users in real-time and receives user feedback. An online rec-
ommender system adapts to the input received, learns “on-the-go,” and improves its
recommendations as data is gathered.!

Bandit algorithms are one of the long-studied online algorithms applied to web
recommendations. Multi-armed bandits [1, 2] and contextual bandits [3, 4] have been
widely used in various recommendation problem settings. These bandit approaches
are known to achieve superior performances in terms of immediate rewards (or other
desired user behavior, such as click-through rates). However, there are often problem
settings where the recommender needs to plan for the outcome following a recom-
mended action. For example, a streaming service user may initially be attracted by the
provocative “clickbait” content but soon leave the service disappointed. As a result of
the immediate reward received when a click is made on clickbait content, a bandit-
based recommender will continue to recommend sensational content to the user. A

method that can look ahead more than a single-step response would be beneficial in

'In contrast, batch (or offline) recommender systems are applied to a static dataset and cannot adapt
their recommendations over time. Typical methods used in batch recommender systems include collab-
orative filtering, content-based filtering, etc. To keep batch recommender systems up-to-date, they need
periodic retraining, which is computationally intensive and time-consuming, especially when the dataset
is large.

such settings. Hence, we consider an RL-based recommendation in this work.

In a recent work [5], a slate-based recommendation using deep RL was proposed.
In the setting, multiple items are presented to users at once. The list of items recom-
mended is called a slate. This setup is arguably one of the most common types of
interactions in mobile or web applications. Then, the recommender aims to find the
best slate to be recommended to users whose states are known to the recommender in
Ie et al. [5]. Extending this slate-based recommendation problem setting, we incorpo-
rate users’ latent states that affect the feedback on the recommended items. Further-
more, the previously proposed method by Ie et al. [5] leaves the exploration strategy
unmentioned. Exploration involves taking actions that are not necessarily maximizing
the expected reward. Since information about the environment and the reward function
is unknown to the agent, it is crucial to improve the policy with a limited number of
trials quickly. This process is referred to as efficient exploration, where an RL agent
learns the optimal policy using a small number of data samples collected from the en-
vironment. The previous works perform a naive exploration strategy of dithering (e.g.,
e-greedy policy) that can lead to inefficient learning in terms of sample complexity.

For this problem, we propose RESR, Randomized Exploration for Slate-based Rec-
ommendation, a method considering efficient exploration and user latent state learning.
Efficient exploration is an essential factor contributing to a better recommendation
system in practice. Efficient exploration leads to finding a good policy in a proper
amount of time which is crucial for the recommender system. If the algorithm requires
high sample complexity, it will lose many users when the model is under-trained. In
addition, the data-collecting process is not free. Efficient exploration would reduce the
cost for the policy to achieve high performance.

Practical issues when applying the algorithm are also considered. We suggest
learning a user’s latent state from sequential data such as past click history. Moreover,
we adopt and train a multinomial choice model [6] to calculate the probability of a

user selecting an item. In the simulated experiments, we show that RESR outperforms

the other RL-based off-policy algorithm SlateQ [5]. Our algorithm exhibits stable
learning while considering multiple learning objectives. We evaluate performance us-
ing both the traditional click-through rate (CTR) perspective and reward, which is a
better metric for measuring the long-term value [5] of a user.

In summary, the main contributions of this work are:

* We formulate a sequential decision-making problem of a slate-based recom-
mender system as a partially observable Markov decision process (POMDP)
using users’ latent states. This modeling approach is a generalization of the ex-

isting setup of Ie et al. [5].

* We propose RESR, an RL algorithm that enables efficient exploration for the
slate recommendation problem. RESR utilizes randomized value functions to ap-
proximate the posterior distribution through sampling, which leads to efficient

learning by balancing exploitation and exploration.

* Our proposed method shows superior performances compared to the baseline in
various environment settings. The performances are measured with respect to

the sample complexity, CTR, and user retention.

Chapter 2

RELATED WORKS

RL-based Recommender System

The process of recommending items to users and receiving feedback is a sequential
decision problem [7]. Conventional approaches have dealt with the recommendation
problem as a prediction problem, maintaining a static view of the world that a user’s in-
terest would remain the same over time [8]. In a dynamically changing world, however,
the data from the past may no longer be relevant. In contrast to the traditional static
recommendation process, interactive recommender systems (IRS) refers to the process
where user feedback is provided to refine the system continuously [9, 10]. Previously,
RL has shown success in games [11, 12] where long-term planning is required from
the interaction between the agent and the environment. Similarly, in IRS, learning from
feedback and capturing user transition via RL have been suggested [13, 14, 15]. An
RL-based recommender system aims to maximize each user’s long-term satisfaction
with the system [16, 5]. The reward can be formulated to promote desirable user behav-
ior, such as user engagement (longer watch time, clicks, etc.). A policy gradient-based
algorithm, REINFORCE [17, 16], and the value-based algorithms [18, 5] have both
been shown to increase long-term user engagement in live experiments at YouTube.
Previous research mainly focused on dealing with extremely large state and action

spaces. This practical issue arises from having millions of items to recommend and

becomes even worse when considering a list of items (slates) to recommend. This pa-
per focuses on the well-known exploration vs. exploitation dilemma that has not been
addressed much in the RL-based recommender system. Exploration is taking an action
that has not been taken before and exploitation is taking the best-known action. We
provide more sophisticated means to explore in contrast to taking random actions. We
suggest an efficient exploration method for the RL-based recommender system utiliz-

ing randomized Q-functions.

Value-based Deep RL

Deep RL is a combination of deep learning and RL [19]. It utilizes the strength of
deep neural networks to generalize, even with a high number of parameters [20]. RL
has gained popularity for its success in addressing challenging tasks, most notably
in games [11, 12]. DQN is a model-free value-based algorithm that has been pro-
posed by [11] which has been successful in achieving superhuman level control in
several ATARI games. The input here is the pixels, and neural networks are used as
function approximators for Q-values. The value-based RL algorithms aim to build a
value function of states. The value functions estimate how good it is for the agent to
be in a given state [21]. One of the most popular value-based algorithms is the Q-
learning [22] which keeps lookup tables for value functions of every state-action pair
denoted (s, a). Bellman equation is used to update the Q(s,a) as rewards are re-
ceived and new states are visited. DQN utilizes deep neural networks and stochastic
gradient descent to update Q(s, a). Experience replay is used to store the trajectory
of the Markov Decision Process and mini-batch samples are used to update the Q-
function. Neural networks give generalization power of computing Q(s, a) compared
to keeping a lookup table of discrete state-action pairs. The generalization is related
to the exploration of intractably large state-action spaces. When applying Deep RL
to recommender systems, efficient exploration remains a challenging problem that we

would like to solve in this paper.

Chapter 3

PROBLEM STATEMENT

We formulate our problem of recommending a slate consisting of arbitrarily chosen
K number of items. We have a set of items [N] := {1,..., N}. There exist N items
(i.e., documents, videos, etc.) that are available for recommendation. Our task is to
recommend a slate of K () < N) items to the user. The recommender is formed
as an RL agent that interacts with its environment in episodes, resulting sequence of
observations, actions, and rewards. We use o, a;, and 7; to denote the observation, the
action, and the reward received at timestep ¢. The action ay is the list of K items rec-
ommended to the user for selection at {. We model the user to have a D-dimensional
latent state vector s; at timestep ¢ which evolves as a user clicks a new item. A se-
quential recommendation task is generally formulated as a Markov Decision Process
(MDP), in which the next state is only dependent on the previous state and the action
taken. In reality, the recommender cannot fully observe the true user state. To address
this issue, the problem must be formulated as a Partially Observable Markov Decision

Process (POMDP) which consists of a 6-tuple (S, A, P, R,), O) where
» &S: set of user’s latent states, which are possibly continuous.

o P: transition dynamics P(s|s,a) : S x A x 8§ — [0, 1] which is the conditional

probability that the user transitions to state s’ when action « is taken at user

state s.

* R:reward function R : S x A — R which maps state-action pair to a real-valued

scalar.
» (): set of observations of the user history.

* O: observation dynamics O(o|s’,a) : S x A x — [0, 1] which is the condi-
tional probability that the agent receives o € €2 when the next state is s’ after the

action a has been taken.

The exact solution to POMDPs can be computationally intractable. One of the main
challenges is the estimation of the user’s state which is unknown. We use a pseudo-
state, §, which is an approximation of the true user state. We aim to find an approximate
solution to the POMDP problem using a pseudo-state. Let S be the set of pseudo-
states. The goal is to learn a policy, 7 : S — A, that maps the current pseudo-state
to a recommended action for the user. In RESR, the policy is learned by a combina-
tion of model-free off-policy Q-learning and model-based user choice model. At each
timestep ¢, the agent chooses an action a; based on a policy 7 that is learned throughout
the episodes.

We try to capture latent user representation s; from a sequence of w recent observa-
tions. A sequence of w recent observations 0; = {(@¢—w, Ct—w)s (At—wt1s Ctorot1), - - - 5
(ag—1,c—1)} is given to the agent at time ¢ where ¢; is the additional user information
including the user response (e.g., clicked item, time watched, etc.) when the slate a;
was given to the user at time j. We process sequential interaction data to learn user
representations s of arbitrary dimensions. The goal is to learn a policy that maximizes
the expected cumulative reward. The latent representation is learned along with the
policy with the goal of maximizing the expected cumulative reward. This approach is
more general compared to Ie et al. [5] as we account for the latent states of users.

Intractability also arises from large action space, as we have to construct a slate of

K items. In order to relieve the combinatorial action space problem, we make the fol-

lowing mild assumptions introduced by Ie et al. [5]: 1) a user selects one item from the
slate (including no-choice option); 2) The reward r and the state transition P(s'|s, a)
depends only on the item ¢ € a selected by the user. Under these assumptions, the
state-action value of a user given the combinatorial ('%‘)K ! possible slates can now be
represented by summing K tractable item-wise action-value functions. This method

will be discussed more thoroughly in Section 4.1.

Chapter 4

METHOD

4.1 Tractable Decomposition of Action Space

In order to relieve combinatorial action space, the decomposition of slate Q-values into
tractable item-wise Q-values is used. This approach has been introduced in S1ateQ [5],
a value-based model-free RL algorithm for recommender systems. SlateQ addresses
the problem of combinatorial action space in selecting slates. Selecting K items to
recommend to the user results in a combinatorial action space of ('%‘)K I. Choosing
a slate is intractable to solve when |N|, the size of the item set, is large. Therefore,
we utilize S1lateQ which is a method of decomposing the value function of intractable
actions space into a sum of tractable functions of slate’s components. Thus, only item-
wise Q-function ¢ is learned to estimate ()(s,a) which is the action value of recom-
mending slate a to a user with latent state s. The equation to represent (s, a) using

the item-wise ¢ function is
Qs,a) =3 plils, a)q(s. i),
i€a

where ¢(s, 1) represents the expected future rewards of choosing an item 7 for a user

with state s and following the optimal policy afterward, and p(i|s,a) is the proba-

bility of a user with state s clicking the item when slate a is given. Throughout the

experiment, SlateQ serves as the baseline for comparison with our method.

4.2 Latent User Representation

The true states of users are not observed or known to the agent. Hence, we propose
a learning method for capturing latent user representation. We denote the latent state
representation function as ¢ which can be implemented in any method that processes
sequential data, such as RNNs and transformers [23]. In the experiments, we learn the
latent representation of a user using an LSTM [24] layer which takes sequential data
as input to predict the user latent vector § of predetermined dimension, D. If there
exists any side information about users (e.g., demographics), it may also be added to

the input. The true user latent state at timestep ¢, s, is estimated using data oy.

Sp R 5y 1= ¢(0t;¢)a 4.1)

where 1 denotes the parameters of function ¢.

4.3 User Choice Model

The user choice model determines the selection of an item from the slate recommended
by the recommender system. We model the user’s choice by the multinomial logit
model [6]. The scores are evaluated based on the similarity between the user’s latent
state, s, and the feature vectors 1, z2, ..., Tk of K recommended items. A user may
also choose not to select any item. The probability of not choosing any item on a slate

is denoted by p(0|s, a). Therefore, the user’s probability of selecting an item ¢ given

10

user’s state s and slate a, p(i|s, a), is defined as

(P
—_——— if =0
o+ > uls,z;)
JEa
- o u(s, x;) e
plils,a) :=¢ — 22"V ifjecq
p+ > u(s,x;)
Jjea
0 otherwise

where u(-, -) is a non-negative utility score and p represents a base score for not choos-
ing any item on the slate. As the true user choice model is not known to the agent, we
train an affinity function g that returns the affinity score of a user and an item. Like-
wise, pseudo-state § is used in replacement of true s. Thus, the random utility function
u is modeled as u(s, z;) ~ exp (g(8,x;; B)) where (3 is the parameter of the affinity
function. It is more likely that the item will be chosen if the affinity score is high. The
probability of choosing item ¢ when latent user state estimate S and slate a is given is

denoted by p(i|3, a; B).

1
= if =0

1+ > exp(g(5,25;8))

JEa

p(ils,a;8) = { —SRWGTiB) 42)

1+ Z €Xp (g(sa T3 B))

JjEa
0 otherwise

When fitting g, we have set p = 1 as the affinity score of an outside option of not
choosing any item. During the learning process, the value of p does not matter as scores
of the other items will be re-scaled to match that of the true distribution. Let D denote
a dataset that consists of | D| samples. The loss over D can be computed using the user
choice response variable denoted 1, € {0, 1} *1. The user choice response variable
is the one-hot encoded response of the user’s choice where yy; is the i-th element of y;,.

The zeroth element 1o represents the no-choice option. The cross-entropy loss, £CF,

11

is then

LE(, B) Z > yuilogp(ilse, as; B).
eeD i€aU{0}
Note 1) is the parameter of the latent state representation function in Eq.(4.1).

Finally, we set our learning objective for the Q-function. The loss function uses
squared error loss between the predicted Q-values and the target Q-values as in Deep
Q-Network (DQN) [25] algorithm. The Q-function is parametrized by 8. The parame-
ter for the online Q-network is denoted 6, and the parameter for the target is denoted
¢'. Target Q-value is calculated by summing sampled reward r; with the discounted
sum of future rewards. This can be written as r; + ymax Q(s’,a’;0'). The target Q
can be represented using decomposed item-wise g. Thus?the DQN loss £RE computed

to update the parameter is

£ (0,0) = 51 S (e yma S (G137 a5 0) — a6 6)]
€D jea’
where 1y is the reward received, Sy is the current pseudo-state of user, and § 1s the next
pseudo-state of user for the /-th sample. z; is the feature vector of item ¢ consumed by
the user for the ¢-th sample. The item-wise Q-network takes the pseudo-state of a user,
3, and the feature of the item i, x;, to compute ¢(8$, ;). In the experiments, we used a
3-layer neural network for the item-wise Q-function. The target network ¢(s’, a’; ') is
used to compute the next state-action value for added stability. The target is updated
periodically using the hard update. In the experiments, the parameters of the target
network were replaced by those of the online network every 4,000 steps. As we have
used B randomized Q-functions as explained in Section 4.4, the final LR is the mean

of all losses computed by B number of Q-functions.

12

4.4 Exploration via Randomized Q-Functions

Our method utilizes randomized Q-functions [26] for efficient exploration. Osband et
al. [27] proposed bootstrapped DQN which is an algorithm that performs deep explo-
ration without any dithering strategy such as e-greedy. Exploration is done in e-greedy
by taking a random action with probability € at each step. Dithering strategies can lead
to inefficient learning, as randomly chosen actions may lead to failure. Moreover, the
e-greedy strategy introduces a hyperparameter which complicates the learning. The
exploration rate, ¢, is the hyperparameter in the e-greedy policy. The common heuris-
tic is to decrease € slowly over time, starting from a large number. Randomized Q-
functions are used to approximately sample from the posterior distribution of the true
Q-function. Sampling one Q-function is similar to Thompson Sampling [28, 29] where
we draw parameters from a posterior distribution. In order to approximate posterior
using sample distribution, each Q-function is trained on a sub-sample of the data. The
data samples for each timestep ¢ are stored in a replay buffer with a bootstrap mask e;
that indicates which Q-network to train on.

Let B (B > K) be the number of item-wise Q-functions. We develop the idea
of bootstrapped DQN, which samples one Q-function out of multiple functions per
episode. For each episode, RESR samples K number of item-wise Q-functions out of
B functions instead of one. We sample K number of Q-functions to determine the slate
to be recommended. Sampling K value functions may reduce the risk of sampling a
Q-function with bad estimates. Relying solely on one function’s value estimates may
lead to suboptimal decisions. We can make use of multiple value estimates in slate
recommendations to avoid this situation. Also, sampling K instead of one Q-function
enables a simple heuristic when building slates that maximize the expected cumulative

return. SlateQ [5] needs slate optimization to construct a slate that gives maximum

13

expected values considering p(i|s, a). The original optimization of choosing a slate

maxumze E p(ils,a)q(s,1),
Ia‘ K i€a

can be solved in polynomial time by the linear program (LP) below [30].

o ziu(s,1)q(s, 1)
maximize Z oS Zu(s)

subject to Z zi = K;0 <z <1,foralli € [N],
1E€[N]

where u(s, i) is the unnormalized affinity score between the user with state s and
the item ¢ (e“(s’xi)), q is the decomposed item-wise Q-values of the items within the
slate, and z; € {0, 1} is a binary variable for each item ¢ indicating whether ¢ is the
constituent of slate a.

Using K sampled Q-functions enables a simple heuristic for building a slate of
K items. For each slot of a slate, we choose the item with the maximum weighted
Q-value u(s,)q(s,) using the corresponding sampled item-wise Q-function. To pre-
vent recommending the same item more than once, we do this sequentially for each
Q-function. We only choose an item not included in the previous slot(s). The complex-
ity of this heuristic is O(K log(NV)) on average, while that of the original LP is O(N).
Since K < N, the heuristic takes much less time to build a recommendation slate.
This heuristic is especially useful when the number of items for recommendation is
large. We implemented this heuristic for training (calculating target Q-value) and serv-
ing (action selection) in the real-world data experiment setting where N = 1, 682. We
provide two ways to construct a slate for a user with pseudo-state s; at timestep t.

First, we can choose a slate with the highest Q($, a) estimate using K sampled
value functions. We compute Q(8¢,a) = Zszl p(ik|8¢, a)qr (8, i) and pick a slate

a; € argmax Q(8¢, a).
a

14

The second method uses the greedy heuristics aforementioned to construct a slate.
Each sampled item-wise Q-function is assigned to a slot of a slate. We place an item
with the highest item-wise Q-value of the corresponding Q-function. We need to ex-
clude picking the same item if it has already been chosen for the previous slot(s). The

steps for the greedy slate construction can be written as
1. Initialize a; = 0

2. Repeat the following K times: a; <— a; U arg max (g (5, ;) qr (8¢, 1))
iG[N]\at

In an effort to diversify Q-functions, we use the cosine loss function to increase
the dissimilarity of outputs between two similar Q-function networks. Diversifying
Q-functions may prevent value functions from collapsing. The “collapse” refers to a
situation where all random Q-functions converge to the same function resulting in a
loss of diversity, potentially leading to suboptimal performance. However, diversifying
Q-functions may not always be suitable in terms of performance. If the convergence
is done correctly to the optimal value function, diversification of the Q-functions may
induce a suboptimal estimate of the expected long-term reward. We could prevent
this situation by decreasing the degree of diversification. In the experiments, we only
provide results where the tuning parameter of diversification loss is fixed. Further in-
vestigations can be conducted where the parameter slowly decreases over time.

The diversification loss is computed for each K sampled item-wise Q-function gy,
and its most similar counterpart g,. We denote £%V for the diversification loss com-
puted using Q-function diversification.

Now, our full learning objective is:

,Ctoml — L:RL + O[CEECE + O[divﬁdiv, (43)

where a“F and o'V correspond to the tuning parameters for cross-entropy loss and

diversification loss respectively. We compare the method with this diversification and

without the diversification. o%" is set to 0 for the method without diversification.

15

Algorithm 1 Q-function Diversification Loss
Set L=0
fort=1,...,|D|do
Compute ¢,(5¢,-) forallb e B ={1,..., B}
for each sampled function index k£ do
L=L+ max cos(qk(8¢,*), an(Se,)

end for
end for

Lo LT
D]

Incorporating all the methods above, we derive an algorithm for RESR. Before we
introduce the algorithm, let an oracle O}y be accessible by the agent. The oracle re-
turns a set of available actions constructed using K items in [N]. We denote O|y;(st)
to represent a set of available slates for user state s¢. In practice, a; can be chosen by
either applying arg max operator over actions to (8, a) or using the greedy slate
construction heuristic. This process is represented by the policy 7(8;) in the algo-
rithm. The full version of the algorithm using arg max operator for slate construction

is shown in Appendix 3.

Algorithm 2 RESR

Input: Current user state s;. Observation of user, o;, with window size w.
for each episode do
Sample K item-wise Q-functions from {g, for all b € B}
for each timestep ¢ do
Compute pseudo-state of user §; = ¢(0¢)
Choose action using sampled value functions a; < 7(§;) € O (s¢)
Observe user response ¢; and receive reward 7¢
Create next observation 0441 = {(@—w+1, Ct—wt1)s - - -» (g, ¢1) }
Sample bootstrap mask e; ~ M
Add (o, r¢, 0411, €¢) to buffer
end for
end for

The structure of RESR is presented in Figure 4.1. The user interaction history is
given as input to ¢ which returns the pseudo-state ;. It is then fed into the user choice

model and Q-network to make recommendations. The Q-network and the affinity func-

16

tion are trained regularly using the sampled batch from the replay buffer.

User Interaction History
(Observation)

0t = {(at—w; Ct—w); s (@1—1,Ct-1)}

Inference

3

Ot41

(04, 7¢, 0141, €1)

Training

4
Q-Networks

Update

5
User

(Environment)

User Choice Model

Randomized

Q-Networks

q1(5,2:30) ap(3,2i30)

p(il3e, a; B)

Figure 4.1: Schematic view of RESR

17

Chapter 5

EXPERIMENTS

5.1 Online Simulation Environment

We present two scenarios to evaluate the performance of our method. One is the fully
simulated environment for item recommendation, and the other is the movie recom-
mendation scenario reflecting some aspects of the real world. The first scenario was
motivated by Mladenov et al. [31]. They modeled the user to have a slowly evolving
state under partial observability. Temporal abstraction [32] is used to overcome the
error introduced by state estimation. The second scenario uses embedding vectors of
users and items extracted from a real-world dataset. In our experiments, we empiri-
cally show the effectiveness of our exploration strategy. We utilized Recsim NG [33],
a platform for simulating various recommender systems. We test our RL-based recom-
mender system that interacts with the user. The specification of the two scenarios is as

below.

5.2 User Arrival and Departure

This section explains the macro-level settings of the environment that determine how a

user enters and leaves the system. Both scenarios use Poisson distribution to determine

18

how many users enter the system at timestep ¢. The rate A; of the Poisson distribution
is defined as \; = clicks;_1 x 7 where clicks;_1 is the total number of clicks incurred
during timestep £ — 1 and 7 is a constant parameter unknown to the agent. User de-

parture for arbitrary user z who is already in the system happens at a probability poy,

where poy, =) and fatigue,, is the current fatigue level of user « and

1
1+exp (—fatigue, +b
b is the constant corresponding to the fatigue level making poy, = 0.5. Next, we dis-
cuss the micro-level environment settings that determine how a user within the system

interacts with the RL agent (recommender).

5.3 Fully Simulated Recommendation

Two main agents interact in the experiment. One is the user who chooses to select or
not to select one of the items from the slate recommended by the recommender. The
user’s choice is modeled by the multinomial logit model. The score is evaluated based
on the similarity between the user state and the recommended items. The other is the
recommender (or the RL agent) that selects a slate of K items to be presented to the
user based on the policy learned from user feedback.

Item Anitem i € [N] has a stationary feature vector x; € R that is fixed through-
out the episodes. Item feature x; is sampled from a multivariate normal distribution
N(py,X5) where ps is determined by v;, the topic of the item . We assume the
number of topics to match the feature dimension for simplicity.

Item ¢ also has a scalar quality, &, that is also dependent on the topic v;. We
decide r; be sampled from N (p4, a?l). Each topic has a mean value for the quality, 14,
which is determined by the corresponding mean quality value of topic d € {1, ..., D}.
03 represents the variance of the distribution. The quality of the item affects the user
transition to the next state. This intuition is borrowed from that of Mladenov et al. [31].
Intuitively, a person would have an evolving interest that leads to consuming more if

the item selected is of good quality and consuming less or choose not to select if the

19

item quality is not good. To put it in other words, a person who consumes good quality
item has a state change in the direction of the item feature vector. Whereas a person
who consumes bad quality item has a state change in the opposite direction of the item
feature. This relation is represented in Eq. (5.1).

User We initialized the true user state to be sampled from a multivariate normal
distribution sp ~ N(0,Ip) where 0 is a zero vector and I is an identity matrix of
size D. A user’s latent state at time t, s¢, is determined based on the item chosen. The

change in the previous user state s;_1 to s; when item ¢ is consumed is represented as
st = (14+0){st—1 +nri(r; — s1-1)} (5.1

where x; corresponds to the quality scalar of item ¢ and 7 is the sensitivity parameter.
The magnitude scale parameter § # —1 affects the magnitude of the next state. The
magnitude of the interest vector is increased/decreased depending on the quality «;
(e.g.,0 =0.01if x; > 0and 6 = —0.01 if k; < 0).

Since the true user state is unknown to the agent, an LSTM layer is used to output
the user pseudo-state 5; from o, with window size w. Layer norm is applied to the
LSTM layer for added stability. In the experiments, we set the window size of the

observation to 10.

5.4 Simulation using the Real-World Data

In the previous scenario, the items and the users had latent features extracted from
some normal distribution. Random feature vectors may not reflect the true distribution
of users and item latent features. We tried to close the gap between the simulation
and reality by extracting these latent features using real-world data. MovieLens 100K
dataset! is used to extract the latent feature vectors. The dataset contains 100,000 rat-

ings from 943 users on 1,682 movie items. The embedding layers are trained using a

'https://grouplens.org/datasets/movielens/100k/

20

supervised learning objective and supervised contrastive learning [34]. We initialize

the embedding layer using autoencoders for disentangled representation. Supervised

contrastive learning is used to make movies of the same genre have similar vector

representations. Finally, a Siamese neural network [35, 36] is used to encode the sim-

ilarity between users and items (movies). The final dot product of user-item embed-

dings should match the similarity in the dataset. Below is the diagram of the feature

extraction process and the resulting t-SNE plotting of items on two-dimensional space.

1.09

0.8

0.6 1

0.29

0.0 A

0.0

0.2

0.4

0.8

1.0

® unknown
Action
® Adventure
Animation
® Children's
Comedy
® Crime
Documentary
® Drama
Fantasy
® Film-Noir
Horror
Musical
Mystery
® Romance
Sci-Fi
Thriller
War
® Western

Figure 5.1: Extracted item features visualized using t-SNE

As we are given ratings that range from 1 to 5, we set the low ratings to repre-

sent low similarity and high ratings to represent high similarity. More details on the

extraction of feature vectors are provided in Appendix A.2.2.

21

Ralks L

5.5 Results

5.5.1 Fully Simulated Recommendation

We experiment on different settings for the slate size K = {2,3}. The number of
items for recommendation N = 100. The number of users in the system is initially set
to 4 and new user(s) enter every timestep according to the Poisson distribution with

rate \; = clicks; x 7. The 7 is set to 0.5. Each user = has a probability of leaving

the system with poy, = In the experiments, we set b = 4. User

T+exp (—flatiguez-ﬁ—b) :
transition occurs after a user chooses an item. The transition will occur depending on
the item’s quality, as shown in Eq. (5.1). The sensitivity parameter 7 is set to 0.1. We
were able to reach a high-performing policy faster compared to the baseline SlateQ
algorithm using e-greedy for exploration. The total number of episodes per run is 220,
each with 100 interaction steps. The value of ¢ is linearly decayed over the total num-
ber of iterations (22,000 steps) from 1.0 to 0.01. All policies have the agent acting
randomly to collect data for the initial 20 episodes. The results were averaged over
five seeds and rounded to the nearest hundredth. The detail of the experiment setting
is in Appendix A.2.

In Table 5.1, the mean result of the experiment is provided for K = 2. Imple-
mentations of RESR with Q-function diversification is denoted RESR + Div., and RESR
without Q-function diversification is denoted RESR. We can see that RESRs outperform

SlateQ. Random policy, which corresponds to constructing a slate with randomly se-

lected items, shows the worst performance for all metrics.

Policy Reward CTR Users Left
Random 1.26 0.10 12.46
SlateQ 6.37 0.14 18.69
RESR 10.86 0.22 24.96
RESR+Div. 9.90 0.20 23.34

Table 5.1: Mean of each performance metric for fully simulated experiment where

K =2

In addition to the mean of each performance metric, we present learning curves and
95% confidence intervals (shaded areas) in Figure 5.2. We provide learning curves for
reward, CTR, and users left in the system. Figure 5.2a represents the moving average of
the mean rewards received during one episode. The moving average is calculated over
the mean rewards received during one episode with the window set to 20. Figure 5.2b
represents performance in average CTR per episode. Figure 5.2c shows the user re-
tention measured by average users left calculated over five runs. Both RESR with and
without diversification show efficient learning compared to S1lateQ. The curves drawn
by RESRs are steeper than the baseline, which means that our method achieves a high
level of performance faster. The areas of the reward under the curve (AUC) are 71%
and 56% higher for RESR without diversification and with diversification compared to

SlateQ.

(a) Average of episodic reward (b) Average CTR (c) Average users left

Figure 5.2: Learning curves of different performance metrics for K = 2.

Table 5.2 summarizes the result for K = 3. Experiment settings are the same as
the previous one where X' = 2. We observe that our method outperforms SlateQ.
RESR exhibit efficient learning as AUCs for reward are 58% and 47% higher without
diversification and with diversification, respectively, compared to SlateQ. Efficient
learning is shown in Figure 5.3 where RESR exhibits steep learning curves. The setting
K = 3 yields a higher reward compared to K = 2 as more choice is given to the user,

which increases the likelihood of an item getting chosen.

23

Policy Reward CTR Users Left
Random 2.86 0.14 19.95
SlateQ 7.97 0.20 22.26
RESR 12.55 0.28 28.21
RESR+Div. 11.72 0.28 26.91

Table 5.2: Mean of each performance metric for fully simulated experiment where
K =3.

(a) Average of episodic reward (b) Average CTR (c) Average users left

Figure 5.3: Learning curves of different performance metrics for K = 3.

5.5.2 Simulation using the Real-World Data

In the experiment, we sampled 100 users using different random seeds with the same
assumption that a user only chooses one item at a time and the transition is affected
only by the item chosen. There are 4 users in the system at the beginning. The macro
& micro settings of the environment are the same as the fully simulated experiment
except for the sensitivity parameter 7 in the user state transition. We set 1 to 0.01
because the extracted user feature elements have a smaller variance compared to the
fully simulated version where we sampled features from a normal distribution with
mean 0 and variance 0.72. Users enter and leave the system depending on the clicks
occurred and each user’s fatigue level. The item vectors stay the same, whereas user
interests evolve based on the previous item selection as shown in Eq. (5.1).

Table 5.3 shows the mean result of each performance metric where K = 2. The
results are averaged over five runs with different random seeds. Figure 5.4 shows that

RESRs’ initial and final performance outperform the baseline S1ateQ. RESRs have bet-

24

ter sample complexity , achieving higher rewards with fewer data observed. The AUCs
for reward are 98% and 110% higher without diversification and with diversification,
respectively, compared to SlateQ. The performance gap is more significant for the
real-world data simulation case than fully simulated experiments. The diversification
of Q-functions led to higher rewards when experimenting with features extracted from
real-world data, especially as the learning continued. The results show that our method

is robust and applicable to settings where real-world data is used.

Policy Reward CTR Users Left
Random 1.33 0.10 12.42
SlateQ 8.69 0.17 18.71
RESR 17.14 0.35 27.77
RESR+Div. 18.17 0.34 27.76

Table 5.3: Mean of each performance metric for real-world data experiment where
K =2.

(a) Average of episodic reward (b) Average CTR (c) Average users left

Figure 5.4: Learning curves of different performance metrics for real-world data ex-
periment where K = 2.

25

Chapter 6

CONCLUSION

A slate-based recommendation problem is formulated as a POMDP. We consider latent
user states and provide a solution in a generalized setting. We develop RESR, which
utilizes multiple randomized Q-functions and approximate sampling for a slate-based
recommendation. The method contributes to efficient exploration for faster learning.
We experiment in a simulated environment where the goal is to maximize cumulative
reward from user clicks. To further validate the algorithm, we test using user and item
features extracted from a real-world dataset. The performance results from various

experiment settings show the efficacy of our method.

26

Chapter A

APPENDIX

A.1 Notation

We provide a table of notations for easy reference.

N Number of items

K Slate size (number of items recommended at once)

D Dimension of true latent state

w Observation window size

o Observation at time ¢

St True user latent state at time ¢ which is not observed

S Pseudo-state of user at time ¢

at Slate selected at time ¢

Ct Additional user information at time ¢ (e.g. selected item, duration

of interaction, age, etc.)

27

p(i|s, ar)

p(il31, ar)
¢

g

Q)

Probability of choosing item ¢ when slate a; is given to user with

latent state s; at time ¢

Probability of choosing item ¢ when slate a, is given to user with

pseudo-state S; at time ¢

Latent state representation function that takes observation o; as

input and outputs pseudo-state Sy

Affinity function that takes user state and item feature as input

and outputs affinity score

Q-function that takes pseudo-state and slate as input and outputs

estimated value of recommending corresponding slate

Item-wise Q-function that takes pseudo-state and item feature as

input and outputs estimated value for corresponding item
Parameters of function ¢

Parameters of function g

Parameters of online ¢ function

Parameters of target ¢ function

Feature vector of item ¢

Base affinity score for no-choice option

Training dataset of size |D|

28

ECE
ERL

Ediv

CE
div

ﬁtotal

clicks;

Pout,,

fatigue,,

Vi

M

Number of randomized ¢s
Cross-entropy loss of user choice model of batch size m
DQN objective loss of batch size m

Diversification loss computed from Q-function diversification for

batch size m

Tuning parameter for cross-entropy loss
Tuning parameter for diversification loss

LRL | (CECE | div pdiv

Rate of Poisson distribution for user entrance
Scale parameter for total number of clicks
Total number of clicks occurred in system for time ¢
Current probability of user x leaving system
Current fatigue level of user x

Base fatigue level constant setting pou, = 0.5
Topic of item ¢

Mean of multivariate normal distribution that item feature is sam-

pled from

Covariance matrix of multivariate normal distribution that item

feature is sampled from

29

K; Quality of item ¢

L Expected quality of normal distribution where item quality with

topic d is sampled from

04 Standard deviation of normal distribution where item quality

with topic d is sampled from
o Magnitude scale parameter of user state transition

i Sensitivity parameter of user state transition

A.2 Details of the Experiment

The experiments were done using RecSim NG, a probabilistic platform for multi-
agent recommender systems simulation. More information can be found in the white
paper [33] and the code repository at https://github.com/google-research/
recsim_ng.

A.2.1 Fully Simulated Recommendation

Macro-level Environment Settings

User Arrival The rate of Poisson distribution at which new users enter the system,
A, is determined by

At = 0.5 x clicks;_1

where clicks; is the number of clicks incurred by users in the system in the previous

timestep.

User Departure The probability of user x leaving the system, poy,, is determined

30

by the fatigue level of that user as shown below.

1
1 + exp (—fatigue,, + 4)

Pout, =

The minimum value of fatigue is 0. The initial value of fatigue for each user is 0.
As shown below, fatigue increases by 1 if the user consumes a bad-quality item and

decreases by 0.5 if the user consumes a good-quality item.

min (0, fatigue,, — 0.5) if¢ >0
fatigue,, =

fatigue,, + 1 ifg; <0

Micro-level Environment Settings

A fully simulated recommendation experiment was conducted using synthetic data
generated as described in Section 5.3. Here we provide a summary of each entity and
its generation process. The dimensions of both the user state and the item feature vec-

tors are set to 10 (i.e., D = 10).

Item Each element of the item ¢’s feature vector x; is sampled independently from a
normal distribution where mean fi ¢, is determined by the item’s topic v;. All elements
have a standard deviation of 0.7. We set the number of topics to 10.

Topics are presented as a circular array where the distance represents the similarity
between the items. This is depicted in Figure A.la. The closer the distance, the more
similar topics are. The features are generated in a manner that similar topics have
similar feature values. Item ¢’s topic v; € {1,2,...,10} decides v;th element of ft .
The mean value for v;th element of vector pi is 1; for the farthest away (most different)
topic, vy, the mean of vsth element of p ¢ is —1. Elements in between v; and vy have
linearly decayed from 1 to -1. The visual representation of how each element yir,, of
p s is determined is shown in Figure A.1.

The quality of an item ¢ is sampled from 4 which corresponds to the mean quality

31

-1

(a) Circular alignment of topics (b) Mean of an item feature elements

Figure A.1: Left shows the circular alignment of the topics. When the total num-
ber of topics is 10, topic O is close to 9, 1; farthest away from 5. Right describes
how the mean of an item feature’s v-th element, u,, is determined. Current topic
v; and farthest away topic vy determine the mean of the element to be sampled
from. If v; = 0O then the item feature is sampled from a normal distribution with
wy, = {1.0,0.6,0.2,-0.2,-0.6,—1.0,—0.6,—0.2,0.2,0.6}.

of items with topic d. We have set i3 = 0,04 = 0.1 foralld € {1,...,D}.

User Each element of the 10-dimensional latent user state is sampled from a normal
distribution N (0, 1). A user’s state s changes after an item has been consumed. The
user state transition differs by the quality of the item selected. In summary, the user is
more likely to choose the item if the quality is good and vice versa if the quality is bad.

The user state at time ¢ after item ¢ has been chosen at time ¢t — 1 can be represented as

(1 + 5) X [St,1 + nlii(l‘i — Stfl) + 6] ifk; >0
St —

(1 —6) X [s4—1 +nri(x; —si—1) + & ifk; <0
¢ s;: User latent state at time ¢
* x;: Quality scalar of the chosen item
e 1;: Item feature vector of the chosen item

* §: Magnitude scale parameter

32

* 7): Sensitivity parameter
* &: Gaussian noise

In the experiment of the simulated environment, we set § = 0.01, » = 0.1, and £ = 0.

The true user choice model computes the similarity between user state s and item
feature using the dot product. (i.e. u(s,z;) = e**). The score for not choosing any
item p = 7 in the experiments. The probability of a user with state s choosing ¢ given

a slate a can be written as

. exp (s - x;)
P =
(i]a) 74 Yieqexp (s - x)

The agent learns the choice model via cross-entropy loss computed from previous user
choices. Latent user representation is learned using DQN objective and cross-entropy

loss. The training hyperparameters for the overall experiments is provided below.

Table A.1: Training Hyperparameters

Initial € for SlateQ 1

Final € for SlateQ 0.01

Total decaying steps 22000

Number of randomized item-wise Q-functions B 10

Learning rate 0.00015

Optimizer RMSprop

p / momentum / € / centered / clipnorm in RMSprop 0.95/0.0/1e-07 / True / 1.0

Discount factor ~y 0.99

Batch size 64

Masking distribution Bernoulli(0.9)

Update period (steps) 4

Target update period (steps) 4000

Learning starts (steps) 2000

LSTM hidden layer size 32

Item-wise Q-network hidden layer size 32-32

Random seeds 250369352, 45901546,
492513979, 74141201, 58295048

33

A.2.2 Simulation using the Real-World Data

The environment settings for the real-world data simulation are the same as the pre-
vious fully simulated experiment except for the sensitivity parameter 7 in the user
state transition. We decreased 7 from 0.1 to 0.01 as the average standard deviation of
extracted user feature elements is about 0.1 compared to 0.7 in the fully simulated ex-
periment. We provide a detailed feature extraction process from the MovieLens 100K

dataset.

Age Pretrained
w/ Autoencoder Loss
Gender -
. L
Occupation User 1
Pu Sigmoid
—

Zip Code Encoder ‘

Pretrained i
- N sim(pu, Pv)
Title w/ Autoencoder V=0 0
SupCon ru R

Release Date —
Genre [tem
Encoder

Figure A.2: Feature extraction process from real-world data

First, we preprocess the input data. For user data, we normalize the age and rep-
resent categorical features occupation and zip code as one-hot encoded vectors. The
dimension of the input is 818 after this preprocessing process. For item data, we have
the title column in natural language. We use a pretrained RoBERTa base [37] model to
utilize its 768-dimensional word embedding. We truncated the title to have a maximum
word length of 8. This results in a total of 768 x 8 = 6144 dimensions for the title.
The release date column has been normalized and the genre has been represented in a

one-hot vector. The final input dimension of item data is 6166.

34

Second, we train autoencoders using both user and item data. This process dis-
entangles the feature vectors when mapped to a latent dimension. The encoder part
is used to encode the input data to 32-dimensional embedding vectors. We added a
batch normalization layer before the item input to hinder item features from having
large numbers. Supervised contrastive learning [34] (SupCon) with genre labels and
item latent embeddings as inputs is done to cluster embeddings of the same genre. An
item may have multiple genres, so we used items with only one genre for supervised
contrastive learning.

Finally, we train a Siamese neural network with cross-entropy loss using the whole
dataset. Siamese network consists of a layer that takes input embedding and maps it
into the same dimension. Newly mapped embeddings for a user and an item is then
taken as arguments of the dot product layer. The result of the dot product are then fed
into the sigmoid function to yield an estimated similarity score. The cross-entropy loss
is calculated using this estimate and label, which is arranged in two different ways:
hard label and soft label. A hard target label is used for the initial round of training.
Ratings of 1 to 3 are labeled as 0, and ratings of 4 and 5 are labeled as 1. We fix the
embedding layer for 90 epochs and we fine-tune the whole architecture for 10 epochs.
Next, we train another round using a soft target label. Each rating corresponds to a
different level of similarity using a sigmoid function o. In the experiment, each rating
corresponds to the following {1 : 0(—4),2 : 0(—2),3 : ¢(0),4 : 0(2),5 : o(4)}
(0(—4) =0.02,0(—2) = 0.12,0(0) = 0.5,0(2) = 0.88,0(4) = 0.98). In the second
round of training, we do not fix any layers and train for 100 epochs to yield the final

feature vectors of users and items.

35

Number of layers (Encoder)
Number of layers (Decoder)
Layer size (Encoder-User)
Layer size (Decoder-User)
Layer size (Encoder-Item)
Layer size (Decoder-Item)
SupCon temperature
Learning rate

Optimizer

Training epochs

Training batch size
Random Seed

{128,1024,6166}

3

3
{128,64, 32}
{64,128,818}
{1024, 128, 32}

0.05
0.001
Adam

100

256

1299827

Table A.2: Training configurations for autoencoders and SupCon

Roundl initial learning rate
Roundl initial training epochs
Round] fine-tuning learning rate
Roundl fine-tuning training epochs
Round?2 learning rate

Round? training epochs
Learning rate schedule

Learning rate decay steps & rate
Optimizer

Training batch size

Random Seed

0.01
90
0.0001
10
0.0005
100
Exponential decay
200, 0.96
Adam
512
1299827

Table A.3: Training configurations for Siamese network

36

A.3 Algorithm

Algorithm 3 RESR with Exact Slate Construction

Parameters: Observation window size w. Masking distribution M. Update period
U. Target update period C. Slate size K. Buffer size N. Number of randomized
value functions B.

Initialize experience replay buffer RB to capacity N

Initialize ¢ with random weights v

Initialize affinity function g with random weights (3

Initialize B item-wise value function q{?zl using random weights 6
Initialize B target item-wise action-value function g2_, with weights ¢/ =
for each episode do

Sample K value functions from Uniform{1, ..., B} without replacement
for each timestep ¢t do
Fetch user history oy = {(at—w; ¢t—w), (Gt—wt1, Ct—wt1) - - -5 (@t—1,¢0-1) }

Compute latent user state $; = ¢(o;)
Compute p(i|$¢, a) using Eq. (4.2)
Compute Q(31,a). Q(31.a) = S, plinls,)an G ir)
Pick a slate according to a; € arg max, Q(5¢,a)
Observe user response c; and receive reward 7
Next observation 0,11 = {(Gt—w+1, Ctorwt+1), (Qt—w+2, Ctow+2)s - - - (A, ¢1) }
Sample bootstrap mask e; ~ M
Add (Ot, Tty Ot4+1, 675) to buffer RB
if £ mod U = 0 then
Sample random minibatch from RB
Compute loss. [total — [RL 4 aCE[CE 4 odiv 1 div
Update parameters 1, 3, 6 using SGD

end if
if t mod C =0 then
Reset &' + 0
end if
end for
end for

37

[1]

(2]

[3]

[4]

[5]

[6]

Bibliography

S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski, “Bandits for tax-
onomies: A model-based approach,” in Proceedings of the 2007 SIAM Interna-
tional Conference on Data Mining, pp. 216227, STAM, 2007.

J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual multi-
armed bandits,” Advances in neural information processing systems, vol. 20,

no. 1, pp. 96-1, 2007.

L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach to
personalized news article recommendation,” in Proceedings of the 19th interna-

tional conference on World wide web, pp. 661-670, 2010.

T. Lu, D. Pél, and M. Pél, “Contextual multi-armed bandits,” in Proceedings of
the Thirteenth international conference on Artificial Intelligence and Statistics,

pp. 485-492, IMLR Workshop and Conference Proceedings, 2010.

E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra,
and C. Boutilier, “Slateq: A tractable decomposition for reinforcement learning
with recommendation sets,” in Proceedings of the Twenty-eighth International
Joint Conference on Artificial Intelligence (IJCAI-19), pp. 2592-2599, 2019. See
arXiv:1905.12767 for a related and expanded paper (with additional material and

authors).

D. McFadden, “Modelling the choice of residential location,” 1977.

38

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Shani, D. Heckerman, R. I. Brafman, and C. Boutilier, “An mdp-based recom-

mender system.,” Journal of Machine Learning Research, vol. 6, no. 9, 2005.

F. Mi and B. Faltings, “Adaptive sequential recommendation using context

trees.,” in IJCAI, pp. 4018-4019, 2016.

X. Zhao, W. Zhang, and J. Wang, “Interactive collaborative filtering,” in Proceed-
ings of the 22nd ACM international conference on Information & Knowledge

Management, pp. 1411-1420, 2013.

H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang, and Y. Yu,
“Large-scale interactive recommendation with tree-structured policy gradient,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3312—
3320, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-

level control through deep reinforcement learning,” nature, vol. 518, no. 7540,

pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, ef al., “Master-

ing the game of go with deep neural networks and tree search,” nature, vol. 529,

no. 7587, pp. 484-489, 2016.

X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep reinforcement
learning for page-wise recommendations,” in Proceedings of the 12th ACM Con-

ference on Recommender Systems, pp. 95-103, 2018.

X.Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin, “Recommendations with
negative feedback via pairwise deep reinforcement learning,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1040-1048, 2018.

39

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li, “Drn: A
deep reinforcement learning framework for news recommendation,” in Proceed-

ings of the 2018 world wide web conference, pp. 167-176, 2018.

M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi, “Top-k
off-policy correction for a reinforce recommender system,” in Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining,
pp- 456-464, 2019.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” Advances in neural

information processing systems, vol. 12, 1999.

X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, “Generative adversarial user
model for reinforcement learning based recommendation system,” in Interna-

tional Conference on Machine Learning, pp. 1052-1061, PMLR, 2019.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al.,
“An introduction to deep reinforcement learning,” Foundations and Trends® in

Machine Learning, vol. 11, no. 3-4, pp. 219-354, 2018.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning (still) requires rethinking generalization,” Communications of the ACM,

vol. 64, no. 3, pp. 107-115, 2021.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

C.J. C. H. Watkins, Learning from delayed rewards. PhD thesis, King’s College,
Cambridge United Kingdom, 1989.

40

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735-1780, 1997.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

I. Osband, B. Van Roy, D. J. Russo, Z. Wen, et al., “Deep exploration via ran-
domized value functions.,” J. Mach. Learn. Res., vol. 20, no. 124, pp. 1-62, 2019.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via boot-

strapped dqn,” Advances in neural information processing systems, vol. 29, 2016.

W. R. Thompson, “On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples,” Biometrika, vol. 25, no. 3-4,

pp. 285-294, 1933.

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al., “A tutorial on
thompson sampling,” Foundations and Trends® in Machine Learning, vol. 11,

no. 1, pp. 1-96, 2018.

K. D. Chen and W. H. Hausman, ‘“Mathematical properties of the optimal prod-
uct line selection problem using choice-based conjoint analysis,” Management

Science, vol. 46, no. 2, pp. 327-332, 2000.

M. Mladenov, O. Meshi, J. Ooi, D. Schuurmans, and C. Boutilier, “Advantage
amplification in slowly evolving latent-state environments,” in Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 3165-3172,
2019.

41

[32]

[33]

[34]

[35]

[36]

[37]

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning,” Artificial intelligence,

vol. 112, no. 1-2, pp. 181-211, 1999.

M. Mladenov, C.-W. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham, D. Tran,
L. Vendrov, and C. Boutilier, “Recsim NG: Toward principled uncertainty model-

ing for recommender ecosystems,” arXiv preprint arXiv:2103.08057, 2021.

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan, “Supervised contrastive learning,” Advances in Neural Informa-

tion Processing Systems, vol. 33, pp. 18661-18673, 2020.

J. Bromley, I. Guyon, Y. LeCun, E. Sickinger, and R. Shah, “Signature verifica-
tion using a “siamese” time delay neural network,” Advances in neural informa-

tion processing systems, vol. 6, 1993.

G. Koch, R. Zemel, R. Salakhutdinov, et al., “Siamese neural networks for one-
shot image recognition,” in ICML deep learning workshop, vol. 2, p. 0, Lille,
2015.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining ap-
proach,” CoRR, vol. abs/1907.11692, 2019.

42

A 7 etats 7]

=

A 257 ot

b 7]

S

12 =9
=2 1o =2

104 AFg7te] 7%

[e)
L2
f

A

S|
A

T

7

i

jm]
p L

3

A%

&34 o

ki

o1+ 4 74 (POMDP)E o §

o2 1

T

o

wAE F2

L olg Ael ofolgloz 7

t}. &#) o] E(Slate)=t 1 £a

AR A Y B 4§

5

_(H

<

L
__OE
—_

o
o

Al 2d, A, A& o], POMDP

Tor

SHH: 2021-28044

43

	1 Introduction
	2 Related Works
	3 Problem Statement
	4 Method
	4.1 Tractable Decomposition of Action Space
	4.2 Latent User Representation
	4.3 User Choice Model
	4.4 Exploration via Randomized Q-Functions

	5 Experiments
	5.1 Online Simulation Environment
	5.2 User Arrival and Departure
	5.3 Fully Simulated Recommendation
	5.4 Simulation using the Real-World Data
	5.5 Results
	5.5.1 Fully Simulated Recommendation
	5.5.2 Simulation using the Real-World Data

	6 Conclusion
	A Appendix
	A.1 Notation
	A.2 Details of the Experiment
	A.2.1 Fully Simulated Recommendation
	A.2.2 Simulation using the Real-World Data

	A.3 Algorithm

	Bibliography
	Abstract in Korean

<startpage>7
1 Introduction 1
2 Related Works 4
3 Problem Statement 6
4 Method 9
 4.1 Tractable Decomposition of Action Space 9
 4.2 Latent User Representation 10
 4.3 User Choice Model 10
 4.4 Exploration via Randomized Q-Functions 13
5 Experiments 18
 5.1 Online Simulation Environment 18
 5.2 User Arrival and Departure 18
 5.3 Fully Simulated Recommendation 19
 5.4 Simulation using the Real-World Data 20
 5.5 Results 22
 5.5.1 Fully Simulated Recommendation 22
 5.5.2 Simulation using the Real-World Data 24
6 Conclusion 26
A Appendix 27
 A.1 Notation 27
 A.2 Details of the Experiment 30
 A.2.1 Fully Simulated Recommendation 30
 A.2.2 Simulation using the Real-World Data 34
 A.3 Algorithm 37
Bibliography 38
Abstract in Korean 43
</body>

