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Abstract 

 

3D pose estimation is an invaluable task in computer vision with 

various practical applications. Recently, a Transformer-based 

sequence-to-sequence model, MixSTE [60], has been successfully 

applied to 3D single-person pose estimation by decoupling the 2D-

to-3D modeling from pixel-level details. We propose a natural 

extension of this model from single-person to multi-person problem, 

adding a novel inter-personal attention for 2D-to-3D lifting. 

Naturally referring to neighboring frames, this design is highly robust 

in handling occlusions. However, 3D multi-person pose estimation is 

still challenging due to extreme data scarcity. From an observation 

that our 2D-to-3D lifting approach is free from pixel-level details, 

we propose a novel geometry-aware data augmentation that allows 

us to infinitely generate diverse training examples from existing 

single-person trajectories. From extensive experiments on standard 

benchmarks, we verify that our model and data augmentation method 

achieve the state-of-the-art, not just on accuracy but also on 

smoothness. We also qualitatively demonstrate the effectiveness of 

our approach both on public benchmarks and with in-the-wild videos. 

 

Keyword : 3D, Human Pose, Augmentation, Sequence, Transformer 

Student Number : 2021-21537 
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Chapter 1. Introduction 

 

 

3D pose estimation aims to reproduce the 3D coordinates of a 

person appearing in an untrimmed 2D video. It has been extensively 

studied in literature with many real-world applications, including 

sports [4], healthcare [54],games [23], movies [1], and even for an 

AI-based video compression [51]. Although many applications need 

fully rendered 3D voxels in the end, under its narrow definition, 3D 

pose estimation problem treats only a handful number of keypoints in 

the human body (e.g., neck, knees, or ankles), leaving the recovery 

of dense voxels as a separate post-processing step. 

Depending on the number of subjects, 3D pose estimation is 

categorized into 3D Single-Person Pose Estimation (3DSPPE) and 

3D Multi-Person Pose Estimation(3DMPPE). In this paper, we 

mainly tackle 3DMPPE, reproducing the 3D coordinates of every 

person appearing in a video. Unlike extensively studied 3DSPPE, 

3DMPPE is still largely uncharted due to two main bottlenecks: 

occlusion and data scarcity.  

First, the occlusion in 3DMPPE is caused by inter-person 

interactions. Due to the invisible occluded key points, there is 

unavoidable ambiguity since there are multiple plausible answers for 

them. Occlusion becomes a lot more severe when a person totally 

blocks another from the camera, making the model to output 

inconsistent estimation throughout the frames. Due to the ambiguity, 
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frame2frame type of models, which take a single frame and produce 

estimation for each frame at a time, inherently struggle from 

occlusion.  

One way of resolving the occlusion problem is referring to 

neighboring frames in the video, helping the model to learn lots of 

cues about the correspondence between keypoints from the 

neighboring frames. For example, VideoPose3D [41], adopts dilated 

convolution to attend to neighboring frames, predicting one frame’s 

result from multiple frames at a time (seq2frame approach). MixSTE 

[60] extends further to seq2seq approach, which takes multiple 

frames and outputs multiple frames’ results at once, taking the 

Transformer architecture which is widely used for video 

understanding [3, 32, 46, 58] recently. Particularly, it enjoys a 

benefit from the 2D-to-3D lifting approach, which learns to map 2D 

key points detected from an off-the-shelf 2D pose estimation model, 

to the 3D space.  

In this paper, we adopt a similar seq2seq Transformer-based 

2D-to-3D structure and propose POTR-3D, naturally extending 

MixSTE [60] from 3DSPPE to 3DMPPE. Lifting the assumption that 

there is always a single person in the video, our model tracks up to 

N people at the same time, introducing an additional self-attention 

across multiple people appearing in the same frame. 

However, although this extension looks straightforward, a naive 

extension of the seq2seq approach to 3DMPPE suffers from 

extensive computational cost and lack of training data. Especially, the 
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data scarcity is a long-standing problem in 3D pose estimation, since 

collecting 3D annotations requires expensive motion capturing 

(MoCap) equipment [13]. For this reason, most 3D datasets have a 

limited number of cameras (e.g., 4 for Human 3.6M [18] and 14 for 

MPI-INF-3DHP [34]) under limited conditions like the subjects’ 

clothing or lighting. This is the core reason why lots of 3D pose 

estimators fail for in-the-wild videos.  

To tackle this challenge, we introduce a novel 2D-3D pair 

dataset augmentation strategy. Observing that our 2D-to-3D lifting 

approach only needs the key points, not the pixel-level details, of 

the subjects for training, we can easily generate an unlimited number 

of 2D-3D pairs using given camera parameters under various 

conditions, e.g., containing arbitrary number of subjects with various 

occlusion cases. Specifically, we propose four types of novel 

geometry-aware data augmentation methods, incorporating 

translation and rotation of the subjects as well as the ground plane. 

Trained on our augmented data, the proposed model, POTR-3D, 

significantly improves the quality of 3D multi-person pose estimation, 

verified by extensive experiments on several benchmarks. We also 

demonstrate qualitative performance of our model on in-the-wild 

videos, which have been a long-time challenge for 3DMPPE. 

Our contributions can be summarized as follows: 

 

• We propose POTR-3D, a seq2seq 2D-to-3D lifting model for 

3DMPPE, which is the first realization of this approach to the best of 
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our knowledge, being robust on occlusion. 

• We devise a simple but effective data augmentation strategy 

for 3DMPPE, allowing us to generate an unlimited number of 

augmented datasets and to mitigate the data scarcity problem. 

• Our POTR-3D model achieves highly competitive performance 

on benchmarks and remarkable qualitative results on in-the-wild 

videos with significant consistency, which is essential for real-world 

applications. 
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Chapter 2. Related Work 

 

 

Human pose estimation has been studied on a single-view 

(monocular) or on multi-view images. Seeing the scene only from 

one direction through a monocular camera, the single-view pose 

estimation is inherently challenging to reproduce the original 3D 

landscape. Multi-view systems [5, 14, 16, 17, 19, 21, 22, 43, 59] 

are developed to ease this problem, allowing the model to 

automatically generate ground truth labels for the single-view 

counterpart. In this paper, we focus on the single-view 3D human 

pose estimation, as we are particularly interested in applying it to in-

the-wild videos captured without special setups. 

 

2.1. Single-Person 3D Human Pose Estimation 

Recent monocular approaches typically adopt neural networks to 

mitigate the ambiguity of 2D-to-3D joint mapping [8,19,33,37, 38, 

40, 42, 49, 52, 55]. Recent surveys [11, 50] provides a 

comprehensive overview on this task. VideoPose3D [41] performs 

an effective sequence-Based 2D-to-3D lifting for 3DSPPE using 

dilated convolution. Recently, Graph Neural Networks (GNNs) are 

applied to 2D-to-3D lifting [9,31,62]. PoseFormer [64] is a pioneer 

Transformer-based approach for 3DSPPE, taking the 2D single-

person pose sequence of multiple frames. MhFormer [28] generates 
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multiple hypotheses from 2D single-view of single-person. 

 

2.2. Multi-Person 3D Human Pose Estimation 

Top-down approaches first detect individual human in the image, 

and then estimate location of joints for each detected person [2, 36, 

44]. In contrast, bottom-up approaches detect all keypoints in the 

image, then group them into each appropriate person [26, 39, 57].  

Recently, temporal information from video has been exploited to 

produce more robust predictions by seq2frame methods. Graph 

Convolution Networks (GCNs) [25] are applied to the task to learn 

multi-scale features of human and hand poses [6]. These works 

achieve competent performance, but redundant calculation is known 

as a common drawback since large amount of sequences are over 

lapped to infer 3D poses of all frames. On the other hand, sequence-

to-sequence (seq2seq) approaches, reconstructing all frames at 

once, improve the coherence and efficiency of 3D pose estimation. 

Lin et al. [29] introduces LSTM [15] to estimate 3D poses in a video 

from a set of 2D key points. 

Transformers [48] are widely adopted for 3DMPPE, taking 

advantage of its strong capability of treating seq2seq problems. 

TransPose [56] proposes a Transformer-based 2D pose estimation 

from iamges. PoseFormer [64] constructs a model based on Vision 

Transformer (ViT) [10] to capture the spatio-temporal dependency 

sequentially. Strided Transformer [27] reduces the redundancy 

mentioned above by using strided convolutions. MixSTE [60] 
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considers motion trajectories of different body joints and applies the 

seq2seq to better model sequence coherence. Our approach is similar 

to theirs in applying the Transformer architecture. We consider, 

however, not only motion trajectories of different body joints but also 

inter-personal spatial relationships, and apply the seq2seq for better 

model sequence coherence in multi-person pose estimation. 

 

2.3. Data Augmentation for 3D Pose Estimation 

Since 3D pose annotation is expensive to collect, limited training 

data is an ordinary challenge. 3D multi-person pose data is even 

more limited. Data augmentation is a well-known method widely used 

to resolve the training data diversity bottleneck and to improve the 

generalization ability of the model. PoseAug [13] and AdaptPose [12] 

address this issue by generating synthetic 3D human motions on the 

single-person 3D pose estimation problem. Horizontal body flipping 

is a commonly used for 3DMPPE, but no other methods have been 

proven to be effective yet, mainly due to lots of physical constraints 

for augmentation; for instance, all the subjects should be translated 

on the ground plane, and their occlusions should also be considered. 
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Chapter 3. Problem Formulation and Notations 

 

 

3.1. Problem Formulation 

In the 3D Multi-person Pose Estimation (3DMPPE) problem, the 

input consists of a video 𝐕 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑇] of T frames, where each 

frame is 𝑣𝑡 ∈ 𝑹𝐻×𝑊×3 and (up to) N persons may appear in the video. 

The task is locating a predefined set of K human body keypoints (e.g., 

neck, ankles, or knees; see Fig. 4 for an example) in the 3D space 

for all persons appearing in the video in every frame. The body 

keypoints in the 2D image space are denoted by 𝐗 ∈ 𝑹𝑇×𝑁×𝐾×2, and 

the output 𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3 specifies the 3D coordinates of each body 

keypoint for all N people across T frames. 

 

3.2. Notation 

For convenience, we define a common notation for 2D and 3D 

points throughout the paper. Let us denote a 2D point 𝐗𝑡,𝑖,𝑘 ∈ 𝑹2 as 

(u, v), where u ∈ {0, ⋯ , H − 1} and v ∈ {0, ⋯ , W − 1} is the vertical and 

horizontal coordinate in the image, respectively. Similarly, we denote 

a 3D point 𝐘𝑡,𝑖,𝑘 ∈ 𝑹3 as (x, y, z), where x and y are the coordinates 

through the two directions parallel to the projected 2D image, and z 

is the depth from the image. 
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Chapter 4. The POTR-3D Model 

 

 

The overall model workflow, depicted in Fig. 1, extends the 

MixSTE [60] from single-person to multi-person. First, the input 

frames 𝐕 are converted to a sequence of 2D key points by an off-

the-shelf model (Sec. 4.1). Then, they are lifted into the 3D space 

(Sec. 4.2). 

 

 

Fig 1 Overview of the POTR-3D. The input video is converted to 2D 

keypoints, followed by 2D-to-3D lifting, composed of stacked three types 

of Transformers (SPST, IPST, SJTT). 

 

4.1. Preprocessing 

Given an input RGB video 𝐕 ∈ 𝑹𝑇×𝐻×𝑊×3, we first need to extract 

the 2D coordinates 𝐗 ∈ 𝑹𝑇×𝑁×𝐾×2 of the N persons appearing in the 
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video, where T is the number of frames, and K is the number of body 

key points, determined by the dataset. Also, since we treat multiple 

people in the video, each individual needs to be matched in the input 

and output. That is, the second index of 𝐗 and 𝐘 must be consistent 

for the same individual across all frames. Any off-the-shelf 2D 

multi-person pose estimator and a tracking model can be adopted for 

this preprocessing. In our experiment, we use HRNet [47] and 

ByteTrack [61] for each, respectively. Note that this preprocessing 

needs to be done only at testing, since we train our model on 

augmented videos from a single-person dataset, where the 2D 

coordinates can be exactly computed from the ground truth and 

camera parameters (see Sec. 5). 

 

4.2. 2D-to-3D Lifting Module 

 

 

Fig 2 Illustration of the three Transformers in our 2D-to-3D Lifting 

Module. 
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Taking 𝐗  as its input, this module is to lift it to the 3D 

coordinates 𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3 . To effectively comprehend the spatio-

temporal geometric context, we adopt Transformer encoder blocks 

as our backbone, following MixSTE [60]. Each 2D coordinate 𝐗𝑡,𝑖,𝑘, 

at a specific frame t ∈ {1, ⋯ , T} for a specific person i ∈ {1, ⋯ , N} and 

body key point k ∈ {1, ⋯ , K}, is linearly mapped to a D-dimensional 

token embedding. Thus, the input is now converted to a sequence of 

T × N × K  tokens in 𝐑𝐷 , and let us denote these tokens as 𝐙(0) ∈

𝑹𝑇×𝑁×𝐾×𝐷.  

They are fed into the repeated three types of Transformers. 

Each of them is designed to model a specific relationship between 

different human body key points: two spatial Transformers modeling 

intra-person (SPST) and inter-person (IPST) relationships among 

body keypoints, and a temporal Transformer (SJTT) per each body 

keypoint across the frames. The role of each Transformer is 

illustrated in Fig. 2 and detailed below. The input 𝐙(𝑙−1) ∈ 𝑹𝑇×𝑁×𝐾×𝐷 

at each layer l goes through the three Transformers in the order of 

SPST, IPST, and SJTT to contextualize within the sequence, and 

outputs the same sized tensor 𝐙(𝑙) ∈ 𝑹𝑇×𝑁×𝐾×𝐷.  

Single Person Spatial Transformer (SPST). Located at the first 

stage of each layer l , SPST learns spatial correlation of each 

person’s joints in each frame. Denoting the input to this 

Transformer as 𝝌 ∈ 𝑹𝑇×𝑁×𝐾×3 , SPST takes K  tokens of size D 

corresponding to 𝝌𝑡,𝑖 ∈ 𝑹𝐾×𝐷  for t ∈ {1, ⋯ , T}  and i ∈ {1, ⋯ , N} , 

separately at a time. In other words, SPST takes K different body 
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keypoints belonging to a same person i at a specific frame t. The 

output У ∈ 𝑹𝑇×𝑁×𝐾×𝐷 has the same shape, where each token У
𝒕,𝒊,𝒌

 is 

a transformed one by contextualizing across other tokens belonging 

to the same person.  

The initial input  𝝌 to SPST is 𝐙(0) = 𝐗, extracted by the off-

the-shelf models at the very first layer, while at a later layer l =

2, ⋯ , L it takes the output from SJTT from the previous layer, 𝐙(𝑙−1).  

Inter-Person Spatial Transformer (IPST). After SPST, IPST 

learns correlation among body keypoints of every individual in each 

frame. Through this, the model learns spatial inter-personal 

relationship in the scene. This is one of the main differences from 

MixSTE [60]. More formally, this Transformer takes N × K tokens 

of size D as input at a time; that is, given the input 𝝌 ∈ 𝑹𝑇×𝑁×𝐾×𝐷, all 

N × K tokens in the frame 𝛘𝒕 ∈ 𝑹𝑁×𝐾×𝐷 are fed into IPST, contextulize 

from each other, and are transformed to the output tokens У
𝒕
. This 

process is separately performed for t = 1, ⋯ , T . After IPST, each 

token is knowledgeable about body keypoints belonging to other 

people in the same scene, as well as those belonging to the same 

person.  

Single Joint Temporal Transformer (SJTT). The main advantage 

of simultaneous processing of multiple frames at once is the 

opportunity to consider global coherence throughout the video. In 

order to maximize this advantage, the last Transformer SJTT focuses 

on temporal dynamics of each body keypoint.  

Formally, from the input 𝝌 ∈ 𝑹𝑇×𝑁×𝐾×𝐷 , we create N × K input 



 

 １３ 

sequences of length T, corresponding to 𝝌.,𝒊,𝒌 ∈ 𝑹𝑇×𝐷  or i = 1, ⋯ , N 

and k = 1, ⋯ , K . Each sequence is fed into the Transformer, 

temporally contextualizing each token in the sequence, and the 

transformed output tokens У
.,𝒊,𝒌

 are returned. Completing all N × K 

sequences, we have the final output У ∈ 𝑹𝑇×𝑁×𝐾×𝐷, and this is the 

output at the l-th layer of our 2D-to-3D lifting module, 𝐙(𝑙).  

These three blocks constitute a single layer of our 2D-to-3D 

lifting module, and multiple such layers are stacked. A learnable 

positional encoding is added to each token at the first layer (l = 1) of 

SPST and SJTT. No positional encoding is added for IPST, since 

there is no natural ordering between multiple individuals in a video.  

Regression Head. After repeating L  layers of {SPST, IPST, 

SJTT}, we get the output tokens for all body keypoints, 𝐙(𝐿) ∈

𝑹𝑇×𝑁×𝐾×𝐷  . This is fed into a regression head, composed of a 

multilayer perceptron (MLP). It maps each body keypoint embedding 

in 𝐙(𝐿) to the corresponding 3D coordinates, 𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3. 

 

4.3. Implementation Details 

Depth Normalization. When a 2D image is mapped to the 3D space, 

depth of each pixel in the 2D image towards the direction of 

projection needs to be estimated. Following the common practice, we 

normalize the ground truth depth z by the focal length.  

Root Joints. Among the body key points of a person I at frame t, 

one is chosen as a root joint (typically the body center; denoted by 
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𝐘𝒕,𝒊,𝟏 = (𝑥, 𝑦, 𝑧) ∈ 𝑹3 ). The ground truth is given by (𝑥, 𝑦, 𝑧̅) , where 

(𝑥, 𝑦) is 2D coordinate of the root joint and  𝑧̅ is its normalized depth. 

For root joints, the model learns the absolute values, (𝑥, 𝑦, 𝑧̅). Other 

regular joints, 𝐘𝒕,𝒊,𝒌 = (𝑥, 𝑦, 𝑧) ∈ 𝑹3 with k = 2, ⋯ , K, are represented as 

the relative difference from the root joint of the person, 𝐘𝒕,𝒊,𝟏. 

 

4.4. Training Objectives 

Given the predicted 𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3 and ground truth  𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3, 

we minimize the following two losses.  

Mean per Joint Position Error (MPJPE) Loss is the L2 distance 

loss between the prediction and the target: 

 

𝑳𝑀𝑃𝐽𝑃𝐸 =
1

𝑁𝑉𝑇𝑁𝐾
∑ ∑ ∑ ∑ 𝐿2𝐷𝑖𝑠𝑡(𝐘(𝑛)

𝑡,𝑖,𝑘, 𝐘(𝑛)
𝑡,𝑖,𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑁𝑉

𝑛=1

 

 

where 𝐘(𝒏) and 𝐘(𝒏) are the predicted and true coordinates of 

the n-th example in the test set with 𝑁𝑉 videos.  

Mean per Joint Velocity Error (MPJVE) Loss [41] is the L2 

distance of the first derivative of MPJPE, measuring smoothness of 

the predicted sequence. 

 

𝑳𝑀𝑃𝐽𝑉𝐸 =
1

𝑁𝑉𝑇𝑁𝐾
∑ ∑ ∑ ∑ 𝐿2𝐷𝑖𝑠𝑡 (

𝜕𝐘(𝑛)
𝑡,𝑖,𝑘

𝜕𝑡
,
∂𝐘(𝑛)

𝑡,𝑖,𝑘

𝜕𝑡
)

𝐾

𝑘=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑁𝑉

𝑛=1

 

 

The overall loss 𝑳 is given by a weighted sum of the two losses; 
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that is, 𝑳 = 𝑳𝑀𝑃𝐽𝑃𝐸 + λ ∗ 𝑳𝑀𝑃𝐽𝑉𝐸 , where λ  controls the relative 

importance between them. Optionally, different weights can be 

applied to the root joints and others. 
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Chapter 5. Geometry-Aware Data 

Augmentation 

 

 

Thanks to the 2D-to-3D lifting approach, we treat only the 

coordinates of body keypoints either in 2D or 3D. Thus, the pixel-

level details are naturally decoupled from their canonical location. 

Being free from the pixel-level details, we can freely augment the 

training data as proposed below, helping us to resolve the data 

scarcity issue for this task.  

Specifically, we take N samples (𝐗(𝒊), 𝐘(𝒊)) captured by a fixed 

camera from a single-person dataset, where 𝐗(𝒊) ∈ 𝑹𝑇×𝐾×2 , 𝐘(𝒊) ∈

𝑹𝑇×𝐾×3, and i = 1, ⋯ , N . We may simply overlay them onto a single 

video, producing 𝐗 ∈ 𝑹𝑇×𝑁×𝐾×2 , 𝐘 ∈ 𝑹𝑇×𝑁×𝐾×3 , respectively. This 

(𝐗, 𝐘) is an augmented 3DMPPE training example, and repeating this 

process with different combinations of samples will infinitely create 

new 3DMPPE examples.  

Furthermore, we consider additional data augmentation on the 

trajectories, e.g., randomly translating or rotating them, to introduce 

additional randomness and fully take advantage of existing data. 

However, there are a few additional factors to consider: the ground 

plane, potential occlusion, and feasibility of the augmented 

trajectories. 
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Fig 3 Illustration of the proposed data augmentation methods. 

 

5.1. Ground Plane Orientation 

Although translating or rotating a trajectory in 3D space sounds 

trivial, most natural scenes do not fully use the three degree of 

freedom, because of an obvious fact that people usually stand on the 

ground. Geometrically, subjects in a video share the common ground 

plane, with a few exceptions like a swimming video. As feet generally 

touches the ground, we estimate the ground plane by collecting feet 

coordinates from all frames captured by a fixed video and fit them 

with a linear regression model, producing a 2D linear manifold G 

within the 3D space. We choose its two basis vectors, {𝑏1, 𝑏2} , 

perpendicular to the normal vector of G. We propose four types of 

data augmentation in Fig. 3. By combining these, we generate 

abundant sequences mimicking various multi-person and camera 

movements.:  

 



 

 １８ 

• Person Translation (PT): The target person is translated 

randomly along the basis {𝑏1, 𝑏2} on the ground plane. We sample the 

amount of displacement ∆α , ∆β  on {𝑏1, 𝑏2}  from a Gaussian 

distribution N(0, σ), where σ is a hyper-parameter. Each individual 

moves by different amount. 

• Person Rotation (PR): We sample an angle ω uniformly within 

[−
π

4
,

π

4
]. The subject is rotated by the same angle ω across the entire 

sequence to preserve natural movement, with respect to the normal 

vector of the ground plane about the origin at the mean of all 

keypoints. 

• Ground Plane Translation (GPT): The entire ground plane is 

shifted through the depth (z) axis by a randomly chosen distance 

among {−1.0, 0.0, 1.5, 3.0} meters, towards (negative) or away from 

the camera. As GPT is applied to the ground plane, it affects all 

subjects homogeneously. 

• Ground Plane Rotation (GPR): The entire ground plane is 

rotated by an angle randomly chosen among [−
π

6
,

π

6
], with respect to 

the basis 𝑏1, whose direction is more parallel to the x-direction of 

camera. This is to generate vertically diverse views, which are 

challenging to create with the other 3 augmentations. 

 

5.2. Handling Occlusions 
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Fig 4 Simple Volume Representation of Person. A volume representation of 

person needed for generating occlusion. 

 

As multiple subjects in a scene are projected to 2D, they may 

occlude each other. In such cases, the occluded body parts should not 

be included in the output. At a glance, this looks trivial; we compute 

the distance between each keypoint and the camera, and if two or 

more points are on the same ray from the camera, we leave only the 

closest one.  

Since the human body has some volume, however, two body parts 

(either from the same person or from different ones) may occlude if 

the two key points are projected close enough, even though they do 

not exactly coincide. From this observation, we propose a simple 

volume representation of person, illustrated in Fig. 4. The volume of 

each body part is modeled as a 3D-ball centered at the corresponding 

keypoint. Once projected to the 2D plane, the circles are considered 

to overlap if the distance between the two circles’ centers is shorter 

than the larger one’s radius. Then, the one with the larger depth is 
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occluded. Optionally, the occluded keypoints may be slightly 

perturbed, since the keypoint location is not exactly precise anyway. 

 

5.3. Feasibility Constraints 

Once the augmented trajectories are generated in the 3D space, 

we need to project them to the 2D image coordinate to make them 

paired as a training example. This is done by applying the pinhole 

camera model. A point (x, y, z) in the 3D space is mapped to (u, v) by 

 

[
𝑢
𝑣
1

] ≈ [
𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

] [
𝑥
𝑦
𝑧

] 

 

where 𝑓𝑢, 𝑓𝑣 are the focal lengths, and 𝑐𝑢, 𝑐𝑣 are the center location in 

the 2D image coordinates.  

Lastly, we need to check if they are feasible as a training example. 

First of all, the depth z of all target 3D keypoints should be positive. 

Otherwise, a subject with negative depth will appear flipped both 

vertically and horizontally, located behind the camera in the 3D space.  

Also, the resulting trajectory should be entirely located within 

the 2D frames. Precisely, we keep the root key points to appear 

within the image boundary and let other joints potentially be out of 

the scene. For this, we might naively filter out examples that violate 

the constraints and regenerate, but this is not efficient. Instead, we 

apply PR, GPT, and GPR first, and PT at the last. Unlike other 

operations, we can constrain the feasible range for PT individually, 
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satisfied simply by solving a constrained linear programming: 

 

0 ≤ 𝑓𝑢

𝑥 + ∆𝑥

𝑧 + ∆𝑧
+ 𝑐𝑢 < 𝑊,   0 ≤ 𝑓𝑣

𝑦 + ∆𝑦

𝑧 + ∆𝑧
+ 𝑐𝑣 < 𝐻,   0 ≤ 𝑧 + ∆𝑧 

 

where, (x, y, z) is an original root joint in the 3D space, (∆x, ∆y, ∆z) 

is the amount of displacement applied to this subject, converted from 

(∆α, ∆β) on the basis {𝑏1, 𝑏2} to the standard basis (𝑒1, 𝑒2, 𝑒3), and W, H 

is the width and height of the image. 



 

 ２２ 

Chapter 6. Experiments 

 

 

6.1. Experimental Settings 

Datasets. MuPoTS-3D [35] is one of the most representative 

datasets for the monocular 3DMPPE. It consists of 20 a few seconds 

long sequences with 2–3 people interacting with each other. Since 

this data is made only for evaluation purpose, MuCo-3DHP [35] is 

widely paired with it for training. MuCo-3DHP was artificially 

composited from a dataset MPI-INF-3DHP [34], which contains 8 

subjects’ various motions captured from 14 different cameras.  

CMU Panoptic [21] is another popular 3D multi-person dataset, 

mainly used for multi-view settings. It contains 60 hours of video 

with 3D poses and tracking information captured by multiple cameras. 

Following [2], we use video sequences of camera 16 and 30 for both 

training and testing. This training set consists of sequences with 3 

activities, Haggling, Mafia, and Ultimatum, and the test set consist of 

sequences with an additional activity, Pizza.  

We train our model on the synthesized training set using the 

proposed augmentation method in Sec. 5. We use MPI-INF-3DHP 

as the source of augmentation for MuPoTS-3D experiment. For 

CMU-Panoptic, we augment on its training partition.  

Evaluation Metrics. First, we measure Percentage of Correct 

Keypoints (PCK). Given a threshold τ , a keypoint prediction is 
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regarded correct if the L2 distance between the predicted and true 

points in the 3D space is within the threshold. We report PCK metrics 

with (PCKrel) and without (PCKabs) the root alignment, following 

the convention. We use the common setting of τ = 150mm. Higher 

PCK indicates better performance.  

MPJPE is the mean L2 distance between prediction and ground 

truth, used for our evaluation on CMU-Panoptic [21]. MPJVE [41] 

measures the smoothness or consistency of each keypoint’s flow 

over time by the average of the L2 distance between the first 

derivatives of the predicted and true keypoints. High MPJVE 

indicates more jitterings between frames, making impractical to apply 

the method in practice. Lower MPJPE and MPJVE indicate better 

performance. And they are calculated exactly the same with the 

MPJPE loss and MPJVE loss.  

Competing Models. We compare our POTR-3D method against 

six baseline models: VirtualPose [45], SingleStage [39], SMAP [63], 

SDMPPE [36], TDBU-Net [7], and MubyNet [57].  

Implementation Details. The input 2D poses are obtained by fine-

tuning HRNet-W48 [47]. As it operates in a frame2frame manner, 

we track each individuals (i.e., stitching) over the whole frames of 

the input video. We use ByteTrack [61] for tracking, merging with 

the appearance gallery idea [53] to consider appearance variation 

caused by movements. While tracking individuals frame by frame, the 

most recent 100 appearance features are stored in their tracklet. 

Note that these off-the-shlef models are used only at testing, not at 
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training, since we train on synthetic data we augment. We use Adam 

optimizer [24] with batch size of 16, dropout rate of 0.1, and adopt 

GELU activation function. 

 

6.2. Quantitative Comparison 

Method 
PCKrel 

(%)↑ 

PCKabs 

(%)↑ 

MPJVErel 

(mm)↓ 

MPJVEabs 

(mm)↓ 

From estimated 2D keypoints (No GT Used) 

VirtualPose[45] - 44.0 - - 

SingleStage[20] 80.9 39.3 - - 

SMAP[63] 73.5 35.2 - - 

3DMPPE[36] 81.8 35.2 25.8 120.4 

POTR-3D 

(Ours) 
83.7 50.9 10.8 16.3 

From 2D ground truth keypoints 

TDBU-Net[7] 89.6 - 26.3  

POTR-3D 

(Ours) 
91.0 33.7 7.9 10.2 

Tab 1 Quantitative Comparison on MuPoTS-3D. The best scores are 

marked in boldface. 

MuPoTS3D. According to Tab. 1, ours achieves the highest 

PCKrel and PCKabs with 1.9% and 6.9% gain, respectively, from the 

previous state-of-the-art. Here we the augmentation consists of 

PT and PR makes the best performance. Generally POTR-

3Doutperforms others at most sequences, furthermore we also 

emphasize that ours particularly outperforms baselines on sequences 

with some sequences with heavy occlusions (e.g., TS3, TS14, TS20), 
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and with some unusual distance from camera (e.g., TS6, TS13), as 

reported in Tab. 2, and Tab. 3. It indicates the effectiveness of our 

seq2seq modeling to solve occlusion, and the benefits of 

augmentation which can make a variety of distance.  

 

Method 
PCKrel 

(%)↑ 
TS1 TS2 TS3 TS4 TS5 TS6 TS7 

SingleStage[20] 80.9 - - - - - - - 

SMAP[63] 73.5 88.8 71.2 77.4 77.7 80.6 49.9 86.6 

3DMPPE[36] 81.8 94.4 77.5 79.0 81.9 85.3 72.8 81.9 

POTR-3D 

(Ours) 
83.7 92.0 80.2 93.7 84.0 85.4 75.1 91.5 

Method TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 

SingleStage[20] - - - - - - - - 

SMAP[63] 51.3 70.3 89.2 72.3 81.7 63.6 44.8 79.7 

3DMPPE[36] 75.7 90.2 90.4 79.2 79.9 75.1 72.7 81.1 

POTR-3D 

(Ours) 
74.3 70.7 88.4 85.6 86.5 83.1 77.1 82.8 

Method TS16 TS17 TS18 TS19 TS20    

SingleStage[20] - - - - -    

SMAP[63] 86.9 81.0 75.2 73.6 67.2    

3DMPPE[36] 89.9 89.6 81.8 81.7 76.2    

POTR-3D 

(Ours) 
90.8 86.8 87.5 85.7 82.6    

Tab 2 Quantitative Comparison(PCKrel) on MuPoTS-3D for Individual Test 

Videos. The best scores are marked in boldface. 
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Method 
PCKabs 

(%)↑ 
TS1 TS2 TS3 TS4 TS5 TS6 TS7 

VirtualPose[45] 44.0 - - - - - - - 

SingleStage[20] 39.3 - - - - - - - 

SMAP[63] 35.2 21.4 22.7 58.3 27.5 37.3 12.2 49.2 

3DMPPE[36] 31.5 59.5 44.7 51.4 46.0 52.2 27.4 23.7 

POTR-3D 

(Ours) 
50.9 50.1 42.1 71.0 60.5 58.6 50.4 66.9 

Method TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 

VirtualPose[45] - - - - - - - - 

SingleStage[20] - - - - - - - - 

SMAP[63] 40.8 53.1 43.9 43.2 43.6 39.7 28.3 49.5 

3DMPPE[36] 26.4 39.1 23.6 18.3 14.9 38.2 26.5 36.8 

POTR-3D 

(Ours) 
41.5 50.0 69.6 42.3 49.2 63.2 49.3 69.0 

Method TS16 TS17 TS18 TS19 TS20    

VirtualPose[45] - - - - -    

SingleStage[20] - - - - -    

SMAP[63] 23.8 18.0 26.9 25.0 38.8    

3DMPPE[36] 23.4 14.4 19.7 18.8 25.1    

POTR-3D 

(Ours) 
35.6 36.9 35.3 29.3 46.3    

Tab 3 Quantitative Comparison(PCKabs) on MuPoTS-3D for Individual 

Test Videos. The best scores are marked in boldface. 
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PT PR GPT GPT Size 
PCKrel 

(%)↑ 

PCKabs 

(%)↑ 

MPJVErel 

(mm)↓ 

MPJVEabs 

(mm)↓ 

V    

0.4M 80.2 37.8 10.9 17.0 

0.7M 82.8 40.6 11.4 18.7 

1.3M 82.8 40.9 10.9 16.8 

V V   

0.4M 81.0 41.3 11.0 16.7 

0.7M 83.7 50.9 10.9 16.3 

1.3M 83.0 47.1 10.8 18.1 

V V V  

0.4M 82.3 42.1 10.9 17.1 

0.7M 82.2 45.9 10.7 17.0 

1.3M 83.7 45.4 10.7 18.7 

V V V V 

0.4M 81.3 41.9 11.2 17.1 

0.7M 83.3 48.1 10.8 18.3 

1.3M 84.3 46.1 11.0 16.5 

Tab 4 Ablation Study on Augmentation Strategy on MuPoTS-3D. The best 

scores are marked in boldface. 

 

Method 
MPJPErel 

(mm)↓ 

MPJVErel 

(mm)↓ 

Sequence Haggling Mafia Ultimatum Pizza Avg. Avg. 

VirtualPose[45] 54.1 61.6 54.6 65.4 58.9 - 

SMAP[63] 63.1 60.3 56.6 67.1 61.8 - 

MubyNet[57] 72.4 78.8 66.8 94.3 78.1 - 

3DMPPE[36] 89.6 91.3 79.6 90.1 87.7 - 

POTR-3D 

(Ours) 
59.8 57.0 56.6 59.7 58.3 4.6 

POTR-3D 

(Ours; GT) 
54.8 39.0 43.1 40.6 44.4 3.4 

Tab 5 Quantitative Comparison on CMU Panoptic. The models are trained 

on {Haggling, Mafia, Ultimatum}, and generalized to Pizza. The best scores 

are marked in boldface. 
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We also evaluate POTR-3D with 2D ground truth (GT) keypoints 

(instead of those by HRNet [47]) to see the upper bound, reported 

in Tab. 1. We observe a significantly higher PCKrel than the regular 

experiment, outperforming previous best scores on GT [7]. This 

indicates that the performance of POTR-3D is highly limited by the 

2D keypoint detector, not the proposed model itself.  

As MPJVE has not been reported in previous works, we report it 

in Tab. 1 only for methods open-sourced. POTR-3D significantly 

improves the MPJVE metrics, compared to previous frame2frame [36] 

and seq2seq [7] methods. By nature, frame2frame methods are 

unable to optimize MPJVE, as they do not treat temporal information. 

Also, as we directly optimize an MPJVE loss term, the huge gap 

between ours and frame2frame methods is inevitable. This means, 

however, this practically important MPJVE metric has been 

overlooked, allowing severe jittering that are often observed with 

frame2frame approaches. In contrast, our model achieves even 

stronger MPJVE metrics than the other seq2seq baseline [7] on the 

2D GT keypoints, proving the improved smoothness of our model.  

CMU-Panoptic. POTR-3D also achieves the state-of-the-art 

performance on CMU-Panoptic, 0.6mm leading the previous state-

of-the-art [45]. In contrast to MuPoTS-3D, CMU-Panoptic 

contains videos with a denser crowd of 3–8 subjects, making the 

tracking step more challenging. The result indicates that POTR-3D 

operates well even in this challenging situation. However, as the 

same camera setting is used for both training and testing, the 
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challenge becomes a bit relaxed compared to MuPoTS-3D. For this 

reason, POTR-3D trained with data augmented only by PT, PR leads 

to the best performance. Also, POTR-3D achieves significantly 

higher performance than others on the Pizza sequence unseen at 

training, with 5.7mm gain. This verifies generalizability of POTR-3D. 

 

6.3. Ablation Study 

We further investigate the best data augmentation strategy 

proposed in Sec. 5, specifically, what kind of operations benefit the 

most and how many examples are needed. We compare 4 different 

combinations of the proposed methods (PT, PT+PR, PT+PR+GPT, 

and PT+PR+GPT+GPR) with 3 sizes (0.4M, 0.7M, and 1.3M 

samples). 

PT PR GPT GPR Size 
MPJPErel 

(mm)↓ 

MPJVErel 

(mm)↓ 

APrel 

@150mm↑ 

V    0.5M 87.1 4.5 65.2 

V V   0.5M 58.3 4.6 79.8 

V V V  0.5M 58.5 5.0 65.5 

V V V V 0.5M 72.7 4.8 70.3 

V V V V 0.8M 68.8 4.2 83.7 

Tab 6 Ablation Study on Augmentation Strategy on CMU-Panoptic. The 

best scores are marked in boldface. 
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PT PR GPT GPR Size 
MPJPErel 

(mm)↓ 

MPJVErel 

(mm)↓ 

APrel 

@150mm↑ 

V    0.5M 142.9 3.1 39.5 

V V   0.5M 136.8 6.1 31.5 

V V V  0.5M 138.2 5.3 80.4 

V V V V 0.5M 67.2 3.7 73.7 

V V V V 0.8M 58.4 2.7 81.4 

Tab 7 Ablation Study on Camera Setting of CMU-Panoptic. The best scores 

are marked in boldface. 

Tab. 4 shows the performance on MuPoTS-3D. First of all, 

larger size generally benefits, as expected. Without a limit, the 

proposed data augmentation may further improve the result with a 

larger training set. Among the combinations, using more variety of 

operations generally helps, where the largest one with all operations 

achieves the best PCKrel. A similar experiment is conducted on 

CMU-Panoptic, summarized in Tab. 6. Similarly, a larger setup using 

all operations leads to superior performance in general. 

For the experiment on CMU-Panoptic in Sec. 6.2, the 

conventional benchmark uses the same cameras (camera 16, 30) for 

both training and test sets. Thus, the model is hard to fully enjoy the 

benefit of our ground plane augmentation (GPR / GPT). Here, we 

further evaluate on videos of Haggling, Ultimatum captured by 

different cameras (camera 6, 13) from the ones used for training Fig. 

5 illustrates each camera’s view point, and Tab. 7 shows the result. 

Notations are following Sec. 6.2. 
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Fig 5 Cameras’ view points of CMU-Panoptic. (Left) Cameras used in 

conventional benchmark for both training and testing. (Right) Cameras 

used for testing in Sec. 6.3. 

We confirm that the full augmentations significantly outperform 

others that care less about the camera view point. Also, we observe 

a larger augmented dataset benefits more. Furthermore, the best 

option (last row) achieves competitive performance comparing to the 

testing performance of Tab. 6, which uses same camera setting with 

training. This is notable because we do not use any clue about the 

camera 6 and 13. This proves that GPR benefits the augmentation 

process to be robust to camera view changes, aligning with our 

expectation, and indicates proper GPT/GPR leads the model to better 

generalize. 
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6.4. Qualitative Results 

In addition to the benchmark datasets, we evaluate POTR-3D on 

a lot more challenging in-the-wild scenarios, e.g., group dancing 

video or figure skating. Fig. 6 demonstrates the performance of our 

model on a few examples of in-the-wild videos. In spite of 

occlusions, we see that POTR-3D precisely estimates poses of 

multiple people. To the best of our knowledge, this is the first work 

to present such accurate and consistent 3DMPPE results on in-the-

wild videos. The actual video is available on 

https://github.com/POTR3D/CVPR2023. 

Fig. 7 shows a couple of failure cases of our method. When people 

are not standing or when feet are not shown within the video frame, 

our method fails to detect the ground plane correctly, leading to 

incorrect pose estimation. Another challenge is when the off-the-

shelf tracking method fails. When it misses a subject, we see that our 

method cannot detect the pose. 

 

  

https://github.com/POTR3D/CVPR2023
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Fig 6 Demonstration of POTR-3D on in-the-wild videos. 
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Fig 7 Challenging examples for POTR-3D 
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Chapter 7. Summary 

 

 

In this paper, we present POTR-3D, a Transformer-based 

seq2seq 2D-to-3D approach for multi-person 3D pose estimation 

from monocular video. Introducing an additional frame-wise 

attention, we successfully extend the MixSTE [60] architecture from 

single-person to multi-person problem and empirically verify that 

this approach is indeed more robust on occlusion.  

Moreover, we propose four types of data augmentation strategy 

to generate unlimited number of 2D-3D pair dataset, directly 

resolving the data scarcity issue innate in the 3D multi-person pose 

estimation problem.  

The effectiveness of our approach is verified not just by 

achieving state-of-the-art performance on public benchmarks, 

MuPoTS-3D and CMU-Panoptic, but also by demonstrating accurate 

and consistent results on various in-the-wild videos. 

On the other hand, there are some limitations on our approach. 

First, as POTR-3D does not receive any image or video information, 

it cannot estimate the exact size of person. It might struggle to 

distinguish a child nearby camera from an adult far from it. Second, 

we constrain the number of people to be consistent throughout this 

study for convenience. This should be relaxed for more practical use. 

Computationally, self-attention cost may dramatically increase as 
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the number of people in the video gets larger. Further approximation 

to reduce the self-attention cost may be needed. 



 

 ３７ 

Bibliography 

 

 

[1] Karteek Alahari, Guillaume Seguin, Josef Sivic, and Ivan 

Laptev.Pose estimation and segmentation of people in 3d 

movies. In ICCV, 2013. 1 

[2] Cristian Sminchisescu Andrei Zanfir, Elisabeta Marinoiu. 

Monocular 3D pose and shape estimation of multiple people in 

natural scenes-the importance of multiple scene constraints. In 

CVPR, 2018. 2, 6 

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, 

Mario Lucic, and Cordelia Schmid. ViVit: A video vision 

transformer. In ICCV, 2021. 1 

[4] Lewis Bridgeman, Marco Volino, Jean-Yves Guillemaut, and 

Adrian Hilton. Multi-person 3D pose estimation and tracking in 

sports. In CVPR Workshops, 2019. 1 

[5] Simon Bultmann and Sven Behnke. Real-time multi-view 3D 

human pose estimation using semantic feedback to smart edge 

sensors. arXiv:2106.14729, 2021. 2 

[6] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, 

Junsong Yuan, and Nadia Magnenat Thalmann. Exploiting 

spatial-temporal relationships for 3D pose estimation via graph 

convolutional networks. In ICCV, 2019. 2 

[7] Yu Cheng, Bo Wang, Bo Yang, and Robby T. Tan. Monocular 3D 

multi-person pose estimation by integrating top-down and 

bottom-up networks. In CVPR, 2021. 6, 7 

[8] Yu Cheng, Bo Yang, Bo Wang, and Robby T Tan. 3D human pose 

estimation using spatio-temporal networks with explicit 

occlusion training. In AAAI, 2020. 2 

[9] Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. Optimizing 

network structure for 3d human pose estimation. In ICCV, 2019. 

2 

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk 

Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa 



 

 ３８ 

Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et 

al. An image is worth 16x16 words: Transformers for image 

recognition at scale. arXiv:2010.11929, 2020. 2 

[11] Miniar Ben Gamra and Moulay A Akhloufi. A review of deep 

learning techniques for 2D and 3D human pose estimation. 

Image and Vision Computing, 114:104282, 2021. 2 

[12] Mohsen Gholami, Bastian Wandt, Helge Rhodin, RababWard, and 

Z Jane Wang. AdaptPose: Cross-dataset adaptation for 3D 

human pose estimation by learnable motion generation. In CVPR, 

2022. 2 

[13] Kehong Gong, Jianfeng Zhang, and Jiashi Feng. PoseAug: A 

differentiable pose augmentation framework for 3D human pose 

estimation. In CVPR, 2021. 2 

[14] Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I Yu. 

Epipolar transformers. In CVPR, 2020. 2 

[15] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term 

memory. Neural computation, 9(8):1735–1780, 1997. 2 

[16] Michael Hofmann and Dariu M Gavrila. Multi-view 3D human 

pose estimation combining single-frame recovery, temporal 

integration and model adaptation. In CVPR, 2009. 2 

[17] Michael Hofmann and Dariu M Gavrila. Multi-view 3D human 

pose estimation in complex environment. International journal 

of computer vision, 96(1):103–124, 2012. 2 

[18] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian 

Sminchisescu. Human 3.6M: Large scale datasets and predictive 

methods for 3D human sensing in natural environments. IEEE 

transactions on pattern analysis and machine intelligence, 

36(7):1325–1339, 2013. 2 

[19] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury 

Malkov. Learnable triangulation of human pose. In ICCV, 2019. 

2 

[20] Lei Jin, Chenyang Xu, Xiaojuan Wang, Yabo Xiao, Yandong Guo, 

Xuecheng Nie, and Jian Zhao. Single-stage is enough: Multi-

person absolute 3D pose estimation. In CVPR, 2022. 7, 8 

[21] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain 



 

 ３９ 

Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. 

Panoptic studio: A massively multiview system for social motion 

capture. In ICCV, 2015. 2, 6 

[22] Takeo Kanade, Peter Rander, and PJ Narayanan. Virtualized 

reality: Constructing virtual worlds from real scenes. IEEE 

multimedia, 4(1):34–47, 1997. 2 

[23] Shian-Ru Ke, LiangJia Zhu, Jenq-Neng Hwang, Hung-I Pai, 

Kung-Ming Lan, and Chih-Pin Liao. Real-time 3D human pose 

estimation from monocular view with applications to event 

detection and video gaming. In Proc. of the IEEE International 

Conference on Advanced Video and Signal Based Surveillance, 

2010. 1 

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for 

stochastic optimization. arXiv:1412.6980, 2014. 6 

[25] Thomas N Kipf and Max Welling. Semi-supervised 

classification with graph convolutional networks. 

arXiv:1609.02907, 2016. 2 

[26] Jogendra Nath Kundu, Ambareesh Revanur, Govind Vitthal 

Waghmare, Rahul Mysore Venkatesh, and R Venkatesh Babu. 

Unsupervised cross-modal alignment for multi-person 3D 

pose estimation. In ECCV, 2020. 2 

[27] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, 

and Wenming Yang. Exploiting temporal contexts with strided 

transformer for 3D human pose estimation. IEEE Transactions 

on Multimedia, 2022. 2 

[28] Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van Gool. 

Mhformer: Multi-hypothesis transformer for 3d human pose 

estimation. In Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, pages 13147–13156, 

2022. 2 

[29] Mude Lin, Liang Lin, Xiaodan Liang, Keze Wang, and Hui Cheng. 

Recurrent 3D pose sequence machines. In CVPR, 2017. 2 

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, 

Pietro Perona, Deva Ramanan, Piotr Doll ́ar, and C Lawrence 

Zitnick. Microsoft COCO: Common objects in context. In ECCV, 



 

 ４０ 

2014. i 

[31] Kenkun Liu, Rongqi Ding, Zhiming Zou, Le Wang, and Wei Tang. 

A comprehensive study of weight sharing in graph networks for 

3d human pose estimation. In ECCV, 2020. 2 

[32] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vil-BERT: 

Pretraining task-agnostic visiolinguistic representations for 

vision-and-language tasks. NeurIPS, 32, 2019. 19 

[33] Julieta Martinez, Rayat Hossain, Javier Romero, and James J 

Little. A simple yet effective baseline for 3D human pose 

estimation. In ICCV, 2017. 2 

[34] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, 

Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. 

Monocular 3D human pose estimation in the wild using improved 

cnn supervision. In 3D Vision (3DV), 2017 Fifth International 

Conference on. IEEE, 2017. 2, 6 

[35] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, 

Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, and Christian 

Theobalt. Single-shot multi-person 3D pose estimation from 

monocular rgb. In 3D Vision (3DV), 2018 Sixth International 

Conference on. IEEE, 2018. 6 

[36] Gyeongsik Moon, Juyong Chang, and Kyoung Mu Lee. Camera 

distance-aware top-down approach for 3D multi-person pose 

estimation from a single rgb image. In ICCV, 2019. 2, 6, 7, 8 

[37] Francesc Moreno-Noguer. 3D human pose estimation from a 

single image via distance matrix regression. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern 

Recognition, pages 2823–2832, 2017. 2 

[38] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass 

networks for human pose estimation. In ECCV, 2016. 2 

[39] Xuecheng Nie, Jiashi Feng, Jianfeng Zhang, and Shuicheng Yan. 

Single-stage multi-person pose machines. In ICCV, 2019. 2, 6 

[40] Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis. Ordinal 

depth supervision for 3D human pose estimation. In CVPR, 2018. 

2 

[41] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and 



 

 ４１ 

Michael Auli. 3D human pose estimation in video with temporal 

convolutions and semi-supervised training. In CVPR, 2019. 1, 

2, 4, 6 

[42] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang, and 

Wenjun Zeng. Cross view fusion for 3D human pose estimation. 

In ICCV, 2019. 2 

[43] Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua, and 

Robert Wang. Lightweight multi-view 3d pose estimation 

through camera-disentangled representation. In CVPR, 2020. 2 

[44] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. 

LCR-Net: Localization-classification-regression for human 

pose. In CVPR, 2017. 2 

[45] Jiajun Su, Chunyu Wang, Xiaoxuan Ma, Wenjun Zeng, and Yizhou 

Wang. VirtualPose: Learning generalizable 3d human pose 

models from virtual data. arXiv:2207.09949, 2022. 6, 7, 8 

[46] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and 

Cordelia Schmid. VideoBERT: A joint model for video and 

language representation learning. In ICCV, 2019. 1 

[47] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-

resolution representation learning for human pose estimation. In 

CVPR, 2019. 3, 6, 7, i 

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, 

Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 

Attention is all you need. In NeurIPS, 2017. 2 

[49] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui 

Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang 

Wang, et al. Deep high-resolution representation learning for 

visual recognition. IEEE transactions on pattern analysis and 

machine intelligence, 43(10):3349–3364, 2020. 2 

[50] Jinbao Wang, Shujie Tan, Xiantong Zhen, Shuo Xu, Feng Zheng, 

Zhenyu He, and Ling Shao. Deep 3D human pose estimation: A 

review. Computer Vision and Image Understanding, 210:103225, 

2021. 2 

[51] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot 

free-view neural talking-head synthesis for video 



 

 ４２ 

conferencing, 2020. 1 

[52] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser 

Sheikh. Convolutional pose machines. In CVPR, 2016. 2 

[53] Nicolai Wojke and Alex Bewley. Deep cosine metric learning for 

person re-identification. In WACV, 2018. 6 

[54] Qingqiang Wu, Guanghua Xu, Sicong Zhang, Yu Li, and Fan Wei. 

Human 3D pose estimation in a lying position by rgb-d images 

for medical diagnosis and rehabilitation. In Annual International 

Conference of the IEEE Engineering in Medicine & Biology 

Society (EMBC), 2020. 1 

[55] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for 

human pose estimation and tracking. In ECCV, 2018. 2  

[56] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Transpose: 

Keypoint localization via transformer. In ICCV, 2021. 2 

[57] Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, 

and Cristian Sminchisescu. Deep network for the integrated 3D 

sensing of multiple people in natural images. In NeurIPS, 2018. 

2, 6, 8 

[58] Bowen Zhang, Hexiang Hu, Joonseok Lee, Ming Zhao, Sheide 

Chammas, Vihan Jain, Eugene Ie, and Fei Sha. A hierarchical 

multi-modal encoder for moment localization in video corpus. 

arXiv:2011.09046, 2020. 1 

[59] Jianfeng Zhang, Yujun Cai, Shuicheng Yan, Jiashi Feng, et al. 

Direct multi-view multi-person 3d pose estimation. In NeurIPS, 

2021. 2 

[60] Jinlu Zhang, Zhigang Tu, Jianyu Yang, Yujin Chen, and Junsong 

Yuan. Mixste: Seq2seq mixed spatio-temporal encoder for 3D 

human pose estimation in video. arXiv preprint 

arXiv:2203.00859, 2022. 1, 2, 3, 8 

[61] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, 

Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. 

ByteTrack: Multi-object tracking by associating every 

detection box. In ECCV, 2022. 3, 6, i 

[62] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris N 

Metaxas. Semantic graph convolutional networks for 3d human 



 

 ４３ 

pose regression. In CVPR, 2019. 2 

[63] Jianan Zhen, Qi Fang, Jiaming Sun, Wentao Liu, Wei Jiang, Hujun 

Bao, and Xiaowei Zhou. Smap: Single-shot multi-person 

absolute 3d pose estimation. In European Conference on 

Computer Vision, pages 550–566. Springer, 2020. 6, 7, 8 

[64] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang, Chen 

Chen, and Zhengming Ding. 3D human pose estimation with 

spatial and temporal transformers. In ICCV, 2021.2 



 

 ４４ 

Abstract 

  

 

컴퓨터 비전에 기반한 3차원 자세 추정(3D Pose Estimation)은 매우 

다양한 분야에 응용될 수 있기 때문에 큰 가치가 있다. 최근, 

트랜스포머(Transformer) 모델 기반의 시퀀스-시퀀스(Sequence-to-

sequence) 모델인 MixSTE [60] 은 단일 객체(사람) 3차원 자세 

추정에서 2차원 자세로부터의 3차원 자세 추정(2D-to-3D Lifting)의 

방법을 활용하여 성공적인 결과를 거둔 바 있다. 본 연구는 이의 

확장으로써 다중 객체 3차원 자세 문제를 다루며, 기존 연구와 비교해 

등장하는 객체간 정보의 상호 참조(Inter-Personal Attention) 모듈을 

새로이 추가하였다. 모델 구조에 기반하여 상호 인접 프레임 정보를 

자연스럽게 참조함으로써, 본 연구에서 고안한 모델은 상호 가려짐 

현상에 강인한 성능을 보였다. 하지만, 다중 객체 3차원 자세 추정은 

데이터 부족 현상이라는 고질적인 문제를 지닌다. 본 연구의 방법론은 

픽셀 수준의 디테일에서 벗어나, 2차원 자세와 3차원 자세 간의 관계를 

다루기에, 주어진 데이터와 카메라 파라미터에 기반하여 데이터를 

사실상 무제한적으로 증강할 수 있다는 강점을 지닌다. 본 분야에서 

성능 측정 및 비교를 위한 대표적인 실험용 데이터셋에서 성능을 측정한 

결과, 본 연구에서 고안한 모델은 정확도 뿐만 아니라 출력 결과의 

부드러움 두 측면에서 모두 여타 기존 모델과 비교해 가장 훌륭한 

성능을 보였다. 나아가, 테스트용 데이터셋 뿐만 아니라 다양한 시중 

비디오에서도 훌륭한 성능을 보임으로써 연구의 상업적 가치 또한 

입증하였다. 
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