

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Learning Temporally-Extended Actions

with Uncertainty-Aware Q-learning

불확실성을 고려한 반복 행동 정책 학습

Feburary 2023

Graduate School of Data Science

SEOUL NATIONAL UNIVERSITY

Data Science Major

JOONGKYU LEE

Abstract

In reinforcement learning, temporal abstraction in action space is a common

approach to simplifying the learning process of policies through temporally-

extended courses of action. In recent work, temporal abstractions are often mod-

eled as repeating the chosen action for a certain duration. A major drawback

of the prior work on action repetition is that repetitions of suboptimal actions

may lead to significant deterioration in performance. Hence, the degradation

in performance that action repetition causes can be larger than the gains it

provides. We propose a novel algorithm named Uncertainty-aware Temporal

Extension (UTE), which leverages ensemble methods to estimate uncertainty

when extending an action. Our uncertainty-aware learning framework can

allow policies to be exploration-favor or uncertainty-averse. We empirically

demonstrate the efficacy of UTE on both gridworld and Atari 2600 environments,

exhibiting superior performances over alternative algorithms.

Keywords: Reinforcement Learning, Temporal Abstraction, Action Repeat,

Uncertainty, Exploration

Student ID: 2021-27322

Contents

Abstract i

Contents ii

1 Introduction 1

2 Related Work 4

3 Preliminaries and Notations 7

4 Method: Uncertainty-aware Temporal Extension 10

4.1 Temporally-Extended Q-Learning . 10

4.2 Option Decomposition . 11

4.3 Ensemble-based Risk-Sensitive Action Repetition 12

4.4 n-step Q-Learning . 14

5 Experiments 16

5.1 Chain MDP . 16

5.2 Gridworlds . 19

5.3 Atari 2600: Arcade Learning Environment . 22

6 Conclusion 26

7 Appendix 27

7.1 Details of Baselines . 27

7.1.1 Fixed Repeat . 27

7.1.2 Temporally-Extended ϵ-Greedy . 27

ii

7.1.3 Dynamic Action Repetition . 28

7.1.4 TempoRL . 28

7.1.5 Bootstrapped DQN . 29

7.2 Implementation Details: UTE . 29

7.2.1 Bootstrap with random initialization for option-value

functions . 29

7.2.2 Multi-step target for both action- and option-value functions30

7.2.3 The Same Target for both action- and option- value

functions . 31

7.3 Experiments Details . 33

7.3.1 Chain MDP experiment . 33

7.3.2 Gridworlds experiment . 34

7.3.3 Atari experiment . 35

7.4 Limitations . 37

7.5 Further Experimental Results . 38

7.5.1 Chain MDP . 38

7.5.2 Gridworlds . 40

7.5.3 Atari 2600 . 46

Bibliography 57

초 록 63

감사의 글 65

iii

1 Introduction

Temporal abstraction is a promising approach to solving complex tasks in

reinforcement learning (RL) with complex structures and long horizons Fikes

et al. 1972; Dayan and Hinton 1992; Parr and Russell 1997; Sutton et al.

1999; Precup 2000; Bacon et al. 2017; Barreto et al. 2019; Machado et al.

2021. Hierarchical reinforcement learning (HRL) enables the decomposition

of this sequential decision-making problem into simpler lower-level actions or

subtasks. Intuitively, an agent explores the environment more effectively when

operating at a higher level of abstraction and solving smaller subtasks Machado

et al. 2021. One of the most prominent approaches for HRL is the option

framework Sutton et al. 1999; Precup 2000, which describes the hierarchical

structure in decision making in terms of temporally-extended courses of action.

Temporally-extended actions have been shown to speed up learning, poten-

tially providing more effective exploration compared to single-step explorative

action and requiring a fewer number of high-level decisions when solving a

problem Stolle and Precup 2002; Biedenkapp et al. 2021. From a cognitive

perspective, such observations are coherent with how humans learn, generalize

from experiences, and perform abstraction over tasks Xia and Collins 2021.

There has been a line of works that propose repetition of action for an ex-

tended period as a specialized form of temporal abstraction Lakshminarayanan

et al. 2017; Sharma et al. 2017; Dabney et al. 2020; Metelli et al. 2020;

1

Biedenkapp et al. 2021; Park et al. 2021.1 Hence, the action-repetition methods

address the problem of learning when to perform a new action while repeating

an action for multiple time-steps Dabney et al. 2020; Biedenkapp et al. 2021.

The extension length, the interaction steps to repeat the same action, is learned

by an agent along with what action to execute Sharma et al. 2017; Biedenkapp

et al. 2021. As shown by the improved empirical performances Dabney et al.

2020; Biedenkapp et al. 2021, these action repetition approaches can be well

justified by the commitment to action for deriving a persistent and deeper

exploration. These approaches can help suppress the dithering behavior of the

agent that can result in short-sighted exploration in a local neighborhood.

However, simple action repetition alone cannot guarantee performance

improvement. Repetition of a sub-optimal action for an extended period can

lead to severe deterioration in the performance. For example, a game may

terminate due to reckless action repetition when an agent is in a dangerous

region. A more uncertainty-averse behavior would be helpful in this scenario.

On the other hand, an agent may linger in the local neighborhood due to a

lack of optimism, especially in sparse reward settings. In that case, a more

exploration-favor behavior can be beneficial. In either case, a suitable control

of uncertainty of value estimates over longer horizons can be a crucial element.

In particular, the calibration of how much exploration the agent can take,

or how uncertainty-averse the agent should be, can definitely depend on an

environment. Thus, the degree of uncertainty to be considered should be

adaptive depending on the environment. To this end, we propose to account

1In fact, action repetition for a fixed number of steps was one of the strategies deployed
in solving Atari 2600 games Mnih et al. 2015; Machado et al. 2018. Despite its simplicity, the
action repetition provided sufficient performance gains so that almost all modern methods
of solving Atari games are still implementing such action repetitions.

2

for uncertainties when repeating actions. To our best knowledge, consideration

of uncertainty in the future when instantiating action repetition has been not

addressed previously. Such consideration is essential in action repetition in

both uncertainty-averse and exploration-favor environments.

In this paper, we propose a novel method that learns to repeat actions while

incorporating the estimated uncertainty of the repeated action values. We can

either impose aggressive or uncertainty-averse exploration by controlling the

degree of uncertainty in order to take suitable uncertainty-aware strategy

for the environment. Through extensive experiments and ablation studies,

we demonstrate the efficacy of our proposed method and how it significantly

enhances the performances of the deep reinforcement learning agent in various

environments. In comparison with the benchmarks, we show that our proposed

method achieves the state-of-the-art performances, consistently outperforming

the existing action repetition methods. Our contributions are:

• We present a novel framework that allows the agent to repeat an action in

a uncertainty-aware manner using an ensemble method. Suitably control-

ling the amount of uncertainty induced by repeated actions, our proposed

method learns to choose extension length and learns how optimistic or

pessimistic it should be, hence enabling efficient exploration.

• Our method yields a salient insight that it is beneficial to consider

environment-inherent uncertainty preference. Some environments are

uncertainty-favor (5.1), and some are uncertainty-averse (5.2).

• In a set of testing environments, we show UTE consistently outperforms all

of the existing action-repetition baselines, such as DAR, ϵz-Greedy, DQN,

B-DQN, in terms of final evaluation scores, learning speed, and coverage

of state-spaces.

3

2 Related Work

Temporal Abstraction and Action Repetition. Temporal abstractions

can be viewed as an attempt to find a time scale that is adequate for describing

the actions of an AI system Precup 2000. The option Sutton et al. 1999; Precup

2000; Bacon et al. 2017 framework formalizes the idea of temporally-extended

actions. An MDP endowed with a set of options are called Semi-Markov

Decision Process (SMDP) which we define in Section 3. The generalization of

conventional action-value functions for the options framework is called option-

value functions Sutton et al. 1999. The mapping from states to probabilities of

taking an option is called policy over options. In the options framework, the

agent attempts to learn a policy over options that maximizes the option-value

functions.

One simple form of an option is repeating a primitive action for certain

steps Schoknecht and Riedmiller 2002. Action repetition has been widely

explored in various literature Lakshminarayanan et al. 2017; Sharma et al.

2017; Dabney et al. 2020; Metelli et al. 2020; Biedenkapp et al. 2021; Park et

al. 2021. Action repetition has empirically shown to induce deeper exploration

Dabney et al. 2020 and lead to efficient learning by reducing the granularity of

control Lakshminarayanan et al. 2017; Sharma et al. 2017; Metelli et al. 2020;

Biedenkapp et al. 2021.

4

Action repetition can be implemented by deciding the extension length

of an action which is either sampled from a distribution Dabney et al. 2020

or returned by a policy Lakshminarayanan et al. 2017; Sharma et al. 2017.

However, these approaches to action repetition have limitations. The chosen

action cannot be stopped during the execution of a predetermined extension

length. This could lead to catastrophic failure when an agent enters a “risky”

area which we will describe in Section 5.2. Our method has been shown to

effectively manage this issue by quantifying the uncertainty of the option in

form of repeating actions.

Uncertainty in Reinforcement Learning. Recently, many works have

made significant advances in empirical studies by quantifying and incorporating

uncertainty Osband et al. 2016; Bellemare et al. 2016; Badia et al. 2020; Lee

et al. 2022. There are mainly two types of uncertainty: aleatoric and epistemic.

Aleatoric uncertainty is the uncertainty caused by the uncontrollable stochastic

nature of the environment and cannot be reduced. Epistemic uncertainty is

caused by the current imperfect training of the neural network and can be

reducible. Since we only cover deterministic environments such as Gridworlds

and Atari games in this work, aleatoric uncertainty does not exist. As a result,

the term “uncertainty” used in this paper mostly refers to epistemic uncertainty.

One mainstream of estimating the uncertainty in deep RL relies on boot-

strapping. Osband et al. 2016 introduced Bootstrapped DQN as a method

for effcient exploration. This approach is a variation of the classic DQN

neural network architecture, which has a shared torso with K ∈ Z+ heads.

Kalweit and Boedecker 2017 substituted the vanilla DQNs with bootstrapped

DQNs in model-based DDPG and achieved much higher rewards on continuous

control tasks. Lee et al. 2022 merged the actor’s and critic’s bootstrapped

5

uncertainty estimations with Conservative Q Learning Kumar et al. 2020.

Anschel et al. 2017; Peer et al. 2021 leveraged an ensemble of Q-functions

to mitigate overestimation in DQN. In this paper, we propose an algorithm

that quantifies uncertainty of Q-value estimates of the states reached under

the repeated-action. As in Bootstrapped DQN Osband et al. 2016, we use

multiple randomly-initialized bootstrapped heads which stretch out from a

shared network, simultaneously returning multiple estimates of the option-

value function. The variance between these estimates is then used as a metric

of uncertainty. Estimating the uncertainty using randomly-initialized heads is

a simple but effective approach Da Silva et al. 2020; Bai et al. 2021. It can

easily be adapted across different value-based learning algorithms Da Silva

et al. 2020.

6

3 Preliminaries and Notations

In reinforcement learning, an agent interacts with an environment whose un-

derlying dynamics is modeled by a Markov Decision Process (MDP) Puterman

2014. The tuple ⟨S,A, P,R, γ⟩ defines an MDPM, where S is a state space,

A is an action space, P : S × A → S is a transition dynamics function,

r : S × A → R is a reward function, and γ ∈ [0, 1] is the discount factor. We

consider a Semi-Markov Decision Processes (SMDPs) model to incorporate

the option framework Sutton et al. 1999; Precup 2000. A SMDP is an original

MDP with a set of options, i.e.,Mo := ⟨S,Ω, Po, Ro⟩, where ω ∈ Ω is an option

in the option space, Po(s
′ | s, ω) : S ×Ω→ S is the probability of transitioning

from state s to state s′ after taking an option ω and Ro : S × Ω → R is the

reward function for the option.

For any set X , let P(X) denotes the space of probability distributions over

X . Then a policy over option πω : S → P(Ω) assigns a probability to each

option conditioned on a given state. Our goal is to optimize the discounted

return expected over all the trajectories when following πω starting from a given

state s0; then, define the value functions V πω(s0) = Eπω [
∑∞

t=0 γ
tRt | s = s0],

the action-value functions Qπω(s0, a) = Eπω [
∑∞

t=0 γ
tRt | s = s0, a], or the

option-value functions Q̃πω(s0, ω) = Eπω [
∑∞

t=0 γ
tRt | s = s0, ω].

In general, options depend on the entire history between time step t when

they were initiated and the current time step t+k,ht:t+k := statst+1...at+k−1st+k.

7

Algorithm 1 UTE: Uncertainty-aware Temporal Extension

Input: uncertainty parameter λ, the number of output heads of option-
value functions B

Initialize Qπω , {Q̃πω

(b)}
B
b=1

1: for episode = 1, K do
2: Obtain initial state s from environment
3: repeat
4: a← ϵ-greedy argmaxa′ Q

πω

5: Calculate µ̂πω(s, ωaj), σ̂
2
πω
(s, ωaj) ▷ Eq.(4.3), (4.4)

6: j ← argmaxj′ {µ̂πω(s, ωaj′) + λσ̂πω(s, ωaj′)}
7: while j ̸= 0 and s is not terminal do
8: Take action a and observe s′, r
9: s← s′, j ← j − 1

10: end while
11: until episode ends
12: end for

Let H be the space of all possible histories h, then a semi-Markov option ω is

a tuple ω := ⟨Io, πo, βo⟩, where Io ⊂ S is an initiation set, πo : H → P(A) is

an intra-option policy, and βo : H → [0, 1] is a termination function. In this

framework, we define an action repeating option to be ωaj := ⟨S,1a, β(h) =

1|h|=j⟩, in which h ∈ H and 1a indicates |A|-dimensional vector where the

element corresponding to a is 1 and 0 for otherwise. This action repeating

option takes action a for j times and then terminates. Thus, the transition

dynamics Po and the reward function Ro can be defined as follows:

Po(s
′
(j) | s, ωaj) =

∏j−1

k=0 P
a
s′
(k)

,s′
(k+1)

if reachable

0 otherwise

Ro(s, ωaj) =

∑j−1

k=0 γ
kRa

s′
(k)

if reachable

0 otherwise

8

where s′(k) refers to a state after k steps from state s, “state s′(j) is reachable”

means that the episode does not terminate while repeating action a for j times

from state s, and P a
s′
(k)

,s′
(k+1)

= P (s′(k+1) | sk, a) and Ra
s′
(k)

= R(s′(k), a) are the

transition and reward model ofM. Note thatMo generalizes the originalM

where with extension length j of length 1, the transition and reward models of

Mo reduce to the original transition function Po(s
′
(1) | s, ωa,1) = P (s′(1) | s, a)

as well as the original reward function Ro(s, ωa,1) = R(s, a).

One interesting point of this approach is that we can observe smaller

extensions of semi-MDP transitions (j̃ ≤ j) Biedenkapp et al. 2021. Specifically,

when repeating the action for j times from state s, we can also experience

(s → s′(1)), (s → s′(2)), . . . , (s
′
(1) → s′(2)), . . . , (s

′
(j−1) → s′(j)), in total j·(j+1)

2

transitions. We make use of these transitions for efficient learning.

9

4 Method: Uncertainty-aware Temporal Exten-

sion

In this section, we propose our algorithm UTE: Uncertainty-Aware Temporal

Extension, which repeats the action in consideration of uncertainty in Q-values.

We first demonstrate temporally-extended Q-learning by decomposing the

action repeating option. We then describe how we estimate the uncertainty

of an option-value function Q̃πω by utilizing the ensemble method to select

extension length j in consideration of uncertainty. We additionally show that

n-step targets can be used for learning the action-value function Qπω without

worrying about off-policy correction.

4.1 Temporally-Extended Q-Learning

In this work, we mainly depend on techniques based on the Q-learning al-

gorithm Watkins and Dayan 1992, which seeks to approximate the Bellman

optimality operator to learn the optimal policy:

Definition 4.1 We define the optimal action-value function Qπ∗
ω and the

optimal option-value function Q̃π∗
ω respectively as

Qπ∗
ω(s, a)=Es′

(1)
∼P

[
R(s, a)+γmax

a′
Qπ∗

ω(s′(1), a
′)

]
, (4.1)

Q̃π∗
ω(s, ωaj)=Es′

(j)
∼Po

[
Ro(s, ωaj)+γjmax

ω′
Q̃π∗

ω(s′(j), ω
′)

]
, (4.2)

10

where s′(0) and s′(j), respectively, indicate one-step and j-step later state from

the state s . In practice, it is common to use a function approximator to estimate

each Q-value, Qπω(s, a; θ) ≈ Qπ∗
ω(s, a) and Q̃πω(s, ωaj ;ϕ) ≈ Q̃π∗

ω(s, ωaj). We

use two different neural network function approximators parameterized by θ

and ϕ respectively.

4.2 Option Decomposition

Learning the optimal policy over options, instead of the optimal action policy,

has the same effect as enlarging the action space from |A| to |A| × |J |,

where J ={1, 2, ... , max repetition}. Generally, inaccuracies in Q-function

estimations can cause the learning process to converge to a sub-optimal policy,

and this phenomenon is amplified in situations with large action spaces Thrun

and Schwartz 1993; Zahavy et al. 2018. Therefore, we consider decomposed

policy over option Biedenkapp et al. 2021, πω(ωaj |s) := πa(a|s) · πe(j|s, a), in

which an action policy πa(a|s) : S → P(A) assigns some probability to each

action conditioned on a given state, and then an extension policy πe(j|s, a) :

S ×A → P(J) assigns some probability to each extension length conditioned

on a given state and action. Note that there exists a hierarchy between

decomposed policies πa and πe, thus, πa always has to be queried before

πe at every time an option initiates. The agent first chooses an action a

from action policy πa based on the action-value function Qπω (e.g. ϵ-greedy

argmaxa′ Q
πω(s, a)). Then, given this action a, it selects extension length j

from πe according to the option-value function Q̃πω .

By decomposing the policy over option πω, we can decrease the search space

from |A|×|J | to |A|+|J |, inducing stable learning. We provide empirical results

11

showing that decomposing option can stabilize the Q-learning in Figure 7.7a.

However, this learning process may converge to a sub-optimal policy because it

is intractable to search all the possible combinations of actions and extension

lengths (a, j). The agent may repeat the sub-optimal action excessively or

sometimes be overly myopic. Our UTE can mitigate this issue by inducing risk

sensitivity to the extension policy πe.

Note that the equation max
a

Qπ∗
ω(s, a) = max

ω
Q̃π∗

ω(s, ω) holds trivially since

the optimal policy over option π∗
ω incorporates the optimal action policy

π∗
a (Refer Appendix 7.2.3). Thus, target value for the option selection of

repeated actions is the same as the target for a single-step action selection

within the option. In our implementation, we use max
a′

Qπ∗
ω(s′(j), a

′) instead

of max
ω′

Q̃π∗
ω(s′(j), ω

′
aj) for the target value in Eq.(4.2). This can stabilize the

learning process by sharing the same target.

4.3 Ensemble-based Risk-Sensitive Action Repetition

In the previous action repetition methods Lakshminarayanan et al. 2017;

Sharma et al. 2017; Dabney et al. 2020; Biedenkapp et al. 2021, they extend

the chosen action without considering uncertainty which could easily run to

failure. The only situation where these problems do not occur is when their

extension policies are optimal, which means they need to expect the j step

later state precisely. However, it is improbable in the sense that this situation

rarely occurs in the learning process. In order to solve this problem, we propose

a strategy of choosing a extension length j in a risk-sensitive manner. UTE is a

risk-sensitive version of the TempoRL Biedenkapp et al. 2021, which not only

selects an action in a state but also for how long to commit to that action.

12

The main idea of TempoRL is to explore deeper by skipping unimportant states.

However, our main intuition is that simply repeating the chosen action is not

enough. We may encounter undesirable states while repeating the action. Thus,

it is crucial to consider the uncertainty of option-value functions Q̃πω , when

selecting extension length j by extension policy πe.

In order to estimate uncertainty in our estimated option-value functions,

we utilize the ensemble method, becoming prevalent in RL recently Osband

et al. 2016; Da Silva et al. 2020; Bai et al. 2021. We use a network consisting

of a shared architecture with B ∈ Z+ independent ”heads” branching off

from the shared network. Each head corresponds to a option-value function,

Q̃πω

(b), for b ∈ {1, 2, . . . , B}. Each head is randomly-initialized and trained by

different samples from an experience buffer. Unlike B-DQN Osband et al. 2016

where each one of the value function heads is trained against its own target

network, our UTE trains each value function head against the same target. If

each head has its own target head respectively, since the objective function of

neural networks is generally non-convex, each Q-value may converge to different

modes. In this case, as training the policy, the estimated uncertainty of option

Q-value, σ̂πω , could not converge to zero. This means that it is unable to learn

an optimal policy. Therefore, using the same target is one of the key points of

our implementation.

Given state s and action a, Q̃πω

(b)-values are aggregated by extension length j

to estimate mean and variance as follows:

µ̂πω(s, ωaj) :=
1

B

B∑
b=1

Q̃πω

(b)(s, ωaj) (4.3)

σ̂2
πω
(s, ωaj) :=

1

B

B∑
b=1

(Q̃πω

(b)(s, ωaj))
2 − (µ̂πω(s, ωaj))

2 (4.4)

13

Then,we define risk-sensitive extension policy πe, which takes extension length j

deterministically and risk-sensitively given state and action, by introducing

the uncertainty parameter λ ∈ R:

j = argmax
j′∈J

{µ̂πω(s, ωaj′) + λσ̂πω(s, ωaj′)}

where λ indicates the level of risk sensitivity. The positive λ induces more

aggressive exploration, and the negative one causes risk-averse exploration.

4.4 n-step Q-Learning

We make use of n-step Q-learning Sutton 1988 to learn both Qπω and Q̃πω ,

whereas TempoRL Biedenkapp et al. 2021 used it only for updating Q̃πω . We

found that n-step targets can also be used to update Qπω -values without any

off-policy correction Harutyunyan et al. 2016, e.g. importance sampling. Given

the sampled n-step transition τt = (st, at, Ro(st, oan), st+n) from replay buffer

R, as long as n is smaller than or equal to the current extension policy πe’s

output j, the transition τt trivially follows our target policy πω. Thus, τt can

be directly used to update the action-value function Qπω . Instead of one step

Q-learning in Eq.(4.1), UTE uses n-step Q-Learning to update Qπω :

LQπω (θ) = Eτt

[
(Qπω(st, at; θ)−

n−1∑
k=0

γkrt+k − γnmax
a′

Qπ∗
ω(st+n, a

′; θ̄))2
∣∣∣n ≤ j

]

where θ̄ are the delayed parameters of action-value function Qπω and j ∼

πe(jt|st, at). In general, n-step returns can be used to propagate rewards faster

Watkins 1989; Peng andWilliams 1994. It mitigates the overestimation problem

Thrun and Schwartz 1993 in Q-learning as well Meng et al. 2021. We empirically

14

illustrate that n-step learning leads to faster learning in Figure 7.7b. Note that

we don’t need to pre-define n because it is dynamically determined by current

extension policy πe.

15

5 Experiments

In this section, we present three main experimental results of UTE: Chain MDP,

Gridworlds, and Atari 2600 games Machado et al. 2018. First, we validate

our reasoning to adjust uncertainty parameter λ depending on the degree

of riskiness of an environment (Chain MDP, Gridworlds). Second, we show

how well-tuned λ contribute to performance significantly in more complicated

environments (Atari 2600). Note that n-step Q-learning for extension policy

was not applied to the experiments of Chain MDP and gridworlds to compare

the effect of risk-sensitive action repetition.

. . .<latexit sha1_base64="Mic0xWFzd6dy9/EWBxgfmcBSCaY=">AAAB6nicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePFYqf2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3KY9qCj4YODx3gwz84JECoOu++EUVlbX1jeKm6Wt7Z3dvfL+QdvEqWa8xWIZ625ADZdC8RYKlLybaE6jQPJOMLme+517ro2I1R1OE+5HdKREKBhFKzWbA29QrnhVNwf5m1Rgicag/N4fxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs/zUGTmxypCEsbalkOTq14mMRsZMo8B2RhTH5qc3F3/zeimGl34mVJIiV2yxKEwlwZjM/yZDoTlDObWEMi3srYSNqaYMbTql/4XQPqt659Xaba1Sv1rGUYQjOIZT8OAC6nADDWgBgxE8wBM8O9J5dF6c10VrwVnOHMI3OG+f2WKNgw==</latexit>

S1
<latexit sha1_base64="E8O2nPJOWmlIp5zibS2NiEWe29Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoJ4k4MVjJOYByRJmJ7PJkNnZZaZXCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3cbz9xbUSsHnGScD+iQyVCwShaqdHoV/rFklt2FyDrxMtICTLU+8Wv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVcreVbn6UC3VbrM48nAG53AJHlxDDe6hDk1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kD1oGNgQ==</latexit>

S2

<latexit sha1_base64="LNMFR+bITZenX/Ss02D6K7EC81U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArQT1JwIsniWgekCxhdtJJhszOLjOzQljyEV48KOLV7/Hm3zhJ9qCJBQ1FVTfdXUEsuDau++3kVlbX1jfym4Wt7Z3dveL+QUNHiWJYZ5GIVCugGgWXWDfcCGzFCmkYCGwGo5up33xCpXkkH804Rj+kA8n7nFFjpeZDN7078ybdYsktuzOQZeJlpAQZat3iV6cXsSREaZigWrc9NzZ+SpXhTOCk0Ek0xpSN6ADblkoaovbT2bkTcmKVHulHypY0ZKb+nkhpqPU4DGxnSM1QL3pT8T+vnZj+lZ9yGScGJZsv6ieCmIhMfyc9rpAZMbaEMsXtrYQNqaLM2IQKNgRv8eVl0jgvexflyn2lVL3O4sjDERzDKXhwCVW4hRrUgcEInuEV3pzYeXHenY95a87JZg7hD5zPH6FLjxs=</latexit>

SN�1

<latexit sha1_base64="FPt6PB4mBLfnA5lbMrkiK37ffdw=">AAAB7HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePEkFU1baEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xu3HQUXBBwOP92aYmRemUhh03Q+nsLS8srpWXC9tbG5t75R395omyTTjPktkotshNVwKxX0UKHk71ZzGoeStcHQ59Vv3XBuRqDscpzyI6UCJSDCKVvJve/n1pFeueFV3BvI3qcACjV75vdtPWBZzhUxSYzqem2KQU42CST4pdTPDU8pGdMA7lioacxPks2Mn5MgqfRIl2pZCMlO/TuQ0NmYch7Yzpjg0P72p+JvXyTA6D3Kh0gy5YvNFUSYJJmT6OekLzRnKsSWUaWFvJWxINWVo8yn9L4TmSdU7rdZuapX6xSKOIhzAIRyDB2dQhytogA8MBDzAEzw7ynl0XpzXeWvBWczswzc4b5/Jzo6s</latexit>

SN

<latexit sha1_base64="PpM0i5ftkjpeiTLCkpa2wjQZ4Os=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GjLttJ0ulIIblxXtA9qhZNJMG5rJDElGKKWf4MaFIm79Inf+jelDUNEDFw7n3Mu99wQJZ0oj9GFl1tY3Nrey27md3b39g/zhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bwfhq7rfvqVQsFnd6klA/wkPBQkawNtKtvHD6+QKyUcmreWWI7FIZFYsVQ6rI9WoudGy0QAGs0Ojn33uDmKQRFZpwrFTXQYn2p1hqRjid5XqpogkmYzykXUMFjqjyp4tTZ/DMKAMYxtKU0HChfp+Y4kipSRSYzgjrkfrtzcW/vG6qQ8+fMpGkmgqyXBSmHOoYzv+GAyYp0XxiCCaSmVshGWGJiTbp5EwIX5/C/0mraDsV271xC/XLVRxZcAJOwTlwQBXUwTVogCYgYAgewBN4trj1aL1Yr8vWjLWaOQY/YL19AkikjdA=</latexit>

r = 1

<latexit sha1_base64="gvApYv1EMLDEmarqeJW6BUC/8J4=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuhqRO29koBTcuK9gHtEPJpJk2NPMgyRTK0D9x40IRt/6JO//G9CGo6IELh3Pu5d57glRwpRH6sNbWNza3tgs7xd29/YND++i4pZJMUtakiUhkJyCKCR6zpuZasE4qGYkCwdrB+GbutydMKp7E93qaMj8iw5iHnBJtpL5ty6teKAnN8SzHCKFZ3y4hp1LBnluFyKnhMr5Ehnhe2S0jiB20QAms0Ojb771BQrOIxZoKolQXo1T7OZGaU8FmxV6mWEromAxZ19CYREz5+eLyGTw3ygCGiTQVa7hQv0/kJFJqGgWmMyJ6pH57c/Evr5vp0PNzHqeZZjFdLgozAXUC5zHAAZeMajE1hFDJza2QjogJQpuwiiaEr0/h/6RVdnDVce/cUv16FUcBnIIzcAEwqIE6uAUN0AQUTMADeALPVm49Wi/W67J1zVrNnIAfsN4+AcW0kxw=</latexit>

r =
1

1000

Figure 5.1 Chain MDP (Length: N)

5.1 Chain MDP

We experimented in the Chain MDP environment as described in Figure 5.1 Os-

band et al. 2016. In this toy environment, we test the ability of algorithms

to perform deep exploration. Also, we evaluated the effect of the uncertainty

parameter (λ) in our algorithm. First, the length of the chain is set to N . Each

episode of interaction lasts N +8 starting from the initial state (s2). There are

16

two possible actions {left, right}. The agent needs to reach the right end (sn)

of the chain and perform the right action to receive a reward of 1. A deceptive

small reward, 0.001, is given when the agent reaches the left end (s1) of the

chain and performs a left action. The reward is sparse and we need “deep”

exploration in order to obtain a big reward. This problem becomes harder as

the chain length N increases. We compared our method with other algorithms,

ϵz-Greedy Dabney et al. 2020 and TempoRL Biedenkapp et al. 2021.

Setup. Each algorithm is trained for a total of 1,000 episodes with a

fixed horizon length, N + 8, where N is the chain length. Therefore, at each

episode, the agent can get a reward from zero to 10. We limited the maximum

extension length as 10 for TempoRL and UTE. All policies use ϵ-greedy as an

exploration strategy where the exploration rate, ϵ, is linearly decayed from

1.0 to 0.001 over N × 10 steps. Additionally, for the hyperparameter µ of

ϵz-Greedy, we set it to 1.25, which showed the best performance among the set

of {1.25, 1.5, 2.0, 2.5, 3.0}. And for UTE, we use the best uncertainty parameters

λ = +2.0 among the set of {−2.0,−1.0, 0.0,+1.0,+2.0} (See Table 7.4 in

Appendix for more details about hyperparameters).

Chain Length 10 30 50 70

ϵz-Greedy 0.654 0.427 0.434 0.131
TempoRL 0.904 0.740 0.246 0.052
UTE (ours) 0.919 0.758 0.560 0.191

Table 5.1 Normalized AUC on Chain MDP over 20 runs

Exploration-Favor. Table 5.1 summarizes the results on various levels

of chain length in terms of normalized area under the reward curve (AUC),

comparing UTE with the best uncertainty parameter (+2.0, the most optimistic

λ) to ϵz-Greedy and TempoRL. A reward AUC value closer to 1.0 indicates

17

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

Chain Length = 10

ez-greedy
TempoRL
UTE

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

Chain Length = 30

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

Chain Length = 50

0 1000 2000 3000 4000 5000
Episode

0

2

4

6

8

10

Re
wa

rd

Chain Length = 70

Figure 5.2 Learning curves for ϵz-Greedy, TempoRL, and UTE in Chain MDP

environment with maximum extension length 10. The rewards are averaged over

20 runs with different seeds. UTE achieves the highest reward and stable learning

throughout different chain lengths. Learning curve for N = 70 is presented

with 5,000 training episodes to fully demonstrate the learning process.

that the agent was able to find the optimal policy faster. The total training

episodes for calculating AUC was set to 1,000 across all chain lengths. The

results in the table show that UTE outperforms the other two baselines notably

throughout different chain lengths. In Figure 5.2, we depict learning curves for

training episodes. The figure shows that UTE has a better exploration strategy

which leads to higher reward even in the difficult settings (longer chain length)

given an appropriate uncertainty parameter λ = +2.0 . We also point out

that UTE has a smaller variance than TempoRL after it has reached the optimal

reward of 10. This is mainly because UTE can collect more diverse samples by

exploratory extension policy πe, which may lead to better generalization and

more accurate approximation to the optimal option-value function.

More importantly, we can encode the exploration-favor strategy by ad-

justing the uncertainty parameter, λ. In Appendix Table 7.4, we verify that

more positive λ achieves higher AUC scores. When the agent selects a random

action by the ϵ-greedy action policy, it can explore deeper by being more

optimistic, which leads to faster convergence to the optimal solution. An

aggressive exploration strategy is beneficial because the environment has no

risky area where the game terminates while repeating the action.

18

S G

(a) Bridge

S

G

(b) ZigZag

Figure 5.3 6× 10 Gridworlds. Agents have to reach a fixed goal state (G)

from a fixed start state (S) detouring the lava. Dots represent decision steps

of policies with and without temporally-extended actions.

5.2 Gridworlds

In this section, we analyze the empirical behavior of the various algorithms

in the gridworlds environment: Lava (Figure 5.3). It is a 6 × 10 grid with

discrete states and actions. An agent starts in the top-left corner and must

reach the goal to receive a positive reward (+1) while avoiding stepping into

the lava (-1 reward) on its way. In contrast to the chain MDP environment,

since we have a risky area “lava”, an uncertainty-averse strategy must be

preferred. We compare our method against vanilla DDQN Van Hasselt et al.

2016 ϵz-Greedy Dabney et al. 2020 and TempoRL Biedenkapp et al. 2021.

Setup. We trained all agents for a total of 3.0 × 103 episodes using the

ϵ-greedy method with 3 different types of exploration rate schedule: linearly

decaying from 1.0 to 0.0 over all episodes, logarithmically decaying, and fixed

ϵ = 0.1. We limited the maximum extension length to be 7. Though it is

a tabular environment, we use neural networks to learn Q-value functions

instead of tabular Q-learning to identify the impact of epistemic uncertainty

more explicitly. For ϵz-Greedy, we fix µ to 1.25 which was the best among the

19

set of {1.25, 1.5, 2.0, 2.5, 3.0}, and for UTE, we use the best λ = −1.5 among

the set of {−1.5,−1.0, 0.0} (Refer Table 7.5 in Appendix for more details).

Env ϵ decay DDQN TempoRL ϵz-Greedy UTE

Bridge
Linear 0.61 0.44 0.76 0.86
Log 0.54 0.32 0.92 0.92
Fixed 0.57 0.41 0.59 0.83

Zigzag
Linear 0.38 0.14 0.62 0.84
Log 0.46 0.12 0.76 0.89
Fixed 0.34 0.19 0.36 0.76

Table 5.2 Normalized AUC for reward across different ϵ exploration

schedules over 20 random seeds.

Uncertainty-Averse. We compare our UTE to the other two baselines in

terms of normalized area under the reward curve for three different ϵ-greedy

schedules (see Table 5.2). A bigger AUC value implies that the agent can find

the optimal policy quickly. Across all ϵ exploration strategies, UTE outperforms

other methods while showing better performance as uncertainty parameter λ

becomes smaller (large negative λ). Figure 5.4a shows that UTE learns faster

than others. This result supports our argument that a pessimistic strategy is

preferred in environments with unsafe regions.

Interestingly, the performance of TempoRL is a lot worse than the one

described in the original paper Biedenkapp et al. 2021. This is because we use

function approximation to estimate Q-values, rather than tabular Q-learning.

Generally, uncontrolled or undesirable overestimation bias can be caused when

using function approximation Moskovitz et al. 2021. Therefore, simply selecting

extension length with the highest value leads to a catastrophic result in this

case. Table 5.2 verifies the fact that it is beneficial to use a pessimistic extension

policy in these environments, especially in function approximation. Moreover,

in Appendix Table 7.5, we empirically show that more negative λ achieves

higher AUC scores.

20

(a) Learning curve

0 1000 2000 3000
Episodes

1

0

1
Re

tu
rn

Bridge

DDQN
ez-greedy
TempoRL
UTE

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

ZigZag

(b) Coverage

10

10

10

10

10

10

10

10

10Bridge ZigZag

U
T
E

Te
m
p
oR

L

S G

S G S

G

S

G

Figure 5.4 Learning curve (left) and coverage plots (right) on ZigZag envi-

ronments, comparing UTE to DDQN, ϵz-Greedy and TempoRL on a logarithmically

decaying ϵ-strategy. In coverage plots, blue represents states visited more often

and white states rarely or never seen. See Appendix 7.5 for the expanded

version of the figures.

Coverage. In Figure 5.4b, we present coverage plots comparing UTE and

TempoRL on two types of Lava environments. We specify λ of UTE as -1.5,

which exhibited good performance overall. The results show that UTE provides

significantly better coverage over the state space. We can induce our algorithm

to repeat sub-optimal action less by using a pessimistic extension policy. Owing

to this, our agent can survive for a longer time, leading to better coverage.

Distribution of extension length. Figure 5.5 depicts the extension

length distributions of TempoRL and UTE on Birdge and ZigZag with logarith-

mically decaying ϵ exploration schedule More red represents more repetitions.

It shows that UTE prefers fewer repetitions than TempoRL. Also, we can figure

out that a more pessimistic extension policy (λ < 0) leads to fewer repetitions.

In a pessimistic extension policy, the agent tends to refrain from repeating the

chosen action many times because the value of a distant state could be much

more uncertain than that of a neighbor one.

21

TempoRL -0.5 -1.0 -1.5
UTE

0.0

0.2

0.4

0.6

0.8

1.0

TempoRL -0.5 -1.0 -1.5
UTE

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Bridge ZigZag

Figure 5.5 Distributions of extension length in Gridworlds.

5.3 Atari 2600: Arcade Learning Environment

In this subsection, we evaluate the performance of UTE on the Atari bench-

mark, comparing the following six baseline algorithms: i) vanilla DDQN Van

Hasselt et al. 2016, ii) Fixed Repeat (j = 4), iii) ϵz-Greedy Dabney et al.

2020, iv) DAR (Dynamic Action Repetition Lakshminarayanan et al. 2017), v)

TempoRL Biedenkapp et al. 2021 vi) B-DQN Osband et al. 2016. The Fixed

Repeat is an algorithm that naively repeats the action a fixed amount of

times. Note that action policies of all agents except for B-DQN have the same

architecture as vanilla DDQN with a standard ϵ-greedy exploration scheme.

Setup. For direct comparison, we trained our agents on 12 different Atari

environments including 5 games experimented in Biedenkapp et al. 2021 as

well. Each algorithm is trained for a total of 2.5 × 106 training steps, which

is only 10 million frames. All algorithms except B-DQN use a linearly decaying

ϵ-greedy exploration schedule over the first 200,000 time-steps with a final ϵ

fixed to 0.01. We evaluated all agents every 10,000 training steps and evaluated

for 3 episodes with a very small ϵ exploration rate (0.001). We used OpenAi

22

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

crazy_climber

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

up_n_down
DDQN ez-greedy TempoRL Bootstrapped DQN UTE-best UTE-adaptive

Figure 5.6 Learning curves of UTE with best λ, UTE with adaptive λ and

other baseline algorithms on Atari environments. The shaded area represents

the standard deviation over 7 random seeds.

Environment DDQN Fixed-j ϵz-Greedy DAR TempoRL B-DQN
UTE

1-step n-step Adaptive λ

Crazy Climber
5265.8
± 4063.4

3731.1
± 2997.2

5295.1
±3609.7

2059.1
±1225.1

4885.5
±3378.3

2961.6
±3080.0

6761.9
±5061.9

8175.6
±5790.4

7046.3
±5350.0

Road Runner
3277.0
±4470.3

1230.3
±1640.9

3733.8
±4716.5

845.5
±791.9

8131.5
±4099.3

4976.8
±6032.6

4935.6
±5206.4

12323.2
±4177.1

10353.3
±3283.3

Sea Quest
207.6
±124.5

47.0
±26.2

214.5
±85.6

42.8
±33.9

128.2
±55.5

145.1
±64.5

206.9
±92.4

313.4
±141.1

320.3
±159.4

Up n Down
536.4
±361.5

594.8
±324.6

823.1
±320.0

348.7
±227.0

641.5
±428.6

383.2
±242.8

911.5
±476.7

1072.8
±664.0

990.4
±707.5

Table 5.3 Average rewards and standard deviations (small numbers) over

the last 100,000 time steps over Atari environments.

Gym’s Atari environment with 4 frame-skips following Bellemare et al. 2013.

For maximal extension length, we set it to 10. To be as fair as possible, we used

the per-game best hyperparameters µ and λ for ϵz-Greedy and UTE respectively

(Refer Table 7.7 and 7.8 in Appendix).

Uncertainty-Awareness. In Figure 5.6, we give representative examples

of per-game performance for UTE and other algorithms (see Figure 7.8 for other

environments). And Table 5.3 summarizes the the results of the games in

terms of average rewards over the last 100,000 time steps (Refer Table 7.9

for other environments). Overall, UTE achieves higher final rewards than other

agents (Refer Table 7.6 for DQN-normalized version; DQN-normalized score

is defined in Appendix 7.5.3). These results make a strong point that if λ is

tuned suitably according to the environment, our method shows significantly

improved performance than existing action repetition methods (DAR, ϵz-Greedy

23

and TempoRL) as well as a deep exploration algorithm (B-DQN). On top of that,

we found that the Fixed Repeat algorithm fails at learning in most games.

Hence, it is crucial to learn a good extension policy for higher performance.

Adaptive Uncertainty Parameter λ. Instead of fixing λ for the whole

learning process, we propose a method to adaptively choose λ using a non-

stationary multi-arm bandit algorithm Badia et al. 2020. Let Λ be the pre-

specified set of uncertainty parameters. Then, at the beginning of each episode

k, the bandit chooses an arm λk ∈ Λ and receives feedback of episode returns

Rk(λk). Since the reward signal Rk(λk) is non-stationary, we use a sliding-

window UCB with ϵucb-greedy exploration (details of the algorithms are pro-

vided in Appendix 7.5.3). Figure 5.6 and Table 5.3 demonstrate that UTE

with adaptive λ still out performs other baselines. These results are promising

since we don’t have to specify the λ prior, relieving the burden of tuning

hyperparameters.

Effect of Decomposition. Our method formulates joint optimization

of the action and the extension length as a two-level optimization problem.

The action is selected based on Qπω and then the extension length is selected

based on Q̃πω sequentially. Figure 7.7a shows the effect of the decomposition.

Without decomposition, the size of search space is |A| × |J |, which leads to

a catastrophic performance. In some environments such as Beam Rider and

Road Runner, the DQN-normalized scores are negative, which means the agent

is worse than a random policy. Overall, We can see that decomposition of

action and extension length selection improves the performance significantly.

Effect of n-step Learning. We conducted an ablation study to analysis

n-step Q-learning for the action-value function Qπω . Figure 7.7b shows the

effect of an n-step target for Qπω in terms of the DQN-normalized score. This

24

result illustrates that applying n-step learning is beneficial in most games,

which shows a 30.2% improvement (from 1.39 to 1.81) after it has been applied.

Especially in games with relatively sparse rewards such as Road Runner and

Centipede, it dramatically enhanced the performance. This is because rewards

can be propagated faster using n-step returns. These results are promising

since we don’t have to specify the λ prior, relieving the burden of tuning

hyperparameters.

-1.0

0.0

1.0

2.0

3.0

4.0

D
Q

N
-n

or
m

al
iz

ed
 S

co
re

Before Decomposition After Decomposition

Avg: 1.29

Avg: 0.09

(a) Decomposition Effect

0.0

1.0

2.0

3.0

4.0

D
Q

N
-N

or
m

al
iz

ed
 S

co
re

RiSAR without n-step RiSAR

Avg: 1.81

Avg: 1.39

(b) Multi-step Target Effect for Qπω

Figure 5.7 Ablation studies for decomposition effect (left) and n-step

learning effect for action-value function Qπω . The negative score indicates

that the policy is worse than a random policy. (5 random seeds)

25

6 Conclusion

We presented UTE that learns to repeat actions while explicitly considering

the uncertainty over the Q-value estimates of the states reached under the

repeated-action option. We empirically showed that it is crucial to consider

environment-inherent uncertainty, and a well-suited uncertainty parameter λ

significantly outperforms other existing action repetition algorithms such as

DAR, ϵz-Greedy and TempoRL as well as a traditional deep exploration algorithm

such as B-DQN in various environments. The improved performance comes from

its ability to repeat a sub-optimal action less in risky environments and explore

deeper in exploration-favor environments. To our best knowledge, this is the

first deep RL algorithm considering uncertainty in the future when instantiating

temporally-extended actions.

26

7 Appendix

7.1 Details of Baselines

7.1.1 Fixed Repeat

Fixed Repeat in Atari experiment corresponds to a DDQN agent that always

repeats the action for a fixed amount of times. In other words, the extension

policy returns the same j at every decision time. In our settings, j is set to

4 (see 7.6 for performance of other js). The reason for evaluating this naive

method is to confirm that this approach fails so that learning extension length

is crucial.

7.1.2 Temporally-Extended ϵ-Greedy

ϵz-Greedy Dabney et al. 2020 is a simple add-on to the ϵ-greedy policy. The

agent follows the current policy for one step with probability 1 − ϵ, or with

probability ϵ samples an action a from a uniform random distribution and

repeats it for j times, which is drawn from a pre-defined duration distribution.

We used the heavy-tailed zeta distribution, with µ = 1.25 as the duration

distribution in the Chain MDP and the Gridworlds environment. This was

done by conducting a hyperparameter search on µ for the set {1.25, 1.5, 2.0,

2.5, 3.0}. In Atari games, we choose the best per-game µ among the set {1.5,

27

1.75, 2.0, 2.25, 2.5} for a fair comparison to our UTE. A combination of ϵ chance

to explore and zeta-distributed duration is called ϵz-greedy exploration.

The experimental results from Dabney et al. 2020 show that ϵz-Greedy

incorporated in existing R2D2 and Rainbow agents result higher median human-

normalized score over the 57 Atari games. However, this algorithm is highly

dependent on the exploration rate ϵ, which can cause difficulties in online

learning.

7.1.3 Dynamic Action Repetition

DAR Lakshminarayanan et al. 2017 is a framework for discrete-action space deep

RL algorithms. DAR duplicates the output heads twice such that an agent can

choose from 2×|A| actions. And each output heads corresponds to pre-defined

repetition values, r1, r2, where r1 and r2 are fixed hyper parameters. Hence,

action ak is repeated r1 number of times if k < |A| and r2 number of times if

k ≥ |A|. In our experiments, r1 is fixed to maximum extension length J and

r2 to 1 to allow for actions at every time step.

There are some drawbacks to this approach. First, r1 and r2 have to be

predefined, which means we need prior knowledge of the environments. And

also, the learning process becomes a lot more difficult because the action space

doubled.

7.1.4 TempoRL

TempoRL Biedenkapp et al. 2021 proposes a “flat” hierarchical structure in

which behavior policy (πa) determines the action a to be played given the

current state s, and a skip policy (πj) determines how long to repeat this

action. The flat hierarchical structure refers to behavior policy and skip policy

28

having to make decisions at the same time-step. The action policy has to be

always queried before the skip policy. When an agent plays a chosen action for

extension length j, total of j(̇j+1)
2 skip-transitions are observed and stored in

the replay buffer. The behavior and the skip Q-functions can be updated using

one-step observations and the overarching skip-observation. Using the samples

collected, the behavior policy can be learned by a classical one step Q-learning.

The n-step Q-learning is used to learn the skip value with the condition that,

at each step in the j steps, the action stays the same.

7.1.5 Bootstrapped DQN

B-DQN Osband et al. 2016 is an algorithm for temporally-extended (or deep)

exploration. Inspired by Thompson sampling, it selects an action without the

need for an intractable exact posterior update. Osband et al. 2016 suggest boot-

strapped neural nets can produce reasonable posterior estimates. The network

of bootstrapped DQN consists of a shared architecture with K bootstrapped

“heads” stretching off independently. Each head is initialized randomly and

trained only on its bootstrapped sub-sample of the data. The shared network

learns a joint feature representation across all the data. For evaluation, an

ensemble voting policy is used to decide action.

7.2 Implementation Details: UTE

7.2.1 Bootstrap with random initialization for option-value

functions

Formally, we consider an ensemble of B option-value functions, {Q̃πω

(b)}
B
b=1,

where πω denotes the policy over option. To train the ensemble of option-

value functions Q̃πω

(b), we use two mechanisms to enforce diversity between

29

these Q-functions Efron 1982; Osband et al. 2016: The first mechanism is

random-initialization of model parameters for each option-value functions to

induce initial diversity in the models. The second mechanism is to train each

Q-function with different samples. Specifically, in each timestep t, each bth Q-

function is trained by multiplying binary mask mt,b to each objective function,

where the binary mask mt,b is sampled from the Bernoulli distribution (p) with

parameter β ∈ (0, 1]. In our experiments, we use p = 0.5 for the parameter of

the Bernoulli distribution.

7.2.2 Multi-step target for both action- and option-value func-

tions

We learn parameterized estimates of Q-value functions, an action-value func-

tion Qπω(s, a; θ) ≈ Qπ∗
ω(s, a) and an option-value function Q̃πω(s, ωaj ;ϕ) ≈

Q̃π∗
ω(s, ωaj), using neural networks. We use two different neural network func-

tion approximators parameterized by θ and ϕ respectively. For stability, we

integrate double Q-learning Van Hasselt et al. 2016 technique. We use multi-

step Q-learning to update both action-value function Qπω and option-value

function Q̃πω . The following equations represent Bellman residual errors of

action- and option-value functions respectively:

LQπω (θ) = Eτt∼R

[
(Qπω (st, at; θ)−

n−1∑
k=0

γkrt − γn max
a′

Qπ∗
ω (st+n, a

′; θ̄))2
∣∣∣∣n ≤ j ∼ πe

]
(7.1)

LQ̃πω (ϕ) = Eτt∼R

[B∑
b=1

[
mt,b(Q̃

πω

(b)(st, ωaj ;ϕ)−
j−1∑
k=0

γkrt − γj max
a′

Qπ∗
ω (st+j , a

′; θ̄))2
]]

(7.2)

where τt is a multi-step transition trajectory sampled from a replay buffer

R, mt,b is a binary bootstrap mask, and θ̄ are the delayed parameters of

30

action-value function Qπω . The delayed parameters are the parameters of

the target network for action-value function Qπω . The target network with the

delayed parameters is the same as the online network except that its parameters

are copied every τ step from the online network, and kept fixed on all other

steps Mnih et al. 2015. Note that n for n-step learning in Eq.(7.1) has to

follow the current extension policy πe. Therefore, in order to update action-

value function Qπω in Eq.(7.1), we only use trajectory samples in which the

extension length is smaller than or equal to the output of current extension

policy, i.e. n ≤ j ∼ πe(jt | st, at).

One interesting point of above equations is that we use the same target

value for both Q-functions: Qπω in Eq.(7.1) and Q̃πω Eq.(7.2). Trivially, we

can demonstrate that the target value for the option selection of repeated

actions is the same as one for single-step action selection within the option, i.e.

max
a′

Qπ∗
ω(st+j , a

′) = max
ω′

Qπ∗
ω(st+j , ω

′
aj). By using the same target value, we

can stabilize the learning process.

7.2.3 The Same Target for both action- and option- value

functions

In Subsection 4.1, we argue that we can use the same target for both types of

Q values. The following proposition formalizes the statement. Though it is a

trivial result, we simply present the proof of it for better comprehension.

Proposition 7.1 In a Semi-Markov Decision Processes (SMDPs), let an

option ω ∈ Ω be the action repeating option defined by action a and extension

length j, i.e. ωaj := ⟨S,1a, β(h) = 1h=j⟩. For all ω ∈ Ω, a policy over option, πω,

can be decomposed by an action policy πa(a | s) : S → P(A) and an extension

31

policy πe(j | s, a) : S ×A → P(|J |), i.e. πω(ωaj | s) := πa(a | s) · πe(j | s, a).

Then, for the corresponding optimal policy π∗
ω, the following holds:

V π∗
ω(s) = max

ωaj

Qπ∗
ω(s, ωaj) = max

a
Qπ∗

ω(s, a).

Proof. For any s ∈ S, define the value of executing an action in the context of

a state-option pair as QU : S ×Ω×A → R. Let πU (a | s, ωaj) : S ×Ω→ P(A)

be an intra-option policy Sutton et al. 1999, which returns an action a when

executing an option ωaj at state s. Then, option-value functions can be written

as:

Q̃πω(s, ωaj) =
∑
a′

πU (a
′|s, ωaj)QU (s, ωaj , a

′)

=
∑
a′

1aQU (s, ωaj , a
′)

= QU (s, ωaj , a), (7.3)

where the second equality holds since πU deterministically returns action a.

Therefore we have,

V π∗
ω(s0) = max

ωaj

Q̃π∗
ω(s0, ωaj)

= max
a,j

Q̃π∗
ω(s0, ωaj)

= max
a,j

Q∗
U (s, ωaj , a)

= max
a

{
max

j
Q∗

U (s, ωaj , a)

}
= max

a
Qπ∗

ω(s, a),

32

where the second equality holds since ωaj is determined by an action a and

extension length j, the third equality is by Eq.(7.3), and the last equality holds

since π∗
ω is the optimal policy. This concludes the proof.

7.3 Experiments Details

All experiments were run on an internal cluster containing GeForce RTX 3090

GPUs. Atari experiments took 13 hours to train for 10 million frames on GPU.

Our Chain MDP environment and B-DQN baseline implementation is based

on code from Touati et al. 2020. The license for this asset is Attribution-

NonCommercial 4.0 International.

Gridworlds and Atari environment settings along with TempoRL baseline imple-

mentation is from Biedenkapp et al. 2021. This asset is licensed under Apache

License 2.0. The Arcade Learning Environment (ALE) Bellemare et al. 2013

for Atari games is licensed under the GNU General Public License Version 2.

Baseline codes can be found at https://github.com/facebookresearch/

RandomizedValueFunctions and https://github.com/automl/TempoRL re-

spectively.

7.3.1 Chain MDP experiment

Network Architecture. In Chain MDP experiment, all agents, i.e. ϵz-Greedy,

TempoRL, and UTE, use simple DQN architecture Mnih et al. 2015 for their action

policy. The network consists of 3 dense layers with a ReLU activation function.

The number of hidden nodes is set to 16 for all dense layers.

TempoRL has another output stream that combines a hidden layer with 10 units

together with the output of the second fully connected layer. It is followed by

33

https://github.com/facebookresearch/RandomizedValueFunctions
https://github.com/facebookresearch/RandomizedValueFunctions
https://github.com/automl/TempoRL

Hyper-parameter Value

Discount rate 0.999
Target update frequency 500
Initial ϵ 1.0
Final ϵ 0.001
ϵ time-steps N × 100
Loss Function Huber Loss
Optimizer Adam
Learning rate 0.0005
Batch Size 64
Replay buffer size 5× 104

Extension replay buffer size 5× 104

Number of ensemble heads 10
Max extension length (J) 10, 15, 20
Uncertainty parameter (λ) -2, -1, 0, 1, 2

Table 7.1 Hyper-parameters used for the Chain MDP experiments

a fully connected layer that outputs predicted Q-values, extension lengths.

In order to implement extension policy πe of UTE, the agent has another

ensemble network of 10 identical neural networks. Each of these 10 ensemble

networks is a 3-layer neural network with fully connected layers with 26 hidden

units, where the input is a concatenation of the state and the chosen action.

7.3.2 Gridworlds experiment

Network Architecture. In the Gridworlds experiment, all agents, i.e. DDQN,

TempoRL and UTE, were trained using deep Q-network Mnih et al. 2015 with

3 dense layers. The number of each hidden node is 50 and ReLU activation

function was used for non-linearity. All of the agents were implemented using

double DQN Van Hasselt et al. 2016. Both TempoRL and UTE agents have

separate network for extension policy.

34

For extension policy, TempoRL uses a single 3-layer neural network with fully

connected layers of 50, 50, and 50 units, whereas our UTE uses 10 duplicated

networks of a 3-layer neural network with fully connected layers of 50, 50, and

50 units. The input of extension policy is a concatenation of the state and the

chosen action, which is the same as the Chain MDP experiment.

Hyper-parameter Value

Discount rate 0.99
Initial ϵ 1.0
Final ϵ 0.0
ϵ time-steps 50
Loss Function MSE Loss
Optimizer Adam
Learning rate 0.001
Batch Size 64
Replay buffer size 106

Extension replay buffer size 106

Number of ensemble heads 10
Max extension length (J) 7
Uncertainty parameter (λ) -1.5, -1.0, -0.5

Table 7.2 Hyper-parameters used for the Gridworlds experiments

7.3.3 Atari experiment

Network Architecture. The input size of images is 84× 84, and the last 4

frames of this image are stacked together. This will be our input throughout

the experiment.

DDQN agent uses the same architecture for DQN of Mnih et al. 2015 with the

target network Van Hasselt et al. 2016. This architecture has 3 convolutional

layers of 32, 64 and 64 feature planes with kernel sizes of 8,4 and 3, and strides

of 4,2, and 1, respectively. These are followed by a fully connected network with

512 hidden units followed by another fully connected layer to the Q-Values for

35

each action.

ϵz-Greedy agent uses the exact same architecture as Mnih et al. 2015. The only

difference with DDQN is that ϵz-Greedy repeats an exploratory action, which

is sampled from uniform random distribution. And the extension length j is

sampled from zeta distribution. The hyper-parameter µ for zeta distribution is

set depending on the experiments: 1.25 for Chain-MDP and Gridwolrds, and

the best one for each game in Atari experiment.

DAR agent selects action and extension length based on 2 × |A| Q-values.

Therefore, the output of the last layer is duplicated and the duplicate outputs

corresponding to a different extension length, r1 and r2. The hyper-parameters,

r1 and r2, are set to 1 and 10 respectively.

TempoRL agent uses the shared architecture, the structure of which is the same

as one described in Biedenkapp et al. 2021. On top of DQN architecture Mnih

et al. 2015, an additional output stream for the extension length is incorporated.

The extension length is embedded into a 10-dimensional vector and then

concatenated with the output of the last convolutional layer of the network.

The features then pass through two fully connected hidden layers, each with

512 units.

B-DQN has one torso network of 3 convolutional layers, which is the same

as that of DQN Mnih et al. 2015. However, it has 10 heads branching off

independently Osband et al. 2016. Each head consists of two fully connected

hidden layers, each with 512 units. Therefore the agent returns 10 Q-values

from each head.

UTE uses the similar architecture as that of TempoRL Biedenkapp et al. 2021. The

main difference compared to TempoRL is that UTE uses an ensemble method for

36

the output stream of extension length. After concatenating a 10-dimensional

extension length vector and the output of the last convolutional layer, the

concatenated vector pass through 10 heads branching off independently. Each

10 head consists of fully connected layer with 512 hidden units followed by a

fully connected layer to the Q-Values for each extension length.

Hyper-parameter Value

Discount rate 0.99
Gradient Clip 40.0
Target update frequency 500
Learning starts 10 000
Initial ϵ 1.0
Final ϵ 0.01
Evaluation ϵ 0.001
ϵ time-steps 200 000
Train frequency 4
Loss Function Huber Loss
Optimizer Adam
Learning rate 0.0001
Batch Size 32
Extension Batch Size 32
Replay buffer size 5× 104

Extension replay buffer size 5× 104

Number of ensemble heads 10
Max extension length (J) 10
Uncertainty parameter (λ) -1.5, -1.0, -0.5, -0.2,

0.0, 0.2, 0.5, 1.0

Table 7.3 Hyper-parameters used for the Atari experiments

7.4 Limitations

One of the limitations of our work is the total training frames in the Atari

games. We have trained our agents for only 10 million frames which is the

same as TempoRL paper Biedenkapp et al. 2021. However, 10 million frames

may not be enough to fully train the agent for some games. We acknowledge

37

that the final performance of the fully trained agent may differ from our result.

This issue stems from the limited computation resources we have. To train the

agent on the same game for multiple runs to obtain reliable results, we have

set the total training frames to be 10 million.

7.5 Further Experimental Results

7.5.1 Chain MDP

Uncertainty Parameter. Table 7.4 shows the effect of the uncertainty pa-

rameter on normalized AUC score for 1,000 training episodes. We can see

that an exploration-favoring high uncertainty parameter is beneficial in the

Chain MDP environment. The longer the chain length, the more sensitive

it becomes sensitive to the uncertainty parameter. In the chain length of

70, UTE with uncertainty parameter +2 is a lot better than the one with

uncertainty parameter -2. This result indicates that optimistically repeating

the chosen action could lead to good performance if there is no risky area

in the environment. The Table also shows that for ϵz-Greedy with µ = 1.25

performed the best, and we used the value for the experiments.

Maximum Repeat J . We can also predispose the agent to repeat actions

in larger numbers by increasing another parameter, the maximum extension

length J . However, increasing the maximum extension length is not always a

good solution as it increases the size of the set of extension lengths, |J |, slowing

down the learning process. As exhibited in Figure 7.1, the small maximum

extension length is detrimental to the agent’s performance. Note that the

degree of exploration of ϵz-Greedy is affected by the hyperparameter µ for

zeta distribution, and the value is fixed to 1.25 throughout the chain MDP

38

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Ch
ai

n
Le

ng
th

 =
 1

0
Re

wa
rd

Max Repeat = 10

ez-greedy
TempoRL
UTE

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

Max Repeat = 20

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

Max Repeat = 30

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Ch
ai

n
Le

ng
th

 =
 3

0
Re

wa
rd

0 200 400 600 800 1000
Episode

0

2

4

6

8

10
Re

wa
rd

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Ch
ai

n
Le

ng
th

 =
 5

0
Re

wa
rd

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

0 200 400 600 800 1000
Episode

0

2

4

6

8

10

Re
wa

rd

0 1000 2000 3000 4000 5000
Episode

0

2

4

6

8

10

Ch
ai

n
Le

ng
th

 =
 7

0
Re

wa
rd

0 1000 2000 3000 4000 5000
Episode

0

2

4

6

8

10

Re
wa

rd

0 1000 2000 3000 4000 5000
Episode

0

2

4

6

8

10

Re
wa

rd

Figure 7.1 Training reward for ϵz-Greedy, TempoRL, and UTE in the Chain

MDP environment. This is an expanded version of Figure 5.2 where the

horizontal axis represents the maximum extension length of 10, 15, and 20

from left to right, respectively. The vertical axis represents the chain length of

10, 30, 50, and 70 from top to bottom. Learning curve for N = 70 is presented

with 5,000 training episodes. (20 random seeds)

39

experiments. While TempoRL is sensitive to extension length especially when

the chain length is long, our UTE is quite robust to changes in extension length.

We can see that UTE agent reaches the highest final performance compared to

other agents.

TempoRL
ϵz-Greedy (µ) UTE (λ)

Chain Length 1.25 1.5 2.0 2.5 3.0 -2.0 -1.0 0.0 1.0 2.0

10 0.90 0.65 0.61 0.48 0.46 0.46 0.88 0.91 0.90 0.92 0.92
30 0.74 0.43 0.42 0.42 0.38 0.27 0.45 0.55 0.62 0.73 0.76
50 0.25 0.43 0.40 0.23 0.17 0.05 0.07 0.05 0.37 0.47 0.67
70 0.05 0.13 0.12 0.03 0.04 0.1 0.01 0.01 0.01 0.07 0.19

Table 7.4 Normalized AUC for reward and its standard deviation inside the

parenthesis across different agents over 20 random seeds. Maximum extension

length for TempoRL and UTE is set to 10. The numbers in the brackets of UTE

represent the uncertainty parameter, λ. We can see that greater uncertainty

parameters show better performance, especially in the difficult settings where

the chain length is long.

7.5.2 Gridworlds

In the following additional results, we supplement one more environment called

Cliff in addition to Bridge and Zigzag. Same as others, the Cliff is discrete,

deterministic, and has a 6× 10 size with sparse rewards. Note that all agents

are implemented by function approximation, not tabular setting.

Uncertainty Parameter Table 7.5 shows an uncertainty-averse (negative

uncertainty parameter) is beneficial in the Gridworlds environment where there

are risky area (Lava). Combined with the result of Figure 7.3, we empirically

verified that more negative λ induce more pessimistic behavior, which can

lead to better performance. The Table also shows that for ϵz-Greedy with

µ = 1.25 performed good in overall, and we used the value for the experiments.

Learning curve. In Figure 7.4, we plot all the learning curves of three

40

ϵz-Greedy (µ) UTE (λ)
Environment 1.25 1.5 2.0 2.5 3.0 -0.5 -1.0 -1.5

Cliff
Linear 0.80 0.79 0.79 0.78 0.77 0.89 0.88 0.90
Log 0.92 0.93 0.91 0.84 0.81 0.94 0.95 0.96
Fixed 0.65 0.64 0.64 0.64 0.63 0.84 0.84 0.85

Bridge
Linear 0.75 0.75 0.76 0.74 0.73 0.83 0.84 0.86
Log 0.92 0.92 0.91 0.90 0.89 0.85 0.88 0.92
Fixed 0.59 0.57 0.58 0.55 0.55 0.72 0.82 0.83

Zigzag
Linear 0.62 0.63 0.61 0.61 0.62 0.73 0.82 0.84
Log 0.76 0.72 0.63 0.61 0.52 0.66 0.86 0.89
Fixed 0.36 0.40 0.41 0.42 0.43 0.62 0.70 0.76

Table 7.5 Normalized AUC of reward for varying hyperparameters of µ

in ϵz-Greedy and λ in UTE on a logarithmically decaying ϵ-strategy in the

Gridworlds environment. (20 random seeds)

41

agents across three different Lava environments and three different exploration

schedules. In this result, we observe that UTE converges to the optimal solution

faster than other baselines, showing low standard deviations. Also, our UTE

is robust to varying exploration strategies even using sub-optimal ones such

as Fixed ϵ. One more interesting point is that TempoRL performs worse than

vanilla DDQN. These results contradict the ones of Biedenkapp et al. 2021, which

experimented in a tabular setting instead of function approximation. Generally,

when using function approximation to estimate Q-values, it is more likely to

choose sub-optimal action a. Therefore, in this case, it is necessary to consider

uncertainty in estimated values for safely repeating the chosen action. By

inducing pessimism (λ < 0) to the extension policy πe, the agent can repeat

the chosen sub-optimal action a less, which leads to a safer learning.

Coverage. Figure 7.2 illustrates state visitation coverage of different agents

for 3 different gridworlds environments. Both TempoRL and UTE repeat the cho-

sen actions, which can lead to a better exploration. However, TempoRL is not any

better than vanilla DDQN, whereas our UTE shows significantly better coverage.

This implies that a pessimistic extension policy inducing safe exploration can

result in better coverage of the state space.

Distribution of extension length. The full version of distributions of

extension length is presented in Figure 7.3. It shows that the TempoRL selects

large extension length, close to 7, more often than our UTE. We can see UTE

maneuver at a smaller scale as the uncertainty parameter decreases to induce

more pessimistic behavior. The portion of small extension lengths tends to

increase as being more pessimistic.

42

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Cliff Bridge ZigZag

D
D
Q
N

U
T
E

G G

G

G

Te
m
po
R
L

G

G

G

GG

Figure 7.2 Coverage plots on all Lava environments, comparing UTE (λ=-1.5)

to DDQN and TempoRL on logarithmically decaying ϵ-strategy (Blue represents

states visited more often and white states rarely or never seen).

43

TempoRL -0.5 -1.5-1.0
UTE

0.0

0.2

0.4

0.6

0.8

1.0

TempoRL -0.5 -1.5-1.0
UTE

0.0

0.2

0.4

0.6

0.8

1.0

TempoRL -0.5 -1.5-1.0
UTE

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Cliff Bridge ZigZag

Figure 7.3 Distribution of extension length for three Lava environments

with logarithmically decaying ϵ exploration schedule. More red represents more

repetitions.

44

0 1000 2000 3000
Episodes

1

0

1

Lin
ea

r

Cliff

DDQN
ez-greedy
TempoRL
UTE

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

Bridge

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

ZigZag

0 1000 2000 3000
Episodes

1

0

1

Lo
g

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

0 1000 2000 3000
Episodes

1

0

1

Fi
xe

d
(0

.1
)

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

0 1000 2000 3000
Episodes

1

0

1

Re
tu

rn

Figure 7.4 Learning curves across three Lava environments and three dif-

ferent ϵ-decaying exploration strategies, comparing UTE with DDQN, ϵz-Greedy

and TempoRL. Shaded areas represent the standard deviations over 20 random

seeds.

45

7.5.3 Atari 2600

DQN-normalized score. The DQN-normalized score is defined as

score =
agent - random

DQN - random

where agent, random, and DQN are the per-game mean rewards over the last

100,000 time steps for the agent, a random policy, and a DDQN respectively.

We used this DQN-normalized score to summarize the results across various

games.

The results in Table 7.6 show mean DQN-normalized scores over the last

100,000 time steps of each game. The reason that we use this metric instead

of the human-normalized score is that we have only trained the agent for 10

million frames due to limited resources. The agents were not fully trained to

be compared with the human scores, so we normalized the score against DDQN.

A score below 0 means that the performance is worse than that of random

policy while the score greater than 1 indicates it achieves higher performance

compared to that of DDQN agent. Overall, our UTE with the best uncertainty

parameter performs best compared to other baselines (see Table 7.6 for more

details). UTE achieves a score 81% higher than that of DDQN and 40% higher

than TempoRL.

Per-game Best Parameter. We applied various kinds of uncertainty

parameters to our proposed model from +1.0 to -1.5. As shown in Table 7.8,

the optimal uncertainty parameter varies from environment to environment. In

most games, such as Beam Rider, Centipede, Crazy Climber, Freeway, Qbert,

Road Runner, Up n Down, the uncertainty-averse strategy (negative λ) exhibits

46

Environment DDQN Fixed-j ϵz-Greedy DAR TempoRL B-DQN
UTE UTE

(1-step) (n-step)

Beam Rider 1.00 0.85 2.50 0.05 2.79 1.32 2.41 2.89
Centipede 1.00 0.55 0.82 0.79 1.49 0.63 0.82 1.71
Crazy Climber 1.00 0.70 1.01 0.38 0.93 0.55 1.29 1.56
Freeway 1.00 0.93 0.94 0.83 1.18 1.17 1.17 1.13
Kangaroo 1.00 0.41 1.11 0.56 0.78 0.98 1.07 1.21
Ms Pacman 1.00 0.71 1.21 0.67 0.97 1.02 1.33 1.10
Pong 1.00 0.02 1.02 0.01 0.91 0.98 1.00 1.00
Qbert 1.00 0.48 1.41 0.38 1.08 1.69 1.39 2.09
Riverraid 1.00 0.46 1.29 0.09 1.10 1.15 1.29 1.28
Road Runner 1.00 0.38 1.14 0.26 2.48 1.52 1.51 3.76
Sea Quest 1.00 0.14 1.04 0.12 0.58 0.67 1.00 1.54
Up n Down 1.00 1.13 1.63 0.58 1.23 0.66 1.83 2.05

Average 1.00 0.56 1.28 0.35 1.29 1.03 1.34 1.81

Table 7.6 DQN-normalized performance averaged over last 100,000 time

steps for UTE with the best uncertainty parameter and other baselines. (7

random seeds)

an improvement in averaged rewards over the last 100,000 time steps. Mean-

while, on Kangaroo, the exploration-favor strategy (positive λ) shows better

performance.

Table 7.7 describes that optimal hyperparameter µ for ϵz-Greedy also varies

from environment to environment. For fair comparison with our algorithm, we

used the per-game best µ for ϵz-Greedy.

Multi-arm Bandit for Choosing λ. To choose λ adaptively, we used

multi-armed bandit (MAB) algorithm Garivier and Moulines 2008 with sliding-

window upper confidence bound (UCB) as described in Section 5.3. Therefore,

here we describe the bandit algorithm in detail. The following method is the

same as Appendix Section D in Badia et al. 2020.

At each episode k ∈ [K], a N -armed bandit selects an arm Ak among the

pre-defined set of arms A := {0, . . . , N−1} by a policy π. The policy π depends

47

on the sequence of previous histories (actions and rewards). Then, it receives

a reward Rk(Ak) ∈ R from the environment.

The objective of a MAB algorithm is to learn a policy π that minimizes

the expected regret as follows:

Eπ

K−1∑
k=0

max
A

Rk(A)−Rk(Ak)

 .

When reward distribution is stationary, i.e. Rk(·) = R(·), the traditional

UCB algorithm can be applied. Define the number of time episodes an arm

a ∈ A has been selected in episode k as:

Nk(a) =

k−1∑
k′=0

1(Ak′ = a),

where 1(Ak = a) is an indicator function. We can estimate the empirical mean

reward of an arm a as:

µ̂k(a) =
1

Nk(a)

k=1∑
k′=0

Rk′(a)1(Ak′ = a).

Then, we select an arm using the UCB algorithm as follows:

∀0 ≤ k ≤ N − 1, Ak = k,

∀N ≤ k ≤ K − 1 Ak = argmaxa∈A µ̂k−1(a) + β
√

log(k−1)
Nk−1(a)

.

However, if reward distribution is non-stationary, the UCB algorithm cannot be

directly applied due to the change in reward distribution. One of the common

solutions to the non-stationary case is to use a sliding-window UCB. Let τ ∈ Z+

be the size of window such that τ < K. The number of time episodes an arm

48

a ∈ A has been played in episode k for a window size τ as:

N τ
k (a) =

k−1∑
k′=max(0,k−τ)

1(Ak′ = a).

Define the empirical mean reward of an arm a for a window size τ as:

µ̂τ
k(a) =

1

N τ
k (a)

k=1∑
k′=max(0,k−τ)

Rk′(a)1(Ak′ = a).

Then, we select an arm using the sliding window UCB as follows:

∀0 ≤ k ≤ N − 1, Ak = k,

∀N ≤ k ≤ K − 1 Ak = argmaxa∈A µ̂τ
k−1(a) + β

√
log(k−1)
Nτ

k−1(a)
.

Finally, since we use the sliding window UCB with ϵucb-greedy exploration, our

bandit algorithm is as follows:

∀0 ≤ k ≤ N − 1, Ak = k,

∀N ≤ k ≤ K − 1andUk ≥ ϵucb Ak = argmaxa∈A µ̂τ
k−1(a) + β

√
log(k−1)
Nτ

k−1(a)
,

∀N ≤ k ≤ K − 1andUk < ϵucb Ak = Yk,

where Uk is a random variable drawn uniformly from [0, 1] and Yk is a random

action sampled uniformly form A = {0, . . . , N − 1}.

Full Ensemble Model. We additionally evaluated another algorithm,

called Full Ensemble. The Full Ensemble is a combination of UTE and B-DQN,

which means both action-value functions and option-value functions are es-

timated by an ensemble method. Figure 7.5 demonstrates that the Full

49

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

100

200

300

400

beam_rider

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000

12000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

Full Ensemble Bootstrapped DQN UTE-best UTE-adaptive

Figure 7.5 Learning curves of Full Ensemble, B-DQN, UTE with the best

uncertainty parameter, and UTE with adaptive uncertainty parameter over 7

random seeds.

50

Ensemble performs similar to or better than others. In an environment where

rewards are relatively sparse such as Road Runner, Full Ensemble notably

outperforms other agents. We did not optimize the uncertainty parameter for

Full Ensemble so that there is room for further improvements. The results

imply that our method can apply to any base algorithm smoothly.

-1.0

0.0

1.0

2.0

D
Q

N
-n

or
m

al
iz

ed
 S

co
re

Fixed_Repeat(2) Fixed_Repeat(4) Fixed_Repeat(8)

Avg: 0.56

Avg: 0.70

Avg: 0.23

Figure 7.6 DQN-normalized score for Fixed Repeat with varying fixed j. (5

random seeds)

Different j for Fixed Repeat. Figure 7.6 shows the performance of

Fixed Repeat agents with varying fixed extension length j. The fixed j affects

the granularity of control. The negative score indicates that the performance

is worse than a random policy. The result describes that naively repeating the

chosen action could degrade the performance in Atari environments. And this

tends to get worse as j is increased.

Ablation 1: Decomposition. Our method formulates joint optimization

of the action and the extension length as a two-level optimization problem. The

action is selected based on Qπω and then the extension length is selected based

on Q̃πω sequentially. Left of Figure 7.7a shows the effect of the decomposition.

51

-1.0

0.0

1.0

2.0

3.0

4.0

D
Q

N
-n

or
m

al
iz

ed
 S

co
re

Before Decomposition After Decomposition

Avg: 1.29

Avg: 0.16

(a) Decomposition Effect

0.0

1.0

2.0

3.0

4.0

D
Q

N
-N

or
m

al
iz

ed
 S

co
re

RiSAR without n-step RiSAR

Avg: 1.81

Avg: 1.39

(b) Multi-step Target Effect for Qπω

Figure 7.7 Ablation studies for decomposition effect (left) and n-step

learning effect for action-value function Qπω . The negative score indicates

that the policy is worse than a random policy. (5 random seeds)

52

Without decomposition, the size of search space is |A| × |J |, which leads to

a catastrophic performance. In some environments such as Beam Rider and

Road Runner, the DQN-normalized scores are negative, which means the agent

is worse than a random policy. Overall, We can see that decomposition of

action and extension length selection improves the performance significantly.

Ablation 2: Multi-step Target. Right of Figure 7.7b describes the effect

of using an n-step target forQπω . We compare UTE with n-step Q-learning to the

one without it. This result illustrates that applying n-step learning is beneficial

in most games, which shows a 30.2% improvement (from 1.39 to 1.81) after it

has been applied. Especially in games with relatively sparse rewards such as

Road Runner and Centipede, it dramatically enhanced the performance. This

is because rewards can be propagated faster using n-step returns.

ϵz-Greedy (µ)
Environment 1.5 1.75 2.0 2.25 2.5

Beam Rider 331.6 272.9 409.1 261.4 328.9
Centipede 1271.8 1222.6 1080.2 1316.0 1431.7
Crazy Climber 5026.1 4420.0 3128.0 5295.1 4690.9
Freeway 30.8 30.7 25.6 20.5 25.6
Kangaroo 609.1 518.8 604.0 360.0 396.4
Ms Pacman 580.0 551.3 584.5 514.9 597.2
Pong 19.7 18.4 19.8 19.4 19.9
Qbert 392.8 388.6 345.2 264.7 270.6
Riverraid 810.4 835.5 945.6 695.5 738.2
Road Runner 2943.0 2215.2 3733.8 3131.2 848.5
Sea Quest 116.1 214.5 172.6 123.8 119.6
Up n Down 700.6 823.1 669.0 794.8 653.2

Table 7.7 Average rewards for ϵz-Greedy varying values for hyperparameter

µ in the Atari 2600 environments. (7 random seeds)

53

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

100

200

300

400

beam_rider

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

500

1000

1500

2000
centipede

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

crazy_climber

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

10

20

30

freeway

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

1000
kangaroo

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

100

200

300

400

500

600

ms_pacman

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

20

10

0

10

20
pong

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

100

200

300

400

500
qbert

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

riverraid

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

up_n_down

DDQN ez-greedy TempoRL Bootstrapped DQN UTE-best UTE-adaptive

Figure 7.8 Per-game Atari learning curves for ϵz-Greedy with the best µ for

zeta distribution, UTE with the best uncertainty parameter, UTE with adaptive

uncertainty parameter and the other baselines.(7 random seeds)

54

RiSAR (uncertainty parameter: λ)
Environment +1.0 +0.5 +0.2 +0.0 -0.2 -0.5 -1.0 -1.5

Beam Rider
384.3

(137.8)

431.6
(162.9)

401.1
(143.3)

425.2
(153.5)

403.1
(127.9)

417.1
(115.4)

439.5
(163.0)

414.2
(112.3)

Centipede
1898.2
(889.2)

1327.8
(760.6)

1581.4
(1008.2)

2125.6
(1356.4)

2190.1
(1073.0)

1893.6
(954.9)

1605.9
(1167.7)

1377.5
(875.2)

Crazy Climber
5093.2

(4011.6)

4426.2
(3987.4)

6163.6
(5025.2)

5033.9
(2653.9)

6484.8
(4797.2)

8175.6
(5790.4)

5198.6
(4049.5)

5220.2
(4751.1)

Freeway
28.6
(3.7)

29.9
(2.0)

27.9
(5.4)

30.5
(1.5)

30.7
(1.9)

24.1
(3.9)

25.1
(4.7)

25.0
(6.8)

Kangaroo
555.2

(650.7)

493.3
(515.7)

543.0
(450.3)

661.0
(630.4)

623.3
(630.6)

577.6
(622.6)

718.2
(859.1)

728.5
(832.6)

Ms Pacman
446.5

(229.7)

509.6
(256.3)

551.0
(237.5)

545.5
(218.3)

551.6
(225.5)

544.1
(249.1)

511.2
(182.2)

540.4
(228.3)

Pong
17.5
(5.9)

18.0
(5.1)

17.1
(5.9)

16.9
(4.5)

19.1
(2.5)

16.8
(6.2)

18.4
(4.7)

16.4
(4.6)

Qbert
387.4

(415.8)

400.5
(490.3)

457.4
(461.3)

399.2
(461.9)

297.2
(302.7)

417.1
(441.0)

582.5
(558.7)

459.1
(499.7)

Riverraid
938.0
(388.8)

828.6
(339.6)

823.3
(363.0)

922.1
(418.0)

880.3
(341.0)

909.8
(350.1)

863.1
(354.8)

795.8
(310.5)

Road Runner
10051.5
(4107.8)

10853.3
(5789.4)

10712.7
(3290.1)

9788.2
(4054.3)

9019.5
(4469.1)

12323.2
(4177.1)

6638.6
(3602.0)

5763.6
(4681.0)

Sea Quest
260.3

(126.7)

301.0
(162.6)

290.4
(154.4)

308.5
(150.8)

313.4
(141.1)

282.4
(164.7)

250.9
(162.0)

226.8
(125.4)

Up n Down
1012.7
(613.6)

999.6
(504.3)

865.8
(451.2)

912.1
(611.0)

990.3
(532.0)

972.5
(530.2)

1072.8
(664.0)

1039.6
(573.0)

Table 7.8 Average rewards and standard deviations (numbers in bracket)

over the last 100,000 time steps for different uncertainty parameter of our

proposed method. (7 random seeds)

55

Environment DDQN Fixed-j ϵz-Greedy DAR TempoRL B-DQN
UTE

1-step n-step Adaptive λ

Beam Rider
290.1

(101.5)

277.9
(109.9)

409.9
(124.0)

177.7
(73.3)

431.9
(140.4)

315.6
(131.1)

414.4
(141.1)

439.5
(163.0)

423.9
(158.5)

Centipede
1574.7

(1044.6)

1222.8
(840.8)

1431.7
(1169.1)

1410.3
(982.8)

1958.0
(1166.4)

1285.2
(867.2)

1437.1
(887.2)

2190.1
(1073.0)

1829.9
(969.6)

Crazy Climber
5265.8

(4063.4)

3731.1
(2997.2)

5295.1
(3609.7)

2059.1
(1225.1)

4885.5
(3378.3)

2961.6
(3080.0)

6761.9
(5061.9)

8175.6
(5790.4)

7046.3
(5350.0)

Freeway
27.1
(4.6)

25.2
(3.1)

30.8
(1.3)

22.5
(2.9)

32.1
(1.0)

31.7
(1.1)

31.7
(1.2)

30.7
(1.9)

30.8
(1.7)

Kangaroo
547.2

(764.9)

222.2
(247.9)

609.1
(880.1)

305.5
(340.6)

424.2
(282.0)

534.8
(467.4)

586.4
(753.5)

728.5
(832.6)

661.0
(613.5)

Ms Pacman
509.8

(204.6)

388.8
(201.6)

597.2
(261.5)

371.3
(166.5)

495.6
(245.1)

516.1
(206.5)

645.6
(267.1)

551.6
(225.5)

537.6
(263.8)

Pong
19.2
(4.8)

-20.3
(0.9)

19.9
(1.8)

-20.6
(0.6)

15.6
(7.7)

18.3
(3.6)

19.4
(1.8)

19.1
(2.5)

19.5
(2.3)

Qbert
278.3

(312.9)

133.8
(267.9)

392.8
(438.3)

104.7
(70.8)

299.7
(349.8)

470.8
(489.5)

387.3
(423.1)

582.5
(558.7)

581.4
(602.5)

Riverraid
740.5

(291.9)

360.9
(231.6)

945.6
(457.9)

102.8
(66.0)

807.7
(354.7)

843.8
(407.2)

942.2
(319.3)

938.0
(388.8)

890.5
(330.7)

Road Runner
3277.0

(4470.3)

1230.3
(1640.9)

3733.8
(4716.5)

845.5
(791.9)

8131.5
(4099.3)

4976.8
(6032.6)

4935.6
(5206.4)

12323.2
(4177.1)

10353.3
(3283.3)

Sea Quest
207.6

(124.5)

47.0
(26.2)

214.5
(85.6)

42.8
(33.9)

128.2
(55.5)

145.1
(64.5)

206.9
(92.4)

313.4
(141.1)

320.3
(159.4)

Up n Down
536.4

(361.5)

594.8
(324.6)

823.1
(320.0)

348.7
(227.0)

641.5
(428.6)

383.2
(242.8)

911.5
(476.7)

1072.8
(664.0)

990.4
(707.5)

Table 7.9 Average rewards and standard deviations (numbers in bracket)

over the last 100,000 time steps over Atari environments.

56

Bibliography

Anschel, Oron, Nir Baram, and Nahum Shimkin, 2017: Averaged-dqn: variance

reduction and stabilization for deep reinforcement learning. International

conference on machine learning. PMLR, 176–185.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup, 2017: The option-critic

architecture. Proceedings of the AAAI Conference on Artificial Intelligence.

Volume 31. 1.

Badia, Adrià Puigdomènech, Bilal Piot, Steven Kapturowski, Pablo Sprech-

mann, Alex Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell, 2020:

Agent57: outperforming the atari human benchmark. International Con-

ference on Machine Learning. PMLR, 507–517.

Bai, Chenjia, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng

Liu, and Zhaoran Wang, 2021: Principled exploration via optimistic boot-

strapping and backward induction. International Conference on Machine

Learning (ICML 2021). PMLR, 577–587.

Barreto, André, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün,

Philippe Hamel, Daniel Toyama, Shibl Mourad, David Silver, Doina Precup,

et al., 2019: The option keyboard: combining skills in reinforcement learning.

Advances in Neural Information Processing Systems, 32.

Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Remi Munos, 2016: Unifying count-based exploration and

intrinsic motivation. Advances in neural information processing systems,

29.

Bellemare, Marc G, Yavar Naddaf, Joel Veness, and Michael Bowling, 2013:

The arcade learning environment: an evaluation platform for general agents.

Journal of Artificial Intelligence Research, 47, 253–279.

57

Biedenkapp, André, Raghu Rajan, Frank Hutter, and Marius Lindauer, July

2021: TempoRL: learning when to act. Proceedings of the 38th International

Conference on Machine Learning (ICML 2021).

Da Silva, Felipe Leno, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E

Taylor, 2020: Uncertainty-aware action advising for deep reinforcement

learning agents. Proceedings of the AAAI conference on artificial intelli-

gence. Volume 34. 04, 5792–5799.

Dabney, Will, Georg Ostrovski, and Andre Barreto, 2020: Temporally-extended

ε-greedy exploration. 9th International Conference on Learning Repre-

sentations, ICLR 2021. url: https :/ / openreview. net/ forum ?id =

ONBPHFZ7zG4.

Dayan, Peter, and Geoffrey E Hinton, 1992: Feudal reinforcement learning.

Advances in neural information processing systems, 5.

Efron, Bradley, 1982: The jackknife, the bootstrap and other resampling plans.

SIAM.

Fikes, Richard E, Peter E Hart, and Nils J Nilsson, 1972: Learning and executing

generalized robot plans. Artificial intelligence, 3, 251–288.

Garivier, Aurélien, and Eric Moulines, 2008: On upper-confidence bound poli-

cies for non-stationary bandit problems. arXiv preprint arXiv:0805.3415.

Harutyunyan, Anna, Marc G Bellemare, Tom Stepleton, and Rémi Munos, 2016:

Q (λ) with off-policy corrections. International Conference on Algorithmic

Learning Theory. Springer, 305–320.

Kalweit, Gabriel, and Joschka Boedecker, 2017: Uncertainty-driven imagination

for continuous deep reinforcement learning. Conference on Robot Learning.

PMLR, 195–206.

Kumar, Aviral, Aurick Zhou, George Tucker, and Sergey Levine, 2020: Con-

servative q-learning for offline reinforcement learning. Advances in Neural

Information Processing Systems, 33, 1179–1191.

Lakshminarayanan, Aravind, Sahil Sharma, and Balaraman Ravindran, 2017:

Dynamic action repetition for deep reinforcement learning. Proceedings of

the AAAI Conference on Artificial Intelligence. Volume 31. 1.

58

https://openreview.net/forum?id=ONBPHFZ7zG4
https://openreview.net/forum?id=ONBPHFZ7zG4

Lee, Seunghyun, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin,

2022: Offline-to-online reinforcement learning via balanced replay and pes-

simistic q-ensemble. Conference on Robot Learning. PMLR, 1702–1712.

Machado, Marlos C, Andre Barreto, and Doina Precup, 2021: Temporal ab-

straction in reinforcement learning with the successor representation. arXiv

preprint arXiv:2110.05740.

Machado, Marlos C., Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew

J. Hausknecht, and Michael Bowling, 2018: Revisiting the arcade learning

environment: evaluation protocols and open problems for general agents.

Journal of Artificial Intelligence Research, 61, 523–562.

Meng, Lingheng, Rob Gorbet, and Dana Kulić, 2021: The effect of multi-

step methods on overestimation in deep reinforcement learning. 2020 25th

International Conference on Pattern Recognition (ICPR). IEEE, 347–353.

Metelli, Alberto Maria, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and

Marcello Restelli, 2020: Control frequency adaptation via action persistence

in batch reinforcement learning. International Conference on Machine

Learning (ICML 2020). PMLR, 6862–6873.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al., 2015: Human-level control through deep

reinforcement learning. Nature, 518, 529–533.

Moskovitz, Ted, Jack Parker-Holder, Aldo Pacchiano,Michael Arbel, andMichael

Jordan, 2021: Tactical optimism and pessimism for deep reinforcement

learning. Advances in Neural Information Processing Systems, 34.

Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy, 2016:

Deep exploration via bootstrapped DQN. Advances In Neural Information

Processing Systems 29, 4026–4034.

Park, Seohong, Jaekyeom Kim, and Gunhee Kim, 2021: Time discretization-

invariant safe action repetition for policy gradient methods. Advances in

Neural Information Processing Systems, 34.

Parr, Ronald, and Stuart Russell, 1997: Reinforcement learning with hierarchies

of machines. Advances in neural information processing systems, 10.

59

Peer, Oren, Chen Tessler, Nadav Merlis, and Ron Meir, 2021: Ensemble boot-

strapping for q-learning. International Conference on Machine Learning.

PMLR, 8454–8463.

Peng, Jing, and Ronald J Williams, 1994: Incremental multi-step q-learning.

Machine Learning Proceedings 1994. Elsevier, 226–232.

Precup, Doina, 2000: Temporal abstraction in reinforcement learning. Univer-

sity of Massachusetts Amherst.

Puterman, Martin L, 2014: Markov decision processes: discrete stochastic

dynamic programming. John Wiley & Sons.

Schoknecht, Ralf, and Martin Riedmiller, 2002: Speeding-up reinforcement

learning with multi-step actions. International Conference on Artificial

Neural Networks. Springer, 813–818.

Sharma, Sahil, Aravind Srinivas, and Balaraman Ravindran, 2017: Learning to

repeat: fine grained action repetition for deep reinforcement learning. 5th

International Conference on Learning Representations, ICLR 2017. url:

https://openreview.net/forum?id=B1GOWV5eg.

Stolle, Martin, and Doina Precup, 2002: Learning options in reinforcement

learning. International Symposium on abstraction, reformulation, and ap-

proximation. Springer, 212–223.

Sutton, Richard S, 1988: Learning to predict by the methods of temporal

differences. Machine learning, 3, 9–44.

Sutton, Richard S, Doina Precup, and Satinder Singh, 1999: Between mdps and

semi-mdps: a framework for temporal abstraction in reinforcement learning.

Artificial intelligence, 112, 181–211.

Thrun, Sebastian, and Anton Schwartz, 1993: Issues in using function approx-

imation for reinforcement learning. Proceedings of the 1993 Connectionist

Models Summer School Hillsdale, NJ. Lawrence Erlbaum. Volume 6.

Touati, Ahmed, Harsh Satija, Joshua Romoff, Joelle Pineau, and Pascal Vincent,

2020: Randomized value functions via multiplicative normalizing flows.

Uncertainty in Artificial Intelligence. PMLR, 422–432.

60

https://openreview.net/forum?id=B1GOWV5eg

Van Hasselt, Hado, Arthur Guez, and David Silver, 2016: Deep reinforcement

learning with double q-learning. Proceedings of the AAAI conference on

artificial intelligence. Volume 30. 1.

Watkins, Christopher JCH, and Peter Dayan, 1992: Q-learning. Machine learn-

ing, 8, 279–292.

Watkins, Christopher John Cornish Hellaby, 1989: Learning from delayed

rewards.

Xia, Liyu, and Anne GE Collins, 2021: Temporal and state abstractions for

efficient learning, transfer, and composition in humans. Psychological review.

Zahavy, Tom, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie

Mannor, 2018: Learn what not to learn: action elimination with deep re-

inforcement learning. Advances in Neural Information Processing Systems,

31.

61

초 록

강화학습에서,행동의추상화는정책의학습과정을간소화하는일반적인접

근 방식입니다. 최근, 행동의 추상화를 구현하는 방법론으로 단순히 행동을 일정

기간 동안 반복하는 것이 연구되고 있습니다. 그러나 기존의 행동 반복 연구들의

주요 단점은 차선의 행동을 불필요하게 많이 반복하여 성능이 저하될 수 있다는

문제점이 있습니다. 이러한 경우, 행동의 반복으로 탐색에 이점을 가지는 것보다

그로인한 성능 저하가 더 클 수 있습니다. 따라서, 앙상블 기법을 활용하여 불확

실성을 측정하고, 그 불확실성을 고려한 행동 연장 알고리듬(Uncertainty-aware

Temporal Extension, UTE)을 고안하였습니다 우리의 알고리듬은 불확실성을

제어하여 더 적극적인 탐색을 유도하거나, 불확실성을 회피하는 정책을 유도할

수 있습니다. 우리는 그리드 월드와 아타리 2600 환경을 비롯한 다양한 환경에서

성능을 평가하였고, 기존의 방법론들보다 우수한 성능을 보임을 확인하였습니다.

주요어: 강화학습, 행동 추상화, 행동 반복, 불확실성, 탐색

학 번: 2021-27322

63

감사의 글

한국어로 감사합니다!

65

	1 Introduction
	2 Related Work
	3 Preliminaries and Notations
	4 Method: Uncertainty-aware Temporal Extension
	4.1 Temporally-Extended Q-Learning
	4.2 Option Decomposition
	4.3 Ensemble-based Risk-Sensitive Action Repetition
	4.4 n-step Q-Learning

	5 Experiments
	5.1 Chain MDP
	5.2 Gridworlds
	5.3 Atari 2600: Arcade Learning Environment

	6 Conclusion
	7 Appendix

<startpage>8
1 Introduction 1
2 Related Work 4
3 Preliminaries and Notations 7
4 Method: Uncertainty-aware Temporal Extension 10
 4.1 Temporally-Extended Q-Learning 10
 4.2 Option Decomposition 11
 4.3 Ensemble-based Risk-Sensitive Action Repetition 12
 4.4 n-step Q-Learning 14
5 Experiments 16
 5.1 Chain MDP 16
 5.2 Gridworlds 19
 5.3 Atari 2600: Arcade Learning Environment 22
6 Conclusion 26
7 Appendix 27
</body>

