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Abstract

Virtual try-on, fitting an image of a garment to an image of a person, has rapidly

progressed recently. However, existing virtual try-on methods still struggle to

faithfully represent various details of the clothes when worn. In this paper, we

propose a simple yet effective method to better preserve details of the clothing

and person by introducing an additional fitting step after geometric warping.

This minimal modification helps to effectively learn disentangled representa-

tions of the clothing from the wearer. By disentangling these two major compo-

nents for virtual try-on, we are able to preserve the wearer-agnostic structure

and details of the clothing, and thus can fit a garment naturally to a variety

of poses and body shapes. Moreover, we propose a novel evaluation framework

applicable to any metric, to better reflect the semantics of clothes fitting. From

extensive experiments, we empirically verify that the proposed method not only

learns to disentangle clothing from the wearer, but also preserves details of the

clothing on the try-on results.

Keywords: Virtual try-on, Clothes fitting, Image synthesis

Student Number: 2021-24005
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Chapter 1. Introduction

The objective of the virtual try-on task is to fit an image of a garment to an

image of a person wearing another garment. Most existing methods, such as

VITON1, CP-VTON+2, ACGPN3 and PF-AFN4, approach virtual-try-on as

an image inpainting problem. Specifically, these models attempt to fit in an

image of a new garment onto the torso region of a person wearing another

set of clothing. The models generally involve two major steps: 1) a Geometric

Warping Module (GMM) to learn how clothes should be geometrically warped

to fit in the pose and body shape of the target person, and 2) a Try-on Module

(TOM) to blend the warped clothing with the target person image.

Although previous methods can output images that look natural, we observe

that they often fail to reflect how the input clothes should be worn naturally

considering all the fine details of clothed garments, without fully understand-

ing the semantics of wearing them. Fig. 1 shows four examples from current

state-of-the-art models, ACGPN3 and PF-AFN4. We observe that some parts

that are invisible when worn (e.g., inner side of the shirt neckline) are still

shown in (b, d), while some other parts that should be represented in the out-

puts (e.g., spaghetti straps in (a), high neck in (c)) are not retained. Other

models2,5 also show similar limitations of misrepresenting important details of

the target clothes, often struggling to generate a well-fitted image. This implies

that previous models might simply be fitting the target garment on top of the

target person’s torso, without fully understanding how the garment is actually

worn tridimensionally. In other words, learned features of the clothing and the

wearer are not fully disentangled, and thus those models frequently fail to ad-

equately select and preserve details of the target clothes, especially when they

are significantly different from the source clothes.
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Figure 1 Examples of incorrect drawing of the target clothes by existing meth-

ods. Images in (a, b, c) are brought from Fig. 5, 10 in ACGPN3, and (d) from

Fig. 6 in PF-AFN4.

An ideal virtual try-on model should be able to separate signals from each

independent factor involved in try-on by fully understanding their semantics

and transformations, so that it can generate an image that preserves details of

wearing behavior. To address this problem, we propose a simple but effective

way to disentangle the learning of clothes from that of the wearer. Specifically,

we propose DP-VTON, a three-step model where an additional step called the

Clothes Fitting Module (CFM) is inserted between the GMM and TOM, aimed

at learning how the clothes should be naturally worn completely independent of

the input reference image. As opposed to previous models where the reference

image (wearing the source clothes) is directly referred to perform warping, CFM

fills the target clothes within the mask of the already warped target clothes,

learning how they should appear when worn by the given person. As long as the

backbone model follows the common two-step approach of warping and try-on,

the CFM can be easily incorporated to fit the warped clothes image after the

first step with minimal extra overhead to seamlessly connect the GMM and

TOM while significantly improving the results.

Our contributions can be summarized as follows. First, we propose a three-
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step model called DP-VTON with a novel ‘Clothes Fitting Module (CFM)’,

which imitates the human behavior of wearing clothes. By clearly separating the

geometric warping and inpainting of clothes before blending with the person,

the proposed method successfully disentangles representation of the clothes

and that of the wearer in the reference image. Second, we propose a novel

way of applying evaluation metrics more suitable for the virtual try-on task,

focusing on a few critical body points instead of equally weighting all pixels.

Lastly, we empirically verify that the proposed approach produces try-on images

of higher quality, outperforming several recent state-of-the-art methods both

qualitatively and quantitatively.

Chapter 2. Related Work

2.1 Image synthesis.

Generative Adversarial Networks (GANs) have steered the progress in the fields

of image synthesis and manipulation6–9. To generate data with certain prop-

erties, additional information (text10, class labels11, or attributes12) has been

incorporated to condition the generation procedure. ClothNet13 generated a

person inpainted with different clothing styles, by learning to condition on the

pose, shape, and color. Convolutional neural networks (CNNs)14–16 also have

been widely utilized in image synthesis. U-net17, originally developed for image

segmentation, has been applied to image synthesis for high performance, e.g.,

Generative Adversarial U-Net18.

2.2 Virtual Try-on.

Research on virtual try-on is rooted in studies on fashion editing19–23. Deep-

learning-based virtual try-on models are roughly classified into 3D-based mod-
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els24–27 and 2D models1,5,28,29. 3D-based models tend to result in higher accu-

racy in the simulated clothes, while they require additional 3D measurements

and more computing resources, making 2D-based methods to be more broadly

adopted. 2D models can be further categorized into whether they emphasize the

use of pose and person representations (e.g.,1,2,5,30,31) or segmentation maps

(e.g.,3,4,32–34). Models generally follow two sequential stages proposed by CP-

VTON5, where clothes are first geometrically warped, then dressed to the target

person. CP-VTON+2 improved the geometric warping process with regulariza-

tion to prevent extreme distortion of the clothes. A few recent models20,35,36

have attempted to refine these models to learn disentangled representations

for the target clothes and reference person. However, due to the limitation in

paired datasets of in-shop clothes and human models, these models were un-

able to learn fully disentangled representations. Moreover, recent works have

expanded virtual try-on research into generating high-resolution images37,38,

dressing multiple garments sequentially36,39,40, and transferring garments be-

tween two people20,35,36.

Chapter 3. Preliminary

3.1 Problem Formulation.

Virtual try-on task takes two inputs, an image c ∈ Rh′×w′×3 of an in-shop

clothes and a reference image I ∈ Rh×w×3 of the target person, wearing another

garment called source clothes. (Note that it is not necessarily h = h′ and w = w′,

respectively.) The goal of this task is generating an image It ∈ Rh×w×3, where

the person in I wears the target clothes in c. Qualitatively, an ideal virtual

try-on model should output a natural photo-like image, preserving the identity

of the target person (e.g., appearance, body shape, and pose), properties of the
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Figure 2 Our model (blue box), compared with CP-VTON5 and CP-VTON+2.

target clothes (e.g., shape and texture), and interactions between them (e.g.,

how specific parts of clothes or body should appear when clothed).

A training example of index i consists of a pair of images (c(i), I(i)), and

the model produces Î
(i)
t . We need the ground truth I

(i)
t in a supervised setting,

but in practice, it is tricky to have a pair of pictures of a model wearing two

different garments with exactly the same pose. Thus, existing virtual try-on

models have used I(i) wearing the same clothes in c(i), and we follow the same

approach in this paper. At inference, a query (c(i), I(i)) usually contains two

different garments in c(i) and I(i), where c(i) is the target clothes and I(i) shows

a person wearing the source clothes, different from c(i).

3.2 CP-VTONs.

Our work is inspired by the evolutionary achievements of VITON methods.

Advancing from VITON1, CP-VTON5 proposed a two-stage approach, first

warping the clothes using the Geometric Matching Module (GMM) and then

dressing them to the target person using the Try-on Module (TOM).
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Fig. 2 overviews the GMM proposed by CP-VTON. The reference image

I ∈ Rh×w×3 is first pre-processed to a head imageH ∈ Rh×w×3, the person mask

M ∈ {0, 1}h×w, and a pose map P ∈ Rh×w×18, where each layer of the pose

map is a one-hot encoding indicating each pre-defined key point, e.g., shoulder,

elbow, etc. These preprocessed features are stacked to the person representation

p ∈ Rh×w×22. The GMM geometrically transforms the target clothes c to a

warped clothes ĉ such that it is roughly aligned with the person in I, via a Thin-

Plate Spline (TPS) transformation module T that warps c into ĉ = Tθ(c). (See

CP-VTON5 for more details.) GMM can be trained end-to-end by comparing

the warped clothes (ĉ) and the actual clothes on person (ct). CP-VTON uses

the pixel-wise L1 loss between them; that is, LGMM = ∥ĉ− ct∥1. CP-VTON+2

improves CP-VTON by comparing the mask of the warped clothes (ĉm) and

the clothes mask of the reference image (ctm) instead of the RGB images (ĉ

and ct), as shown in the yellow box of Fig. 2, and by applying regularization

on the TPS parameters. After geometric warping, the TOM takes as input the

warped clothes ĉ, which is roughly aligned with the body shape and the pose

of the target person, to synthesize the final result by fusing ĉ with the target

person.

Chapter 4. The Proposed Method: DP-VTON.

Ideally, the roughly warped clothes ĉ by GMM should be synthesized with the

person, keeping the wearer’s attributes (e.g., identity, body shape, and pose)

only, independent of the garments she was wearing. However, we observe from

Fig. 1 that the previous methods often retain some characteristics of the source

clothes, worn by the person in I. This undesirable phenomenon indicates that

the characteristics of the person and those of source clothes are not completely
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disentangled. Our hypothesis is that this is because of the training scheme,

where we use the same clothes in I and in c, due to the reason mentioned in

Chapter.3.

What is happening when we train the GMM? Simply speaking, GMM learns

to map the frontal view of clothes c to their distorted shape according to the

person’s body and pose in the reference image I, assuming the clothes will be

worn by the person. CP-VTON and CP-VTON+ assume that this is mainly

geometric conversion, but in fact, this conversion includes more than that. For

instance, some area in the frontal view actually belongs to the backside of the

clothes (e.g., above the neckline, as in Fig. 1(b, d)), so this area should not ap-

pear in the warped image. Since the GMM is designed to solely learn geometric

transformation, however, the warped clothes image ĉ often fails to preserve

these kinds of fine details required when wearing clothes, and sometimes even

the general characteristics of the target clothes.

To resolve this issue, we introduce DP-VTON, where the Clothes Fitting

Module (CFM) is inserted between the GMM and TOM. As illustrated in the

blue box of Fig. 2, we use another network that learns to fit, instead of directly

using the imperfectly warped clothes ĉ in the TOM. CFM takes the warped

clothes mask ĉm and the initial target clothes image c as input, and learns to

do two things: 1) estimate the mask of the target clothes ĉtm, and 2) generate

the clothes image ĉt, both when they are actually worn by the target person.

At a glance, this might look redundant, since the GMM is supposed to

produce this directly from c. However, from the existing models, we realize that

the GMM is not sufficient to model the natural details of the clothes when they

are worn. As the input ĉm provides the geometrically transformed mask this

time, however, the CFM concentrates purely on “how to wear”. In other words,

the CFM is now completely independent of the source clothes in I, using the
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mask of the warped clothes ĉm rather than the reference image I directly.

Specifically, we first get the warped clothes mask ĉm ∈ {0, 1}h×w by applying

the same learned θ to the mask of c, which is provided in the training data,

instead of ĉ. The CFM consists of an encoder-decoder structure (we use a U-

Net17, but other encoder-decoder networks can be used as well), mapping the

warped clothes mask ĉm and the in-shop clothes image c to the fitted clothes

image ĉt ∈ Rh×w×3 and its mask ĉtm ∈ {0, 1}h×w. The generated ĉt is trained

to be close to the ground truth clothes image on the target person (ct), and the

fitted mask ĉtm is trained to preserve the geometric warping in ĉm. We apply

L1 loss for both, and additionally we apply the VGG perceptual loss LV GG
41

between ĉt and ct. Overall, our loss function is composed of three terms, with

λmask, λL1, and λV GG to control the relative importance of each term:

Lours = λmask · ∥ĉtm − ĉm∥1 + λL1 · ∥ĉt − ct∥1 + λV GG · LV GG(ĉt, ct). (1)

4.1 Discussion.

How does the CFM help to disentangle the source clothes from the person? In

the existing models without CFM, the GMM is fully in charge of generating

the warped clothes. The GMM, however, is in-nature imperfect, in that it maps

a 2D image to another 2D image, projecting 3D clothes from different angles.

As the input c is already reduced to a 2D image, it is challenging for the GMM

to estimate the 3D structure of the clothes. It does some level of inference on

3D structure, but since it refers to the source clothes mask of I, information

about the source clothes is not completely ignored. This might look okay at

training since each training example is a pair with the same clothes, but this

entanglement results in lower quality of images at inference, which uses different

clothes images on I and c. With the CFM, however, the GMM is now only in

charge of learning the geometric warping to generate a roughly warped clothes
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mask ĉm. That is, the CFM no longer directly uses the incompletely warped

clothes ĉ made by the GMM, but rather generates the clothes on a person ĉt,

relying only on the binary mask ĉm of the warped clothes attained from ĉ,

completely independent of the 2D RGB input reference image I. By explicitly

separating the learning process of geometric transformation and inpainting of

the clothes, our approach disentangles information from the source clothes more

robustly.

In other words, the GMM in our model learns only about the person (pose

and body shape) from I, by using I only as a source for the person’s identifi-

able traits. By ignoring the warped clothes image ĉ produced by the GMM but

keeping only its mask ĉm, our method drops undesirable information coming

from the source clothes. The CFM, on the other hand, uses I only as the

ground truth image. As the body shape and pose is provided with ĉm, it

concentrates only on inpainting c within the mask, guided by ct extracted from

I as the ground truth. After learning the geometric warping of the clothes in

GMM and RGB visualization of the warped clothes in CFM, our model contin-

ues to its third step of TOM to integrate the output from CFM with the target

person.

The GMM was initially proposed by CP-VTON to learn the geometric gap

between the clothes in c and I. As the person in I already wears the target

clothes in c at training, however, what the GMM actually learns is a combination

of how the clothes look when a person wears them as well as the geometric

difference between c and I. Without the CFM, CP-VTONs use the reference

image I as both the source and ground truth at the same time, thereby confusing

the model to entangle information from source and target clothes (again, which

are the same at training). We conduct extensive experiments in Sec. to verify

this claim.
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Chapter 5. Experiments.

5.1 Dataset.

We conduct experiments on the VITON dataset1, containing 14,221 samples

for training and 2,032 for testing. Each sample is a pair of a frontal image of

a top clothing (c) and an image of a front-view person wearing the clothes (I).

Image resolution is 256 × 192 both for c and I. For quantitative evaluation,

we use the same clothes for the clothes image (c) and the reference image (I),

similarly to the training, as it requires ground truth.

5.2 Baselines.

We compare our proposed method against three state-of-the-art baselines, in-

cluding CP-VTON+2, ACGPN3, and PF-AFN4. We expect the proposed ap-

proach to improve VITON-HD37, another state-of-the-art virtual try-on with

high-resolution images, but we do not compare against this model as its training

dataset is not publicly available. Applying the proposed idea to high-resolution

images will be a promising future work.

5.3 Quantitative Metrics.

We use Structural SIMilarity (SSIM)42, Learned Perceptual Image Patch Sim-

ilarity (LPIPS)43, and pixel-wise Mean-Squared Error (MSE) to measure the

similarity (or distance) between generated images and ground truth. LPIPS

measures a semantic distance between two images based on embeddings ex-

tracted from a pre-trained network (we use VGG16). LPIPS scores based on

AlexNet15 show a similar pattern, available in the Supplementary Materials.

However, we claim that these metrics cannot adequately measure the quality

of how clothes are well-fitted on a person, if applied as is. Unlike general image
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synthesis, where each pixel is equally important, it is particularly more crucial to

naturally fit the clothes to each body part in virtual try-on. Existing metrics,

however, only consider how the generated images are similar to the original

ones at pixel or feature level in overall. For this reason, we propose a novel

way of applying these metrics to be more suitable for the virtual try-on task.

Specifically, we propose to measure the quality of the generated images only

around k important body parts (namely, key points) of size ϵ×ϵ using an existing

metric and averaging them to judge how well the clothes are fitted. Formally,

we define a patch-based Metric with patch size ϵ, denoted by Metricpϵ , as

follows:

Metricpϵ (I) =
1

k

k∑
i=1

Metric

(
I

[
xi −

ϵ

2
: xi +

ϵ

2
, yi −

ϵ

2
: yi +

ϵ

2

])
, (2)

Figure 3 Key points used in

patch-based Metrics.

where I is an image to be evaluated, (xi, yi) is the

i-th key point, k is the number of pre-defined key

points, ϵ is the number of pixels to be included

in each axis around the key point. Metric can be

any existing metric above. The traditional way

of using the entire image is a special case, where

ϵ = ∞.

We choose as key points 7 important joints

(the neck, both sides of the shoulders, elbows, and

wrists) illustrated in Fig. 3. This specific setting may be flexibly adjusted for a

different task, e.g., including knees, ankles, or feet for a full-body virtual try-on.

We use ϵ = {10, 20, 40, 60} for SSIM and MSE, while we drop ϵ = 10 for LPIPS

since a 10 × 10 image patch is not sufficiently large to perform inference on

VGG or AlexNet.
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5.4 Implementation Details.

Our GMM and TOM are built on top of CP-VTON+2. For training GMM, a

similar setting in the original paper is used, i.e., λL1, λV GG, λmask = 1 and

λreg = 0.5. We use U-Net17 for CFM, whose full architecture is available in the

Supplementary Materials. We use Adam optimizer with β1 = 0.5 and λV GG =

0.999. We train the model for 200K steps, with a constant learning rate of 0.0001

for the first 100K steps and linearly decay the rate to zero for the remaining

100K steps.

tabularx

5.5 Quantitative Comparisons.

SSIM (↑) LPIPS (↓) MSE (↓)

ϵ = 10 ϵ = 20 ϵ = 40 ϵ = 60 ϵ = ∞ ϵ = 40 ϵ = 50 ϵ = 60 ϵ = ∞ ϵ = 10 ϵ = 20 ϵ = 40 ϵ = 60 ϵ = ∞

cp-vton+ 0.805 0.531 0.549 0.577 0.368 0.231 0.230 0.230 0.082 7.0 27.6 103.5 214.3 1874.4

acgpn 0.361 0.231 0.249 0.279 0.387 0.485 0.478 0.475 0.066 53.4 211.7 819.9 1767.1 18703.5

pf-afn 0.811 0.582 0.599 0.627 0.511 0.202 0.200 0.199 0.077 9.3 36.8 136.4 275.6 2192.5

dp-vton 0.847 0.589 0.604 0.628 0.392 0.197 0.198 0.197 0.075 4.6 18.7 71.6 149.8 1394.9

Table 1 Quantitative comparisons to state-of-the-art models.

Overall Performance. Tab. 1 compares the scores of SSIM, LPIPS, and MSE

of CP-VTON+, ACGPN, PF-AFN, and our method with various window sizes

(ϵ) around the key points. Under the traditional metrics taken over the entire

output image (ϵ = ∞), the proposed method outperforms baselines only in MSE,

while PF-AFN and ACGPN perform better in SSIM and LPIPS, respectively.

However, when we consider only around the key points, representing the major

joints in the torso area, DP-VTON outperforms all other baselines in all three

metrics, with all ϵs we tried. Putting these two facts together, we can conclude

14



CFM inputs SSIM
p
20(↑) LPIPS

p
20(↓) MSE

p
20(↓)

Warped clothes mask (ĉm) 0.589 0.198 18.7

Warped clothes (ĉ) 0.414 0.275 45.3

Both warped clothes (ĉ) and warped clothes mask (ĉm) 0.449 0.244 36.7

Table 2 Comparison on various CFM input configurations.

Figure 4 Pixelwise difference with ground truth.

that the proposed method generates semantically and graphically more plau-

sible try-on images near the key points that are critical to human perception

(recall Fig. 3), while the baselines get better scores thanks to better matches

to the ground truth outside of these critical regions, such as the background or

lower garment, which is not the main target of virtual try-on.

To further demonstrate why evaluating the selected areas is important, we

visualize the pixelwise difference between the generated images and ground

truth in Fig. 4. Discordant pixels are concentrated more on the target clothes

area in the baselines (3 in the middle), while for our model they are more evenly

scattered across the entire image, including the background. This verifies that

the traditional scores using all pixels (ϵ = ∞) for baselines may look better

thanks to better accordance on less important non-clothes areas, even though

their try-on results are not visually superior. We also report the variance of dif-
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ference across all pixels in Fig. 4, averaged over 2,000+ test images. Our model

clearly shows lower variance, demonstrating its robustness and consistency.

Ablation on CFM Inputs.We present an ablation study on the configuration

of the CFM. After the geometric warping, we have two warped images, the

warped clothes ĉ in RGB and the warped clothes mask ĉm. The CFM may take

as input either or both of these, together with the in-shop clothes image c.

Table 2 compares the performance of each setting. We observe that feeding

only the mask ĉm outperforms the other two. In other words, directly using

the warped clothes ĉ deteriorates the overall performance. This confirms that

it is indeed important to let the CFM solely learn to dress independently of the

reference image I, instead of leaking information of the warped image from the

GMM into the TOM.

5.6 Qualitative Analysis and User Study.

Qualitative Comparison. Fig. 5 visually compares DP-VTON against base-

lines, CP-VTON+, ACGPN, and PF-AFN on four examples. The images gen-

erated by CP-VTON+ show the backside of a shirt around the neckline, and

the overall color of the clothes is blended and blurred. ACGPN shows better

results but the shape of clothes looks similar to the reference images, especially

around the neckline and arm parts. PF-AFN produces more vivid images, but

it also faces difficulty in handling a variety of body shapes, as shown in Fig. 5

(top-right and bottom-left). In contrast, our method better preserves the char-

acteristics of the clothes, regardless of the source clothes that the reference

person wears. In the top-left case, for example, DP-VTON dresses the blue

round-neck clothes naturally without being mixed with the brown V-neck long

sleeve t-shirt in the source. These examples empirically verify that DP-VTON

better disentangles the characteristics of the person and those of source clothes.
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Figure 5 Qualitative results with various poses

17



Fig. 5 show additional examples with various poses. Our method dresses the

target clothes human-agnostically, regardless of pose or body shape. We again

observe that our method faithfully expresses the detailed characteristics of the

target clothes and fits well on diverse poses and body shapes, while others show

limited preservation of such details.

User Study. We additionally conducted a user study to compare the models,

to reflect general human perception. We randomly sampled 200 examples from

the VITON test set and divided them into two sets, 100 in each. We invited

60 volunteers who are unfamiliar with virtual try-on techniques, and randomly

assigned them to either set A or B. Each question shows the reference person (I),

the target clothes (c), and 4 randomly-ordered virtual try-on images generated

by CP-VTON+, ACGPN, PF-AFN, and our DP-VTON. The participant was

asked to choose the best one among them. (Optionally, they could leave a

comment if it is hard to choose only one or if none of them is dressed properly.)

More details about the user study are provided in the Supplementary Materials

with examples.

Aggregation cp-vton+ acgpn pf-afn Ours

Participant-centric 7.2% 16.1% 11.4% 65.3%

Question-centric 2.5% 11.0% 10.0% 76.5%

Table 3 User study results on VITON

Table 3 summarizes the results. The

first line (participant-centric) shows

the ratio of participants who select each

method most frequently. That is, 65.3%

of the participants answer that our

method produces the best result most often. The second line shows a question-

centric aggregation. For each question, one method is chosen as the best by

majority vote, and the table lists the ratio of questions that each method is

chosen as the best for. Our approach is chosen as the best for 76.5% (153 ques-

tions out of 200), significantly outperforming others. This result confirms that

our method actually produces better quality of try-on images than existing
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methods in general.

Chapter 6. Summary

We propose a simple yet effective method to better preserve details of the

clothing and reference person for virtual try-on. With an additional module

called Clothes Fitting Module (CFM) after geometric warping, our DP-VTON

model learns representations of the clothing disentangled from the human figure

or identity. By disentangling these two major components of virtual try-on, the

proposed method preserves the wearer-agnostic structure and details of the

clothing, and thus can fit a garment naturally to a variety of poses and body

shapes of the target person. Our model learns the behavior of “wearing clothes”

in general, just as a person would dress up in real life. This is confirmed by

quantitative and qualitative evaluations, with our novel patch-based metrics

that reflect the semantics of clothes fitting.

Chapter 7. Supplementary materials

7.1 More on the User Study.

Experimental Settings. We conducted a user study to compare the quality

of generation results. We randomly sampled 200 pairs from the VITON test

set without cherry-picking and divided them into 2 sets, 100 pairs in each with

60 volunteers who are unfamiliar with virtual try-on techniques, and randomly

assigned them to either set A or B. As illustrated in Fig. 6, each question shows

the reference person (I), the target clothes (c), and 4 randomly-ordered virtual

try-on images generated by CP-VTON+, ACGPN, PF-AFN, and our method.

The participant was asked to choose the best try-on result among them. Fig. 7

shows more examples we used in the user study, and the full questionnaire is
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Figure 6 A screenshot of a survey question.

Figure 7 Examples of user study questions.
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Figure 8 Number of questions in which participants chose our result as the best.

#Questions Ratio

cpvton+ 5 2.5%

acgpn 22 11.0%

pf-afn 20 10.0%

Ours 153 76.5%

Table 4 Number of questions that each method was chosen as the best.

also available at: https://forms.gle/NX6hS4eNBfnT7T836

Results and Discussions. As mentioned in Sec. 5.2 (in the main manuscript),

in total 60 users participated in the survey, and 65.3% of them chose our method

most frequently as the best performing one. Fig. 8 shows the percentage of

participants sorted by the number of questions they chose ours as the best.

We see that more than half of the participants chose ours as the best on ≥

60 questions (out of 100). All participants chose ours as the best for at least

35 questions (out of 100), which is significantly higher than 25, the expected

number if randomly chosen from 4 choices. From the question-centric view, as

described in Table 4, participants answered that our model generated the best

results compared to the other 3 baselines in 153 (76.5%) questions among 200

questions.

For reference, ACGPN3 conducted a user study comparing with CP-VTON5,

VITON1, and VTNFP33. Unlike our study, they asked questions in a binary

manner; that is, each question had two choices, one by their ACGPN method
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and the other by one of the baselines. 66.7%, 89.8%, and 76.6% among the par-

ticipants chose the proposed method (ACGPN) against VTNFP, CP-VTON,

and VITON, respectively. PFAFN4 also conducted a similar user study with 50

volunteers, comparing against CP-VTON, ClothFlow44, CP-VTON+2, ACGPN,

and WUTON32. 84.3% of their participants chose the proposed method against

a single baseline, just as in the user study conducted by3. We emphasize that

these two user studies asked the participants to choose one out of the two

candidates, one from the proposed method and the other from another base-

line. Thus, the arithmetic expectation of their experiment was 50%. On the

other hand, our user study showed all four images at the same time, making

the expectation 25%, while we achieved a 65.3% (participant-centric) or 76.5%

(question-centric) winning rate.

7.2 More Qualitative Results.

Fig. 9 shows additional virtual try-on results using our proposed approach and

three baselines2–4. Fig. 10 illustrates our and baselines’ generation results fo-

cusing on various body shapes. Table 5–8 list additional results on various poses

using ACGPN, PF-AFN, and ours.

7.3 Failure cases.

We observe the proposed method struggles when arms are folded (marked with

red boxes in Fig. 11). Although it still shows better synthesized results than

baselines, better handling such complicated poses will be an interesting direction

for future work.
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Figure 9 Additional qualitative virtual try-on results.
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Figure 10 Additional results on various body shapes.
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Table 5 Additional results on various poses (1/4)
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Table 6 Additional results on various poses (2/4)
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Table 7 Additional results on various poses (3/4)
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Table 8 Additional results on various poses (4/4)
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Figure 11 A few failure cases.
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Abstract

원하는 옷의 이미지를 사람의 이미지에 맞추어 입혀주는 가상 의류 시착 기술은

최근빠르게발전하고있다.하지만현재존재하는가상시착방법들은옷이입혀졌

을때의디테일을잘표현하지못하고있다.본논문에서,나는기하학적변형단계

이후에 추가적인 피팅 단계를 추가함으로써 옷의 디테일을 보다 잘 살릴 수 있는

단순하지만 효과적인 방법을 제안한다. 이 최소한의 변화는 사람과 옷을 효과적으

로 분리하는 방법을 소개하며, 이를 통해 옷의 디테일을 자연스럽고 효과적으로

합성할수있다.또한,본논문에서기존측정방법에적용할수있는새로운평가방

법을 제안한다. 실험을 통해 본 논문에서 제시한 방법이 옷과 사람을 효과적으로

분리할 뿐만 아니라, 옷의 디테일을 자연스럽게 보존함을 보였다.

Keywords: Virtual try-on, Clothes fitting, Image synthesis

Student Number: 2021-24005
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