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Abstract 
Hyun Kyung Kim 

Department of Epidemiology 

The Graduate School of Public Health 

Seoul National University 

 

Coronavirus disease-19(COVID-19) was first identified in 

Korea during the 2019-20 seasonal influenza epidemic. Social 

distancing measures, an effective non-pharmaceutical intervention, 

adopted to mitigate the spread of COVID-19 may have significant 

impact on influenza activity. This study aims to identify the changes 

in influenza activity during COVID-19 outbreak and assess the 

impact level of NPI intensity on influenza transmission.  

By comparing 2020-21 and 2021-22 seasonal influenza 

activity with 2013-19 seasons, it was found that COVID-19 

outbreaks and associated NPIs such as use of face mask, school 

closure or travel restriction may have reduced the influenza incidence 

by 91%.The SARIMA(Seasonal Autoregressive Integrated Moving 

Average Model) were used to quantify the effectiveness of NPIs for 

the transmission of influenza virus. Without NPIs against COVID-19 

during influenza epidemic season, ILI rate and positive rate of 
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influenza virus would likely have remained high during the flu 

epidemic season, similar to those of previous seasons. This study 

identified the impact of NPI intensity on transmission of influenza, as 

the reduction rate increased when the social distancing level was 

strengthened (Step-by-step daily recovery: 58.10%, Special 

quarantine measures: 95.12%).  

These results suggest evidence for the role of NPIs and 

personal hygiene behavior in controlling influenza transmission in 

preparation for future outbreaks, and NPIs intervened against 

COVID-19 may be useful strategies for prevention and control of 

influenza epidemic. 

 

Keywords: COVID-19, social distancing, non-pharmaceutical 

intervention, influenza, SARIMA, time-series forecasting 

Student number: 2021-21267  
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Chapter 1. Introduction 

1.1 Study Background  

The coronavirus disease 2019(COVID-19)—declared 

pandemic by World Health Organization on March 11, 2020—was first 

identified in Korea on January 20, 2020. As of November 3, 2022, 

more than 635 million positive cases have been infected with 

COVID- 19 worldwide and 25 million in South Korea [1]. Since, there 

were no treatment and vaccines against the SARS-CoV-2 virus in 

the early stages of the COVID-19 pandemic, non-pharmaceutical 

interventions (NPI), were implemented to mitigate its spread and 

infection. Non-pharmaceutical intervention is actions that people, 

and communities take apart to slow down the spread of illness.  

For example, in South Korea, individual- and community-

level NPIs have been implemented in response to the pandemic and 

social distancing policy has been established. In the early stage of 

COVID-19, the “ Distancing in Daily Life ”  strategy were 

implemented [2]. This strategy has been restructured to 3-tiers 

social distancing system with level 1, level 2 and level 3 on June 28, 

2020 after multiple outbreaks occurred near metropolitan area [3]. 

On November 2020, the system has been reorganized into 5-tiers 
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(level 1, level 1.5, level 2, level 2.5, level 3) and changed to 4-

tiers(level 1, level 2, level 3, and level 4) in July 2021[4]. Each level 

includes different actions and public measures of NPI—school 

closures, administrative order to ban gatherings, travel restrictions, 

tracing and quarantine, and restriction/cancellation of public and 

private events, restriction on entertainment facilities (singing room, 

restaurants, cafes etc.) and many others. NPI regarding 

personal/individual hygiene were also implemented, such as 

mandatory use of face masks and ventilation of indoor spaces, use of 

hand sanitizers, promoting the importance of hand washing and 

respiratory hygiene and increased education on public etiquette when 

coughing/sneezing in terms of prevention of COVID-19. As a result, 

handwashing compliance increased from 74.2% in 2019 to 87.3% in 

2020 and 99.9% of the population wear mask on indoor and 99.8% 

wear mask on outdoor in 2021[5, 6]. Those individual-, community-, 

and government-level efforts to follow and establish the NPI played 

an important role in controlling COVID-19. Previous modeling 

studies have been proven the effectiveness of NPIs in reducing the 

spread of the virus and delay the outbreak of COVID-19 [7]. The 

NPIs used to prevent COVID-19, significant change in the pattern 

and outbreak of other respiratory diseases such as adenovirus, 

parainfluenza virus and metapneumovirus were also observed. 
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Three major changes in respiratory virus have been observed 

during COVID-19 pandemic: 1) reduction in incidence and 

hospitalization 2) changes in circulating virus strains and 3) 

disruption to the seasonality of virus. However, for some respiratory 

viruses, such as rhinovirus and bocavirus, the incidence has been 

increased during pandemic. The number of hospital admission with 

respiratory virus has been declined for both influenza virus and 

majority of the non-influenza virus such as respiratory syncytial 

virus, parainfluenza viruses, metapneumovirus and others [8]. 

Pediatric emergency department visits for respiratory symptoms 

increased in the beginning of pandemic, however, overall the visits 

for non-COVID 19 respiratory illness declined during pandemic 

period [9]. Reduction in cases of acute respiratory illness (ARI) and 

influenza-like illness (ILI) have been seen [10]. Also, during 

COVID-19 pandemic, the circulation of respiratory virus in 

community has been changed too. In Australia, both type of 

rhinovirus(RSV)—RSV A and RSV B—were co-circulating before the 

emergence of COVID-19, however, after NPI against COVID-19 was 

implemented in the community, RSV A were found to be predominant 

[9,10]. Interestingly, among influenza virus B, Yamagata lineage has 

not been detected since March 2020 and other subtypes showed less 

genetic diversity compared to previous season [11]. In northern 
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hemisphere, 99.8% of reduction in influenza virus were appeared in 

2020[11]. On the other hand, the detection rate of human bocavirus 

and adenovirus maintained and RSV has been increased in 2020[12]. 

In particular, detection rate of respiratory virus, such as influenza 

virus, parainfluenza virus, metapneumovirus showed drastic 

reduction from week 13 in 2020[13]. Especially, the pattern of 

influenza virus changed a lot and disruption to the seasonality were 

observed. The number of influenza-like illness per 1000 outpatients 

also reduced during COVID-19 pandemic compared to previous 

influenza seasons (Figure 1-1). In 2019-20 season, the flu advisory 

has been lifted on March 27, which is early compared to other 

previous seasons. However, from the 2020-21 season, the flu 

advisory was not issued, which is the first season without the flu 

advisory since the 2000-01 season—the season when the first flu 

advisory was issued by Korea Disease Control and Prevention 

Agency[14].  
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Figure 1-1. Trends on ILI(2017-18~2019-20 season) 

*ILI: Influenza-like illness  

Influenza and COVID-19 share similar symptom and 

transmission route. Both have symptoms of fever, cough, sore throat, 

shortness of breath, runny nose, muscle pain, headache, vomiting and 

diarrhea [15]. Similar with COVID-19, influenza virus can be 

transmitted via droplets, aerosol, direct and indirect contacts [16,17]. 

The reproductive number(R0)—number of people that one person can 

transmit virus on average—for influenza virus and COVID-19 known 

as 1.3~2.4 and 1.4~2.5, respectively [12].  

 The effectiveness of NPIs in mitigating the spread of viruses 

differ by characteristics of infectious disease such as transmissibility, 

latent period and serial interval [18]. The effect of quarantine policy 

is maximized for fast course disease when the latent period is shorter 

than incubation period. Also, for the diseases with short duration of 

infectiousness shows the maximize effect of NPIs [18]. Compared to 
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COVID-19, influenza virus has a short serial interval—the time of 

illness onset in the primary case to illness onset in the secondary 

case[19]— and viral excretion of influenza virus peaks early in the 

illness [20,21]. The serial interval for influenza virus averages at 2-

4 days and the incubation period is 2 days(1-4days), which is 

shorter than COVID-19; the serial interval of COVID-19 averages 

5.2 days, ranged from 4.2 to 7.5 days and the incubation period 

ranges from 4.8 to 9 days [19]. These features have enabled the 

rapid spread of influenza, which could limit the impact of quarantine 

and isolation measures in controlling the spread of virus. Based on 

this, the assumption has been proposed that NPI will not be effective 

in controlling influenza outbreak [22]. Therefore, understanding on 

the role of NPIs for mitigating the spread of influenza virus is 

necessary. However, there is a lack of research on the effects of 

NPIs for influenza transmission as the accessibility of NPI 

implementation in research is very limited due to its high socio-

economic cost. Since, NPI is being implemented due to the outbreak 

of COVID-19, research on the effects of NPIs on other non- 

COVID-19 disease is essential to reorganize infection prevention and 

control guidelines.  

Concerns about waning immunity of influenza virus have been 



7 

raised consistently as population level immunity of influenza virus is 

developed from prior infection and vaccination [10]. Since the 

circulation of influenza virus were very low for recent two years and 

it can reduce the population immunity. Also, this can cause challenges 

for the selection of vaccine strain since the selection process 

depends on evaluation of haemagglutinin inhibition antibody titers 

against circulating virus strains from Northern and Southern 

hemisphere and it can further reduce the vaccine effectiveness [10].  

In consideration of “ twin-demic ” , co-occurrence of 

influenza and COVID-19, the role of NPIs should be identified in 

terms of controlling the outbreak of both influenza and COVID-19. 

To identify the impact of NPIs on influenza, the influenza activity 

during COVID-19 outbreak will be predicted under a counterfactual 

scenario without NPI against COVID-19 using time-series 

forecasting. The predicted value under counterfactual scenario 

during COVID-19 pandemic is compared to observed value with NPI 

implementation to further quantify the impact of NPIs on influenza. 

The findings of this study aim to improve the understanding of role 

of NPIs on influenza virus and identify the impact of timing and 

intensity of NPIs to provide the evidence on controlling strategy of 

influenza virus.  
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1.2 Literature Review 

A literature review was conducted with three specific 

purposes: 1) to explore the forecasting methodology used in 

influenza prediction; 2) to find out the relationship between NPIs and 

patterns of influenza; 3) to explore the research on forecasting 

influenza activity during COVID-19 outbreak 

1.2.1 Methodology of forecasting influenza outbreak   

 Forecasts of influenza pattern is useful for decision making in 

preparation for an outbreak. Various approaches on influenza 

transmission modeling has been applied to the forecasting of seasonal 

influenza outbreaks [22]. Those modeling approach include 

compartment models, agent-based models, and time-series models.  

 The agent-based model (ABM) has been used in influenza 

modeling [23,24]. ABM is a computational model for agents, a well-

defined autonomous decision-making entity [25]. This model 

assumes that the global behavior emerges due to individual behaviors 

of the entities by interacting` with other entities and their 

environment based on specific rules [22]. The agent-based model 

can take account the impact of different interventions and measures 

including individuals’ behavior, however, the contact network are 

necessary which requires longer development time [26]. The 
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compartment model, which is also known as mathematical model are 

one of the widely used forecasting model. Examples are 

SIR(Susceptible-Infectious-Recovered) model, SEIR(Susceptible-

Exposed-Infectious-Recovered model)  and V-SEIR (Vaccinated-

SEIR) model. The multiple compartments involved in this model can 

introduce subpopulation, however, the total population should be a 

fixed and homogeneous population since it cannot capture the 

difference in contact patterns for different age group and 

environment [22,27]. Despite these limitations, the compartment 

model has been widely used in forecasting influenza [28,29]. Due to 

strong seasonality and periodic change presenting on influenza 

pattern, time-series models are widely used. 

ARIMA(Autoregressive Integrated Moving Average) and 

SARIMA(Seasonal Autoregressive Integrated Moving Average) 

models are the two most used since these models can reflect the 

lagged relationship between the time [30-32]. However, the pattern 

of influenza might be changed between the seasons due to the 

emergence of new influenza virus subtype, which can be a huge 

obstacle in terms of time series forecasting.  

 With these models, various types of influenza related 

variables and indicators are used to forecast the influenza dynamics. 

The most widely used data are influenza-like-illness (ILI), 
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laboratory data including positive rate and detection rate and number 

of hospital admissions. In the past, google FluTrends data, an 

estimates of influenza in 25 countries, was also used, however, the 

program ended since 2015. Recently, neural networks, social-media, 

internet search query surveillance data are also used with machine 

learning based forecasting [33-35]. Those forecasting approach 

predict epidemic trend, the pattern of positive rate, detection rate and 

ILIs and peak duration.  

 

1.2.2 Non-Pharmaceutical Intervention and Influenza  

Many studies on relationship between NPI and respiratory 

virus outbreak have been conducted even before the COVID-19 

pandemic starts. A systematic review and meta-analysis of 21 

studies from 2004-2020 provide evidence on protective effect of 

facial mask on influenza infection (OR=0.55) [36]. Also, NPIs on 

internal travel restriction delayed the influenza epidemics by one 

week to two months and international travel restriction delayed the 

start of epidemic as well as peak point [37].  

The NPIs implemented during COVID-19 pandemic may have 

changed the pattern on respiratory virus. A systematic review of 23 

previous publications from 15 different countries found that NPIs 
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targeted at COVID-19 transmission reduced the spread of influenza 

virus and have important impact on reducing the mortality and 

morbidity of influenza.  

NPI shortens the duration of an influenza epidemic duration 

or delays the onset of influenza in community [38]. Each NPIs 

showed a different effect in terms of reduction in influenza virus. The 

school closure reduced the risk of influenza epidemic by 

43%(IRR=0.57, 95% CI: 0.36-0.96) and canceling public events and 

restricting internal movements reduced the positive rate of influenza 

virus by 44%(RPR=0.56, 95% CI: 0.39-0.82) and 41%(RPR=0.59, 

95% CI: 0.36-0.96), respectively [38]. Travel restrictions have 

been implemented in many countries during COVID-19, which has 

affected the circulation of the influenza virus. Influenza virus A(H3N2) 

were mainly circulated in Asia and Southeast Asia with region-wide 

network, which facilitate the spread of strains to other continents 

including Oceania, Europe, North America, and South America [12]. 

However, during COVID-19 pandemic, the travel restriction affects 

this spreading process across countries, which slow down the 

evolution of influenza virus [10]. 
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1.2.3 Forecasting influenza activity during COVID-19 

pandemic  

 Several studies on forecasting influenza activity during 

COVID-19 pandemic under counterfactual scenario without COVID- 

19 targeted NPIs were published to quantify the impact of NPI on 

respiratory virus. One study quantified the impact of NPI using 

absolute humidity-driven susceptible-infectious-recovered-

susceptible (SIRS) model and found that the influenza activity 

decreased by 60% in the first week of NPI implementation in the 

United States and relaxation of NPI would prolong the duration of 

influenza activity [39]. Using SARIMA (Seasonal-Autoregressive 

Integrated Moving Average) model, it has been estimated that 

COVID-19 related NPI reduced the influenza activity by 79.2% in 

Southern China and 67.2% in United States [40].  
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1.3 Purpose of Research  

This study aimed to identify the changes in outbreak of 

influenza virus during COVID-19 outbreak and estimate the impact 

of non-pharmaceutical interventions on activity of influenza virus. 

The detailed purpose are as follows: 

First, changes in influenza virus activity and pattern from 

2013-14 season to 2021-22 season will be analyzed to identify the 

impact of COVID-19 and related NPIs on influenza.  

Second, the time series forecasting model will be developed 

to estimate the outbreak of influenza and positive rate of influenza 

virus. Using the best-fit model, the incidence of influenza and 

positive rate of influenza virus from 2020 to 2022 will be estimated 

under counterfactual scenario without NPI against COVID-19. The 

predicted value and observed value will be compared to estimate the 

effectiveness and the impact of timing and intensity of the NPIs 

implemented during COVID-19 pandemic on influenza. Based on this, 

the epidemic duration and peak point of influenza virus will be 

estimated under the scenario without NPIs against COVID-19.  
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Chapter 2. Methods 

2.1 Data Source  

2.1.1 Korea Influenza and Respiratory Viruses Surveillance System 

Korea Influenza and Respiratory Viruses Surveillance 

System(KINRESS) is national influenza center established by Korea 

Disease Control and Prevention Agency(KDCA) to identify the changes 

on the patterns and incidence of influenza. The goal of this system is to 

monitor patients and provide information that can be applied in the 

treatment and prevention on acute respiratory disease and reveal the 

cause of diseases. KINRESS also perform genetic analysis to determine 

the cause of outbreak and monitor the emerging of new influenza virus and 

antiviral resistant flu viruses[41]. It was first launched in 2001 for 

influenza virus and laboratory surveillance system was established for 

other acute respiratory infections in 2005. Currently, the target viruses 

are parainfluenza virus(HPIV), human adenovirus (HAdV), human 

respiratory syncytial virus (HRSV), human coronavirus (HCoV), human 

rhinovirus (HRV), human bocavirus (HBoV), and human 

metapneumovirus(HMPV). 
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Figure 2-1 describe schematic flow of the KINRESS. In 

cooperation with medical institutions, especially the primary hospitals, 

Research Institute of Public Health and Environment, Health Department 

of each province, and Sample Surveillance Medical Institution, KDCA 

reports surveillance result of respiratory virus every week and monitor 

the activity. Based on this surveillance system, KDCA issue and lift the 

flu advisory in accordance with the ILI baseline set each year.  

 

Figure 2-1. Schematic flow chart of the KINRESS 

* The number of sentinel sites involve in KINRESS described in Appendix 2 

 

2.1.2 Influenza case surveillance data  

Influenza-like illness(ILI) data—provided through KDCA 

infectious disease website(https://www.kdca.go.kr/npt/)–were used to 

identify changes of influenza activity occurred during COVID-19 
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pandemic and predict influenza cases under counterfactual scenario 

without NPIs against COVID-19 [62]. The ILI defined as the patients with 

a sudden fever over 38℃ and cough or a sore throat. The ILI/1000 

outpatients is a rate of ILI cases among the total number of weekly 

outpatient patients, which reported on a weekly basis by KDCA result 

from influenza clinical surveillance. Influenza clinical surveillance sites in 

South Korea include 199 institutions (2020-21 season) of medical clinics 

and report patients who have been visited, hospitalized and died with 

respiratory symptoms to KDCA through weekly report(from April to 

November) and daily report(from December to April) (Appendix 2).  

The ILI data from 2011-12 season to 2021-22 season are used 

in this research. From 2013-14 season, the KINRESS is reorganized by 

designating both clinical and laboratory institution as sentinel surveillance 

sites and the counting methods of ILI case was changed. Therefore, the 

ILI cases of 2011-12 season and 2012-13 season were re-calculated 

based on the relationship between old ILI and reorganized ILI in 2013-14 

season with following equation: 

𝑦̂𝑖 = 𝑦𝑖 ×
1

𝑁
∑

𝑥𝑖

𝑥𝑖

𝑁

𝑖=1
 

where 𝑦̂𝑖 is estimated ILI of previous season before the reorganization of 
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surveillance system carry out, 𝑦𝑖 is the original ILI of previous season, 𝑥𝑖 

is reorganized ILI in 2013-14 season and 𝑥𝑖  is the old ILI. In the 

beginning of 2013-14 season, both old and reorganized ILIs were 

reported. Thus the average proportion between old(𝑥𝑖) and reorganized(𝑥𝑖) 

ILI are calculated, and further applied to ILI(𝑦𝑖) of the previous season to 

estimate reorganized ILI of 2011-12 and 2012-13 season.  

2.1.3 Laboratory respiratory virus surveillance data  

The virological data from laboratory respiratory virus surveillance 

are publicly available through “Pathogens & Vector Surveillance Weekly 

Report” by KDCA(https://www.kdca.go.kr/npt/) and FluNet website 

(https://www.who.int/tools/flunet). World Health Organization established 

Global Influenza Surveillance Network and created FluNet, a global web-

based tools for influenza virological surveillance by interconnecting 

National Influenza Centers(NICs) of more than 100 countries. NIC provide 

virological surveillance result of each country at national level and send 

representative clinical specimen to WHO for advanced analysis. In South 

Korea, KDCA report the result of KINRESS to WHO [42]. The total of 63 

laboratory institutions, enrolled as ‘laboratory monitoring sentinel sites’ 

(2020-21 season), collects respiratory specimen under patient consent 

https://www.who.int/tools/flunet
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who has been visited clinics with influenza and other respiratory disease 

having respiratory related symptoms within 3 days of onset [43]. The 

collected samples are analyzed through multiplex real-time polymerase 

chain reaction or reverse transcription polymerase chain reaction by the 

Research Institute of Public Health and Environment. Based on the results, 

KDCA provide number of positive specimens of eight target acute 

respiratory virus (HAdV, HPIV, HRSV, IFV, HCoV, HRV, HBoV, HMPV) 

and its subtypes. In the case of influenza virus(IFV), the number of 

positive sample for influenza A(H1N1/pdm09), influenza A(H3N2), 

influenza B(Victoria lineage) and influenza B(Yamagata lineage) are 

provided respectively (Figure 2-2).  

 

Figure 2-2. Genetic detection flow of influenza virus in KINRESS 
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For the analysis, the positive rate of IFV and positive rate of IFV 

A(H1N1/pdm09 and H3N2) are further calculated. In this research, the 

positive rate of IFV B are not considered since influenza B/Yamagata 

lineage has not been isolated and detected after COVID-19 emerge [44]. 

The calculation process is described in Table 2-1.  

Table 2-1. Key variables and calculation methods  

Variable Description 

Total specimens 

processed at the 

laboratory 

Number of specimens processed at the 

laboratory collected with respiratory 

symptoms 

Influenza virus 

positive rate 

(IFV positive rate) 

Percentage of influenza virus (A 

H1N1/pdm 09, H3N2, B) among total 

specimen processed at laboratory 

 

IFV 

positive 

rate(%) 

= 
Number of detected IFV 

Total specimens 

 

*IFV: influenza virus include all subtypes 

(A H1N1/pdm09, A H3N2, B) 

Influenza virus A positive 

rate 

(IFV A positive rate) 

Percentage of influenza virus A 

(H1N1/pdm 09 and H3N2) among total 

specimen processed at laboratory 

IFV A 

positive 

rate(%) 

= 
Number of detected IFV A 

Total specimens 

 

*IFV A: influenza virus A include all subtypes 
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(H1N1/pdm09, H3N2) 
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2.1 Descriptive Analysis 

A descriptive analysis was conducted to identify changes in 

influenza virus activity and patterns from 2013-14 season to 2021-22 

season and demonstrate the effectiveness of NPIs targeted for COVID-

19 on influenza. The number of detected specimen and the positive rate 

of influenza virus A(H1N1/pdm09), influenza virus A(H3N2), influenza 

virus B and total influenza virus of each season were calculated. The 

comparison of indicators of influenza activity—ILI/1000 outpatients, 

number of detected IFV, positive rate of IFV—by social distancing period 

were analyzed. The social distancing period was divided according to the 

level of social distancing (Appendix 7). The mean difference between 

2020 and 2014-19 season, the season before COVID-19 pandemic, were 

calculated with linear regression after adjusting the seasonality. This 

process is conducted using R software.  
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2.2. Time Series  

2.2.1 Time series components  

A time-series is a ordered set of observation (Xt) recorded 

through repeated measurements over time t(t=0,1,2,…)[45]. A time 

series can be categorized into discrete and continuous time series. A 

discrete time series consists of observation that are taken at distinct time 

whereas a continuous time series recorded constantly over with some 

time intervals. For example, the ILI is a discrete time series as the data 

are recorded in a fixed time intervals, weekly.  

A time series is composed of four components: Trend(Tt), 

Seasonal(St), Cycles(Ct), and Residuals(Rt). Trend is a tendency of data 

that shows long term increase or decrease over time. Seasonal component, 

also known as seasonality, is a variation that occurs when a time series is 

affected by annual cycle of the season such as the time of the year or the 

day of the week [46]. Cyclical component refers to regular or periodic 

fluctuations that are not in a fixed frequency [47]. Lastly, irregular or 

residual component is a random fluctuation that are unpredictable with 

non-repeating pattern.  

The four components of time series data can be extracted using 

various decomposition model. Classical decomposition model is one of the 
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examples, which assume that the seasonal variation is constant between 

years. There are two forms of classical decomposition—an additive 

decomposition and a multiplicative decomposition (Equation 1, 2)[47]. 

Other than classical decomposition model, STL(Seasonal Trend 

Decomposition using Loess) model that can treat monthly and quarterly 

seasonal trends and SEATS(Seasonal Extraction in Arima Time Series) 

method are widely used. In this research, classical additive decomposition 

method will be used due to the constant seasonal variation of variables—

ILI/1000 outpatients, IFV positive rate and IFV A positive rate. The time 

series components of each variable identified by decomposition process 

were used to build time series forecasting model.  

Additive model: 𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝑅(𝑡) (Equation 1) 

Multiplicative 

model: 
𝑌(𝑡) = 𝑇(𝑡) × 𝑆(𝑡) × 𝐶(𝑡) × 𝑅(𝑡) (Equation 2) 
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2.2.2 Stationarity   

Stationarity is a random process with a constant mean, variance, 

and covariance. A stationary time series is one whose properties are 

independent of the time which the time series is observed [43]. The time 

series having trend or seasonality are not stationary—as both trend and 

seasonality affect value at different times. White noise is a stationary 

random process with zero autocorrelation, zero mean and constant 

variance. Thus, time series in which white noise appears are stationary. 

Each autocorrelation of white noise series is expected to be zero, so it can 

be examined by an Autocorrelation Function(ACF). Autocorrelation is the 

correlation between lagged values of a time series and measure the linear 

relationship between an observation at time t and the observation at 

previous time period, t-k. (Equation 3).  

 
𝑟𝑘 =

∑ (𝑦𝑡 − 𝑦̅)𝑇
𝑡=𝑘+1 (𝑦𝑡−𝑘 − 𝑦̅)

∑ (𝑦𝑡 − 𝑦̅)2𝑇
𝑡=1

 (Equation 3) 

To conduct time series analysis, conversion of non-stationary into 

stationary is necessary and differencing is one of the most representative 

methods of this conversion [43]. Differencing can stabilize the mean of a 

time series and reduce the trend and seasonality by removing changes in 

the level of time series[46]. The change between consecutive 
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observations in the original time series occurs with differencing (equation 

4) and if the stationary is not appeared after the differencing, a second 

order differencing can be used as well (equation 5). The second order 

differencing involve the change in the changes of the original time series 

data. If the strong seasonality observed in time series, season differencing 

is needed between observations and previous observation given in the 

same season (equation 6) [46].  

Differencing 𝑦′
𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (Equation 4) 

Second-order 

differencing 

𝑦′′
𝑡 = 𝑦′

𝑡 − 𝑦′
𝑡−1 

= (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

= 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 

(Equation 5) 

Seasonal 

differencing 

𝑦′
𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑚 (Equation 6) 

*m: the number of seasons  

2.2.3 Stationarity test 

Stationarity test can determine the need for a differencing. The 

unit root test is one of the common methods of a statistical hypothesis 

testing for stationarity, because the process is non-stationary if the 

autoregressive operator has a unit root. Conducting a unit root test can 

determine whether a differencing is required[43]. Two common unit root 
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tests are: Augmented Dickey-Fuller(ADF) test and Kwiatkowski–

Phillips–Schmidt–Shin(KPSS) test. The ADF test was created by Dickey 

and Fuller(1981), an augmented version of the Dickey-Fuller test[48]. 

The null hypothesis is that unit root is exists in time series observations 

and if accepted, the time series can be interpreted as non-stationary.  

 The KPSS test, created by Kwiatkowski, Phillips, Schmidt and Shin 

(1992), is another type of unit root test. In contrast to ADF test, the null 

hypothesis is that the data is stationary, and the alternative hypothesis is 

that the time series is non-stationary. Therefore, the small p-values 

suggest the needs of differencing of time series to convert it to stationary 

series.  

In this study, ADF and KPSS tests were conducted to determine 

the need for differencing after confirming the stationarity of the time 

series observation. Statistical analysis was performed using “fable” 

package in R software. 
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2.3 Time Series Forecasting 

2.3.1 Seasonal Autoregressive Integrated Moving Average 

Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model was used to forecast the influenza activity and virological trend of 

IFV. SARIMA is a model that seasonal component is added to 

Autoregressive Integrated Moving Average Model (ARIMA) and Box and 

Jenkinson have expanded the ARIMA model to reflect the seasonality [49]. 

ARIMA model is for non-seasonal and non-stationary data and SARIMA 

model apply seasonal differencing of appropriate order to remove non-

stationarity of time-series data [49]. Due to the strong seasonality of 

influenza data, the SARIMA model will be used for prediction.  

SARIMA model can be written as follows: ARIMA(p,d,q)(P,D,Q)m, 

where p, d, q is an order of the non-seasonal autoregressive(AR) part, 

degree of the non-seasonal differencing,  and the order of non-seasonal 

moving average(MA) part, respectively. The P, D, Q each represent the 

seasonal AR order, degree of the seasonal differencing, and the seasonal 

MA. The mathematical equation of SARIMA model is given below 

(equation 7).  
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𝑌𝑡 = 𝛿 +

𝜃𝑞(𝐵)𝛩𝑄𝐵𝑆

∅𝑃(𝐵)𝛷𝑝(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷
𝜖𝑡 (Equation 7) 

* 𝑌𝑡: time-series at t 

    𝛿: constant 

    𝜖𝑡: white noise 

    𝑆: seasonal period 

    𝑃: order of non-seasonal autoregressive(AR) part  𝑝: order of seasonal AR part 

   𝐷: degree of non-seasonal differencing  𝑑: degree of seasonal differencing 

   𝑄: order of non-seasonal moving average(MA) part 𝑞: order of seasonal MA part 

 

2.3.2 SARIMA forecasting  

 Figure 2-3 describes the process of SARIMA forecasting. The 

Box-Jenkins method generalized time series forecasting with four steps—

Identification, Estimation, Diagnostic checking and Forecasting.   

First, the identification process, a time series components were 

examined through decomposition process. Then autocorrelation 

function(ACF) and partial autocorrelation function(PACF)—correlation 

between observations of time series that are separated by time units(k)— 

analysis carried out to determine the appropriate order of AR and MA 

parts of the SARIMA model. The ACF plot is used for estimation of MA 

by determining the proper lagged error terms and the PACF is used in 

identification of maximum order of AR [49].  

Based on this process, the order of each parts of the SARIMA 

model will be selected. In this research a variation of the Hyndman-

Khandakar algorithm will be used[46]. Hyndman-Khandakar algorithm 
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combines unit-root tests, minimization of the AICc, the sample-size 

adjusted AIC(Akaike Information Criterion), and MLE(Maximum 

Likelihood estimation). The first step is estimating number of 

differences(d) using the KPSS test. The value of p and q are determined 

using AICc value and the model that shows smallest AICc after 

differencing will be selected as the optimal model. The AICc is frequently 

used for model selection and use a model’s log-likelihood as a measure of 

goodness of fit. The optimal model undergoes several variation process of 

stepwise search to determine if there is a better performance model[46].  

Using the selected model, the number of ILI/1000 outpatient, IFV 

positive rate and IFV A positive rate will be estimated under 

counterfactual scenario without NPIs of COVID 19. The Ljung-box test 

was conducted to check the residual and if the residual is white noise, the 

forecasting process is carried out by fitting the time series into selected 

SARIMA model.  
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Figure 2-3. Flow of SARIMA forecasting 

 

2.3.3 Forecast performance measure 

Evaluation of forecasting accuracy is very important to verify the 

performance of model in forecasting by comparing training and test 

datasets. In this research, the training dataset are the time series from 

2011-12 season to 2017-18 season and the test datasets are the 

observations of 2018-19 season.  The accuracy of forecasts were 

determined by various forecast performance measures: the Mean 



31 

Absolute Error(MAE) , the Mean Absolute Scaled Error(MASE) and the 

Root Mean Squared Scaled Error(RMSSE). 

The MAE is scale-dependent measures based on average absolute 

deviation of predicted values from observed [46, 49]. Minimizing the MAE 

will improve the performance of forecasting. The MASE is scaled error 

that indicates the effectiveness and accuracy of forecasting with respect 

to naïve forecast. The RMSSE is the modified form of MASE and is 

interpreted similarly to MASE.  To test the accuracy of the forecasting 

model, the predicted values were fitted to the actual value of variables. 
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Chapter 3. Results 

3.1 Surveillance of IFV in Korea   

3.1.1 Analysis of laboratory respiratory virus surveillance data 

Korea Influenza and Respiratory Surveillance System (KINRESS) 

monitors influenza outbreaks by designating sentinel institutions including 

clinical laboratory and inpatients sentinel sites. It was first launched in 

2001 and reformed from the 2013-14 season.  

From 2013-14 season to 2021-22 season, a total of 88,651 

specimens were collected and proceed at the laboratory monitoring 

sentinel sites and the weekly mean number of proceed samples are 189. 

The average number of proceed samples during pre-NPI period(from 

2013-14 season to 2019-20 season) was 215 per week, however, the 

average weekly number during NPI period(2020-21 and 2021-22 season) 

declined to 98, a 54% reduction compared to pre-NPI period. The positive 

rate of influenza virus (IFV) among the proceed samples were also 

significantly reduced during COVID-19 outbreak. The average annual IFV 

positive rate in pre-NPI period was 14.33% and it declined to 0.00% and 

0.64% in 2020-21 season and 2020-22 season, respectively. This 

implies that the positive rate of IFV has declined since the initial 
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implementation of the NPIs strategies against COVID-19.  

 Figure 3-1 shows the distribution of influenza subtypes from the 

result of laboratory respiratory virus surveillance data. From 2013-14 

season to 2021-22 season, three big patterns were observed: 1)unimodal 

distribution with co-circulation of IFV subtype A and IFV subtype B, 

2)bimodal distribution of IFV subtype A and IFV subtype B 3) 

predominance of IFV subtype A throughout the flu epidemic period. The 

influenza season representing a unimodal pattern(2013-14 season, 

2015-16 season, 2016-17 season) with one large peak shows the co-

circulation of influenza A and B. All three seasons exhibit the same 

patterns and the distribution of each subtypes are very similar (average 

IFV A positive rate: 46.84%, average IFV B positive rate: 53.14%)(Table 

3-1). The 2016-17 season and 2018-19 season both manifest the 

bimodal pattern, which IFV A was the predominant subtype of the first 

peak, followed by the second peak pre-dominated by IFV B. The 2019-

20 season, when the COVID-19 first occurred, shows a unique pattern 

that distinguishes it from other seasons. Unlike other seasons, IFV A was 

predominant with 95.81% positive rate and IFV B rarely detected. This is 

expected to be due to the rapid end of flu season with the implementation 

of NPI for the control of COVID-19.  
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Figure 3-1. Influenza-like illness and laboratory surveillance of 

influenza virus in Korea, 2013-2022 

*ILI: Influenza-like illness  

 Influenza A: Influenza A H1N1(pdm 09), Influenza A H3N2, Influenza A not subtyped 

 Influenza B: Influenza B (Victoria), Influenza B (Yamagata), Influenza B not dertermined 
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Table 3-1. Analysis of laboratory influenza virus surveillance data 

Season1) 
Total 

specimen 

Number of detected specimen (positive rate %) 

IFV Total IFV A 

H1N1(pdm09) 

IFV A 

H3N2 
IFV B 

2011-2012 14628 1(0.00%) 1950(51.5%) 1834(48.5%) 3785(25.88%) 

2012-2013 13951 332(19.48%) 1276(74.88%) 96(5.63%) 1704(12.21%) 

2013-2014 12343 346(16.52%) 640(30.56%) 1108(52.91%) 2094(16.97%) 

2014-2015 11065 176(10.94%) 836(51.96) 597(37.10%) 1609(14.54%) 

2015-2016 10933 582(44.09%) 62(4.70%) 675(51.14%) 1320(12.07) 

2016-2017 11526 6(0.50%) 882(72.89%) 322(26.61%) 1210(10.50%) 

2017-2018 11989 141(7.00%) 771(38.30%) 1101(54.69%) 2013(16.79%) 

2018-2019 11862 760(41.90%) 379(20.89%) 675(37.21%) 1814(15.29%) 

2019-2020 8640 825(70.45%) 297(25.36%) 49(4.18%) 1171(13.55%) 

2020-2021 4334 0 (0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 

2021-2022 5959 0 (0.00%) 38(100.00%) 0(0.00%) 38(0.64%) 

1) Influenza season defined as week 36 to week 35 of the following year 
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3.1.2 Analysis of clinical sentinel surveillance data 

The change of influenza-like illness and annual influenza 

incidence from 2013-14 season to 2021-22 influenza season 

described in Table 3-2. The duration of flu epidemic continued to 

increase from 15 weeks in the 2013-14 season to 32 weeks in the 

2018-19 season and the issued date of flu advisories were also 

accelerated. Flu advisories were issued in January for the 2013-14 

through 2015-16 seasons, while it issued in November for the 2017-

18 and 2018-19 season, the last two seasons before the COVID-19 

outbreak. The flu advisories are issue when the case of ILI/1000 

outpatients exceed the baseline; ILI baseline determined by calculating 

mean ILI per 1000 outpatients during non-influenza weeks (the period 

where influenza virus detection rates remains under 2% for two 

consecutive weeks) for the most recent three consecutive years and 

adding two standard deviations [43]. The ILI baseline gradually 

decreased since 2013-14 season and the baseline in the 2019-20 

season was reduced by more than half compared to the 2013-14 

season. The week that flu advisory has been issued in 2019-20 season 

was same with previous season, however, the durations of the epidemic 

were shortened. The ILI in 2019-20 season remains high until week 4 

of 2020 (2021.01.24.), then it gradually decreases and finally dropping 
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below the baseline (5.8 ILI/1000 outpatients) at week 10(2021.03.07.). 

The flu advisories were not issued for 2020-21 season and 2021-22 

season and ILI remained below baseline throughout the season.  

Figure 3-2 compares the trends of ILI/1000 outpatients 

between 2019 and 2020 by the time social distancing was implemented. 

In 2019-20 season, the ILI gradually declined after it reach the peak 

point at week 52. The ILI from the week 1 to week 8 of 2020 was higher 

than the ILI of the same week in 2019. However, it declined rapidly 

after week 4, when the first COVID-19 case confirmed in South Korea. 

Since the week 13 when social distancing was implemented, ILI has 

remained below 3 until the end of the season. 

 

Figure 3-2. Influenza-like Illness and Social Distancing Level in 

Korea 
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Table 3-2. Analysis of influenza epidemic based on clinical surveillance data  

Season 
ILI 

baseline 

Flu advisory 

issued date (ILI) 

Flu advisory 

lifted date (ILI) 

Duration of 

Epidemics 

Peak point (ILI) 

1st peak 2nd peak 

2013-2014 12.1 14.1.2(15.3) 14.5.1.(6.4) 15 weeks 64.3(W7) - 

2014-2015 12.2 15.1.22.(14.0) 15.5.21.(6.2) 17 weeks 45.5(W8) 35.6(W12) 

2015-2016 11.3 16.1.14.(12.3) 16.5.27.(6.0) 17 weeks 53.8(W7) 32(W14) 

2016-2017 8.9 16.12.8.(13.5) 17.6.2.(6.7) 26 weeks 86.2(W52) 16.7(W14) 

2017-2018 6.6 17.12.1.(7.7) 18.5.25.(6.0) 25 weeks 72.1(W1) - 

2018-2019 6.3 18.11.16.(7.8) 19.6.21.(4.7) 32 weeks 73.3(W52) 44.2(W16) 

2019-2020 5.9 19.11.15.(7.0) 20.3.27.(3.2) 20 weeks 49.8(W52) - 

2020-2021 5.8 not issued - - - - 

2021-2022 5.8 not issued - - - - 
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3.1.3 Changes in influenza incidence during COVID-19 outbreak  

Table 3-3 describes the changes in influenza incidence during 

COVID-19 outbreak. The mean differences and reduction rates of the 

number of IFV detected and ILI/1000 outpatients by social distancing 

period in 2020 compared to the average of reference year (2014-15 

season ~ 2018-19 season) were analyzed. In the first three weeks of 

2020, before the first COVID-19 case confirmed in South Korea, both 

ILI and IFV positive rates increased by 55.04% from the reference year. 

The mean difference was 16.48 ILI/1000 outpatients; however, the 

difference was not significant after adjusting the week effect and IFV 

positive rate has been increased by 27.68% in 2020. The first COVID-

19 case confirmed in week 4. From week 4 to week 10, before the WHO 

declared a pandemic, both ILI and IFV positive rate decreased 

significantly to 38.23% and 49.49%, respectively. The mean difference 

of IFV positive rate between reference year and 2020 were 10.22 

ILI/1000 outpatients. After WHO’s pandemic declaration in week 11, 

the Korean government has implemented “enhanced social distancing” 

from week 13 to week 16. Dramatic reductions were observed in this 

period(% reduction of ILI: 86.78%, % reduction of IFV positive rate: 

100%) and shows statistically significant difference. From week 17 to 

week 33, “social distancing in daily-life” was implemented and huge 
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reduction were presented in both ILI and IFV positive rate. However, 

the mean difference was small since the period(week17~week33) is 

not included in the general flu epidemic season (Mean Difference of ILI: 

-3.68 (p-value<0.05), Mean Difference of IFV positive rate:-2.5343 

(p-value<0.05)). In the week 48 to the week 52 of 2020, when the 

level 2 social distancing was implemented, both ILI and IFV positive 

rate declined significantly, and this period is included in the general flu 

epidemic period when there was no COVID-19.  
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Table 3-3. Comparison of influenza incidence between 2020 and 2014-19 season by social distancing period 

No. of Weeks W1~W3 W4~W10 W11~16 W17~33 W34~41 W42~47 W48~52 

 20.1.1~1.18 1.19~2.7 2.8~2.18 2.19~8.15 8.16~10.10 10.11~11.21 11.22~12.31 

 
Before 

COVID-19 

Alert level 

RED 

Pandemic 

declared, 

Enhanced SD                                     

Relaxed, 

Daily life, SD1 
SD 2, 2.5 SD 1 SD 2, 2.5, 3 

ILI/1000 outpatients               

2020 Mean 46.43 16.51 2.73 2.04 1.58 2.40 2.67 

 Median 47.80 11.60 2.75 2.00 1.45 2.50 2.70 

 IQR 3.35 14.80 0.33 0.50 0.40 1.43 0.28 

2014-19 Mean 29.95 26.74 20.68 5.72 3.82 5.38 29.67 

 Median 23.05 27.90 19.40 4.70 3.85 4.55 19.20 

 IQR 23.20 31.05 17.68 1.78 0.90 2.00 41.00 

 % Reduction -55.04 38.23 86.78 64.32 58.74 55.40 91.01 

 mean difference 16.48 -10.22 -17.94 -3.68 -2.24 -2.98 -25.57 

 p-value 0.206 0.132 <0.005 <0.005 <0.005 <0.005 <0.05 
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Number of detected IFV All (A/H1N1, A/H3N2, B)     

2020 Mean 125.00 46.29 0.00 0.12 0.00 0.00 0.00 

 Median 126.00 35.00 0.00 0.00 0.00 0.00 0.00 

 IQR 6.50 65.50 0.00 0.00 0.00 0.00 0.00 

2014-19 Mean 83.22 85.98 68.58 6.22 0.90 6.17 60.32 

 Median 79.00 92.50 67.00 2.00 0.50 2.00 50.00 

 IQR 55.00 94.50 57.25 5.00 1.00 8.00 99.50 

 % Reduction -50.20 46.16 100.00 98.10 100.00 100.00 100.00 

 mean difference 41.78 -39.69 -68.58 -6.10 -0.90 -6.17 -56.72 

 p-value 0.204 0.101 <0.005 <0.005 <0.005 0.117 <0.05 
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IFV Positive Rate              

2020 Mean 40.53 17.58 0.00 0.16 0.00 0.00 0.00 

 Median 40.56 15.84 0.00 0.00 0.00 0.00 0.00 

 IQR 2.93 26.16 0.00 0.00 0.00 0.00 0.00 

2014-19 Mean 31.74 34.81 26.18 2.69 0.45 2.40 20.81 

 Median 31.14 39.02 26.89 1.00 0.21 0.83 16.67 

 IQR 21.72 38.34 22.10 2.59 0.61 3.08 32.26 

 % Reduction -27.68 49.49 100.00 94.13 99.78 99.96 100.00 

 mean difference 8.79 -17.23 -26.18 -2.53 -0.44 -2.40 -19.67 

 p-value 0.390 0.0566 <0.005 <0.005 0.0511 0.0981 <0.05 

*ILI: Influenza-like illness, IFV: Influenza Virus, IFV Positive Rate: Number of detected IFV/total specimen 

% Reduction: (Mean of 2014-19 – Mean of 2020)/(Mean of 2014-19 )*100 

** W1-3: Before COVID-19, W4-10: alert level RED, W11-16: Pandemic declared, Social Distancing(SD), W16-33: Relaxed SD, 

Distancing in daily life, Level 1 SD, W34-41: Level 2 SD, W42-47: Level 1,1.5 SD, W48-52: Level 2, 2+a, 2.5 SD 

*** Detail summary of social distancing (Appendix 7)
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3.2 Time Series Analysis  

3.2.1 Characteristics of variables  

Table 3-4 provide the summary of time series variables used 

in forecasting. The forecasted variables are the total number of ILI 

per 1000 outpatients, positive rates of influenza virus (IFV)and 

positive rates of influenza virus A.  

Table 3-4. Descriptive summary of the variables  

Variables Description Unit 

ILI_TOTAL 
Number of influenza-like illness per 

1,000 outpatients 

/1000 

outpatients 

PROP IFV 

Positive rate of influenza virus 

include all subtypes (Influenza 

A(H1N1/pdm 09, H3N2) and 

Influneza B) 

Prop IFV=(Number of detection of 

Influenza all subtypes)/(Total 

specimen)*100 

% 

PROP A 

Positive rate of influenza A 

(H1N1/pdm 09, H3N2) 

Prop_A=(Number of detection of 

influenza A)/(Total specimen)*100 

% 
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3.2.2 Stationarity Test  

The stationarity test was done to build appropriate time 

series forecasting model. The stationarity was tested with KPSS and 

ADF test. Both KPSS and ADF test shows the data satisfies 

stationarity (Table 3-5). The null hypothesis for the KPSS test is 

that the data is stationary. The high p-value(p-value=0.1) of KPSS 

test suggest that no differencing is needed for the three variables. 

The p-value of the ADF test was 0.01, which rejected the null 

hypothesis, indicating that the stationary time series and it is 

consistent with the result of the KPSS test. These results suggest 

that no differencing is needed for this time series.  

Table 3-5 Stationarity test results 

Variables 

KPSS1) unit root test ADF2) test 

Result p-value Lag order Result p-value 

ILI_TOTAL 0.1519 0.1 7 -5.2538 0.01 

PROP IFV 0.0761 0.1 7 -5.4498 0.01 

PROP A 0.0744 0.1 7 -5.261 0.01 

1)KPSS test: Kwiatkowski-Phillips-Schmidt-Shin test 

2)ADF test: Augmented Dickey–Fuller test 



46 

3.2.3 Time series decomposition  

The classical additive decomposition were done to identify 

each time series components—trend, seasonality, cycle and random 

variation—of variables (Figure3-3, Figure3-4, Figure3-5). 

Classical decomposition assume that the seasonal component repeats 

every year[46]. The decomposition result suggests the strong 

seasonality and irregular trend of the three variables—ILI/1000 

outpatients, positive rate of IFV, and positive rate of influenza A.  

 

Figure 3-3. Decomposition of ILI/1000 outpatients 
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Figure 3-4. Decomposition of positive rate of IFV 

 

Figure 3-5. Decomposition of positive rate of IFV A 
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3.2.4 Autocorrelation  

The ACF(autocorrelation function) and PACF(partial 

autocorrelation function) were further tested to determine and 

analyze the characteristics of time series data and identify 

appropriate order of SARIMA forecasting model. As stated in the 

‘methods’ section, autocorrelation is the correlation between lagged 

value of a time series and PACF measure the relationship between Yt 

and Yt-k after removing the lag effects at lag K. The ACF and PACF 

graph shows the significant autocorrelation and seasonality (Figure 

3-6)  
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a) 

 

b) 

 

c) 

 

Figure 3-6. ACF and PACF plot 

*ACF: Autocorrelation Function 

 PACF: Partial autocorrelation  

a)ACF and PACF of ILI/1000 outpatients 

b)ACF and PACF of IFV positive rate 

c)ACF and PACF of IFV A positive rate 
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3.3 Time Series Forecasting  

3.3.1 Seasonal Auto-Regressive Integrated Moving Average 

 Due to strong seasonality in of influenza, SARIMA(Seasonal 

Auto-Regressive Integrated Moving Average) model was used. To 

decide the each component of p,d,q,P,D,Q in SARIMA model, the 

AICc(Akaike’s information criterion with correction for small sample 

size) value of each model are tested. This model will be applied to 

three different time series data; total number of ILI/1000 outpatients, 

positive rate of IFV and positive rate of IFV A. The AICc values of 

all the possible model described in Appendix 3, 4, and 5.  

Table 3-6 shows the optimized model parameters that are 

selected with smallest AICc values of each variables. The model with 

the smallest AICc values was ARIMA(2,0,2)(1,1,0)[52] for ILI rate,   

ARIMA(2,0,3)(0,1,1)[52] for positive rate of IFV and 

ARIMA(2,0,1)(1,1,0)[52] for positive rate of IFV A. The coefficients 

of selected SARIMA models are provided in Table 3-7.  

Table 3-6. Selected SRIMA model  

Variables Selected Model AICc 

ILI cases/1000 outpatient ARIMA(2,0,2)(1,1,0)[52] 1838.535 

Influenza(all) positive Rate ARIMA(2,0,3)(0,1,1)[52] 1859.892 

Influenza A positive rate ARIMA(2,0,1)(1,1,0)[52] 1738.978 
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Table 3-7. Selected SRIMA model  

IFV  

positive rate 
AR(1) AR(2) MA(1) 

  Coefficients 1.4009 -0.5495 -0.4172 

  
Standard 

Error 
0.1179 0.105 0.124 

  MA(2) MA(3) SMA(1) 

 Coefficients 0.2238 0.2434 -0.5601 

 
Standard 

Error 
0.0622 0.0846 0.0703 

   log likelihood=-922.76 

   AIC=1859.53 

   AICc=1859.89 

   BIC=1885.75 

IFV A  

positive rate 
AR(1) AR(2) MA(1) SAR(1) 

  Coefficients 1.7146 -0.8141 -0.665 -0.4458 

  
Standard 

Error 
0.0554 0.0467 0.0809 0.054 

   log likelihood=-864.39 

   AIC=1738.78 

   AICc=1738.98 

    BIC=1757.51 

ILI/1000 

outpatients 
AR(1) AR(2) MA(1) MA(2) SAR(1) 

  Coefficients 1.1234 -0.3338 0.2699 0.2312 -0.4366 

  
Standard 

Error 
0.1584 0.1385 0.16 0.0915 0.0566 

   log likelihood=-913.13 

   AIC=1838.26 

   AICc=1838.54 

    BIC=1860.74 

 

The details of the model accuracy assessment are provided 

in Table 3-8. The mean absolute scaled error (MASE), indication of 

effectiveness of forecasting algorithm with respect to naïve forecast, 
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of each fitted models are as follows: ILI total: 0.302; Positive rate of 

IFV: 0.308; Positive rate of IFV A: 0.390. The MASE value of all 

variables is less than one, indicating that the model shows better 

performance compared to naïve method. The residual white noise 

test was done and the residuals were not distinguishable from white 

noise series (Appendix 6).  

Table 3-8. Accuracy test of selected SARIMA forecasting model  

Variables Selected Model RMSSE MAE MASE 

ILI total (2,0,2)(1,1,0)[52] 0.309 2.08 0.302 

IFV positive rate (2,0,3)(0,1,1)[52] 0.313 2.21 0.308 

IFV A positive rate (2,0,1)(1,1,0)[52] 0.370 1.73 0.390 

* RMSSE: Root Mean Squared Scaled Error 

MAE: Mean Absolute Error  

MASE: Mean Absolute Scaled Error 

3.3.2 Prediction result  

To estimate impact of NPI on influenza incidence, the 

forecasting of ILI/1000 outpatients, positive rate of IFV and positive 

rate of IFV A was generated under counterfactual scenario without 

NPIs against COVID-19. Figure 3-7 shows the fitted and predicted 

curve for each variable. As the accuracy test result of forecasting 

model performance suggests, the fitted value of the model explains 

the observed value well.  
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a) 

 
b) 

 
c) 

 
Figure 3-7. Fitting result of SARIMA model 

 

*Red line indicates fitted value, blue line indicates predicted and black line is observed 

a)Forecast of ILI/1000 outpatients 

b) Forecast of IFV positive rate 

c) Forecast of IFV A positive rate 
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The predicted value of ILI/1000 outpatients, positive rate of 

IFV and positive rate of IFV A under counterfactual scenario are 

shown in Figure 3-8. The significant differences were observed 

between predicted value and real-world observed value during the 

period that NPI was implemented for the control of COVID-19. In 

South Korea, various social distancing measure were implemented 

throughout the COVID-19 outbreak. Each level of social distancing 

intervenes different types of measures and the difference between 

predicted value and observed value were varied by the level of social 

distancing. This result suggests that timing and intensity of the NPIs 

have an impact on influenza activity. If the COVID-19 did not occur 

and NPI had not been implemented, the ILI case/1000 outpatients, 

positive rate of IFV and positive rate of IFV A will maintain the similar 

trend that last for recent 8 seasons (2011-12 season to 2018-19 

season). 
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Figure 3-8. Forecasting result (2019 W35~2021 W52) 

*Black line: observed ILI , Blue line: Forecasted ILI 

**Timeline of social distancing in South Korea are presented on Appendix 7 

a) Forecasts of ILI/1000 outpatients 

b) Forecasts of IFV positive rate 

c) Forecasts of IFV A positive rate 
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Using the best-fit SARIMA model, the characteristics of 

influenza seasonal epidemic in 2020 and 2021 were estimated under 

counterfactual scenario without NPI for COVID-19 and compared 

with the observed value (Table 3-9). Before the COVID-19 

outbreak, 2014-15 to 2018-19 season, the ILI rate (ILI/1000 

outpatients) were 13.91 on average and the positive rate of IFV and 

IFV A were 12.92% and 7.60%, respectively. A similar trend was 

observed from 36th week of 2019 to 4th week of 2020, when 

COVID-19 confirmed case first occurred; the ILI rate was 16.11, 

positive rate of IFV was 14.03% and positive rate of IFV A was 7.21%. 

However, after the emergence of COVID-19, the significant 

differences were observed between real-world and predicted value 

of three variables. From the week 5 of 2020—the week after COVID-

19 emerge—to the end of 2020, the reduction rate of ILI/1000 

outpatients, positive rate of IFV and positive rate of IFV A were 

71.80%, 73.94% and 83.33%, respectively. Throughout the 2021, 

ILI/1000 outpatients were reduced by 87.2% compared to predicted 

value under counterfactual scenario without NPIs against COVID-19 

and both the positive rate of IFV and IFV A reduced by 99.9%.  
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Table 3-9. Comparison between observed and predicted ILI incidence under counterfactual scenario 

 

Before COVID-19 After COVID-19 

2014-19 
2019-20 
(2019 W36~ 

2020 W4) 

2020  
(2020 W51)~2020 W52) 

2021 

 Observed Observed Observed Predicted Change % Observed Predicted Change % 

ILI Total 13.91 16.11 3.45 12.22 71.80 1.90 14.78 87.12 

Positive rate 

of IFV (%) 
12.92 14.03 1.68 10.09 73.94 0.0014 11.93 99.99 

Positive rate 

of IFV A (%) 
7.60 7.21 1.47 5.63 83.33 0.0014 6.95 99.98 

*Observed value is the average value of the base period 

*Predicted is value under counterfactual scenario without NPI 

2014-19: 2014 W36~2019 W35 

 2019: 2019 W1~2019 W52 

 2020: 2020 W5~2020 W52 

1) 2020 W5: The first week after COVID-19 emerge 

 2021: 2021 W1~2021 W52 

IFV: Influenza Virus, IFV A: Influenza Virus A(H1N1/pdm09 and H3N2)  

Change %=(Predicted-Observed)/Predicted * 100 
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3.3.3 Forecasting duration of flu epidemic and peak point  

Duration of flu epidemics and peak points are estimated based 

on forecasting result of ILI/1000 outpatients (Table 3-10). The 

duration of flu epidemics defined as the number of weeks between 

the week that flu advisory issued and lifted. The issue and lift of the 

flu advisory is determined by KDCA and its medical expert’s 

association based on ILI cases.  

The ILI baseline of 2019-20 season was 5.9. The observed 

duration of flu epidemic was 20 weeks (week 46 of 2019~week 13 

of 2020), however, the flu epidemic is expected to end at week 25 

under the counterfactual scenario. This suggest that NPIs targeted 

COVID-19 has shortened the epidemic. Also, the peak point occurs 

in week 52 during 2019-20 season with 49.8 ILI/1000 outpatients. 

However, under counterfactual scenario, the peak point expected to 

occur at week 1 with 64.06 ILI/1000 outpatients. There were no flu 

epidemics in the 2020-21 season and 2021-22 season as the flu 

advisory has not been issued. Under counterfactual scenario, the 

duration of epidemics expected to be 31 weeks for both 2020-21 

and 2021-22 season (2020-21 season: week 47 of 2020 to week 

25 of 2021, 2021-22 season: week 46 of 2021 to week 24 of 2022). 

The estimated peak point is 64.33 at week 51 of 2020-21 season 
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and 69.37 at week 52 of 2021-22 season. This is similar to the 

previous seasons before the pandemic of COVID-19.   

 

Table 3-10. Summary of forecasted influenza epidemic  

 

 
Season 

ILI 

baseline 

Duration of 

Epidemics* 

Peak point 

(ILI) 

observed 

2018-19 6.3 
32 weeks 

(W46~W25) 
73.3(W52) 

2019-20 5.9 
20 weeks 

(W46~W13) 
49.8(W52) 

 
2019-20 5.9 

32 weeks 

(W46~W25) 
64.06(W1) 

predicted 2020-21 5.8 
31 weeks 

(W47~W25) 
64.33(W51) 

 
2021-22 5.8 

31 weeks 

(W46~W24) 
69.37(W52) 
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3.3.4 Impact of NPI on influenza-like illness  

Table 3-11 and Figure 3-9 describes the percent changes of 

ILI/1000 outpatients between predicted and observed value in 2020-

2021 by the timing of NPI period. The most changed occur in week 

48 to week 52 in 2021 and week 48 and week 6 in 2020-21 season. 

From week 48 of 2020 to week 6 of 2021, the observed ILI decreased 

by 93.83% compared to predicted value under counterfactual 

scenario. During this period, social distancing level 2 and 2.5 were 

implemented due to 3rd wave, Christmas, and New Year’s Day. 

Therefore, the strong public health measures such as banning private 

gatherings were implemented. In addition, from week 48 to week 52 

of 2021—when social distancing was strengthened compared to the 

previous season— the ILI has declined by 95.12%. On the other hand, 

the rate of change was low during period when social distancing was 

eased. For example, the period during which the ‘social distancing 

level 1(week 42~week 47, 2020)’ or ‘step-by step daily recovery 

(week 44~week47, 2021)’ was implemented, the observed ILI rate 

decreased by only 55.06% and 58.10%, respectively compared to the 

forecasted value. This indicates the significant role of the intensity 

and timing of the NPIs on influenza transmission. 
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Table 3-11. Comparison between observed ILI and predicted ILI under counterfactual scenario by NPI period 

  2020 2021 

 No of 

Weeks 
W4~10 W11~16 W17~33 W34~41 W42~47 W48~6 W7~27 W28~43 W44~47 W48~52 

  
20.1.19 

~2.7 2.8~2.18 2.19~8.15 8.16~10.10 10.11~11.21 20.11.22~

21.2.13 
2.14~7.10 7.11~10.30 10.31~11.27 11.28~12.31 

ILI 

Observed 

Mean 16.5 2.7 2.0 1.6 2.4 2.5 1.9 1.3 3.2 2.5 

Median 11.6 2.8 2.0 1.5 2.5 2.5 1.9 1.2 3.5 2.4 

IQR 14.8 0.3 0.5 0.4 1.4 0.3 0.4 0.6 0.7 0.6 

ILI 

Predicted 

Mean 22.2 8.9 5.3 4.1 5.3 39.9 7.8 4.2 7.7 51.7 

Median 24.9 8.9 4.8 4.3 4.9 37.1 7.3 4.4 6.9 62.5 

IQR 13.2 0.4 1.4 0.4 1.4 31.7 4.6 0.5 2.8 23.4 

ILI Change %1) 25.55 69.34 61.18 61.34 55.06 93.83 75.66 70.23 58.10 95.12 

Average  

COVID-19 case2) 
1,108 490 316 1,103 1,132 4,439 4,141 12,419 20,424 39,460 

* W1-3: Before COVID-19, W4-10: First case confirmed, alert level RED, W11-16: Pandemic declared, Social Distancing(SD),  

W16-33: Relaxed SD, Distancing in daily life, Level 1 SD, W34-41: Level 2 SD, W42-47: Level 1,1.5 SD, W48-6: Level 2, 2+a, 2.5 SD,  

W7-27: Level 2 SD, W28-43: Level 4 SD, W44-47: Step-by-step daily recovery, W48-52: Special quarantine measure 

** Detail summary of social distancing(Appendix 7) 

1)ILI Change %=(Predicted-Observed)/Predicted *100 

2)Average COVID-19 case:  Average number of COVID-19 newly confirmed COVID-19 case in South Korea 
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Figure 3-9. Comparison between % changed ILI and average COVID-19 cases 

* W1-3: Before COVID-19, W4-10: First case confirmed, alert level RED, W11-16: Pandemic declared, Social Distancing(SD),  

W16-33: Relaxed SD, Distancing in daily life, Level 1 SD, W34-41: Level 2 SD, W42-47: Level 1,1.5 SD, W48-6: Level 2, 2+a, 2.5 SD,  

W7-27: Level 2 SD, W28-43: Level 4 SD, W44-47: Step-by-step daily recovery, W48-52: Special quarantine measure 

** Detail summary of social distancing(Appendix 7) 
***ILI Change %=(Predicted-Observed)/Predicted *100 

**** Average COVID-19 case:  Average number of COVID-19 newly confirmed COVID-19 case in South Korea 
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Chapter 4. Discussions 

Non-pharmaceutical intervention to mitigate the spread of 

COVID-19 could have affected the transmission and circulation of 

influenza virus in community. This study aimed to identify the impact 

of NPIs for the control of COVID-19 on influenza. The characteristic 

of each season’s influenza patterns was analyzed and time series 

forecasting were conducted to quantify the impact of NPIs on 

substantial decrease in influenza activity.  

The study depicted the changes in influenza patterns and the 

difference in reduction rate according to the social distancing policies 

during the COVID-19 pandemic. The positive rate of IFV and its 

subtypes were considerably lower during COVID-19 outbreak 

compared to the previous seasons. In addition, in 2020-21 season, 

IFV specimens were not detected and none of the IFV B was detected 

after the emergence of SARS-CoV-2 in South Korea. This has been 

occurred in other countries and both Nextstrain and Flunet last 

reported influenza B/Yamagata lineage virus in March 2020 [10, 50]. 

Compared to the 2013-14 to 2018-19 season, the positive rate of 

IFV and IFV A decreased by 58.11% and 99.02%, respectively. 

Accordingly, the 2019-20 season showed a different virological 
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pattern than before, with the lowest IFV B positive rate ever. The 

virological pattern can be divided into two; co-circulation of IFV A 

and B in whole flu epidemic or predomination of IFV A followed by 

predomination of IFV B in second peak. The unique pattern that can 

be observed in 2019-20 season may be the impact of NPIs. The 

early stages of COVID-19 outbreak, which is from week 9, are the 

periods corresponding to the normal flu epidemic. The NPIs against 

COVID-19 may have inhibited the emergence and the spread of IFV 

B in the community. School closure can also explain this unusual 

pattern of IFV B, as the IFV B circulates more actively among 

children [51]. The analysis of clinical sentinel surveillance data 

suggests the huge reduction on ILI case, epidemic duration, and ILI 

peak point. During COVID-19 outbreak (2020-21, 2021-22 

season), flu advisories has not been issued since the ILI cases did 

not reach the baseline (5.8 ILI/1000 outpatients). In 2019-20 season, 

the flu advisory was issued on November 15, 2019, before the 

emergence of COVID-19, similar to the 2018-19 season and the ILI 

peaked at week 52 with 49.8 ILI/1000 outpatients. The ILI cases at 

peak point is relatively low number compared to the previous seasons; 

the peak point in 2018-19 season was 73.3 ILI/1000 outpatients and 

72.1 ILI/1000 outpatients in 2017-18 season. This might be due to 
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early lift of flu advisories since in 2019-20 season, the flu advisory 

lifted as early as 12 weeks earlier compared to the previous season. 

The changes in IFV positive rate and ILI cases between 2020 and the 

previous seasons were identified. As a result, the largest reduction 

of ILI cases occurred at week 48-week 52(% reduction: 91.01%, 

mean difference: -25.57) and week 11-week 16 (% reduction: 

86.78%, mean difference: -17.94). In 2020, the ‘enhanced social 

distancing’ was implemented from week 12 to week 16 after the 

pandemic declaration in week 11. Also, level 2 social distancing was 

implemented from week 48 to week 52 and the ban on private 

gathering of 5 or more people was the major measures.  

The time-series forecasting was conducted to estimate the 

influenza activity during COVID-19 outbreak under counterfactual 

scenario without NPI against COVID-19. The model accurately 

predicted the ILI cases/1000 outpatients, positive rate of IFV and IFV 

A during 2011-18 season. Consistency between the observed and 

predicted value indicated a reliability of these model in estimating the 

influenza activity. According to the prediction, if NPI had not been 

implemented during COVID-19 outbreak, the influenza activity would 

have remained high throughout the entire season, as shown in Figure 

3-8. The NPI has been reduced the ILI cases by 56.17% in 2020 and 



66 

87.12% in 2021. Also, a large decreases were observed in both the 

positive rate of IFV and IFV subtype A during the COVID-19 

outbreak. This implies the prevention role of NPI for the control of 

influenza. The characteristics of flu epidemics under the 

counterfactual scenario has been also examined. The result showed 

that the level of peak and incidence rate are differ by season, 

however, the flu epidemic duration and timing of peak points are 

turned out to be similar. The percent change between observed ILI 

rates and predicted under counterfactual scenario were analyzed by 

the timing of NPI implementation. As a result, the ILI has been 

decreased by 95.12% compared to the counterfactual scenario during 

week 48 to week 52 in 2021, when the social distancing was most 

strengthened. The large difference between the observed and 

predicted value highlights the role of NPI in mitigating the activity of 

influenza virus. 

These results suggest the effectiveness of NPIs against 

COVID-19 on influenza activity. The NPIs that were implemented 

from the beginning of the COVID-19 outbreak such as hand hygiene, 

mask wearing, respiratory etiquette and staying home with 

respiratory symptoms played a big role in terms of the spread of 

influenza virus. The impact of mask wearing on influenza has been 
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proven in previous studies, and it has delayed a pandemic influenza 

by reducing the reproduction number [52]. Influenza viruses can be 

transmitted through droplet, aerosols (droplet nuclei) and contact 

transmission. The use of facial masks can act as a barrier not only to 

droplet transmission but also to hand-to-face contact transmission 

since the facial mask covers both the mouth and nose [53]. The hand 

hygiene may also be important in controlling influenza activity and 

transmission. According to previous study, maintenance of hand 

hygiene and use of face mask reduced the infection risk by 27% (RR: 

0.78, 95% CI 0.60-0,89) [54]. Previous research suggests the 

significant impact of promotion on handwashing on reduction of 

transmission [55]. However, further research is needed as the role 

of handwashing is highly controversial in terms of mitigating the 

respiratory virus infection [56]. The recent survey on changes in 

personal hygiene behavior during COVID-19 outbreak revealed the 

improvement in the awareness of the importance of personal hygiene 

and the hand/respiratory hygiene compliance [57]. This may have 

affected the spread of influenza during COVID-19 outbreak. On the 

other hand, even in the period that social distancing was relaxed for 

a while, there was no significant increases in influenza case or IFV 

specimen. This suggests the potential effects of NPIs other than 
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physical distancing between individuals. For example, travel 

restriction would have had a significant impact on the transmission of 

influenza virus. Many countries have been restricted the travel to 

overseas to prevent the spread of COVID-19. In South Korea, travel 

restriction has been implemented to some countries, including China. 

In some cases, the entry was possible through special entry 

procedures only with the government permission. The 14 days self-

quarantine was mandatory for all arrivals including both residents and 

foreigners. As a result, the number of travelers has decreased by 

more than 60% [58]. The incubation period of IFV is 2 days and even 

if an overseas entrant is infected with IFV, it may not be contagious 

due to 14 days quarantine process, which can reduce the IFV cases. 

Previous research has found that the travel restriction delay the 

transmission of influenza and have profound impact on timing of the 

peak of epidemics, delaying the spread by 2-19 weeks [59]. Not 

only the travel restriction, but also the other travel -related NPIs 

may affect the influenza activity such as border closure and screening 

travelers. Border closures reduced the influenza mortality and 

delayed the importation of IFV from 3 to 30 months and screening 

travelers also had significant impact on import delays [59]. The 

school closure may have important role in terms of reducing influenza 
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incidence during COVID-19 outbreak. Implementing school closure 

before and after the peak point of influenza has been reduced the 

overall flu epidemic duration with delaying the peak [60]. The 

previous study evaluated the effect of school closure duration on flu 

epidemic [61]. In South Korea, school closure was implemented in 

the first semester, the beginning of the COVID-19 outbreak and even 

after school opened in May, the school open were restricted 

depending on the situation. 

Previous studies on the effect of NPI on respiratory infectious 

disease other than influenza have shown that the impact of NPIs 

targeted for COVID-19 are different by the virus. The weekly 

positive rate and the number of hospitalizations of rhinovirus 

increased during COVID-19 outbreak and the observed incidence 

was much higher than predicted under counterfactual scenario [14]. 

The circulation of adenovirus and respiratory enteroviruses 

decreased during COVID-19 NPI period, however, the levels 

persisted even when the NPIs were strengthened [10]. The 

difference of the impact of NPIs on types of respiratory infectious 

disease are due to the characteristics and the pathogenesis of each 

virus [10]. However, significant reduction on influenza virus activity 

were shown in most of the previous research during COVID-19 
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outbreak, suggesting the impact of NPIs on mitigating the 

transmission of IFV [10].  

There are limitations to the study. First the decrease in ILI 

case might be due to decrease in visit of medical institution. From the 

beginning of COVID-19 outbreak, people with respiratory symptoms 

were recommended to go clinics exclusively treating respiratory 

diseases and restricted to visit other medical clinics. This may have 

reduced the number of outpatients and thus the actual number of 

patients infected with IFV may have been underestimated. Second, 

the laboratory respiratory surveillance data does not represent the 

total number of IFV cases in South Korea. Since only samples from 

patients who have visited designated institutions are tested, there 

may be an unconfirmed IFV. Finally, the SARIMA forecasting model 

used in this study did not consider the positive rate of IFV B. Also, 

the scenario did not consider the possibility of an emergence of new 

influenza subtype, which may not reflect the real-world situation. 

However, assuming that the pattern of influenza activity has been 

maintained so far, this forecasting model well depict.  

Influenza has been reported to cause significant 

socioeconomic cost due to its high mortality and morbidity. Several 

studies in South Korea have confirmed higher mortality rate among 
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the population aged 65 and older compared to other age groups [63, 

64]. Hong et al. used negative binomial regression model to estimate 

influenza-associated mortality in Korea during 2009-2016 season 

and IFV A H3N2 showed highest influenza-associated mortality 

including all-cause, respiratory, and circulatory deaths among IFV 

subtypes [64]. The older population, aged over 65, were more 

vulnerable to influenza and the IFV A H1N1-associated mortality 

rate was higher in the population aged under 65 [64]. Influenza can 

cause high burden of illness as it can lead to severe symptoms, 

hospitalization, and death. The influenza-associated excess death 

during influenza season was approximately 2,300 to 5,300 per year 

on average [63]. Therefore, to reduce the socioeconomic cost and 

the burden of disease, the management of the spread of virus and 

early detection of the flu epidemic is necessary. 

Recently, concerns regarding ‘twin-demics’(dual epidemics) 

of influenza and COVID-19 have been continuously raised. The rapid 

public health response on influenza is very important. This research 

gives important policy implication of involving NPIs in terms of 

controlling influenza. There was significant reduction in ILI cases, 

positive rate of IFV and IFV A compared to the prediction value under 

counterfactual scenario in 2020 and 2021, which suggest the role of 
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social distancing and public health measures such as use of face mask, 

hand washing, school closure and travel restriction. The intensity and 

timing of the NPIs also showed remarkable changes on influenza 

transmission. The early detection of flu epidemic has significant 

impact on clinicians’ awareness of the influenza epidemic, which can 

lead to various preparations before issuing the flu advisory and it can 

reduce the burden of illness. Also, the promotion on influenza 

vaccination and personal hygiene can be made before the flu epidemic 

occurs.  

The immunity may have changed during COVID-19 outbreak 

since the influenza virus has not been circulated in community for 

recent two years and the vaccination rate was lower than the 

previous year. This can cause tremendous risk if the flu epidemic 

emerges in community. In addition, the challenges on vaccine strain 

selection have been continuously raised as low number of IFV 

subtype have been detected in the past two years. These uncertainty 

on future seasonal influenza emphasize the importance of the 

research on the effect of public health measures on influenza 

transmission.  

Evidence from our studies improves the understanding of role 

of non-pharmaceutical interventions on influenza, however, since 
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some NPIs often come with a high socioeconomic cost, the 

effectiveness of each NPIs should be evaluated. 
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Chapter 5. Conclusion  

Non-pharmaceutical interventions for the control of COVID-

19 have affected the transmission of influenza virus and other 

respiratory diseases. The social distancing, an effective NPI to 

reduce the level of SARS-CoV-2 transmission, and personal 

behavior changes reduced the influenza activity in South Korea. 

Timing and the intensity of the NPIs was associated with the 

decreases in influenza activity during COVID-19 outbreak. The early 

detection and proper management of influenza are necessary due to 

its high mortality and hospitalization among high-risk group. 

Evidence from our study improves the understanding of the 

effectiveness of NPIs against influenza virus. Further studies are 

needed to evaluate the effectiveness of each NPIs, as some NPIs 

carry high socioeconomic cost and may not be feasible to the pubic 

or government for the control of influenza.   
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국문 초록 

코로나19 비약물적 중재가 

인플루엔자 발생에 미치는 영향: 

시계열 예측을 중심으로  

김현경 

보건학과 보건학 전공 

서울대학교 보건대학원 

 

2019-2020 절기 인플루엔자 유행기간인 2020년 1월 20일 

국내 코로나19 첫 확진자가 발생하였다. 지역사회 내 전파를 

최소화하고자 사회적 거리두기, 개인위생 강화 등 여러 비약물적 중재가 

시행되었으며 코로나19 외 인플루엔자를 포함한 여러 호흡기 감염병의 

발생 양상에 큰 영향을 미친 것으로 알려졌다. 이에 본 연구에서는 

코로나19 발생 이후 인플루엔자 발생 양상을 도출하고 인플루엔자 

전파에서의 비약물적 중재의 효과를 확인하였다.  

코로나19가 발생하기 이전인 2013-2019 절기와 2020-2022 

절기의 인플루엔자 의사환자분율 및 인플루엔자 병원체 검출률을 비교한 

결과 마스크 착용, 등교 중지, 출입국 제한 등 비약물적 중재가 시행된 

시기에 인플루엔자 의사환자가 91% 감소한 것으로 나타났다. 사회적 
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거리두기의 단계가 인플루엔자 전파에 미치는 영향을 확인하기 위해 

SARIMA 모델을 이용한 예측 모형을 구축하였다. 그 결과 코로나19의 

비약물적 중재가 시행되지 않았을 경우 2020-2022 인플루엔자 유행은 

전 절기와 비슷한 수준을 유지할 것으로 확인되었다. 또한, 사회적 

거리두기 단계가 강화될 때 의사환자 감소율이 증가하는 것으로 

나타났다 (단계적 일상회복 단계: 58.10%, 2021년 연말 특별 방역대책: 

95.12%).  

본 연구에서는 코로나19 시기에 강화된 개인위생과 비약물적 

중재가 인플루엔자 발생 감소에 미치는 영향을 확인하였으며 이로써 본 

연구 결과는 향후 인플루엔자 유행에 대비한 예방 및 관리 정책의 

근거를 제시한다.  

 

주요어: 코로나19, 사회적 거리두기, 비약물적 중재, 인플루엔자, 

SARIMA, 시계열 예측 

학번: 2021-21267



 

Appendix 

Appendix 1. The number of detected influenza virus and the 

influenza-like illness rates of the 2013-14 season to 2021-22 

season  

*Dark blue bar: Number of specimens of influenza A 

 Light blue bar: Number of specimens of influenza B 

 Red line: ILI-base line(differ by each year) 

 Black line: ILI rates (ILI case/1000 outpatients) 
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Appendix 2. KINRESS sentinel sites (2020-21 season) 

Region 
ILI sentinel 

sites 

Laboratory 

monitoring 

sentinel sites 

Inpatient 

monitoring 

sentinel sites 

Total 199 63 219 

Seoul 37 6 43 

Busan 11 4 18 

Daegu 10 3 8 

Incheon 11 4 14 

Gwangju 7 3 5 

Daejeon 6 2 8 

Ulsan 6 3 2 

Sejong 2 2 1 

Gyeonggi 43 7 43 

Gangwon 6 3 8 

Chungbuk 6 3 9 

Chungnam 6 4 9 

Jeonbuk 8 4 10 

Jeonnam 8 4 9 

Gyeongbuk 13 3 13 

Gyeongnam 14 4 12 

Jeju 5 4 7 

  



 

Appendix 3. Selecting Best Model for ILI/1000 outpatients 

Model AICc 

ARIMA(0,0,0)(0,1,0)[52]with drift 4878.186 

ARIMA(0,0,0)(1,1,0)[52]   4794.621 

ARIMA(0,0,0)(1,1,0)[52]with drift 4796.511 

ARIMA(0,0,1)(0,1,1)[52]with drift 4534.526 

ARIMA(0,0,1)(1,1,0)[52]   4498.464 

ARIMA(0,0,2)(0,1,1)[52]   4351.486 

ARIMA(0,0,2)(1,1,0)[52]   4324.5 

ARIMA(0,0,3)(0,1,0)[52]   4308.146 

ARIMA(0,0,3)(0,1,1)[52]   4262.614 

ARIMA(0,0,3)(0,1,1)[52]with drift 4261.414 

ARIMA(0,0,3)(1,1,0)[52]   4258.548 

ARIMA(0,0,4)(0,1,0)[52]   4279.432 

ARIMA(0,0,4)(0,1,1)[52]   4221.903 

ARIMA(0,0,4)(1,1,0)[52]   4222.907 

ARIMA(1,0,0)(0,1,0)[52]   4370.846 

ARIMA(1,0,0)(0,1,0)[52]with drift 4372.752 

ARIMA(1,0,0)(1,1,0)[52]   4316.943 

ARIMA(1,0,0)(1,1,0)[52]with drift 4318.97 

ARIMA(1,0,1)(0,1,0)[52]   4295.617 

ARIMA(1,0,1)(0,1,1)[52]   4236.156 

ARIMA(1,0,1)(1,1,0)[52]   4244.362 

ARIMA(1,0,1)(1,1,0)[52]with drift 4246.397 

ARIMA(1,0,2)(0,1,0)[52]   4262.955 

ARIMA(1,0,2)(0,1,1)[52]   4199.456 

ARIMA(1,0,2)(0,1,1)[52]   Inf 

ARIMA(1,0,2)(0,1,1)[52]with drift Inf 

ARIMA(1,0,2)(0,1,2)[52]   Inf 

ARIMA(1,0,2)(1,1,0)[52]   4212.912 

ARIMA(1,0,2)(1,1,0)[52]with drift 4214.952 

ARIMA(1,0,2)(1,1,1)[52]   Inf 

ARIMA(1,0,3)(0,1,0)[52]   4261.168 

ARIMA(1,0,3)(0,1,0)[52]with drift 4262.921 



 

ARIMA(1,0,3)(0,1,1)[52]   4196.86 

ARIMA(1,0,3)(0,1,1)[52]   Inf 

ARIMA(1,0,3)(0,1,1)[52]with drift Inf 

ARIMA(1,0,3)(0,1,2)[52]   Inf 

ARIMA(1,0,3)(1,1,0)[52]   4212.706 

ARIMA(1,0,3)(1,1,0)[52]with drift 4214.757 

ARIMA(1,0,3)(1,1,1)[52]   Inf 

ARIMA(1,0,4)(0,1,0)[52]   4263.246 

ARIMA(1,0,4)(0,1,0)[52]with drift 4265.014 

ARIMA(1,0,4)(0,1,1)[52]   4197.664 

ARIMA(1,0,4)(0,1,1)[52]   Inf 

ARIMA(1,0,4)(0,1,1)[52]with drift 4198.674 

ARIMA(1,0,4)(0,1,1)[52]with drift Inf 

ARIMA(1,0,4)(1,1,0)[52]   4212.179 

ARIMA(1,0,4)(1,1,0)[52]with drift 4214.236 

ARIMA(1,0,5)(0,1,0)[52]   4265.03 

ARIMA(2,0,1)(0,1,0)[52]   4267.891 

ARIMA(2,0,1)(0,1,1)[52]   4199.975 

ARIMA(2,0,1)(0,1,1)[52]   Inf 

ARIMA(2,0,1)(0,1,1)[52]with drift 4200.41 

ARIMA(2,0,1)(0,1,1)[52]with drift Inf 

ARIMA(2,0,1)(0,1,2)[52]   4201.857 

ARIMA(2,0,1)(0,1,2)[52]   Inf 

ARIMA(2,0,1)(1,1,1)[52]   Inf 

ARIMA(2,0,2)(0,1,0)[52]   4262.409 

ARIMA(2,0,2)(0,1,0)[52]with drift 4264.067 

ARIMA(2,0,2)(0,1,1)[52]   4196.074 

ARIMA(2,0,2)(0,1,1)[52]   Inf 

ARIMA(2,0,2)(0,1,1)[52]with drift 4196.78 

ARIMA(2,0,2)(0,1,1)[52]with drift Inf 

ARIMA(2,0,2)(0,1,2)[52]   Inf 

ARIMA(2,0,2)(0,1,2)[52]with drift Inf 

ARIMA(2,0,2)(1,1,0)[52]   4210.865 

ARIMA(2,0,2)(1,1,0)[52]   1838.535 

ARIMA(2,0,2)(1,1,1)[52]   Inf 



 

ARIMA(2,0,2)(1,1,1)[52]with drift Inf 

ARIMA(2,0,3)(0,1,0)[52]   4264.082 

ARIMA(2,0,3)(0,1,1)[52]   4198.151 

ARIMA(2,0,3)(0,1,1)[52]   Inf 

ARIMA(2,0,3)(0,1,1)[52]with drift 4198.843 

ARIMA(2,0,3)(0,1,1)[52]with drift Inf 

ARIMA(2,0,4)(0,1,0)[52]   4266.001 

ARIMA(3,0,1)(0,1,1)[52]   4201.78 

ARIMA(3,0,1)(0,1,1)[52]   Inf 

ARIMA(3,0,2)(0,1,0)[52]   4264.847 

ARIMA(3,0,2)(0,1,1)[52]   4198.023 

ARIMA(3,0,2)(0,1,1)[52]   Inf 

ARIMA(3,0,2)(0,1,1)[52]with drift 4198.849 

ARIMA(3,0,2)(0,1,1)[52]with drift Inf 

 

  



 

Appendix 4. Selecting Best Model for positive rate of IFV 

Model AICc 

ARIMA(0,0,0)(0,1,0)[52]with drift 4926.051 

ARIMA(0,0,0)(1,1,0)[52]   4868.715 

ARIMA(0,0,0)(1,1,0)[52]with drift 4870.728 

ARIMA(0,0,1)(0,1,1)[52]with drift 4585.977 

ARIMA(0,0,1)(1,1,0)[52]   4589.561 

ARIMA(0,0,2)(1,1,0)[52]   4496.821 

ARIMA(0,0,3)(0,1,1)[52]   Inf 

ARIMA(0,0,3)(1,1,0)[52]   4399.356 

ARIMA(0,0,4)(0,1,0)[52]   4403.406 

ARIMA(0,0,4)(0,1,1)[52]   Inf 

ARIMA(0,0,4)(0,1,1)[52]with drift Inf 

ARIMA(0,0,4)(1,1,0)[52]   4373.745 

ARIMA(0,0,5)(0,1,1)[52]   4308.014 

ARIMA(1,0,0)(0,1,0)[52]   4385.59 

ARIMA(1,0,0)(0,1,0)[52]with drift 4387.577 

ARIMA(1,0,0)(1,1,0)[52]   4352.9 

ARIMA(1,0,0)(1,1,0)[52]with drift 4354.953 

ARIMA(1,0,1)(0,1,0)[52]   4382.659 

ARIMA(1,0,1)(1,1,0)[52]   4348.263 

ARIMA(1,0,1)(1,1,0)[52]with drift 4350.329 

ARIMA(1,0,2)(0,1,0)[52]   4378.038 

ARIMA(1,0,2)(0,1,1)[52]   Inf 

ARIMA(1,0,2)(1,1,0)[52]   4339.503 

ARIMA(1,0,2)(1,1,0)[52]with drift 4341.581 

ARIMA(1,0,3)(0,1,0)[52]   4340.232 

ARIMA(1,0,3)(0,1,1)[52]   4283.559 

ARIMA(1,0,3)(0,1,1)[52]with drift 4285.166 

ARIMA(1,0,3)(0,1,2)[52]   Inf 

ARIMA(1,0,3)(1,1,0)[52]   4313.255 

ARIMA(1,0,3)(1,1,0)[52]with drift 4315.348 

ARIMA(1,0,3)(1,1,1)[52]   Inf 

ARIMA(1,0,4)(0,1,0)[52]   4339.184 

ARIMA(1,0,4)(0,1,0)[52]with drift 4341.176 

ARIMA(1,0,4)(0,1,1)[52]   4283.179 

ARIMA(1,0,4)(0,1,1)[52]with drift 4284.781 

ARIMA(1,0,4)(1,1,0)[52]   4311.975 

ARIMA(1,0,4)(1,1,0)[52]with drift 4314.081 

ARIMA(1,0,5)(0,1,0)[52]   4337.06 

ARIMA(2,0,2)(0,1,0)[52]   4348.981 



 

ARIMA(2,0,2)(0,1,1)[52]   Inf 

ARIMA(2,0,2)(0,1,1)[52]with drift Inf 

ARIMA(2,0,2)(0,1,2)[52]   Inf 

ARIMA(2,0,2)(1,1,1)[52]   Inf 

ARIMA(2,0,2)(1,1,1)[52]with drift Inf 

ARIMA(2,0,3)(0,1,0)[52]   4336.033 

ARIMA(2,0,3)(0,1,0)[52]with drift 4337.996 

ARIMA(2,0,3)(0,1,1)[52]   4276.174 

ARIMA(2,0,3)(0,1,1)[52]   1859.892 

ARIMA(2,0,3)(0,1,1)[52]with drift 4277.451 

ARIMA(2,0,3)(1,1,0)[52]   4304.724 

ARIMA(2,0,4)(0,1,0)[52]   4337.274 

ARIMA(3,0,2)(0,1,1)[52]   Inf 

ARIMA(3,0,3)(0,1,0)[52]   4337.463 

 

  



 

Appendix 5. Selecting Best Model for positive rate of IFV A 

Model AICc 

ARIMA(0,0,0)(0,1,0)[52]with drift 4417.613 

ARIMA(0,0,1)(0,1,1)[52]with drift 4113.879 

ARIMA(1,0,0)(1,1,0)[52]with drift 3914.875 

ARIMA(1,0,0)(1,1,1)[52]   Inf 

ARIMA(1,0,1)(0,1,1)[52]   3893.143 

ARIMA(1,0,1)(1,1,0)[52]   3892.948 

ARIMA(1,0,1)(1,1,1)[52]   Inf 

ARIMA(1,0,1)(1,1,1)[52]with drift Inf 

ARIMA(1,0,1)(1,1,2)[52]   Inf 

ARIMA(1,0,1)(2,1,1)[52]   3934.613 

ARIMA(1,0,2)(1,1,1)[52]   3870.372 

ARIMA(1,0,2)(1,1,1)[52]with drift 3872 

ARIMA(2,0,0)(0,1,1)[52]   3880.142 

ARIMA(2,0,0)(1,1,0)[52]   3884.168 

ARIMA(2,0,0)(1,1,1)[52]   3869.793 

ARIMA(2,0,0)(1,1,1)[52]with drift 3871.299 

ARIMA(2,0,0)(1,1,2)[52]   Inf 

ARIMA(2,0,0)(2,1,1)[52]   3923.839 

ARIMA(2,0,1)(0,1,0)[52]   3917.753 

ARIMA(2,0,1)(0,1,1)[52]   3853.616 

ARIMA(2,0,1)(0,1,1)[52]   Inf 

ARIMA(2,0,1)(0,1,1)[52]with drift 3854.62 

ARIMA(2,0,1)(0,1,1)[52]with drift Inf 

ARIMA(2,0,1)(0,1,2)[52]   Inf 

ARIMA(2,0,1)(1,1,0)[52]   3862.934 

ARIMA(2,0,1)(1,1,0)[52]   1738.978 

ARIMA(2,0,1)(1,1,0)[52]with drift 3864.025 

ARIMA(2,0,1)(1,1,1)[52]   3847.94 

ARIMA(2,0,1)(1,1,1)[52]   Inf 

ARIMA(2,0,1)(1,1,1)[52]with drift 3848.086 

ARIMA(2,0,1)(1,1,1)[52]with drift Inf 

ARIMA(2,0,1)(1,1,2)[52]   Inf 

ARIMA(2,0,1)(1,1,2)[52]with drift Inf 

ARIMA(2,0,1)(2,1,0)[52]   3903.366 

ARIMA(2,0,1)(2,1,1)[52]   Inf 

ARIMA(2,0,1)(2,1,1)[52]with drift Inf 

ARIMA(2,0,2)(0,1,1)[52]   3854.678 

ARIMA(2,0,2)(0,1,1)[52]   Inf 

ARIMA(2,0,2)(0,1,1)[52]with drift 3855.8 



 

ARIMA(2,0,2)(0,1,1)[52]with drift Inf 

ARIMA(2,0,2)(1,1,0)[52]   3864.967 

ARIMA(2,0,2)(1,1,0)[52]with drift 3866.102 

ARIMA(2,0,2)(1,1,1)[52]   3849.421 

ARIMA(2,0,2)(1,1,1)[52]   Inf 

ARIMA(2,0,2)(1,1,1)[52]with drift 3849.773 

ARIMA(2,0,2)(1,1,1)[52]with drift Inf 

ARIMA(3,0,0)(1,1,1)[52]   3857.43 

ARIMA(3,0,0)(1,1,1)[52]   Inf 

ARIMA(3,0,1)(0,1,1)[52]   3855.908 

ARIMA(3,0,1)(0,1,1)[52]   Inf 

ARIMA(3,0,1)(1,1,0)[52]   3866.205 

ARIMA(3,0,1)(1,1,1)[52]   3850.658 

ARIMA(3,0,1)(1,1,1)[52]   Inf 

ARIMA(3,0,1)(1,1,1)[52]with drift 3851.065 

ARIMA(3,0,1)(1,1,1)[52]with drift Inf 

 

  



 

Appendix 6. Residual analysis of SARIMA model 

a 

 

b 

 

c 

 

*a) ILI case/1000 outpatients 

 b) Positive rate of IFV 

 c) Positive rate of IFV A 

* Dashed line indicate the 95% confidence interval 



 

Appendix 7. Social distancing levels by period(2020-2021) 

Period Week Social Distancing Level 

2020.01.20. W4 

First imported COVID-19 case 

confirmed in South Korea 

Alert level raised to yellow 

2020.02.23. W9 Alert level raised to Red 

2020.02.29.

~03.21 
W9~W12 Social Distancing1) 

2020.03.11. W11 WHO declared COVID-19 a pandemic 

2020.03.22.

~04.19 
W13~W16 Enhanced Social Distancing1) 

2020.04.20.

~05.05 
W17~W18 Relaxed Social Distancing1) 

2020.05.06.

~08.18. 
W19~W33 

Distancing in Daily Life1) and Level 1 

Social Distancing2) 

2020.08.19.

~8.29. 
W34~W35 Level 2 Social Distancing2)3) 

2020.08.30.

~9.13. 
W36~W37 Level 2.5 Social Distancing 

2020.09.14.

~10.11. 
W38~W41 

Level 2 Social Distancing 

* 9.28.~10.10.: Holiday special quarantine: 

2020.10.12.

~11.6. 
W42~W45 Level 1 Social Distancing 



 

2020.11.07.

~11.18. 
W46~W47 Level 1 Social Distancing4) 

2020.11.19.

~11.23. 
W47~W48 

Level 1.5 Social Distancing (special 

quarantine for National Exam for 

University) 

2020.11.24.

~11.30. 
W48~W49 Level 2 Social Distancing 

2020.12.01.

~12.07. 
W49 Level 2+a Social Distancing 

2020.12.08.

~21.02.14. 
W50~W6 

Level 2.5 Social Distancing 

*Private gathering restricted 

2021.02.15.

~07.11 
W7~W27 Level 2 Social Distancing 

2021.07.12.

~10.31. 
W28~W43 

Level 4 Social Distancing5) 

*9.13.~9.26.: Holiday special quarantine 

2021.11.01.

~11.28. 
W44~W47 Step-by Step Daily recovery 

2021.11.29.

~12.31. 
W48~W52 Special quarantine measure 

1) Social Distancing policy divided into 3 steps 

2) 2020.06.28: Social Distancing policy reformed to 3 tiers(Level 1, 2, 3) 

3) Only metropolitan area   

4) 2020.11.07: Social Distancing reformed to 5 tiers(Level 1, 1.5, 2, 2.5, 3) 

5) 2021.07.12.: Social Distancing reformed to 4 tiers(Level 1, 2, 3, 4) 
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