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Abstract 

 
Backrgound : Long-term exposure to ozone (O3), nitrogen dioxide 

(NO2), and carbon monoxide (CO) is known to cause various 

diseases and increase mortality. For that reason, estimating 

ground-level O3, NO2, and CO concentrations with a high spatial 

resolution is crucial for assessing the health effects associated with 

these air pollutants. However, related studies are limited in South 

Korea. This study aimed to develop machine learning-based models 

to predict the monthly O3 (average of daily 8-hour maximums), 

NO2, and CO at a spatial resolution of 1 km × 1 km across South 

Korea from 2002 to 2020.  

Methods : Approximately 80% of the monitoring stations were used 

to train the three machine learning models (random forest, light 

gradient boosting, and neural network) with a 10-fold cross-

validation, and 20% of the monitoring stations were used to test the 

model performance. The author also applied ensemble models to 

integrate the variation in predictions among the models. Multiple 

predictors with satellite-based remote sensing data, inverse 

distance weighted ground-level air pollutants, land use variables, 

reanalysis datasets for meteorological variables, and regional 

socioeconmoic variables collected from various databases were 
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included in the prediction model.  

Results : For O3, the overall R2 of the ensemble model was 0.841 

during the entire study period. Urban areas showed a better model 

performance (R2 = 0.845) than rural areas (R2 = 0.762). For NO2, 

the highest overall R2 was 0.756, which best fit in autumn (R2 = 

0.768). For CO, the overall R2 value was 0.506. This study provides 

high spatial resolution monthly average O3 and NO2 estimates with 

excellent performance (R2 > 0.75).  

Conclusion : The author’s predictions can be used to analyze the 

spatial patterns in pollutants in relation to population characteristics 

and studies on the health effects of long-term exposure to air 

pollution using geocode-based health information and local health 

data. 

 

Keywords : Gaseous air pollution, Exposure assessment, High 

spatial resolution, Machine learning model, Ensemble model 
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Chapter 1. Introduction 
 

 

Numerous studies have consistently identified that exposure to 

ground-level gaseous air pollutants, such as ozone (O3), nitrogen 

dioxide (NO2), and carbon monoxide (CO), affects various health 

outcomes. Exposure to O3 can cause diabetes mellitus (Li et al., 

2021) and respiratory diseases (Lin et al., 2008; Rhee et al., 2019). 

Exposure to NO2 is associated with cardiopulmonary system 

disorders (Dijkema et al., 2016), and mortality rate could be 

elevated by exposed to O3 and NO2 (Heinrich et al., 2013; Huang et 

al., 2021b; Lim et al., 2019; Niu et al., 2022). Also, long-term 

exposure to O3, NO2, and CO is related to cardiovascular diseases 

(Kim et al., 2017). Other studies found that the risk of lung and 

liver cancers might be associated with the gaseous air pollutants 

(Bălă et al., 2021; So et al., 2021; Yazdi et al., 2019), and the 

negative effects on health have been observed across all age 

groups: from newborns to elderly (Dimakopoulou et al., 2020; 

Heinrich et al., 2013; Huang et al., 2021b; Lin et al., 2008; Rhee et 

al., 2019). Recent studies have suggested that an increase in air 

pollution can affect Coronavirus 2019 infection (COVID-19) 

(Travaglio et al., 2021; Zheng et al., 2021) and its fatality (Garcia 

et al., 2022; Konstantinoudis et al., 2021).  
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Monitors of air pollution have been used in numerous studies to 

investigate how exposure to air pollution impacts human health 

outcomes, monitoring networks generally are disproportionately 

located in urban areas and even within cities do not fully capture 

spatial heterogeneity of air pollution exposure. Further, several 

studies have shown that air pollution monitors in some countries 

such as the United States and Brazil are disproportionately located 

in some communities, providing less information for other 

communities (Bravo et al., 2016; Ebisu et al., 2014). Further, some 

monitoring networks do not provide daily data. Regional air quality 

modeling, such as the Weather Research and Forecasting Model - 

Community Muldiscale Air Quality Modeling System (WRF-CMAQ) 

(Wong et al., 2012) can provide full spatial and temporal coverage, 

but are often time consuming and computationally costly to conduct 

for large areas at high spatial resolution. 

Therefore, to estimate and prevent health impacts attributable to 

these gas pollutants, many studies have developed models to 

predict the group-level concentration of gaseous air pollutants in 

order to provide estimates of concentrations at times and locations 

for which monitoring data are not available. Most of these studies 

used spatial interpolation approaches with dispersion models with 

O3, NO2, and CO (Liu et al., 2019b), land use regression models 
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(LUR) for O3 and NO2 (Kerckhoffs et al., 2015; Rosenlund et al., 

2008), LUR with chemical transport modeling approaches for O3 

(Wang et al., 2016), and LUR with satellite-based models for NO2 

(Chen et al., 2020; Vienneau et al., 2013; Young et al., 2016). In the 

case of NO2, LUR with traffic-related factors has been widely used 

to estimate ground-level concentrations (Bechle et al., 2015; Chen 

et al., 2020; Larkin et al., 2017; Vienneau et al., 2013; Young et al., 

2016). 

However, these modeling approaches have limitations. First, 

spatial interpolation methods, such as inverse distance weighting 

(IDW) and kriging, are based on the hypothesis that air pollutants 

have a distance-decay relationship over the study area. However, 

considering only spatial correlation with a variogram is inadequate 

for considering complex geographical information (Lu and Wong, 

2008) and the interpolation methods do not address geographical 

and meteorological factors that could affect air pollutants (Chen et 

al., 2012; Rosenlund et al., 2008). Further, such approaches are 

limited by the existing air pollution monitoring network, which may 

not well represent all areas. As an alternative approach, LUR with 

geographical and meteorological predictors has been widely 

performed (Chen et al., 2012; Chen et al., 2020), and while this 

approach is useful, it has disadvantages because it is based on 
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linear regression methods. Particularly, limitations can exist if some 

of the predictors have complex nonlinear relationships with air 

pollutants, if some variables are not fully available for the whole 

study area and time period, or if there are high-order interactions 

among predictors and pollutants (Zhan et al., 2018). Also, the same 

problem can arise with mixed-effect models and geographically 

weighted regression because these models assumed a linear 

relationship between predictor variables and outcome variable (Di 

et al., 2019b). 

To address the limitations of conventional prediction models, 

recent studies have conducted prediction modeling based on 

machine-learning methods (Araki et al., 2021; Chen et al., 2021; 

Zhan et al., 2018). Nonetheless, few studies can address various 

types of predictors that may crucially contribute to the performance 

of prediction models because of limited data sources and problems 

in computational time and memory storage capacity, especially in 

relation to satellite-based remote sensing data that include multiple 

environmental, land-use, demographic, and meteorological variables 

(Gorelick et al., 2017).  

This study aimed to develop machine learning-based prediction 

models for the monthly average concentrations of gaseous air 
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pollutants covering O3, NO2, and CO at a resolution of 1 km × 1 km 

across South Korea from 2002 to 2020. Satellite-based remote 

sensing data were mainly obtained from Google Earth Engine (GEE) 

(Tamiminia et al., 2020) and other predictors to increase prediction 

performance were collected from the Socioeconomic Data and 

Applications Center (SEDAC) and a database of community health 

outcomes and health determinants (hereafter, regional 

socioeconomic database) provided by the Korean Disease Control 

and Prevention Agency. To the best of the author’s knowledge, this 

is the first study to develop machine learning-based air pollution 

prediction models that cover all areas in South Korea with high 

spatial resolution and long timeframe. 
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Chapter 2. Materials and Methods 
 

 

2.1. Study area 

This study covered the entire region of South Korea for January 

2002 to December 2020. Because there were limitations in 

collecting reliable remote sensing data, the author excluded island 

areas from this study. The total number of grids was 97,653 in the 

entire study area, with gridcell resolution at 1 km × 1 km. 

 

2.2.  Air pollution monitoring data 

As response variables for prediction models, the author collected 

ground-level hourly measured O3, NO2, and CO concentrations from 

the Air Korea database provided by the Korea Environment 

Corporation (URL is presented in Table S1). To reduce potential 

observation biases, the author used concentration data from 

monitoring sites with observations for ≥ 9 months per year for a 

given pollutant. The total number of selected monitoring sites was 

480 for O3 and NO2, and 447 for CO. From the selected monitoring 

sites, the author calculated the monthly average of daily maximum 

8-h O3, monthly average of daily NO2 values, and monthly average 

of daily CO. 
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Because monitoring stations are not equally distributed across the 

study area and the monitoring data from nearby monitoring sites are 

more correlated than data from faraway sites, the author used the 

IDW, a commonly applied spatial interpolation method. Specifically, 

the author used monitoring data to compute the IDW for O3, NO2, 

and CO at each 1 km × 1 km grid and added these estimations as 

predictor variables in the author’s model. 

 

2.3.  Satellite-based remote sensing data 

The author extracted multiple remote sensing variables from the 

GEE and SEDAC, including meteorological data (with AOD), land-

use data, and surface reflectance. The author aggregated all 

collected predictor variables at each 1 km × 1 km grid cell, and 

calculated the monthly averages or categorical value that appears 

most in the month for each grid cell. If provided resolution of a 

variable is coarser than 1 km × 1 km (e.g. 11 km × 11 km), the 

author assigned the value of the coarser resolution grid cell to all 1 

km × 1 km grid cells within that larger grid cell. A full list of 78 

remote sensing variables can be found in the supplementary 

material (Section 1.2 and Table S1). 

2.3.1. Meteorological data 
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O3, NO2, and CO concentrations can be affected spatially and 

temporally by meteorological factors such as temperature, wind 

speed and direction, precipitation, humidity, and cloud droplets 

(Requia et al., 2020; Yinusa et al., 2019; Zhan et al., 2018). 

Meteorological variables were collected from various reanalysis 

datasets, and monthly aggregates of air temperature, soil 

temperature, surface pressure, 10-m u-component, and v-

component of wind (eastward and northward components of the 

10-m wind) were collected from the 5th generation European 

Center for Medium-Range Weather Forecasts 

atmospheric reanalysis (ERA5) and surface-based reanalysis 

(ERA5-Land). The author aggregated the temporal resolutions of 

these datasets from daily values to month. The author also obtained 

the total water column density, which is the percentage of total 

cloud cover, from the National Centers for Environmental Prediction 

(NCEP). To obtain more information about sky coverage, the author 

also collected day and night clear-sky coverage from MOD11A1 

v061, cloud cirrus area fraction, and liquid water cloud optical 

thickness from MOD08_M3 v061. The author retrieved merged 

satellite-gauge precipitation estimates and accumulation-weighted 

probabilities of the liquid precipitation phase from global 

precipitation measurement (GPM). 
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Due to the influence of aerosols on UV flux and photochemical 

reaction (Bian et al., 2007) the fact that sharing the same source of 

emissions between CO and AOD (e.g. biomass burning emission) 

(Andreae, 2019; Buchholz et al., 2021), O3 and CO are generally 

considered to be related to AOD (Buchholz et al., 2021; Liu et al., 

2019a). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) is a widely used satellite-based sensor that provides 

various remote sensing data types, including AOD. Since AOD is 

dependent on wavelength, the author obtained AOD data retrieved 

at 0.47 μm and 0.55 μm from Terra & Aqua combined Multi-

angle Implementation of Atmospheric Correction (MAIAC) Land 

Aerosol Optical Depth (MCD19A2 v006). AOD at 0.55 μm for both 

ocean and land, and corrected AOD (land) at 0.47 μm were 

collected from MOD08_M3 v061. Besides AOD, by referring to the 

variables used in the previous ozone estimation study (Requia et al., 

2020), the author collected the total column O3 from the Total 

Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring 

Instrument (OMI) data (Parsons et al., 2010) as satellite-based air 

quality data to potentially account for ground-level ozone 

concentrations (Colombi et al., 2021). 

The SEDAC dataset provides global annual PM2.5 estimates by 

combining AOD from various data sources by combining MODIS. 
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Since this dataset is accessible online with fine spatial grid 

resolution (0.02° × 0.02°), the author extracted the annual 

global surface PM2.5 concentrations for each gridcell from the 

SEDAC. Detailed information is presented in the supplementary 

material (Section 1.2 and Table S1). 

2.3.2. Land-use data 

Land-use information is important to enhance prediction 

performance, especially for estimates of air pollutant concentrations, 

because it can partly explain the fine-scale spatial pattern or 

distribution of air pollutants (Huang et al., 2021a). Previous studies 

have reported that land types and land covers, such as vegetation 

index and various types of land cover fractions, were also 

considered relevant variables for estimating air pollutants (Chen et 

al., 2020; Kerckhoffs et al., 2015; Zhu et al., 2022). Thus, the 

author extracted land-use variables related to greenness from 

MODIS, Copernicus Global Land Cover Layers, and the Global Land 

Cover Map. The normalized difference vegetation index (NDVI) and 

enhanced vegetation index (EVI) were derived (MOD13A2 v006), 

and the leaf area index (LAI) and the fraction of absorbed 

photosynthetically active radiation (FPAR) were derived 

(MCD15A3H v061). The leaf area index with high/low vegetation 
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was obtained from the ERA5-Land reanalysis dataset. 

The author also accessed several land cover layer datasets with 

information about land types (non-vegetated barren, forests, water 

bodies, shrubland, and others). The MCD12Q1 V6 product provides 

the global land cover types for each year. Land-cover types 1-5 

were collected from MCD12Q1 V6. The FAO-Land Cover 

Classification System 1 (LCCS1) land cover layer, FAO-LCCS2 

land use layer, FAO-LCCS3 surface hydrology layer, and their 

confidence levels (0–100%) were collected from MCD12Q1 V6. 

Other types of land cover layers from the Copernicus Global Land 

Cover Layers and land cover map variables from the Global Land 

Cover Map were included as predictor variables in the modeling 

procedure. More detailed information about the land-use data is 

provided in the supplementary material (Section 1.2.1 and Table 

S1). 

2.3.3. Surface reflectance 

Surface albedo and reflectivity may be associated with ground-

level O3 and NO2 concentrations through interactions with other 

materials (Jandaghian and Akbari, 2020; Taha, 1997). To consider 

this in the process of estimating gaseous pollutants, the author 

retrieved the black/white sky and bidirectional reflectance 
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distribution function (BRDF) albedo from MCD43A3 V6. The author 

also collected Band 1-5, Band 7 of surface reflectance, and Band 6 

of surface temperature from Landsat 7 created using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

algorithm. Similarly, the emissivities from bands 31 and 32 were 

obtained from MOD11A1 v061. 

 

2.4.  Regional socioeconomic predictors 

Various regional demographic, socioeconomic, and environmental 

factors from various data sources have been collected across all 

district-level regions annually by the Korea Disease Control and 

Prevention Agency, and then incorporated into the community 

health outcomes and regional socioeconomic database, with 

thousands of variables since 2008. Since this database consists of 

the district-level regions, the grid values were set as allocated 

district-level variables by finding the grids included in each district. 

The author selected from this database 24 regional variables that 

could potentially be related to air pollutant concentrations. 

O3 is produced by a chemical reaction between NOx and VOCs 

under various meteorological conditions. The main factors 

generating NO2 and CO are emissions from traffic and industrial 
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sources (Kim et al., 2013; Rosenlund et al., 2008). These factors 

can be considered urbanized characteristics, such as population 

density, greenness area, number of cars, wastewater, and organic 

material load discharge (Araki et al., 2021; Carslaw and Rhys-

Tyler, 2013; Khalid, 2021). These factors are also associated with 

differences in the demographic structure and infrastructure among 

districts (Glover and Simon, 1975; Khalid, 2021). Thus, the author 

obtained variable that represents urbanization from the regional 

socioeconomic database. A more detailed description and the full 

list of variables are presented in the supplementary material 

(Section 1.2.3 and Table S1). 

 

2.5.  Modeling procedures 

The author adopted three machine learning-based models, 

namely random forest, light gradient boosting, and neural network, 

to predict monthly O3, NO2, and CO averages using a 1 km × 1 km 

grid during 2002–2020. Previous studies have also used these 

models to predict air pollutant concentrations in other locations (Di 

et al., 2019a; Di et al., 2019b; Requia et al., 2020). A total of 112 

predictor variables collected from the GEE, SEDAC, regional 

socioeconomic database, and others were used as input variables, 
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and each air pollutant concentration was predicted as the outcome 

value. Missing values in the predictor variables were replaced with 

values from the imputation procedure (supplementary material 

Section 2.1). Randomly selected 80% of the monitoring stations 

were used to train the model, and the remaining 20% of the 

monitoring stations were used to test the model performance. To 

avoid overfitting and the possibility that the dataset was extracted 

by chance, the author trained each of the three machine learning 

models with 10-fold cross-validation (CV) in the training set. With 

these trained models, the author checked the model performance of 

three machine learning models and simple averages among models 

(ensemble model) in the test set using R2 and root mean squared 

error (RMSE). Finally, the author predicted monthly averages of 

each air pollutant with a 1 km × 1 km grid during 2002–2020 using 

the three machine learning-based and ensemble models. The 

overall process is illustrated in Fig. 1. 

2.5.1. Data Preprocessing 

Missing values were addressed prior to the modeling procedures 

(Table S2). The author imputed missing values using the random 

forest model and linear interpolation method following previous 

studies (Di et al., 2019a; Di et al., 2019b; Requia et al., 2020). 
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Detailed information about the missing data imputation procedure is 

provided in supplementary material (Section 2.1). After the missing 

value imputation process, the author standardized all the predictor 

variables using average and standard deviation, separately for each 

variable, to control the variation within the individual variable. For 

detail, the author let “X” be a predictor variable, then the author 

transformed this variable to . The author 

also added yearly and monthly terms, seasonal terms, binary 

indicators of the COVID-19 pandemic period, monthly terms of the 

fourth highest value month for each air pollutant, urban binary 

indicators, and binary indicators of metropolitan city areas. 

(Supplementary material section 1.2.4 and Fig. S1).  

2.5.2. Machine learning-based model 

In previous studies, random forest, gradient boosting, and neural 

networks were used for estimating PM2.5 (Di et al., 2019b), O3 

(Requia et al., 2020), and NO2 (Di et al., 2019a). A random forest is 

operated by aggregating decision trees from bootstrapped data to 

reduce the correlation between the trees; therefore, the random 

forest can reduce the variance of estimations (Hastie et al., 2009). 

Otherwise, gradient boosting focused on reducing the bias of 

estimations by adding week learners sequentially to fit residuals 
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from the previous model prediction. In the neural network case, 

which comprises several hidden layers with various activation 

functions, repeatedly updates the weights on the hidden layers 

across every epoch to reduce bias. Given these characteristics, 

prediction performance can differ according to the model used. 

Additionally, within each model, the prediction performance can be 

affected by hyperparameter settings. For example, the number of 

trees and the maximum depth of each tree can affect the random 

forest model performance, and the learning rate in gradient boosting 

and the number of layers and units in a neural network can also 

influence the model performance. Thus, the author optimized the 

best parameters with a 10-fold CV for each model in a grid search 

process. Detailed information about machine learning models and 

results from the grid search process are shown in supplementary 

material (Section 2.2 and Table S3). 

2.5.3. Ensemble Model 

Given the differences in the characteristics of each model, the 

performance and estimation results appeared slightly different by 

space and time. To aggregate the results, the author calculated the 

simple averages of each machine learning estimation.  
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 are air pollution estimations from the 

random forest, light gradient boosting, and neural network, 

respectively, at location i at time j;  is the simple average 

estimation derived by averaging the three estimations at location i 

at time j. The author also trained a generalized additive model 

(GAM) to consider the geographical variation of each of the three 

machine-learning estimations. Detailed information about the GAM 

is presented in the supplementary material (Section 2.3 and Table 

S4). 

2.5.4. Model Prediction 

The monthly concentrations of each air pollutant were predicted 

using three trained machine learning models, the average prediction 

from the machine learning models, and GAM. Consequently, the 

author generated five datasets of predicted values of monthly O3, 

NO2, and CO averages at a 1 km × 1 km resolution across the 

study area from 2002 to 2020. 
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Fig. 1. Flowchart of the modeling process. GEE: Google Earth Engine, SEDAC: Socioeconomic Data and 

Applications Center, RSD: Regional Socioeconomic Database from Korean Disease Control and Prevention 

Agency 
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Chapter 3. Results 
 

 

Table 1 presents the overall R2. The overall R2 for O3, NO2, and 

CO was 0.841, 0.756, and 0.506, respectively. The overall RMSE 

for O3, NO2, and CO were 5.435 (ppb), 4.867 (ppb), and 0.152 

(ppm), respectively. The author’s models showed excellent 

performances for O3 and NO2. Among the results of the three 

machine learning and ensemble models (SA: Simple Average), the 

ensemble model outperformed the other models for O3 and NO2, 

whereas the random forest model showed slightly better 

performance than the ensemble model for CO. The author also fit 

the GAM; however, because the predictive performance of the GAM 

was lower than that of the SA, the author does not include it in 

Table 1 and show its performance in Table S4. 

Table 1 also presents the R2 for overall and for three- or four-

year time periods. For O3, the annual R2 of ensemble model (SA) 

varied from 0.732 to 0.874 across the three- and four-year time 

periods. For NO2, the annual R2 of ensemble model ranged from 

0.538 to 0.861. For CO, the R2 of ensemble model varied from 

0.302 to 0.553. The author’s model performance was higher in 

more recent years for O3 and NO2. Except for the ensemble model, 

the light gradient boosting and random forest models usually 
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showed high R2 values for NO2 and CO. Among the seasons, for O3, 

NO2, and CO the predictive R2 was highest in autumn (Table S5). 

The author’s ensemble model showed the best performance for the 

whole season for O3 and NO2, while the random forest was the best 

model for CO. 
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Table 1. Model performance for O3, NO2, and CO overall and in three- and four-year periods 

 

  

R2 RMSE 

O3 

(ppb) 

years RF GB NN SA RF GB NN SA 

2002~2005 0.715 0.724 0.736† 0.732 6.582 6.532 6.319† 6.402 

2006~2008 0.805 0.799 0.801 0.808† 5.762 5.802 5.766 5.684† 

2009~2011 0.838 0.836 0.839 0.843† 5.030 5.048 5.017 4.948† 

2012~2014 0.853 0.853 0.845 0.854† 5.186 5.215 5.343 5.172† 

2015~2017 0.868 0.874 0.869 0.874† 5.259 5.133 5.23 5.119† 

2018~2020 0.842 0.841 0.827 0.843† 5.249 5.234 5.488 5.201† 

overall 0.837 0.837 0.834 0.841† 5.524 5.500 5.557 5.435† 

 

NO2 

(ppb) 

 

R2 RMSE 

years RF GB NN SA RF GB NN SA 

2002~2005 0.527 0.541† 0.489 0.538 6.864 6.838 7.189 6.768† 
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2006~2008 0.733 0.735 0.736 0.746† 5.181 5.114 5.134 5.037† 

2009~2011 0.75 0.756 0.763 0.768† 4.900 4.778 4.785 4.717† 

2012~2014 0.713 0.733 0.733 0.735† 5.343 5.113† 5.147 5.129 

2015~2017 0.715 0.736† 0.731 0.736 4.836 4.634† 4.722 4.668 

2018~2020 0.844 0.864† 0.849 0.861 3.595 3.266† 3.482 3.352 

overall 0.741 0.754 0.741 0.756† 5.035 4.877 5.010 4.867† 

 

CO 

(ppm

) 

 

R2 RMSE 

years RF GB NN SA RF GB NN SA 

2002~2005 0.320† 0.283 0.212 0.302 0.228† 0.234 0.246 0.231 

2006~2008 0.505 0.502 0.431 0.508† 0.190 0.189† 0.209 0.193 

2009~2011 0.545 0.544 0.499 0.553† 0.148 0.148† 0.162 0.150 

2012~2014 0.517 0.515 0.492 0.527† 0.134† 0.134 0.145 0.135 

2015~2017 0.430 0.424 0.442 0.45† 0.120 0.120 0.121 0.118† 

2018~2020 0.489 0.470 0.451 0.491† 0.095 0.096 0.100 0.095† 
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overall 0.506† 0.492 0.438 0.505 0.152† 0.153 0.164 0.153 

* RF: Random forest, GB: light gradient boosting, NN: neural network,  SA: simple average estimation of RF, GB, and NN. 

* The performance for O3 and NO2 was calculated based on ppb and for CO on ppm. 

† A model that performs better than other models during the period. 
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Table S5 also presents the R2 by urbanicity (urban or rural), with 

higher R2 values in urban areas than in rural areas for all air 

pollutants. The simple average estimations showed the highest R2 

values among the models. The prediction performances of the 

random forest and light gradient boosting models were similar. Fig. 

S2‒S4 shows the spatiotemporal patterns of the O3, NO2, and CO 

prediction distributions across the study period. Overall, annual and 

seasonal O3 concentrations increased consistently over time, 

whereas decreasing patterns were observed for NO2 and CO. 

Fig. 2 displays the density scatter plot for the monthly averages 

of the monitored and predicted concentrations for each air pollutant. 

Although most points approximate a 1:1 straight line of monitored 

and predicted relationships for O3 and NO2, representing equal 

agreement, this was less so for CO, especially at very high and very 

low observed concentrations. Fig. 3 shows a map of the monitored 

and predicted concentrations. 

The author reported the percentage decrease in R2 when omitting 

each grouped predictor variable from each model (Fig. 4). The 

overall impact of IDW was more significant than the other grouped 

variables for O3 and NO2; however, it was not critical in the random 

forest model. The variable with the greatest impact on CO varied by 

model. Meteorological and regional variables were slightly more 
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important than other grouped variables in the random forest and 

gradient boosting models, but in the neural network model, IDW had 

a very strong effect. 
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Fig. 2. Density scatter plot for monthly averages of the monitored and predicted concentrations of O
3
, 

NO
2
, and CO 

* Dashed lines represent that the monitored and predicted estimations are the same for each air pollutant. 

* Red lines represent the fitted line.  x : ground-based measurements. y : estimated surface concentrations. 
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Fig. 3. Maps of monitored and predicted O
3
, NO

2
 and CO during 2002~2020 

Left figures: Overall monitoring observations at point locations. 
Right figures: Overall predicted estimations for each 1 × 1 km grid cell across 

entire South Korea. 
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Fig. 4. Percentage decrease in R
2
 when excluding grouped variables 

from each machine learning model of O
3
, NO

2
, and CO. The closer 

the color is to red, the greater the effect of the variables on the 

model performance 

* The main vertical axis represents models, and the main horizontal axis 

represents air pollutants. 

* X-axis (for each figure): % decrease in R
2
.  

* Y-axis (for each figure): Classified group variables 
- IDW: Inverse Distance Weighted estimations for O3, NO2, and CO 

- Meteorological: Meteorological variables (e.g. temperature, humidity, 

precipitation) 
- AOD: Aerosol Optical Depth variables 
- Land-use: Land-use variables (e.g. forest type, landcover, 

lc_prop1_categorical)  
- Regional: District-level variables (e.g. population density, park area per 

capita),  
- Others: Other satellite-based variables and added terms (e.g. landsat, albedo, 

surface reflectance, urban binary indicator) 
* RF: Random Forest,  GB: light Gradient Boosting,  NN: Neural Network 
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Chapter 4. Discussion 
 

 

In this study, the author developed machine learning models 

(random forest, light gradient boosting, and neural network) to 

predict monthly O3, NO2, and CO concentrations. Consequently, for 

the first time in South Korea, the author estimated the monthly O3, 

NO2, and CO averages across the contiguous region of South Korea 

at each 1 km × 1 km grid cell for 2002 to 2020. The model 

performed well to predict O3 and NO2, with R2 values of 0.841 and 

0.756, respectively. 

Many studies have estimated gaseous pollutants using machine 

learning models. In the U.S., the estimated daily maximum of 8-h 

O3 and daily NO2 at 1 km × 1 km across the continental United 

States using multiple machine learning models and a geographically 

weighted generalized additive model during 2000–2016, with an 

overall R2 of 0.9 and 0.788, respectively (Di et al., 2019a; Requia et 

al., 2020). In China, the daily maximum of 8-h O3 and daily NO2 

concentrations were predicted at 0.0625° × 0.0625° and 0.1° 

× 0.1° grids across mainland China for 2008–2019 and 2013–

2016, respectively (Chen et al., 2021; Zhan et al., 2018), using 

hybrid random forest models with site-based monthly R2 at 0.82 

and 0.65, respectively. Another study conducted in China estimated 
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ground-level monthly O3 using extreme gradient boosting for 

regression with a site-based monthly R2 of 0.68 (Liu et al., 2020). 

A previous study for Japan predicted national-scale 1 km × 1 km 

monthly O3, NO2, and other air pollutants by LUR structure adopting 

a random forest model during 2010‒2015, with a R2 of 0.86 and 

0.84 (Araki et al., 2021). The overall predicted performances for O3 

and NO2 were almost equivalent to or outperformed those of other 

related studies. 

Most studies estimating gaseous air pollutants for South Korea 

used LUR for modeling and focused on specific regions with 

relatively short time periods (Choi et al., 2017; Kim and Guldmann, 

2011; Kim and Guldmann, 2015). A previous study estimated the 

concentrations of O3 and NO2 in South Korea using machine learning 

models for 2018–2020 (Kang et al., 2021); however, the spatial 

resolution was relatively coarse (6 km × 6 km) and the study 

period was not sufficient to consider the long-term health impact of 

air pollutants. The author addressed the weaknesses of LUR using 

multiple machine learning models and their ensemble results by 

averaging each prediction estimate. To the best of the author’s 

knowledge, this study is the first to cover South Korea with fine 

resolution and over a relatively long period. 



 

 31 

The performance of author’s model rapidly improved after 2006 

for all the air pollutants. The author postulate that this might be due 

to an increase in the number of monitoring stations. Before 2006, 

the total number of monitoring stations was less than 200. In 2007, 

the number of monitoring stations in urban areas surpassed 200 and 

the number in rural areas was 10. Since 2007, a larger number of 

observation stations are in operation to better estimate the 

distribution of air pollution concentrations across contiguous South 

Korea, with over 200 urban areas and about 100 monitors in rural 

areas in 2020. Additionally, differences in monitoring 

networkslikely explain differences in performance between urban 

and rural areas, with higher model performances in urban areas than 

in rural areas (Table S5). There have been fewer monitoring 

stations in rural areas than in urban areas in the past (Table S6), 

which means the author’s models are better able to estimate 

pollution in urban areas in the earlier years of the author’s study 

time period. However, as the highest R2 of the rural area was over 

0.75 for O3 and NO2, this study also performed well, even in rural 

areas.  

This study had several limitations. First, for NO2 and CO, 

location-based emission information derived from local industrial 

and traffic sources are usually considered primary predictor 
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variables (Kim et al., 2013; Rosenlund et al., 2008), such as power 

plants, road length, and distance to the road (Araki et al., 2021; 

Wong et al., 2021). These factors have been important in estimating 

NO2 and CO concentrations in previous studies, although datasets 

with sufficient information on point sources were not available. 

However, the author calculated the R2 of each model by removing 

district-level variables, including the number of vehicle 

registrations, wastewater, and organic material load generation and 

discharge, which did not appear to have a substantial effect on 

model performance. Second, the model performances in each 

season were lower than the overall performances for O3 and CO. 

This finding was consistent with a previous study for O3 (Araki et 

al., 2021); thus, this issue should be addressed in future studies by 

adding variables considering the seasonal variation of each air 

pollutant. Third, the author did not include some island regions in 

the author’s study area to focus on improving air pollutant 

estimation performance in South Korea, due to the lack of data for 

some of the study variables. Further research should consider these 

islands. Fourth, as noted above the monitoring network better 

reflected urban areas than rural areas, especially in the earlier 

years of this study period. Finally, the absence of location-based 

emission-related information may affect the prediction performance 
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of this models, such as lower predicted CO performance compared 

to the other pollutants. Also, measurement error could occur in CO 

due to the measurement analyzer. Non-Dispersive Infrared (NDIR) 

analyzer are used for monitoring CO concentration, and Gas Filter 

Correlation (GFC) are adopted on NDIR for detecting lower CO 

concentration (< 1 ppm) to cover the shortcomings of NDIR, which 

has a problem of detecting low CO concentrations. However, due to 

the interference effects by other gases, the accuracy of GFC 

analyzer could be reduced (Dinh et al., 2017). It can be associated 

with unstable variation of observed and predicted carbon monoxide. 
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Chapter 5. Conclusion 
 

 

To author’s knowledge, this is the first nationwide study of South 

Korea to estimate monthly averages of O3, NO2, and CO for a long 

timeframe (from 2002 to 2020) across contiguous South Korea by 

aggregating remote sensing data and regional socioeconomic 

databases. Random forest, light gradient boosting, and neural 

network algorithms were used to train the model with CV. The 

author integrated the prediction estimate of each machine learning 

method by using simple averaging and GAM, and finally, machine 

learning and ensemble models produced monthly averages of O3, 

NO2, and CO at each 1 km × 1 km grid cell. The author’s ensemble 

model showed excellent performance compared to previous studies, 

with R2 values for O3 and NO2 of 0.841 and 0.756, respectively. The 

author’s predictions can be utilized to estimate the health impact of 

each air pollutant with both individual-level geocodes and regional 

datasets in South Korea, by providing highly spatially resolved 

monthly estimates for times and locations without monitors. 
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Supplementary materials 

 

 

1. Data Source 

 

1.1. Air pollutants monitoring station 

The author used 480 monitoring stations for O3 and NO2, and 447 

monitoring stations for CO from 2002 to 2020 among entire 

contiguous region of Korea. Not all monitors were in operation for 

the entire study period. 

 

1.2.  Predictors 

The author extracted predictor variables from Google Earth 

Engine (GEE), Socioeconomic Data and Applications Center 

(SEDAC), and regional socioeconomic database. More detailed 

information about each data source is shown in Table S1. 

1.2.1. Google Earth Engine 

Google Earth Engine (GEE) has been proposed as a feasible 

solution for obtaining satellite-based data. GEE is a cloud-based 

platform for geospatial datasets that allows researchers to access 

the petabyte scale of free-use remote sensing data, including 
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various raw and ready-to-use datasets (Tamiminia et al., 2020). 

Studies using GEE will be able to suggest a new and impactful study 

protocol to develop prediction models for air pollution concentration  

1.2.1.1. AOD measurements and satellite-based air 

quality 

Moderate Resolution Imaging Spectroradiometer (MODIS) were 

used to retrieve remote sensing data. The author collected 0.55μm 

and 0.47μm aerosol optical depth (AOD) over land from Terra & 

Aqua MAIAC Land Aerosol Optical Depth, called MCD19A2 v006 

data product. From this data, the author accessed daily AOD with 1 

km × 1 km spatial resolution. Also, the author selected monthly 

averages of aerosol optical depth at 0.55μm for both ocean and 

land, and monthly averages of corrected AOD (land) at 0.47μm 

from MOD08_M3 v061 with 1.0° × 1.0° spatial resolution. 

The author extracted total column ozone from Total Ozone 

Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument 

(OMI) data with 1.0° × 1.0° spatial resolution. TOMS provide 

satellite-based continuous observations available during long period 

for catching global and regional trends in total ozone, with 1.0° × 

1.25° spatial resolution. OMI continue the TOMS record for total 

ozone and other climate parameters since OMI provide total ozone 
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with an improved spatial resolution with 1.0° × 1.0° spatial 

resolution, compared to TOMS. 

1.2.1.2.  Meteorological data 

The author obtained air temperature at 2m height, soil 

temperature, surface pressure, 10m u-component and v-

component of wind, and leaf area index with high/low vegetation 

from 5th generation European Centre for Medium-Range Weather 

Forecasts atmospheric reanalysis (ERA5) and surface-based one 

(ERA5-Land), produced from European Centre for Medium-Range 

Weather Forecasts (ECMWF) climate reanalysis. ERA5 provides 

hourly estimates of a large number of atmospheric, land and oceanic 

climate variables with 27.83 km spatial resolution. ERA5-Land 

reanalysis dataset is the evolution version of land variables with an 

improved spatial resolution with 11.132 km spatial resolution. 

The author collected total water column density from the National 

Centers for Environmental Prediction (NCEP)/National Center for 

Atmospheric Research (NCAR). The NCEP provides multiple type 

of reanalysis dataset including weather and climate data. NCEP 

conducted a joint project with the National Center for Atmospheric 

Research (NCAR), called NCEP/NCAR Reanalysis project, for 

producing future and current atmospheric analyses. NCEP/NCAR 
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datasets is produced by every 6 hours with 2.5° spatial resolution. 

Data produced from NCEP/DOE Reanalysis II, an improved version 

of NCEP/NCAR, was used to get % of total cloud cover. It provided 

reanalysis atmospheric data with same temporal and spatial 

resolution as NCEP/NCAR.  

The author extracted cirrus area fraction and liquid water cloud 

optical thickness from MOD08_M3 v061 with 1.0° × 1.0° spatial 

resolution. Also, clear day and night sky coverage were retrieved 

from MOD11A1 v061 with 1 km × 1 km spatial resolution. 

Merged satellite-gauge precipitation estimate and accumulation-

weighted probability of liquid precipitation phase were retrieved 

from Global Precipitation Measurement (GPM), which produced 

dataset every 3 hours, with 0.1° spatial resolution. GPM used the 

Integrated Multi-satellitE Retrievals for GPM (IMERG) which is the 

combined algorithm that provides rainfall estimates by using all 

instruments in the GPM. 

1.2.1.3.  Land-use terms 

The author extracted land-use variables from MODIS, 

Copernicus Global Land Cover Layers and Global Land Cover Map.  

The author collected Normalized Difference Vegetation Index 

(NDVI) and Enhanced Vegetation Index (EVI) from MOD13A2 
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v061, and Leaf Area Index (LAI) and fraction of absorbed 

photosynthetically active radiation (FPAR) from MCD15A3H v061. 

Those two datasets produce remote sensing data with fine spatial 

resolution, 1 km and 500 m respectively. The author also collected 

Band 1-5, and Band 7 surface reflectance, and Band 6 surface 

temperature from Landsat 7 Surface Reflectance with 30 m × 30 

m spatial resolution. 

Land Cover Type 1 (Annual International Geosphere-Biosphere 

Programme classification), Land Cover Type 2 (Annual University 

of Maryland classification), Land Cover Type 3 (Annual LAI 

classification), Land Cover Type 4 (Annual BIOME-Biogeochemical 

Cycles classification), Land Cover Type 5 (Annual Plant Functional 

Types classification) were collected from MCD12Q1 V6 with 500 m 

× 500 m spatial resolution. Also, FAO-Land Cover Classification 

System 1 (LCCS1) land cover layer, FAO-LCCS2 land use layer, 

FAO-LCCS3 surface hydrology layer and their confidence 

(0~100%) were retrieved from MCD12Q1 V6.  

The author also selected coverfraction of bare, crops, grass, 

moss, shrub, tree, snow, urban, permanent water and seasonal 

water, and forest type from Copernicus Global Land Cover Layers 

with 100 m × 100 m spatial resolution, and land cover map 

variable from Global Land Cover Map (GlobCover) with 300 m × 
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300 m spatial resolution.  

1.2.1.4.  Other terms 

The author collected daily black/white sky and Bidirectional 

Reflectance Distribution Function (BRDF) albedo from MCD43A3 

v006 with 500 m × 500 m spatial resolution. Surface reflectance 

for band 1, band 2, band 3, band 4, band 5, band 6, and band 7 were 

extracted from MOD09A1 v061. Also, the author retrieved bands 

31 and 32 emissivity values from MOD11A1 v061 with 1 km × 1 

km spatial resolution. 

 

1.2.2. SEDAC 

1.2.2.1. PM2.5 

The author obtained the variable for concentrations of ground-

level fine particulate matter (PM2.5) using the dataset from NASA 

Socioeconomic Data and Applications Center (SEDAC) which 

provides global annual PM2.5 grids for the period 1988 to 2016. It 

combines Aerosol Optical Depth (AOD) retrievals from various 

satellite datasets including the MODIS, Multiangle Imaging 

SpectroRadiometer (MISR), and the Sea-Viewing Wide Field-of-

View Sensor (SeaWiFS). The GEOS-Chem chemical transport 

model and Geographically Weighted Regression (GWR) were used 
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with global ground-based measurements to approach actual PM2.5 

levels per grid cell. Annual PM2.5 concentrations were extracted 

with 0.02° spatial resolution. 

 

1.2.3.  Regional socioeconomic database 

Regional socioeconomic database (database of community health 

outcomes and health determinants in the Republic of Korea) was 

constructed to understand the impact of community characteristics 

on health outcomes and gaps. District-level demographic, 

socioeconomic, and environmental variables have been collected 

annually by the Korea Disease Control and Prevention Agency, with 

about 2,000 variables since 2008. 

1.2.3.1. Socioeconomic variables 

The author obtained number of vehicle registrations per capita, % 

of road area compared to urban area, national basic livelihood 

security recipients per 1,000 people, population density, population 

growth rate, % of the population that is urban, ratio of total 

population to area, and % of persons with financial independence for 

using predictor variables in the study model. 

1.2.3.2.  Environmental pollution variables 

Household waste discharge per resident, wastewater generation 
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per 1,000 people, wastewater discharge per 1,000 people, number 

of wastewater dischargers, organic material load generated per 

1,000 people, and organic material load discharge per 1,000 people 

were selected to predictor variables in this study. 

1.2.3.3.  Green area variables 

The author consider variables of % of the area that is forest, 

forest area ratio to living sphere, total urban forest area ratio, park 

area per capita, total urban forest area per capita, number of parks 

per 1,000 people, urban park area per 1,000 people, forest area of 

living sphere per capita, ratio of roadside green space to urban area, 

and ratio of riverside green area to urban area were retrieved from 

regional socioeconomic database. 

 

1.2.4. Additional predictor variables 

The author calculated spatially weighted average of each air 

pollution measurements using inverse distance weighting method, 

and added them for predictor variables in the study model. Also, 

year, month and seasonal terms are included in the model as 

categorical variables to adjust for yearly, monthly and seasonal 

variation of each air pollutant. The author considered spring as 

March ~ May, summer as June ~ August, autumn as September ~ 
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November, and winter as December ~ February. 

During COVID-19 pandemic period, emission of air pollutants 

and precursors changed with decreases in personal transportation, 

but increases in emissions from delivery vehicles.. While the 

effect was not uniform across different locations, many areas 

experienced improved air pollution compared to pre-COVID-19 

period (~2019) (Ju et al., 2021). Thus, the author added a binary 

variable for the year 2020 to reflect conditions of COVID-19. 

Also, the author considered a monthly term to reflect the months 

with the 1st to 4th highest concentrations for each air pollutant as a 

binary indicator. Lastly, the author added binary indicators of 

metropolitan city areas including Seoul, Incheon, Daejeon, 

Gwangju, Daegu, Busan, and Ulsan because they showed different 

spatiotemporal distribution for each air pollutant. 

 

2. Method 

 

2.1. Missing value processing 

When extracting predictor variables from data sources, missing 

values occurred commonly for various reasons. (1) Remote sensing 

data may not be collected for a particular period or in a particular 
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area due to weather issues or equipment malfunction. In author’s 

case, 0.47μm aerosol optical depth obtained from MCD19A2 v006 

had 1.61 % missing values. (2) Some variables were investigated 

for a specific time period. For example, % of forest area and land 

cover variables were obtained every 2 years or for specific periods. 

If the author ignores those missing values and remove the rows 

having missing values, the author’s model may not fit properly into 

the entire study area and period. Thus, the author decided to 

estimate in missing values. 

There are multiple ways to estimate missing values, using 

averages of nearby location or nearby time points, and global 

averages of each variable. The author referred to previous studies 

on this topic (Di et al., 2019a; Di et al., 2019b; Requia et al., 2020), 

and used random forest for estimating missing values since this 

model could fit linear and nonlinear relationship smoothly between 

predictor variables and outcome. The author selected predictor 

variables that have no missing values for the whole grid and time 

period, and regarded them as “X” for filling in missing values. For 

example, 0.47μm aerosol optical depth contained 1.61 % missing 

values as mentioned above. The author regarded them as “Y”, 

and consider non-missing “Y” as “Y_train”. Afterwards, the 

author trained the random forest model by subtracting “ X ” 
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present in the same grid and time as "Y_train". The author 

calculated out-of-bag error for each column, and filled in missing 

values by using “X” present in the same grid and time as the "Y" 

missing values in the trained random forest model. This process 

was conducted for each predictor variable which were extracted 

from Google Earth Engine and SEDAC except for land cover 

variables. 

Land cover datasets were available for specific time periods. The 

author adopted a linear interpolation method for land cover 

variables. For a regional socioeconomic database, the same method 

was adopted for each district since variables in this source were 

investigated yearly or every “n” years. In the case of Global 

Land Cover Map dataset, it was available only in 2009. That means 

only one value was available for each grid. Thus, the author 

regarded this variable as unchanged over time during estimating 

period. 

 

2.2. Machine Learning Modeling 

The author used random forest, light gradient boosting and neural 

network algorithm for estimating O3, NO2 and CO concentrations. 

Random forest is a well-known machine learning algorithm with low 
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variance of predictions, but its training speed usually can take a 

long time to fit. To overcome this problem, the author used 

“ ranger”  package, which improved training speed of random 

forest. For gradient boosting, the author adopted a light gradient 

boosting algorithm. Light gradient boosting is improved gradient 

boosting in training speed and accuracy with tree construction of 

parallelization. Many studies reported that light gradient boosting 

algorithms showed better performance with less training time than 

typical gradient boosting and extreme gradient boosting algorithms 

(Ke et al., 2017; Wei et al., 2021; Zhang et al., 2019). Moreover, 

the author fitted deep neural network by tuning parameters 

elaborately to capture spatiotemporal distribution for each air 

pollutant properly. Although there are various ways to fit neural 

network algorithms well and quickly, most studies estimating air 

pollutants have only adjusted well-known parameters, for example, 

learning rate, number of layers, and epochs (Di et al., 2019a; Requia 

et al., 2020). Especially, neural network model usually demands 

higher learning rate at the beginning steps, and through the learning 

process it should be tuned in more detail in the last steps. 

Therefore, the author added a learning speed scheduler to consider 

these characteristics, which reduced model training time. The 

“ranger” package with R, “lightgbm” package and “Pytorch” 
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framework with Python were used to model the random forest, light 

gradient boosting and neural network algorithm, respectively. 

 

2.3. Ensemble model (GAM) 

To aggregate the estimations of three machine learning models, 

the author fitted two types of generalized additive model by 

considering geographical location and estimations of each model. 

 

 
 is geographical information (i.e., longitude and latitude) 

of location i ;  are predicted air pollution 

concentrations from the random forest, gradient boosting, and 

neural network respectively at location i on time j; f1 denote a thin 

plate spline function for location i; f2~ f4 denote linear functions; f5 

~ f7 denote the thin plate spline for interactions between location i 

and predicted air pollution concentrations at location i on time j from 

each model. 

Formula (1) focused on linear relationship between three model 

estimation and monitored air pollutants by considering location. The 

author also tried to fit formula (2) model which covered interaction 

between geographical characteristics and prediction estimates, and 
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compared their performances for each air pollutant (Table S4). The 

author found that formula (1) showed better performance in O3 and 

NO2 compared to formula (2). In CO, the performance of formula 

(1) and (2) was almost the same. 



 

 61 

Table S1. Detailed information about data sources 

 
Cloud 

platfor

m 

Data source Predictor variables 
Collection 

Period 

Spatiotemp

oral 

Resolution 

Google 

Earth 

Engine 

ERA5 Monthly 

Aggregates  

mean_2m_air_temperature 

2002~2020 
27.83 km, 

Monthly 

minimum_2m_air_temperatu

re 

maximum_2m_air_temperat

ure 

dewpoint_2m_temperature 

total_precipitation 

surface_pressure 

mean_sea_level_pressure 

u_component_of_wind_10m 

ERA5-Land 

Monthly 

Averaged 

dewpoint_temperature_2m 

2002~2020 
11.132 km, 

Monthly 

leaf_area_index_high_veget

ation 

leaf_area_index_low_vegeta

tion 

soil_temperature_level_1 

soil_temperature_level_2 

soil_temperature_level_3 

soil_temperature_level_4 

temperature_2m 

total_precipitation 

u_component_of_wind_10m 

v_component_of_wind_10m 

MCD43A3.006 

MODIS Albedo 

Black sky Albedo 

2002~2020 500 m, Daily White sky Albedo 

BRDF Albedo 

MOD09A1.006 

MODIS Terra 

Surface 

Reflectance 

sur_refl_b01 

2002~2020 
500 m, 8-

day 

sur_refl_b02 

sur_refl_b03 

sur_refl_b04 

sur_refl_b05 

sur_refl_b06 

sur_refl_b07 

MOD11A1.006 

Terra Land 

Surface 

Temperature 

and Emissivity 

Emis_31 

2002~2020 1 km, Daily 
Emis_32 

Clear_day_cov 

Clear_night_cov 

MCD15A3H.006 

MODIS Leaf 

Area 

Index/FPAR 

Fpar 

2002.07~2020 
500 m, 4-

day Lai 

MOD13A2.006 

Terra 

Vegetation 

Indices 

NDVI 

2002~2020 
1 km, 16-

day EVI 

MOD08_M3.061 

Terra 

Aerosol_Optical_Depth_Lan

d_Ocean_Mean_Mean 
2002~2020 

111.32 km, 

Monthly 
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Atmosphere 

Monthly Global 

Product 

Aerosol_Optical_Depth_Lan

d_QA_Mean_Mean_470 

Cirrus_Fraction_SWIR_FMe

an 

Cloud_Optical_Thickness_Li

quid_Log_Mean_Mean 

Cloud_Optical_Thickness_Li

quid_Mean_Uncertainty 

MCD19A2.006: 

Terra & Aqua 

MAIAC Land 

Aerosol Optical 

Depth 

Optical_Depth_047 

2002~2020 1 km, Daily 
Optical_Depth_055 

NCEP/NCAR 

Reanalysis Data, 

Water Vapor 

pr_wtr 2002~2020 
278.3 km, 

6-hour 

NCEP-DOE 

Reanalysis 2 

(Gaussian Grid), 

Total Cloud 

Coverage 

tcdc 2002~2020 
278.3 km, 

Monthly 

TOMS and OMI 

Merged Ozone 

Data 

ozone 2002~2020 
111 km, 

Daily 

GPM: Monthly 

Global 

Precipitation 

Measurement 

(GPM) v6 

Precipitation 

2002~2020 
11.132 km, 

Monthly 
probabilityLiquidPrecipitati

on 

USGS Landsat 7 

Level 2, 

Collection 2, 

Tier 1 

SR_B1 

2002~2020 
30 m, 16-

day 

SR_B2 

SR_B3 

SR_B4 

SR_B5 

ST_B6 

SR_B7 

Copernicus 

Global Land 

Cover Layers: 

CGLS-LC100 

Collection 3 

forest_type 

2015~2019 
100 m, 

Yearly 

bare_coverfraction 

crops_coverfraction 

grass_coverfraction 

shrub_coverfraction 

tree_coverfraction 

urban_coverfraction 

water_permanent_coverfrac

tion 

water_seasonal_coverfracti

on 

GlobCover: 

Global Land 

Cover Map 

landcover 2009 300 m 

MCD12Q1.006 

MODIS Land 

Cover Type 

Yearly Global 

500m 

lc_prop1_categorical 

2002~2019 
500 m, 

Yearly 

lc_prop1_assessment 

lc_prop2_categorical 

lc_prop2_assessment 

lc_prop3_categorical 
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lc_prop3_assessment 

lc_type1_categorical 

lc_type2_categorical 

lc_type3_categorical 

lc_type4_categorical 

lc_type5_categorical 

Link : https://developers.google.com/earth-engine/datasets/ 

SEDAC 

Global (GL) 

Annual PM2.5 

Grids from 

MODIS, MISR 

and SeaWiFS 

Aerosol Optical 

Depth (AOD), 

v4.03 

PM2.5 (AOD) 2002~2019 
0.02 degree, 

Yearly 

Link : https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-

gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03 

RSD 

Regional 

socioeconomic 

database 

number of registered 

vehicles per person 
2008~2019 

District-

level, Yearly 

% of road area compared to 

urban area  
2008~2019 

District-

level, Yearly 
national basic livelihood 

security recipients per 

1,000 people 

2008~2019 
District-

level, Yearly 

population density  2008~2019 
District-

level, Yearly 

population growth rate  2008~2019 
District-

level, Yearly 

% of urban population  2008~2019 
District-

level, Yearly 
ratio of total population to 

area 
2008~2019 

District-

level, Yearly 
% of persons with financial 

independence 
2008~2019 

District-

level, Yearly 
household waste discharge 

per resident  
2008~2019 

District-

level, Yearly 
wastewater generation per 

1,000 people  

2018~2015, 

2017, 2018 

District-

level, Yearly 
wastewater discharge per 

1,000 people  

2018~2015, 

2017, 2018 
District-

level, Yearly 
number of wastewater 

dischargers  

2018~2015, 

2017, 2018 
District-

level, Yearly 
organic material load 

generated per 1,000 people  

2018~2015, 

2017, 2018 
District-

level, Yearly 
organic material load 

discharge per 1,000 people 

2018~2015, 

2017, 2018 
District-

level, Yearly 

% of the area that is forest 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 

forest area ratio to living 

sphere 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 

total urban forest area ratio 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 

park area per capita  2008~2019 
District-

level, every 
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2 Years 

total urban forest area per 

capita  

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 
number of parks per 1,000 

people  
2008~2019 

District-

level, Yearly 
urban park area per 1,000 

people  
2008~2017 

District-

level, Yearly 

urban forest area of living 

sphere per capita 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 

ratio of roadside green 

space to urban area 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 

ratio of riverside green 

area to urban area 

2009, 2011, 

2013, 2015, 

2017, 2019 

District-

level, every 

2 Years 
Link : https://chs.kdca.go.kr/chs/recsRoom/dataBaseMain.do 

Monito

ring 

Station 

Inverse Distance 

Weighting (IDW) 

IDW of O3 

2002~2020 
By station, 

Hourly 
IDW of NO2 

IDW of CO 

Link : 

https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123 

Others 

 
Dummy variables for each 

year 
 

 

 
Dummy variables for each 

month 
 

 

 
Dummy variables for each 

season 
 

 

 
Binary indicator whether 

metropolitan city or not 
 

 

 
Binary indicator whether 

COVID-19 year or not 
 

 

 

Binary indicator whether 

the fourth highest month 

for each air pollutant or not 
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Table S2. Variables sorted by % missing values 
 

Predictor variables % of missing values 

forest_type 73.81 

bare_coverfraction 73.79 

crops_coverfraction 73.79 

grass_coverfraction 73.79 

shrub_coverfraction 73.79 

tree_coverfraction 73.79 

urban_coverfraction 73.79 

water_permanent_coverfraction 73.79 

water_seasonal_coverfraction 73.79 

total urban forest area ratio 73.65 

forest area ratio of living sphere  73.65 

ratio of riverside green area to urban area 73.02 

ratio of roadside green space to urban area 68.55 

% of the area that is forest 68.42 

total urban forest area per capita  68.39 

urban forest area of living sphere per capita 68.39 

organic material load discharge per 1,000 people 52.83 

urban park area per 1,000 people  52.59 

wastewater generation per 1,000 people  47.6 

wastewater discharge per 1,000 people  47.6 

organic material load generated per 1,000 people  47.57 

number of wastewater dischargers  42.25 

household waste discharge per resident  42.11 

number of parks per 1,000 people  42.1 

national basic livelihood security recipients per 1,000 38.4 

% of persons with financial independence 37.06 

population growth rate  36.94 

number of vehicle registrations per capita  36.87 

% of the population that is urban 36.84 

population density  36.84 

park area per capita  36.84 

% of road area compared to urban area  36.84 

ratio of total population to area 36.84 

PM2.5 7.64 

st_b6 7.23 

sr_b1 6.15 

sr_b2 6.15 

sr_b3 6.15 

sr_b4 6.15 

sr_b5 6.15 

sr_b7 6.15 

dewpoint_temperature_2m_land_0020 4.29 

leaf_area_index_high_vegetation_land_0020 4.29 

leaf_area_index_low_vegetation_land_0020 4.29 

soil_temperature_level_1_land 4.29 

soil_temperature_level_2_land 4.29 

soil_temperature_level_3_land 4.29 
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soil_temperature_level_4_land 4.29 

temperature_2m_land_0020 4.29 

total_precipitation_land_0020 4.29 

u_component_of_wind_10m_land_0020 4.29 

v_component_of_wind_10m_land_0020 4.29 

fpar 4.11 

lai 4.11 

dewpoint_2m_temperature 3.07 

maximum_2m_air_temperature 3.07 

mean_2m_air_temperature 3.07 

mean_sea_level_pressure 3.07 

minimum_2m_air_temperature 3.07 

surface_pressure 3.07 

total_precipitation 3.07 

u_component_of_wind_10m 3.07 

v_component_of_wind_10m 3.07 

aerosol_optical_depth_land_qa_mean_mean_470 1.88 

brdf_albedo_band_mandatory_quality_band6_0020 1.82 

brdf_albedo_band_mandatory_quality_shortwave_002

0 
1.8 

brdf_albedo_band_mandatory_quality_nir_0020 1.77 

optical_depth_055_0020 1.66 

optical_depth_047_0020 1.61 

aerosol_optical_depth_land_ocean_mean_mean 1.54 

albedo_bsa_band6 1.14 

albedo_wsa_band6 1.14 

albedo_bsa_shortwave 1.12 

albedo_wsa_shortwave 1.12 

albedo_bsa_nir 1.11 

albedo_wsa_nir 1.11 

brdf_albedo_band_mandatory_quality_band5_0020 1.04 

brdf_albedo_band_mandatory_quality_band3_0020 1.03 

brdf_albedo_band_mandatory_quality_vis_0020 1.03 

brdf_albedo_band_mandatory_quality_band1_0020 1.01 

brdf_albedo_band_mandatory_quality_band2_0020 1.01 

brdf_albedo_band_mandatory_quality_band4_0020 1.01 

brdf_albedo_band_mandatory_quality_band7_0020 1.01 

clear_day_cov 0.77 

clear_night_cov 0.76 

albedo_bsa_band3 0.68 

albedo_bsa_band5 0.68 

albedo_bsa_vis 0.68 

albedo_wsa_band3 0.68 

albedo_wsa_band5 0.68 

albedo_wsa_vis 0.68 

albedo_bsa_band1 0.67 

albedo_bsa_band2 0.67 

albedo_bsa_band4 0.67 

albedo_bsa_band7 0.67 

albedo_wsa_band1 0.67 

albedo_wsa_band2 0.67 



 

 67 

albedo_wsa_band4 0.67 

albedo_wsa_band7 0.67 

emis_31 0.66 

emis_32 0.66 

cirrus_fraction_swir_f_mean 0.44 

cloud_optical_thickness_liquid_log_mean_mean 0.44 

cloud_optical_thickness_liquid_mean_uncertainty 0.44 

ndvi 0.33 

evi 0.32 

lc_prop2_assessment 0.07 

lc_prop1_assessment 0.06 

lc_prop3_assessment 0.06 

landcover_noyear_categorical 0 

lc_prop1_categorical 0 

lc_prop2_categorical 0 

lc_prop3_categorical 0 

lc_type1_categorical 0 

lc_type2_categorical 0 

lc_type3_categorical 0 

lc_type4_categorical 0 

lc_type5_categorical 0 

ozone 0 

pr_wtr 0 

precipitation 0 

probability_liquid_precipitation 0 

sur_refl_b01 0 

sur_refl_b02 0 

sur_refl_b03 0 

sur_refl_b04 0 

sur_refl_b05 0 

sur_refl_b06 0 

sur_refl_b07 0 

tcdc 0 
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Table S3. Results of parameter grid search using 10-fold cross-validation for O3, NO2 and CO 

 

O3 

Random Forest Light Gradient Boosting Neural Network 

Parameter Name 
Parameter 

Value 
Parameter Name 

Parameter 

Value 
Parameter Name 

Parameter 

Value 

Number of trees 3,000 Number of trees 500 Epochs 500 

Maximum tree 

depth 
30 

Maximum tree 

depth 
5 

Hidden layer & 

number of 

hidden units for 

each layer 

2, 16 

Minimum node 

size 
6 

Minimal node 

size 
20 

Activation 

function 

Rectifier 

(ReLU) 

Sample rate 0.9 Learning Rate 0.01 
Optimizer & 

learning rate 
Adam, 0.01 

  
Column sample 

rate 
0.7 

Scheduler & 

decay rate 

Exponential

, 0.992 

  
L1, L2 

regularization 
0.1, 1 Dropout rate 0 

 

NO2 

Random Forest Light Gradient Boosting Neural Network 

Parameter Name 
Parameter 

Value 
Parameter Name 

Parameter 

Value 
Parameter Name 

Parameter 

Value 

Number of trees 1,500 Number of trees 500 Epochs 500 

Maximum tree 

depth 
12 

Maximum tree 

depth 
7 

Hidden layer & 

number of 

hidden units for 

each layer 

2, 64 
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Minimum node 

size 
8 

Minimum node 

size 
20 

Activation 

function 

Rectifier 

(ReLU) 

Sample rate 0.9 Learning Rate 0.01 
Optimizer & 

learning rate 

Adam, 

0.008 

  
Column sample 

rate 
0.55 

Scheduler & 

decay rate 

Exponential

, 0.96 

  
L1, L2 

regularization 
0.2, 4 Dropout rate 0.2 

 

CO 

Random Forest Light Gradient Boosting Neural Network 

Parameter Name 
Parameter 

Value 
Parameter Name 

Parameter 

Value 
Parameter Name 

Parameter 

Value 

Number of trees 3,000 Number of trees 400 Epochs 500 

Maximum tree 

depth 
24 

Maximum tree 

depth 
7 

Hidden layer & 

number of 

hidden units for 

each layer 

3, 16 

Minimum node 

size 
6 

Minimal node 

size 
20 

Activation 

function 

Rectifier 

(ReLU) 

Sample rate 0.8 Learning Rate 0.01 
Optimizer & 

learning rate 
Adam, 0.1 

  
Column sample 

rate 
0.55 

Scheduler & 

decay rate 

Exponential

, 0.985 

  
L1, L2 

regularization 
0.3, 1 Dropout rate 0.2 
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Table S4. Yearly ensemble (GAM) performance for O3, NO2, and CO 

 

  R2 RMSE 

  GAM 1 GAM 2 GAM1 GAM2 

O3 

(ppb) 

year     

2002~2005 0.725 0.694 6.469 6.772 

2006~2008 0.808 0.795 5.692 5.903 

2009~2011 0.842 0.828 4.97 5.162 

2012~2014 0.854 0.846 5.175 5.309 

2015~2017 0.871 0.855 5.195 5.513 

2018~2020 0.843 0.831 5.205 5.455 

overall 0.84 0.825 5.463 5.706 

     

  R2 RMSE 

NO2 

(ppb) 

 GAM 1 GAM 2 GAM1 GAM2 

year     

2002~2005 0.511 0.268 7.336 11.549 

2006~2008 0.716 0.67 5.335 5.752 

2009~2011 0.738 0.682 5.024 5.532 

2012~2014 0.702 0.65 5.486 5.942 

2015~2017 0.706 0.653 5.056 5.436 

2018~2020 0.84 0.787 3.693 4.087 

overall 0.721 0.603 5.236 6.456 

     

  R2 RMSE 

CO 

(ppm) 

 GAM 1 GAM 2 GAM1 GAM2 

year     

2002~2005 0.326 0.328 0.227 0.227 

2006~2008 0.476 0.474 0.193 0.193 

2009~2011 0.51 0.514 0.153 0.153 

2012~2014 0.49 0.491 0.138 0.138 

2015~2017 0.402 0.405 0.123 0.123 

2018~2020 0.474 0.476 0.096 0.097 

overall 0.488 0.488 0.154 0.154 

* GAM : Generalized Additive Model which aggregating estimations of Random 

Forest, Light Gradient Boosting, and Neural Network. 

* GAM 1 : Formula (1) in section 2.3 

* GAM 2 : Formula (2) in section 2.3 

* Performance for O3 and NO2 were calculated based on ppb, and ppm for CO. 
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Table S5. Model performances for O3, NO2, and CO by season and urbanity 

 

  R2 RMSE 

O3 

(ppb) 

Season RF GB NN GAM SA RF GB NN GAM SA 

Spring 0.651 0.655 0.658 0.661 0.665† 6.697 6.632 6.606 6.585 6.546† 

Summer 0.742 0.74 0.74 0.743 0.747† 6.068 6.077 6.08 6.045 5.994† 

Autumn 0.744 0.739 0.724 0.746† 0.745 4.753 4.791 4.938 4.73† 4.739 

Winter 0.73 0.736 0.713 0.738 0.74† 4.222 4.138 4.306 4.136 4.113† 

Area           

Urban 0.84 0.84 0.84 0.842 0.845† 5.468 5.449 5.449 5.416 5.372† 

Rural 0.762† 0.755 0.715 0.761 0.753 6.197 6.114 6.792 6.03† 6.176 

            

NO2 

(ppb) 

 R2 RMSE 

Season RF GB NN GAM SA RF GB NN GAM SA 

Spring 0.688 0.7 0.661 0.674 0.702† 5.291 5.144 5.461 5.386 5.138† 

Summer 0.662 0.67 0.677 0.643 0.681† 4.332 4.251 4.211 4.594 4.194† 

Autumn 0.753 0.766 0.76 0.736 0.768† 4.827 4.652 4.751 5.039 4.656† 

Winter 0.663 0.684 0.675 0.656 0.686† 5.608 5.39† 5.512 5.853 5.401 

Area           

Urban 0.738 0.742 0.727 0.718 0.747† 4.902 4.839 4.987 5.135 4.801† 

Rural 0.606 0.723 0.752† 0.678 0.716 6.138 5.217† 5.221 6.098 5.447 

            

CO 

(ppm

) 

 R2 RMSE 

Season RF GB NN GAM SA RF GB NN GAM SA 

Spring 0.311† 0.286 0.241 0.292 0.307 0.134 0.135 0.139 0.135 0.133† 

Summer 0.184† 0.158 0.117 0.165 0.177 0.124† 0.126 0.133 0.125 0.126 

Autumn 0.471† 0.446 0.415 0.451 0.471 0.138† 0.14 0.146 0.14 0.139 
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Winter 0.392† 0.384 0.312 0.362 0.392 0.201† 0.201 0.222 0.204 0.203 

Area           

Urban 0.526 0.51 0.478 0.508 0.53† 0.53 0.152† 0.154 0.154 0.154 

Rural 0.126 0.135† 0.074 0.112 0.118 0.153 0.15† 0.164 0.155 0.153 

 

* RF : Random Forest,  GB : light Gradient Boosting,  NN : Neural Network,  GAM : Generalized Additive Model (Formula (1) in 

Section 2.3),  SA : Simple average estimation of RF, GB, and NN 

* Performance for O3 and NO2 were calculated based on ppb, and ppm for CO. 
† A model that performs better than other models during the period 
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Table S6. Number of monitoring stations by year for O3, NO2 and CO in urban and rural areas 

 

Year 
O3 NO2 CO 

Urban Rural Overall Urban Rural Overall Urban Rural Overall 

2002 137 8 145 135 8 143 133 7 140 

2003 157 8 165 156 8 164 153 8 161 

2004 172 7 179 169 8 177 167 7 174 

2005 185 8 193 181 8 189 184 8 192 

2006 194 9 203 192 8 200 190 9 199 

2007 207 9 216 207 9 216 206 9 215 

2008 217 10 227 217 10 227 217 10 227 

2009 220 10 230 220 10 230 220 10 230 

2010 222 10 232 222 10 232 218 10 228 

2011 223 14 237 223 14 237 221 14 235 

2012 231 15 246 229 15 244 227 15 242 

2013 236 16 252 237 16 253 232 16 248 

2014 237 16 253 238 16 254 233 16 249 

2015 238 17 255 238 17 255 233 16 249 

2016 242 18 260 242 18 260 236 17 253 

2017 249 27 276 249 27 276 239 19 258 

2018 280 45 325 279 45 324 276 45 321 

2019 309 86 395 309 86 395 288 73 361 

2020 357 106 463 357 106 463 330 100 430 
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Fig. S1. Urban/Rural and Metropolitan (Metro) area for entire contiguous regions of South Korea 
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Fig. S2. Distribution maps of predicted O3 (ppb) by year and season for contiguous South Korea 
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Fig. S3. Distribution maps of predicted NO2 (ppb) by year and season for contiguous South Korea 
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Fig. S4. Distribution maps of predicted CO (ppm) by year and season for contiguous South Korea 
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Fig. S5. Monthly fluctuations in the number of monitoring stations for 

O3, NO2, and CO between 2002 and 2020 



 

 79 

 
Fig. S6. Density scatter plot for monthly averages of the monitored and predicted concentrations of O3, NO2, 

and CO with seasonal discrimination 
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국 문 초 록 

 

머신러닝 모델을 사용한 2002~2020년 한국의 

O3 , NO2 , CO 농도의 고해상도 추정  

 
 

서울대학교 보건대학원 

보건학과 보건통계학전공 

권 도 훈 
 

연구배경 : 오존(O3), 이산화질소(NO2), 일산화탄소(CO)에 장기간 노출

되면 각종 질병을 유발하고 사망률을 높이는 것으로 알려져 있다. 그렇

기에, 고해상도로 지표면 O3, NO2, CO 농도를 추정하는 것은 이러한 대

기오염물질과 관련된 건강 영향을 평가하는 데 매우 중요하다. 하지만, 

장기간에 걸쳐 고해상도로 가스상 대기오염물질(O3, NO2, CO)를 추정한 

연구는 국내에서 아직 진행된 바가 없다. 따라서, 본 연구는 2002년부

터 2020년까지 대한민국 전역에서 1km × 1km의 공간해상도로 월별 

O3(일평균 8시간 최대치), NO2, CO를 머신러닝 기반 모델 및 그들의 앙

상블 모형을 통해 예측하고자 한다. 

연구방법 : 3가지 머신러닝 모델(랜덤 포레스트, 라이트 그래디언트 부스

팅, 신경망)의 최적의 파라미터를 찾기 위해 모니터링 스테이션의 약 

80%를 훈련 데이터로 사용하였고, 10-fold 교차검증을 통해 훈련 데이

터 내에서 훈련/평가 단계를 거쳤으며, 나머지 모니터링 스테이션의 

20%를 모델 평가에 사용하였다. 여기에 추가로 머신러닝 모델 간의 예

측 변동을 통합하기 위해 앙상블 모델을 적용했다. 데이터에는 위성 기

반 원격 감지 데이터, 역거리 가중치 기반 대기오염농도, 토지 이용 변

수, 기상 재분석 자료, 다양한 데이터베이스에서 수집된 지역 사회경제

적 변수 등이 포함되었다. 
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연구결과 : O3의 경우, 전체 연구 기간 동안 앙상블 모델의 R2가 0.841

을 기록했으며, 도시 지역이 농촌 지역(R2 = 0.762)보다 우수한 예측 

성능(R2 = 0.845)을 보였다. NO2의 경우, 앙상블(평균) 모델의 R2가 

0.756으로 가장 높았으며, 계절로 보면 가을에 예측 성능이 가장 높았

다(R2 = 0.768). CO의 경우, R2가 0.506 을 기록했다. 본 연구는 O3 및 

NO2 에서 R2 > 0.75 으로 높은 예측력의 고해상도 월평균 추정치를 제

공한다. 

결론 : 본 연구에서 얻어진 대기오염 추정 결과는 인구 특성과 관련된 

가스상 대기오염물질의 공간 패턴을 분석하거나, 위치 기반 건강 정보와 

행정구역 단위 건강 데이터와 엮여서 장기간 대기오염 노출의 건강 영향

을 평가하는 연구에 사용될 수 있을 것으로 기대된다. 

 

주 요 어 : 가스상 대기오염물질, 장기간 노출 평가, 고해상도(공간), 머

신러닝 모델, 앙상블 모델 
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