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Abstract

Following the global emergence of the Alpha variant of concern 

(VOC) of SARS-CoV-2 in 2019, another wave emerged due to the 

SARS-CoV-2 Delta variant in 2021. The AY.69 lineage, a Delta VOC, 

was particularly prevalent in Korea between May 2021 and January 

2022, despite the synchronized implementation of vaccine programs 

and non-pharmaceutical interventions (NPIs), such as social 

distancing. Here, we used phylogeographic analysis supplemented by 

a generalized linear model (GLM) to determine the influence of 

human movement and vaccination on viral transmission. The results 

suggested that transmission began predominantly in the metropolitan 

areas of South Korea, and that total human mobility tracked by GPS 

using mobile phones and estimated by credit card consumption had a 

positively affected the occurrence of introduction events. This 

phylodynamic findings also supported the notion that non-vaccinated 

persons dominantly transmitted the virus during the study period, 

despite of vaccination programs that started three months before the 

propagation of AY.69. Therefore, our results suggest that co-

implementing both NPIs and an early vaccination program would 

effectively reduce viral spread.

Keyword : SARS-CoV-2, phylogeography, genomic epidemiology, 

human movement, Phylodynamics, Generalized linear model

Student Number : 2021-27881
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Chapter 1. Introduction

1.1. Study Background

As human history has gone through several pandemics, the 

interaction between pathogen and human population has been 

identified [1, 2]. This can be well utilized when applying to infectious 

disease epidemiology in the emergence of new disease and this field 

of study of identifying disease transmission pattern is called genomic 

epidemiology [1]. Furthermore, for better real-time pandemic 

surveillance and epidemic control and preparedness, phylodynamics 

– the combination of epidemiology with immunodynamics and 

phylogenetics – was coined by Grenfell in 2004 [1]. Whereas 

phylogenetics only focuses on estimating a tree with the most 

minimum evolutionary steps or the maximum likelihood tree, 

phylodynamics emphasizes population dynamic factors such as 

reproductive numbers, generation time and epidemic growth rate [3].

The coalescent theory is central concept in phylodynamics which 

trace back coalescent events by mutational drift and predicts 

effective viral population size(Ne) change [3]. 

However, the detailed link between spatiotemporal link of 

disease outbreak and intervention scenario such as non-

pharmaceutical intervention (NPI) or superspreading were not 
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explored although they are very important factors during pandemic 

[4]. This problem can relatively easily be solved by phylogeographic 

analysis which involves sampling locations as sequence traits and 

builds a phylogenetic tree [4]. In addition to phylogeography, 

generalized linear model(GLM) framework has been applied to figure 

out non-genomic predictors of pandemic pattern [4].

Besides from population dynamics of infectious disease, 

individual contact tracing would be more informative to track all the 

transmission chain in the real world since the superspreading event 

and related transmitted people can be found out by this method [5]. 

It is important to import individual-level data since population 

immunity and new viral introduction accumulate differently within 

each network [6]. Therefore, demographic or measured information 

needs to be included in the phylodynamic analysis, and here, we 

adopted individual vaccine status data and sampling locations are 

included as traits.

1.2. Purpose of Research

The outbreak of COVID-19 caused an unprecedented pandemic, 

characterized by extremely prolonged periods of time and an excess 

of deaths globally. Because SARS-CoV-2 virus rapidly mutates and 

spreads widely from coast to coast and has caused multiple large 

outbreaks, there are limitations with the traditional epidemiological 

tracking of contacts by surveys [7]. Because real-time tracing is 
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very important for tracking the fast-changing COVID-19 pandemic, 

which has had clustered outbreaks around the world, genomic 

epidemiology may be a good complementary epidemiological tool [8]. 

That is why light has been shed on phylogenetic analyses recently, 

with the development of complex analyses for phylodynamics with 

spatiotemporal analysis also called a phylogeography [9].

In South Korea, the largest epidemic was driven by the 

sublineage SARS-CoV-2 Delta variant of concern (VOC) designated 

by WHO, AY.69, which was present in the large cluster of cases that 

occurred between May 2021 and January of 2022. The number of 

complete sequences for this variant worldwide is 11,296, with 11,234 

found in South Korea and the 11,234 cases found in South Korea 

during that time, the sequence of AY.69 took up 51.85% of whole 

Delta variants found in South Korea [10]. 

During the pandemic, South Korea implemented a number of 

policies, including vaccination programs and social distancing [11]. 

The national immunization program, which aimed to immunize 70% of 

the population by November 2021, started with priority groups from 

February 26, 2021, and later expanded to younger age groups [12]. 

This age-based-prioritization vaccination strategy, with a high rate 

of vaccine distribution, promoted vaccination; with the high rate of 

compliance, the vaccination program resulted in a steep increase in 

the immunized population [13]. Indeed, the proportion of fully 

vaccinated individuals exceeded 70% on October 23, 2021, and 

exceeded 80% on October 29, 2021 [14].
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Vaccination programs reduce deaths [15] and South Korea 

reduced the case fatality rate over the study period, which 

subsequently plateaued at 0.8. However, the rate of infection 

increased, despite vaccination coverage; unvaccinated persons 

predominated among cases in 2021, although the incidence of 

breakthrough infections gradually increased until the end of 2021 

[16]. Transmission dynamics among groups of different immune 

status are unknown, unless contact histories are interpreted in 

conjunction with ongoing epidemiologic surveillance [17].

The human mobility pattern has a considerably large impact on

viral spread. The importance of human factors in pandemics had been 

emphasized in previous phylogeographical studies, such as that of air 

traffic density on human immunodeficiency virus spread [18] and of 

freight transportation on avian influenza virus spread [19]. Those 

studies concluded that human mobility measured by public 

transportation scales partially explains spatial spread of virus more 

than the other factors influencing epidemics, including environmental 

factors such as humidity and temperature, and human factors such as 

railway connectivity, population, and immigration. Although viruses 

have different characteristics, the impact of human movement on 

COVID-19 warrants investigation [20].

It is important to consider all associations of government 

strategies with viral spread and measure their effects to assess 

policies and prevent future pandemics [21]. During the COVID-19 

pandemic, social distancing strategies were implemented by regions 



５

of South Korea based on local movement patterns, necessitating a 

high-resolution method of measuring movement, possibly using 

mobile telephones [22]. Individual mobility data can also be used to 

estimate movement in a region for phylodynamic analysis.

To enhance tracking of virus sources and transmission routes, 

genomic epidemiologists have used phylogeography to evaluate the 

geographic transmission histories of viruses [23]. By assigning 

distinct sites for each node, metadata, including sampling sites, are 

included [24]. By merging phylogeography with state-of-the-art 

statistical methods, phylodynamic analyses are becoming more useful 

[25].

Using this approach, we investigated the effects of 

immunization and social distancing policies on viral transmission [26]. 

In addition, epidemiological surveillance by genetic sequence 

acquisition provides a basis for state decisions to detect viral 

variation and source [27]. Moreover, extending phylodynamic 

analysis into parameterizing spatial movement rates as a generalized 

linear model (GLM) of potential predictors facilitates evaluation of 

factors linked to virus transmission and mutation, enabling evaluation 

of prevention policies during the phase of the pandemic dominated by 

Delta variants [28]. 
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Chapter 2. Methods

2.1. Sequence data and subsampling

To estimate the effect of sample size, we included sample size 

as a predictor and identified its largest effect. Delta variant genetic 

sequences were downloaded on January 31, 2022, from the Global 

Initiative for Sharing All Influenza Data [29]. We used metadata 

provided by the Korea Disease Control and Prevention Agency to 

eliminate samples from inbound travelers and assigned each 

sequence its position in relation to data on the immune status of an 

infected individual. Among 10,232,901 AY.69 clade genomes from 

South Korea (approximately 1% of confirmed cases in the period 

under study) that had < 5% nucleotide uncertainty, we redesignated 

each genome to a global-standard Pango lineage nomenclature using 

Pangolin v. 1.11 (data published June 30, 2022) [30]. To avoid 

mixing of sequences that might be confused with AY.69, we retained 

sequences containing mutations associated with AY.69 (A4838G, 

G9431A, G16864A, and C27559T) designated by the Pango network 

[31]. The quality of filtered AY.69 sequences was assessed using 

Nextclade Quality Control, and only those of good quality (8,806 

sequences) were retained [32].

To identify Korean transmission lineages, we constructed a 

maximum-likelihood phylogenetic tree with FastTree v. 2.1.11 using 

sequences from other countries. We downloaded the 1,348 Delta-
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representative sequences (123 from Africa, 168 from Asia, 342 from 

Europe, 340 from North America, 185 from Oceania, and 190 from 

South America) selected from Nextstrain v.11 [33] as background 

sequences in the tree to prevent loss of important cladistic structures 

and continental distributions.

To reduce the number of sequences, we used TARDiS 

subsampling software [34]. TARDiS subsampling of the positional 

groups considered both the date of collection (���) and the genetic 

relatedness ( ��� ), using user-defined weights set by default 

(���: ��� = 0.5:0.5). Due to the large collections available, we 

repeated the steps with two subsampled datasets, yielding final 

sequence counts of 642 and 220, respectively. [27]

We chose Wuhan-Hu-1 as the reference sequence, to which 

every sequence was aligned and hand-trimmed to an equal length 

(29,409 bp) from the ORF1ab starting codon to the ORF10 stop codon, 

and all sequences were masked to the reference gene. Gaps shared 

by > 99% of the sequences were considered sequencing errors and 

removed manually to ensure that they were not known mutation sites 

in AY.69 variants, according to the pangolin reference [35]. 

Sequence purification was performed using Geneious Prime software 

v. 2021.2.2 [36].

The approximated trees were generated using FastTree v. 

2.1.11 under the generalized time-reversible nucleotide substitution 

model, with gamma-distributed rates among sites (general time 

reversible + gamma [GTR+g]) [37]. We chose only those trees in 
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which Korean sequences were most tightly grouped and shared the 

same ancestor, which had > 0.7 support values in the final dataset. 

Outlier sequences that had > 8.0 ´ 10−4 variances in the tree were 

checked in TempEst v. 1.5.3 with a root-to-tip regression [38], 

resulting in the removal of a further 38 sequences. Finally, we 

analyzed 220 and 642 samples.

2.2. Bayesian Phylogeographic Analysis

We constructed the phylogenetic trees on timescales using 

BEAST v. 1.10.4 [39]. The GTR nucleotide substitution models were 

selected by the Bayesian average of the site-based phylogenetic 

models using BModeltest [40]. The user-specified tree model that 

we constructed previously and Bayesian skygrid tree priors were 

used, and an uncorrelated relaxation-driven clock model was used 

to assess changes in virus population size with a flexible approach. 

Markov chain Monte Carlo was performed over 100 million steps and 

parameters and trees were sampled at 10,000 steps. The parameters 

were analyzed using TRACER v. 1.7.1 with 10–20% burn-in [41]. 

We first constructed a tree without the GLM model and used it as an 

initial tree for GLM. Most parameters had effective sampling sizes of 

> 200. The resultant log files and trees were combined using 

LogCombiner v. 1.10.4 [42], resulting in 32,804 parameter states and 

posterior trees. Time-scaled max-clade-credibility trees were 

generated using the TreeAnnotator [42] function in BEAST and were



９

visualized using FigTree v. 1.4.3 [43].

Bayesian stochastic search variable choice procedures were 

applied to determine the most supported transitions among discrete 

states using the Bayes factor test, and transmissions were played 

along the timeline using SPREAD3 software v. 0.9.6 [44]. A 

transition was identified as significant at a Bayes factor of > 6 and 

posterior probability of > 0.5.

2.3. Mobility Data

We prepared the datasets as coalescent tree priors. Sample 

size was modeled as the log-transformed count of sequences. The 

two measures of movement were an aggregated dataset from BC 

financial services company, the data of people’s card consumption 

on entertainment, and a travel dataset based on the origin–destination 

movements tracked using KT mobile phones [45]. Each measure was 

collected from May 2021 to January 2022 and they were not strongly 

correlated (Appendix 3). We note that these data might not represent 

the entire population.
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2.4. Generalized linear model of discrete trait diffusion

Before investigating predictors of spatial transmission by GLM, 

which is computationally and time intensive, we constructed an 

annotated tree without GLM and used it to explore associations 

between candidate covariates in the web-based application 

Phylogeographic Covariate Analysis (PhyCovA) [46]. In this way, 

several most probable predictors other than sample size were 

selected.

Using the selected predictors, we performed Bayesian 

phylogeography in discrete space and the GLM-diffusion model 

using BEAST v.1.10.4, including sample region, date, mobility data, 

and sample size as parameters. The dependent variable of the GLM 

was the log-transformed transition rates among 17 discrete regions 

according to the continuous-time Markov chain. The independent 

variables were log-transformed mobility data and sample size. The 

Bayesian model estimates the phylogenetic history, ancestral 

movement, and contributions of covariates simultaneously [17].

Because the sampling bias represented by larger coefficients 

for sample sizes will influence the other predictors’ impact, we also 

implemented a GLM with no covariates for sample sizes. Moreover, 

we determined effect sizes for the covariates and their probabilities 

of inclusion using the Spike-and-Slide procedure 
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Chapter 3. Results

3.1. The AY.69 variant was predominant in mid-2021 in South 

Korea 

According to the genetic surveillance, the AY.69 variant was 

first detected in Korea in the year 2021-05-14, with approximately 

half detected in Seoul and Gyeong-gi. (Fig. 2) It became a dominant 

subgroup starting from mid-July 2021, with increasing numbers of 

isolates through September 2021, before being detected for the last 

time in 2022-01-22. The fourth peak of incidences in Korea 

occurred during July, which is consistent with AY.69 prevalence. 

During this time, the South Korean government announced its highest 

level of social distancing. However, AY.69 variation did not exhibit 

decreasing trends before October, when the number of cases 

increased. AY.69 was partly replaced with other delta variant, 

AY.122.5, after 2nd vaccine shot schedule began in 2021-10-14, 

but when the large surge occurred in December, 2021, AY.69 gently 

downturned and comprised less than 50% after higher level of social 

distancing policy implemented. (Fig. 1)
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Figure 1. The prevalence of each SARS-CoV-2 virus variant in South Korea

(a) The Delta-variant pandemic in South Korea showing different Delta sub-lineages’ prevalence in the overall study 

period. (b) The most dominant variant, AY.69, was predominant in mid- to late-2021 exceeding 75% in August. Grey 

shaded bars represent every COVID19 variants’ incidence number/100,000 people. Red shade and dashed lines are 

the time when social distancing level raised (2021-07-17~2021-07-27, 2021-12-21) whereas yellow dashed line 

is the time point when social distancing level lowered (2021-11-01). Blue dashed line is the beginning of 2nd 

vaccination shot program (2021-10-14).
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Because 74.77% of cases occurred in the South Korean 

metropolises(Seoul, Gyeong-gi and In-cheon), the sampling 

frequencies were concentrated in these regions (52.49%) during 

AY.69 prevalence periods. The geographical distribution of our 

sequence data was commensurate with outbreak proportion of each 

regions (Fig. 2). 

Moreover, 64.80% of the samples were not vaccinated, 10.59% 

were partially vaccinated, and others were fully vaccinated. The 

vaccination program in South Korea started on February 26, with 

over 70% of the population being fully vaccinated by October 23 [47]. 

However, samples from partial or fully vaccinated people began to be 

collected in July 2021; once more than 70% of the population was 

fully vaccinated, the fully vaccinated (FV) group accounted for most 

of the genetic sequence samples. (Fig. 2)
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Figure 2. Comparison on sequence samples and incidence counts of 

each region and immune groups. 

(a) Monthly sample counts and incidences by region from May 2021 

to January 2022. Incheon accounted for most samples in May 2021, 

and Seoul and Gyeonggi) in later periods. Colors indicate regions as 

labelled on the right side of the figure. (b) Comparison of sample 

counts and incidence proportion in South Korea. Each region is 

labelled on the figure. (c) Sample counts for each region. Colors 
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indicates each region as labelled on the right side of the figure. (d) 

Proportions of immune groups (bar graph) with vaccination rates 

(line graph). Colors are labelled on the right side of the figure. (e) 

Sample counts for each immune status. Colors indicates each immune 

status as labelled on the right upper side of the figure.BS, Busan; CB, 

Chungbuk; CN, Chungnam; DG, Daegu; DJ, Daejeon; GB, Gyeongbuk; 

GN, Gyeongnam; GG, Gyeonggi; GW, Gangwon; IC, Incheon; JJ, Jeju; 

JN, Jeonnam; SJ, Sejong; SU, Seoul; US, Ulsan; NV, non-vaccinated 

group; PV, partially vaccinated group; FV, fully vaccinated group. 
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3.2. AY.69 variant mostly spread from Seoul and Gyeong-gi 

On the other hand, it was established that the most recent 

common ancestor(tMRCA) for Korean AY.69 was April 22, 2021(95% 

height posterior density [HPD]: April 1 through May 10). This 

indicates that AY.69 likely occurred several weeks prior to initial 

detection. The estimated effective virus population size increased 

through mid-July, showing a plateau before the decline began in 

December 2021. The effective population size reached its first peak 

on 25 July, just prior to heightened social distancing in 27 July 2021

(Fig. 3a).

By ancestral reconstruction in Bayesian phylogenetic 

analyses, we identified spatiotemporal diffusion between regions in 

South Korea, which all the transitions between regions were 

measured by Markov jump counts. Based on posterior average ratios 

of each region’s introduction, dispersal between metropolises led 

spatial transmission of the AY.69 variation in the 2021-05-08 

timeframe, with virus mainly spreading out of Seoul during the entire 

period, showing 276 (95% height posterior density [HPD]: 222-322) 

times outfluxes out of the total 331 (95% height posterior density 

[HPD]: 235-438) outfluxes within the whole tree. The largest 

dissemination originated from Seoul then flew into Gyeong-gi(82; 95% 

HPD = 72-92) and spread from Seoul to Chung-nam (31; 95% HPD 

= 25-37) was the second largest spread. (Fig. 3b, 3c)
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Table 1. Calculated cross-regional transmission values of the 680-sample dataset

Transmitted to

From BS CB CN DG DJ GB GG GJ GN GW IC JB JJ JN SJ SU US Total

BS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CB 0 1 0 0 1 1 0 1 2 0 0 0 0 0 1 0 7

CN 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 3

DG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GG 2 4 6 1 3 2 0 3 3 2 1 1 0 0 17 2 47

GJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

GW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

JB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SU 10 25 31 11 20 14 82 4 17 26 8 9 4 7 2 7 277

US 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 13 29 38 12 24 17 85 4 21 31 10 10 5 7 2 19 9 336
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Figure 3. The effective population size of Ay.69 during the study 

period and its inter-region introduction events with a phylogenetic 

tree and SpreaD3 (Spatial Phylogenetics Reconstruction of 

Evolutionary Dynamics using Data-Driven Documents (D3))
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(a) Bayesian skyline plot based on AY.69 variant. X-axis shows time 

scale in months and y-axis is the logarithmic effective population 

size. The red line represents the median shaded area indicates the 

95% highest posterior density. (b) Chord diagram showing the 

introduction events between regions. Chord away from the edge 

represents the influx. The width or chord is relative to the number 

of flow. (c) Phylogenetic tree of AY.69 variant. The tree is the 

maximum clade credibility(MCC) summary of Bayesian inference. (d) 

The routes and magnitude of viral spread animation through serial 

months played in SpreadD3. Colours corresponds to each region in 

the legend. Ne, effective population size; BS, Busan; CB, Chung-buk; 

CN, Chung-nam; DG, Dae-gu; DJ, Dae-jeon; GB, Gyeong-buk; GN, 

Gyeong-nam; GG, Gyeong-gi; GW, Gang-won; IC, In-cheon; JJ, 

Je-ju; JN, Jeon-nam; SJ, Se-jong; SU, Seoul; US, Ul-san.
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3.3. AY.69 variant mostly spread from Non-vaccinated group 

Based on posterior average ratios of introductions of each 

immune status group, non-vaccinated (NV) groups led in the spatial 

expansion of the AY.69 variants in the period 2021-04-23, showing 

an outflux of 154 times (95% HPD = 140-168), among the total 

outfluxes of 171 (95% HPD = 149-195) in the entire tree. Fully-

vaccinated (FV) groups represented the largest influx (100 times; 

95% HPD = 90-113) since July 2021, followed by partially-

vaccinated (55 times; 95% HPD = 50-59) and NV (16 times; 95% 

HPD = 9-23). (Fig. 4a)

The NV group was predominantly responsible for disease 

spread from April 27, 2021, to January 11, 2022 (Fig. 4b). Because 

the vaccination schedule peaked during summer (July to August 2021) 

in South Korea, with FV individuals exceeding 70% from October 23, 

2021 [47], large virus influxes occurred from NV to FV and PV on 

June 6, 2021, and July 9, 2021, respectively. NV influx and outflow 

decreased after September 4, 2021, because of the absolute decline 

in non-vaccinated population; the PV group showed a similar trend 

after October 8, 2021 (Fig. 4c).
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Table 2. Calculated transmission values among vaccine status group 

of the 680-sample dataset

Transmitted to

From FV NV PV Total

FV 16 0 16

NV 99 55 154

PV 1 0 1

Total 100 16 55 171

Figure 4. The introduction events between immune group with a 

phylogenetic tree and chord diagram

(a) Chord diagram showing the introduction events between immune 

groups. Chord away from the edge represents the influx. The width 

or chord is relative to the number of flow. (b) The number of 

transmission counts among immune groups for each month. (c) The 
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maximum clade credibility(MCC) summary tree of Bayesian 

inference. Colours correspond to each immune group in the legend. 

NV, Non-vaccinated group; PV, Partially-vaccinated group; FV, 

Fully-vaccinated group.
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3.4. GLM analysis of mobility data and phylogeography

Because probabilistic inference is computationally demanding 

and time-consuming, we explored a lot of potential predictors before 

integrating all predictors in phylodynamic analysis [46]. (Appendix

2)

First, public transportations such as buses and trains cannot 

measure peoples’mobility of both inflow and outflow of Jeju-island.

Beside from amount of shipment and aircraft, Jeju-island has zero 

transportation movement to the other regions whereas genetic 

sequences are collected in Jeju-island. As expected, we could find a 

little significant relationship between the number of passengers of 

intercity or express bus and the migration rates calculated in the 

phylogenetic tree. Even if the number of railway passengers shows 

the significant positive association, several regions doesn’t have 

inter-regional railway (e.g., Incheon is connected to two regions 

only – Gyeonggi and Gangwon). Therefore, amount of movement 

would be better estimated by location of mobile phone measured by 

GPS. 

Since a couple of previous studies suggested the relationship 

of inter-regional distance or population density with migration rates, 

we’ve identified their relevance by PhyCovA [48,49]. Distances and 

population density of disseminating regions had no association with 

migrations and importing regions showed insignificant association. 

(Appendix 2) 
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Based on the associations of every factor with inter-region-

transmission rates in PhyCovA, we chose three most associated 

predictors besides from sample sizes – mobile phone mobility OD 

matrix, credit card data of disseminating region and vaccinated 

population of importing region. The selected predictors have positive 

relationship with the number of viral transmission events and all 

predictors showed low to moderate correlation. (Appendix 3)

We also considered the sample sizes of the source and 

destination regions separately [50]. GLM without sample size, but 

including vaccination and mobility variables, showed that total 

mobility between regions measured using mobile phones had a 

positive effect on viral spatial transmission in both datasets. In the 

220-subsample dataset, credit card spending on entertainment, 

representative of movement, had a more positive effect on viral 

outflow than their effect in 642-subsample dataset. Bayes factor of 

credit card data and mobile phone mobility was both > 200 in large 

and small datasets. The effect size of mobile phone mobility was 0.97 

and 0.902 respectively and the effect size of card mobility was 1.131 

and 1.739 respectively (Fig. 5).
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Table 3. Descriptive statistics of each predictor of GLM

Unit Mean Median Standard deviation IQR

Card consumption number of payments/day 1087.5 732.6 1075.3 462.5

Mobile phone mobility people/day 595599.0 223248.0 1310065.1 393807.0

Vaccination
total population that completed 

initial vaccination
2477393.4 1552120.0 2692755.1 1225293.0

Population density population/km^2 2122.9 788.0 3632.4 2519.0

Intercity bus total traffic in month 18119.4 3218.4 40680.4 15532.3

Express bus total traffic in month 10832.3 609.3 30713.2 4848.1

Distance km 187.9 178.4 96.6 135.3

Rail total traffic in month 36799.7 7850.0 70420.4 40874.0

Sample counts counts 37.8 17.0 49.6 31.0
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Table 4. Inclusion support statistics for each dataset

Including sample size model

680 samples 220 samples

Predictor

Posterior 

inclusion

probability

Bayes 

factor

Posterior 

inclusion

probability

Bayes 

factor

Card 

consumption
0.108 0.1 0.365 0.8

Mobile phone 

mobility
0.304 0.1 0.015 0.0

Vaccination 0.023 0.00017 0.012 0.00072

Sample size of 

destination 

region

1 1.096 1 1.036

Sample size of 

origin region
0.966 2.166 0.718 1.840

Excluding sample size model

680 samples 220 samples

Predictor

Posterior 

inclusion

probability

Bayes 

factor

Posterior 

inclusion

probability

Bayes 

factor

Card 

consumption

1 1.129 1 1.656

Mobile phone 

mobility

1 0.969 1 0.901

Vaccination 0.06 0.006 0.07378 0.011
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Figure 5. The results of generalized linear model of inter-region viral transmission and its predictors

The support and contribution of AY.69 variant transmission predictors. Support for each factor is represented by an 

inclusion probability(right) and the contribution of each factor is represented by the mean GLM coefficient on a log 

scale conditional on the predictor being included in the model(left). (a) GLM of 642-subsampled dataset. (b) GLM of 

220-subsampled dataset.
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Next, we considered sample sizes in our model. For the 

sample size of origin and destination regions, in the large dataset, the 

Bayes factors were >200 with a positive effect size 2.187 and 1.098 

respectively. In the small dataset the sample size of origin regions 

had a Bayes factor of 17.04 with a positive effect size 1.955 and the 

destination regions had a Bayes factor >200 with a positive effect 

size 1.036. While vaccination was expected to have negative effect, 

it shows no relevance with viral transmission. In the large dataset, 

the mobile phone mobility was associated variable (BF = 2.84) with 

a positive effect size (EF = 0.878) and whereas the small dataset 

has an associated variable (BF = 3.86) with a positive effect size (EF 

= 0.9823). All the other mobility predictors had Bayes factors < 1. 

(Fig.6)
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Figure 6. The results of generalized linear model of inter-regional 

viral transmission and its predictors considering sample sizes 

The support and contribution of AY.69 variant transmission 

predictors. Support for each factor is represented by an inclusion 

probability(right) and the contribution of each factor is represented 

by the mean GLM coefficient on a log scale conditional on the 

predictor being included in the model(left)(a) GLM of 642-

subsampled dataset. (b) GLM of 220-subsampled dataset.
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Chapter 4. Discussion

Through this study, we could investigate transmission of 

COVID-19 Delta variant AY.69 in South Korea between regions and 

immune groups. Since this information was lack in traditional 

surveillance system, it is an additional significant study 

understanding the characteristics of disease outbreak when came into 

Korea and preparing for the future pandemic. According to the results, 

viral transmission began in late-May from metropolitan regions and 

the regions led viral spread in the overall period (2021.05~2022.01). 

Furthermore, non-vaccinated groups led the virus spread in a 

partially/fully vaccinated group throughout the study period even 

though full vaccination rate in Korea exceeded 70% in October. 

Our phylodynamic analysis showed that unvaccinated 

individuals contributed to the initial spread of AY.69 in South Korea. 

In fact, the proportion of non-vaccinated South Koreans had been 

declining precipitously throughout September, coinciding with the 

spike of transmission among other groups of immune status. Even 

with a partial or full vaccination rate over 57% on Sept. 1 and about 

24% remaining unvaccinated on Sept. 30 [51], the unvaccinated were 

overwhelmingly the ones who transmitted viruses. Therefore, herd 

immunization and its impact have been estimated by phylodynamics 

and found to reduce burden of disease. The effectiveness of vaccine 

would be better at the beginning of pandemic as our results show, 

then genetic diversity has reduced vaccine efficacy. [52] 
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According to our results from the GLM, human motility 

accounts for spatiotemporal transmission of SARS-Cov-2 AY.69 

variant. Consistent with previous findings, human movement 

estimated from mobile phone had significant influence on virus 

spread [53], which means the large people’s movements in 

metropolitan explain predominant spread exported from Seoul and 

Gyeong-gi. People’s mobility has been estimated by many 

different data sources in the previous studies including bus or 

railway passengers and air traffic. [54] The mobile phone mobility, 

on the other hand, measures all the mobility whatever people have 

taken on for their transportation, which recommends that 

phylodynamics would better estimates disease outbreak when we 

consider all the movement, not a specific transportation. Other 

factors such as population density and distances between regions in 

phylogeography with GLM study have been considered in the 

previous studies, [19 55], but we predicted that these data would 

have low relevance (Appendix 2). We also measured mobility based 

on credit card spending on, for example, sports, movies, 

entertainment, and other personal interests, which were related to 

phylodynamic movements. Although an asymmetrical mobile-

phone-detected region-to-region mobility matrix and credit card 

spending data have a little impact on cross-regional transmission in 

the present, it also shows moderate Bayes factors, leaving a door 

open for future findings avoiding sampling bias [45].

To sum up, implementing non-pharmaceutical intervention to 
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reduce people mobility would be the most effective way to flatten the 

curve. Even herd immunization seems to be efficient in the low 

prevalence to reduce transmission, vaccinated people spread virus 

more in the later phase with large outbreak. Furthermore, viral 

dissemination can be predicted incorporating with data that explains 

people’s inter-region mobility. We investigated the possibility of 

adopting O/D matrix mobile phone data and credit card consumption 

data to be used as an informative source of epidemiological 

surveillance.

This phylogeography and GLM study gives us insight to 

predict future pandemic overcoming the limitation of current 

phylogenetic study in the forecasting aspect. [4] Furthermore, an 

epoch model can consider random and fixed effects in following study 

where the model can add time-homogeneous random effects, 

although this analysis would be computationally burden. [53] 

Recently, several methodologies of disease predicting by 

phylogenetic methods are proposed or theoretically hypothesized

[56,57]. If the most relevant predictors of viral spread are 

accumulated by numerous studies, the most adequate model will be 

designed and be utilized to predict next pandemic transmission. In the 

meanwhile, the migration rates between regions itself acquired from 

our study as who acquires infection from whom (WAIFW) matrix

form can be adopted in a mathematical modelling. When another 

demographic factor such as age is designated as a trait, a new 

WAIFW matrix of age groups can be used in mathematical models by 
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age groups instead of surveyed contact matrix which is most 

frequently used currently.

This study needs to be interpreted cautiously as we 

performed a practice of down-sampling from selected genetic 

sequence data. The sequencing frequency over the period studied 

was about an average of 0.8 percent of total detected cases in Korea 

[58], meaning that unsampled cases may explain unreported 

transition events. Even though a particular variant could be densely 

populated locally and the proportion in our sample was lower 

compared with the real incidence, absolute sample sizes were smaller 

at some regions than at others, thus, some transmissions may have 

been missed. However, as people are crowded in Metropolitan 

regions in South Korea, these regions recorded the high incidence 

rate throughout pandemic and unbalanced sample counts for each 

region seems to be inevitable. Indeed, the pandemic aspects in the 

study period were distinguished by a concentration of cases in 

metropolitan areas including Seoul and Gyeong-gi (67%), but these 

regions represented approximately 52% of total AY.69-variant 

pandemic cases in South Korea. (Appendix 1) Sampling bias still 

cannot be avoided showing considerably overwhelming effect sizes 

in GLM. The other method of down-sampling can be tried or putting 

every prominent predictor in a GLM could be tried in the following 

study.

Considering even less biased sampling rates, spreading from 

the large regions was a general trend. The results suggest that when 
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the new viral lineage first introduced in metropolitan regions in South 

Korea, this can be led to the unprecedent big surges, which a new 

initial detection of virus in nearby metropolitan regions allows us to 

predict a following larger outbreak throughout Korea peninsula in the 

future pandemic
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Chapter 5. Conclusion

According to the phylogeographic analysis, the pandemic of 

SARS-CoV-2 Delta variant of concern in South Korea disseminated 

from metropolitan regions from May 2021 to January 2022. To 

investigate factors mostly affecting viral spatiotemporal spread, 

generalized linear model was implemented and the average amount 

of people’s credit card consumption and total mobility measured by 

their mobile phones could explain a part of phylocynamics of disease 

outbreak. Moreover, this phylogeographic analysis showed that virus 

majorly spread from non-vaccinated people to partially or fully 

vaccinated people. Therefore, it would be possible to reduce viral 

spatial transmission among regions in South Korea implementing both 

Non-pharmaceutical intervention (NPI) and vaccination policies.
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국문초록

한국 SARS-CoV-2 대유행의 베이지안

계통지리학적 분석과 이에 영향을 미치는 요인

이상이

보건학과 보건학 전공

서울대학교 보건대학원

2019년에 SARS-CoV-2 알파 우려 변종(VOC, Variant of 

Concern)이 유행한 이후 2021년 델타 변이 중 특히 AY.69 우려 변종

바이러스가 한국의 코로나바이러스 유행을 이끌었다. AY.69는 2021년

5월부터 2022년 1월까지 백신접종 프로그램이나 사회적 거리두기와

같은 비약물적 중재정책을 도입했음에도 불구하고 한국에서 특히 큰

유행을 이끌었다. 본 연구에서는 선형회귀모델(GLM) 분석을 통해  

사람들의 이동과 면역도와 바이러스의 전파와의 관계를 알아보기 위해

계통지리학적 분석을 실시하였다. 결과에 따르면 전파는 한국의 수도권

지역에서 시작되었으며, 해당 지역 사람들의 신용카드 사용량과 휴대용

이동통신기기의 GPS로 측정한 사람들의 모든 이동량이 다른

지역으로의 바이러스 유입과 관련이 있는 것으로 나타났다. 또한 본

계통역학적 연구는 한국에서는 AY.69 변이 바이러스가 유행하기 3개월

전에 백신접종 프로그램이 시작되었지만, 백신 접종을 하지 않은

사람들이 유행기간동안 바이러스 전파를 주도하였다는 것을 계통

지리학적 분석을 통해 밝혔다. 따라서 본 연구는 비약물적 중재정책과



４４

백신접종 프로그램을 동시에 실시하는 것이 바이러스의 전파를

효율적으로 막을 수 있다는 것을 제안한다.

주요어 : SARS-CoV-2, 계통지리학, 계통역학, 분자역학, BEAST, 

인구이동, 일반화선형모델, 한국

학번 : 2021-27881
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Appendix

Appendix 1. A maximum likelihood phylogenetic tree formed 

by FastTree v.2.1.11 
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Appendix 2. Correlations of predictors in the generalized linear model and trends comparing the migration 
rates and predictors for each region

Associations with migration rates; x-axis log-scale (a) intercity bus, (b) express bus, (c) railway, (d) intercity 

distance, (e, f) population density. BS, Busan; CB, Chungbuk; CN, Chungnam; DG, Daegu; DJ, Daejeon; GB, Gyeongbuk; 

GN, Gyeongnam; GG, Gyeonggi; GW, Gangwon; IC, Incheon; JJ, Jeju; JN, Jeonnam; SJ, Sejong; SU, Seoul; US, Ulsan
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Appendix 3. Correlation of each predictor used in GLM and trends comparing migration rates and each 

predictors of every region
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(a) The correlation matrix of each predictors. Card spending and sample size were inevitably correlated since 

metropolitan regions have dense population spending money and being infected. (b-e) Associations with migration 

rates; x-axis log-scale (b) phone mobility, (c) credit card spending, (d) vaccinated population, and (e) genome 

sequence sample size. BS, Busan; CB, Chungbuk; CN, Chungnam; DG, Daegu; DJ, Daejeon; GB, Gyeongbuk; GN, 

Gyeongnam; GG, Gyeonggi; GW, Gangwon; IC, Incheon; JJ, Jeju; JN, Jeonnam; SJ, Sejong; SU, Seoul; US, Ulsan.
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Appendix 4. Comparison on sequence samples and incidence counts of each region and immune groups of 

220-subsampled tree
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(a) Monthly sample counts and incidence proportions of each region from May 2021 to January 2022. Incheon accounted 

for most samples in May 2021, whereas Seoul and Gyeonggi predominated subsequently. Colors indicate regions as 

labelled on the right side of the figure. (b) Comparison of sample counts and incidence proportion in South Korea. Each 

region is labelled on the figure. (c) Sample count by immune group and vaccination rate. (d) Proportions of immune 

groups (bar graph) with vaccination rates (line graph). Colors are labelled on the right side of the figure. BS, Busan; 

CB, Chungbuk; CN, Chungnam; DG, Daegu; DJ, Daejeon; GB, Gyeongbuk; GN, Gyeongnam; GG, Gyeonggi; GW, Gangwon; 

IC, Incheon; JJ, Jeju; JN, Jeonnam; SJ, Sejong; SU, Seoul; US, Ulsan; NV, non-vaccinated group; PV, partially vaccinated 

group; FV, fully vaccinated group.
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Appendix 5. Calculated cross-regional transmission values of the 220-sample dataset

Transmitted to

From BS CB CN DG DJ GB GG GJ GN GW IC JB JJ JN SJ SU US Total

BS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GG 0 1 2 0 2 0 0 0 1 0 0 0 0 0 5 1 12

GJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SU 5 16 14 4 7 7 33 3 9 14 4 3 2 3 2 3 129

US 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 5 17 16 4 9 7 33 3 9 15 4 3 2 3 2 5 4 141
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Appendix . The effective population size of Ay.69 during the 

study period and its inter-regonal introduction events with a 

phylogenetic tree of 220-subsampled tree

(a) Bayesian skyline plot based on AY.69 variant. X-axis shows time 

scale in months and y-axis is the logarithmic effective population 

size. The red line represents the median shaded area indicates the 

95% highest posterior density. It was established that the most 

recent common ancestor(tMRCA) for AY.69 was April 18, 2021(95% 

height posterior density [HPD]: April 26 through May 9). The 

estimated effective virus population size increased through mid-July, 

showing a plateau thereafter. The effective population size reached 

its first peak on 18 July, just prior to heightened social distancing in 

27 July 2021. (b) Chord diagram showing the introduction events 
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between regions. Chord away from the edge represents the influx. 

The width or chord is relative to the number of flow.  Based on 

posterior average ratios of each region’s introduction, dispersal 

between metropolises led spatial transmission of the AY.69 variation 

in the 2021-05-08 timeframe, with virus mainly spreading out of 

Seoul during the entire period, showing 127 times outfluxes out of 

the total 138 outfluxes within the whole tree, followed by Gyeong-

gi (46 times). Gyeong-gi represented the largest influx (33 times) 

mainly from Seoul, with Chung-buk (17 times), Chung-nam (16 

times) following. (c) Phylogenetic tree of AY.69 variant. The tree is 

the maximum clade credibility(MCC) summary of Bayesian inference. 

Colors are corresponds to each region in the legend. Ne, effective 

population size; BS, Busan; CB, Chung-buk; CN, Chung-nam; DG, 

Dae-gu; DJ, Dae-jeon; GB, Gyeong-buk; GN, Gyeong-nam; GG, 

Gyeong-gi; GW, Gang-won; IC, In-cheon; JJ, Je-ju; JN, Jeon-nam; 

SJ, Se-jong; SU, Seoul; US, Ul-san.
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Appendix 7. The introduction events between immune group 

with a phylogenetic tree and chord diagram of 220-

subsampled tree

(a) Chord diagram showing the introduction events between immune 

groups. Chord away from the edge represents the influx. The width 

or chord is relative to the number of flow. (b) The maximum clade 

credibility(MCC) summary tree of Bayesian inference. Based on 

posterior average ratios of introductions of each immune status group, 

nonvaccinated (NV) groups led in the spatial expansion of the AY.69 

variants in the period 2021-04-27, showing an outflux of 40 times. 

Fully-vaccinated(FV) groups represented the largest inflow (25 

times) since April 2021, followed by partially-vaccinated (15 times). 

Large virus influxes were observed from 2021-04-27, both from 
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NV to FV and PV. Both the outflow of NV decreased from 2021-09-

13, because of the absolute decline in that compartment. We noted 

that the FV groups, with a relatively low sampling rate at first, had 

fewer viral spread, but started spreading viruses to the 

nonvaccinated groups starting from the end of 2021, as the majority 

were getting the vaccine. Colors are corresponds to each immune 

group in the legend. NV, Non-vaccinated group; PV, Partially-

vaccinated group; FV, Fully-vaccinated group.

Appendix 8. Calculated transmission values among vaccine 

status group of the 220-sample dataset

Transmitted to

From FV NV PV Total

FV 0 0 0

NV 43 16 59

PV 2 0 2

Total 45 0 16 61
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