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Abstract 

 

 

Uncertainty on conventional methods 

for reverse dosimetry from urinary 

biomarkers of environmental 

chemicals 
 

Jin Hyun Kwon 

Dept. of Environmental Health 

The Graduate School of Public Health 

Seoul National University 

 

Biomonitoring data is an indicator of internal exposure used in chemical risk 

assessment. As exposure to environmental chemicals is managed by deriving daily 

intake, several methods to back calculate biomarker concentration into external dose 

have been developed. The reverse dosimetry approaches conventionally use urinary 

excretion fraction (Fue) or a toxicokinetic (TK) model. These methods assume that 

the concentrations of the biomarker in the biological samples reflect the average 

exposure when external exposure continuously occurs. However, it is important to 

consider exposure characteristics of short-lived chemicals, as biomarker levels in the 

urine samples may vary depending on the half-life of the substance and the interval 

between actual exposures to the chemical. 

In this study, the national biomonitoring data of two representative chemicals, BPS 

and DEHP were used to estimate oral-equivalent intakes with different reverse 



ii 

 

dosimetry methods. After optimizing TK models to fit the urinary excretion profile 

of controlled human experiments, dose estimates using TK model were compared to 

those using the Fue values as a golden standard. Also, single, and multi-compartment 

TK models were compared to show that the distribution of daily intake can vary 

according to the model structure. As a result, the exposure calculated using the Fue 

value was likely to overestimate real life exposure, 8-hour interval scenario assumed 

in each TK model. To further examine the sources of uncertainty, a single 

compartment model was simulated with varying half-lives and exposure intervals. 

Overall, simple TK models and simulation data highlighted the importance of 

identifying exposure characteristics to reduce uncertainty in reverse dosimetry 

approaches for biomonitoring-based exposure assessment. 

 

Key words: biomonitoring, risk assessment, uncertainty, toxicokinetic model, 

urinary excretion fraction 
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1. Introduction 

 

Biomonitoring is the measurement of environmental chemicals referred to as 

biomarkers absorbed in the biological system. As biomarker concentration in a 

biological medium such as blood or urine is assumed to be directly related to 

chemical exposure, biomonitoring data is widely being used in exposure assessment  

(DeCaprio, 2006). In risk assessment for chemical exposure, daily intake with the 

units of mg/kg-bw/day is suggested as various health-based guidance values. 

Reverse dosimetry approaches have been introduced to estimate daily intake of 

chemicals corresponding to the measured concentrations from biomonitoring studies. 

For example, intake dose can be calculated by using urinary excretion fractions (Fue) 

and human toxicokinetic (TK) models (NRC, 2006). 

Urinary excretion fraction (Fue) is the molar ratio between the amount of 

parent compound ingested and the amount of the parent or measured metabolite 

excreted in urine. Simply applying this value to an equation, volume or creatinine-

based urinary biomarker level can be reconstructed as intake dose of chemical, with 

an underlying assumption that the concentration in a spot urine sample represents 

the average 24-hour urinary concentration (Koch et al., 2007). Urinary excretion 

pattern is also one of the main quantitative explanations of chemicals’ toxicokinetic 

(TK) behavior such as absorption, distribution, metabolism, and elimination (ADME) 

in humans. Toxicokinetic information of environmental chemicals is collected from 

controlled in vivo exposure experiments to elucidate the time course of biomarker 

concentration. TK models are mathematical descriptions for ADME and can be 
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grouped into two types: classical toxicokinetic and physiologically based 

toxicokinetic (PBTK) models. Through model simulation, a linear relationship 

between the concentration of a substance in the body and the amount of exposure 

can be obtained. Based on this relationship, the oral-equivalent external dose of 

chemical can be estimated with internal concentration data of exposure biomarkers 

(Andersen, 2003; Yoon et al., 2022). In this study, the correlation between urinary 

levels of the biomarkers and estimated daily intake was defined as exposure-

concentration relationship (ECR). 

To examine whether this correlation is suitable for short half-life chemicals, 

temporal variation should be considered. For example, biomarker concentration in 

matrix varies greatly when the elimination half-life is short, and exposures are not 

frequent (Aylward et al., 2014). The elimination half-lives explain the terminal 

exponential decay of a chemical in biological samples. These inter- and intra-

individual variability of concentrations in urine samples for short term chemicals 

have been discussed in relevant studies (Aylward et al., 2017; Aylward et al., 2012). 

However, few studies have reported the uncertainty of reverse dosimetry methods 

using biological concentrations (Brown et al., 2015; Pleil et al., 2007; Ring et al., 

2017; Spaan et al., 2010; Tan et al., 2012). 

While the variability of biological samples can only be characterized and is 

not reducible by further experiment, characterization of uncertainty regarding default 

assumptions can help reduce uncertainty in risk assessment (Asante-Duah, 2002; 

NRC, 2009). Therefore, TK model was regarded as a golden standard to evaluate 

conventional reverse dosimetry using Fue in this study. Then, additional sources of 
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uncertainty related to model itself, and model parameters based on exposure interval 

and elimination half-life were reviewed. 

Firstly, the differences between dose reconstruction results estimated by the 

ECR based method and the Fue based method were discussed using the representative 

biomonitoring data of specific environmental chemicals with short term half-life. 

Then, the intake doses from TK simulation were examined to characterize the degree 

of variation due to different combinations of exposure intervals and elimination half-

lives. Here, model simulations were performed with deterministic values for 

variables such as volume of distribution and daily urine excretion volume based on 

representative characteristics of the population (Jang et al., 2014; Valentin, 2002; 

Yoon et al., 2020). 

This study aimed to identify the sources of uncertainty in risk assessment 

for chemicals with short half-lives by comparing two conventional approaches and 

showing the impact of exposure characteristics. These results will enable better 

interpretation of biomonitoring data and related exposure assessment of 

environmental chemicals. 
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2. Methods 

 

2.1. Dose reconstruction using TK model 

2.1.1. Simple TK model structures and simulation 

 

Simple toxicokinetic (TK) models of the substance were constructed to simulate 

multiple dosing in oral ingestion route (Figure 2). Based on each model structure, it 

was assumed that the rate of absorption (ka) from the gastrointestinal (GI) tract and 

the rate of elimination (ke) via the urinary void can be explained as first-order 

kinetics. Urinary excretion data was resolved into various exponential components 

by the method of residuals (Boroujerdi, 2001; Gibaldi and Perrier, 1982). 

The one-compartment model was employed to illustrate the urinary 

concentration versus time curve by the biexponential equation, assuming that ka is 

greater than ke (Equation 1). Furthermore, the following equation was used to resolve 

the toxicokinetic characteristics of a two-compartment model, where α and β are the 

apparent first-order fast and slow disposition rate constants, respectively. A, B, C are 

coefficients that correspond to the zero-time intercepts of each phase (Equation 2). 

𝒅𝑨𝒖

𝒅𝒕
=

𝑫𝒐𝒔𝒆 × 𝒌𝒆

(𝒌𝒂 − 𝒌𝒆)
× (𝒆−𝒌𝒆∙𝒕 − 𝒆−𝒌𝒂∙𝒕) Equation 1 

𝒅𝑨𝒖

𝒅𝒕
= 𝑨 × 𝒆−𝜶∙𝒕+ 𝑩 × 𝒆−𝜷∙𝒕 + 𝑪 × 𝒆−𝒌𝒂∙𝒕 Equation 2 
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The daily average concentration of chemicals in urine sample was 

calculated using Equation 3, where tstart and tstop are the start and stop time during the 

exposure period. The physiological variables of age group, body weight, and daily 

urinary excretion rate (V24), for children (7-12 yrs), adolescents (13-18 yrs) and 

adults (19-64 yrs) were uniformly set to derive an exposure-concentration 

relationship (ECR) as shown in Table S1. Model simulations were performed using 

Berkeley Madonna version 8.3.18 (University of California at Berkeley, USA). 

Differential equations were used to describe the model and were solved using the 

fixed step size integration algorithm, and the fourth-order Runge-Kutta (RK4) 

method available in the program. 

 𝒄𝒖𝒓𝒊𝒏𝒆 =  
∫ (𝒌𝒆 ∗ 𝑨𝒄)𝒅𝒕

𝒕𝒔𝒕𝒐𝒑

𝒕𝒔𝒕𝒂𝒓𝒕

(𝒕𝒔𝒕𝒐𝒑 − 𝒕𝒔𝒕𝒂𝒓𝒕)
𝟐𝟒 × 𝑽𝟐𝟒

 Equation 3 
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Abbreviations: GI tract – gastrointestinal tract; AGI – amount of substance in GI tract; 

ka – absorption rate constant; Ac – amount of substance in central compartment 

(blood); k12 – elimination rate constant from central compartment to peripheral 

compartment ; k21 – elimination rate constant from peripheral compartment to central 

compartment; ke – elimination rate constant from central compartment (blood) to 

bladder (urinary excretion); Au – amount of substance in bladder. 

 

  

        

           

  

        

   

         

           

  

          

           

  

      

        
    

        

           

  

        

   

         

           

  

        
    

   

   

Figure 1. Simple (a) 1-compartment and (b) 2-compartment models for oral 

ingestion route used in this study (modified from Aylward et al., 2012). 
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2.1.2. Model optimization for environmental chemicals 

 

Bisphenol S (BPS) and Bis(2-ethylhexyl phthalate) (DEHP) were selected as model 

chemicals to compare reverse dosimetry methods of short-lived environmental 

chemicals, which have human toxicokinetic (TK) profiles (Koch et al., 2004; Koch 

et al., 2005; Oh et al., 2018), and average urinary excretion fractions (Fue) as shown 

in Table 1. The simple compartment models from Figure 2 were fitted to the urinary 

data, where each parameter was optimized using the concentration of the parent 

compound and its metabolites using Berkeley Madonna program. Oral 

bioavailability for both BPS and DEHP was set at unity, assuming that 100% of an 

administered dose reached the systemic circulation. Compartment models for BPS 

were compared using Akaike’s Information Criteria (AIC) from the log-likelihood 

ratio between models to elucidate a best-fit model (Kim et al., 2009). 
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Chemicals Dose regimen Matrix References 

Bisphenol S Singe oral dose at 8.75 μg/kg-bw Plasma; urine Oh et al. (2018) 

DEHP Singe oral dose at 48.5 mg Plasma; urine Koch et al. (2004); Koch et al. (2005) 

  

Table 1. Toxicokinetic studies in humans for model development 
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2.2. Dose reconstruction using urinary excretion fractions 

 

To calculate the estimated daily intake (EDI) using urinary excretion fraction (Fue), 

Equation 4 was applied using average values from Table 3 (Koch et al., 2007). Body 

weight (BW), and daily urinary excretion rate (V24) values used for each population 

are listed in Table S1. Also, the molar concentration of the analyte (UE) and 

molecular weight of the parent compound (MW) from Table 2 were used to estimate 

the chemical intake dose. Biomonitoring data of urinary BPS and metabolites of 

DEHP was taken from the Korean National Environmental Health Survey (KoNEHS) 

Cycle 3 (Ministry of Environment, National Institute of Environmental Research). 

 𝐄𝐃𝐈 =  
𝐔𝐄 (𝝁𝒎𝒐𝒍𝒆/𝒅𝒂𝒚) × 𝐕𝟐𝟒(𝑳/𝒅𝒂𝒚)

𝐅𝐮𝐞 ×  𝐁𝐖 (𝒌𝒈)
× 𝐌𝐖(𝒈/𝒎𝒐𝒍𝒆) Equation 4 

 

  



１０ 

 

Chemicals Analytes 
Molecular weight a) 

(g/mol) 

Average Fue 

(unitless) 
References 

Bisphenol S Total BPS 250.28 0.82 Oh et al. (2018) 

DEHP 

MEHHP 294.34 0.25 

Koch et al. (2004); Koch et al. (2005) MEOHP 292.33 0.15 

MECPP 278.09 0.22 
a) Deuterium labelled chemicals were used in the controlled exposure experiments. 

Abbreviations: MEHHP – Mono(2-ethyl-5-hydroxyhexyl) phthalate, MEOHP – Mono(2-ethyl-5-oxohexyl) phthalate, MECPP – Mono(2-ethyl-

5-carboxypentyl) phthalate 

Table 2. The fraction of urinary excretion fraction (Fue) of selected analytes
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2.3. TK model simulation with varying exposure related 

parameters 

 

At the individual level, reverse dosimetry requires interpretation of biomonitoring 

data, including the elimination half-life (HL) and exposure routes (Clewell et al., 

2008). For non-persistent chemicals, terminal plasma half-lives are on the order of 

hours. Exposure characteristics simulated by the TK model in this study are shown 

in Table 3. These characteristics depict several chemicals from national 

biomonitoring surveys, such as propyl paraben with HL of 2.9 hours (Shin et al., 

2019), Bisphenol S (BPS) with HL of 6.8 hours (Oh et al., 2018), Bis(2-ethylhexyl 

phthalate (DEHP) with HL of 2-10 hours (Koch et al., 2004), and triclosan with HL 

of 21 hours (Sandborgh-Englund et al., 2006). 

To investigate the differences in dose estimates due to exposure frequency, 

the exposure intervals (τ) were set accordingly to the total exposure period of 5 days. 

The absorption rate constant (ka) was set to a uniform value of 0.8 based on the 

distribution observed in drugs and other chemicals (Poulin et al., 2011; Wambaugh 

et al., 2018). The elimination rate constant (ke) was estimated by dividing 0.693 by 

the elimination half-life. 
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Case HL (hours) τ/HL (unitless) 

A 2 0.5 - 24 

B 5 0.2 – 9.6 

C 10 0.1 – 2.4 

D 20 0.1 - 2 

Abbreviations: HL – elimination half-life; τ – exposure interval 

  

Table 3. Exposure characteristics simulated by TK model in this study 
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3. Results and discussion 

 

3.1. Comparison of estimated daily intake by reverse 

dosimetry methods 

 

For BPS, the toxicokinetic profile of the parent compound was fitted to urinary 

excretion data as shown in Figure S2. The dose estimates from the simple 

mathematical equation with the urinary excretion fraction (Fue) of BPS were similar 

to those from TK models with continuous exposure scenarios. The overall daily 

intake for the 95th percentile population was highest in adolescents followed by 

children and adults, whereas mean exposure to BPS was highest in adolescents, then 

adults and children. 

Next, the oral equivalent dose calculated with Fue overestimated the amount 

calculated using the TK model for an 8-hour interval of exposure by approximately 

1.5 to 3-fold. The range of daily intake simulated with 8-hour interval exposure in 

the 1-compartment TK model was as follows: 0.21-4.59 ng/kg-bw/day for male 

children, 0.11-4.04 ng/kg-bw/day for female children, 3.50-8.79 ng/kg-bw/day for 

male adolescents, 0.32-12.11 ng/kg-bw/day for female adolescents, 0.23-2.96 ng/kg-

bw/day for male adults, and 0.21-2.57 ng/kg-bw/day for female adults. (Table 4).  

Although the 1-compartment TK model showed a lower Akaike 

information criteria (AIC) value due to the smaller number of parameters, the 2-

compartment TK model showed a lower log-likelihood function (Table 5).  
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Population 

Urinary 

concentration of  

total BPS 

(ng/mL) 

 Estimated BPS exposure (ng/kg-bw/day) 

By Fue 

 By 1-compartment model  By 2-compartment model 

Continuous 

exposure 

8-hour interval 

exposure 

Continuous 

exposure 

8-hour interval 

exposure 

P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 

Children 
Male 0.027 0.58  0.57 12.38  0.56 12.14 0.21 4.59  1.16 24.97 0.37 7.92 

Female 0.012 0.45  0.29 10.88  0.29 10.67 0.11 4.04  0.59 21.9 0.19 6.96 

Adolescents 
Male 0.387 0.97  9.44 23.6  9.26 23.2 3.50 8.78  6.48 16.2 2.06 5.15 

Female 0.032 1.23  0.86 32.62  0.84 31.99 0.32 12.11  0.59 22.4 0.19 7.10 

Adults 
Male 0.022 0.29  0.61 7.97  0.60 7.82 0.23 2.96  0.23 3.08 0.07 0.98 

Female 0.023 0.28  0.56 6.93  0.55 6.79 0.21 2.57  0.38 4.75 0.12 1.51 

Table 4. Comparison of estimated BPS exposure calculated by TK model simulation and Fue (Biomonitoring data was taken from KoNEHS III, 

2015-2017.) 
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Chemical Model structure  AIC  (-)2LL  No. of parameter 

BPS 
1-compartment  -7.2  -11.16  2 

2-compartment  -1.2  -11.20  5 

Abbreviations: AIC – Akaike Information Criteria, (-2)LL – - 2Log-likelihood function 

 

Table 5. Model comparison statistics 
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For DEHP, the toxicokinetic profile of each metabolite was fitted to urinary 

excretion data as shown in Figure S3. The dose estimates from the simple 

mathematical equation with respective urinary excretion fractions (Fue) of 

metabolites were similar to those from TK models with continuous exposure 

scenarios. The daily intake was highest when calculated with the urinary biomarker 

MECPP, but the overall tendency was the same for all metabolites, where the 95th 

percentile exposure was highest in children and adults, followed by adolescents. 

The oral equivalent dose calculated with Fue overestimated the amount 

calculated using the TK model for an 8-hour interval exposure by approximately 2 

to 7-fold. The oral equivalent exposure based on MEHHP concentration using one 

compartment TK model for 8-hour interval exposure was in following ranges: 1.30-

3.69 ng/kg-bw/day for male children, 1.40-4.09 ng/kg-bw/day for female children, 

0.77-2.62 ng/kg-bw/day for male adolescents, 0.68-2.82 ng/kg-bw/day for female 

adolescents, 0.81-3.64 ng/kg-bw/day for male adults, and 0.21-2.57 ng/kg-bw/day. 

(Table 6). 

Also, the overall daily intake was calculated with the sum of molar 

concentrations for MEHHP, MEOHP, MECPP, and the sum of Fue. The estimated 

results were higher than those calculated with MEHHP and MEOHP, but lower than 

those calculated with MECPP (Table 7). 
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Analytes Population 

Urinary 

concentration of 

DEHP metabolites 

(ng/mL) 

 Estimated DEHP exposure (ng/kg-bw/day) 

By Fue 

 By 1-compartment model  By 2-compartment model 

Continuous 

exposure 

8-hour 

interval 

exposure 

Continuous 

exposure 

8-hour 

interval 

exposure 

P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 

MEHHP 

Children 
Male 30.43 86.02  2.88 8.13  2.85 8.05 1.30 3.69  2.72 7.69 1.18 3.34 

Female 28.58 83.496  3.09 9.02  3.06 8.93 1.40 4.09  2.92 8.53 1.27 3.70 

Adolescents 
Male 15.77 53.5  1.70 5.78  1.69 5.72 0.77 2.62  1.61 5.46 0.70 2.37 

Female 13.86 57.58  1.63 6.79  1.48 6.16 0.68 2.82  1.55 6.42 0.67 2.79 

Adults 
Male 14.51 65.06  1.79 8.03  1.77 7.95 0.81 3.64  1.70 7.60 0.74 3.30 

Female 12.75 59.82  1.38 6.46  1.36 6.40 0.62 2.93  1.30 6.11 0.57 2.65 

MEOHP 

Children 
Male 19.68 68.49  3.11 10.81  3.11 10.83 1.46 5.09  2.92 10.15 1.40 4.86 

Female 19.09 63.88  3.44 11.52  3.45 11.54 1.62 5.43  3.23 10.81 1.55 5.18 

Adolescents 
Male 10.34 35.48  1.86 6.40  1.87 6.41 0.88 3.01  1.75 6.00 0.84 2.88 

Female 9.99 40.78  1.97 8.02  1.81 7.37 0.85 3.46  1.85 7.54 0.88 3.61 

Adults 
Male 10.96 50.54  2.26 10.42  2.26 10.44 1.06 4.91  2.12 9.77 1.02 4.68 

Female 10.33 51.72  1.86 9.33  1.87 9.35 0.88 4.39  1.75 8.75 0.84 4.19 

 

 

  

Table 6. Comparison of estimated DEHP exposure calculated by TK model simulation and respective Fue (Biomonitoring data was taken from 

KoNEHS III, 2015-2017.) 
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(Continued.) 

  

Analytes Population 

Urinary 

concentration of 

DEHP metabolites 

(ng/mL) 

 Estimated DEHP exposure (ng/kg-bw/day) 

 

By Fue 

 By 1-compartment model  By 2-compartment model 
  

Continuous 

exposure 

8-hour 

interval 

exposure 

 
Continuous 

exposure 

8-hour 

interval 

exposure 

P50 P95  P50 P95  P50 P95 P50 P95  P50 P95 P50 P95 

MECPP 

Children 
Male 44.09 144.1  5.01 16.69  4.87 16.21 1.99 6.64  3.50 11.45 0.67 2.20 

Female 43.1 143.5  4.49 14.67  4.36 14.25 1.79 5.84  3.91 13.04 0.75 2.51 

Adolescents 
Male 31.28 97.24  3.64 11.31  3.53 10.98 1.45 4.50  2.84 8.83 0.55 1.70 

Female 26.57 84.07  3.37 10.67  3.00 9.50 1.23 3.89  2.63 8.33 0.51 1.60 

Adults 
Male 22.46 126.8  2.99 16.85  2.90 16.37 1.19 6.70  2.33 13.15 0.45 2.53 

Female 20.84 138.6  2.42 16.12  2.35 15.65 0.96 6.41  1.89 12.59 0.36 2.42 
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Population 

Molar 

concentration 

sum of urinary 

metabolites a) 

(nmol/mL) 

 Estimated DEHP exposure (㎍/kg-bw/day) 

By Fue 

 By 1-compartment model  By 2-compartment model 

Continuous 

exposure 

8-hour interval 

exposure 

Continuous 

exposure 

8-hour interval 

exposure 

P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 

Children 
Male 0.315  0.998   3.51  11.11   3.51  11.12  1.51  4.80   3.32 10.51 1.09 3.44 

Female 0.304  0.972   3.86  12.36   3.86  12.37  1.67  5.35   3.66 11.71 1.21 3.89 

Adolescents 
Male 0.191  0.621   2.43  7.90   2.43  7.90  1.05  3.41   2.30 7.49 0.76 2.49 

Female 0.168  0.610   2.33  8.47   2.33  8.47  1.01  3.66   2.21 8.03 0.73 2.65 

Adults 
Male 0.160  0.809   2.33  11.75   2.33  11.75  1.01  5.09   2.20 11.08 0.73 3.68 

Female 0.147  0.833   1.87  10.60   1.87  10.60  0.81  4.58   1.77 10.04 0.59 3.33 
a) Molar concentration sum of MEHHP, MEOHP, and MECPP. 

  

Table 7. Comparison of estimated DEHP exposure calculated by TK model simulation and sum of respective Fue (Biomonitoring data was taken 

from KoNEHS III, 2015-2017.) 
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To evaluate the method using Fue values, the results were compared with 

those from the TK model simulation. Conventional method using Fue has limitation 

that the values are based on a controlled study where all participants are adults, and 

there are not many human exposure data. Urinary excretion data of total BPS, which 

measured the parent compound as a single exposure biomarker, resulted in different 

Fue between genders (Oh et al., 2018). Also, the estimates of DEHP exposure using 

Fue varied depending on which urinary metabolite was used, due to the different 

levels of metabolism and conjugation among substances (EFSA Panel on Food 

Contact Materials et al., 2019; Koch et al., 2003; Wittassek et al., 2011). Further 

research on the exposure assessment method using Fue can be investigated to lower 

the uncertainty level of the result. 

Fue values of urinary biomarkers are estimated based on the assumption that 

the human body consists of a single compartment and that exposure occurs 

constantly. Therefore, BPS and DEHP intake by continuous oral exposure concurs 

with the intake using Fue, while the intake by ingestion every 8 hours was estimated 

to be lower. In this study, TK models were optimized with the TK profiles from 

controlled studies that reported Fue values. Both methods used same values of 

bodyweight, and daily urinary excretion rate for each population when back 

calculating. 

However, there are limitations in a single compartment TK model since the 

time courses of chemical concentration were only explained as a single first-order 

decay. For many chemicals, elimination can occur through a biphasic or multiphasic 

process which results in more than one half-life (HL), shorter initial HL followed by 
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a longer terminal HL (Sayre et al., 2020; Tan et al., 2018). It can be suggested that 

the difference in dose estimates between TK models is determined by the parameters 

set in TK models, as they elaborately describe the ADME of each chemical. 
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3.2. Simple TK model simulation with varying exposure 

events 

 

To evaluate the impact of exposure events on the dose estimation, a single 

compartment TK model was simulated for exposure intervals (τ) of 1, 4, 8, 12, 24, 

36, and 48 hours. A total exposure period of 120 hours was simulated to reach a 

pseudo steady state. Multiple dosing was simulated for each case where the 

elimination half-life (HL) of chemicals is 2, 5, 10, or 20 hours, and the exposure-

biomarker concentration relationship (ECR) was derived accordingly. To compare 

the simulation results of different age groups, physiological variables were fixed: the 

values for children was 30 kg, 0.7 L/day, 55 kg, 1.2 L/day for adolescents, and 70 

kg, 1.6 L/day for adults, respectively. 

ECR is the linear equation between intake dose and the biomarker 

concentration derived from TK model simulation of multiple dosing. Smaller ECR 

slope indicates a larger intake dose for the same urinary concentration of the 

biomarker. As ECR slope increases when exposure frequency decreases, the relative 

changes in ECR slope were calculated to quantify the differences between each 

exposure event. There were no significant differences in overall results for each age 

group, and the simulation results for adults were presented in this study (Figure 3). 
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Figure 2. Relative changes in ECR slope of substances according to each exposure 

event simulated for all population. 
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The importance of elimination half-life (HL) and exposure interval (τ) to 

explain the variability of biomarker concentration was first introduced in the study 

regarding population exposure assessment (Aylward et al., 2017; Aylward et al., 

2012). In this study, the tendency of the relationship between exposure and urinary 

concentration (ECR) was derived from the simulation of four different exposure 

characteristics. The application of biomonitoring data in exposure assessment 

requires the assumption that the rate of absorption and excretion from the body 

reaches equilibrium with repeated exposure. From a pharmacokinetic point of view, 

this assumption can be generally achieved when the biomarker level at the time point 

reaches 95% of the level at steady state (Boroujerdi, 2001; Gibaldi and Perrier, 1982). 

This assumption was achieved in this study for oral exposure when the exposure 

period was approximately four to five times the HL of the substance in the body. The 

total amount of dose for 5 days of total exposure period was set uniformly so that 

external dose was distributed proportionally to τ. 

The relative changes in ECR slope were larger as HL increased, which can 

be explained by the accumulation of substances in the body (Rappaport and Kupper, 

2008). The initial value of ECR slope was largest when the HL was 20 hours. Also, 

the relative changes increased drastically by 10-20% when the exposure interval 

exceeded 24 hours (Figure 3). Aylward et al. (2012) proposed to estimate daily intake 

with TK model simulation by the function of HL relative to τ, suggest the degree of 

over- or under-estimation in predicted spot urine concentrations from underlying 

dose distribution. The present study focused on demonstrating how dose estimates 

can vary between each τ for chemicals with HL less than a day. 
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However, the sources of variability in the TK model should be discussed as 

well. Intra-individual and inter-individual variation in elimination half-life and 

physiological factors, including daily urinary excretion volume and body weight, 

were not considered for both methods in this study. It has been reported that variation 

of elimination half-life is predominant between individual, and is relatively lower 

for chemicals with short half-lives less than a week (Spaan et al., 2010). Also, urinary 

volume can change due to different hydration status, gender, and age, which result 

in further inter- and intra-individual variation (Van Haarst et al., 2004). These inter- 

and intra-individual variability can be simulated using Monte Carlo analysis for TK 

parameters (Clewell et al., 2008). In addition, spot urine concentration data used in 

back calculations only captures a single time point without any information on the 

time of last exposure. The complementary information on the time of sample 

collection can be simulated with the simple compartment model, which will help 

reduce uncertainty (Aylward et al., 2014; Aylward et al., 2017; Brown et al., 2015). 

Nevertheless, TK model simulation can explain different exposure 

scenarios that can be used to elaborate on the external exposure of biomonitoring 

data. To overcome the knowledge gap, the TK model should be performed with 

sufficient information on the possible exposure frequency of the chemical of interest 

collected from questionnaires (Andersen, 2003; Tan et al., 2018). 
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4. Conclusions 

 

In conclusion, the conventional reverse dosimetry method using Fue was evaluated 

by comparing the results from the TK model simulation based on the authentic 

biomonitoring data of BPS and DEHP. Also, the impact of exposure events on the 

uncertainties that may occur in exposure assessment based on urinary biomarkers 

was characterized by simulating various combinations of exposure intervals and 

elimination half-lives. The simulation results presented here suggest that the back 

calculation of chemical intake should consider elimination half-life and possible 

exposure intervals. Furthermore, the simple reverse dosimetry approach with TK 

modeling used in this study can be applied for various environmental chemicals 

regarding hypotheses on compartment model structures. 
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6. Supplementary material 

 

 

Uncertainty on conventional methods 

for reverse dosimetry from urinary 

biomarkers of environmental 

chemicals 
 

 

 

Table S1. Physiological variables of representative age groups used in this study 

Figure S1. Model fitting for total BPS in urine using predicted (lines) and observed 

(scatters) cumulative excreted amount (in nmol) 

Figure S2. Model fitting for urinary DEHP metabolites using predicted (lines) and 

observed (scatters) cumulative excreted amount (in μmol) 
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Population 
Body weight 

(kg) 

Daily urinary excretion 

(L/day) 
References 

Children 
Male 40 0.7 Valentin (2002); Yoon et al. (2020) 

Female 35 0.7 Valentin (2002); Yoon et al. (2020) 

Adolescents 
Male 60 1.2 Valentin (2002); Yoon et al. (2020) 

Female 55 1.2 Jang et al. (2014); Valentin (2002) 

Adults 
Male 70 1.6 Jang et al. (2014); Valentin (2002) 

Female 60 1.2 Jang et al. (2014); Valentin (2002) 

 

  

Table S1. Physiological variables of representative age groups used in this study 
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Figure S1. Model fitting for total BPS in urine using predicted (lines) and observed 

(scatters) cumulative excreted amount (in nmol). Dashed and solid lines are from 1-

compartment and 2-compartment model prediction, respectively. Measured data is 

taken from Oh et al., 2018 (N = 7). Each point and error bar represent mean and 

standard deviation of participants.  
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Figure S2. Model fitting for urinary DEHP metabolites using predicted (lines) and 

observed (scatters) cumulative excreted amount (in μmol). Dashed and solid lines 

lines are from 1-compartment and 2-compartment model prediction, respectively. 

Measured data is taken from Koch et al., 2004 and Koch et al., 2005 (N = 1). 
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국문초록 

 

 

소변 바이오마커를 이용한 노출량 

역산법의 불확실성 

 

서울대학교 보건대학원 

환경보건학과 환경보건전공 

권 진 현 

 

바이오모니터링 연구는 인구집단의 내적 노출량을 보여주는 지표로서 

노출평가에 널리 쓰이고 있다. 유해 화학물질의 노출을 관리할 때에는 

일평균 노출량 같은 인체 노출 안전 기준을 도출해 이뤄지기 때문에 

바이오마커 농도를 노출량으로 역추정하는 다양한 방법이 개발되어 왔다. 

노출량을 역추정할 때에는 대표적으로 소변 배설 분율(Fue) 또는 

독성동태학 모델(TK)를 이용할 수 있다. 이러한 방법은 생체 시료 중 

바이오마커의 농도가 외적 노출이 지속적으로 일어나는 상황에서 

평균적인 노출을 반영한다는 가정한다. 하지만 체내 반감기가 짧은 

물질은 실제로 물질에 노출되는 간격에 따라서 바이오마커의 농도가 
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달라질 수 있으므로 바이오모니터링 기반 노출 평가 시에는 노출 특성을 

고려하는 것이 중요하다. 

본 연구에서는 인체 노출 실험 결과가 존재하며, 체내 대사가 빠르게 

일어나 국가 바이오모니터링 연구에서 소변 중 바이오마커를 측정하는 

BPS와 DEHP를 대상 물질로 선정하였다. 1-구획과 2-구획 TK 모델을 

각각의 바이오마커에 대해 최적화해 경구 등가 노출량을 역산한 값을 

토대로 Fue 값을 활용해 산출한 결과를 평가하였다. 그 결과 Fue 값을 

활용한 경우에는 TK 모델로 현실적인 8시간 간격 노출을 시뮬레이션한 

경우와 비교했을 때 노출량이 약 2배 이상 달라지는 것으로 나타났다. 

또한, 1-구획 TK 모델을 활용해 체내 반감기가 짧은 물질에 대해 

물질이 다양한 시간 간격으로 노출될 때 노출량 추정에 미치는 영향을 

살펴보았다. 그 결과, 노출 평가를 할 때에는 역산 방법의 불확실성을 

줄이기 위해서 물질의 노출 특성을 파악하는 것이 중요하다는 것을 

확인하였다. 

 

주요어: 바이오모니터링, 위해성 평가, 불확실성, 독성동태학 모형, 소변 

중 배설 분율 
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