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Abstract

Uncertainty on conventional methods
for reverse dosimetry from urinary
biomarkers of environmental
chemicals

Jin Hyun Kwon
Dept. of Environmental Health
The Graduate School of Public Health

Seoul National University

Biomonitoring data is an indicator of internal exposure used in chemical risk
assessment. As exposure to environmental chemicals is managed by deriving daily
intake, several methods to back calculate biomarker concentration into external dose
have been developed. The reverse dosimetry approaches conventionally use urinary
excretion fraction (F..) or a toxicokinetic (TK) model. These methods assume that
the concentrations of the biomarker in the biological samples reflect the average
exposure when external exposure continuously occurs. However, it is important to
consider exposure characteristics of short-lived chemicals, as biomarker levels in the
urine samples may vary depending on the half-life of the substance and the interval
between actual exposures to the chemical.

In this study, the national biomonitoring data of two representative chemicals, BPS

and DEHP were used to estimate oral-equivalent intakes with different reverse
i



dosimetry methods. After optimizing TK models to fit the urinary excretion profile
of controlled human experiments, dose estimates using TK model were compared to
those using the F\. values as a golden standard. Also, single, and multi-compartment
TK models were compared to show that the distribution of daily intake can vary
according to the model structure. As a result, the exposure calculated using the F.
value was likely to overestimate real life exposure, 8-hour interval scenario assumed
in each TK model. To further examine the sources of uncertainty, a single
compartment model was simulated with varying half-lives and exposure intervals.
Overall, simple TK models and simulation data highlighted the importance of
identifying exposure characteristics to reduce uncertainty in reverse dosimetry

approaches for biomonitoring-based exposure assessment.

Key words: biomonitoring, risk assessment, uncertainty, toxicokinetic model,

urinary excretion fraction
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1. Introduction

Biomonitoring is the measurement of environmental chemicals referred to as
biomarkers absorbed in the biological system. As biomarker concentration in a
biological medium such as blood or urine is assumed to be directly related to
chemical exposure, biomonitoring data is widely being used in exposure assessment
(DeCaprio, 2006). In risk assessment for chemical exposure, daily intake with the
units of mg/kg-bw/day is suggested as various health-based guidance values.
Reverse dosimetry approaches have been introduced to estimate daily intake of
chemicals corresponding to the measured concentrations from biomonitoring studies.
For example, intake dose can be calculated by using urinary excretion fractions (Fy.)

and human toxicokinetic (TK) models (NRC, 2006).

Urinary excretion fraction (F,.) is the molar ratio between the amount of
parent compound ingested and the amount of the parent or measured metabolite
excreted in urine. Simply applying this value to an equation, volume or creatinine-
based urinary biomarker level can be reconstructed as intake dose of chemical, with
an underlying assumption that the concentration in a spot urine sample represents
the average 24-hour urinary concentration (Koch et al., 2007). Urinary excretion
pattern is also one of the main quantitative explanations of chemicals’ toxicokinetic
(TK) behavior such as absorption, distribution, metabolism, and elimination (ADME)
in humans. Toxicokinetic information of environmental chemicals is collected from
controlled in vivo exposure experiments to elucidate the time course of biomarker

concentration. TK models are mathematical descriptions for ADME and can be
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grouped into two types: classical toxicokinetic and physiologically based
toxicokinetic (PBTK) models. Through model simulation, a linear relationship
between the concentration of a substance in the body and the amount of exposure
can be obtained. Based on this relationship, the oral-equivalent external dose of
chemical can be estimated with internal concentration data of exposure biomarkers
(Andersen, 2003; Yoon et al., 2022). In this study, the correlation between urinary
levels of the biomarkers and estimated daily intake was defined as exposure-

concentration relationship (ECR).

To examine whether this correlation is suitable for short half-life chemicals,
temporal variation should be considered. For example, biomarker concentration in
matrix varies greatly when the elimination half-life is short, and exposures are not
frequent (Aylward et al., 2014). The elimination half-lives explain the terminal
exponential decay of a chemical in biological samples. These inter- and intra-
individual variability of concentrations in urine samples for short term chemicals
have been discussed in relevant studies (Aylward et al., 2017; Aylward et al., 2012).
However, few studies have reported the uncertainty of reverse dosimetry methods
using biological concentrations (Brown et al., 2015; Pleil et al., 2007; Ring et al.,

2017; Spaan et al., 2010; Tan et al., 2012).

While the variability of biological samples can only be characterized and is
not reducible by further experiment, characterization of uncertainty regarding default
assumptions can help reduce uncertainty in risk assessment (Asante-Duah, 2002;
NRC, 2009). Therefore, TK model was regarded as a golden standard to evaluate

conventional reverse dosimetry using Fy. in this study. Then, additional sources of

2



uncertainty related to model itself, and model parameters based on exposure interval

and elimination half-life were reviewed.

Firstly, the differences between dose reconstruction results estimated by the
ECR based method and the F.. based method were discussed using the representative
biomonitoring data of specific environmental chemicals with short term half-life.
Then, the intake doses from TK simulation were examined to characterize the degree
of variation due to different combinations of exposure intervals and elimination half-
lives. Here, model simulations were performed with deterministic values for
variables such as volume of distribution and daily urine excretion volume based on
representative characteristics of the population (Jang et al., 2014; Valentin, 2002;

Yoon et al., 2020).

This study aimed to identify the sources of uncertainty in risk assessment
for chemicals with short half-lives by comparing two conventional approaches and
showing the impact of exposure characteristics. These results will enable better
interpretation of biomonitoring data and related exposure assessment of

environmental chemicals.



2. Methods

2.1. Dose reconstruction using TK model

2.1.1. Simple TK model structures and simulation

Simple toxicokinetic (TK) models of the substance were constructed to simulate
multiple dosing in oral ingestion route (Figure 2). Based on each model structure, it
was assumed that the rate of absorption (k.) from the gastrointestinal (GI) tract and
the rate of elimination (k.) via the urinary void can be explained as first-order
kinetics. Urinary excretion data was resolved into various exponential components

by the method of residuals (Boroujerdi, 2001; Gibaldi and Perrier, 1982).

The one-compartment model was employed to illustrate the urinary
concentration versus time curve by the biexponential equation, assuming that k, is
greater than k. (Equation 1). Furthermore, the following equation was used to resolve
the toxicokinetic characteristics of a two-compartment model, where o and [ are the
apparent first-order fast and slow disposition rate constants, respectively. A, B, C are

coefficients that correspond to the zero-time intercepts of each phase (Equation 2).

dA, Dose xk,

_ % (e—ket _ g=kat :
dt ko — k) (e e ) Equation 1

daA, _ , , .

WzAxe‘“t+Bxe‘f“+Cxe"‘at Equation 2



The daily average concentration of chemicals in urine sample was
calculated using Equation 3, where tq.r and tqop are the start and stop time during the
exposure period. The physiological variables of age group, body weight, and daily
urinary excretion rate (Vas), for children (7-12 yrs), adolescents (13-18 yrs) and
adults (19-64 yrs) were uniformly set to derive an exposure-concentration
relationship (ECR) as shown in Table S1. Model simulations were performed using
Berkeley Madonna version 8.3.18 (University of California at Berkeley, USA).
Differential equations were used to describe the model and were solved using the
fixed step size integration algorithm, and the fourth-order Runge-Kutta (RK4)

method available in the program.

[P (g * Ap)dt

Lstart

Equation 3

Curine =
urine (tstop - tstart)

24 X V24
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Figure 1. Simple (a) 1-compartment and (b) 2-compartment models for oral
ingestion route used in this study (modified from Aylward et al., 2012).

Abbreviations: GI tract — gastrointestinal tract; Agi—amount of substance in GI tract;
k. — absorption rate constant; Ac — amount of substance in central compartment
(blood); ki» — elimination rate constant from central compartment to peripheral
compartment ; ko; — elimination rate constant from peripheral compartment to central
compartment; ke — elimination rate constant from central compartment (blood) to

bladder (urinary excretion); A, — amount of substance in bladder.



2.1.2. Model optimization for environmental chemicals

Bisphenol S (BPS) and Bis(2-ethylhexyl phthalate) (DEHP) were selected as model
chemicals to compare reverse dosimetry methods of short-lived environmental
chemicals, which have human toxicokinetic (TK) profiles (Koch et al., 2004; Koch
et al., 2005; Oh et al., 2018), and average urinary excretion fractions (F..) as shown
in Table 1. The simple compartment models from Figure 2 were fitted to the urinary
data, where each parameter was optimized using the concentration of the parent
compound and its metabolites using Berkeley Madonna program. Oral
bioavailability for both BPS and DEHP was set at unity, assuming that 100% of an
administered dose reached the systemic circulation. Compartment models for BPS
were compared using Akaike’s Information Criteria (AIC) from the log-likelihood

ratio between models to elucidate a best-fit model (Kim et al., 2009).



Table 1. Toxicokinetic studies in humans for model development

Chemicals Dose regimen Matrix References
Bisphenol S Singe oral dose at 8.75 pg/kg-bw Plasma; urine Ohetal. (2018)
DEHP Singe oral dose at 48.5 mg Plasma; urine Koch et al. (2004); Koch et al. (2005)




2.2. Dose reconstruction using urinary excretion fractions

To calculate the estimated daily intake (EDI) using urinary excretion fraction (Fu.),
Equation 4 was applied using average values from Table 3 (Koch et al., 2007). Body
weight (BW), and daily urinary excretion rate (V24) values used for each population
are listed in Table S1. Also, the molar concentration of the analyte (UE) and
molecular weight of the parent compound (MW) from Table 2 were used to estimate
the chemical intake dose. Biomonitoring data of urinary BPS and metabolites of
DEHP was taken from the Korean National Environmental Health Survey (KoNEHS)

Cycle 3 (Ministry of Environment, National Institute of Environmental Research).

UE (umole/day) X V,4(L/day)
Fue X BW (kg)

EDI =

X MW(g/mole) Equation 4



Table 2. The fraction of urinary excretion fraction (F.¢) of selected analytes

Chemicals Analytes Molecular weight® Aver_age Fue References
(g/mol) (unitless)
Bisphenol S Total BPS 250.28 0.82 Oh et al. (2018)
MEHHP 294.34 0.25
DEHP MEOHP 292.33 0.15 Koch et al. (2004); Koch et al. (2005)
MECPP 278.09 0.22
3 Deuterium labelled chemicals were used in the controlled exposure experiments.

Abbreviations: MEHHP — Mono(2-ethyl-5-hydroxyhexyl) phthalate, MEOHP — Mono(2-ethyl-5-oxohexyl) phthalate, MECPP — Mono(2-ethyI-
5-carboxypentyl) phthalate
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2.3. TK model simulation with varying exposure related

parameters

At the individual level, reverse dosimetry requires interpretation of biomonitoring
data, including the elimination half-life (HL) and exposure routes (Clewell et al.,
2008). For non-persistent chemicals, terminal plasma half-lives are on the order of
hours. Exposure characteristics simulated by the TK model in this study are shown
in Table 3. These characteristics depict several chemicals from national
biomonitoring surveys, such as propyl paraben with HL of 2.9 hours (Shin et al.,
2019), Bisphenol S (BPS) with HL of 6.8 hours (Oh et al., 2018), Bis(2-ethylhexyl
phthalate (DEHP) with HL of 2-10 hours (Koch et al., 2004), and triclosan with HL

of 21 hours (Sandborgh-Englund et al., 2006).

To investigate the differences in dose estimates due to exposure frequency,
the exposure intervals (t) were set accordingly to the total exposure period of 5 days.
The absorption rate constant (k.) was set to a uniform value of 0.8 based on the
distribution observed in drugs and other chemicals (Poulin et al., 2011; Wambaugh
et al., 2018). The elimination rate constant (k.) was estimated by dividing 0.693 by

the elimination half-life.

11



Table 3. Exposure characteristics simulated by TK model in this study

Case HL (hours) 7/HL (unitless)
A 2 05-24
B 5 0.2-9.6
C 10 01-24
D 20 01-2

Abbreviations: HL — elimination half-life; T — exposure interval

12



3. Results and discussion

3.1. Comparison of estimated daily intake by reverse

dosimetry methods

For BPS, the toxicokinetic profile of the parent compound was fitted to urinary
excretion data as shown in Figure S2. The dose estimates from the simple
mathematical equation with the urinary excretion fraction (F..) of BPS were similar
to those from TK models with continuous exposure scenarios. The overall daily
intake for the 95th percentile population was highest in adolescents followed by
children and adults, whereas mean exposure to BPS was highest in adolescents, then

adults and children.

Next, the oral equivalent dose calculated with F,. overestimated the amount
calculated using the TK model for an 8-hour interval of exposure by approximately
1.5 to 3-fold. The range of daily intake simulated with 8-hour interval exposure in
the 1-compartment TK model was as follows: 0.21-4.59 ng/kg-bw/day for male
children, 0.11-4.04 ng/kg-bw/day for female children, 3.50-8.79 ng/kg-bw/day for
male adolescents, 0.32-12.11 ng/kg-bw/day for female adolescents, 0.23-2.96 ng/kg-

bw/day for male adults, and 0.21-2.57 ng/kg-bw/day for female adults. (Table 4).

Although the 1-compartment TK model showed a lower Akaike
information criteria (AIC) value due to the smaller number of parameters, the 2-

compartment TK model showed a lower log-likelihood function (Table 5).
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Table 4. Comparison of estimated BPS exposure calculated by TK model simulation and Fy. (Biomonitoring data was taken from KoNEHS 111,

2015-2017.)
Urinary Estimated BPS exposure (ng/kg-bw/day)
concentration of By 1-compartment model By 2-compartment model

Population total BPS By Fue Continuous 8-hour interval Continuous 8-hour interval

(ng/mL) exposure exposure exposure exposure
P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95
Child Male 0.027 0.58 0.57 12.38 0.56 12.14 0.21 459 1.16 24.97 0.37 7.92
reren Female 0.012 0.45 0.29 10.88 0.29 10.67 0.11 4.04 0.59 21.9 0.19 6.96
Adol Male 0.387 0.97 9.44 23.6 9.26 23.2 3.50 8.78 6.48 16.2 2.06 5.15
olescents Female 0.032 1.23 0.86 32.62 0.84 31.99 0.32 12.11 0.59 22.4 0.19 7.10
Male 0.022 0.29 061 7.97 0.60 7.82 0.23 2.96 0.23 3.08 0.07 0.98
Adults Female 0.023 0.28 0.56 6.93 0.55 6.79 0.21 2.57 0.38 4.75 0.12 1.51

14



Table 5. Model comparison statistics

Chemical Model structure AlC (-)2LL No. of parameter
1-compartment -7.2 -11.16 2
BPS
2-compartment -1.2 -11.20 5

Abbreviations: AIC — Akaike Information Criteria, (-2)LL — - 2Log-likelihood function

15



For DEHP, the toxicokinetic profile of each metabolite was fitted to urinary
excretion data as shown in Figure S3. The dose estimates from the simple
mathematical equation with respective urinary excretion fractions (Fu) of
metabolites were similar to those from TK models with continuous exposure
scenarios. The daily intake was highest when calculated with the urinary biomarker
MECPP, but the overall tendency was the same for all metabolites, where the 95th

percentile exposure was highest in children and adults, followed by adolescents.

The oral equivalent dose calculated with F,. overestimated the amount
calculated using the TK model for an 8-hour interval exposure by approximately 2
to 7-fold. The oral equivalent exposure based on MEHHP concentration using one
compartment TK model for 8-hour interval exposure was in following ranges: 1.30-
3.69 ng/kg-bw/day for male children, 1.40-4.09 ng/kg-bw/day for female children,
0.77-2.62 ng/kg-bw/day for male adolescents, 0.68-2.82 ng/kg-bw/day for female
adolescents, 0.81-3.64 ng/kg-bw/day for male adults, and 0.21-2.57 ng/kg-bw/day.

(Table 6).

Also, the overall daily intake was calculated with the sum of molar
concentrations for MEHHP, MEOHP, MECPP, and the sum of F,.. The estimated
results were higher than those calculated with MEHHP and MEOHP, but lower than

those calculated with MECPP (Table 7).
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Table 6. Comparison of estimated DEHP exposure calculated by TK model simulation and respective F.. (Biomonitoring data was taken from

KoNEHS 111, 2015-2017.)

Estimated DEHP exposure (ng/kg-bw/day)

Urinary

; By 1-compartment model By 2-compartment model
concentration of Shour a-hour
Analytes Population DEHP metabolites By Fue Continuous . Continuous .
interval interval
(ng/mL) exposure exposure
exposure exposure
P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95
Children Male 30.43 86.02 2.88 8.13 2.85 8.05 1.30 3.69 2.72 7.69 1.18 3.34
Female 28.58 83.496 3.09 9.02 3.06 8.93 1.40 4.09 2.92 8.53 1.27 3.70
MEHHP  Adolescents Male 15.77 53.5 170 5.78 1.69 5.72 0.77 2.62 1.61 5.46 0.70 2.37
Female 13.86 57.58 1.63 6.79 1.48 6.16 0.68 2.82 1.55 6.42 0.67 2.79
Adults Male 14.51 65.06 1.79 8.03 1.77 7.95 0.81 3.64 1.70 7.60 0.74 3.30
Female 12.75 59.82 1.38 6.46 1.36 6.40 0.62 2.93 1.30 6.11 0.57 2.65
Children Male 19.68 68.49 3.11 1081 311 1083 1.6 5.09 292 1015 140 4.86
Female 19.09 63.88 3.44 1152 3.45 11.54 1.62 5.43 3.23 10.81 1.55 5.18
Male 10.34 35.48 1.86 6.40 1.87 6.41 0.88 3.01 1.75 6.00 0.84 2.88
MEOHP  Adolescents
Female 9.99 40.78 1.97 8.02 1.81 7.37 0.85 3.46 1.85 7.54 0.88 3.61
Adult Male 10.96 50.54 2.26 10.42 226 1044 1.06 491 2.12 9.77 1.02 4.68
S Female 1033 51.72 186 933 187 935 088 439 175 875 084 419

17



(Continued.)

Urinary
concentration of

Estimated DEHP exposure (ng/kg-bw/day)

By 1-compartment model

By 2-compartment model

Analytes Population DEHP metabolites By Fue Continuous .8-hour Continuous .8-h0ur
interval interval
(ng/mL) exposure exposure
exposure exposure
P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95
Children Male 44.09 144.1 5.01 16.69 487 16.21 1.99 6.64 3,50 11.45 0.67 2.20
Female 43.1 1435 449 14.67 436 14.25 1.79 5.84 3.91 13.04 0.75 2.51
Male 31.28 97.24 3.64 11.31 3.563 10.98 1.45 4.50 2.84 8.83 0.55 1.70
MECPP  Adolescents
Female 26.57 84.07 3.37 10.67 3.00 9.50 1.23 3.89 2.63 8.33 0.51 1.60
Adults Male 22.46 126.8 2.99 16.85 290 16.37 1.19 6.70 233 13.15 0.45 2.53
Female 20.84 138.6 242 16.12 235 15.65 0.96 6.41 1.89 1259 0.36 2.42

18



Table 7. Comparison of estimated DEHP exposure calculated by TK model simulation and sum of respective Fye (Biomonitoring data was taken

from KoNEHS 111, 2015-2017.)

Molar Estimated DEHP exposure (pg/kg-bw/day)
concentration
. By 1-compartment model By 2-compartment model
. sum of urinary
Population metabolites @ By Fue Continuous 8-hour interval Continuous 8-hour interval
(nmol/mL) exposure exposure exposure exposure
P50 P95 P50 P95 P50 P95 P50 P95 P50 P95 P50 P95
Children Male 0.315 0.998 351 11.11 3.51 11.12 151 4.80 3.32 10.51 1.09 3.44
Female  0.304 0.972 3.86 12.36 3.86 12.37 1.67 5.35 3.66 11.71 121 3.89
Adolescents Male 0.191 0.621 2.43 7.90 243 7.90 1.05 341 2.30 7.49 0.76 2.49
Female  0.168 0.610 2.33 8.47 2.33 8.47 1.01 3.66 2.21 8.03 0.73 2.65
Adults Male 0.160 0.809 2.33 11.75 2.33 11.75 1.01 5.09 2.20 11.08 0.73 3.68
Female  0.147 0.833 1.87 10.60 1.87 10.60 0.81 4.58 1.77 10.04 0.59 3.33

4 Molar concentration sum of MEHHP, MEOHP, and MECPP.
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To evaluate the method using F.. values, the results were compared with
those from the TK model simulation. Conventional method using F.. has limitation
that the values are based on a controlled study where all participants are adults, and
there are not many human exposure data. Urinary excretion data of total BPS, which
measured the parent compound as a single exposure biomarker, resulted in different
F.. between genders (Oh et al., 2018). Also, the estimates of DEHP exposure using
F\. varied depending on which urinary metabolite was used, due to the different
levels of metabolism and conjugation among substances (EFSA Panel on Food
Contact Materials et al., 2019; Koch et al., 2003; Wittassek et al., 2011). Further
research on the exposure assessment method using F,. can be investigated to lower

the uncertainty level of the result.

F.c values of urinary biomarkers are estimated based on the assumption that
the human body consists of a single compartment and that exposure occurs
constantly. Therefore, BPS and DEHP intake by continuous oral exposure concurs
with the intake using F,., while the intake by ingestion every 8 hours was estimated
to be lower. In this study, TK models were optimized with the TK profiles from
controlled studies that reported F,. values. Both methods used same values of
bodyweight, and daily urinary excretion rate for each population when back

calculating.

However, there are limitations in a single compartment TK model since the
time courses of chemical concentration were only explained as a single first-order
decay. For many chemicals, elimination can occur through a biphasic or multiphasic

process which results in more than one half-life (HL), shorter initial HL followed by

20



a longer terminal HL (Sayre et al., 2020; Tan et al., 2018). It can be suggested that
the difference in dose estimates between TK models is determined by the parameters

set in TK models, as they elaborately describe the ADME of each chemical.

21



3.2. Simple TK model simulation with varying exposure

events

To evaluate the impact of exposure events on the dose estimation, a single
compartment TK model was simulated for exposure intervals (1) of 1, 4, 8, 12, 24,
36, and 48 hours. A total exposure period of 120 hours was simulated to reach a
pseudo steady state. Multiple dosing was simulated for each case where the
elimination half-life (HL) of chemicals is 2, 5, 10, or 20 hours, and the exposure-
biomarker concentration relationship (ECR) was derived accordingly. To compare
the simulation results of different age groups, physiological variables were fixed: the
values for children was 30 kg, 0.7 L/day, 55 kg, 1.2 L/day for adolescents, and 70

kg, 1.6 L/day for adults, respectively.

ECR is the linear equation between intake dose and the biomarker
concentration derived from TK model simulation of multiple dosing. Smaller ECR
slope indicates a larger intake dose for the same urinary concentration of the
biomarker. As ECR slope increases when exposure frequency decreases, the relative
changes in ECR slope were calculated to quantify the differences between each
exposure event. There were no significant differences in overall results for each age

group, and the simulation results for adults were presented in this study (Figure 3).
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Figure 2. Relative changes in ECR slope of substances according to each exposure

event simulated for all population.
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The importance of elimination half-life (HL) and exposure interval (1) to
explain the variability of biomarker concentration was first introduced in the study
regarding population exposure assessment (Aylward et al., 2017; Aylward et al.,
2012). In this study, the tendency of the relationship between exposure and urinary
concentration (ECR) was derived from the simulation of four different exposure
characteristics. The application of biomonitoring data in exposure assessment
requires the assumption that the rate of absorption and excretion from the body
reaches equilibrium with repeated exposure. From a pharmacokinetic point of view,
this assumption can be generally achieved when the biomarker level at the time point
reaches 95% of the level at steady state (Boroujerdi, 2001; Gibaldi and Perrier, 1982).
This assumption was achieved in this study for oral exposure when the exposure
period was approximately four to five times the HL of the substance in the body. The
total amount of dose for 5 days of total exposure period was set uniformly so that

external dose was distributed proportionally to 1.

The relative changes in ECR slope were larger as HL increased, which can
be explained by the accumulation of substances in the body (Rappaport and Kupper,
2008). The initial value of ECR slope was largest when the HL was 20 hours. Also,
the relative changes increased drastically by 10-20% when the exposure interval
exceeded 24 hours (Figure 3). Aylward et al. (2012) proposed to estimate daily intake
with TK model simulation by the function of HL relative to t, suggest the degree of
over- or under-estimation in predicted spot urine concentrations from underlying
dose distribution. The present study focused on demonstrating how dose estimates

can vary between each 1 for chemicals with HL less than a day.
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However, the sources of variability in the TK model should be discussed as
well. Intra-individual and inter-individual variation in elimination half-life and
physiological factors, including daily urinary excretion volume and body weight,
were not considered for both methods in this study. It has been reported that variation
of elimination half-life is predominant between individual, and is relatively lower
for chemicals with short half-lives less than a week (Spaan et al., 2010). Also, urinary
volume can change due to different hydration status, gender, and age, which result
in further inter- and intra-individual variation (Van Haarst et al., 2004). These inter-
and intra-individual variability can be simulated using Monte Carlo analysis for TK
parameters (Clewell et al., 2008). In addition, spot urine concentration data used in
back calculations only captures a single time point without any information on the
time of last exposure. The complementary information on the time of sample
collection can be simulated with the simple compartment model, which will help

reduce uncertainty (Aylward et al., 2014; Aylward et al., 2017; Brown et al., 2015).

Nevertheless, TK model simulation can explain different exposure
scenarios that can be used to elaborate on the external exposure of biomonitoring
data. To overcome the knowledge gap, the TK model should be performed with
sufficient information on the possible exposure frequency of the chemical of interest

collected from questionnaires (Andersen, 2003; Tan et al., 2018).
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4. Conclusions

In conclusion, the conventional reverse dosimetry method using F.. was evaluated
by comparing the results from the TK model simulation based on the authentic
biomonitoring data of BPS and DEHP. Also, the impact of exposure events on the
uncertainties that may occur in exposure assessment based on urinary biomarkers
was characterized by simulating various combinations of exposure intervals and
elimination half-lives. The simulation results presented here suggest that the back
calculation of chemical intake should consider elimination half-life and possible
exposure intervals. Furthermore, the simple reverse dosimetry approach with TK
modeling used in this study can be applied for various environmental chemicals

regarding hypotheses on compartment model structures.
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6. Supplementary material

Uncertainty on conventional methods
for reverse dosimetry from urinary
biomarkers of environmental
chemicals

Table S1. Physiological variables of representative age groups used in this study

Figure S1. Model fitting for total BPS in urine using predicted (lines) and observed

(scatters) cumulative excreted amount (in nmol)

Figure S2. Model fitting for urinary DEHP metabolites using predicted (lines) and

observed (scatters) cumulative excreted amount (in pmol)
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Table S1. Physiological variables of representative age groups used in this study

. Body weight Daily urinary excretion
Population References
i (kg) (L/day)

] Male 40 0.7 Valentin (2002); Yoon et al. (2020)

Children ]
Female 35 0.7 Valentin (2002); Yoon et al. (2020)
Male 60 1.2 Valentin (2002); Yoon et al. (2020)

Adolescents )
Female 55 1.2 Jang et al. (2014); Valentin (2002)
Adult Male 70 1.6 Jang et al. (2014); Valentin (2002)
ults

Female 60 1.2 Jang et al. (2014); Valentin (2002)
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Figure S1. Model fitting for total BPS in urine using predicted (lines) and observed
(scatters) cumulative excreted amount (in nmol). Dashed and solid lines are from 1-
compartment and 2-compartment model prediction, respectively. Measured data is
taken from Oh et al., 2018 (N = 7). Each point and error bar represent mean and

standard deviation of participants.
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Figure S2. Model fitting for urinary DEHP metabolites using predicted (lines) and
observed (scatters) cumulative excreted amount (in umol). Dashed and solid lines
lines are from 1-compartment and 2-compartment model prediction, respectively.

Measured data is taken from Koch et al., 2004 and Koch et al., 2005 (N = 1).
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