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Abstract

Myungho Choi

Department of Mathematics Education

The Graduate School

Seoul National University

In this thesis, we study m-step competition graphs, (1, 2)-step competition graphs,

phylogeny graphs, and competition-common enemy graphs (CCE graphs), which

are primary variants of competition graphs. Cohen [11] introduced the notion of

competition graph while studying predator-prey concepts in ecological food webs.

An ecosystem is a biological community of interacting species and their physical

environment. For each species in an ecosystem, there can be m conditions of the good

environment by regarding lower and upper bounds on numerous dimensions such

as soil, climate, temperature, etc, which may be represented by an m-dimensional

rectangle, so-called an ecological niche. An elemental ecological truth is that two

species compete if and only if their ecological niches overlap. Biologists often describe

competitive relations among species cohabiting in a community by a food web that is

a digraph whose vertices are the species and an arc goes from a predator to a prey. In

this context, Cohen [11] defined the competition graph of a digraph as follows. The

competition graph C(D) of a digraph D is defined to be a simple graph whose vertex

set is the same as V (D) and which has an edge joining two distinct vertices u and v

if and only if there are arcs (u,w) and (v, w) for some vertex w in D. Since Cohen

introduced this definition, its variants such as m-step competition graphs, (i, j)-step

competition graphs, phylogeny graphs, CCE graphs, p-competition graphs, and niche
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graphs have been introduced and studied.

As part of these studies, we show that the connected triangle-free m-step compe-

tition graph on n vertices is a tree and completely characterize the digraphs of order

n whose m-step competition graphs are star graphs for positive integers 2 ≤ m < n.

We completely identify (1, 2)-step competition graphs C1,2(D) of orientations D

of a complete k-partite graph for some k ≥ 3 when each partite set of D forms

a clique in C1,2(D). In addition, we show that the diameter of each component of

C1,2(D) is at most three and provide a sharp upper bound on the domination number

of C1,2(D) and give a sufficient condition for C1,2(D) being an interval graph.

On the other hand, we study on phylogeny graphs and CCE graphs of degree-

bounded acyclic digraphs. An acyclic digraph in which every vertex has indegree at

most i and outdegree at most j is called an (i, j) digraph for some positive integers

i and j. If each vertex of a (not necessarily acyclic) digraph D has indegree at most

i and outdegree at most j, then D is called an 〈i, j〉 digraph. We give a sufficient

condition on the size of hole of an underlying graph of an (i, 2) digraph D for the

phylogeny graph of D being a chordal graph where D is an (i, 2) digraph. Moreover,

we go further to completely characterize phylogeny graphs of (i, j) digraphs by listing

the forbidden induced subgraphs.

We completely identify the graphs with the least components among the CCE

graphs of (2, 2) digraphs containing at most one cycle and exactly two isolated ver-

tices, and their digraphs. Finally, we gives a sufficient condition for CCE graphs

being interval graphs.

Key words: competition graphs, m-step competition graphs, (1, 2)-step competition

graphs, phylogeny graphs, competition-common enemy graph

Student Number: 2020–36139
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Chapter 1

Introduction

1.1 Graph theory terminology and basic concepts

We introduce some basic notions in graph theory, which shall be commonly used in

this thesis. For undefined terms, readers may refer to [4].

A graph G is defined as an ordered pair (V,E) where V is a set and E is a family

of unordered pairs of elements in V . An element of V and an element of E are called

a vertex and an edge of G, respectively. If e = {u, v} is an edge, then we simply write

it by uv for convenience when there is no confusion. The set of vertices and the set of

edges of a graph G are called the vertex set and the edge set of G, respectively, and

denoted by V (G) and E(G), respectively. Any graph with just one vertex is referred

to as trivial. All other graphs are nontrivial.

Let G be a graph with an edge e = {u, v} of G. Then we say that e connects (or

joins) u and v, u and v are the end vertices of e, and u and v are adjacent in G. In

addition, each of u and v is said to be incident with e, and vice versa. If u = v, then e

is called a loop. If u 6= v and there is an edge distinct from e connecting u and v, then

{u, v} is called a multiple edge (or parallel edge). A graph is simple if it has no loops

or parallel edges. The number of vertices and edges in G are called the order and

size of G, respectively. Given a simple graph G, the complement G of G is defined

to be a simple graph obtained by reversing the adjacency of G, i.e., V (G) = V (G)

and E(G) = {uv | uv /∈ E(G)}. The adjacency matrix of G is a square matrix A of
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size n× n such that its element Aij is one when there is an edge from a vertex vi to

vertex vj, and zero when there is no edge. The diagonal elements of the matrix are

all zero, since edges from a vertex to itself (loops) are not allowed in simple graphs.

Let G be a graph and v be a vertex of G. A vertex of G adjacent to v is called a

neighbor of v. The set of neighbors of v is called the neighborhood of v and denoted by

NG(v). The degree of v is the number of edges incident to v and denoted by dG(v) (or

degG(v)). A vertex of degree 0 is called an isolated vertex. If no confusion is likely, we

sometimes omit the letter G from graph-theoretic symbols and write, for example,

N(v), d(v), and deg(v) instead of NG(v), dG(v), and degG(v), respectively.

A walk in a graph G is a sequence W := v0, e1, v1, . . . , vk−1, ek, vk whose terms

are alternately vertices and edges of G (not necessarily distinct) such that vi−1 and

vi are the end vertices of ei for each 1 ≤ i ≤ k. We refer to W as a v0vk-walk. W

is closed if v0 = vk. In a simple graph, W is commonly specified by the sequence

v0, v1, . . . , vk of its vertices. The length `(W ) of a walk W is the number of edges

belonging to it. The vertices v0 and vk are called the end vertices of W , v0 being

its initial vertex and vk its terminal vertex, the vertices v1, . . . , vk−1 are its internal

vertices. If there exists a walk starting from a vertex v to a vertex w, then we say

that v and w are connected by a walk. If any two vertices are connected by a walk

in a graph G, then we say G is connected. Otherwise, G is said to be disconnected.

A maximally connected subgraph of G is called a component of G.

If the vertices in a walk are distinct, then the walk is called a path. A trail is a

walk without repeated edges. A closed trail whose initial vertex and internal vertices

are distinct is called a cycle. We denote a path on n vertices by Pn and a cycle on

n vertices by Cn. The length of a path or a cycle is the number of its edges. A cycle

of length 3 is called a triangle. A complete graph is a simple graph in which any two

vertices are adjacent, an empty graph one which no two vertices are adjacent (that

is, one whose edge set is empty). We denote a complete graph of order n by Kn.

A digraph (or directed graph) D is defined as an ordered pair (V (D), A(D)) where

V (D) is a set and A(D) is a family of ordered pairs of elements in V (D). An element

of V (D) and an element of A(D) are called a vertex and an arc (or directed edge)

of D, respectively. The number of vertices in D is called the order of D. A digraph
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(resp. graph) is finite if both its vertex set and arc set (resp. edge set) are finite. We

can associate a graph G on the same vertex set as V (D) simply by replacing each arc

(u, v) with an edge uv. This graph is said to be the underlying graph of D. A digraph

D is called weakly connected if the underlying graph of D is connected and a weak

component of D is a subdigraph of D induced by a component in the underlying

graph of D.

Let D be a digraph with an arc (u, v). Then we say that u and v are the tail and

the head of (u, v), respectively. In addition, u and v are said to be adjacent in D.

For convenience, we often use the notation u → v for “there is an arc (u, v) in D”.

If u = v, then the arc (u, v) is called a loop. If there are at least two arcs with the

same heads and the same tails, then we call them parallel edge. A digraph is simple

if it has no loops or parallel arcs.

Let D be a digraph and v be a vertex of D. We say a vertex w is an out-neighbor

or prey (resp. in-neighbor or predator) of v if (v, w) ∈ A(D) (resp. (w, v) ∈ A(D)).

The set of out-neighbors (resp. in-neighbors) of v is called the out-neighborhood (resp.

in-neighborhood) of v in D and denoted by N+
D (v) (resp. N−D (v)). The outdegree d+D(v)

is the number of arcs outgoing from v and the indegree d−D(v) is the number of arcs

incoming toward v. We call a vertex with outdegree 0 (resp. indegree 0) a sink (resp.

source) of D.

A directed walk in a digraph D is a sequence

W := v0, a1, v1, a2, . . . , vk−1, ak, vk

whose terms are alternately vertices and arcs of D where vi is a vertex for each 0 ≤
i ≤ k and aj is an arc from vj−1 to vj for each 1 ≤ j ≤ k. We refer to W as a directed

(v0, vk)-walk. If D has no multiple arcs, W is abbreviated as v0 → v1 → · · · → vk.

The concepts of directed trails, directed paths, and directed cycles in a digraph are

defined analogously to the trails, paths, cycles in a graph, respectively. If D has no

directed cycle, then D is said to be acyclic.

Two graphs (resp. digraphs) G and H are said to be isomorphic if there exist

bijections θ : V (G) → V (H) and φ : E(G) → E(H) (resp. φ : A(G) → A(H)) such

3



that for every edge e ∈ E(G) (resp. arc a ∈ A(G)), e connects vertices u and v in

G (resp. a = (u, v)) if and only if φ(e) connects vertices θ(u) and θ(v) in H (resp.

φ(a) = (θ(u), θ(v))). If G and H are isomorphic, then we write G ∼= H.

Given a graph G (resp. digraph), we call a graph (resp. digraph) H a subgraph

(resp. subdigraph) of G if V (H) ⊂ V (G), E(H) ⊂ E(G) (resp. A(H) ⊂ A(G)),

and we write H ⊂ G. The subgraph (resp. subdigraph) of G whose vertex set is X

and whose edge set (resp. arc set) consists of all edges (resp. arcs) of G which have

both ends in X is called the subgraph (resp. subdigraph) of G induced by X and is

denoted by G[X]. The subgraph (resp. subdigraph) induced by V (G)−X is denoted

by G−X. For notational convenience, we write G−v instead of G−{v} for a vertex

v in G. An induced subgraph (resp. induced subdigraph) is a graph (resp. digraph)

by some nonempty subset of V (G). We say that G is H-free if no induced subgraph

(resp. subdigrph) of G is isomorphic to H. A vertex subset S of V (G) is called a

clique if the induced subgraph G[S] is complete. A maximal clique of a graph G is a

clique X of vertices of G, such that there is no clique of G that is a proper superset of

X. The size of a maximum clique of a graph G is called a clique number and denoted

by ω(G). We call a cycle of length at least 4 as an induced subgraph of G a hole. A

graph is said to be chordal if it does not contain a hole.

In this thesis, we mainly study finite simple graphs and finite digraphs without

multiple arcs, and the terms ‘graph’ and ‘digraph’ always means ‘finite simple graph’

and ‘finite digraph without multiple arcs’, respectively.

4



Mathematical Notation

N : The set of positive integers
Z : The set of integers

V (G) : The vertex set of a graph (or a digraph) G
E(G) : The edge set of a graph (or a digraph) G
A(D) : The arc set of a graph (or a digraph) G
uv in G : The edge between a vertex u and a vertex v in a graph G

(u, v) in D : The arc from a vertex u and a vertex v in a digraph D
G : The complement a graph G

G[X] : The subgraph of a graph G induced by a vertex subset X
G−X : The subgraph of a graph G induced by V (G)−X
G− v : The subgraph of a graph G induced by V (G)− {v}
NG(v) : The neighborhood of a vertex v in a graph G
dG(v) : The degree of a vertex v in a graph G
N+

D (v) : The out-neighborhood of a vertex v in a digraph D
N−D (v) : The in-neighborhood of a vertex v in a digraph D
Pn : A path of length n
Cn : A cycle of length n
Kn : A comple graph of n vertices
ω(G) : the clique number of a graph G
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1.2 Competition graphs and its variants

1.2.1 A brief background of competition graphs

An ecosystem is a biological community of interacting species and their physical

environment. For each species in an ecosystem, survival is a major issue and there

can be conditions of the good environment by regarding lower and upper bounds on

numerous dimensions such as soil, climate, temperature, etc. If m different factors

of an environment are measured, then m dimensions are needed to describe the

environment. Moreover, if the range of each factor is determined, then there is a

corresponding region R in m-dimensional Euclidean space such that each point in R

lies within the bounds and R is a m-dimensional rectangle with sides parallel to the

coordinate axes. Danzer and Grünbaum [16] call such a region a box. In addition,

this region is frequently called the species’ ecological niche and the m-dimensional

Euclidean space is called ecological phase space. An elemental ecological truth is that

two species compete if and only if their ecological niches overlap. In this context,

Cohen [11] suggested the following question: what number of dimensions is sufficient

to describe an ecological phase space only when considering competitive relations

among species living together in a biological community? [50]

Biologists often describe competitive relations among species cohabiting in a com-

munity by a food web that is a digraph whose vertices are the species and an arc

goes from a predator to a prey. Given a food web, we say that two species u and

v compete if and only if they have some common prey. To be more precise about

competitive relations, Cohen [11] introduced the competition graph of a food web as

follows:

Definition 1.1. The competition graph C(D) of a digraph D is a simple graph,

which has the same vertex set as D and has an edge between two distinct vertices u

and v if and only if the arcs (u, x) and (v, x) are in D for some vertex x ∈ V (D).

Ecological applications of competition graphs can be found in [11, 12]. For a

comprehensive introduction to competition graphs, see [17, 42].
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Frog

Owl

Hawk

Snake

Rabbit Grasshopper

Food web

Vole
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Owl

Hawk

Snake

Rabbit Grasshopper

Competition Graph

Figure 1.1: A food web and its corresponding digraph and competition graph.

Figure 1.1 shows a simple food web and its competition graph. For example, the

Hawk and the Owl compete because they both prey on the Frog. The competition

graph of a food web is useful in understanding its structure. Given a graph G, we

would like to find a number k and an assignment to each vertex v of a box B(v) in

Euclidean k-space such that

uv ∈ E(G) ⇔ B(u) ∩B(v) 6= ∅. (1.1)

Following Roberts [48], we call the smallest k satisfying the property in (1.1) the

boxicity b(G) of G. In addition, he proved that the boxicity of any graph on n vertices
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cannot be greater than bn/2c. Cozzens [15] showed that computing the boxicity of a

graph is an nondeterministic polynomial-hard problem (NP-hard problem for short).

Later, this was improved by Yannakakis [60], and finally by Kratochvil [36] who

showed that deciding whether the boxicity of a graph is at most 2 itself is an NP-

complete problem.

Graphs with boxicity at most 1 are called interval graphs. There have been a large

number of applications of interval graphs in various fields such as genetics, biology,

computer science, and scheduling theory. For those applications, the readers may

refer to the book [24] and the paper [49].

Interval graphs admit the elegant structure characterizations, for example, see

[22,23]. One of the significant characterizations was introduced by Lekkerkerker and

Boland [40]. To state their result, we need a notion of asteroidal triple. Given a graph

G, an asteroidal triple (AT for short) is a set of three vertices such that no two of

the three vertices are adjacent and, for each pair of these vertices, there is a path in

G that does not contain any vertex of the neighborhood of the third.

Theorem 1.2 ([40]). A graph is an interval graph if and only if it is chordal and

AT-free.

As we have seen previously, interval graphs are related to competition graphs of

food webs. The remarkable empirical observation of Cohen [11–13] is that every food

web gives rise to a competition graph which is an interval graph, which led to a great

deal of research in ecology to determine just why this might be the case. Mathe-

matically, it also has led to a great deal of research on the structure of competition

graphs and on the relation between the structure of digraphs and their corresponding

competition graphs.

1.2.2 Variants of competition graphs

Many variations of ordinary competition graph have been introduced and studied

by many researchers. Analogously to competition graph, the common enemy graph

(resource graph) was introduced by Lundgen and Maybee [42].

8



Definition 1.3. The common enemy graph CE(D) of an acyclic digraph D is the

graph which has the same vertex set as D and an edge between two distinct vertices

u and v if and only if there exists a vertex w in D such that (w, u) and (w, v) are

arcs in D.

Scott [56] introduced the competition-common enemy graphs as natural extension

of competition and common enemy graphs.

Definition 1.4. The competition-common enemy graph CCE(D) of an acyclic di-

graph D is the graph which has the same vertex set as D and an edge between two

distinct vertices u and v if and only if there exist vertices w and x such that (u,w),

(v, w), (x, u), and (x, v) are arcs of D.

Since the competition-common enemy graphs of an acyclic digraph D is the in-

tersection of its competition graph and its common enemy graph, it is natural to also

consider the union of them, which is a niche graph by Cable [5].

Definition 1.5. The niche graph N(D) of an acyclic digraph D is the graph which

has the same vertex set as D and an edge between two distinct vertices u and

v if and only if there exist vertices w or x such that {(u,w), (v, w)} ⊆ A(D) or

{(x, u), (x, v)} ⊆ A(D).

Kim et al. [35] introduced the notion of p-competition graph by changing the

condition of the number of the common out-neighbors as follows:

Definition 1.6. Given a positive integer p, the p-competition graph Cp(D) of an

acyclic digraph D (loops allowed) is the graph which has the same vertex set as D

and an edge between two distinct vertices u and v if and only if u and v share p

out-neighbors in D.

As another variant related to underlying graph, the notion of phylogeny graphs

was introduced by Roberts and Sheng [51].

Definition 1.7. The phylogeny graph P (D) of an acyclic digraph D, is the graph

which has the same vertex set as D and has an edge between two distinct vertices u

9



and v if and only if there exists an arc from u to v or an arc from v to u or a common

out-neighbor of u and v in D

In studying competition graph and its variants, we frequently assume that a

digraph is acyclic. However, the assumption is no longer necessary in more recent

study of the variants of competition graphs. Cho et al. [7] introduced the notion of

m-step competition graph as follows:

Definition 1.8. Given a positive integer m, the m-step competition graph Cm(D)

of a digraph D is the graph which has the same vertex set as D and has an edge

between two distinct vertices u and v if and only if there exist a directed (u,w)-walk

of length m and a directed (v, w)-walk of length m for some w in V (D).

Extending the concept of m-step competition graphs, Factor et al. [20] introduced

the notion of (i, j)-step competition graph.

Definition 1.9. Given positive integers i and j, the (i, j)-step competition graph

Ci,j(D) ofD, is the graph which has the same vertex set asD and has an edge between

two distinct vertices u and v if and only if (i) dD−v(u,w) ≤ i and dD−u(v, w) ≤ j or

(ii) dD−v(u,w) ≤ j and dD−u(v, w) ≤ i.

See the competition graph and its variants of an acyclic digraph D given in

Figure 1.2 for an illustration.

In the following subsections, we take a look at some results of m-step competition

graph, (1, 2)-step competition graph, CCE graph, and phylogeny graph, which will

be mostly dealt with in the body of this thesis. For further information on variants

of competition graphs, readers may refer to the survey articles by Kim [33] and

Lundgren [42].

1.2.3 m-step competition graphs

Given a digraph D and a positive integer m, we define the m-step digraph Dm of D

as follows: V (Dm) = V (D) and there exists an arc (u, v) in Dm if and only if there

exists a directed walk of length m from a vertex u to a vertex v. A vertex y (resp. x)

10



D C(D) CE(D)

CCE(D) N(D) C2(D)

P (D) C2(D) C1,2(D)

Figure 1.2: The competition graph and its variants of an acyclic digraph D
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is an m-step prey (resp. m-step predator) of a vertex x (resp. y) if and only if there

exists a directed walk from x to y of length m.

A relationship between the m-step competition graph and the ordinary competi-

tion graph was given by Cho et al. [7] as follows:

Theorem 1.10 ([7]). For a digraph D (possibly with loops) and a positive integer

m, Cm(D) = C(Dm).

Since the notion of an m-step competition graph was introduced by Cho et al. [7],

it has been extensively studied. In 2000, Cho et al.[7] posed the following question: For

which values of m and n is Pn an m-step competition graph? In 2005, Helleloid [27]

partially answered the question and study connected triangle-free m-step competition

graphs as follows.

Theorem 1.11 ([27]). For all positive integers m ≥ n, the only connected triangle-

free m-step competition graph on n vertices is the star graph.

In 2010, Kuhl et al. [37] gave a sufficient condition for Cm(D) = Pn. Finally, in

2011, Belmont [3] presented a complete characterization of paths that are m-step

competition graphs as follows.

Theorem 1.12 ([3]). There exists a digraph D such that Cm(D) = Pn if and only

if m | n− 1 or m | n− 2.

The structural properties of m-step competition graphs and the matrix sequence

{Cm(D)}∞m=1 for a digraph D were studied in [7, 8, 19, 28, 43] and [6, 10, 31, 45],

respectively. In addition, there is the relation between m-step competition graphs

and matrix theory. For the two-element Boolean algebra B = {0, 1}, Bn denotes the

set of all n×n matrices over B. Under the Boolean operations (1 + 1 = 1, 0 + 0 = 0,

1 + 0 = 1, 1 × 1 = 1, 0 × 0 = 0, 1 × 0 = 0), matrix addition and multiplication are

still well-defined in Bn. Throughout this thesis, a matrix is Boolean unless otherwise

mentioned. Let D be a digraph with vertex set {v1, v2, . . . , vn}, and A = (aij) be the

(Boolean) adjacency matrix of D such that

aij =

{
1 if there is an arc (vi, vj) in D,

0 otherwise.

12



Theorem 1.13. The adjacency matrix of Cm(D) for a digraph D of order n is the

matrix A∗m obtained from Am(AT )m by replacing each of diagonal element with 0

where A is the adjacency matrix of D.

To see why, we take two distinct vertices u and v of D and suppose that the ith

row and the jth row are the rows corresponding to u and v, respectively. Then

u and v are adjacent in Cm(D)

⇔ u and v have an m-step common prey in D

⇔ inner product of the ith row and the jth row of Am is 1

⇔ the (i, j)-entry of A∗m is 1.

Thus u and v are adjacent in Cm(D) if and only if the (i, j)-entry of A∗m is 1.

Therefore the statements of m-step competition graphs may be restated in terms

of matrices, which describe properties of a matrix and give solutions of a particular

matrix equation, and so on.

1.2.4 (1, 2)-step competition graphs

An orientation of a graph G is a digraph having no directed 2-cycles, no loops, and

no multiple arcs whose underlying graph is G. A tournament is an orientation of a

complete graph.

In 2011, Factor et al. [20] characterized the (1, 2)-step competition graphs of

tournaments and extended some results to the (i, j)-step competition graphs of tour-

naments.

Theorem 1.14 ([20]). A graph G in n ≥ 5 vertices is the (1, 2)-step competition

graph of some strong tournament if and only if G is Kn, Kn−E(P2), or Kn−E(P3).

Theorem 1.15 ([20]). A graph G on n vertices is the (1, 2) step competition graph

of some tournament if and only if G is one of the following graphs:

(i) Kn, where n 6= 2, 3, 4,

(ii) Kn−1 ∪K1, where n > 1,

13



(iii) Kn − E(P3) where n > 2,

(iv) Kn − E(P2) where n 6= 1, 4, or

(v) Kn − E(K3) where n ≥ 3.

Then Zhang and Li [62] and Zhang et al. [61] studied the (1, 2)-step competi-

tion graphs of non-round decomposable pure local tournament and round digraphs,

respectively. Recently, Li et al. [41] studied the (1, 2)-step competition graph of a hy-

pertournament. On the other hand, Kim et al. [34] studied the competition graphs of

orientations of complete bipartite graphs. In 2017, Choi et al. [9] studied the struc-

ture of (1, 2)-step competition graphs of orientations of complete bipartite graphs

and obtained the following, which are natural extension of existing results.

Theorem 1.16 ([9]). Let D be an orientation of complete bipartite graph. Then

C1,2(D) has at most one non-trivial component of diameter at most three or consists

of exactly two complete components of size at least three.

In addition, they completely characterized the complete graphs and the discon-

nected (1, 2)-step competition graph C1,2(D) of an orientation of complete bipartite

graph D, which is the disjoint unions of complete graphs, as follows.

Theorem 1.17 ([9]). The following are true:

(i) For positive integers m and n with m ≥ n, the disjoin union of the complete

graphs Km and Kn is a (1, 2)-step competition graph of an orientation of a

complete bipartite graph if and only if one of the following holds: n = 1; m ≥
n ≥ 6; m ≥ 10 and n = 5.

(ii) For a positive integer l, the complete graph Kl is a (1, 2)-step competition graph

of an orientation of a complete bipartite graph if and only if l ≥ 12

1.2.5 Phylogeny graphs

Pearl [47] introduced the notion of Bayesian network. A Bayesian network (also

known as a Bayes network) is a probabilistic graphical model that represents a set of
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variables and their conditional dependencies via a digraph. “Moral graphs” having

arisen from studying Bayesian networks are the same as phylogeny graphs (Defi-

nition 1.7). One of the well-known problems, in the context of Bayesian networks,

is concerned with the propagation of evidence. It is composed of the assignment

of probabilities to the values of the rest of the variables, once the values of some

variables are known.

As Cooper [14] showed, this problem is NP-hard. Most remarkable algorithms for

this problem are given by Pearl [46], Shachter [57] and by Lauritzen and Spiegelhalter

[38]. A step of triangulating a moral graph, adding edges to a moral graph to form a

chordal graph, is required in those algorithms (refer to remaining step in Jensen [29]).

Thus triangulation of the moral graphs plays a significant role in the process of

solving the propagation problem. Even though chordal graphs can be identified in

polynomial time, deciding whether or not a graph is moral is NP-complete by Verma

and Pearl [59]. In this context, the problem whether phylogeny graph of an acyclic

digraph is a chordal or not have been studied.

Steif [58] showed that it might be difficult to figure out the structural properties

of acyclic digraphs whose competition graphs are interval. In that regard, Hefner et

al. [26] studied degree bounded acyclic digraphs having restrictions on the indegree

and the outdegree of its vertices to obtain the list of forbidden subdigraphs for acyclic

digraphs whose competition graphs are interval. They called an acyclic digraph each

vertex of which has indegree at most i and outdegree at most j an (i, j) digraph for

positive integers i and j. Hefner et al. [26] gave a characterization of (2, 2) digraphs

whose competition graphs are interval. The gain of this characterization is a sufficient

condition for (2, 2) digraphs having chordal competition graphs.

Recently, research of the phylogeny graphs of degree-bounded have mainly been

conducted in two directions: chordality and clique number. Lee et al. [39] gave a

sufficient condition and a necessary condition for (2, 2) digraphs having chordal phy-

logeny graphs in terms of its underlying graphs as follows:

Theorem 1.18 ([39]). Let D be a (2, 2) digraph. If the underlying graph of D con-

tains a hole H of length at least 7, then the subgraph of the phylogeny graph of D

induced by V (H) has a hole.

15



Theorem 1.19 ([39]). Let D be a (2, 2) digraph. If the underlying graph is chordal,

then the phylogeny graph of D is also chordal.

Further, Eoh et al. [18] studied on chordality of the phylogeny graphs of (i, j)

digraphs by extending the result given by Lee et al. as follows:

Theorem 1.20 ([18]). Let D∗i,j be the set of (i, j) digraphs whose underlying graphs

are chordal for positive integers i and j. Then the (i, j) phylogeny graph of D is

chordal for any D ∈ D∗i,j if and only if i ≤ 2 or j = 1.

Then they showed that the phylogeny graph of a (2, 2) digraph is planar if the

underlying graph of a (2, 2) digraph is chordal and completely characterized the

phylogeny graph of a (1, i) digraph and an (i, 1) digraph, for any positive integer i.

Lee et al. [39] and Eoh et al. [18] gave an upper bound for the clique number of

phylogeny graphs of (2, 2) digraphs and phylogeny graphs of (2, j) digraphs, respec-

tively, as follows:

Theorem 1.21 ([18,39]). Let D be a (2, j) digraph for a positive integer j. Then

ω(P (D)) ≤

j + 2 if j ≤ 2;

j + 3 otherwise

and the inequalities are tight.

In this context, we study the chordality of phylogeny graphs of (i, 2) digraphs and

characterization of its forbidden induced subgraphs in the Chapter 4, which extend

the results given by Lee et al. [39]. For more information on study on phylogeny

graphs, readers may refer to [25,44,52–54,63].

1.2.6 CCE graphs

In 1978, Robert [50] defined k(G), the competition number of a graph G, to be the

smallest integer k such that G∪Ik is a competition graph of an acyclic digraph, where

Ik is a set of isolated vertices added to G by observing that a competition graph is

16



obtained by adding sufficiently many isolated vertices to G. Analogously, Scott [56]

defined dk(G), the double competition number, to be the smallest integer k such that

G ∪ Ik is a CCE graph of an acyclic digraph, where Ik is a set of isolated vertices

added to G by proving that dk(G) is well-defined. In addition, Scott [56] characterize

the CCE graphs of acyclic digraphs by computing the double competition numbers

as follows.

Theorem 1.22 ([56]). If G is a path of length at least 2, a cycle of length of at length

at least 3, a complete graph of order at least 2 or a nontrivial tree, then dk(G) = 2.

Theorem 1.23 ([56]). If G is a chordal graph or an interval graph then dk(G) ≤ 2.

In this context, we mainly study the CCE graphs of (2, 2) digraphs having exactly

two isolated vertices in Chapter 5 and characterize them.

Hefner et al. [26] studied competition graphs of (i, j) digraphs, which they called

(i, j) competition graphs, and gave a characterization of (2, 2) digraphs whose com-

petition graphs are interval graphs as follows.

Theorem 1.24 ([26]). Let G be a competition graph of a (2, 2) digraph. G is an

interval graph if and only if each component is an isolated vertex, a path, or a triangle,

and the number of isolated vertices is at least 1.

In this vein, we give a sufficient condition on the number of components for CCE

graphs being interval graphs in Chapter 5. For more results on CCE graphs, readers

may refer to [1, 2, 21,30,32,55].

1.3 A preview of the thesis

In Chapter 2, we completely characterize the digraphs of order n whose m-step

competition graphs are star graphs for positive integers 2 ≤ m < n. This result in

matrix version identifies the solution set to the matrix equation Xm(XT )m = Λn+In

for positive integers 2 ≤ m < n where In is the identity matrix of order n and Λn

is a (0, 1) Boolean matrix such that the first row and the first column consist of 1’s

except (1, 1)-entry and the remaining entries are 0, which is the adjacency matrix of
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a star graph of order n. We also derive meaningful properties of the digraphs whose

m-step competition graphs are trees. In the process, we extend a result of Helleloid

(Theorem 1.11) by showing that for all positive integers m ≥ 2 and n, the connected

triangle-free m-step competition graph on n vertices is a tree.

In Chapter 3, we study C1,2(D) when D is an orientation of a complete k-partite

graph for some k ≥ 3. We completely identify C1,2(D) when each partite set of D

forms a clique in C1,2(D). Even if there exists a partite set of D which does not form

a clique in C1,2(D), we figure out most of the structure of C1,2(D). Based on these

results, we show that the diameter of each component of C1,2(D) is at most three

and provide a sharp upper bound on the domination number of C1,2(D). In addition,

we list all possible C1,2(D) when D has no vertices of outdegree 0 and C1,2(D) is

disconnected. Finally, we give a sufficient condition for C1,2(D) being an interval

graph.

In Chapter 4, we give a sufficient condition on the size of hole of an underlying

graph of D for P (D) being a chordal graph where D is an (i, 2) digraph. Moreover, we

go further to completely characterize (i, j) phylogeny graphs by listing the forbidden

induced subgraphs.

In Chapter 5, We characterize the graphs with the least components among the

CCE graphs of (2, 2) digraphs containing at most one cycle and exactly two isolated

vertices, and their digraphs, which gives a sufficient condition on the number of com-

ponents for CCE graphs being interval graphs. Further, we completely characterize

the graphs having exactly two nontrivial components among the CCE graphs of (2, 2)

digraphs with exactly two isolated vertices.
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Chapter 2

Digraphs whose m-step competition graphs

are trees1

Recall that given a positive integer m, the m-step competition graph Cm(D) of a

digraph D is the graph which has the same vertex set as D and has an edge between

two distinct vertices u and v if and only if there exist a directed (u,w)-walk of length

m and a directed (v, w)-walk of length m for some w in V (D) (Definition 1.8).

For two vertex-disjoint weakly connected digraphs D1 and D2, it is true that

Cm(D1 ∪ D2) = Cm(D1) ∪ Cm(D2) for any positive m. In this vein, it is sufficient

to consider weakly connected digraphs throughout this chapter. From now on, we

assume that any digraph in this chapter is weakly connected unless otherwise men-

tioned.

We call a complete bipartite graph K1,l for some positive integer l a star graph.

In this chapter, we show the following theorem (the definitions of a windmill

digraph and an m-conveyor digraph will be given right after the theorem statement).

Theorem 2.1. For positive integers 2 ≤ m < n, the star graph is an m-step com-

petition graph of a digraph D with n vertices if and only if one of the following

holds:

(i) D is a windmill digraph;

1The material in this chapter is from the manuscript ‘Digraphs whose m-step competition graphs
are trees’ by Myungho Choi and Suh-Ryung Kim. The author thanks Prof. Suh-Ryung Kim for
allowing him to use its contents for his thesis.
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D1 D2

Figure 2.1: The windmill digraphs with three vertices.

(ii) D is an m-conveyor digraph;

(iii) m = 2 and D is isomorphic to the digraph given in Figure 2.3.

A windmill digraph is defined to be a digraph satisfying the following three con-

ditions:

(W1) D has exactly one source v;

(W2) D − v is a vertex-disjoint union of directed cycles;

(W3) each vertex except v is a prey of v

(see the windmill digraphs of order 3 in Figure 2.1 for an illustration).

We call a nontrivial directed path or cycle connecting vertices of indegree 2 an

internally secure lane if each of its interior vertices has indegree 1.

We call a digraph D an m-conveyor digraph for some m ≥ 2 if D has a vertex v

satisfying the following conditions:

(M1) v is the only predator of v;

(M2) D − v is a vertex-disjoint union of directed cycles;

(M3) each internally secure lane in D has length at most m

(see the 2-conveyor digraphs of order 4 in Figure 2.2 for an illustration).
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Figure 2.2: The 2-conveyor digraphs of order 4
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Figure 2.3: A digraph and its 2-step competition graph
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Figure 2.4: Adjacency matrices of a windmill digraph, a m-conveyor digraph, and
the digraph given in Figure 2.3, respectively, where the blocks J and O stand for a
matrix of all 1’s and a zero matrix, respectively.

The adjacency matrix of a windmill digraph is in the form of the first matrix

given in Figure 2.4. Here, Γn is the adjacency matrix of a directed cycle of length n,

that is,

(Γn)ij =

1 if j = i+ 1 or (i, j) = (n, 1);

0 otherwise.

The adjacency matrix of an m-conveyor digraph is in the form of the second matrix

given in Figure 2.4. The first row represents v satisfying (M1) and (M2). By (M3),

the (0, 1) nonzero matrix Q
(m)
k has size 1× k and satisfies the following properties:

(F1) the number of consecutive zeros is at most m− 1;

(F2) if the (1, 1)-entry and the (1, k)-entry equal 0, then the number of first consec-

utive zeros and that of last consecutive zeros add up to at most m− 1.

Theorem 2.1 may be restated in terms of matrices. Therefore we have the following

corollary restating Theorem 2.1 in terms of matrices:

Corollary 2.2 (Matrix version). For positive integers 2 ≤ m < n, a square matrix X

of order n satisfies Xm(XT )m = Λn + In if and only if P TXP for some permutation

matrix P of order n is one of the matrices given in Figure 2.4, where In is the identity

matrix of order n and Λn is the square matrix of order n with the first row and first

column of Λn consisting of 1’s except (1, 1)-entry and the remaining entries being 0.

We also prove the following result.
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Theorem 2.3. For all positive integers 2 ≤ m < n, the connected triangle-free

m-step competition graph on n vertices is a tree.

Even for a digraph D and an integer m > |V (D)|, the same is true as follows.

By Theorems 1.11 and 2.3 we have the following more general result.

Corollary 2.4. For all positive integers m ≥ 2 and n, the connected triangle-free

m-step competition graph on n vertices is a tree.

As the rest of this chapter is devoted to proving Theorems 2.1 and 2.3, we may

assume from now on that m ≥ 2 and m < n whenever we are given a digraph of

order n whose m-step competition graph is triangle-free.

2.1 The triangle-free m-step competition graphs

In this section, we show that all the connected triangle-free m-step competition

graphs are trees.

Let D be a digraph and v be a vertex of D. We denote the m-step prey of v by

N+
Dm(v) and the m-step predators of v by N−Dm(v), respectively. When no confusion

is likely, we will just write N+
m(v) and N−m(v). We note that N+

1 (v) = N+(v) and

N−1 (v) = N−(v). Technically, we write N+
0 (v) = N−0 (v) = {v}. We call |N−i (v)| and

|N+
i (v)| the i-step indegree and the i-step outdegree of v, respectively, and denote

them by d−i (v) and d+i (v), respectively. We note that d+1 (v) = d+(v) and d−1 (v) =

d−(v).

We make the following useful observations.

Lemma 2.5. Let D be a digraph such that Cm(D) is triangle-free. Then the following

are true:

(1) Any vertex in D has i-step outdegree at least 1 for any positive integer i.

(2) Any vertex in D has i-step indegree at most 2 for any positive integer i ≤ m.

(3) If a directed walk contains at least two vertices and its origin and terminus

have indegree 2, then it is a juxtaposition of internally secure lanes.

23



(4) For any two internally secure lanes W and W ′ in D starting at w and w′,

respectively, and sharing v as an interior vertex, the (w, v)-section of W and

the (w′, v)-section of W ′ coincide.

Proof. Since we have assumed that any digraph has no sinks, part (1) is true.

To prove part (2), suppose, to the contrary, d−i (u) ≥ 3 for some vertex u of D and

a positive integer i ≤ m. Then there exist three distinct i-step predators x, y, and z

of u. By part (1), u has an (m− i)-step prey v. Then v is an m-step common prey of

x, y, and z. Thus x, y, and z form a triangle in Cm(D), a contradiction. Hence part

(2) is true.

Part (3) immediately follows from the definition of internally secure lane and part

(2).

To show part (4), let W = w → v1 → · · · → vl and W ′ = w′ → v′1 → · · · → v′l′

be a pair of internally secure lanes sharing v as an interior vertex for some positive

integers l and l′. Then v = vk = v′k′ for some k ∈ {1, . . . , l−1} and k′ ∈ {1, . . . , l′−1}.
By the definition of internally secure lane, d−(vi) = d−(v′i′) = 1 for each 1 ≤ i ≤ k

and 1 ≤ i′ ≤ k′. Therefore the (w, vk)-section of W and the (w′, v′k′)-section of W ′

coincide. Thus part (4) is true.

Theorem 2.6. Let G be the m-step competition graph of a digraph D such that G is

triangle-free and has the edges as many as the vertices. Then the following are true:

(1) For each vertex u of outdegree at least 2 in D, each prey of u has indegree 2 in

D.

(2) Every vertex in D lies on some internally secure lane.

(3) Each internally secure lane of D has length m.

Proof. We consider a set

A = {(u, {v, w}) | v 6= w, {v, w} ⊆ N−m(u)}.
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By the definition of m-step competition graph, |A| ≥ |E(G)|. Thus, by the definition

of A and Lemma 2.5(2),

|E(G)| ≤ |A| =
∑

v∈V (D)

(
d−m(u)

2

)
≤

∑
v∈V (D)

(
2

2

)
= |V (D)| = |V (G)|.

Then, since |E(G)| = |V (G)| by the hypothesis,

d−m(v) = 2 (2.1)

for each vertex v in D. In addition, if u and v are adjacent in G, then

|N+
m(u) ∩N+

m(v)| = 1,

so, for each pair of vertices u and v in D,

|N+
m(u) ∩N+

m(v)| ≤ 1

and

|N−m(u) ∩N−m(v)| ≤ 1. (2.2)

Suppose for a contradiction that there exist two vertices u and v such that |N+
j (u)∩

N+
j (v)| ≥ 2 for some positive integer j < m. Take two distinct vertices w1 and w2 in

N+
j (u) ∩ N+

j (v). Then {u, v} ⊆ N−j (w1) ∩ N−j (w2). Therefore N−j (w1) = N−j (w2) =

{u, v} by Lemma 2.5(2). Thus N−m(w1) = N−m(w2). Then, since d−m(w1) = d−m(w2) = 2

by (2.1), |N−m(w1) ∩ N−m(w2)| = 2, which contradicts (2.2). Therefore, for each pair

of vertices u and v,

|N+
i (u) ∩N+

i (v)| ≤ 1 (2.3)

for any positive integer i ≤ m.

To show part (1) by contradiction, suppose that there exist a vertex u of outdegree

at least 2 and a prey v of u has indegree not equal to 2 in D. Then, by Lemma 2.5(2),

v has indegree 1. In addition, since u has outdegree at least 2, u has a prey w

other than v. By (2.1), N−m(v) = {x, y} for some vertices x and y in D. Since u
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is the only predator of v, N−m−1(u) = {x, y}. Therefore {x, y} ⊆ N−m(w) and so

{x, y} ⊆ N−m(v) ∩N−m(w), which contradicts (2.2). Hence part (1) is true.

To show part (2), take a vertex v in D. If any i-step prey of v has indegree

at most 1 for each 1 ≤ i ≤ m, then there is an m-step prey of v having m-step

indegree 1, which contradicts (2.1). Therefore there exists a j-step prey x of v having

indegree at least 2 for some j ∈ {1, . . . ,m}. Thus x has indegree 2 by Lemma 2.5(2).

If v has indegree 2, then a directed (v, x)-walk contains an internally secure lane on

which v lies. Suppose that v has indegree not equal to 2. Then v has indegree 1 by

Lemma 2.5(2) and (2.1). If each i-step predator of v has indegree at most 1 for each

1 ≤ i ≤ m − 1, then d−m(v) < 2, a contradiction to (2.1). Thus there exists a k-step

predator y of v having indegree at least 2 for some k ∈ {1, . . . ,m − 1}. Then, by

Lemma 2.5(2), each of x and y has indegree 2. Hence we may conclude that every

vertex in D lies on some internally secure lane.

To show part (3), take an internally secure lane W := v0 → v1 → · · · → vj for

some positive integer j. Then, by the definition of an internally secure lane,

N−(v0) = {x, y}, N−(vj) = {vj−1, w}

for some vertices x, y, and w in D. Then

N−i+1(vi) ⊇ {x, y} (2.4)

for each 0 ≤ i ≤ j. If j ≥ 2, then

N−(vi+1) = {vi} (2.5)

for each 0 ≤ i ≤ j − 2 by the definition of internally secure lane and so, by part (1),

N+(vi) = {vi+1} (2.6)

for each 0 ≤ i ≤ j − 2.

To reach a contradiction, suppose j 6= m. If j > m, then j ≥ 2 and so, by (2.5),
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N−m(vj−1) = {vj−m−1}, which contradicts (2.1). Therefore j < m. Then

N−i+1(vi) = {x, y}

for each 0 ≤ i ≤ j by (2.4) and Lemma 2.5(2). Since a j-step predator of w is a (j+1)-

step predator of vj, N
−
j (w) ⊆ {x, y}. Since N−j (vj−1) = {x, y}, N−j (w) ( {x, y}

by (2.3). Then, since D has no source by (2.1), N−j (w) = {x} or {y}. Without

loss of generality, we may assume N−j (w) = {x}. Then there exists a directed walk

W ∗ of length j from x to w. If j = 1, then d−(w) = 1, w is a prey of x, and

{v0, w} ⊆ N+(x), which contradicts part (1). Therefore j ≥ 2. Let z be the vertex

which x is immediately going toward on W ∗. If z = v0, then w = vj−1 by (2.6) and

we reach a contradiction. Therefore z 6= v0. Thus x has outdegree at least 2. Hence

z has a predator x′ other than x by part (1). Then attaching the arc (x′, z) to the

(z, w)-section of W ∗ results in a directed walk of length j from x′ to w. Therefore

{x, x′} ⊆ N−j (w), which contradicts the assumption that N−j (w) = {x}. Thus we may

conclude that j = m. Since W was arbitrarily chosen from D, part (3) is valid.

Given an internally secure lane W = v0 → v1 → · · · → vm, we call vk the kth

interior vertex of W for each 1 ≤ k < m.

Theorem 2.7. If the m-step competition graph of a digraph is triangle-free and has

the edges as many as the vertices, then it has at least m components.

Proof. Suppose that there exists a digraph D whose m-step competition graph G

is triangle-free and has the edges as many as the vertices. Take an internally secure

lane W in D (it exists since every vertex in D lies on some internally secure lane

by Theorem 2.6(2)). By Theorem 2.6(3), W has length m. Let W = v0 → v1 →
· · · → vm and take vk for some k ∈ {1, . . . ,m−1}. Suppose that there exists a vertex

wk adjacent to vk in G. Then they have an m-step common prey in D and so vk

and wk have an l-step common prey z that has indegree at least 2 in D for some

l ∈ {1, . . . ,m}. Therefore z has indegree 2 by Lemma 2.5(2). Then there exist a

directed (vk, z)-walk W1 of length l and a directed (wk, z)-walk W2 of length l. Since

z has indegree 2, the directed walk W ′ obtained by concatenating the (v0, vk)-section
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of W and W1 contains an internally secure lane. We note that the origin and the

terminus of W ′ have indegree 2. Then, since the length of W ′ is at most 2m − 1,

W ′ must be an internally secure lane by Lemma 2.5(3) and Theorem 2.6(3). Thus

l = m − k. By Theorem 2.6(3) again, W2 must be a section of an internally secure

lane of length l. Thus we may conclude that

(?) each vertex adjacent to the kth interior vertex of an internally secure lane is

the kth interior vertex of an internally secure lane.

Now, for each 1 ≤ i ≤ m− 1, we define a vertex set Vi as follows: v ∈ Vi if and only

if v is the ith interior vertex of some internally secure lane. Then Vi ∩Vj = ∅ if i 6= j

by Lemma 2.5(4). Moreover, since vi ∈ Vi, Vi 6= ∅ for each 1 ≤ i ≤ m− 1.

Now we choose j ∈ {1, . . . ,m− 1}. Then take a vertex v in Vj and let X be the

component containing v in G. Take a vertex w in X. Then there exists a shortest

path P from v to w. By repeatedly applying (?) to each vertex on P from the nearest

to the farthest from v, we may show that w ∈ Vj. Therefore X ⊆ Vj. Then, since

Vi ∩ Vj = ∅ for i 6= j and Vk 6= ∅ for each 1 ≤ k ≤ m − 1, G has at least m − 1

components each of which is included in Vj for some j ∈ {1, . . . ,m−1}. We note that

each vertex in
⋃m−1

i=1 Vi is an interior vertex of an internally secure lane and so, by the

definition of internally secure lane, it has indegree 1 for each 1 ≤ i ≤ m−1. Therefore

the origin and the terminus of any internally secure lane in D cannot belong to any

of the components obtained previously. Hence G has at least m components.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Suppose, to the contrary, that there exists a digraph D such

that Cm(D) is triangle-free and connected but is not a tree. Then, since Cm(D)

is connected but is not a tree, |E(Cm(D))| > |V (Cm(D))| − 1. By Lemma 2.5(2),

d−m(v) = 2 for each vertex v in D. Therefore |E(Cm(D))| ≤ |V (Cm(D))| and so

|E(Cm(D))| = |V (Cm(D))|. Thus Cm(D) is disconnected by Theorem 2.7 and we

reach a contradiction. Hence Cm(D) is a tree.
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2.2 Digraphs whose m-step competition graphs are trees

In this section, we deduce basic properties of digraphs whose m-step competition

graphs are trees.

We call a digraph D with at least three vertices an m-step tree-inducing digraph

if the m-step competition graph of D is a tree for some integer m ≥ 2. A digraph is

said to be a tree-inducing digraph if it is an m-step tree-inducing digraph for some

integer m ≥ 2.

Proposition 2.8. Let D be an m-step tree-inducing digraph. Then N+
i (u) 6= N+

i (v)

for any distinct vertices u and v in D and any positive integer i ≤ m.

Proof. Suppose N+
i (u) = N+

i (v) for some distinct u and v in D and a positive

integer i ≤ m. Then N+
m(u) = N+

m(v). Since N+
m(u) 6= ∅ by Lemma 2.5(1), u and v

are adjacent in Cm(D). Moreover, N−m(w) = {u, v} for each vertex w ∈ N+
m(u) by

Lemma 2.5(2). Therefore an edge uv is a component in Cm(D), a contradiction to

the connectedness of Cm(D).

Proposition 2.9 (Helleloid [27]). Let D be a digraph with n vertices whose m-

step competition graph Cm(D) is a tree. Then there is a one-to-one correspondence

between the n − 1 pairs of adjacent vertices in Cm(D) and n − 1 of n vertices of

D; namely, all but one vertex in D serves as the m-step common prey for exactly

one pair of adjacent vertices in Cm(D). The remaining vertex of D can either be

the m-step prey of no vertices, of any one vertex, or of any two vertices adjacent in

Cm(D).

Based upon the above proposition, Belmont [3] called the remaining vertex α in

D not assigned in a bijection between the edges of Cm(D) and n−1 of the n vertices

of D anomaly. The author observed that if the remaining vertex of D is the m-step

prey of any two vertices adjacent in Cm(D), then the anomaly is not well-defined

since there are two vertices with this property and went on to call the one arbitrarily

chosen between the two vertices an anomaly. By the definition of an anomaly, it is

clear that each tree-inducing digraph has a unique anomaly.
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The following proposition gives a necessary and sufficient condition for a vertex

of a tree-inducing digraph D being the anomaly, which is actually a restatement of

Proposition 2.9.

Proposition 2.10. Let D be an m-step tree-inducing digraph. Then α in D is the

anomaly if and only if α has either at most one m-step predator in D or exactly

two m-step predators that have another vertex β as an m-step common prey in D.

Furthermore, if the latter of the “if” part is true, then α and β are the only vertices

that share two m-step common predators.

Corollary 2.11. Let D be an m-step tree-inducing digraph. Then the following are

true:

(1) If |N+
m(u)∩N+

m(v)| ≥ 2 for some u and v in D, then the anomaly is contained

in N+
m(u) ∩N+

m(v).

(2) If d−m(v) ≤ 1, then v is the anomaly.

Corollary 2.12. Let D be an m-step tree-inducing digraph. For the anomaly α of

D, exactly one of the following is true:

(i) α has exactly two m-step predators that have a vertex v other than α as an

m-step common prey in D, and α and v are the only vertices that share two

m-step common predators;

(ii) α has at most one m-step predator and each vertex except α has exactly two

m-step predators.

Theorem 2.13. Let D be a digraph such that Cm(D) is triangle-free and connected.

Then the following are true:

(1) |
⋃

v∈U N
+(v)| ≥ |U | for any proper subset U of V (D).

(2) For any vertices u and v in D, |N+
i (u) ∩ N+

i (v)| ≤ |N+
j (u) ∩ N+

j (v)| for any

positive integers i, j with i ≤ j ≤ m.
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(3) For each vertex v in D, d+i (v) ≤ d+j (v) for any positive integers i, j with i ≤
j ≤ m.

Proof. We begin with the proof of the following claim:

Claim. For any nonempty proper subset U of V (D), there exists a vertex u ∈⋃
v∈U N

+(v) such that |N−(u) ∩ U | = 1.

To reach a contradiction, suppose that there exists a nonempty proper subset U∗

of V (D) with |N−(v) ∩ U∗| 6= 1 for each vertex v in
⋃

v∈U∗ N
+(v). Since any vertex

in
⋃

v∈U∗ N
+(v) is a prey of a vertex in U∗, |N−(v) ∩ U∗| ≥ 1 for each vertex v

in
⋃

v∈U∗ N
+(v) and so, by Lemma 2.5(2), |N−(v) ∩ U∗| = 2. Since U∗ is a proper

subset of V (D), V (D)−U∗ 6= ∅. Since U∗ 6= ∅ and Cm(D) is connected, there exists

a vertex x in V (D) − U∗ which is adjacent to a vertex w ∈ U∗ in Cm(D). Then,

w and x have an m-step common prey am and so there exists a directed (w, am)-

walk of length m in D. Let a1 be the vertex outgoing from w on this walk. Then

a1 ∈ N+(w) ⊆
⋃

v∈U∗ N
+(v). By the choice of U∗, each vertex of

⋃
v∈U∗ N

+(v) has

two predators in U∗. Thus there is the other predator y of a1 that belongs to U∗.

Since x 6∈ U∗ and y ∈ U∗, y and x are distinct. Further, y is an m-step predator of

am and so {w, x, y} ⊆ N−m(am), which is a contradiction to Lemma 2.5(2). Therefore

the claim is valid.

We prove part (1) by induction on |U |. If U = ∅, then the inequality trivially

holds. Now suppose that |
⋃

v∈U N
+(v)| ≥ |U | for any proper vertex subset U of

V (D) with |U | ≤ k for a nonnegative integer k such that k ≤ |V (D)| − 2. Take a

proper subset W of V (D) with k + 1 elements. Then W is nonempty. Suppose, to

the contrary, that |
⋃

v∈W N+(v)| < |W |. By the above claim, there exists a vertex

w ∈
⋃

v∈W N+(v) such that |N−(w) ∩W | = 1. Then N−(w) ∩W = {x} for some

vertex x ∈ W . Since x is the only predator of w in W , w /∈
⋃

v∈W−{x}N
+(v). Then,

since w ∈
⋃

v∈W N+(v), ∣∣∣∣∣∣
⋃

v∈W−{w}

N+(v)

∣∣∣∣∣∣ ≤ |
⋃
v∈W

N+(v)| − 1.
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By the assumption that |
⋃

v∈W N+(v)| < |W |,∣∣∣∣∣∣
⋃

v∈W−{w}

N+(v)

∣∣∣∣∣∣ < |W | − 1. (2.7)

Yet, since W − {x} is a proper subset of V (D) with k elements, by the induction

hypothesis, ∣∣∣∣∣∣
⋃

v∈W−{w}

N+(v)

∣∣∣∣∣∣ ≥ |W − {x}| = |W | − 1,

which contradicts (2.7). Therefore part (1) is true.

To verify part (2), take two vertices u and v of D and fix a positive integer i. We

first consider the case N+
i (u) ∩N+

i (v) = V (D) and take a vertex w. Then w has at

least one predator z ∈ N+
i (u) ∩ N+

i (v). Therefore w ∈ N+
i+1(u) ∩ N+

i+1(v). Since w

was arbitrarily chosen from D, N+
i+1(u) ∩N+

i+1(v) = V (D).

Now consider the case N+
i (u) ∩N+

i (v) ( V (D).

By part (1), ∣∣∣∣∣∣
⋃

w∈N+
i (u)∩N+

i (v)

N+(w)

∣∣∣∣∣∣ ≥ ∣∣N+
i (u) ∩N+

i (v)
∣∣ .

Then, since ⋃
w∈N+

i (u)∩N+
i (v)

N+(w) ⊆ N+
i+1(u) ∩N+

i+1(v),

|N+
i (u) ∩N+

i (v)| ≤ |N+
i+1(u) ∩N+

i+1(v)|.

We may repeat this process until we have |N+
i (u) ∩ N+

i (v)| ≤ |N+
j (u) ∩ N+

j (v)| for

any integer j with i ≤ j ≤ m, which will complete the proof of part (2). Part (3) is

an immediate consequence of part (2).

The inequality in Theorem 2.13(1) is true only for a proper subset of V (D) as

shown by the following example.

Example 2.14. Fix some integer m ≥ 2. Let D be the windmill digraph with
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V (D) = {v1, v2, . . . , vm, w} and A(D) = {(vi, vi+1) | 1 ≤ i < m} ∪ {(vm, v1)} ∪
{(w, vi) | 1 ≤ i ≤ m}. Then Cm(D) is a star graph with the center w. However,

|N+(V (D))| < |V (D)| since w /∈ N+(V (D)).

Proposition 2.15. Let D be an m-step tree-inducing digraph with the anomaly α.

Suppose d+i (u) ≥ l for a vertex u in D and positive integers l and i ≤ m. Then the

degree of u is at least l − 1 in Cm(D). Especially, if the degree of u equals l − 1 in

Cm(D), then d+m(u) = l and α ∈ N+
m(u) in D.

Proof. Denote by d(u) the degree of a vertex u in Cm(D). Since d+i (u) ≥ l, d+m(u) ≥ l

by Theorem 2.13(3). Then there are at least l − 1 vertices in N+
m(u) each of which

serves as the m-step common prey for exactly one pair of adjacent vertices in Cm(D)

by Proposition 2.9. Therefore d(u) ≥ l−1. To show the “especially” part, suppose, to

the contrary, that d(u) = l−1 but d+m(u) 6= l. Then, by the hypothesis, d+m(u) ≥ l+1.

Thus, by the previous argument, d(u) ≥ l, a contradiction. Therefore d+m(u) = l. Yet,

d(u) = l − 1, so α ∈ N+
m(u).

Theorem 2.16. Let D be a tree-inducing digraph without sources. Then each vertex

lies on a directed cycle in D.

Proof. Suppose, to the contrary, that there exists a vertex u which does not lie on

any directed cycle in D. Let A,B, and C be subsets of V (D) such that

A =
⋃
i≥1

N+
i (u); B =

⋃
i≥1

N−i (u); C = V (D)− (A ∪B).

By the hypothesis, N−(u) 6= ∅, so B 6= ∅. By Lemma 2.5(1), N+(u) 6= ∅, so A 6= ∅.
Since there is no directed cycle containing u, A ∩ B = ∅. If u ∈ A or u ∈ B, then

there exists a closed directed walk containing u and so there exists a directed cycle

containing u, which contradicts our assumption. Thus u ∈ C and so C 6= ∅. We will

claim the following:

A9 B, A9 C, and C 9 B (2.8)

where X 9 Y for vertex sets X and Y of D means that there is no arc from a vertex

in X to a vertex in Y . Take three vertices a ∈ A, b ∈ B, and c ∈ C.
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v2v1
v3

v4 v5

Figure 2.5: A digraph with no sources and no directed cycles containing v3

If there exists an arc (a, b), then a directed (u, a)-walk, the arc (a, b), and a

directed (b, u)-walk form a closed directed walk containing u and we reach a contra-

diction. If there exists an arc (a, c) (resp. an arc (c, b)), then a directed (u, a)-walk

and the arc (a, c) form a directed (u, c)-walk (resp. the arc (c, b) and a directed (b, u)-

walk form a directed (c, u)-walk), which contradicts the choice of c. Since a, b, and c

were arbitrarily chosen from A, B, and C, respectively, the claim is valid.

By choice of the set C,

{u}9 C, and C 9 {u} (2.9)

Since D is a tree-inducing digraph, by Proposition 2.9, there is a bijection between

E(Cm(D)) and V (D)−{w} where w is the anomaly. Then each of at least |B| vertices

in B∪{u} serves as an m-step common prey of a pair of adjacent vertices in Cm(D).

Since u ∈ C, no vertex in A∪C can be an m-step predator of a vertex in B ∪{u} by

(2.8) and (2.9). Therefore each vertex in B ∪ {u} has an m-step predator only in B.

Consequently, we may conclude that the subgraph H of Cm(D) induced by B has

at least |B| edges. Thus H contains a cycle. Then this cycle is contained in Cm(D)

and we have reached a contradiction to the hypothesis that Cm(D) is a tree.

Remark 2.17. It is likely that, for each vertex of a digraph without sources, there

is a directed cycle containing it. However, it is not true. For example, the digraph

given in Figure 2.5 has no source and no directed cycle containing the vertex v3.

Remark 2.18. For some tree-inducing digraph D with a source, Theorem 2.16 may

be false. For example, the vertex w given in Example 2.14 does not lie on any directed

cycle in D.

If an m-step tree-inducing digraph D has a loop incident to a vertex on a directed
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v1 v2

Figure 2.6: A duck digraph with the neck vertex v1 and the tail vertex v2

cycle of length 2, then Cm(D) is not a star graph, which will be shown in Lemma 2.27.

We call such a configuration a duck digraph. That is, a duck digraph is isomorphic

to the digraph given in Figure 2.6. We call the vertex with a loop in a duck digraph

the neck vertex and the other one the tail vertex. Given a digraph D, if D contains

no subdigraph isomorphic to a duck digraph, we call D a duck-free digraph.

Proposition 2.19. Let D be an m-step tree-inducing digraph such that (a) there

exists a vertex u incident to a loop in D and (b) if m = 2, then D is duck-free. Then

exactly one of the following statements is true.

(i) The vertex u has exactly one predator other than u and N+(u) = {u}.

(ii) The vertex u has at least one prey other than u and N−(u) = {u}.

Furthermore, if (i) holds for the vertex u, then the vertex in N−(u) − {u} either is

a source or is incident to a loop and (ii) holds for it.

Proof. By the condition (a), {u} ⊆ N−(u) and {u} ⊆ N+(u). If N−(u) = N+(u) =

{u}, then u is an isolated vertex in Cm(D), which is a contradiction. Therefore

{u} ( N−(u) or {u} ( N+(u). (2.10)

If N−(u) = {u}, then the statement (i) does not hold for u and, by (2.10),

{u} ( N+(u) so that (ii) holds for u.

Now suppose that {u} ( N−(u). Then (ii) does not hold for u. Since d−(u) ≤ 2

by Lemma 2.5(2),

N−(u) = {u, v}

for some vertex v in D. Then

u ∈ N+(v).
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Suppose, to the contrary, that there exists a vertex z inN−(v)−{u, v}. Then, by using

the loop incident to u, we may produce a directed (u, u)-walk, a directed (v, u)-walk,

and a directed (z, u)-walk, respectively, of length m. Since m ≥ 2, {u, v, z} ⊆ N−m(u),

which is a contradiction to Lemma 2.5(2). Hence

N−(v) ⊆ {u, v}. (2.11)

To reach a contradiction, suppose that u ∈ N−(v). Then

{u, v} ⊆ N+(u). (2.12)

In this case, the subdigraph of D induced by {u, v} is a duck digraph. Then, by the

condition (b), m ≥ 3. Suppose that there exists a vertex x in N+(v) − {u, v}. By

using the loop incident to u, we have {u, v, x} ⊆ N+
m(v) ∩ N+

m(u) for each m ≥ 3

and so, by Corollary 2.11(1), the anomaly of D is contained in N+
m(v) ∩ N+

m(u).

Therefore |N+
m(v)∩N+

m(u)| = 2 by Corollary 2.12(i), which contradicts the fact that

{u, v, x} ⊆ N+
m(v) ∩N+

m(u). Thus

u ∈ N+(v) ⊆ {u, v}. (2.13)

Suppose that there exists a vertex y in N+(u) − {u, v}. Then, by using the loop

incident to u, we have {u, v, y} ⊆ N+
m(u) ∩ N+

m(v) and so we reach a contradiction

similarly as above. Therefore N+(u) = {u, v} by (2.12). Thus, by (2.13), N+
m(u) =

N+
m(v) = {u, v}, which contradicts Proposition 2.8. Hence u 6∈ N−(v) and so,

by (2.11),

N−(v) = ∅ or N−(v) = {v}. (2.14)

Then, by (2.14) and Corollary 2.11(2), v is the anomaly. Now suppose, to the contrary,

that {u} ( N+(u). Take a vertex w in N+(u)−{u}. Then {u,w} ⊆ N+
m(u)∩N+

m(v).

Since v is the anomaly of D, v ∈ N+
m(u) ∩ N+

m(v) by Corollary 2.11(1). However,

v /∈ N+
m(u) by (2.14), which is a contradiction. Hence N+(u) = {u} and so the

statement (i) holds for u. The “furthermore” part is true by (2.14).

36



Corollary 2.20. Let D be an m-step tree-inducing digraph for an integer m ≥ 3.

Then D is duck-free.

Proof. Since m ≥ 3, the condition (b) in Proposition 2.19 is vacuously satisfied.

Suppose that there exists a vertex v with a loop in D. Then v satisfies the condition

(a) in Proposition 2.19. Thus, by Proposition 2.19, N+(v) = {v} or N−(v) = {v}.
Thus D is duck-free.

Theorem 2.21. Let D be a duck-free tree-inducing digraph with a loop and with-

out sources. Then there is a vertex u with outdegree at least 2 and N−(u) = {u}.
Moreover, u is the only one vertex with this property and d−(v) = 2 for each vertex

v ∈ N+(u)− {u}.

Proof. We note that D satisfies the conditions (a) and (b) of Proposition 2.19. Let

w be a vertex incident to a loop. If |N+(w) − {w}| ≥ 1, then Proposition 2.19(ii)

holds for w and so we take w as u. Suppose that |N+(w) − {w}| = 0. Then Propo-

sition 2.19(i) holds. By the “furthermore” part of Proposition 2.19, the vertex in

N−(w)−{w} either is a source or is incident to a loop and Proposition 2.19(ii) holds

for it. Since each vertex has indegree at least 1 by the hypothesis, the latter is true

and so we take the vertex in N−(w)− {w} as u.

To show the uniqueness, suppose that there exist two vertices x and y each of

which has outdegree at least 2 and indegree 1 and is incident to a loop. Therefore

N−m(x) = {x} and N−m(y) = {y}. Then, by Corollary 2.11(2), x and y are anomaly.

Therefore x = y by Corollary 2.12(ii). Thus u is the unique vertex with d+(u) ≥ 2

and N−(u) = {u}.
Suppose, to the contrary, that d−(v) 6= 2 for some vertex v ∈ N+(u)−{u}. Then

d−(v) ≤ 1 by Lemma 2.5(2). Since D has no source by the hypothesis, d−(v) ≥
1 and so N−(v) = {u}. On the other hand, since D is a tree-inducing digraph

without sources, there exists a directed cycle C containing v in D by Theorem 2.16.

Since N−(v) = {u}, u lies on C. Therefore there exists the (v, u)-section of C.

However, since N−(u) = {u}, there is no directed (v, u)-walk in D and we reach a

contradiction.
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2.3 The digraphs whose m-step competition graphs are star

graphs

In this section, we completely characterize the digraphs whose m-step competition

graphs are star graphs. The following lemma is easy to check.

Lemma 2.22. For a digraph D, D is a vertex-disjoint union of directed cycles if

and only if each vertex has outdegree 1 in D and any pair of vertices has no common

prey in D.

Theorem 2.23. An m-step tree-inducing digraph having a source is a windmill di-

graph.

Proof. Let D be an m-step tree-inducing digraph having a source v. Then N−m(v) = ∅,
so v is the anomaly by Corollary 2.11(2). Therefore v is the only source of D by

Proposition 2.9. Thus D satisfies the condition (W1) for being a windmill digraph.

In addition,

d−m(u) = 2 (2.15)

for each vertex u ∈ V (D)− {v} by Corollary 2.12(ii).

Fix u ∈ V (D) − {v}. Then d−(u) ≥ 1 by (2.15). By Lemma 2.5(2), d−(u) ≤ 2.

Suppose, to the contrary, that d−(u) = 1. Then N−(u) = {x} for some vertex x

of D, so u /∈
⋃

v∈V (D)−{x}N
+(v). Since N−(v) = ∅, v 6∈

⋃
v∈V (D)−{x}N

+(v) and so⋃
v∈V (D)−{x}N

+(v) ⊆ (V (D)− {u, v}).
Therefore

|
⋃

v∈V (D)−{x}

N+(v))| ≤ |V (D)− {u, v}| < |V (D)− {x}|.

Since V (D) − {x} is a proper subset of V (D), we reach a contradiction to Theo-

rem 2.13(1). Therefore

d−(u) = 2. (2.16)

By Lemma 2.5(1), d+(u) ≥ 1. Suppose, to the contrary, that d+(u) ≥ 2. Then,

by Theorem 2.13(3), d+m−1(u) ≥ 2. On the other hand, by (2.16), u is a common prey
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Figure 2.7: A digraph and its 2-step competition graph

of two vertices y and y′. Then there exist arcs (y, u) and (y′, u) in D. Take a vertex

z in N+
m−1(u). Then there exists a directed (u, z)-walk W of length m− 1. Therefore

y → W is a directed (y, z)-walk and y′ → W is a directed (y′, z)-walk both of which

have length m. Thus z ∈ N+
m(y)∩N+

m(y′) and so N+
m−1(u) ⊆ N+

m(y)∩N+
m(y′). Then,

since d+m−1(u) ≥ 2, |N+
m(y)∩N+

m(y′)| ≥ 2. Therefore the anomaly v must be contained

in N+
m(y) ∩ N+

m(y′) by Corollary 2.11(1), which contracts the fact that N−(v) = ∅.
Therefore

d+(u) = 1. (2.17)

Since u was arbitrarily chosen, (2.16) and (2.17) hold for any vertex in V (D)− {v}.
Now take two distinct vertices x and y in V (D) − {v} (they exist since D has at

least three vertices by the definition of m-step tree inducing digraph). Then d+(x) =

d+(y) = 1. Therefore, by Proposition 2.8, N+(x)∩N+(y) = ∅. Thus, by Lemma 2.22,

D − v is a vertex-disjoint union of directed cycles and so D satisfies the condition

(W2). Hence (2.16) and (2.17) deduce that D satisfies the condition (W3).

Lemma 2.24. Let D be a digraph without sources whose m-step competition graph

Cm(D) is a star graph. Then the following are true:

(1) There exist at most two vertices of i-step outdegree at least 2 for each 1 ≤ i ≤ m.

(2) If a vertex v has a predator distinct from v, then d+(v) ≤ 2.

(3) Each vertex of indegree 2 is a prey of the center of Cm(D).

Proof. Suppose that there are three vertices x, y, and z having j-step outdegree at

least 2 for some j ∈ {1, . . . ,m}. Since Cm(D) is a star graph, at least two of x, y,
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and z have degree 1 in Cm(D). Without loss of generality, we may assume that y

and z have degree 1 in Cm(D). Then the anomaly of D is an m-step common prey

of y and z by the “especially” part of Proposition 2.15. Therefore yz is an edge in

Cm(D). Then, since y and z have degree 1 in Cm(D), yz is a component in Cm(D),

a contradiction. Thus part (1) is true.

To show part (2), suppose that there exists a vertex v that has a predator v′

distinct from v. If d+(v) ≥ 3, then d+2 (v′) ≥ 3 and so, by Proposition 2.15, v and v′

have degree at least 2 in Cm(D), a contradiction. Therefore d+(v) ≤ 2.

Suppose that there exists a vertex of indegree 2 that is a common prey of two

vertices x and y. Then x and y are adjacent in Cm(D) by Theorem 2.13(2). Therefore

x or y is the center of Cm(D). Thus part (3) is true.

We call a directed cycle C in a digraph D an induced directed cycle if C is an

induced subdigraph of D.

Theorem 2.25. Let D be a loopless digraph whose m-step competition graph is a

star graph. If D has no sources, then m = 2 and D is isomorphic to the digraph

given in Figure 2.3.

Proof. Suppose that D has no sources. Then, by Theorem 2.16, D has a directed

cycle. We first claim that each directed cycle in D has length at least m. To reach

a contradiction, suppose that there exists a directed cycle C := v0 → v1 → · · · →
vl−1 → v0 of length l ≤ m− 1. Since D is loopless, l ≥ 2 and m ≥ 3.

Suppose that C is not an induced directed cycle. Then, since D is loopless, l ≥ 3.

Moreover, there is an arc (vi, vj) for some i, j ∈ {0, 1, . . . , l − 1} so that it together

with a section of C forms a directed cycle of length at most l − 1. Without loss of

generality, we may assume that i = 0. Then j /∈ {0, 1} and vj is a common prey

of v0 and vj−1. Accordingly, vj is a 2-step common prey of vl−1 and vj−2. Therefore

v0vj−1 and vl−1vj−2 are edges in Cm(D) by Theorem 2.13(2). Thus Cm(D) is not a

star graph, a contradiction. Hence C is an induced directed cycle.

Suppose, to the contrary, that no vertex in V (D) − V (C) has a prey in V (C).

Then, since C is an induced directed cycle, each vertex on C has exactly one m-step

predator in D. Therefore each vertex on C is the anomaly by Corollary 2.11(2). Since
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l ≥ 2, we reach a contradiction to the uniqueness of the anomaly. Therefore there

exists a vertex a in V (D)− V (C) that has a prey on C. Without loss of generality,

we may assume that v0 is a prey of a. Therefore v0 is a common prey of a and

vl−1 and so, by Theorem 2.13(2), avl−1 is an edge in Cm(D). Thus a or vl−1 is the

center of Cm(D). On the other hand, since a is not source, a has a predator b. To

show b 6= vl−2, suppose b = vl−2. Then {a, vl−1} ⊆ N+(vl−2). Therefore d+2 (vl−3) ≥ 2

and d+3 (vl−4) ≥ 2 (we assume that each subscript of the vertices on C is reduced

to modulo l). Thus each of vl−2, vl−3, and vl−4 has an m-step outdegree at least 2

by Theorem 2.13(3). Hence vl−2 = vl−4 by Lemma 2.24(1) and so l = 2. Then we

can check that d+(v0) ≥ 2, d+2 (v1) ≥ 2, and d+2 (a) ≥ 2. Therefore each of v0, v1,

and a has an m-step outdegree at least 2 by Theorem 2.13(3), which contradicts

Lemma 2.24(1). Thus

b 6= vl−2.

If b is distinct from vl−1, then vl−2 and b are adjacent since v0 is a 2-step common

prey of vl−2 and b, a contradiction to the fact that a or vl−1 is the center of Cm(D).

Therefore b = vl−1. Thus v0 is a 3-step common prey of vl−2 and vl−3 and so, by

Theorem 2.13(2), vl−2vl−3 is an edge in Cm(D). Hence vl−2 or vl−3 is the center of

Cm(D). Then, since vl−2 6= vl−1, and a or vl−1 is the center of Cm(D), vl−1(= vl−3) is

the center of Cm(D). Therefore l = 2. Thus v0 → v1 → a→ v0 and a→ v0 → v1 → v0

and so, by Theorem 2.13(2), v0a is an edge in Cm(D), which contradicts the fact that

v1 is the center of Cm(D).

Hence we have shown that

(∗) each directed cycle in D has length at least m.

Since D is loopless and has no sources,

d+(v) ≤ 2 (2.18)

for each vertex v in D by Lemma 2.24(2). If each vertex has outdegree 1, then each

vertex has indegree 1 since D has no sources, and so Cm(D) is edgeless. Therefore
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there exists a vertex u of outdegree at least 2. Thus

d+(u) = 2 (2.19)

by (2.18). Since D has no sources, there exists a directed walk

W := x→ y → u (2.20)

in D. Suppose, to the contrary, that m ≥ 3. Then, by (∗), x, y, and u are distinct.

Since d+(u) = 2, d+3 (x) ≥ 2, and d+2 (y) ≥ 2. Therefore each of x, y, u has m-step

outdegree at least 2 by Theorem 2.13(3), which contradicts Lemma 2.24(1). Thus

m ≤ 2 and so

m = 2.

Let c be the center of C2(D). Since d+2 (v) ≤ 4 for each vertex v in D by (2.18), c

has degree at most 4 in C2(D) by Lemma 2.5(2) and so |V (D)| ≤ 5. Since |V (D)| >
m = 2, |V (D)| ∈ {3, 4, 5}.

Suppose |V (D)| = 3. Then, since u 6= y, V (D) = {u, y, z}. By Theorem 2.16,

there exists a directed cycle in D. We take a longest directed cycle C of length l.

Then, since D is loopless and |V (D)| = 3, l = 2 or 3. If l = 2, then, by Theorem 2.16,

D is isomorphic to the digraph given in Figure 2.7 and so C2(D) has an isolated

vertex, a contradiction. Thus l = 3. Then C = u→ z → y → u or u→ y → z → u.

We note that N+(u) = {y, z} and, by (2.20), y → u. To show C = u→ z → y → u,

suppose C = u → y → z → u. Then u is a common prey of y and z and z is

a common prey of u and y, so, by Theorem 2.13(2), yz, uy are edges in C2(D).

Moreover, z is a 2-step common prey of u and z, and so uz is an edge in C2(D).

Thus C2(D) is a triangle, which contradicts the fact C2(D) is a star. Therefore

C = u→ z → y → u. Since u has outdegree 2 by (2.19), u→ y. Therefore we obtain

a subdigraph isomorphic to the one given in Figure 2.3. Thus y is a common prey

of u and z and y is a 2-step common prey of u and y. Hence uz and uy are edges

in C2(D) by Theorem 2.13(2). Now it is easy to check that adding more arcs to the

digraph given in Figure 2.3 results in the edge joining y and z in C2(D). Therefore
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we conclude that D is isomorphic to the one given in Figure 2.3.

Now suppose that |V (D)| = 4 or 5. Then c has at least three 2-step prey and so

d+(c) = 2

by (2.18). Let u1 and u2 be the prey of c. If each of u1 and u2 has outdegree 1, then

c has at most two 2-step prey, which is impossible. Therefore at least one of them

has outdegree 2. Without loss of generality, we may assume that u1 has outdegree 2.

Then c and u1 are the only vertices of outdegree 2 by Lemma 2.24(1). Hence u2 has

outdegree 1 by (2.18). Moreover, c has at most three 2-step prey and so c has degree

at most 3 in C2(D). Therefore |V (D)| = 4. Thus c has degree 3 in C2(D).

By Lemma 2.5(2), each vertex is a 2-step common prey of at most two vertices.

Therefore c has exactly three 2-step prey in D. Let x be one of them. Then, other

than c, there is exactly one 2-step predator of x. We denote it by x̃. Then, for distinct

2-step prey x and y of c, x̃ 6= ỹ. Suppose that u1 has indegree 1. If some prey d of u1

has indegree 1, then d is a 2-step prey of c and N−2 (d) = {c}, which contradicts the

existence of d̃. Therefore each prey of u1 has indegree 2. Thus, by Lemma 2.24(3),

each prey of u1 is a prey of c. Since D is loopless and u1 has outdegree 2, d+(c) ≥ 3,

a contradiction. Thus u1 has indegree 2 and |N−(u1)− {c}| = 1. Then the vertex in

N−(u1)−{c} is a 2-step common predator of the two prey w and z of u1. Now, even

if w 6= z, w̃ = z̃, a contradiction. Hence the statement is true.

Lemma 2.26. Let D be a windmill digraph or an m-conveyor digraph. Then Cm(D)

is a star graph.

Proof. We suppose that D is a windmill digraph with the source v. Then v and

another vertex w have a common prey by (W2) and (W3). Therefore, by (W2), v

and w have an m-step common prey for any m ≥ 1 and so v and w are adjacent in

Cm(D). By (W1) and (W2), any two vertices other than v cannot have an m-step

common prey for any m ≥ 1. Thus Cm(D) is a star graph with the center v.

Now we suppose that D is an m-conveyor digraph with the loop v satisfying (M1)

and (M2). Thus any vertex w other than v has a unique m-step prey x on a directed
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cycle containing w and w is the only m-step predator of x in V (D) − {v}, and so

w is not adjacent to any vertex belonging to V (D) − {v} in Cm(D). Since D is a

weakly connected digraph, by (M2), each directed cycle in D − v has a vertex that

is a prey of v and so there exists an internally secure lane W in D containing x. By

(M3), W has length at most m. Since v is incident to a loop by (M1), we may obtain

a directed walk of length m from v to x by using the loop incident to v. Hence x is

an m-step common prey of v and w and so v and w are adjacent in Cm(D), which

implies that Cm(D) is a star graph with the center v.

Lemma 2.27. Let D be a tree-inducing digraph whose m-step competition graph is

a star graph. Then D is duck-free.

Proof. Suppose, to the contrary, that D contains a subdigraph H isomorphic to a

duck digraph (see Figure 2.6 for an illustration). Then, by Corollary 2.20, m = 2.

Let v1 and v2 be the neck vertex and the tail vertex, respectively, of H. By the

definition of a duck digraph, {(v1, v1), (v1, v2), (v2, v1)} ⊆ A(D). It is easy to check

that {v1, v2} ⊆ N−2 (v1) and {v1, v2} ⊆ N−2 (v2). By Lemma 2.5(2),

N−2 (v1) = N−2 (v2) = {v1, v2}.

Since a predator of v1 or v2 would belong to N−2 (v1),

N−(v1) = {v1, v2} and {v1} ⊆ N−(v2) ⊆ {v1, v2}. (2.21)

To show N+(v1) = {v1, v2} by contradiction, suppose that there exists a vertex v3

distinct from v1 and v2 in N+(v1). Then {v1, v2, v3} ⊆ N+
2 (v1) ∩ N+

2 (v2). Therefore

one of v1, v2, v3 is the anomaly of D by Corollary 2.11(1). Thus |N+
2 (v1)∩N+

2 (v2)| = 2

by Corollary 2.12(i), which contradicts the fact that {v1, v2, v3} ⊆ N+
2 (v1)∩N+

2 (v2).

Hence

N+(v1) = {v1, v2}. (2.22)

If N+(v2) ⊆ {v1, v2}, then H is a component of Cm(D) by (2.21) and (2.22), which

contradicts the hypothesis that C2(D) is a star graph with at least three vertices
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(a tree-inducing digraph has at least three vertices by definition). Therefore there

exists a vertex v3 in N+(v2) − {v1, v2}. If v3 is incident to a loop, then v1, v2, and

v3 are 2-step predators of v3, which contradicts Lemma 2.5(2). Therefore v3 is not

incident to a loop. Moreover, v3 has outdegree at least 1 by Lemma 2.5(1). Then,

by (2.21), neither v1 nor v2 can be a prey of v3, so there must be a vertex v4 in

N+(v3) − {v1, v2, v3}. Therefore {v1, v2, v4} ⊆ N+
2 (v2) and {v1, v2, v3} ⊆ N+

2 (v1).

Thus each degree of v1 and v2 is at least 2 in C2(D) by Proposition 2.15. Hence

C2(D) is not a star graph, a contradiction.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. To show the “only if” part, suppose that there exists a digraph

D with n vertices whose m-step competition graph is a star graph for some 2 ≤ m <

n. Then D is duck-free by Lemma 2.27. If D has a source, then D is a windmill

digraph by Theorem 2.23. Suppose that D has no sources. If D is loopless, then (iii)

is true by Theorem 2.25. Now we suppose that D has a loop. We will show that D is

an m-conveyor digraph. Since D has a loop and D is duck-free, there exists a vertex

v such that N−(v) = {v} and d+(v) ≥ 2 by Theorem 2.21. Since N−(v) = {v}, (M1)

is satisfied and v is the only m-step predator of v. Then, by Corollary 2.11(2), v is

the anomaly.

To reach a contradiction, suppose that there exists a vertex w distinct from v hav-

ing outdegree at least 2. Then d+i (w) ≥ 2 for each 1 ≤ i ≤ m by Theorem 2.13(3). If w

has degree 1 in Cm(D), then v ∈ N+
m(w) by the “especially” part of Proposition 2.15,

which contradicts the fact that v is the only m-step predator of v. Therefore w has

degree at least 2 in Cm(D) and so w is the center of Cm(D). Since D has no sources,

w has a predator x. Since N+
m−1(w) ⊆ N+

m(x), x has at least two m-step prey each

of which is not v. Then, since v is the anomaly, x has degree at least 2 by Propo-

sition 2.15, and so x is the center of Cm(D). Thus x = w. Since x was arbitrarily

taken, N−(w) = {w}. Consequently, w is the anomaly by Corollary 2.11(2). Then,

since v 6= w, we reach a contradiction to the uniqueness of the anomaly. Therefore v

is the only vertex of outdegree at least 2 in D and so, by Lemma 2.5(1), each vertex

in V (D) − {v} has outdegree 1. Thus any pair of vertices in V (D) − {v} has no

45



common prey by Proposition 2.8. Hence D − v is a vertex-disjoint union of directed

cycles by Lemma 2.22 and so (M2) is satisfied.

Suppose that there exists an internally secure lane W of length at least m + 1.

Then the mth interior vertex v′ on W has exactly one m-step predator in D. Thus

v′ is the anomaly in D by Corollary 2.11(2). However, since N−(v) = {v}, we obtain

v′ 6= v and so we reach a contradiction to the uniqueness of the anomaly. Therefore

each internally secure lane of D has length at most m and so (M3) is satisfied. Thus

D is an m-conveyor digraph. Hence the “only if” part is true.

Now we show the ‘if” part. If D is a windmill digraph or an m-conveyor digraph,

then Cm(D) is a star graph by Lemma 2.26. In addition, it is easy to check that the

2-step competition graph of the digraph given in Figure 2.3 is a star graph. Therefore

the “if” part is true and so this completes the proof.
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Chapter 3

On (1, 2)-step competition graphs of multi-

partite tournaments1

Recall that given positive integers i and j, the (i, j)-step competition graph Ci,j(D)

of D is the graph which has the same vertex set as D and has an edge between two

distinct vertices u and v if and only if either dD−v(u,w) ≤ i and dD−u(v, w) ≤ j or

dD−v(u,w) ≤ j and dD−u(v, w) ≤ i. (Definition 1.9).

For a digraph D, we say that vertices u and v in D (1, 2)-compete provided there

exists a vertex w distinct from u, v and satisfying one of the following:

• there exists an arc (u,w) and a directed (v, w)-path of length 2 not traversing

u;

• there exists a directed (u,w)-path of length 2 not traversing v and an arc (v, w).

We call w in the above definition a (1, 2)-step common out-neighbor of u and v.

It is said that two vertices compete if they have a common out-neighbor. Thus,

uv ∈ E(C1,2(D)) if and only if u and v compete or (1, 2)-compete. In such a case, we

say that u and v {1, 2}-compete in D. If two vertices of a digraph D are adjacent in

C1,2(D), then we just say that they are adjacent in the rest of this chapter.

1The material in this chapter is written based on the manuscript ‘On (1, 2)-step competition
graphs of multipartite tournaments’ by Myungho Choi and Suh-Ryung Kim. The author thanks
Prof. Suh-Ryung Kim for allowing him to use its contents for his thesis.
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We call an orientation of complete k-partite graph for some positive integer k

a k-partite tournament. A k-partite tournament for some integer k ≥ 3 is called a

multipartite tournament while a 2-partite tournament are called a bipartite tourna-

ment. A tournament of order n may be regarded as an n-partite tournament for some

positive integer n.

Let D be a multipartite tournament. For simplicity, we call a partite set of D

clique if it forms a clique in C1,2(D). If a partite set of D is not clique, we say that

it is non-clique. In this thesis, we first completely characterize C1,2(D) when each

partite of D is clique (Theorem 3.18, and the “especially” part of Theorem 3.19)

and the size of partite sets of D when C1,2(D) is complete (Theorem 3.25). Even if

there exists a non-clique partite set, we figure out most of the structure of C1,2(D)

(Theorems 3.9 and 3.16). Then we show the diameter of each component of C1,2(D)

is at most three (Theorem 3.26) and provide a sharp upper bound on the domination

number of C1,2(D) (Theorem 3.27). In addition, we list all possible C1,2(D) when D

has no vertices of outdegree 0 and C1,2(D) is disconnected (Theorem 3.30). Finally,

we give a sufficient condition for C1,2(D) being an interval graph (Theorem 3.37).

3.1 Preliminaries

Let D be a multipartite tournament. We call a vertex of outdegree 0 in a digraph

D a sink of D. It is obvious that each non-sink vertex has at least one out-neighbor.

For a non-sink vertex u and a vertex v, u
∗→ v means that v is the only out-neighbor

of u. We write u 6 ∗→ v for the negation of u
∗→ v, that is, there is an out-neighbor

of u distinct from v. Given a vertex set T of D, we say a vertex v is T -biased if

N+(v)∩T 6= ∅ and N+(v) ⊂ T . See the digraph given in Figure 3.1 for an illustration.

By definition, if two vertices u and v are X-biased for some partite set X of a

multipartite tournament, then u and v cannot (1, 2)-compete. We may ask if the

converse is true. By the way, as long as u and v belong to the same partite set of

a multipartite tournament, the answer is yes. For, by the structure of multipartite

tournaments, non-sink vertices u and v in the same partite set of a multipartite

tournament (1, 2)-compete if an out-neighbor of u and an out-neighbor of v belong
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Figure 3.1: {v1, v2}, {v3}, and {v4, v6} are the sets of X2-biased vertices, X3-biased
vertices, and X1-biased vertices, respectively.

to distinct partite sets. Thus we have shown the following.

Proposition 3.1. Let D be a multipartite tournament and u and v be two non-sink

vertices belonging to the same partite set in D. Then u and v do not (1, 2)-compete

if and only if u and v are X-biased for some partite set X of D

Proposition 3.2. Let D be a multipartite tournament and u and v be two non-sink

vertices belonging to the same partite set in D. Then the following are equivalent:

(i) u and v are not adjacent;

(ii) N+(u) ∩N+(v) = ∅ and, u and v are X-biased for some partite set X of D

Proof. By Proposition 3.1, N+(u) ∩N+(v) = ∅ and, u and v are X-biased for some

partite set X in D if and only if u and v neither compete nor (1, 2)-compete in D,

equivalently, u and v are not adjacent.

Proposition 3.3. Let D be a digraph. Suppose u
∗→ v for some vertices u and v in

D. Then u and v are not adjacent.

Proof. Since u
∗→ v, each directed path from u to z must traverse v, so dD−v(u, z) 6=

1, 2 for each vertex z in V (D) \ {u, v}. Therefore uv /∈ E(C1,2(D)).
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Proposition 3.4. Let D be a multipartite tournament and u and v be two non-sink

vertices with (u, v) ∈ A(D) belonging to the distinct partite sets in D. Then the

following are equivalent:

(i) u and v are not adjacent;

(ii) either u
∗→ v, or N+(u)∩N+(v) = ∅ and v is X-biased and u is X∪{v}-biased

for some partite set X.

Proof. We first show that (ii) implies (i). If u
∗→ v then u and v are not adjacent

by Proposition 3.3. Suppose that u 6 ∗→ v, N+(u) ∩N+(v) = ∅, and v is X-biased for

some partite set X and u is X ∪ {v} biased. Then

(N+(u) ∪N+(v)) \ {u, v} ⊆ X. (3.1)

Suppose, to the contrary, that u and v are adjacent. Then, since N+(u)∩N+(v) = ∅,
u and v must (1, 2)-compete. Let w be a (1, 2)-step common out-neighbor of u and

v. Without loss of generality, we assume that there exist a directed (u,w)-path P =

u → u′ → w for some vertex u′ and an arc (v, w). Then u′ and w are out-neighbor

of u and v, respectively, distinct from u and v. Therefore {u′, w} ⊆ X by (3.1).

However, (u′, w) is an arc on P and so we reach a contradiction. Thus u and v are

not adjacent.

Now we show that (i) implies (ii). Suppose that u and v are not adjacent. Then

u and v have no common out-neighbor. If u
∗→ v, then we are done. Suppose u 6 ∗→ v.

Then N+(u) \ {v} 6= ∅. Since N+(v) \ {u} 6= ∅, there exist an out-neighbor x of u

and an out-neighbor y of v distinct from v and u, respectively. If x and y belong

to different partite sets, then (x, y) or (y, x) ∈ A(D) and so u and v (1, 2)-compete,

which is a contradiction. Therefore x and y belong to the same partite set. Since x

and y are arbitrarily chosen, we conclude that v is X-biased and u is X ∪{v} biased

for some partite set X.

The following corollary is immediately true by Propositions 3.2 and 3.4.
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Corollary 3.5. Let D be a multipartite tournament and u, v be two vertices in D.

Suppose that u 6 ∗→ v, v 6 ∗→ u, and whenever v (resp. u) is X-biased for some partite

set X, u is not X ∪ {v}-biased (resp. v is not X ∪ {u}-biased). Then u and v are

adjacent.

A stable set of a graph is a set of vertices no two of which are adjacent. A stable

set in a graph is maximum if the graph contains no larger stable set.

As we characterized complete k-partite graphs which can be oriented to become k-

partite tournaments whose (1, 2)-step competition graph are complete, we take a look

at multipartite tournaments whose (1, 2)-step competition graphs have maximum

stable sets of sizes at least two.

We note that the (1, 2)-step competition graph of a multipartite tournament of

order n with a sink constituting a trivial partite set is isomorphic to Kn−1 ∪K1. In

this vein, we only consider a multipartite tournament without a trivial partite set

consisting of a sink in the rest of this chapter.

3.2 C1,2(D) with a non-clique partite set of D

In this section, we characterize (1, 2)-step competition graphs of multipartite tour-

naments with a non-clique partite set.

By our assumption that any multipartite tournament does not have a trivial

partite set consisting of a sink, a multipartite tournament with a sink has a non-

clique partite set.

We need the following proposition to characterize (1, 2)-step competition graphs

of multipartite tournaments with a non-clique partite set.

Given a multipartite tournament D, we say that a vertex set S of D is a {1, 2}-
stable set if no two vertices in S {1, 2}-compete. We note that a vertex set S of D is

a {1, 2}-stable set if and only if S is a stable set of C1,2(D).

Proposition 3.6. Let D be a multipartite tournament with a {1, 2}-stable set S of

size at least two. If S is contained in one partite set X of D, then the following parts

are valid:
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(1)
⋃

u∈S N
+(u) is contained in one partite set unless S contains a sink and exactly

one non-sink vertex;

(2) if S has at least three vertices, then any pair of vertices in V (D) \ X has a

common out-neighbor in S;

Proof. Suppose that S is contained in a partite set X of D. Suppose that S contains

a sink. Then there exist at least two non-sink vertices x and y and so, by Proposi-

tion 3.2, N+(x) ∪ N+(y) is contained in a partite set X ′ of D. Since x and y were

arbitrarily chosen from S, each non-sink vertex in S is X ′-biased. Therefore the part

(1) is true. Now we suppose that S contains no sinks. Since no two vertices in S

{1, 2}-compete, that is, no two vertices in S are adjacent, the part (1) is true by

Proposition 3.2.

To show the part (2), we assume |S| ≥ 3. Since no two vertices in S {1, 2}-
compete, each vertex in V (D) \ X has at least |S| − 1 out-neighbors in S. Since

|S| ≥ 3, 2(|S| − 1) > |S| and so, by the Pigeonhole principle, there exists a common

out-neighbor in S of each pair of vertices in V (D) \ X. Therefore the part (2) is

true.

From now on, when we mention a k-partite tournament D with a non-clique

partite set X1 for some k ≥ 3, we assume that X2, . . . , Xk are the remaining partite

sets of D. Then

• if D has a sink u, then u is contained in X1.

Take a k-partite tournament D with a non-clique partite set X1 for some k ≥ 3.

We first consider the case where D has a sink u. Then

N−(u) = V (D) \X1. (3.2)

Suppose that a vertex v in X1 has two out-neighbors w and x belonging to distinct

partite sets. Then we take a non-sink vertex y. If y ∈ V (D) \X1, then u is an out-

neighbor of y and so, by Corollary 3.5, v and y are adjacent. If y ∈ X1, then an
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out-neighbor of y and at least one of w or x belong to distinct partite sets and so,

by the same corollary, v and y are adjacent. Thus we may conclude that

I. if D has a sink and a vertex in X1 has out-neighbors in distinct partite sets,

then it is adjacent to all the non-sink vertices (refer to the blocks in the row

and column corresponding to X∗1 of Figure 3.2).

Now we consider the case where D has no sinks. Let S be a {1.2}-stable set

included in X1. Suppose that a vertex u in X1 has two out-neighbors x1 and x2

belonging to distinct partite sets. Then u /∈ S by Proposition 3.6(1), Moreover, u

is adjacent to every vertex in X1 by Corollary 3.5. Since |S| ≥ 2, each vertex in

V (D)\X1 has at least one out-neighbor in S. Therefore u is adjacent to every vertex

in X by Corollary 3.5. Thus we may conclude that

II. if D has no sink and a vertex in X1 has out-neighbors in distinct partite sets,

then it is a universal vertex (refer to the blocks in the row and column corre-

sponding to X∗1 of Figure 3.2).

By Observations I and II, we have the following proposition.

Proposition 3.7. Let D be a k-partite tournament D with a non-clique partite set

X1 for some k ≥ 3. If a vertex in X1 has out-neighbors in distinct partite sets, then

the vertex is adjacent to all the non-sink vertices.

Hence, in order to characterize C1,2(D) for a multipartite tournament D with a

non-clique partite set X1, it remains to take a look at a vertex in X1 with all of its

out-neighbors in the same partite set.

If a k-partite tournament D with a non-clique partite set X1 has a {1, 2}-stable set

S with size at least two inX1 unless S contains a sink and exactly one non-sink vertex,

then each vertex of S is Xj-biased for some j ∈ {2, . . . , k} by Proposition 3.6(1). We

may assume j = 2, i.e. each vertex in S is X2-biased for any k-partite tournament D

with a non-clique partite set X1 and a {1, 2}-stable set S of size at least two in X1.

Theorem 3.8. Let D be a multipartite tournament with a non-clique partite set X1.

Then the following parts are valid:
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(1) For 2 ≤ i ≤ k, each Xi-biased vertex belongs to X1;

(2)
⋃k

i=3Xi forms a clique in C1,2(D) and each vertex in
⋃k

i=3Xi is adjacent to

each vertex in X2 in C1,2(D);

(3) each Xi-biased vertex is adjacent to each Xj-biased vertex and each vertex in

Xj for distinct integers 2 ≤ i, j ≤ k;

(4) a Xi-biased vertex x is not adjacent to a vertex y in Xi for some i ∈ {2, . . . , k}
if and only if x

∗→ y or y
∗→ x;

(5) if D has a sink or {1, 2}-stable set of size at least three in one partite set, then

X2 forms a clique in C1,2(D).

Proof. We first show the parts (1) and (2). Let S be a {1, 2}-stable set with size two

in X1. Then each vertex in
⋃k

i=2Xi has an out-neighbor in S ⊆ X1. Therefore no

vertex in
⋃k

i=2Xi is a Xi-biased for any 2 ≤ i ≤ k and so the part (1) is true.

For simplicity, let Fi denote the set of Xi-biased vertices for each 2 ≤ i ≤ k.

If S contains a sink u, then u is an out-neighbor of each vertex in
⋃k

i=3Xi and so⋃k
i=3Xi forms a clique in C1,2(D). Suppose that S does not contain a sink. Then

S ⊆ F2 by the assumption. Therefore the out-neighborhood of each vertex in S is

included in X2. Thus each vertex in S is an out-neighbor of each vertex in
⋃k

i=3Xi.

Hence
⋃k

i=3Xi forms a clique in C1,2(D). In addition, since each vertex in X2 has an

out-neighbor in S ⊆ X1, each vertex in
⋃k

i=3Xi is adjacent to each vertex in X2 in

C1,2(D) and so the part (2) is true.

To show the part (3), take two vertices v ∈ Fi and x ∈ Xj∪Fj for distinct i and j

in {2, . . . , k}. If x ∈ Fj, then {v, x} ⊆ X1 by the part (1) and so, by Corollary 3.5, v

and w are adjacent. Suppose x ∈ Xj. Then x is not an out-neighbor of v. Therefore v

is an out-neighbor of x. Moreover, since v ∈ Fi, v has an out-neighbor distinct from

x. Thus, by Corollary 3.5, it is suffices to show that x has an out-neighbor distinct

from v. If S has a sink u, then u is an out-neighbor of x distinct from v and we are

done. Therefore we assume that S has no sinks.
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Suppose j 6= 2. Then, since S ⊆ F2 by the assumption, each vertex in S cannot

have x ∈ Xj as an out-neighbor. Therefore S ⊆ N+(x). Thus x has at least two out-

neighbor in S ⊆ X1 since |S| ≥ 2. Hence x has an out-neighbor in X1 distinct from

v. Now we suppose j = 2. Then i 6= 2. Since |S| ≥ 2, x has at least one out-neighbor

x′ in S. Since S ⊆ F2 by the assumption, x′ is distinct from v. In each case, x has an

out-neighbor in X1 distinct from v. Therefore v and x are adjacent by Corollary 3.5.

Since v and x were arbitrarily chosen from Fi and Xj, respectively, the part (3) is

true.

The “if” part of the part (4) is true by Proposition 3.3. To show the “only if”

part of the part (4), suppose, to the contrary, that there exist a vertex x in Fi and a

vertex y in Xi for some i ∈ {2, . . . , k} such that they are not adjacent, N+(x) 6= {y},
and N+(y) 6= {x}. Then, since x and y are non-sink vertices, N+(x) \ {y} 6= ∅ and

N+(y) \ {x} 6= ∅. Since y ∈ Xi, (N+(y) \ {x}) ∩Xj 6= ∅ for some j distinct from i.

In addition, since x ∈ Fi, ∅ 6= N+(x) \ {y} ⊂ N+(x) ⊂ Xi. Therefore x and y are

adjacent by Corollary 3.5, a contradiction.

The part (5) is an immediate consequence of (3.2) and Proposition 3.6(2).

Proposition 3.7 and Theorem 3.8 may be summarized as follows.

Theorem 3.9. Let D be a multipartite tournament with a non-clique partite set X1

and U be the set of sinks in D (U is possibly vacuous). Then the adjacency matrix

of C1,2(D) is in the form given in Figure 3.2.

By Theorem 3.9, we have the following corollary.

Corollary 3.10. Let D be a multipartite tournament with a non-clique partite set.

Then the following are true:

(1) each component of C1,2(D) has diameter of at most two;

(2) D has no sinks if and only if C1,2(D) is connected;

(3) each stable set of C1,2(D) is contained in at most two partite sets of D.
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U F2 F3 · · · Fk X∗1 X2 X3 · · · Xk



U O O O · · · O O O O · · · O
F2 O ? J · · · J J ? J · · · J
F3 O J ? · · · J J J ? · · · J
...

...
...

...
. . .

...
...

...
...

. . .
...

Fk O J J · · · ? J J J · · · ?
X∗1 O J J · · · J J − I J J · · · J
X2 O ? J · · · J J M J · · · J
X3 O J ? · · · J J J J − I · · · J
...

...
...

...
. . .

...
...

...
...

. . .
...

Xk O J J · · · ? J J J · · · J − I

Figure 3.2: The adjacency matrix of C1,2(D) for a multipartite tournament D with a
non-clique partite set X1 where U is the set of sinks in D (U is possibly vacuous); Fi,
O, J , and I stand for the set of Xi-biased vertices, a zero matrix, a matrix of all 1’s,

and an identity matrix, respectively; X∗1 = X1 \
(⋃k

i=2 Fi ∪ U
)

; M is undetermined,

yet, if D has a sink or {1, 2}-stable set of size at least three in one partite set, then
M = J − I; Blocks marked with ? are undetermined.
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Proof. By Theorem 3.9, the adjacency matrix of C1,2(D) is in the form of the matrix

given in Figure 3.2. Therefore it is easy to see from the matrix given in Figure 3.2

that any pair of vertices of each component is at distance at most two and so the

part (1) is true. Moreover, C1,2(D) is connected if and only if U = ∅, which can be

seen from the matrix given in Figure 3.2. By Theorem 3.9, U is the set of sinks in

D. Therefore D has no sinks if only if U = ∅. Thus the part (2) is true.

Now we prove the part (3). Since D has a non-clique partite set, a stable set S of

C1,2(D) intersects with at most one partite set among X2, . . . , Xk by Theorem 3.8(2).

Therefore S intersects with at most two partite sets of D.

Motivated by Corollary 3.10(3), we may ask the question “Given a multipartite

tournamentD, what is a biggest set among the {1, 2}-stable sets that are not included

in any partite set of D?” Given a positive integer m ≥ 2 and a tripartite tournament

D of order m+ 1 with m−1 sinks constituting one partite set, C1,2(D) is isomorphic

to K2 with m − 1 isolated vertices and so a biggest {1, 2}-stable set of D has size

m. However, if a multipartite tournament D has no sinks, then the size of such a

{1, 2}-stable set of D is at most four, which is told by Theorem 3.12.

To justify Theorem 3.12, we need the following lemma.

Lemma 3.11. Let D be a digraph having a directed cycle C of order l for some

l ∈ {3, 4} and X be a subset of V (D). Suppose that each vertex u in X \ V (C) has

two out-neighbors u1 and u2 on C such that both (u1, u2)-section and (u2, u1)-section

of C have length at most 2. Then each vertex in X \ V (C) is adjacent to each vertex

in X in C1,2(D).

Proof. We take a vertex u in X \ V (C). Let u1 and u2 be out-neighbors of u on C

satisfying the given condition. Without loss of generality, we may assume that the

(u1, u2)-section of C has length 2. Then u2 is a (1, 2)-step out-neighbor of u1 and

u. If l = 3, then u1 is a common out-neighbor of u2 and u. If l = 4, then u1 is a

(1, 2)-step common out-neighbor of u and u2. Any vertex on C other than u2 and u1

shares u2 or u1 as an out-neighbor with u.

Let v be a vertex distinct from u in X \V (C). If u and v do not share a common

out-neighbor on C, then l = 4 and u2 is a (1, 2)-step common out-neighbor of u and
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v.

Theorem 3.12. Let D be a multipartite tournament of order n with a {1, 2}-stable

set S which is not included in any partite set of D. Suppose that D has no sinks.

Then |S| ≤ 4. Especially, if |S| = 4, then the following are true:

(1) there exist two partite sets X1 and X2 of D such that |S ∩X1| = |S ∩X2| = 2;

(2) n ≥ 5 and C1,2(D) ∼= Kn − E(K4).

Proof. Let X1, . . . , Xk be the partite sets of D and

Λ = {i | S ∩Xi 6= ∅}.

Since there is no partite set of D including S, |Λ| ≥ 2. Suppose |Λ| ≥ 4. We take four

vertices in distinct partite sets of D. Then they induce the tournament T of order

4, so there exists a pair of vertices competing in T since T has four vertices and six

arcs. Therefore |Λ| ≤ 3. Suppose |S| ≥ 4. Then there exists a partite set including

at least two vertices in S. Therefore D has a non-clique partite set. Thus |Λ| ≤ 2 by

Corollary 3.10(3) and so |Λ| = 2. Hence |S ∩X1| = 2 and |S ∩X2| = 2 by (3) of the

same corollary for some partite sets X1 and X2 of D, and so |S| = 4. Hence we have

shown that |S| ≤ 4. In addition, we have shown that if |S| = 4, then there exist two

partite sets X1 and X2 of D such that |S ∩ X1| = |S ∩ X2| = 2 and so (1) of the

“especially” part is true.

To show (2) of the “especially” part, suppose |S| = 4. As we have shown (1)

of the “especially” part, there exist two partite sets X1 and X2 of D such that

|S ∩ X1| = |S ∩ X2| = 2. Then D has a non-clique partite set. In addition, since

k ≥ 3, there exists the partite set X3 with at least one vertex and so

n ≥ 5.

We note that S ∩X1 := {u1, u2} and S ∩X2 := {u3, u4} are stable sets of size two

in C1,2(D). Therefore neither u1 nor u2 is a common out-neighbor of u3 and u4 and
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vice versa. Without loss of generality, we may assume

{(u1, u3), (u2, u4), (u3, u2), (u4, u1)} ⊂ A(D).

Therefore each of u1 and u2, and each of u3 and u4 are X2-biased and X1-biased,

respectively, by Proposition 3.6(1). Now, since D has a non-clique partite set, by

Theorem 3.8(4),

u1
∗→ u3, u2

∗→ u4 u3
∗→ u2, and u4

∗→ u1.

Then the vertices in S form a directed cycle C := u1 → u3 → u2 → u4 → u1 of

order 4 in D. Take a vertex x in V (D) \V (C). If x ∈ X1 or x ∈ X2 , then {u3, u4} ⊆
N+(x) or {u1, u2} ⊆ N+(x). If x /∈ X1 ∪ X2, then V (C) ⊆ N+(x). Therefore x

has two out-neighbors y and z on C such that both (y, z)-section and (z, y)-section

of C have length at most 2. Since x was arbitrarily taken from V (D) \ V (C), we

conclude that each vertex in V (D) \ V (C) has two out-neighbors in S satisfying the

condition given in Lemma 3.11. Therefore each vertex in V (D) \ V (C) is adjacent

to each vertex in V (D) in C1,2(D). Then, since S = {u1, u2, u3, u4} is a stable set,

C1,2(D) ∼= Kn − E(K4).

Corollary 3.13. Let D be a multipartite tournament. If there exists a {1, 2}-stable

set of size at least four, then D has a non-clique partite set.

Proof. Suppose that D has a {1, 2}-stable set S of size at least four. If D has a

sink, then D has a non-clique partite set. Suppose D has no sinks. If there exists a

partite set containing S, then D has a non-clique partite set. If there is no partite set

containing S, then |S| = 4 and there exists a partite set X of D such that |S∩X| = 2

by Theorem 3.12, and so D has a non-clique partite set.

Now we characterize the (1, 2)-step competition graph of a multipartite tourna-

ment D if D has a sink or D has no sinks and C1,2(D) has a stable set S of size

at least 3 included in one partite set of D. For simplicity, we assign a type to each

multipartite tournament D whose (1, 2)-step competition graph in the following way:
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• Type I if D has a sink;

• Type II if D has no sinks and C1,2(D) has a stable set S of size at least 3

included in one partite set of D;

Let D be a k-partite tournament of Type I or II for some k ≥ 3 and U be the

(possibly vacuous) set of sinks in D and Fi denote the set of Xi-biased vertices for

each 2 ≤ i ≤ k. By Theorem 3.9, except that among the vertices in Fi and that

between Fi and Xi for each 2 ≤ i ≤ k, the adjacency between two vertices in C1,2(D)

is determined. Yet, Proposition 3.2 tells us that

P1. the vertex set and edge set of the subgraph of C1,2(D) induced by Fi are covered

by the set {N−(v) | v ∈ Xi} of cliques for each 2 ≤ i ≤ k.

We fix i ∈ {2, . . . , k} and take a vertex v in Xi. Take a vertex w ∈ N−(v)∩Fi. If v is

the only out-neighbor of a vertex w, then v is not adjacent to w by Proposition 3.3.

Now suppose that w has an out-neighbor other than v. Then it is easy to see that a

sink u or a vertex in S is a (1, 2)-step common out-neighbor of v and w. Since v was

arbitrarily chosen from Xi, we may conclude that for each 2 ≤ i ≤ k and v ∈ Xi,

P2. if a vertex w in N−(v)∩Fi has an out-neighbor other than v, then v and w are

adjacent in C1,2(D);

P3. if v is the only out-neighbor of a vertex w in N−(v)∩Fi, then v and w are not

adjacent in C1,2(D).

A vertex in N−(v)∩Fi and a vertex y in Xi distinct from v have a sink u or a vertex

in S as a (1, 2)-step common out-neighbor by (3.2) and Proposition 3.6(2), so

P4. each vertex in N−(v) ∩ Fi and each vertex in Xi distinct from v are adjacent

in C1,2(D) .

If a graph G is the (1, 2)-step competition graph of a multipartite tournament D of

Type I or II, then G satisfies the properties given in Theorem 3.9 and P1-P4. Then

we come up with a question,
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“Is any graph satisfying these properties the (1, 2)-step competition graph

of a multipartite tournament D of Type I or II?”

To answer this question, we consider the set G∗k of graphs G satisfying the good

property stated as follows:

The vertex set of G can be partitioned into {X1, . . . , Xk} for some k ≥ 3

so that the set U of isolated vertices or a stable set of size at least three

is included in X1 and there exist mutually disjoint subsets F2, . . . , Fk of

X1 \ U such that the adjacency matrix of G is in the form of the matrix

given in Figure 3.2 and F2, . . . , Fk satisfy the following covering condition:

For each 2 ≤ i ≤ k, we may assign an empty set or a clique Kv ⊆ Fi to

each vertex v ∈ Xi so that

(1) the vertex set and edge set of the subgraph of G induced by Fi are

covered by Ki := {Kv | v ∈ Xi} in such a way that, for each vertex

v in Xi, a vertex in Kv is adjacent to v if and only if there is another

clique in Ki which covers it; each vertex not in Kv is adjacent to v;

(2) each vertex in Kv and each vertex in Xi \ {v} are adjacent in G;

Example 3.14. The graph given in Figure 3.3 belongs to G∗3 . To see why, we denote

it by G. We partition the vertex set of G into X1 = {x1, x2, x3}, X2 = {x4}, and

X3 = {x5} so that the set U := {x1} of isolated vertices in G is included in X1. Now

we let F2 = {x2, x3} and F3 = ∅. Then the adjacency matrix of G is in the form of

the matrix given in Figure 3.2 and so the good property is satisfied. Now we assign

{x2, x3} to x4 and ∅ to x5. Then the covering condition is satisfied. Therefore G ∈ G∗3 .

Example 3.15. The graph G obtained by deleting the edge x2x3 from the one

given in Figure 3.3 does not belong to G∗k for any k ≥ 3. To reach a contradiction,

suppose that G belongs to G∗k . Then V (G) is partitioned into X1, . . . , Xk for some

k ≥ 3 satisfying the conditions for a graph belonging to G∗k . The vertex x1 is the

only isolated vertex in G, so U = {x1} ⊆ X1. By the good property, there exist

mutually disjoint subsets F2, . . . , Fk of X1 \ U . Since the size of maximal clique of
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x2 x3

x4x5
x1

Figure 3.3: A graph belonging to G∗3

G is 2, k = 3 by the form of the adjacency matrix of G given in Figure 3.2. For the

same reason, x5 belongs to X2 or X3 and |X2| = |X3| = 1. Without loss of generality,

x5 ∈ X2 and x4 ∈ X3. Then, by the form of the matrix in Figure 3.2, {x2, x3} = F2

or {x2, x3} = F3. Since x4 is adjacent to neither x2 nor x3, {x2, x3} 6= F2. Therefore

{x2, x3} = F3. Then we must assign a clique to x4 to cover the vertices F3 by the

covering condition(1), which is impossible. Hence we have shown G /∈ G∗k .

Let D be a k-partite tournament of Type I or II for some k ≥ 3 and v be a vertex

in a partite set X of D not containing a sink or a stable set of C1,2(D) with size at

least three. Then we take N−(v)∩F as Kv for the pure in-neighborhood F of X and

so

(?) the (1, 2)-step competition graph of D belongs to G∗k .

Suppose that a graph G belonging to G∗k is the (1, 2)-step competition graph of some

k-partite tournament D for some integer k ≥ 3. If D is a multipartite tournament of

Type I or II, then the answer to the above question is yes.

Now we answer the proposed question.

Theorem 3.16. A graph G is the (1, 2)-step competition graph of a k-partite tour-

nament of Type I or II for some k ≥ 3 if and only if G ∈ G∗k

Proof. The “only if” part is immediately true by (?).

To show the “if” part, suppose G ∈ G∗k . Then, by the good property, V (G) is

partitioned into {X1, . . . , Xk} for some k ≥ 3 so that a stable set of size at least

three or the set U of isolated vertices in G is included in X1 and there exist mutually

disjoint subsets F2, . . . , Fk so that the adjacency matrix of G is in the form of the

matrix given in Figure 3.2 and F2, . . . , Fk satisfy the covering condition.

62



Given the empty graph with the vertex set V (G), we add the arcs in the following

way: We first add the following arc sets whether or not U = ∅:

{(Kv, v) | v ∈
k⋃

i=2

Xi, Kv 6= ∅} (3.3)

and
k⋃

i=2

{(v, Fi \ {Kv}) | Kv ⊆ Fi, v ∈ Xi} (3.4)

where Kv is assigned to v in the covering condition (1);

k⋃
i=2

{(v, w) | v ∈
⋃
j 6=i

Xj, w ∈ Fi}; (3.5)

{
(v, w) | v ∈ X1 \

(
U ∪

k⋃
i=2

Fi

)
, w ∈

k⋃
i=2

Xi

}
. (3.6)

If U 6= ∅, then we add the arc set

{(v, u) | v ∈
k⋃

i=2

Xi, u ∈ U}. (3.7)

Other than those arcs in the above sets, we add arcs arbitrarily oriented to complete

a k-partite tournament D with the partite sets X1, . . . , Xk. By (3.3) and (3.5), Fi is

the pure in-neighborhood of Xi for each 2 ≤ i ≤ k.

If U 6= ∅, then D has a sink by (3.7) and so D is of Type I.

Suppose U = ∅. Then G has a stable set S of size l for some integer l ≥ 3. By the

good property, S ⊆
⋃k

i=2 Fi. Then, by the form of the adjacency matrix of G given

in Figure 3.2, there exists a subset Fj including S for some integer j ∈ {2, . . . , k}.
By permuting partite sets, we may assume

S ⊆ F2. (3.8)
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Then, since F2 is the pure in-neighborhood of X2, N
+(s) ⊂ X2 for each vertex s in

S by (3.8). Since S is a stable set of G, there is no clique Kv in F2 containing any pair

of vertices of S and so, by (3.3) and (3.4), any pair of vertices of S has no common

out-neighbor in X2. Therefore S forms a stable set in C1,2(D) by Proposition 3.2.

Thus D is of Type II.

The (possibly vacuous) set U is the set of isolated vertices in C1,2(D). To see

why, take an isolated vertex x in C1,2(D) if any. Suppose, to the contrary, that x

is not a sink in D. If x ∈ V (D) \ X1, then x is not isolated in C1,2(D) by (3.7)

or Proposition 3.6(3). Therefore x ∈ X1. Since x is not a sink, there exists an out-

neighbor x′ of x in V (D)\X1 and so a sink u in U or a vertex s in S is an out-neighbor

of x′. Let y be an out-neighbor in U ∪S of x′. Then, since k ≥ 3, there exists a vertex

z distinct from x′ in V (D) \X1 such that y is a common out-neighbor of z and x′.

Since there is a (x, y)-directed path of length 2 in D, x is adjacent to z in C1,2(D),

which is a contradiction. Thus x is a sink in C1,2(D) and so x ∈ U . Hence the set of

isolated vertices in C1,2(D) is included in U . By (3.7), there is no arc outgoing from

a vertex in U . Consequently, U is the set of isolated vertices in C1,2(D).

Now we show that G is isomorphic to C1,2(D). We first show that the adjacency

matrix of C1,2(D) is in the form of the matrix given Figure 3.2, that is,

•
(
X1 \

(⋃k
i=2 Fi ∪ U

))
∪
⋃k

i=2Xi forms a clique in C1,2(D);

• The complete multipartite graph with the nonempty sets amongX1\
(⋃k

i=2 Fi ∪ U
)

,

F2, . . . , Fk as the partite sets is a subgraph of C1,2(D);

• If Fi 6= ∅ for some i ∈ {2, . . . , k}, then the complete bipartite graph with the

partite sets Fi and
⋃

j∈{2,...,k}\{i}Xj is a subgraph of C1,2(D).

By (3.6) and Corollary 3.5, X1 \
(⋃k

i=2 Fi ∪ U
)

forms a clique in C1,2(D). By

(3.7), (3.8), and Proposition 3.6(2),

(]) any pair of vertices in
⋃k

i=2Xi has a common out-neighbor in U or S.

Therefore
⋃k

i=2Xi forms a clique in C1,2(D). Moreover, any pair of a vertex in X1 \
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(⋃k
i=2 Fi ∪ U

)
and a vertex in

⋃k
i=2Xi has a (1, 2)-step common out-neighbor. Thus(

X1 \
(⋃k

i=2 Fi ∪ U
))
∪
⋃k

i=2Xi forms a clique in C1,2(D).

Since Kv were chosen to have {Kv | v ∈ Xi} cover Fi for each i = 2, . . . , n,

the nonempty sets among X1 \
(⋃k

i=2 Fi ∪ U
)

, F2, . . . , Fk form the partite sets of

complete multipartite graph contained in C1,2(D) by Proposition 3.6(2), (3.3), (3.6),

and Corollary 3.5. For the same reason, each sink or each vertex in S is a 2-step

out-neighbor of each vertex in Fi if Fi 6= ∅. Thus, by (]) and Theorem 3.8(3), the

complete bipartite graph with the partite sets Fi and
⋃

j∈{2,...,k}\{i}Xj is a subgraph

of C1,2(D) if Fi 6= ∅. Hence we have shown that the adjacency matrix of C1,2(D) is

in the form of the matrix given in Figure 3.2.

Now consider the adjacency of G not covered by the matrix given in Figure 3.2.

We first show that two vertices in Fi are adjacent in G if and only if they are adjacent

in C1,2(D) for each 2 ≤ i ≤ k. Suppose that two vertices v and w in Fi are adjacent

in G for some i ∈ {2, . . . , k}. Then v and w belong to Kx for some x ∈ Fi. By (3.3),

v and w are adjacent in C1,2(D). Now suppose that two vertices v and w in Fi are

not adjacent in G for some i ∈ {2, . . . , k}. Then there is no Kx for any x ∈ Xi such

that {v, w} ⊆ Kx. Therefore v and w has no common out-neighbor in D by (3.3),

(3.4) and (3.5). Thus they are not adjacent in C1,2(D) by Proposition 3.2.

Now we show that a vertex x in Fi and a vertex y in Xi are adjacent in G if and

only if they are adjacent in C1,2(D) for each 2 ≤ i ≤ k. Suppose that x is adjacent

to y in G. Then there exists a vertex z in Xi \ {y} such that x ∈ Kz by the covering

condition(1). Therefore (x, z) ∈ A(D) by (3.3). Thus u or a vertex in S is a (1, 2)-step

common out-neighbor of x and y by (3.7) and Proposition 3.6(2). Hence x and y are

adjacent in C1,2(D). Now we suppose x is not adjacent to y in G. Then x ∈ Ky and

x 6∈ Kz for any z ∈ Xi \ {y} by the covering condition(1). Therefore y is the only

out-neighbor of x by (3.3), (3.4), and (3.5). Thus x is not adjacent to y in C1,2(D)

by Proposition 3.3. Hence we have shown that G is isomorphic to C1,2(D).
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3.3 C1,2(D) without a non-clique partite set of D

In this section, we study a multipartite tournament without a non-clique partite sets,

that is, a multipartite tournament each of whose partite sets is clique in its (1, 2)-

step competition graph. By Corollary 3.13, each {1, 2}-stable set of a multipartite

tournament without a non-clique partite set has size at most three. In each case

of the sizes two and three, we will characterize the (1, 2)-step competition graph

of a multipartite tournament each of whose partite sets is clique with a maximum

{1, 2}-stable set of a given size to come up with Theorems 3.18 and 3.19, whichever

applicable.

Lemma 3.17. Let D be a multipartite tournament without sinks and a non-clique

partite set. Suppose D has a set S = {u1, u2} with u1
∗→ u2, For any {1, 2}-stable set

V of size 2 with V ∩ S = ∅, then the following are true:

(1) V = {v1, v2} with v1
∗→ v2;

(2) v1 and u1 belong to the same partite set of D, and v2 and u2 belong to distinct

partite sets of D.

Proof. Let X1 and X2 be partite sets of D containing u1 and u2, respectively. Then

N−(u1) = V (D)\(X1∪{u2}). Suppose that D has a {1, 2}-set {v1, v2} with {v1, v2}∩
S = ∅. If {v1, v2} ∩ X1 = ∅, then u1 is a common out-neighbor of v1 and v2, a

contradiction. Therefore {v1, v2} ∩ X1 6= ∅. Then, every partite set of D is clique,

not both v1 and v2 belong to X1. Without loss of generality, we may assume v1 ∈ X1

and v2 /∈ X1. Then, v1 and u1 belong to the same partite set, so they {1, 2}-compete.

Since v2 6= u2, u1 is an out-neighbor of v2. If v1 has an out-neighbor distinct from v2,

then, by Proposition 3.4, v1 and v2 {1, 2}-compete, a contradiction. Therefore

v1
∗→ v2

since v1 is not a sink. Then, since u1
∗→ u2 and u2 6= v2, u1 and v1 do not compete

and so u1 and v1 (1, 2)-compete. We also note that u1 and v1 are X2-biased and the
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partite set X containing v2. Then, by Proposition 3.2, X 6= X2. Therefore we have

shown that the parts are valid.

The complement of a graph G is a graph Ḡ on the same vertices such that two

distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G. A tree

containing exactly two non-pendant vertices is called a double-star. A caterpillar is

a tree in which all the vertices are within distance 1 of a central path.

Theorem 3.18. Suppose that a multipartite tournament D has a maximum {1, 2}-
stable set of size two and every partite set of D is clique. Then the complement of

C1,2(D) is one of the following types:

A. a star graph with isolated vertices;

B. a double-star graph with isolated vertices;

C. a disjoint union of at least two star graphs with isolated vertices;

D. a caterpillar which has at least one internal vertex of degree 2 with isolated

vertices.

Proof. Suppose that D has sinks. Since every partite set of D is clique, D has a sink

constituting a trivial partite set of D and so C1,2(D) is isomorphic to K|V (D)|−1 with

an isolated vertex. Therefore the complement C̄1,2(D) of C1,2(D) is of Type A.

Now we assume that D has no sinks. Let {u1, u2} be a {1, 2}-stable set in D, and

X1 and X2 be partite sets of D containing u1 and u2, respectively. Without loss of

generality, we may assume

(u1, u2) ∈ A(D).

If C1,2(D)− {u1, u2} is a complete graph, then C̄1,2(D) is of Type A of Type B.

Now we suppose that C1,2(D) − {u1, u2} is not a complete graph. Then there exist

two nonadjacent vertices v1 and v2 in C1,2(D)− {u1, u2}.
To show u1

∗→ u2, we suppose that u1 6
∗→ u2. Then u2 is not the only out-

neighbor of u1. Consequently, by Proposition 3.4, there exists a partite set X ′ such
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that ∅ 6= N+(u1) \ {u2} ⊆ X ′ and ∅ 6= N+(u2) \ {u1} ⊆ X ′. Then X ′ 6= X1 and

X ′ 6= X2. Thus N+(u1) ∩X2 = {u2} and N+(u2) ∩X1 = ∅.
Now we show that each of v1 and v2 has u1 or u2 as an out-neighbor. If v1 ∈ X1,

then u2 is an out-neighbor of v1 since N+(u2) ∩ X1 = ∅. If v1 ∈ X2, then u1 is an

out-neighbor of v1 since N+(u1) ∩X2 = {u2}. If v1 /∈ X1 ∪X2, then at least one of

u1 and u2 is an out-neighbor of v1 since u1 and u2 have no common out-neighbor.

Therefore v1 has u1 or u2 as an out-neighbor. By symmetry, v2 has u1 or u2 as an

out-neighbor. Thus v1 and v2 {1, 2}-compete and we reach a contradiction. Hence

u1
∗→ u2.

For simplicity, we call a {1, 2}-stable set {x1, x2} with x1
∗→ x2 picky. Then {u1, u2} is

picky. Therefore {v1, v2} is also picky by Lemma 3.17(1). Without loss of generality,

we may assume

v1
∗→ v2.

Then v1 ∈ X1 and v2 /∈ X2 by Lemma 3.17(2). We may assume v2 ∈ X3 where X3 is

a partite set of D. Then, since u1
∗→ u2, any pair of vertices in V (D) \ X1 distinct

from {u2, v2} has a common out-neighbor u1 or v1. Moreover, every partite set of D

is clique, X1 forms a clique in C1,2(D). Therefore

(†) any {1, 2}-stable set of size 2 distinct from {u2, v2} intersects with both X1 and

V (D) \X1.

Case 1. u2 and v2 {1, 2}-compete in D. Then, by (†),

(§) any {1, 2}-stable set of size 2 intersects with both X1 and V (D) \X1.

Let k be the maximum number of disjoint {1, 2}-stable sets with size 2 of D.

Subcase 1. k ≥ 3. Let S = {S1, S2, . . . , Sk} where Si is a {1, 2}-stable set with

size 2 of D for each 1 ≤ i ≤ k and S1, . . . , Sk are mutually disjoint. Without loss of

generality, we may assume S1 = {u1, u2} and S2 = {v1, v2}. Since k ≥ 3, S3 ∈ S.

Then S3 is picky by Lemma 3.17(1). We denote S3 by {s3,1, s3,2} with s3,1
∗→ s3,2.

Since S1 is picky and S1 ∩ S3 = ∅, Then s3,1 ∈ X1 and s3,2 /∈ X2 by Lemma 3.17(2).
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Since S2 is also picky and S2 ∩ S3 = ∅, s3,2 /∈ X3 by the same lemma. Therefore

we may assume s3,2 ∈ X4 where X4 is a partite set of D. Inductively, we may let

Si = {si,1, si,2} so that

si,1
∗→ si,2, si,1 ∈ X1, and si,2 ∈ Xi+1 (3.9)

where Xi+1 is a partite set of D for each 1 ≤ i ≤ k.

Now take a {1, 2}-stable set {y1, y2} of D with {y1, y2} /∈ S. Then, by the max-

imality of S, there exists a pair {sj,1, sj,2} in S such that {sj,1, sj,2} ∩ {y1, y2} 6= ∅
for some j ∈ {1, . . . , k}. Without loss of generality, we may assume y1 ∈ X1 and

y2 ∈ V (D)\X1 by (§). We first suppose {sj,1, sj,2}∩{y1, y2} = {sj,1}, that is, y1 = sj,1

and y2 6= sj,2. Then, y2 has at least k − 1 out-neighbors in T = {s1,1, s2,1, . . . , sk,1}
by (3.9). In addition, for each 1 ≤ i ≤ k except i = j, there exists a directed path

Pi := sj,1 → sj,2 → si,1 which dose not traverse y2. Therefore s1,1, s2,1, . . . , sk,1 except

sj,1 are 2-step out-neighbors of sj,1 obtained by P1, . . . , Pk. Since T ⊃ (N+(y2)∩T )∪
({s1,1, s2,1, . . . , sk,1} \ {sj,1}),

k = |T | ≥ |(N+(y2) ∩ T )|+ |{s1,1, s2,1, . . . , sk,1} \ {sj,1}|

− |(N+(y2) ∩ T ) ∩ ({s1,1, s2,1, . . . , sk,1} \ {sj,1})|

≥ 2k − 2− |(N+(y2) ∩ T ) ∩ ({s1,1, s2,1, . . . , sk,1} \ {sj,1})|.

Since k ≥ 3,

|N+(y2) ∩ T ∩ ({s1,1, s2,1, . . . , sk,1} \ {sj,1})| ≥ 1.

Therefore there exists a (1, 2)-step common out-neighbor of sj,1 and y2, which

belongs to {s1,1, s2,1,. . . , sk,1} \ {sj,1}, a contradiction. Thus {sj,1, sj,2} ∩ {y1, y2} =

{sj,2}, that is, y1 6= sj,1 and y2 = sj,2. We will claim that sj,2 is the only vertex in

{s1,2, s2,2, . . . , sk,2} which is not adjacent to y1 in C1,2(D). Since k ≥ 3, there exist

two vertices sj1,1 and sj2,1 for some j1, j2 ∈ {1, . . . , k} \ {j} and, by (3.9), every

vertex except sj1,2 and sj2,2 is an in-neighbor of sj1,1 and sj2,1. Thus sj1,1 and sj2,1

are out-neighbors of sj,2 and so sj,2 has an out-neighbor distinct from y1 in X1. Since
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D has no sinks, y1 has an out-neighbor. If y1 has an out-neighbor distinct from sj,2,

then y1 and sj,2 are adjacent by Corollary 3.5, which is impossible. Therefore sj,2

is the out-neighbor of y1. Thus y1 is not adjacent to sj,2 by Proposition 3.3. Since

sj,1
∗→ sj,2 by (3.9), sj,1 is a common out-neighbor of s1,2, s2,2, s3,2, . . . , sk,2 except

sj,2. Then, since y1 6= sj,1, sj,2 is a (1, 2)-step common out-neighbor of y1 and si,2 for

each 1 ≤ i ≤ k except i = j. Thus sj,2 is the only vertex in {s1,2,s2,2, . . . , sk,2} which

is not adjacent to y1 in C1,2(D).

Since {y1, y2} and j were arbitrarily chosen, we may conclude that, for every edge

except the edges s1,1s1,2, . . . , sk,1sk,2, the vertex sj,2 for some j ∈ {1, . . . , k} is the

only vertex incident to it in C̄1,2(D). This implies that C̄1,2(D) is a disjoint union of

k star graphs whose centers are s1,2, s2,2, . . . , sk,2 with some isolated vertices and so

is of Type C.

Subcase 2. k = 2. If {u1, u2} and {v1, v2} are the only {1, 2}-stable sets in D, then

C̄1,2(D) is of Type C. Suppose that there exists a {1, 2}-stable set {w1, w2} in D

distinct from {u1, u2} and {v1, v2}. Then, since k = 2, {w1, w2}∩ {u1, u2, v1, v2} 6= ∅.
Without loss of generality, we may assume w1 ∈ X1 and w2 ∈ V (D) \ X1 by (§).
We first suppose {w1, w2} ⊂ {u1, u2, v1, v2}. Then, either w1 = u1 and w2 = v2 or

w1 = v1 and w2 = u2. We consider the case where w1 = u1 and w2 = v2. Then u1 and

v2 are not adjacent. If (v2, u2) ∈ A(D), then u2 is a common out-neighbor of u1 and

v2, a contradiction. Therefore (u2, v2) ∈ A(D). Thus v2 is a common out-neighbor

of v1 and u2 and so v1 and u2 are adjacent. In case w1 = v1 and w2 = u2, we may

conclude that v2 and u1 are adjacent by a similar argument. Thus we have shown

that

(P1) if {w1, w2} ⊂ {u1, u2, v1, v2}, then exactly one of {u1, v2} and {u2, v1} is a

{1, 2}-stable set in D.

Now we suppose {w1, w2} 6⊂ {u1, u2, v1, v2}. Then |{w1, w2}∩{u1, u2, v1, v2}| = 1. To

the contrary, suppose {w1, w2} ∩ {u1, u2, v1, v2} = {w1}. Then w1 = u1 or w1 = v1.

Without loss of generality, we may assume w1 = u1. We note that u1
∗→ u2 and

v1
∗→ v2. Then v1 is an out-neighbor of u2. Since w2 ∈ V (D) \X1 and w2 6= v2, v1 is

an out-neighbor of w2. Then, since w2 6= u2, v1 is a (1, 2)-step common out-neighbor
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of u1 and w2, a contradiction. Therefore {w1, w2} ∩ {u1, u2, v1, v2} = {w2}. Then

w2 = u2 or w2 = v2. In addition, w1 6= u1 and w1 6= v1. Thus v1 ∈ N+(u2) \ {w1} and

u1 ∈ N+(v2) \ {w1} (be reminded that v1 ∈ N+(u2) and u1 ∈ N+(v2)). Since w1 is a

non-sink vertex, N+(w1) 6= ∅. Then, since u2 and v2 are distinct, N+(w1) \ {u2} 6= ∅
or N+(w1)\{v2} 6= ∅. Therefore w1 is adjacent to u2 or v2 in C1,2(D) by Corollary 3.5.

Then, since w2 = u2 or w2 = v2, exactly one of {w1, u2} and {w1, v2} is a {1, 2}-stable

set in D. Hence we have shown that

(P2) if {w1, w2} 6⊂ {u1, u2, v1, v2}, then {w1, w2}∩{u1, u2, v1, v2} = {w2} and exactly

one of {w1, u2} and {w1, v2} is a {1, 2}-stable set in D.

Since {w1, w2} was arbitrarily chosen, we may conclude that, for every edge e except

u1u2, v1v2 in C̄1,2(D), (i) if the end points of e are contained in {u1, u2, v1, v2}, then

the subgraph induced by {u1, u2, v1, v2} is an induced path of length 3 by (P1); (ii)

otherwise, one end point u of e is contained in {u1, u2, v1, v2} and the other end point

v of e must be adjacent to exactly one of u2 and v2, and not adjacent to u1 and v1

in C̄1,2(D) by (P2). Hence C̄1,2(D) is of Type C or Type D. Especially, if the latter

case holds, then u1 or v1 is an internal vertex with degree 2 in C̄1,2(D).

Case 2. u2 and v2 do not {1, 2}-compete in D. Suppose, to the contrary, that

there exists a {1, 2}-stable set {w1, w2} in V (D) \ {u2, v2}. Then, by (†), we may

assume w1 ∈ X1 and w2 ∈ V (D) \ X1. Since w2 6= v2, v1 is an out-neighbor of w2

in D. If w1 = u1, then v1 is a (1, 2)-step common out-neighbor of w1 and w2 since

u1 → u2 → v1 is a directed path in D, a contradiction. Therefore w1 6= u1. Then,

since w2 6= u2, {w1, w2} is a {1, 2}-stable set in V (D) \ {u1, u2}, so, by Lemma 3.17,

w1
∗→ w2. Therefore w1 is a common out-neighbor of u2 and v2 in D, which is a

contradiction to the case assumption. Thus there exists no {1, 2}-stable set of size 2

in V (D) \ {u2, v2}, that is, C1,2(D)− {u2, v2} is complete. Then, since u2 and v2 do

not {1, 2}-compete in D by the case assumption, u2 and v2 are adjacent in C̄1,2(D)

and so they are non-pendant vertices (be reminded that u1 is adjacent to u2 and v1

is adjacent to v2 in C̄1,2(D)). Therefore C̄1,2(D) is of Type B.

Theorem 3.19. Let D be a multipartite tournament of order n with a {1, 2}-stable

set S which is not included in any partite set of D and t be the number of partite
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sets which intersect with S. Then t ≤ 3. Especially, if t = 3, then |S| = 3 and one of

the following is true:

(a) C1,2(D) ∼= Kn − E(K3);

(b) n ≥ 4 and C1,2(D) ∼= Kn − (E(K3) ∪ E(K1,l)) for a positive integer l ≤ n− 3

where the center of K1,l is a vertex v such that V (K3) ∩ V (K1,l) = {v}.

Proof. Suppose t ≥ 4. Then |S| ≥ 4 and, by Corollary 3.10(3), every partite set of D

is clique. Therefore |S| ≤ 3 by Corollary 3.13, which is a contradiction. Thus t ≤ 3.

To show the “especially part”, suppose t = 3. If |S| ≥ 4, then D has a non-clique

partite set, which contradicts Corollary 3.10(3). Therefore |S| ≤ 3. Since t = 3,

|S| = 3. Let S = {u1, u2, u3} and X1, X2, and X3 be the partite sets of D with

ui ∈ Xi for each 1 ≤ i ≤ 3. Since S is a {1, 2}-stable set in D, the vertices in S form

a directed cycle C of order 3 in D. Without loss of generality, we may assume

{(u1, u2), (u2, u3), (u3, u1)} ⊂ A(D).

Case 1. d+(ui) = 1 for each 1 ≤ i ≤ 3. Then each vertex in V (D) \ V (C)

has at least two out-neighbors in V (C). Therefore each vertex in V (D) \ V (C) is

adjacent to the vertices in V (D) in C1,2(D) by Lemma 3.11. Thus C1,2(D) contains

a subgraph isomorphic to Kn − E(K3). Then, since S is a stable set in C1,2(D),

C1,2(D) ∼= Kn − E(K3).

Case 2. d+(uj) 6= 1 for some j ∈ {1, 2, 3}. Then d+(uj) ≥ 2. Without loss of

generality, we may assume j = 1. Then, since (u1, u2) ∈ A(D) and (u2, u3) ∈ A(D),

∅ 6= N+(u1) \ {u2} ⊆ X3 (3.10)

by Proposition 3.4 and so

n ≥ 4.

We first show that u1 is the only vertex on C of outdegree at least 2. Suppose that
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ut has outdegree at least 2 for some t ∈ {2, 3}. Then

N+(ut) \ {u1} 6= ∅

and there exists a partite set X such that

(
N+(u1) \ {ut} ∪N+(ut) \ {u1}

)
⊆ X

by Proposition 3.4. By (3.10), X = X3. Therefore t 6= 3 and so t = 2. Then d+(u2) ≥
2. Since N+(u2) = N+(u2)\{u1} ⊆ X3, there exists a vertex x ∈ X3 \{u3} belonging

to N+(u2). Then (u1, x) ∈ A(D) or (x, u1) ∈ A(D). If (u1, x) ∈ A(D), then x is a

common out-neighbor of u1 and u2, a contradiction. Therefore (x, u1) ∈ A(D) and

so u1 is a (1, 2)-step common out-neighbor of u2 and u3, a contradiction. Thus u1 is

the only vertex on C of outdegree at least 2. Hence

u2
∗→ u3 and u3

∗→ u1. (3.11)

We denote N+(u1) \ {u2} by N . Then N 6= ∅. By (3.10) and (3.11), each vertices in

(V (D) \ N) \ V (C) has at least two out-neighbors in V (C). Since the length of C

is 3, each vertex in (V (D) \ N) \ V (C) is adjacent to the vertices in V (D) \ N in

C1,2(D) by Lemma 3.11.

Now we will show that u2 is the only vertex nonadjacent to each vertex in N .

Take v ∈ N . Then v ∈ X3. Since u2
∗→ u3, v and u2 have no common out-neighbor in

D. In addition, u1 is the only two-step out-neighbor of u2 by (3.11), and v ∈ N+(u1).

Therefore u2 is not adjacent to v in C1,2(D). On the other hand, by (3.10), u2 is a

common out-neighbor of u1 and v and it is a (1, 2)-step common out-neighbor of v

and u3. Therefore v is adjacent to u1 and u3 in C1,2(D). Moreover, since each vertex

in V (D)\V (C) has at least one out-neighbor in V (C) by (3.11), v is adjacent to each

vertex in V (D) \ V (C). Therefore u2 is the only vertex nonadjacent to v in C1,2(D).

Since v was arbitrarily chosen in N , u2 is the only vertex nonadjacent to each vertex

in N . Then, since S is a stable set, C1,2(D) is the graph obtained from the complete

graph with the vertex set V (D) by deleting the edges both of whose ends belong to
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V (C) and the ones on the star graph with vertex set N ∪{u2} having u2 as a center.

Thus C1,2(D) ∼= Kn − (E(K3) ∪ E(K1,l)).

Remark 3.20. Given a multipartite tournament D without a non-clique partite set,

each stable set of C1,2(D) has size at most three by Corollary 3.13. Thus Theorem 3.18

and the “especially” part of Theorem 3.19 completely characterize the (1, 2)-step

competition graphs of multipartite tournaments without a non-clique partite sets.

3.4 C1,2(D) as a complete graph

In this section, we characterizes the sizes of partite sets of multipartite tournaments

whose (1, 2)-step competition graphs are complete.

If a tournament of order greater than or equal to 5 has minimum outdegree at

least two, then, for any pair of vertices u and v, none of u and v is X-biased for any

vertex subset X of order 1. Since a tournament of order k ≥ 5 may be considered as

a k-partite tournament, the following is true by Corollary 3.5.

Corollary 3.21. Let D be a tournament with at least five vertices. If each vertex in

D has outdegree at least two, then C1,2(D) is complete.

A tournament D is regular provided all vertices in D have the same out-degree.

We say that D is near regular provided the largest difference between the out-degrees

of any two vertices is 1. It is well-known fact that, for each positive integer n, there

exists a regular tournament if n is odd and a near regular tournament when if n

is even. Since a regular or near regular tournament with at least five vertices has

minimum outdegree at least two, the following is immediately true by Corollary 3.21.

Lemma 3.22. For n ≥ 5, there exists a tournament of order n whose (1, 2)-step

competition graph is complete.

Let G be a graph. Two vertices u and v of G are said to be true twins if they

have the same closed neighborhood. We may introduce an analogous notion for a

digraph. Let D be a digraph. Two vertices u and v of D are said to be true twins if

they have the same open out-neighborhood and open in-neighborhood.
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Given a digraph D, if there is a directed path of length 2 from a vertex x to a

vertex y in D, we call y a 2-step out-neighbor of x.

Lemma 3.23. If two non-sink vertices are true twins in a digraph D, then they are

true twins in C1,2(D).

Proof. Suppose that there exist two non-sink vertices u and v which are true twins

in D. Since u is a non-sink vertex, u has an out-neighbor x. Then, since u and v are

true twins, x is also an out-neighbor of v. Therefore u and v compete.

Take a vertex w 6= v adjacent to u in C1,2(D). If u and w compete, then v and w

also compete since u and v are true twins in D. Suppose that u and w (1, 2)-compete.

Then u and w have a (1, 2)-step common out-neighbor y. If y is an out-neighbor of

u, then y is also an out-neighbor of v and so v and w (1, 2)-compete. Suppose that y

is a 2-step out-neighbor of u. Then there exists a directed path u→ z → y for some

vertex z in D. Since u and v are true twins in D, v → z → y is a directed path and

so y is also a 2-step out-neighbor of v. Thus v and w (1, 2)-compete.

Lemma 3.24. Let k be a positive integer with k ≥ 3; n1, . . . , nk be positive integers

such that n1 ≥ · · · ≥ nk; n′1, . . . , n
′
k be positive integers such that n′1 ≥ · · · ≥ n′k,

n′1 ≥ n1, n
′
2 ≥ n2, . . ., and n′k ≥ nk. If D is an orientation of Kn1,...,nk

whose (1, 2)-

step competition graph is complete, then there exists an orientation D′ of Kn′1,...,n
′
k

whose (1, 2)-step competition graph is complete.

Proof. Suppose that D is an orientation of Kn1,...,nk
whose (1, 2)-step competition

graph is complete. Let X1, X2, . . . , Xk be the partite sets of D satisfying |Xi| = ni

for each 1 ≤ i ≤ k. Then we construct an orientation of Kn′1,n2,...,nk
whose (1, 2)-step

competition graph is complete in the following way. If n′1 = n1, then we take D as a

desired orientation. Suppose n′1 > n1. Then we add a new vertex v to X1 and an arc

(v, x) for each out-neighbor x of some vertex u in X1 to obtain a digraph D1 so that

A(D) ⊂ A(D1), and N+
D (u) = N+

D1
(u) = N+

D1
(v).

Therefore N−D (u) = N−D1
(u) = N−D1

(v) and so u and v are true twins in D1. Since

C1,2(D) is complete and |V (D)| ≥ 2, N+
D (u) 6= ∅. Therefore C1,2(D1) is complete by
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Lemma 3.23. We may repeat this process until we obtain a desired orientationDn′1−n1
.

Inductively, we obtain an orientation Dt of Kn′1,...,n
′
k

whose (1, 2)-step competition

graph is complete where t = (n′1 + · · ·+n′k)− (n1 + · · ·+nk). Therefore the statement

is true.

The following theorem characterizes the sizes of partite sets of multipartite tour-

naments whose (1, 2)-step competition graphs are complete.

Theorem 3.25. Let k be a positive integer with k ≥ 3 and n1, n2, . . . , nk be positive

integers such that n1 ≥ · · · ≥ nk. There exists an orientation D of Kn1,n2,...,nk
whose

(1, 2)-step competition graph is complete if and only if one of the following holds:

(a) k = 3, and (i) n2 ≥ 3 and n3 = 1 or (ii) n3 ≥ 2;

(b) k = 4, and (i) n1 ≥ 3 and n2 = 1 or (ii) n2 ≥ 2;

(c) k ≥ 5.

Proof. We first show the “only if” part. Suppose that there exists an orientation D

of Kn1,n2,...,nk
whose (1, 2)-step competition graph is complete. Then, since k ≥ 3,

|V (D)| ≥ 3 and so each vertex has outdegree at least 1 in D. If there exists a vertex

v of outdegree 1 in D, then there exists a vertex nonadjacent to v in C1,2(D) by

Proposition 3.3. Therefore

d+(v) ≥ 2 (3.12)

for each vertex v in D. Thus

2|V (D)| ≤ |A(D)|.

Let X1, . . . , Xk be the partite sets of D satisfying |Xi| = ni for each 1 ≤ i ≤ k.

Suppose k = 3. Then, if n2 = 1, then |V (D)| = n1 + 2 and so |A(D)| = 2n1 + 1,

which contradicts 2|V (D)| ≤ |A(D)|. Therefore n2 ≥ 2. To show by contradiction,

suppose n3 = 1 and n2 = 2. Let X2 = {v1, v2}, X3 = {v3}. Then each vertex in X1

is not a common out-neighbor of two vertices in X2 ∪X3 by (3.12). Therefore each

pair of {v1, v3} and {v2, v3} has a (1, 2)-step common out-neighbor in D.
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Let u be a (1, 2)-step common out-neighbor of v1 and v3. Then u ∈ N+(v1) or

u ∈ N+(v3). Suppose u ∈ N+(v1). Then u ∈ X1 and there exists a (v3, u)-directed

path P of length 2 not traversing v1. Thus the interior point on the directed path

must be v2 and so (v2, u) ∈ A(D). Hence u has outdegree at most one, a contradiction

to (3.12). Therefore u ∈ N+(v3). Then u is a 2-step out-neighbor of v1. However,

each (v1, u)-directed path of length 2 must traverse v3 and so v1 and v3 cannot have a

(1, 2)-step common out-neighbor, a contradiction. Therefore u /∈ X1. By symmetry,

any (1, 2)-step common out-neighbor of v2 and v3 does not belong to X1. Thus

u = v2 and v1 is the only (1, 2)-step common out-neighbor of v2 and v3. Hence v1

and v2 must be 2-step out-neighbors of v2 and v1, respectively, and so out-neighbors

of v3. Therefore N+(v1) ∪ N+(v2) ⊆ X1. Thus v1 and v2 do not (1, 2)-compete by

Proposition 3.1 and so have a common out-neighbor x. Then x ∈ X1 and d+(x) ≤ 1,

which contradicts (3.12). Thus n2 ≥ 3 or n3 ≥ 2 and so (a) holds.

Suppose k = 4 and n2 = 1. Then |V (D)| = n1 + 3 and |A(D)| = 3n1 + 3. By

(3.12), 2|V (D)| = 2(n1 + 3) ≤ |A(D)| and so n1 ≥ 3. Therefore (b) holds. Thus we

have shown that the “only if” part is true.

Now we show the “if” part.

Case 1. k = 3 or 4. We consider orientations D1, D2, D3, and D4 of K3,3,1, K2,2,2,

K3,1,1,1, and K2,2,1,1, respectively, given in Figure 3.4 whose (1, 2)-step competition

graphs are complete. By applying to Lemma 3.24 to D1, D2, D3, and D4, respec-

tively, we may obtain an orientation of Kn1,n2,...,nk
whose (1, 2) competition graph is

complete when (a) k = 3, and (i) n2 ≥ 3 and n3 = 1 or (ii) n3 ≥ 2; (b) k = 4, and

(i) n1 ≥ 3 and n2 = 1 or (ii) n2 ≥ 2.

Case 2. k ≥ 5. We obtain a tournament D of order k whose (1, 2)-step competition

graph is complete by Lemma 3.22. Then, by applying to Lemma 3.24 to D, we may

obtain an orientation of Kn1,n2,...,nk
whose (1, 2)-step competition graph is complete.

Therefore the “if” part is true.
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D1 D2

D3 D4

Figure 3.4: D1, D2, D3, and D4 are orientations of K3,3,1, K2,2,2, K3,1,1,1, and K2,2,1,1,
respectively, whose (1, 2)-step competition graphs are complete
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C1,2(D9)

Figure 3.5: A tripartite tournament and its (1, 2)-step competition graph having the
diameter three

3.5 Diameters and domination numbers of C1,2(D)

See the tripartite tournament D9 and its (1, 2)-step competition graph C1,2(D9) given

in Figure 3.5. It is easy to check that C1,2(D9) has a diameter 3. We note that C1,2(D9)

has a maximum stable set S := {u1, u2} of size 2 and S intersects with two partite

sets of D. As a matter of fact, this phenomenon always happens for the (1, 2)-step

competition graph of a multipartite tournament.

Theorem 3.26. Let D be a multipartite tournament. Then each component of C1,2(D)

has the diameter at most three. Especially, if there exists a component having the di-

ameter three, then the component itself is C1,2(D), and each maximum stable set of

C1,2(D) has size two and intersects with two partite sets of D.

Proof. We first consider the case where D has a sink. If a sink constitutes a trivial

partite set of D, then C1,2(D) is isomorphic to Kn−1 with an isolated vertex and so

the statement is true. If a sink does not constitute a trivial partite set of D, then D

has a non-clique partite set and so, by Corollary 3.10(1), the statement is true.

Now we consider the case where D has no sink. If a pair of vertices in the same

partite in D is not adjacent, then D has a non-clique partite set and so, by Corol-

lary 3.10(1), the diameter has at most two.

We suppose that each partite set forms a clique. Let S be a maximum stable set

in C1,2(D). If |S| = 1, then the statement is obviously true. Consider the case where
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C1,2(D10)

Figure 3.6: A tripartite tournament and its (1, 2)-step competition graph having the
diameter two

|S| ≥ 2. Since each partite set forms a clique, S cannot be included in any partite

set of D. Suppose |S| = 2. Then each component of C1,2(D) has diameter at most 3.

Moreover, if there exists a component having diameter 3, then C1,2(D) is connected.

Now suppose |S| ≥ 3. Since each partite set forms a clique, |S| = 3 by Corollary 3.13.

Thus it is easy to check that C1,2(D) has a diameter 2 by applying Theorem 3.19.

Therefore the statement and the “especially” part are true.

The converse of the “especially” part of the above theorem may be false. To see

why, consider the tripartite tournament D10 given in Figure 3.6, which is obtained

from D9 given in Figure 3.5 by adding a vertex u6 and arcs (u2, u6), (u3, u6), (u6, u4),

and (u6, u5). Then the only pairs of nonadjacent vertices in C1,2(D10) are {u1, u4}
and {u1, u5}. Therefore each maximum stable set of C1,2(D10) has size two and is

intersecting with two partite sets of D. However, C1,2(D10) has the diameter two.

A set S of vertices in a graph G is called a dominating set if every vertex v ∈ V
is either an element of S or is adjacent to an element of S. The domination number

γ(G) of a graph G equals the minimum cardinality of a dominating set in G.

Given a digraph D, each sink in D is isolated in C1,2(D) and so m ≤ γ(C1,2(D))

where m is the number of sinks in D. The following theorem gives upper bound for

the domination number of C1,2(D) when D is a multipartite tournament.
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Theorem 3.27. Let D be a multipartite tournament with m sinks. Then m ≤
γ(C1,2(D)) ≤ m+ 2 unless C1,2(D) is isomorphic to three isolated vertices.

Proof. We first suppose that each partite set of D is a clique. Then, by Corollary 3.13,

each {1, 2}-stable set of D has size at most three. Suppose that D has a {1, 2}-
stable set of size three. Then t = 3 in Theorem 3.19. If C1,2(D) is isomorphic to

K|V (D)|−E(K3), then C1,2(D) has an universal vertex, which implies γ(C1,2(D)) = 1.

If C1,2(D) is isomorphic to K|V (D)|− (E(K3)∪E(K1,l)), then the center v of K1,l and

a vertex u in K1,l \ {v} forms a dominating set in C1,2(D) and so γ(C1,2(D)) ≤ 2. If

D has a maximum {1, 2}-stable set of size two, then the complement of C1,2(D) has

at least one edge and so, by Theorem 3.18, there exists an edge uv which is incident

to a pendent vertex in the complement of C1,2(D), which forms a dominating set in

C1,2(D). If D has a maximum {1, 2}-stable set of size one, then C1,2(D) is complete.

Now we suppose that C1,2(D) has a non-clique partite set. If D has a sink, then

let X1 be a partite set containing a sink. If D has no sink, then we let X1 be a

non-clique partite set each of whose {1, 2}-stable sets is X2-biased for some partite

set X2 by Proposition 3.6. Now we take a vertex u in X3. If u is adjacent to all

vertices except sinks, then γ(C1,2(D)) = m + 1 since each sink is an isolated vertex

in C1,2(D). Suppose that there exists a non-sink vertex v nonadjacent to u. We will

show v
∗→ u as follows:

Case 1. D has a sink. Then, since X1 contains a sink, V (D) \X1 forms a clique

and so v ∈ X1. Suppose v 6 ∗→ u. Then, since each sink is an out-neighbor of u, u 6 ∗→ v.

Therefore u and v are adjacent by Corollary 3.5, a contradiction. Thus v
∗→ u.

Case 2. D has no sink. Then the adjacency matrix M of C1,2(D) is in the form

given in Figure 3.2 by Theorem 3.9 in which X1 was assumed to be a non-clique

partite set of D and contain a {1, 2}-stable set S with size at least two that is X2-

biased. Then, since v is not adjacent to u, v ∈ F3, that is, v is a X3-biased vertex by

the structure ofM. Therefore v
∗→ u or u

∗→ v by Theorem 3.8(4). Since S ⊆ N+(u),

u 6 ∗→ v and so v
∗→ u.

Thus we have shown that v
∗→ u. Then u, v together with the sinks form a

dominating set in C1,2(D). To see why, we recall that v was arbitrarily chosen from

non-sink vertices nonadjacent to u. Therefore u is an out-neighbor of the non-sink
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Figure 3.7: A graph with diameter three and domination number three

vertices nonadjacent to u. Thus the set of the non-sink vertices nonadjacent to u

forms a clique in C1,2(D).

Remark 3.28. The graph G given in Figure 3.7 has diameter three. However, G

has domination number three and so G cannot be the (1, 2)-step competition graph

of a multipartite tournament by Theorem 3.27.

3.6 Disconnected (1, 2)-step competition graphs

In this section, we list all disconnected (1, 2)-step competition graphs of multipartite

tournaments without sinks.

We denote the set of k isolated vertices in a graph by Ik for some positive integer

k.

Proposition 3.29. Let D be a multipartite tournament without a non-clique par-

tite set. Suppose that C1,2(D) has a maximum stable set of size two. If C1,2(D) is

disconnected, then C1,2(D) is isomorphic to Kn ∪ I1 for some n ≥ 3.

Proof. Suppose that C1,2(D) is disconnected. Then C1,2(D) has at least two compo-

nents. Since C1,2(D) has a maximum stable set of size two, C1,2(D) has exactly two

components each of which is complete. Therefore C1,2(D) is isomorphic to Kn ∪Km

for some positive integers n and m with n + m = |V (D)| and n ≥ m. If n,m ≥ 2,

then the complement of C1,2(D) must have a cycle, which contradicts Theorem 3.18.

Therefore n = 1 or m = 1. Since n ≥ m, m = 1. If n = 2, then D must have a

sink that forms a trivial partite set, which is the case not to consider (see the last

paragraph of section 2). Thus n ≥ 3.
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Now we are ready to introduce one of our main results.

Theorem 3.30. A disconnected graph G is the (1, 2)-step competition graph of a

k-partite tournament of order n without sinks for some k ≥ 3 if and only if G is

isomorphic to I3 n = 3;

(Kn−1 − E(K2)) ∪ I1 or Kn−1 ∪ I1 n ≥ 4

Proof. To show the “only if” part, suppose that a disconnected graph G is the (1, 2)-

step competition graph of a k-partite tournament D of order n without sinks for some

k ≥ 3. If D has a non-clique partite set, then G is connected by Corollary 3.10(2).

Therefore every partite set of D is clique. Since G is disconnected, G has a maximum

{1.2}-stable set S of size at least two. By Corollary 3.13, |S| ≤ 3. If |S| = 3, then

S intersects with three partite sets of D since each partite set of D is clique, and

so, by Theorem 3.19, G ∼= K3 − E(K3) or G ∼= Kn − (E(K3) ∪ E(K1,n−3)) where

n ≥ 4. Therefore G ∼= I3 or G ∼= (Kn−1 − E(K2)) ∪ I1 where n ≥ 4. If |S| = 2, then

G ∼= Kn−1 ∪ I1 where n ≥ 4 by Proposition 3.29.

Now we show the “if” part. LetD11 be a directed cycle of order 3. Then C1,2(D11) ∼=
I3. Suppose n ≥ 4. Let D12 be a tripartite tournament with the partite sets {u1},
{u2}, and {u3, u4, . . . , un} and the arc set

A(D12) = {(u1, u3), (u2, u1), (u3, u2)} ∪ {(ui, u1), (u2, ui) | 4 ≤ i ≤ n}

(see the digraph D12 given in Figure 3.8 for an illustration). Then u1 is an isolated

vertex in C1,2(D12). The vertex u1 is a common out-neighbor of u2, u4, . . . , un. In

addition, it is a (1, 2)-step common out-neighbor of u3 and ui for each 4 ≤ i ≤ n.

Moreover, u2 is not adjacent to u3 by Proposition 3.3. Therefore C1,2(D12) ∼= (Kn−1−
E(K2)) ∪ I1.

Let D13 be a tripartite tournament with the partite sets {u1}, {u2}, {u3, . . . , un},
and the arc set

A(D13) = {(u1, u2), (u2, u3), (u3, u1)} ∪ {(u2, ui), (ui, u1) | 4 ≤ i ≤ n}
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Figure 3.8: Tripartite tournaments in the proof of Theorem 3.30

(see the digraph D13 given in Figure 3.8 for an illustration). Then u1 is an isolated

vertex in C1,2(D13). The vertex u1 is a common out-neighbor of u3, . . . , un and a (1, 2)-

step common out-neighbor of u2 and ui for each 3 ≤ i ≤ n. Therefore C1,2(D13) ∼=
Kn−1 ∪ I1. Since each of D11, D12, and D13 has no sink, we have shown that the “if”

part is true.

Remark 3.31. Let D be a multipartite tournament of order n whose (1, 2)-step

competition graph is disconnected. If D has no sink, then C1,2(D) is completely

determined by Theorem 3.30. Suppose that D has a sink. If a sink constitutes a

trivial partite set, then C1,2(D) ∼= Kn−1 ∪ I1. If a sink does not constitute a trivial

partite set, then D has a non-clique partite set, so the structure of C1,2(D) is mostly

determined by Theorem 3.9.

3.7 Interval (1, 2)-step competition graphs

An asteroidal triple of a graph is a set of three vertices such that every pair of vertices

are joined by a path outside of the closed neighborhood of the third.

Theorem 3.32. Let D be a multipartite tournament. If C1,2(D) has an asteroidal

triple, then it is contained in a partite set X and V (D)\X forms a clique in C1,2(D).

Proof. Suppose that C1,2(D) has an asteroidal triple x, y, and z. Then {x, y, z}
forms a stable set of size three in C1,2(D). Therefore D has a non-clique partite set
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by Theorem 3.19 and so, by Theorem 3.9, the adjacency matrix M of C1,2(D) is in

the form given in Figure 3.2. Since
⋃k

i=3Xi is a clique in C1,2(D), at least two vertices

in {x, y, z} is contained in a partite set X1 or X2 of D. If {x, y, z} is contained in

X2, then X2 is non-clique. Therefore we may apply Theorem 3.9 to X2 and so we

may assume {x, y} ⊂ X1. Since x and y are not adjacent, {x, y} ⊂ Fj for some

j ∈ {2, . . . , k}. Suppose, to the contrary, that z /∈ X1. Then, since Xj is the only

partite set that might have a vertex not adjacent to a vertex in Fj, we have z ∈ Xj.

Since x and y have no common out-neighbor and z is not adjacent to x and y, we

may assume x
∗→ z and z

∗→ y by Theorem 3.8(4). By the way, since {x, y, z} is an

asteroidal triple, y and z are connected by a path P avoiding the neighbourhood of

x. Let w be a vertex on P which is adjacent to z. Then w is not adjacent to x and so

w ∈ Fj or w ∈ Xj. Suppose w ∈ Xj. Then, since x
∗→ z, there is an arc from w to x in

D and x is Xj-biased. Therefore w is Xj-biased or Xj∪{x}-biased by Proposition 3.4.

Since w ∈ Xj, w is Xj ∪ {x}-biased. Therefore w
∗→ x. Then, since z

∗→ y, w and z

has no common out-neighbor. Moreover, w and z are X1-biased and so they are not

adjacent in C1,2(D) by Proposition 3.2, a contradiction. Therefore w /∈ Xj and so

w ∈ Fj. Thus there is an arc between w and z. Then, since z
∗→ y, (w, z) ∈ A(D) and

so z is a common out-neighbor of w and x, a contradiction. Therefore {x, y, z} ⊂ X1.

Thus V (D) \X1 forms a clique by the structure of M.

Remark 3.33. By Theorem 3.25, there is a multipartite tournament D whose (1, 2)-

competition graph is complete. Such a multipartite tournament satisfies the neces-

sary condition of Theorem 3.32 but its (1, 2)-competition graph does not contain an

asteroidal triple. Therefore the converse of Theorem 3.32 is not valid.

Lemma 3.34. Let D be a multipartite tournament with a non-clique partite set.

If two adjacent Xi-biased vertices u and v are not true twins in C1,2(D) for some

i ∈ {1, . . . , k}, then each vertex in Xi is adjacent to at least one of u and v.

Proof. Suppose that there are two adjacent Xi-biased vertices u and v which are not

true twins in C1,2(D) for some i ∈ {1, . . . , k}. To the contrary, suppose there is a

vertex w in Xi not adjacent to both u and v. If u
∗→ w and v

∗→ w, then u and v are

not true twins in D and they are true twins in C1,2(D) by Lemma 3.23. Therefore

85



u 6 ∗→ w or v 6 ∗→ w. Without loss of generality, we may assume u 6 ∗→ w. Then w
∗→ u

by Theorem 3.8(4) Therefore w 6 ∗→ v and so, by the same theorem, v
∗→ w. Thus u

and v has no common out-neighbor. Hence u and v are not adjacent in C1,2(D) by

Proposition 3.2, a contradiction.

Proposition 3.35. Let D be a multipartite tournament. For two adjacent vertices

which are not true twins in a non-clique partite set X of D, any vertex not adjacent

to the two vertices belongs to X.

Proof. Suppose that there exist two adjacent vertices u, v which are not true twins

in a non-clique partite set X of D and a vertex w not adjacent to any of them. Then,

since X is a non-clique, the adjacency matrix M of C1,2(D) is in the form given in

Figure 3.2 by Theorem 3.9 in which X = X1 was assumed. If w /∈ X1, then w ∈ Xi

for some i ∈ {2, . . . , k} and so, by the structure of M, the u and v are Xi-biased,

which implies that w is adjacent to one of u and v by Lemma 3.34. Therefore we

reach a contradiction and so the statement is true.

Given a graph G, we call a vertex of G universal if it is adjacent to all other

vertices of G.

Theorem 3.36. Let D be a multipartite tournament. If C1,2(D) has a hole H of

length at least five, then the following are true:

(1) there exists a partite set X such that V (D) \X forms a clique in C1,2(D) and

every hole L of length at least five is contained in the set of Y -biased vertices

included in X for some partite set Y of size at least |V (L)|;

(2) |V (D)| ≥ 2|V (H)|+ 1 and if the equality holds, then every vertex not on H is

a universal vertex.

Proof. Suppose that C1,2(D) has a hole H = v0v1 . . . vl−1v0 of length l ≥ 5. Then

the complement of H contains a cycle of length at least five, so the complement of

C1,2(D) contains a cycle of length at least five. Suppose that each partite set is clique

in C1,2(D). Then C1,2(D) has a stable set of size at most three by Theorem 3.19 .
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Therefore C1,2(D) is isomorphic to one of the graphs given in Theorem 3.18 or in the

“especially part” of Theorem 3.19, none of which contains a cycle of length at least

five in its complement. Hence D has a non-clique partite set and so the adjacency

matrixM of C1,2(D) is in the form given in Figure 3.2 by Theorem 3.9 in which X1

was assumed to be a non-clique partite set of D.

To show the part (1), we first suppose l ≥ 6. Then there exists an asteroidal triple

{x, y, z} on H and so, by Theorem 3.32, {x, y, z} is contained in a partite set X of

D. Since {x, y, z} forms a stable set, we may apply Proposition 3.6(2) to claim that

if X = X2, then X1 forms a clique to reach a contradiction. Therefore {x, y, z} ⊆ X1.

Since l ≥ 6 by our assumption, each vertex on H can form an asteroidal triple with

two vertices on H and so V (H) ⊂ X1.

We suppose l = 5. We first assume that there is no partite set X such that

|V (H) ∩X| ≥ 3. Then, since l = 5, there are at least three partite sets intersecting

with V (H). Therefore V (H) intersects with two partite sets Xi and Xj for some

distinct i, j ∈ {2, . . . , k}. By the way, we see from the structure of M that each

vertex in Xi is adjacent to all vertices in Xj. Thus there exist a vertex in V (H)∩Xi

and a vertex in V (H) ∩Xj which are consecutive on H. Without loss of generality,

we may assume v0 ∈ Xi ∩ V (H) and v1 ∈ Xj ∩ V (H). Then, since v3 is adjacent

to neither v0 nor v1, v3 /∈
⋃k

t=2Xt. Hence v3 ∈ X1 and so v3 ∈ Fi ∪ Fj. However,

since the structure of M shows that each vertex in Fi (resp. Fj) is adjacent to all

vertices in Xj (resp. Xi), v3 is adjacent to v0 or v1, which is impossible. Therefore

there exists a partite set X such that |V (H)∩X| ≥ 3. Then, since l = 5, there exist

two consecutive vertices on H belonging to X. Without loss of generality, we may

assume {v0, v1} ⊂ X. Then, by Proposition 3.35, v3 ∈ X. Suppose, to the contrary,

that v4 /∈ X and v2 /∈ X. Then v4 ∈ Y for a partite set Y distinct from X. Since

{v0, v1, v3} ⊆ X, X is a non-clique. Then X = X1 or X2.

We first assume X = X1. Since v1 is not adjacent to v4 ∈ Y , we see from the

structure ofM that v1 is Y -biased. Therefore v1
∗→ v4 or v4

∗→ v1 by Theorem 3.8(4).

If v4
∗→ v1, then v4 is a common out-neighbor of v0 and v3 and so v0 and v3 are

adjacent, which is impossible. Therefore v1
∗→ v4. By the same argument, we may

show v0
∗→ v2. Then, if v2 or v4 is an out-neighbors of v3, then v3 is adjacent to v0 or
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v1, which is impossible. Thus v2 and v4 are in-neighbors of v3 and so v2 and v4 are

adjacent, a contradiction. Therefore v4 ∈ X or v2 ∈ X. Then, by Proposition 3.35,

v2 ∈ X if v4 ∈ X, or v4 ∈ X if v2 ∈ X, so V (H) ⊆ X. Then, since any three

vertices on H do not form a triangle, each vertex in V (D) \ X has at most 2 in-

neighbors in V (H) and so has at least |V (H)| − 2 out-neighbors in V (H), that is,

|N+(w) ∩ V (H)| ≥ |V (H)| − 2 for each vertex w in V (D) \ X. Now, for a pair of

vertices u and v in V (D) \X,

|
(
N+(u) ∩N+(v)

)
∩ V (H)| ≥ |N+(u) ∩ V (H)|+ |N+(v) ∩ V (H)| − |V (H)|

≥ 2(|V (H)| − 2)− |V (H)| = |V (H)| − 4 ≥ 1.

Therefore any pair of vertices in V (D) \X has a common out-neighbor in V (H) and

so V (D) \X forms a clique in C1,2(D).

Now we assume X = X2. Then we may switch X1 with X2 to still have the

adjacency matrix of C1,2(D) in the from given in Figure 3.2 since Theorem 3.9 is

applicable to any non-clique partite set. Thus we may apply the above argument to

conclude that V (D) \X2 forms a clique in C1,2(D). However, since X1 was assumed

to be a non-clique partite set, we reach a contradiction. Therefore X 6= X2 and so

X = X1. Thus X1 is the only partite set containing a hole of length at least five.

Fix i ∈ {2, . . . , l − 2}. Then v0 and vi are not adjacent, so {v0, vi} ⊆ Fj for some

j ∈ {2, . . . , k} by the structure ofM. Since F2, . . . , Fk are mutually disjoint, for any

i ∈ {2, . . . , l − 2}, {v0, vi} ⊆ Fj and so {v0, v2, v3, . . . , vl−2} ⊂ Fj. Moreover, since v1

and vl−1 are not adjacent to v3 and v2, respectively, {v1, vl−1} ⊆ Fj. Thus V (H) ⊆ Fj.

Hence any pair of adjacent vertices in V (H) must have a common out-neighbor in Xj

by Proposition 3.2. Then, since each vertex in Xj can be a common out-neighbor of

at most two vertices in V (H), |E(H)| ≤ |Xj|. Since |V (H)| = |E(H)|, |V (H)| ≤ |Xj|
and so the part (1) is true. Moreover, since D has at least k ≥ 3 partite set, D has

a partite set Xm distinct from X1 and Xj and so

|V (D)| ≥ |X1|+ |Xj|+ |Xm| ≥ |V (H)|+ |V (H)|+ 1 ≥ 2|V (H)|+ 1.
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Therefore the inequality of the part (2) is true. Now suppose the equality holds, that

is, |V (D)| = 2|V (H)| + 1. Then X1, Xj and Xm are the only partite sets of D and

X1 = V (H), |Xj| = |V (H)|, |Xm| = 1. Therefore every vertex in Xj is a common

out-neighbor of exactly two vertices in X1. Thus we may label the vertices in Xj as

w0, . . . , wl−1 so that

wi ∈ N+(vi) ∩N+(vi+1), X1 \ {vi, vi+1} ⊆ N+(wi)

for each 0 ≤ i ≤ l− 1, identifying vl with v0. In addition, since V (H) = X1 and each

vertex on H is Xj-biased, each vertex in X1 is an out-neighbor of the vertex in Xm.

Moreover, since each vertex in X1 has exactly two out-neighbor in Xj, each vertex

in X1 is adjacent to each vertex in Xj ∪ Xm by Corollary 3.5. By the claim (C),

Xj ∪Xm forms a clique in C1,2(D). Therefore each vertex in Xj ∪Xm is a universal

vertex. Thus the part (2) is true.

Theorem 3.37. Let D be a multipartite tournament such that there exists no partite

set X such that V (D) \ X forms a clique in C1,2(D). Then C1,2(D) is an interval

graph unless C1,2(D) has a hole of length four.

Proof. We assume that C1,2(D) has no hole of length four. To reach a contradic-

tion, suppose that C1,2(D) is not an interval graph. Then C1,2(D) has a hole or an

asteroidal triple by Theorem 1.2. If C1,2(D) has an asteroidal triple, then there ex-

ists a partite set X such that V (D) \ X forms a clique by Theorem 3.32, which is

impossible. Therefore C1,2(D) has a hole H. By our assumption, H has length at

least five. Then there exists a partite set X such that V (D) \ X forms a clique by

Theorem 3.36(1), a contradiction.
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Chapter 4

The forbidden induced subgraphs of (i, j)

phylogeny graphs1

A graph G is an (i, j) phylogeny graph if there is an (i, j) digraph D such that the

phylogeny graph of D is isomorphic to G. Throughout this chapter, we assume that

variables i and j belong to the set of positive integers unless otherwise stated.

We present two main theorems in this chapter. One of them gives a necessary

condition for an (i, 2) digraph having a chordal phylogeny graph as follows:

Theorem 4.1. Let H be a hole with length l of the underlying graph of an (i, 2)

digraph D. If l ≥ 3i + 1, then the subgraph of the phylogeny graph of D induced by

V (H) has a hole. Further, the inequality is tight.

It extends Theorem 1.18 to (i, 2) phylogeny graphs.

The join of two graphs G and H, denoted by G ∨ H, is the graph formed from

disjoint copies of G and H by connecting each vertex of G to each vertex of H.

Based upon the other main theorem in the following, P7 ∨ I1, C7 ∨ I1, K1,4, and

K3,3 are also forbidden induced subgraphs of (2, 2) phylogeny graphs other than K5,

which extends Theorem 1.21.

1The material in this chapter is written based on the manuscript ‘The forbidden induced sub-
graphs of (i, j) phylogeny graphs’ by Myungho Choi and Suh-Ryung Kim. The author thanks Prof.
Suh-Ryung Kim for allowing him to use its contents for his thesis.
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Theorem 4.2. The graphs below list forbidden induced subgraphs of the phylogeny

graph of an (i, j) digraph with i, j ≥ 2:

K1,j+2; Kj+1,j+1; P2j+3 ∨ I1; C2j+3 ∨ I1;

Kij+1, further, if i ≥ 4 and j = 2, Kb 3i
2
c+2.

We denote the set of out-neighbors and the set of in-neighbors of a vertex v in

a digraph D by N+
D (v) and N−D (v), respectively. In addition, we denote the set of

neighbors of a vertex v in a graph G by NG(v). When no confusion is likely to occur,

we omit D or G to just write N+(v), N−(v), and N(v).

4.1 A necessary condition for an (i, 2) phylogeny graph being

chordal

Let D be an acyclic digraph. Suppose that the underlying graph U(D) of D has a hole

H = v1v2 · · · vlv1 of length l for some l ≥ 5. Let G be the subgraph of the phylogeny

graph P (D) induced by V (H) and DH be the subdigraph of D induced by V (H).

Then, since each vertex has degree 2 in U(DH), each of v1, v2, . . . , vl has (i) exactly

two in-neighbors, or (ii) exactly one out-neighbor and exactly one in neighbor, or

(iii) exactly two out-neighbors in DH . Since D is acyclic, DH is acyclic and so there

exists a vertex in DH of indegree 2. Let vl1 , vl2 , . . . , vlk be the vertices in V (H) having

two in-neighbors in DH for an integer k ≥ 1. We denote the set {vl1 , vl2 , . . . , vlk} by

ΓH . Then any two vertices in ΓH do not lie consecutively on H and so 1 ≤ k ≤ b l
2
c.

Therefore we obtain the cycle C of length l − k in P (D) by deleting vl1 , vl2 , . . . , vlk
from G satisfying the property that each edge of C either is taken care of some vertex

in ΓH or lies on H. We call such a cycle the cycle obtained from H by ΓH . When no

confusion is likely to occur, we omit ΓH in the cycle obtained from H by ΓH to just

write the cycle obtained from H. We note that the length of C is at least l − b l
2
c

and at most l− 1. Moreover, by (ii) and (iii), each vertex on C has at least one out-

neighbor in V (H). It is easy to check that the number of vertices on C having two

out-neighbor in V (H) is equal to |ΓH |. In addition, there is no arc in V (H) between
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nonconsecutive vertices on C, which implies that each chord of C is a cared edge by

a vertex in V (D)− V (H). Hence we immediately have the following lemma.

Lemma 4.3. Let H be a hole with length l ≥ 5 in the underlying graph of an acyclic

digraph D and C be the cycle obtained from H by ΓH . Then the following are true:

(1) the length of C is at least l − b l
2
c and at most l − 1;

(2) each vertex on C has at least one out-neighbor in V (H);

(3) the number of vertices on C having two out-neighbors in V (H) is equal to |ΓH |;

(4) for each chord uv of C in P (D), uv is a cared edge and each vertex taking care

of uv belongs to V (D)− V (H).

We obtain some useful characteristics on the cycle obtained from a hole in the

underlying graph of an (i, 2) digraph as follows.

Proposition 4.4. Let H be a hole with length l ≥ 5 in the underlying graph of an

(i, 2) digraph D and C be the cycle obtained from H. Suppose that C has a chord uv

in P (D). Then the following are true:

(1) there exists exactly one vertex w taking care of uv in D;

(2) w is the only out-neighbor in V (D)− V (H) of each of u and v;

(3) for the subgraph induced by the chords of C in P (D), if T is its component

containing uv, then w is the common out-neighbor in D of the vertices in T

and V (T ) forms a clique in P (D).

Proof. Since uv is a chord of C in P (D), uv is a cared edge and there exists a vertex

w taking care of uv, which belongs to V (D) − V (H) by Lemma 4.3(4). Then w is

a common out-neighbor of u and v. Since D is an (i, 2) digraph, each of u and v

has outdegree at most 2. Then, by Lemma 4.3(2), each of u and v has at most one

out-neighbor in V (D)−V (H). Therefore w is the only out-neighbor of each of u and

v in V (D)− V (H) and so w is the only vertex taking care of uv in D. Hence parts

(1) and (2) are true.
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To show part (3), suppose, for the subgraph induced by the chords of C in P (D),

T is its component containing uv. Then take a vertex v1 distinct from u in T . Then

there exists a path P = v1 · · · vtu in T and each edge in P is a chord in C. Therefore

each edge in P is a cared edge by Lemma 4.3(4). Let y be a vertex taking care of

uvt. Then y ∈ V (D) − V (H) by Lemma 4.3(4). Since w is the only out-neighbor

in V (D) − V (H) of u, w = y and so w is an out-neighbor of vt. If t ≥ 2, then, by

applying a similar argument for the chord vtvt−1, w takes care of vtvt−1 and w is

the only out-neighbor in V (D)− V (H) of vt by parts (1) and (2). Therefore w is an

out-neighbor of vt−1 if t ≥ 2. We repeat this process until we conclude that w is an

out-neighbor of v1. Therefore part (3) is true.

Corollary 4.5. Let H be a hole with length l ≥ 5 in the underlying graph of an (i, 2)

digraph D and C be the cycle obtained from H. Then, for each vertex on C having

two out-neighbors in V (H), it is not incident to any chord of C.

Proof. Let u be a vertex on C having two out-neighbors in V (H). Suppose, to the

contrary, that u is incident a chord uv of C. Then there exists a vertex w in V (D)−
V (H) such that w is a common out-neighbor of u and v by Proposition 4.4(2). Thus

u has at least three out-neighbors, which contradicts the fact that D is an (i, 2)

digraph.

To prove one of our main theorems, we need one more result.

Lemma 4.6 ([18]). Given a graph G and a cycle C of G with length at least four,

suppose that a section Q of C forms an induced path of G and contains a path P

with length at least two none of whose internal vertices is incident to a chord of C

in G. Then P can be extended to a hole H in G so that V (P ) ( V (H) ⊆ V (C) and

H contains a vertex on C not on Q.

Given a vertex subset X of a graph G, a maximum clique in X means a clique

in G[X] whose size is the maximum among the cliques in G[X].

Theorem 4.7. Let D be an (i, 2) digraph and C be the cycle of length l ≥ 4 obtained

from a hole in U(D). If a maximum clique in V (C) has size at most b l−1
2
c, then the

subgraph of P (D) induced by V (C) has a hole.
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Proof. Suppose that a maximum clique K in V (C) has size at most b l−1
2
c. If C has

no chord, then C is a hole and so we are done. Suppose that C has a chord. If a

maximum clique has size at least three in V (C), then the clique must contain a chord

of C. Otherwise, each chord is a maximum clique itself. Therefore we may assume

that {u, v} ⊆ V (K) for a chord uv of C. We note that

|V (C)| − |V (K)| ≥ l −
⌊
l − 1

2

⌋
=

⌈
l + 1

2

⌉
>
l

2
.

Therefore there exist two consecutive vertices x1 and x2 on C each of which does not

belong to V (K). Starting from x1 (resp. x2), we traverse the (x1, x2)-section (resp.

the (x2, x1)-section) of C that is not the edge x1x2 until we first meet a vertex y

(resp. z) belonging to V (K). Then the (y, x1)-section obtained in this way, the edge

x1x2, and the (x2, z)-section obtained in this way form the (y, z)-section Q of C such

that y and z are the only vertices belonging to V (K). Since x1 and x2 are contained

in Q, Q has length at least 3. Let Q = v0v1v2 · · · vt where v0 = y and vt = z for an

integer t ≥ 3. Then vi /∈ V (K) for each 1 ≤ i ≤ t− 1. If v0 = vt, then V (Q) = V (C)

and so V (K) ∩ V (C) = {v0}, which contradicts that the existence of the chord uv.

Therefore

v0 6= vt.

Since {v0, vt} ⊆ V (K), v0vt is an edge in P (D). If v0vt is not a chord of C, then

C = v0v1 · · · vtv0 and so, by the choice of Q, V (K) does not contain any chord, which

is a contradiction. Therefore v0vt is a chord of C.

Let T be the component containing v0vt in the induced subgraph by the chords

of C. We note that

(?) any vertex in T cannot be joined to a vertex on C − T by a chord of C.

Let C1 be the cycle obtained from adding v0vt to Q. Suppose V (T ) = {v0, vt}. Then

C1 has length at least four and, by (?), P1 := v1v0vt is an induced path. Since

V (T ) = {v0, vt}, v0 is not incident to any chord of C except v0vt and so v0 is not
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incident to any chord of C1. Now we suppose

V (T ) 6= {v0, vt}.

Then |V (T )| ≥ 3. By the way, since l ≥ 4, the hole in U(D) containing the vertices

on C has length at least 5 by Lemma 4.3(1). Therefore V (T ) forms a clique in P (D)

by Proposition 4.4(3) and so |V (K)| ≥ 3 by the maximality. By the choice of Q, K

contains a vertex on the (v0, vt)-section, say L, of C other than Q. Since v0vt is a

chord of C, L has length at least two.

Case 1. L has length 2. Let w be the internal vertex on L. Then V (K) = {v0, w, vt}
and so, by the maximality of K, |V (T )| = 3. Therefore T = {v0, vj, vt} for some

j ∈ {1, . . . , t− 1}. If l ≤ 6, b l−1
2
c < 3, which contradicts the fact that K has size 3.

Therefore l ≥ 7 and so

t ≥ 5.

If j = 1 or 2, then, by (?), P2 := vtvjvj+1 is an induced path and vj is not incident

to any chord of C2 where C2 is the cycle of length t − j + 1 obtained from adding

vjvt to the (vj, vt)-section of Q. If j ≥ 3, then, by (?), P3 := v1v0vj is an induced

path and v0 is not incident to any chord of C3 where C3 is the cycle of length j + 1

obtained from adding v0vj to the (v0, vj)-section of Q. We note that t− j + 1 ≥ 4 if

j = 1 or 2 and j + 1 ≥ 4 for j ≥ 3. Therefore each of C2 and C3 has length at least

4.

Case 2. L has length at least 3. Then, for each vertex x on K, v0x or vtx is a

chord of C. Therefore V (K) ⊆ V (T ) and so, by the maximality, V (K) = V (T ).

Thus, by (?), P1 = v1v0vt is an induced path and v0 is not incident to any chord of

the cycle C1.

For each 1 ≤ i ≤ 3, by applying Lemma 4.6 to Pi and Ci, we may conclude that

Pi can be extended to a hole in P (D) whose vertices are on Ci. Since the cycles

C1, C2, and C3 are contained in V (C), the subgraph of P (D) induced by V (C) has

a hole and so the statement is true.

Lemma 4.8. Let G be a graph and C be a cycle of G. Suppose that there exists a
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maximum clique K of size at least four in V (C). If C has length at least five, then,

for each pair of vertices in K, there is a path between them consisting of only chords

of C.

Proof. Suppose that C has length at least five. Let K∗ be the graph obtained from K

by deleting edges of C in K. Since |V (K∗)| = |V (K)|, there are at least four vertices

in V (K∗) and we take four vertices v1, v2, v3, v4 in V (K∗). Let T be the subgraph

induced by {v1, v2, v3, v4} in K∗. Since C has length at least five, at most three edges

of C were deleted from the clique on {v1, v2, v3, v4} to obtain T . Even when three

edges were deleted, T is isomorphic to a path of length 3. Thus T is connected.

Since v1, v2, v3, and v4 were arbitrarily chosen from V (K∗), we conclude that K∗ is

connected and so the statement is true.

Lemma 4.9. Let H be a hole with length l ≥ 5 in the underlying graph of an (i, 2)

digraph D and C be the cycle obtained from H. If i ≥ 3, then a maximum clique in

V (C) has size at most i in P (D).

Proof. To the contrary, we suppose that i ≥ 3 and there exists a clique K in V (C)

of size at least i + 1. Then |V (K)| ≥ 4. We first assume that C has length at least

five. Then, by Lemma 4.8, for each pair of vertices in K, there is a path between

them consisting of only chords of C. Therefore, by Proposition 4.4(3), there exists

a common out-neighbor w of the vertices in K. Thus w has indegree at least i + 1,

which contradicts the fact that D is an (i, 2) digraph. Hence C has length at most

4. Then, since |V (K)| ≥ 4, C has length 4 and so |V (C)| = |V (K)| = 4. Thus each

vertex on C is incident to a chord. However, since |ΓH | ≥ 1, there is a vertex on C

having two out-neighbors in V (H) by Lemma 4.3(3). Thus the vertex on C is not

incident to any chord by Corollary 4.5 and so we reach a contradiction. Hence the

statement is true.

Theorem 4.10. Let H be a hole with length l ≥ 5 in the underlying graph of an

(i, 2) digraph D with i ≥ 3 and C be the cycle of length at least four obtained from

H by ΓH . If

l − |ΓH | ≥ 2i+ 1 or l < 3|ΓH |,
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then the subgraph of the phylogeny graph of D induced by V (C) has a hole.

Proof. By the definition of C, |V (C)| = l − |ΓH |. Since i ≥ 3 by the assumption,

each maximum clique in V (C) has size at most i by Lemma 4.9.

We first suppose l − |ΓH | ≥ 2i + 1. Then |V (C)|−1
2

≥ i. Since |V (C)| ≤ l − 1 by

Lemma 4.3(1),
|V (C)| − 1

2
≤ l − 2

2
≤
⌊
l − 1

2

⌋
.

Therefore ⌊
l − 1

2

⌋
≥ i

and so, by Theorem 4.7, the statement is true.

Now we suppose

l < 3|ΓH |. (4.1)

Let

A = {v ∈ V (C) | |N+(v) ∩ V (H)| = 2}

and

B = {v ∈ V (C) | |N+(v) ∩ V (H)| = 1}.

Take a vertex v on C. Then, by Lemma 4.3(2), N+(v) ∩ V (H) 6= ∅. Since D is an

(i, 2) digraph, |N+(v) ∩ V (H)| ≤ 2 and so v ∈ A ∪ B. Therefore V (C) = A t B
where A t B represents the disjoint union of sets A and B. Then, since |A| = |ΓH |
by Lemma 4.3(3), |B| = |V (C)| − |A| = l − 2|ΓH |. Thus |B| < |A| by (4.1). Hence

there exist two consecutive vertices u and v on C that belong to A. We take the

section Q := uvw of C. Since {u, v} ⊆ A, neither u nor v is incident to any chord

of C by Corollary 4.5. Therefore Q is an induced path of length two. Thus Q can

be extended to a hole in P (D) whose vertices are on C by Lemma 4.6. Thus the

statement is true.

At the end of preparation for the proof of Theorem 4.1, we need a notion of perfect

elimination orderings. A perfect elimination ordering in a graph is an ordering of the

vertices of the graph such that, for each vertex v, v and the neighbors of v that come
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after v in the order form a clique. It is well-known that a graph is chordal if and only

if it has a perfect elimination ordering. A simplicial vertex is one whose neighbors

form a clique.

From now on, we use the notation u → v (resp. u 6→ v) to represent “(u, v) is

(resp. is not) an arc of a digraph”.

Proof of Theorem 4.1. Suppose l ≥ 3i + 1. If i = 2, then the statement is true by

Theorem 1.18. Now we assume i ≥ 3. Let C be the cycle obtained from H by ΓH .

Since i ≥ 3, l
2
≥ 3i+1

2
≥ 5. Then, since |V (C)| ≥ l − b l

2
c ≥ l

2
by Lemma 4.3(1), C

has length at least five. To the contrary, we suppose, that

l − |ΓH | ≤ 2i and l ≥ 3|ΓH |.

Then 3|ΓH | − |ΓH | ≤ l − |ΓH | ≤ 2i and so we obtain |ΓH | ≤ i. Since l ≥ 3i + 1,

l − |ΓH | ≥ 2i+ 1, a contradiction. Therefore

l − |ΓH | ≥ 2i+ 1 or l < 3|ΓH |.

Thus the statement is true by Theorem 4.10.

To show the “further” part, we consider an (i, 2) digraph D with the vertex set

V (D) = {u, v0,1, v0,2, v0,3, v1,1, v1,2, v1,3, . . . , vi−1,1, vi−1,2, vi−1,3}

and the arc set

A(D) = {(vj,1, vj,2), (vj,2, vj,3), (vj,1, vj−1,3), (vj,2, u) | 0 ≤ j ≤ i− 1}

(each subscript of the vertices in D is reduced to modulo i and see the digraph

given in Figure 4.1 for an illustration). Then V (D) − {u} forms a hole H of length

3i in U(D). Since vj−1,2 → vj−1,3 and vj,1 → vj−1,3 for each 0 ≤ j ≤ i − 1, C =

v0,1v0,2v1,1v1,2 · · · vi−1,1vi−1,2v0,1 is the cycle obtained from H in P (D). Since u is a

common out-neighbor of any pair in K := {vj,2 | 0 ≤ j ≤ i− 1}, K forms a clique in
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v0,1

v0,2
v0,3

v1,1

v1,2

v1,3

u

Figure 4.1: The digraph D in the proof for the “further” part of Theorem 4.1

P (D). We can check that for each 0 ≤ j ≤ i− 1, in P (D),

N(u) = K, N(vj,1) = {vj−1,3, vj−1,2, vj,2},

N(vj,2) = {u, vj,1, vj,3, vj+1,1} tK, and N(vj,3) = {vj,2, vj+1,1}.

We note that, for each 0 ≤ j ≤ i− 1, vj,3 is a simplicial vertex in P (D)− u and vj,1

is a simplicial vertex in P (D)− {u, v0,3, v1,3, . . . , vi−1,3}. Therefore

u, v0,3, v1,3, . . . , vi−1,3, v0,1, v1,1, . . . , vi−1,1, v0,2, v1,2, . . . , vi−1,2

is a perfect elimination and so P (D) is chordal. Then, since |V (H)| = 3i, we conclude

that the desired bound 3i+ 1 is achieved by D.

4.2 Forbidden subgraphs for phylogeny graphs of degree bounded

digraphs

Proposition 4.11. Let D be an (i, j) digraph and N be a set of neighbors of some

vertex in P (D). If any k vertices in N do not form a clique in P (D) for some positive

k, then |N | ≤ (k − 1)(j + 1).

Proof. Let u be a vertex such that N is a set of its neighbors in P (D). Suppose that

any k vertices in N do not form a clique in P (D) for some positive integer k.
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By the definition of phylogeny graph,

N(u) =

 ⋃
v∈N+(u)

N−(v)− {u}

 ∪N+(u) ∪N−(u). (4.2)

Take a vertex v in D. Then N−(v) ∪ {v} forms a clique in P (D) and so (N−(v) ∪
{v}) ∩N is an empty set or forms a clique in P (D). Thus, by our assumption,

|N−(v) ∩N | ≤ |(N−(v) ∪ {v}) ∩N | ≤ k − 1. (4.3)

Further, if v ∈ N , then |N−(v) ∩N | < |(N−(v) ∪ {v}) ∩N | and so

|N−(v) ∩N | ≤ k − 2. (4.4)

We note that N(u) ∩N = N and u /∈ N . Then, by (4.2), (4.3), and (4.4),

|N | ≤
∑

v∈N+(u)∩N

|N−(v) ∩N |+
∑

v∈N+(u)−N

|N−(v) ∩N |+ |N+(u) ∩N |+ |N−(u) ∩N |

≤ (k − 2) · |N+(u) ∩N |+ (k − 1) · |N+(u)−N |+ |N+(u) ∩N |+ (k − 1)

= (k − 1)(|N+(u) ∩N |+ |N+(u)−N |+ 1) = (k − 1)(|N+(u)|+ 1) ≤ (k − 1)(j + 1).

We say that a graph G is (i, j) phylogeny-realizable through an (i, j) digraph if

it is the (i, j) phylogeny graph of an (i, j) digraph. (when no confusion is likely to

arise, we omit ‘‘phylogeny” and “through an (i, j) digraph’’)

Proposition 4.12. If an (i, j) phylogeny graph contains an induced subgraph H

isomorphic to K1,l for some positive integer l, then l ≤ j + 1 and H ∼= K1,j+1 is

realizable.

Proof. We suppose that an (i, j) phylogeny graph P (D) contains an induced sub-

graph H isomorphic to K1,j+2. Let u be the center of H. Then V (H)−{u} is a subset

of N(u) such that any two vertices in V (H) − {u} do not form a clique in P (D).

Therefore |V (H)− {u}| ≤ j + 1 by Proposition 4.11, which is a contradiction.
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To show that H ∼= K1,j+1 is realizable, let D be a digraph with the vertex set

V (D) = {u, v, w1, . . . , wj}

and the arc set

A(D) = {(u, v)} ∪ {(v, wk) | 1 ≤ k ≤ j}.

Then we can check that D is a (1, j) digraph and P (D) is isomorphic to K1,j+1 with

the center v and so the statement is true.

Lemma 4.13. If an (i, j) phylogeny graph contains an induced subgraph H isomor-

phic to K1,j+1 with the center v, then |N−(v) ∩ V (H)| = 1.

Proof. Suppose that, for an (i, j) digraph D, P (D) contains an induced subgraph H

with the center v isomorphic to K1,j+1. Since H is triangle-free, |N−(v)∩V (H)| ≤ 1.

To the contrary, suppose that |N−(v) ∩ V (H)| = 0. Then, if all the edges in H are

cared edges, v has at least j + 1 out-neighbors, which contradicts the fact that D is

an (i, j) digraph. Therefore H has at least one edge in U(D). Let |N+(v)∩V (H)| = k

for a positive integer k. Then

|N+(v)− V (H)| ≤ j − k (4.5)

since v has at most j out-neighbors. Moreover, there are j+1−k cared edges incident

to v. Let uv be a cared edge. Then, by the definition of cared edges, u and v have a

common out-neighbor w. Since H is triangle-free, w belongs to N+(v) − V (H) and

N−(w) ∩ V (H) = {u, v}. Since the cared edge uv was arbitrarily chosen, we may

conclude that the number of cared edges, which equals j+1−k, is less than or equal

to |N+(v)− V (H)|, which contradicts (4.5).

Proposition 4.14. If an (i, j) phylogeny graph contains an induced subgraph H

isomorphic to Km,n for some positive integers m and n, then m ≤ j+1 and n ≤ j+1

where the equalities cannot hold simultaneously, and H ∼= Kj+1,j is realizable unless

i = 1.

101



Proof. We suppose that there exists an (i, j) phylogeny graph P (D) containing an

induced subgraph H isomorphic to Km,n for some positive integers m and n. Take

a vertex v in the partite set of H with size m. Let X be the other partite set of H.

Then ({v}, X) is the bipartition of a subgraph isomorphic to K1,n. Thus n ≤ j + 1

by Proposition 4.12. By symmetry, we conclude m ≤ j + 1.

To show that eitherm < j+1 or n < j+1 by contradiction, supposem = n = j+1.

Let v be a vertex in H as before. Then there exists a subgraph Hv in H isomorphic

to K1,j+1 such that v is the center of Hv. Therefore, by Lemma 4.13, v has one in-

neighbor in the subdigraph induced by V (Hv). Then, since Hv is a subgraph of H,

v has one in-neighbor in V (H). Since v was arbitrarily chosen from H, each vertex

in the subdigraph induced by V (H) has one in-neighbor in V (H). Take a vertex v1

in V (H). Then there exists an in-neighbor v2 in V (H). We may repeat this process

until we obtain a directed cycle, which contradicts the fact that D is acyclic.

Now we show that H ∼= Kj+1,j is realizable. We construct an (i, j) digraph whose

phylogeny graph contains an induced subgraph isomorphic to Kj+1,j for an integer

i ≥ 2. Let D be a digraph with the vertex set

V (D) = {u1, u2 . . . , uj+1, v1, v2, . . . , vj} ∪ {wl,m | 1 ≤ l,m ≤ j},

and the arc set

A(D) = {(ul, vl) | 1 ≤ l ≤ j} ∪ {(vl, wl,m) | 1 ≤ l,m ≤ j}

∪ {(ul, wm,l) | 1 ≤ l,m ≤ j, l 6= m} ∪ {(uj+1, wl,l) | 1 ≤ l ≤ j}

(see the (2, 2) digraph whose phylogeny graph having an induced subgraph isomor-

phic to K3,2 with the bipartition ({u1, u2, u3}, {v1, v2}) given in Figure 4.2 for an

illustration). Then we can check D is an (i, j) digraph and

({u1, u2 . . . , uj+1}, {v1, v2, . . . , vj})

is the bipartition of a subgraph isomorphic to Kj+1,j in P (D).
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w1,1 w1,2

w2,1 w2,2

u1
u2

u3

v1
v2

Figure 4.2: A (2, 2) digraph whose phylogeny graph contains K3,2 as an induced
subgraph

For i = 1 or j = 1, an (i, j) phylogeny graph is completely characterized by the

following theorems. Hereby, we only consider (i, j) phylogeny graphs for i ≥ 2 and

j ≥ 2.

Theorem 4.15 ([18]). For a positive integer j, a graph is a (1, j) phylogeny graph

if and only if it is a forest with the maximum degree at most j + 1.

Given a graph G, we denote the size of a maximum clique in G by ω(G). The

clique graph of a graph G, denoted by K(G), is a simple graph such that (i) every

vertex of K(G) represents a maximal clique of G and (ii) two vertices of K(G) are

adjacent when they share at least one vertex in common in G.

Theorem 4.16 ([18]). For a positive integer i, a graph is an (i, 1) phylogeny graph

if and only if it is a diamond-free chordal graph with ω(G) ≤ i + 1 and its clique

graph is a forest.

Proposition 4.17. If an (i, j) phylogeny graph contains an induced subgraph H

isomorphic to a fan P` ∨ I1 or a wheel C` ∨ I1 for some positive integers i, j, ` with

i, j ≥ 2, then ` ≤ 2j + 2, and H ∼= P2j+2 ∨ I1 and H ∼= C2j+2 ∨ I1 are realizable.

Proof. Suppose there exists an (i, j) digraph D whose phylogeny graph contains an

induced subgraph H isomorphic to a fan P`∨{u} or a wheel C`∨{u} in P (D) for some

vertex u in D and some positive integer `. Since j ≥ 2, 2j+2 ≥ 4 and so the statement

is immediately true if ` ≤ 4. Suppose ` > 4. Then V (H) − {u} ⊆ N(u) and any 3
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u

w4

w3

w2

w1

v4

v3

v2
v1

D1

u

w4

w3

w2

w1

v4

v3

v2
v1

P (D1)

u

w4

x

w3

w2

w1

v4

v3

v2
v1

D2

u

w4

x

w3

w2

w1

v4

v3

v2
v1

P (D2)

Figure 4.3: The (2, 3) digraphs D1 and D2 and the phylogeny graphs P (D1) and
P (D2) containing P8 ∨ I1 and C8 ∨ I1 as an induced subgraphs, respectively
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vertices in V (H)−{u} do not form a clique in P (D). Therefore |V (H)−{u}| ≤ 2(j+1)

by Proposition 4.11. Thus ` ≤ 2(j + 1).

To show that H ∼= P2j+2 ∨ I1 and H ∼= C2j+2 ∨ I1 are realizable, let D1 and D2

be (i, j) digraphs with the vertex sets

V (D1) = {u, v1, v2, v3, v4, w1, . . . , w2j−2}, V (D2) = V (D1) ∪ {x},

the arc sets

A(D1) ={(u,wk) | k is an even integer} ∪ {(wk, wk+1) | 1 ≤ k < 2j − 2}

∪ {(v1, u), (v2, u), (v2, v3), (v3, v4), (u, v4), (v4, w1)}

and A(D2) = A(D1)∪{(v1, x), (w2j−2, x)} (see Figure 4.3 for the digraphs D1 and D2

when i = 2 and j = 3). Then one may check that u is adjacent to v1, v2, v3, v4, w1, . . . , w2j−2

in both P (D1) and P (D2). Moreover, P := v1v2v3v4w1w2 · · ·w2j−2 is an induced path

of length 2j + 1 in P (D1) and C := v1v2v3v4w1w2 · · ·w2j−2v1 is an induced cycle of

length 2j + 2 in P (D2), respectively. Thus P ∨ {u} and C ∨ {u} are the desired

induced subgraphs. Therefore the the statement is true.

We call a vertex of indegree 0 in a digraph a source.

The following lemma is immediate consequence from the definition of phylogeny

graphs.

Lemma 4.18. Let D be an (i, j) digraph. Suppose that a vertex u has ij neighbors

in the phylogeny graph of D and D′ is the subdigraph induced by u and these ij

neighbors. If u is a source of D′, then the following are true:

(1) u has outdegree j in D′;

(2) Each out-neighbor v of u has indegree i in D′ and N−D (v) ∩N+
D (u) = ∅;

(3) N−D (v) ∩N−D (w) = {u} for each pair {v, w} of the out-neighbors of u.

Lemma 4.19. Let D be an acyclic digraph. If u is a source in D and each of its

out-neighbors has indegree at least 2, then D has a source distinct from it.
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Proof. Suppose that u is a source in D and each of its out-neighbors has indegree

at least 2. Then, since D is acyclic, D − u is acyclic and so there exists a source

v in D − u. Since each out-neighbor of u has indegree at least 2 in D, v is not an

out-neighbor of u in D. Therefore v is a source in D.

Now we are ready to extend Theorem 1.21 in Lee et al. [39] for an (i, j) digraph.

Theorem 4.20. Let G be an (i, j) phylogeny graph for positive integers i, j with

i, j ≥ 2. Then ω(G) ≤ ij and the inequality is tight for i ≤ 3 and j = 2.

Proof. To reach a contradiction, suppose that there is an (i, j) digraph D whose

phylogeny graph P (D) contains an induced subgraph H isomorphic to Kij+1. Let D1

be the subdigraph of D induced by V (H). Since D1 is acyclic, there is a source u in

D1. Then |N+
D1

(u)| = j by Lemma 4.18(1). Therefore

N+
D1

(u) = N+
D (u).

Let

〈v〉− = N−D1
(v)− {u}

for each v ∈ N+
D (u). Then, since ij edges in H incident to u, for each v ∈ N+

D (u),

|〈v〉−| = i− 1, 〈v〉− ⊆ V (H), (4.6)

and

〈v〉− ∩N+
D (u) = ∅ (4.7)

by Lemma 4.18(2) and

〈v〉− ∩ 〈w〉− = ∅ (4.8)

for each pair {v, w} of the out-neighbors of u by Lemma 4.18(3). Therefore N−D1
(v) =

N−D (v) by (4.6) and so

〈v〉− = N−D (v)− {u}

for each v ∈ N+
D (u). We note that |N+

D (u)| = j and |〈v〉−| = i−1 for each v ∈ N+
D (u)
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by (4.6). Therefore

V (H) = {u} tN+
D (u) t

 ⊔
v∈N+

D(u)

〈v〉−
 . (4.9)

Since each out-neighbor of u has indegree i in D1 by Lemma 4.18(2), D1 has a source

w distinct from u by Lemma 4.19. Then w ∈
⊔

v∈N+
D(u)〈v〉− by (4.9) and so w ∈ 〈v1〉−

for some v1 ∈ N+
D (u). Thus, by (4.8),

w 6→ v (4.10)

for any v ∈ N+
D (u)−{v1}. Since w is a source, by Lemma 4.18(1) and (2) applied to

w, the out-neighbors of w belong to V (H) and

w 6→ x (4.11)

for any x ∈ 〈v1〉−. Take v2 in N+
D (u) − {v1}. Then, by (4.10), w 6→ v2. Moreover,

since w is a source, v2 6→ w and so w and v2 have a common out-neighbor y1 in

V (H). By (4.11), y /∈ 〈v1〉−. Then, since u→ v2, and v2 → y1, u 6= y1. If y1 ∈ N+
D (u),

then v2 ∈ 〈y1〉−, which contradicts (4.7). Thus y1 /∈ N+
D (u). Then, since y1 6= u,

y1 ∈
⊔

v∈N+
D(u)〈v〉− by (4.9). Therefore y1 ∈ 〈v3〉− for some v3 ∈ N+

D (u). Then

y1 → v3. In addition, since w → y1, y1 /∈ 〈v1〉− by (4.11) and so v3 6= v1. We

obtain a directed path P1 := v2 → y1 → v3 whose sequence has two terms v2 and v3

belonging to N+
D (u) − {v1}. We note that we only used the fact that v2 belongs to

N+
D (u)−{v1} to derive the directed path P1. Since v3 also belongs to N+

D (u)−{v1},
we may apply the same argument to obtain a directed path P2 := v3 → y2 → v4 for

some vertices y2 in V (H) and v4 in N+
D (u)− {v1}. In the above process, we observe

that a directed path P1 → P2 was obtained where Pa = va+1 → ya → va+2 for

each a ∈ {1, 2}, {v2, v3, v4} ⊆ N+
D (u) − {v1}, and {y1, y2} ⊆ V (H). We continue in

this way to obtain the directed walk P := P1 → P2 → · · · → Pj−1. By the way,

P contains a closed directed walk. For, v2, . . . , vj+1 belong to N+
D (u) − {v1} and

|N+
D (u) − {v1}| = j − 1 (recall that u has outdegree j) and so vl = vm for some
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distinct integers l,m ∈ {2, . . . , j + 1}. Therefore we reach a contradiction to the

fact that D is acyclic. Hence P (D) is Kij+1-free. Consequently, if an (i, j) phylogeny

graph contains an induced subgraph isomorphic to Kl for positive integers i ≥ 2,

j ≥ 2 and l, then l ≤ ij.

By the digraphs given in Figures 4.4 and 4.5, the inequality is tight when i ≤ 3

and j = 2. Therefore the statement is true.

Lemma 4.21. If there exists an (i, j) phylogeny graph containing an induced sub-

graph H isomorphic to Kl for a positive integer l ≥ 2, then, for any positive integer

m, there exists an (i+m, j) phylogeny graph containing an induced subgraph isomor-

phic to Kl+m.

Proof. Suppose that there exists an (i, j) digraph D whose phylogeny graph P (D)

contains an induced subgraph H isomorphic to Kl for some positive integer l ≥ 2.

To show the statement, it suffices to construct an (i+ 1, j) digraph whose phylogeny

graph contains an induced subgraph isomorphic to Kl+1.

Let D1 be the subdigraph induced by V (H) of D. Since D is acyclic, D1 is

acyclic. Then there exists a source u in D1. Take a vertex v ∈ V (H). Then v = u

or v ∈ N+
D1

(u) or u and v have a common out-neighbor, i.e. v ∈ N−D (x) for some

x ∈ N+
D (u). Since N+

D1
(u) ⊆ N+

D (u), we have shown

V (H) ⊆

 ⋃
x∈N+

D(u)

N−D (x)

 ∪N+
D (u). (4.12)

Then, since |V (H)| = l ≥ 2, there exists a vertex y in V (H) distinct from u. Therefore

y ∈
⋃

x∈N+
D(u)N

−
D (x) or y ∈ N+

D (u). Thus, in each case, we show N+
D (u) 6= ∅. We add

a new vertex w and the arc set {(w, x) | (u, x) ∈ A(D)} to D. Then the resulting

digraph D′ is an (i + 1, j) digraph. Moreover, for each v in V (H), v and w have

a common out-neighbor or w → v by (4.12). Thus V (H) ∪ {w} forms a clique in

P (D′).

Given an (i, 2) phylogeny graph G for positive integer i ≥ 2, ω(G) ≤ 2i by

Theorem 4.20. Further, if i ≥ 4, ω(G) ≤ 3i
2

, which is strictly less than 2i, by the
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following theorem.

Theorem 4.22. Let G be an (i, 2) phylogeny graph for a positive integer i ≥ 4. Then

ω(G) ≤ 3i
2

+ 1 and the inequality is tight.

Proof. Suppose, to the contrary, that there exists an (i, 2) digraph D whose phy-

logeny graph contains an induced subgraph isomorphic to Kl for some positive in-

tegers i ≥ 4 and l > 3i
2

+ 1. It suffices to consider the case where l is the minimum

satisfying the inequality and so we may assume

l =

⌊
3i

2

⌋
+ 2 =

⌊
i

2

⌋
+ i+ 2.

If i is even, then there exists an (i + 1, 2) digraph D̂ whose phylogeny graph con-

tains an induced subgraph isomorphic to Kb (i+1)
2 c+(i+1)+2

by Lemma 4.21 (note that(
i
2

+ i+ 2
)

+ 1 =
⌊
(i+1)

2

⌋
+ (i + 1) + 2). By replacing D with D̂, we may assume

that i is odd. Therefore D is a (2k − 1, 2) digraph whose phylogeny graph contains

an induced subgraph H isomorphic to K3k for some integer k ≥ 3. We assume that

(A) D has the smallest number of arcs among the (i, 2) digraphs with the vertex

set V (D) whose phylogeny graphs contain a subgraph isomorphic to K3k.

Then

(B) every vertex not belonging to V (H) has no out-neighbor in D.

LetD1 be the subdigraph induced by V (H) ofD. Then V (D1) forms a clique in P (D).

Moreover, D1 is acyclic and so D1 has a source. If a source in D1 has outdegree at

most 1 in D, then it is adjacent to at most 2k−1 vertices in H and so it is nonadjacent

to some vertex in H in P (D), which is impossible. Therefore each source in D1 has

outdegree 2 in D. Take a source u in D1. Then

N+
D (u) = {v, w}

for some vertices v, w in D. For simplicity, we let

[u]+ = N+
D1

(u), [v]− = N−D (v) ∩ V (H), and [w]− = N−D (w) ∩ V (H).
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Take a vertex h ∈ V (H)−{u}. Then h is adjacent to u. Therefore one of the following

is true: (i) h ∈ [u]+; (ii) h is an in-neighbor of exactly one of v and w, that is, h

belongs to the symmetric difference [v]− 4 [w]−; (iii) h is a common in-neighbor of

v and w, i.e. h ∈ [v]− ∩ [w]− − {u}. This together with the fact that u ∈ [v]− ∩ [w]−

implies that

V (H) =
(
[v]−4 [w]− − [u]+

)
t [u]+ t

(
[v]− ∩ [w]−

)
. (4.13)

Thus

3k =
∣∣[v]−4 [w]− − [u]+

∣∣+
∣∣[u]+

∣∣+
∣∣[v]− ∩ [w]−

∣∣ . (4.14)

Hence

3k ≤
∣∣[v]−4 [w]−

∣∣+
∣∣[u]+

∣∣+
∣∣[v]− ∩ [w]−

∣∣ =
∣∣[v]− ∪ [w]−

∣∣+
∣∣[u]+

∣∣ .
Therefore

∣∣[v]− − [w]−
∣∣ =

∣∣[v]− ∪ [w]−
∣∣− ∣∣[w]−

∣∣ ≥ ∣∣[v]− ∪ [w]−
∣∣− (2k − 1)

≥ 3k −
∣∣[u]+

∣∣− (2k − 1) = k + 1−
∣∣[u]+

∣∣
and so ∣∣[v]− − [w]−

∣∣ ≥ k + 1−
∣∣[u]+

∣∣ . (4.15)

Since there is no distinction between v and w,

∣∣[w]− − [v]−
∣∣ ≥ k + 1−

∣∣[u]+
∣∣ . (4.16)

By our assumption, k ≥ 3 and |[u]+| ≤ 2. Therefore we have the following by (4.15)

and (4.16): ∣∣[v]− − [w]−
∣∣ ≥ 2 and

∣∣[w]− − [v]−
∣∣ ≥ 2. (4.17)

Suppose |[u]+| = 0. Then {v, w} ∩ V (H) = ∅ and so, by the property (B), N+
D (v) =

N+
D (w) = ∅. Let D2 be the subdigraph of D1 induced by [v]− 4 [w]−. Then D2 is

acyclic and so D2 has a source, namely u′. Without loss of generality, we may assume
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u′ ∈ [w]−−[v]−. Then we obtain the digraph D′ by deleting the arc (u′, w) and adding

the arc (v, w) in D. We can check that D′ is a (2k − 1, 2) digraph and the graph

induced by (V (H) − {u′}) ∪ {v} of P (D′) is isomorphic to K3k. Thus it suffices to

consider the case ∣∣[u]+
∣∣ ≥ 1.

Claim A. If v ∈ [u]+ (resp. w ∈ [u]+) and v → w (resp. w → v), then N+
D (v) = {w}

(resp. N+
D (w) = {v}).

Proof of Claim A. Suppose that v ∈ [u]+, v → w, and N+
D (v) 6= {w}. Then v has

the other out-neighbor w′ distinct from w. By (4.13), V (H) = [v]− ∪ [w]− ∪ [u]+. Let

D′′ be the digraph obtained from D by deleting the arc (v, w′). The adjacency of two

vertices except v in V (H) does not change in P (D′′). Now take a ∈ V (H) − {v}.
Then a ∈ [v]− ∪ [w]− ∪ [u]+. If a ∈ [v]−, then (a, v) ∈ A(D′′). If a ∈ [w]−, then

w is a common out-neighbor of a and v in D′′. If a ∈ [u]+, then a = w and so

(v, a) = (v, w) ∈ A(D′′). Thus, in each case, v is adjacent to a in P (D′′). Hence

P (D′′) contains H. Since D′′ 6= D, we reach a contradiction to the property (A).

Thus N+
D (v) = {w}. Since there is no distinction between v and w, N+

D (w) = {v} if

w ∈ [u]+ and w → v. Therefore Claim A is true.

Without loss of generality, we may assume

v ∈ [u]+.

Claim B. If there is no arc between v and w, then there exists a vertex v′ distinct

from v and w such that

(
[v]− − [w]−

)
t
(
[w]− − [v]− − {v′}

)
⊆ N−D (v′).

Proof of Claim B. Suppose that there is no arc between v and w. There exists a

vertex w1 in [w]− − [v]− by (4.17). Suppose w1 → a for some a ∈ [v]− − [w]−. Then

N+(w1) = {a, w}. Since v ∈ [u]+ ⊆ V (D1), w1 and v are adjacent. Then, since v 6→ a

and there is no arc between v and w, w1 and v have no common out-neighbor and
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so v → w1. Thus v → w1 → a → v is a directed cycle, which is impossible. Hence

N+
D (w1) ∩ ([v]− − [w]−) = ∅. Since w1 was arbitrarily chosen from [w]− − [v]−, we

conclude that

N+
D (z) ∩

(
[v]− − [w]−

)
= ∅ (4.18)

for each z in [w]− − [v]−. Take a vertex v1 in [v]− − [w]−. If N+
D (v1) = {v}, then

v1 is not adjacent to any vertex in [w]− − [v]− by (4.18) (note that v 6→ w). Thus

N+
D (v1) = {v, v′} for some vertex v′ distinct from v. Then v′ 6= w. Take a vertex

w1 in [w]− − [v]− − {v′}. Then v1 and w1 are adjacent. By (4.18), w1 6→ v1. Since

w1 6→ v, w1 → v′. Since w1 was arbitrarily chosen from [w]− − [v]− − {v′}, v′ is an

out-neighbor for each in [w]− − [v]− − {v′}. Thus

{v1} t
(
[w]− − [v]− − {v′}

)
⊆ N−D (v′). (4.19)

Suppose v2 6→ v′ for some v2 in [v]− − [w]− − {v1}. There exists a vertex w2 in

[w]− − [v]− − {v′} by (4.17). Then w2 → w. Moreover, by (4.19), w2 → v′. Thus

N+(w2) = {v′, w}. Hence v2 and w2 have no common prey. Then, since v2 and

w2 are adjacent and w2 6→ v2 by (4.18), v2 → w2 and so N+
D (v2) = {v, w2}. If

v′ ∈ [w]− − [v]−, then v′ 6→ v2 by (4.18) and so v′ and v2 are not adjacent, which is

impossible. Thus v′ 6∈ [w]−− [v]−. Then there exists a vertex w3 in [w]−− [v]−−{w2}
by (4.17). Since v′ 6∈ [w]− − [v]−, w3 6= v′. In addition, v2 6→ w3 and w3 6→ v2. Since

v2 and w3 are adjacent, w3 → w2 and so, by (4.19), {v′, w, w2} ⊆ N+
D (w3), which is

impossible. Thus there exists an arc from any vertex in [v]−− [w]−−{v1} to v′, that

is, [v]− − [w]− − {v1} ⊆ N−D (v′). Hence, by (4.19),

(
[v]− − [w]−

)
t
(
[w]− − [v]− − {v′}

)
⊆ N−D (v′).

Case 1. |[u]+| = 2. Then [u]+ = {v, w}. If w → y for some y ∈ [v]− and v → z

for some z ∈ [w]−, then w → y → v → z → w is a closed directed walk, which is

impossible. Thus either w 6→ y for any y ∈ [v]− or v 6→ z for any z ∈ [w]−. Since
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[u]+ = {v, w}, we may assume, without loss of generality, that

w 6→ y (4.20)

for any y ∈ [v]−. There exists a vertex v1 in [v]−−[w]−−{w} by (4.17). Then w 6→ v1,

v1 6→ w, and w and v1 are adjacent. Therefore there exists a common out-neighbor

v∗ of w and v1.

Subcase 1-1. w → v. Then, by Claim A, N+(w) = {v} and so v∗ = v. Thus

v ∈ N+
D (v1).

Since w → v,

v 6→ w.

If v → z for some z ∈ [w]−, then v → z → w → v is a directed cycle. Thus

v 6→ z (4.21)

for any z ∈ [w]−. There exists a vertex w1 in [w]− − [v]− by (4.17). Then v 6→ w1,

w1 6→ v, and v and w1 are adjacent. Therefore there exists a common out-neighbor

w∗ of v and w1. Thus w∗ 6∈ [v]− and w∗ 6= w. Hence N+
D (w1) = {w,w∗}. In addition,

w∗ 6∈ [w]− by (4.21) and so

w∗ 6∈ [v]− ∪ [w]−.

Since v1 and w1 are adjacent and w1 6→ v1, v1 → w∗ or v1 → w1. By the way, there

exists a vertex w2 in [w]−−[v]−−{w1} by (4.17). Since v 6→ w2 and w2 6→ v, v and w2

have a common out-neighbor w∗∗. Then w∗∗ /∈ [w]− by (4.21). In addition, w∗ 6∈ [v]−

and w∗∗ 6= w. Then N+
D (w2) = {w,w∗∗}. Suppose v1 → w1. Then N+

D (v1) = {v, w1}.
Since v1 and w2 are adjacent, w∗∗ = w1 and so w∗∗ ∈ [w]−, which is impossible. Thus

v1 → w∗ and so N+
D (v1) = {v, w∗}. Since v1 and w2 are adjacent and w∗ 6= w2, we

conclude w∗ = w∗∗. Since w2 was arbitrarily chosen from [w]− − [v]− − {w1},

[w]− − [v]− ⊆ N−D (w∗).
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Moreover, v1 ∈ N−D (w∗). Since v1 was arbitrary chosen from [v]− − [w]− − {w},

[v]− − [w]− − {w} ⊆ N−D (w∗).

Since w → v,

v /∈ [w]− − [v]−. (4.22)

Then, since v ∈ N−D (w∗),

(
[v]− − [w]− − {w}

)
t
(
[w]− − [v]−

)
t {v} ⊆ N−D (w∗).

Let s = |[v]− − [w]− − {w}| and t = |[w]− − [v]−|. Since w → v,

w ∈ [v]− − [w]−. (4.23)

Then, by (4.15) and (4.16), s ≥ k− 2 and t ≥ k− 1. Then, since |N−D (w∗)| ≤ 2k− 1,

(s, t) ∈ {(k − 2, k − 1), (k − 1, k − 1), (k − 2, k)} .

and so s+ t ≤ 2k − 2. Then, since [u]+ = {v, w},

[v]−4[w]− − [u]+ = ([v]− − [w]− − {w}) t ([w]− − [v]−)

by (4.22) and (4.23), and so |[v]−4[w]− − [u]+| = s+ t. Accordingly, by (4.14),

∣∣[v]− ∩ [w]−
∣∣ = 3k − (s+ t+ 2) ≥ 3k − 2k = k. (4.24)

Thus |[v]− ∩ [w]−| ≥ k. Hence

2k − 1 ≥
∣∣N−D (w)

∣∣ ≥ ∣∣[w]− − [v]−
∣∣+
∣∣[v]− ∩ [w]−

∣∣ ≥ k − 1 + k = 2k − 1

and so |N−D (w)| = 2k − 1. Therefore t = |[w]− − [v]−| = k − 1 and |[v]− ∩ [w]−| = k.

Then s+ t = 2k− 2 by (4.24) and so s = |[v]−− [w]−−{w}| = k− 1. Further, since
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{w} t ([v]− − [w]− − {w}) t ([v]− ∩ [w]−) ⊆ N−D (v),

|{w}|+
∣∣[v]− − [w]− − {w}

∣∣+
∣∣[v]− ∩ [w]−

∣∣ = 1 + (k − 1) + k = 2k ≤
∣∣N−D (v)

∣∣ ,
which is impossible. Therefore Subcase 1-1 cannot happen, i.e. w 6→ v.

Subcase 1-2. v → w. Then, by Claim A, N+
D (v) = {w}. Thus v 6→ z for any z ∈

[w]−. Hence, by (4.20), the argument obtained by replacing v with w and adjusting

other vertices based upon the replacement in the argument for Subcase 1-1 may be

applied to reach a contradiction.

Subcase 1-3. There is no arc between v and w. Then, by Claim B, there exists a

vertex v′ such that

(
[v]− − [w]−

)
t
(
[w]− − [v]− − {v′}

)
⊆ N−D (v′).

Then v1 → v′. Since N+
D (v1) = {v, v′}, v′ = v∗. Since w → v∗, v∗ 6∈ [w]− − [v]− and

so (
[v]− − [w]−

)
t
(
[w]− − [v]−

)
t {w} ⊆ N−D (v∗).

Then, since |N−D (v∗)| ≤ 2k − 1, |[v]− − [w]−| = |[w]− − [v]−| = k − 1 by (4.15) and

(4.16). Hence (
[v]− − [w]−

)
t
(
[w]− − [v]−

)
t {w} = N−D (v∗).

Then v 6→ v∗. Take a vertex z in [w]− − [v]−. Therefore N+
D (z) = {v∗, w}. Then,

since v 6→ w, v and z have no common out-neighbor. Since v is adjacent to z,

z → v or v → z. Thus z ∈ N+
D (v). Since z was arbitrarily chosen from [w]− − [v]−,

[w]− − [v]− ⊆ N+
D (v) and so, by (4.17), N+

D (v) = [w]− − [v]−. Thus v and w have no

common out-neighbor. Moreover, since w 6→ v and v 6→ w, v and w are not adjacent,

which is a contradiction.

Case 2. |[u]+| 6= 2. Then

[u]+ = {v}.
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Thus w 6∈ V (H) and so, by the property (B),

N+
D (w) = ∅.

Suppose v 6→ w. Then, by Claim B, there exists a vertex v′ such that

(
[v]− − [w]−

)
t
(
[w]− − [v]− − {v′}

)
⊆ N−D (v′).

Then

k + k − 1 ≤
∣∣([v]− − [w]−)

∣∣+
∣∣([w]− − [v]− − {v′}

)∣∣ ≤ ∣∣N−D (v′)
∣∣ ≤ 2k − 1

by (4.15) and (4.16). Thus |[v]− − [w]−| = k, |[w]− − [v]− − {v′}| = k − 1,

v′ ∈ [w]− − [v]−, (4.25)

and (
[v]− − [w]−

)
t
(
[w]− − [v]− − {v′}

)
= N−D (v′). (4.26)

Then, since v 6∈ [w]−, v 6∈ N−D (v′) by (4.26) and so v 6→ v′. Since |[w]− − [v]− −
{v′}| = k − 1 ≥ 2, there are two vertices w1 and w2 in [w]− − [v]− − {v′}. Then

N+
D (w1) = N+

D (w2) = {w, v′} and so each of w1 and w2 shares no out-neighbor with

v. Therefore N+
D (v) = {w1, w2}. Then, since {w1, w2} ⊆ [w]− − [v]− − {v′}, v and

v′ have no common out-neighbor by (4.26). In addition, since v′ ∈ [w]− − [v]− by

(4.25), v′ 6→ v. Hence v and v′ are not adjacent, which is impossible. Consequently,

we have shown

v → w.

Then, by Claim A,

N+
D (v) = {w}.

Let D3 be the subdigraph of D induced by [v]−4 [w]−−{v}. Since D3 is acyclic,

D3 has a source, say x. Then x ∈ [v]− − [w]− or x ∈ [w]− − [v]−.

Then we claim the following
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Claim C. x ∈ [v]− − [w]− and there exists an out-neighbor x∗ of x such that

[v]−4 [w]− − {v, x∗} = N−D (x∗).

Proof of Claim C. Let α denote a vertex between v and w with x ∈ [α]− − [β]−

and β denote the other vertex. If N+
D (x) = {α}, then x cannot be adjacent to any

vertex in [β]− − [α]− − {α} since x is a source in D3. Thus N+
D (x) 6= {α} and so

N+
D (x) = {α, x∗} for some x∗.

To show N−D (x∗) ⊆ [v]−4 [w]−−{v, x∗}, take b ∈ N−D (x∗). Then b ∈ V (H) by the

property (B). Moreover, b 6= x∗. If b ∈ [v]− ∩ [w]−, then N+
D (b) = {v, w, x∗}, which is

impossible. Therefore b 6∈ [v]−∩ [w]−. By (4.13), b ∈ [v]−4 [w]−− [u]+ or b ∈ [u]+. If

b ∈ [u]+, then b = v and so N+
D (b) = N+

D (v) = {w}, which implies b 6∈ N−D (x∗). Thus

b ∈ [v]−4 [w]− − [u]+. Then, since b 6= x∗, b ∈ [v]−4 [w]− − {v, x∗} and so

N−D (x∗) ⊆ [v]−4 [w]− − {v, x∗}. (4.27)

Since x ∈ [α]− − [β]−, x∗ 6= β. Moreover, since x is a source in D3 and x is

adjacent to any vertex in [β]− − [α]− − {α, x∗}, x∗ is an out-neighbor of any vertex

in [β]− − [α]− − {α, x∗}. Thus

[β]− − [α]− − {α, x∗} ⊆ N−D (x∗) (4.28)

and

N+
D (z) = {x∗, β} (4.29)

for each z in [β]− − [α]− − {α, x∗}.
To show [α]− − [β]− − {α, x∗} ⊆ N−D (x∗), we note that [α]− − [β]− − {α, x∗} =

[α]− − [β]− − {x∗}. Take a vertex y1 in [α]− − [β]− − {x∗}. To the contrary, suppose

y1 /∈ N−D (x∗), i.e. y1 6→ x∗. Then, since x→ x∗, y1 6= x. Take z1 in [β]−−[α]−−{α, x∗}.
Such a vertex exists since |[β]− − [α]− − {α, x∗}| ≥ 1 by (4.15) and (4.16). Then y1

and z1 are adjacent, so y1 → z1 by (4.29). Therefore N+(y1) = {α, z1}. Since z1 was

arbitrarily chosen from [β]−− [α]−−{α, x∗}, [β]−− [α]−−{α, x∗} ⊆ N+(y1) and so

[β]−−[α]−−{α, x∗} = {z1}. Thus [β]−−[α]− ⊆ {α, x∗, z1}. Since |[β]−−[α]−| ≥ k ≥ 3

by (4.15) and (4.16), [β]− − [α]− = {α, x∗, z1}. Then x∗ and y1 are adjacent. Since
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y1 6→ x∗ and x∗ and y1 share no out-neighbor, x∗ → y1. Thus y1 → z1 → x∗ → y1 is a

directed cycles, which is impossible. Hence y1 → x∗. Since y1 was arbitrarily chosen

from [α]− − [β]− − {x∗},

[α]− − [β]− − {α, x∗} = [α]− − [β]− − {x∗} ⊆ N−D (x∗).

Then

[v]−4 [w]− − {α, x∗} ⊆ N−D (x∗)

by (4.28). Since v ∈ [v]− 4 [w]−, α = v and [v]− 4 [w]− − {v, x∗} = N−D (x∗) by

(4.27).

Since v → w and {v} = [u]+ ⊆ [v]−4 [w]−,

(
[v]−4 [w]−

)
t
(
[v]− ∩ [w]−

)
= V (H)

by (4.13). Thus, by Claim C,

N−D (x∗) t
(
([v]−4 [w]−) ∩ {v, x∗}

)
t
(
[v]− ∩ [w]−

)
= V (H). (4.30)

Then, since |N−D (x∗)| ≤ 2k − 1 and |V (H)| = 3k, we conclude

∣∣[v]− ∩ [w]−
∣∣ ≥ k − 1. (4.31)

By the way, since [u]+ = {v} and v ∈ [w]−, |[v]− ∪ [w]−| = 3k by (4.13). Then,

since |[u]+| = 1, ∣∣[v]− − [w]−
∣∣ ≥ k and

∣∣[w]− − [v]−
∣∣ ≥ k (4.32)

by (4.15) and (4.16). Therefore |[v]−4 [w]−| ≥ 2k. Since |[v]− ∪ [w]−| = 3k,

∣∣[v]− ∩ [w]−
∣∣ =

∣∣[v]− ∪ [w]−
∣∣− ∣∣[v]−4 [w]−

∣∣ ≤ 3k − 2k = k.

If |[v]− ∩ [w]−| = k, then, by (4.32), |[v]−| = |[v]− ∩ [w]−|+ |[v]−− [w]−| ≥ 2k, which
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is impossible. Suppose |[v]− ∩ [w]−| = k − 1. Then |[v]−4 [w]−| = 2k + 1 and so

∣∣[v]− − [w]−
∣∣ = k + 1 or

∣∣[w]− − [v]−
∣∣ = k + 1

Hence |[v]−| = |[v]−∩[w]−|+|[v]−−[w]−| ≥ 2k or |[w]−| = |[v]−∩[w]−|+|[w]−−[v]−| ≥
2k, which is impossible. Therefore |[v]− ∩ [w]−| ≤ k − 2, which contradicts (4.31).

Thus we have shown that there is no (2k − 1, 2) digraph D whose phylogeny graph

contains an induced subgraph isomorphic to K3k and so we conclude ω(G) ≤ 3i
2

+ 1.

To show that the inequality is tight, we present a (2k, 2) digraph and a (2k+1, 2)

digraph each of whose phylogeny graphs contains K3k+1 and K3k+2 as an induced

subgraph, respectively, for any integer k ≥ 2. Fix an integer k ≥ 2. Let D1 be a

(2k, 2) digraph with

V (D1) = {u, v, w, x1, x2, . . . , x2k−1, y1 . . . , yk−1, z}

and

A(D1) ={(u, v), (u,w), (v, w), (w, z)} ∪
2k−1⋃
i=1

{(xi, v)}

∪
k−1⋃
i=1

{(yi, w), (yi, z)} ∪
k−1⋃
i=1

{(xi, w)} ∪
2k−1⋃
i=k

{(xi, z)}

(see the (4, 2) digraph given in Figure 4.6 for an illustration). In the following, we

show that V (D1)− {z} forms a clique of size 3k + 1 in P (D1). We note that

N+(u) = {v, w}, v ∈ N+(u) ∩N+(xi), and w ∈ N+(u) ∩N+(yj)

for each 1 ≤ i ≤ 2k− 1 and 1 ≤ j ≤ k− 1. Therefore u is adjacent to the vertices in

V (D1)− {u, z}. We can check that

N+(v) = {w}, v ∈ N+(xi), and w ∈ N+(v) ∩N+(yj)

for each 1 ≤ i ≤ 2k − 1 and 1 ≤ j ≤ k − 1. Therefore v is adjacent to the vertices in
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Figure 4.4: A (2,2) digraph and its phylogeny graph

Figure 4.5: A (3,2) digraph and its phylogeny graph

V (D1)− {v, z}. Since

w ∈ N+(xi) ∩N+(yi) and z ∈ N+(w) ∩N+(xj)

for each 1 ≤ i ≤ k−1 and k ≤ j ≤ 2k−1, w is adjacent to the vertices in V (D1)−{w}.
Take xi for some i ∈ {1, . . . , 2k− 1}. Since {x1, . . . , x2k−1} ⊆ N−(v), {x1, . . . , x2k−1}
forms a clique. If 1 ≤ i ≤ k − 1, then xi → w and so w is a common out-neighbor of

xi and yj for each 1 ≤ j ≤ k−1. If k ≤ i ≤ 2k−1, then xi → z and so z is a common

out-neighbor of xi and yj for each 1 ≤ j ≤ k − 1. Therefore xi is adjacent to the

vertices in {y1, . . . , yk−1}. Thus xi is adjacent to the vertices in V (D1)−{xi, z}. Since

{y1, . . . , yk−1} ⊆ N−(w), {y1, . . . , yk−1} forms a clique. Therefore we have shown that

V (D1)−{z} forms a clique in P (D1). Then, by Lemma 4.21, we obtain a (2k+ 1, 2)

digraph whose phylogeny graph contains an induced subgraph isomorphic to K3k+2.

Hence we have shown that the inequality is tight.

Proof of Theorem 4.2. Propositions 4.12, 4.14, 4.17, and Theorems 4.20 and 4.22
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Figure 4.6: A (4,2) digraph and its phylogeny graph

may be summarized in the aspect of forbidden subgraphs in an (i, j) phylogeny

graph with i, j ≥ 2.
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Chapter 5

On CCE graphs of (2, 2) digraphs1

The 〈i, j〉 digraph is a simple digraph satisfying d−(x) ≤ i and d+(x) ≤ j for every

vertex x in V (D). By definition, a (i, j) digraph is a 〈i, j〉 digraph. Given a graph G,

we say that G is a 〈i, j〉 CCE graph if it is the CCE graph of a 〈i, j〉 digraph.

Proposition 5.1. The degree of each vertex in a 〈2, 2〉 CCE graph is less than or

equal to 2. That is, a 〈2, 2〉 CCE graph has only path components and cycle compo-

nents, where we identify an isolated vertex with a trivial path.

Proof. Let D be a 〈2, 2〉 digraph. Take a vertex v of CCE(D). Since D is a 〈2, 2〉
digraph and CCE(D) is a simple graph, the ends of each edge incident to v in

CCE(D) have a common prey which is different from a common prey of the ends of

another edge incident to v. This implies that v has preys in D at least the number

of edges incident to v in CCE(D). Since v has at most 2 prey by 〈2, 2〉 digraph D,

the degree of v in CCE(D) is at most 2.

The following is an immediate consequence of the definitions of CCE graph and

〈2, 2〉 digraph.

Lemma 5.2. Let D be a 〈2, 2〉 digraph and u be a vertex which has degree 2 in

CCE(D). Then the following are true:

1The material in this chapter is written based on the manuscript ‘Interval competition-common
enemy graphs of degree-bounded digraphs’ by Myungho Choi, Hojin Chu, and Suh-Ryung Kim.
The author thanks the coauthors for allowing him to use its contents for his thesis.
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(i) d+(u) = d−(u) = 2;

(ii) two prey (resp. predators) of u have u as the only common predator (resp.

prey);

(iii) N+(u) 6= N+(v) and N−(u) 6= N−(v) for any vertex v in V (D)− {u};

(iv) each prey (resp. predator) of u is a common prey (resp. predator) of u and one

of its neighbors in CCE(D).

Given a 〈2, 2〉 digraph D, CCE(D) = CCE(D←) where D← is the digraph ob-

tained from D by reversing the direction of each arc in D. Thus, given a 〈2, 2〉 CCE

graph G and the collection D of 〈2, 2〉 digraphs each of whose CCE graph is G, if a

digraph D chosen arbitrarily from D has a property α, then D← also has the property

α since D← ∈ D. Therefore the following proposition is true.

Proposition 5.3. Let G be a 〈2, 2〉 CCE graph and D be a 〈2, 2〉 digraph satisfying

G = CCE(D). Then if α is a property of D, then the statement obtained from α by

replacing the term ‘prey’ (resp. ‘predator’) with the term ‘predator’ (resp. ‘prey’) is

a property of D.

Lemma 5.4. Let G be the CCE graph of a 〈2, 2〉 digraph D. In addition, let u be a

vertex of degree 2 in G and two vertices v and w be the prey or the predators of u in

D. Then v and w are adjacent in G, or each of v and w has degree at most 1 in G.

Proof. By Proposition 5.3, it is sufficient to handle the case where v and w are the

prey of u in D. Suppose that v and w are the prey of u in D. Assume that one of

v and w has degree at least 2 in G. Without loss of generality, we may assume that

v has degree at least 2 in G. Then v has degree 2 in G by Proposition 5.1. Since

u ∈ N−(v), by Lemma 5.2(iv), u is a common predator of v and one of its neighbors

in G. Thus, since N+(u) = {v, w}, v and w are adjacent in G.

Definition 5.5. Let D be a digraph.
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w1 w2 wm−1

v1 v2 vm−1 vm

. . .

. . .
. . .

(a) An outer arc set of v1, v2, . . . , vm toward
w1, w2, . . . , wm−1

u1 u2 um−1

v1 v2 vm−1 vm

. . .

. . .
. . .

(b) An inner arc set of v1, v2, . . . , vm from
u1, u2, . . . , um−1

Figure 5.1: An outer arc set and an inner arc set of v1, v2, . . . , vm.

(i) Given a vertex sequence v1, v2, . . . , vm of D for some integer m ≥ 2, if an arc

set

{(v1, w1), (v2, w1), (v2, w2), . . . , (vm−1, wm−1), (vm, wm−1)}

exists, then we call it an outer arc set of (the sequence) v1, v2, . . . , vm toward

(the sequence) w1, w2, . . . , wm−1 (see Figure 5.1(a))

(ii) Given a vertex sequence v1, v2, . . . , vm of D for some integer m ≥ 2, if an arc

set

{(u1, v1), (u1, v2), (u2, v2), . . . , (um−1, vm−1), (um−1, vm)}

exists, then we call it an inner arc set of v1, v2, . . . , vm from u1, u2, . . . , um−1

(see Figure 5.1(b)).

We denote a path of length m − 1 and a cycle of length m by Pm and Cm,

respectively, for a positive integer m. Especially, we denote the path v1v2 · · · vm and

the cycle v1v2 · · · vmv1 by Pv,m and Cv,m, respectively. For a given Cv,m, we identify

vm+j with vj for any integer j.

By Lemma 5.4 and the definition of outer arc sets and inner arc sets, we have the

following proposition and corollaries.

Proposition 5.6. Let G be the CCE graph of a 〈2, 2〉 digraph D and Pu,` and Pv,m

be two nontrivial paths of G. Suppose that there is an arc from ui to vj for some

positive integers i ≤ ` and j ≤ m. Then there is either an outer arc set of ui, . . . , ua
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toward vj, . . . , vb or an inner arc set of vj, . . . , vb from ui, . . . , ua where the positive

integers a and b satisfy one of the following:

(a) i ≤ a ≤ `; j ≤ b ≤ m; |(a− i)− (b− j)| = 1; a = ` or b = m;

(b) i ≤ a ≤ `; b ≤ j; |(a− i)− (j − b)| = 1; a = ` or b = 1;

(c) a ≤ i; j ≤ b ≤ m; |(i− a)− (b− j)| = 1; a = 1 or b = m;

(d) a ≤ i; b ≤ j; |(i− a)− (j − b)| = 1; a = 1 or b = 1.

Recall that we use the notation u→ v (resp. u 6→ v) to represent “(u, v) is (resp.

is not) an arc of a digraph”.

Corollary 5.7. Let G be the CCE graph of a 〈2, 2〉 digraph D and Pu,` and Pv,m be

two nontrivial paths of G. Suppose that u1 → vt, u2 → vt, and u2 → vt+1 for some

integer 1 ≤ t < m. Then there is an outer arc set of u1, . . . , ua toward vt, . . . , vb

where the integers a and b satisfy

1 < a ≤ `; t ≤ b ≤ m; (a− 1)− (b− t) = 1; a = ` or b = m.

Corollary 5.8. Let G be the CCE graph of a 〈2, 2〉 digraph D and Pu,` and Pv,m be

two nontrivial paths of G. Suppose that vt → u1, vt → u1, and vt → u2 for some

integer 1 ≤ t < m. Then there is an inner arc set of u1, . . . , ua from vt, . . . , vb where

the integers a and b satisfy

1 < a ≤ `; t ≤ b ≤ m; (a− 1)− (b− t) = 1; a = ` or b = m.

If the CCE graph of a digraph D contains Pv,m or Cv,m for an integer m ≥ 3, then

vi and vi+1 have a unique common prey and a unique common predator in D (refer

to Figure 5.1) and we denote them by v−i,i+1 and v+i,i+1, respectively. For a given Cv,m,

we identify v−m+i,m+j and v+m+i,m+j with v−i,j and v+i,j, respectively, for any integers i

and j.

If Pu,` = Pv,m in Corollary 5.7, then the condition v−1,2 = vt implies v2 → vt+1 and

we have the following useful theorem.
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v1 v2 vm−t+1 vm−t+2 vt−1 vt vt+1 vm

. . . . . . . . .

Figure 5.2: The arc set in Theorem 5.9

Given a walk W , we denote by W−1 the walk obtained from W by reversing its

sequence.

Theorem 5.9. Let G be the CCE graph of a 〈2, 2〉 digraph D and Pv,m be a path in G

for some integer m ≥ 3. If v−1,2 = vt for some integer 3 ≤ t ≤ m, then v−i,i+1 = vt+i−1

and v+t+i−2,t+i−1 = vi for each integer 1 ≤ i ≤ m− t+ 1 (see Figure 5.2).

Proof. Suppose v−1,2 = vt for some integer 3 ≤ t ≤ m. Then N−(vt) = {v1, v2} and

so v+t−1,t is either v1 or v2. To the contrary, suppose v+t−1,t = v2. Then v2 → vt−1.

Since v−1,2 = vt, by applying Corollary 5.7 to Pv,m and P−1v,m, there is an outer arc set

v1, v2, . . . , va toward vt, vt−1, . . . , vb where the integers a and b satisfy the following:

1 < a ≤ m; 1 ≤ b ≤ t; (a− 1)− (t− b) = 1; a = m or b = 1.

If b = 1, then a = t+1 and so the outer arc set of v1, v2, . . . , vt+1 toward vt, vt−1, . . . , v1

contains a loop, which is a contradiction. Thus b 6= 1. Then a = m and b = t−m+2.

Since t ≤ m, b ≤ 2 and so b = 2. Then t = m. Thus the outer arc set of v1, v2, . . . , vm

toward vm, vm−1, . . . , v2 contains a loop, which is a contradiction. Therefore v+t−1,t =

v1. Then, if vt+1 exists, v+t,t+1 must be v2 and so, by applying Corollary 5.7 to Pv,m

and itself, we reach a desired conclusion.

By Proposition 5.3, the following corollary immediately follows.

Corollary 5.10. Let G be the CCE graph of a 〈2, 2〉 digraph D and Pv,m be a path

in G for some integer m ≥ 3. If v+1,2 = vt for some integer 3 ≤ t ≤ m, then

v+i,i+1 = vt+i−1 and v−t+i−2,t+i−1 = vi for each 1 ≤ i ≤ m− t+ 1.

126



Note that v+1,2 or v−1,2 may not be well-defined if Pv,2 is a component of the

CCE graph of a 〈2, 2〉 digraph. For example, a 〈2, 2〉 digraph with the vertex set

{v1, v2, a, b, c} and the arc set {(v1, a), (v1, b), (v2, a), (v2, b), (c, v1), (c, v2)} has its CCE

graph Pv,2 with isolated vertices a, b, and c, yet v1 and v2 have a and b as common

prey. This observation may be generalized as follows.

Proposition 5.11. Let G be the CCE graph of a 〈2, 2〉 digraph.

(i) Given the path Pv,m (not necessarily a path component) in G for some integer

m ≥ 3, the sequence

v−1,2v
−
2,3 · · · v−m−1,m

determines the unique outer arc set of Pv,m (toward it), while the sequence

v+1,2v
+
2,3 · · · v+m−1,m

determines the unique inner arc set of Pv,m (from it). We denote the outer

arc set and the inner arc set of Pv,m by ∂+(Pv,m) and ∂−(Pv,m), respectively.

Conversely, if a vertex sequence v1, v2, . . . , vm has both an inner arc set and an

outer arc set, then it forms Pv,m in CCE graph.

(ii) Given the cycle Cv,m in G for some integer m ≥ 3, the sequences

v−1,2v
−
2,3 · · · v−m−1,mv−m,1 and v+1,2v

+
2,3 · · · v+m−1,mv+m,1

determine the arc sets

∂+(Pv,m) ∪ {(v1, v−m,1), (vm, v
−
m,1)} and ∂−(Pv,m) ∪ {(v+m,1, v1), (v

+
m,1, vm)},

respectively, which are the unique outer arc set and the unique inner arc set,

respectively, of Cv,m and we denote them by ∂+(Cv,m) and ∂−(Cv,m), respec-

tively. Conversely, if a vertex sequence v1, v2, . . . , vm, v1 has both an inner arc

set and an outer arc set, then it forms Cv,m in CCE graph.
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The degree boundedness of 〈2, 2〉 digraph and the previous proposition ensure the

following proposition.

Proposition 5.12. Let G be the CCE graph of a 〈2, 2〉 digraph D. Given the path

Pv,m (resp. the cycle Cv,m) in G for some integer m ≥ 3,

(i) v+i,i+1 6= v+j,j+1 and v−i,i+1 6= v−j,j+1 for distinct 1 ≤ i, j ≤ m− 1 (resp. 1 ≤ i, j ≤
m);

(ii) N(v+i,i+1) ⊆ {v+i−1,i, v+i+1,i+2} and N(v−i,i+1) ⊆ {v−i−1,i, v−i+1,i+2} for each 2 ≤ i ≤
m− 2 (resp. 2 ≤ i ≤ m).

5.1 CCE graphs of 〈2, 2〉 digraphs

This section is devoted to proving the following theorem which characterizes the

〈2, 2〉 CCE graphs.

Theorem 5.13. A graph is a 〈2, 2〉 CCE graph if and only if each connected com-

ponent is a path or a cycle, and the only path component, if exists, is trivial.

Lemma 5.14. A nontrivial path is not a 〈2, 2〉 CCE graph.

Proof. To the contrary, suppose that a nontrivial path Pv,m is the CCE graph of a

〈2, 2〉 digraph D for some integer m > 1. Any two adjacent vertices of Pv,m must have

a common prey and a common predator which are distinct in D. Thus m ≥ 4. Since

D is loopless, v−1,2 = vt for some integer 3 ≤ t ≤ m. By Theorem 5.9, v−i,i+1 = vt+i−1

and v+t+i−2,t+i−1 = vi for each 1 ≤ i ≤ m− t+ 1. Then v+t−1,t = v1. Since vt is already

an outneighbor of v2, the only neighbor v2 of v1 in G cannot be v+t−2,t−1. Thus, by

Lemma 5.4, we have v+t−2,t−1 = vm. Then vt−1 is a common prey of v1 and vm. If

t < m, since the only neighbor vm−1 of vm cannot be v−m−t,m−t+1 by Lemma 5.4

again, v−m−t,m−t+1 = v1 and so vm−t+1 is a common predator of v1 and vm. Suppose

t = m. That is, v−1,2 = vm. Since vt−1 is a common prey of v1 and vm, the only

neighbor vm−1 of vm cannot be v+2,3. Thus v−2,3 = v1 by Lemma 5.4. Then v2 is a

common predator of v1 and vm. Whether t < m or t = m, v1 and vm have a common
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prey and a common predator in D. Thus v1 and vm are adjacent in CCE(D), which

is a contradiction.

Given a positive integer m ≥ 3, we consider a digraph D
ty
v,m with the vertex set

V (D
ty
v,m) = {v1, v2, . . . , vm}

and the arc set

A(D
ty
v,m) =

m⋃
k=1

{(vk, vk+t), (vk, vk+t+1)}

for some t ∈ {1, . . . ,m−2} (identify vm+i with vi for each integer i). For each vertex

vi in D
ty
v,m,

N+(vi) = {vi+t, vi+t+1} and N−(vi) = {vi−t−1, vi−t}. (5.1)

Since t ∈ {1, . . . ,m − 2}, D
ty
v,m is loopless and so it is a 〈2, 2〉 digraph. Moreover,

vi+t+1 (resp. vi−t) is a common prey (resp. predator) of vi and vi+1 for each integer

1 ≤ i ≤ m. Therefore

CCE(D
ty
v,m) = Cv,m (5.2)

and

v+i,i+1 = vi+t+1 and v−i,i+1 = vi−t (5.3)

in D
ty
v,m for each integer 1 ≤ i ≤ m. Hence we obtain the following proposition.

Lemma 5.15. A cycle of length at least 3 is a 〈2, 2〉 CCE graph.

Proposition 5.16. For positive integers m and n, Pm ∪ Pn is a 〈2, 2〉 CCE graph.

Proof. Fix positive integers m and n. Since an edgeless graph is a 〈2, 2〉 CCE graph,

the case m = n = 1 is clear. Without loss of generality, we assume m ≥ 2. We

consider the digraph

D := D
m−1y
v,m+n − (v1, vm).
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Since D
m−1y
v,m+n is a 〈2, 2〉 digraph, D is a 〈2, 2〉 digraph. By (5.3),

v−i,i+1 = vi+m and v+i,i+1 = vi−m+1

in D
m−1y
v,m+n for each integer 1 ≤ i ≤ m + n. Especially, v−m+n,1 = vm and v+m,m+1 = v1

in D
m−1y
v,m+n since we identify vm+n+j with vj for each integer j. Thus removing the arc

(v1, vm) from D
m−1y
v,m+n deletes the edges {v1, vm+n} and {vm, vm+1} so that the CCE

graph of D is the union of paths

v1v2 · · · vm and vm+1vm+2 · · · vm+n

by (5.2). Hence CCE(D) ∼= Pm ∪ Pn.

We denote k path components Pm of a graph by kPm for positive integers k ≥ 2

and m. We also denote t isolated vertices by It for a positive integer t.

Proposition 5.17. For positive integers m and n, 2Pm ∪ Pn is a 〈2, 2〉 CCE graph.

Proof. Fix positive integers m and n. Since Pn ∪ I1 is a 〈2, 2〉 CCE graph by Propo-

sition 5.16, Pn ∪ I2 is a 〈2, 2〉 CCE graph. Now we assume m ≥ 2. We consider the

digraph

D := D
m−1y
v,2m+n − (v1, vm)− (vm+1, v2m).

Since D
m−1y
v,2m+n is a 〈2, 2〉 digraph, D is a 〈2, 2〉 digraph. Note that by (5.3),

v−i,i+1 = vi+m and v+i,i+1 = vi−m+1

in D
m−1y
v,2m+n for each integer 1 ≤ i ≤ 2m + n. Especially, v−2m+n,1 = vm, v+m,m+1 = v1,

v−m,m+1 = v2m, and v+2m,2m+1 = vm+1 in D
m−1y
v,2m+n. Thus removing the arcs (v1, vm) and

(vm+1, v2m) from D
m−1y
v,2m+n deletes the edges {v1, v2m+n}, {vm, vm+1}, and {v2m, v2m+1}

so that the CCE graph of D is the union of paths

v1v2 · · · vm, vm+1vm+2 · · · v2m, and v2m+1v2m+2 · · · v2m+n
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by (5.2). Hence CCE(D) ∼= 2Pm ∪ Pn.

Proposition 5.18. For positive integers l, m and n, Pl ∪ Pm ∪ Pn is a 〈2, 2〉 CCE

graph.

Proof. Fix positive integers l, m, and n. By Propositions 5.16 and 5.17, it suffices to

consider the case 1 < l < m < n. Suppose

1 < l < m < n.

Let D1 = D
l−1y
u,l+m and D2 = D

m−ly
v,m+n. We consider two digraphs

D3 := D1 − ∂−D1
(u2l · · ·ul+m)− (um+1, ul+m)

and

D4 := D2 − ∂−D2
(vm+n−l+1 · · · vm+n)− (vn+l, vm+n)

(see Figure 5.3 and, for the notation ∂−D(X), refer to Proposition 5.11). Now we

obtain a digraph D from digraphs D3 and D4 by identifying ul+i with vm+n+1−i for

each 1 ≤ i ≤ m. Since D1 and D2 are 〈2, 2〉 digraphs, D3 and D4 are 〈2, 2〉 digraphs.

To show that D is a 〈2, 2〉 digraph, it suffices to check the outdegree and indegree of

the vertices identified in D3 and D4. By (5.1), we may check the following:

• d−D3
(ul+1) = · · · = d−D3

(u2l−1) = 2, d−D3
(u2l) = 1, d−D3

(u2l+1) = · · · = d−D3
(ul+m) =

0;

• d+D3
(ul+1) = · · · = d+D3

(um) = 0, d+D3
(um+1) = 1, d+D3

(um+2) = · · · = d+D3
(ul+m) =

2;

• d−D4
(vn+1) = · · · = d−D4

(vm+n−l) = 2, d−D4
(vm+n−l+1) = 1, d−D4

(vm+n−l+2) = · · · =
d−D4

(vm+n) = 0;

• d+D4
(vn+1) = · · · = d+D4

(vn+l−1) = 0, d+D4
(vn+l) = 1, d+D4

(vn+l+1) = · · · =

d+D4
(um+n) = 2.
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Thus each vertex identified in D3 and D4 has outdegree 2 and indegree 2 in D.

Therefore D is a 〈2, 2〉 digraph. By (5.3), we may check the following:

• A(D3) is the union of an outer arc set of um+1, . . . , ul+m, u1, . . . , ul toward

u1, . . . , u2l−1 and an inner arc set of u1, . . . , u2l from um+2, . . . , ul+m, u1, . . . , ul;

• A(D4) is the union of an outer arc set of vn+l, . . . , vm+n, v1, . . . , vn toward

v1, . . . , vm+n−l and an inner arc set of v1, . . . , vm+n−l+1 from vn+l+1, . . . , vm+n, v1, . . . , vn.

Since we have identified ul+i with vm+n+1−i for each 1 ≤ i ≤ m, CCE(D) is the

union of paths u1 · · ·ul, ul+1 · · ·ul+m, and v1 · · · vn.

Lemma 5.19. Let G be a disjoint union of paths. Then G is a 〈2, 2〉 CCE graph if

and only if G is not isomorphic to a nontrivial path.

Proof. The “only if” part follows from Lemma 5.14. Suppose that G is not isomorphic

to a nontrivial path. If G is a trivial graph, then it is clear. Assume that G is not a

trivial graph. Then G has at least 2 path components. Thus there is a partition P of

the set of path components of G such that each part of P has size 2 or 3. For each

part X, there is a 〈2, 2〉 digraph DX whose CCE graph is X by Proposition 5.16 if

|X| = 2 and by Proposition 5.18 if |X| = 3. Then
⋃

X∈P DX is a 〈2, 2〉 digraph whose

CCE graph is G. Thus we have shown the “if” part.

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13. For 〈2, 2〉 digraphsD1 andD2, we may check that CCE(D1∪
D2) = CCE(D1) ∪ CCE(D2). Thus the “if” part follows by Lemmas 5.15 and 5.19.

To show the “only if” part, suppose that G is the CCE graph of a 〈2, 2〉 digraph D.

By Proposition 5.1, G is a disjoint union of paths and cycles. To the contrary, suppose

that Pu,l is the unique path component of G for an integer l ≥ 2. By Proposition 5.1,

each component of G is either a path or a cycle. Since a nontrivial path cannot be

the CCE graph of a 〈2, 2〉 digraph by Lemma 5.14, there is a cycle component Cv,m

in G such that some consecutive vertices of Pu,l have a common prey or a common

predator on Cv,m for some positive integer m. Without loss of generality, we may
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vn+l+1 vn+m. . . . . . . . . . . . . . . . . .

(b) D4

Figure 5.3: Digraphs in the proof of Proposition 5.18
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assume that some consecutive vertices of Pu,l have a common predator on Cv,m.

Then vj → ui for some 1 ≤ i ≤ l and 1 ≤ j ≤ m. Thus ui is either v−j−1,j or v−j,j+1. By

Proposition 5.12, since Pu,l is the only path component in G, l = m and there is a

positive integer t such that 1 ≤ t ≤ m and {u1, ul} = {v−t−1,t, v−t,t+1}. Then vt = u+1,l.

By Proposition 5.3, there is a cycle component Cw,l in G such that ws = u−1,l for

some 1 ≤ s ≤ l. Thus u1 and ul have a common prey vt and a common predator

ws. Therefore u1 and ul are adjacent in G, which is a contradiction that Pu,l is a

path.

5.2 CCE graphs of (2, 2) digraphs

We only consider (2, 2) digraphs with at least three vertices unless otherwise men-

tioned. Recall that we call a vertex of indegree 0 (resp. outdegree 0) in a digraph D

a source (resp. sink) of D. It is a well-known fact that if a digraph D is an acyclic,

then D has a sink and a source. Each sink and each source of a digraph form isolated

vertices in its CCE graph. In this context, it is natural to start with a (2, 2) CCE

graph including exactly two isolated vertices.

Proposition 5.20. Let G be a (2, 2) CCE graph with exactly two isolated vertices.

If D is a (2, 2) digraph satisfying CCE(D) = G, then the following are true:

(i) D has exactly one source x and exactly one sink y which are the two isolated

vertices in G.

(ii) x has a prey of indegree 1 and y has a predator of outdegree 1 in D.

(iii) D is weakly connected.

Proof. Suppose that D is a (2, 2) digraph with CCE(D) = G. Part (i) is immediately

true by the previous observation. If x (resp. y) has no prey (resp. predator) of indegree

1 (resp. outdegree 1), then D − x (resp. D − y) has no a vertex of indegree 0 (resp,

outdegree 0), which contradicts the fact that D−x (resp. D− y) is an acyclic. Thus

part (ii) is true. To show part (iii) by contradiction, suppose that D is not weakly
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connected. Then there exist subdigraphs D1 and D2 of D such that D1 ∪ D2 = D

and V (D1) ∩ V (D2) = ∅. Thus G = CCE(D) = CCE(D1) ∪ CCE(D2). Since at

least one of D1 and D2 is a nontrivial acyclic digraph, CCE(D1) or CCE(D2) has

at least two isolated vertices and so G has at least three isolated vertices, which is

impossible. Therefore D is weakly connected.

Given a family D of digraphs, we say that a digraph in D is minimal in D if

there is no proper subdigraph D′ of D in D such that CCE(D) = CCE(D′). By the

Well-Ordering Axiom, the following lemma is true.

Lemma 5.21. For a (2, 2) CCE graph G and the set DG of (2, 2) digraphs whose

CCE graphs are G, there exists a minimal digraph in DG.

Given a (2, 2) CCE graph G, we say that a digraph is a minimal digraph of G if

D is a minimal digraph among the (2, 2) digraphs whose CCE graphs are G.

It is easy to check that if D is a minimal digraph of a (2, 2) CCE graph G,

then D← is also a minimal digraph of G. Therefore the following is also true by

Proposition 5.3.

Proposition 5.22. Let G be a (2, 2) CCE graph and D be a (2, 2) minimal digraph

of G. Then if α is a property of D, then the statement obtained from α by replacing

the term ‘prey’ (resp. ‘predator’) with the term ‘predator’ (resp. ‘prey’) is a property

of D.

Proposition 5.23. Let D be a minimal digraph of a (2, 2) CCE graph G. Then the

following are true:

(i) if a vertex v has exactly one predator (resp. one prey), then v has degree 1 in G

and the predator (resp. the prey) of v has the other prey (resp. predator) that

is adjacent to v in G.

(ii) if a vertex v has two predators (resp. two prey), then v has degree 2 or the

predators (resp. the prey) of v are adjacent in G.

(iii) any two distinct vertices have at most one common prey and at most one com-

mon predator.
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Proof. By Proposition 5.22, for showing (i) and (ii), it is sufficient to handle the case

where a vertex v has indegree 1 or 2.

To show part (i), suppose that v has indegree 1 in D. Then, since D is a (2, 2)

digraph, v has degree at most 1 in G. Suppose that v has degree 0 in G. Then

CCE(D′) = G for the subdigraph D′ with V (D′) = V (D) and A(D′) ( A(D)

obtained from deleting the incoming arc to v, which contradicts the minimality of

D. Therefore v has degree 1 in G. Thus the predator of v has the other prey that is

adjacent to v in G.

To verify part (ii), we suppose that v has indegree 2 in D. Let w and x be the

predators of v. Assume that v has degree at most 1, and w and x are not adjacent in

G. Then deleting any arc of (w, v) and (x, v) does not change the adjacency between

w and x. Moreover, since v has degree at most 1 and D is a (2, 2) digraph, we may

delete one arc of (w, v) and (x, v) so that the degree of v stays the same in the CCE

graph of the resulting digraph D′. Thus A(D′) ( A(D) and CCE(D′) = G , which

contradicts the minimality of D. Hence v has degree 2 or w and x are adjacent in G.

To show part (iii), suppose to the contrary that there are two distinct vertices

u1 and u2 such that they have at least two common prey or at least two common

predators. By Proposition 5.22, we may assume that u1 and u2 have at least two

common prey v1 and v2. Since D is a (2, 2) digraph,

N+
D (u1) = N+

D (u2) = {v1, v2}

and

N−D (v1) = N−D (v2) = {u1, u2}.

Then the pairs that may be affected by deleting the arc (u1, v1) from D are that of

u1 and u2 and that of v1 and v2. Yet, the adjacency of u1 and u2 is preserved by the

arcs (u1, v2) and (u2, v2) and that of v1 and v2 is preserved by the arcs (u2, v1) and

(u2, v2). Therefore the CCE graph of the digraph D − (u1, v1) is isomorphic to G,

which contradicts the fact that D is minimal.

Remark 5.24. By Proposition 5.23(iii), two adjacent vertices in the CCE graph G
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of a (2, 2) minimal digraph have a unique common predator and a unique common

prey. Therefore the notations v+1,2 and v−1,2 may be used for the common predator and

the common prey of those two vertices on Pv,2.

For notational simplicity, given an induced subgraph H of a graph, we may write

H to stand for V (H).

Lemma 5.25. Let G be a (2, 2) CCE graph with exactly two isolated vertices and D

be a minimal digraph of G Then the following are true:

(i) there exists a nontrivial path Pv,m in G such that N+(x) = {v1, v2} and N−(v1) =

{x} where x is the source of D;

(ii) there exists a nontrivial path Pw,n in G such that N−(y) = {w1, w2} and

N+(w1) = {y} where y is the sink of D;

(iii) G ∼= 2P1 ∪ P2 if and only if N+(x) = N−(y);

(iv) if n ≥ 3 and w2 6→ w1, then

(a) w1 has a predator w∗ of outdegree 1 that is an end vertex of some nontrivial

path distinct from Pw,n;

(b) if w2 6→ w∗, then one predator of w∗ has outdegree 1 and the other predator

of w∗ has outdegree 2.

(v) if n ≥ 3 and w2 → w1 and G has at least two nontrivial components, then

(a) wn → wn−1 and A(D) contains an outer arc set of w2, w3, . . . , wn toward

w1, w2, . . ., wn−2;

(b) w+
n−1,n is an end vertex of a nontrivial path distinct from Pw,n;

(c) the CCE graph of D−{w1, . . . , wn−1, y} is isomorphic to G−{w1, . . . , wn−1, y}.

Proof. By Proposition 5.20(i), D has a unique source x. Since D is weakly connected

and x is a source, x has outdegree at least 1. If x has outdegree 1, then x has degree

1 in G by Proposition 5.23(i), which is impossible. Therefore x has outdegree 2. Thus
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the prey v1 and v2 of x are adjacent in G by Proposition 5.23(ii). Then, since x is

the only source in D, v1 or v2 has indegree 1 by Proposition 5.20(ii). Without loss

of generality, we may assume v1 has indegree 1. Then v1 has degree 1 in G and so

a path Pv,m exists for some integer m ≥ 2. Hence part (i) is true. Therefore, by

Proposition 5.22, D has a unique sink y and N−(y) = {w1, w2} and N−(w1) = y for

a nontrivial path Pw,n in G. Thus part (ii) is true.

Now we show part (iii). If G ∼= 2P1 ∪ P2, then G has a unique nontrivial path

and so Pv,2 = Pw,2. Suppose {v1, v2} = {w1, w2}. To the contrary, assume that v2 has

degree 2 in G. Then m ≥ 3 and so there exists a common prey v′ of v2 and v3. Since

v1 is a predator of y, y 6= v′ and so v2 is not a sink in D−{y, v1}. Since N−(v1) = {x},
N−(y) = {v1, v2}, and N+(x) = {v1, v2}, D − {y, v1} has no sink, a contradiction.

Therefore v2 has degree 1 in G. Then, since x and y are the isolated vertices, each of v1

and v2 has outdegree 1 and indegree 1 by Proposition 5.23. Thus {x, v1, v2, y} forms

a weakly connected component D′ in D and so, by Proposition 5.20(iii), D′ = D.

Thus G ∼= 2P1 ∪ P2.

To show part (iv), suppose that n ≥ 3 and (w2, w1) /∈ A(D). Then w2 has degree

2 and so d+(w2) = 2. Accordingly, d+(w2) = 2 together with N+(w1) = {y} implies

that w1 is the only sink in the digraph D − {y}. Now, if each predator of w1 has

outdegree 2, then D − {y, w1}, which is acyclic, has no sink since (w2, w1) 6∈ A(D),

a contradiction. Therefore at least one predator w∗ of w1 has outdegree 1 in D.

Moreover, d+(w+
1,2) = 2. Thus w∗ is a unique predator of w1 having outdegree 1 in D.

Since w∗ has outdegree 1, w∗ has degree 1 by Proposition 5.23(i) and so w∗ is an end

vertex on some nontrivial path. To the contrary, suppose w∗ ∈ Pw,n. Then w∗ = wn

since w∗ 6= w1. Now, since w∗ is a predator of w1 and has outdegree 1, w1 = w−n−1,n.

Thus, by Theorem 5.9(i), w+
1,2 = wn and so wn has outdegree 2, a contradiction.

Hence w∗ /∈ Pw,n. Therefore we have shown that (a) holds.

To show (b), suppose w2 6→ w∗. By (a), w∗ is an end vertex of some nontrivial

path, namely Pz,t, for some integer t ≥ 2 with Pz,t 6= Pw,n. Without loss of generality,

we may assume w∗ = z1. Then, since w1 is the only prey of z1, N
−
D (w1) = {z1, z2} and

z2 = w+
1,2. Now we consider the digraph D′′ := D − {w1, z1, y}. Then D′′ is acyclic

and the possible sinks of D′′ are the predators of some vertex in {w1, z1, y} that are
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w2, z2, and the predators of z1. Yet, w2 is not a sink in D′′ since d+D(w2) = 2, w2 6→ z1,

and w2 6→ w1. Since z2 = w+
1,2, z2 is not a sink of D′′. Thus one of predator of z1

must be a sink of D′′. Since z+1,2 is not a sink of D′′, there exists a predator z of z1

that is a sink of D′′. Then z 6= w2 and z 6= z2. If z has outdegree 2 in D, then w1 or

y is a prey of z and so z = z2 or z = w2, which is impossible. Thus z has outdegree

1 in D and so (b) is true.

To show part (v), suppose n ≥ 3 and w2 → w1 and G has at least two nontrivial

components. Then w1 = w−2,3. Accordingly, w+
1,2 = w3. Thus, by Corollary 5.10,

A(D) contains an arc (wn, wn−1) and an outer arc set of w2, w3, . . . , wn toward

w1, w2, . . . , wn−2, and so (a) is true. Hence every vertex on Pw,n except wn−1 and

wn has indegree 2 which is fulfilled by vertices on Pw,n. By Lemma 5.2(i), wn−1 has

two predators. Then the predator of wn−1 other than wn is w+
n−1,n and, by Lemma 5.4,

w+
n−1,n is an end vertex of a path in G. If w+

n−1,n ∈ Pw,n, then w+
n−1,n = w1, which

contradicts part (ii). Thus w+
n−1,n /∈ Pw,n. Suppose that w+

n−1,n is an isolated vertex.

Then w+
n−1,n = x by part (i). Hence the subdigraph D1 induced by V (Pw,n) ∪ {x, y}

is isomorphic to the digraph D∗n+2 given in Figure 5.7. Further, it can easily be

checked that every vertex in V (D1)−{wn, x} has indegree 2 in D1 and every vertex

in V (D1) − {w1, y} has outdegree 2 in D1. By part (i), N−(wn) = {x}. By part

(ii), N+(w1) = {y}. Thus D1 is a weak component and so, by Proposition 5.20(iii),

D = D1. Therefore CCE(D1) = G = Pw,n∪{x, y}, which contradicts the assumption

that G has at least two nontrivial components. Hence w+
n−1,n is not isolated and so

is an end vertex of a nontrivial path distinct from Pw,n. Therefore (b) is true.

Now we consider the digraph D2 := D − {w1, . . . , wn−1, y}. As we have shown

above, all prey in D of each vertex in Pw,n∪{y} lie on Pw,n and every vertex on Pw,n

except wn−1 and wn has indegree 2 in D which is fulfilled by vertices on Pw,n. Thus

the adjacency of any pair of vertices in V (G)− {w1, . . . , wn−1, wn, y} is preserved in

the CCE graph G′ of D2. We have also shown that the predators of wn−1 are wn

and w+
n−1,n in D and wn−1 and wn are not adjacent in G. Hence wn is isolated in the

CCE graph G′ of D2. Therefore G′ is isomorphic to G−{w1, . . . , wn−1, y} and so (c)

holds.

Proposition 5.26. Let G be the CCE graph of a (2, 2) digraph D. If there is a cycle
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in G, then there is no arc between its vertices.

Proof. To the contrary, suppose that there is a cycle Cv,m in G and an arc between

some vertices on Cv,m in D. By symmetry, we may assume that there is an arc from v1

to vt for some t ∈ {2, . . . ,m}. Since v1 is adjacent to v2 and vm, vt is a prey of v2 or vm.

We may assume that vt is a prey of v2. Then 2 < t ≤ m. By applying Theorem 5.9 to

Cv,m−v1vm, we have vt, · · · , vm as common prey of v1 and v2, · · · , vm−t+1 and vm−t+2,

respectively. By Theorem 5.9 applied to the path Cv,m−v1v2, v1 is a common prey of

vm−t+2 and vm−t+3. By applying the same theorem to Cv,m − v2v3, . . . , Cv,m − vt−1vt
repeatedly, we may obtain an arc set of D

A :=
m⋃
k=1

{(vk, vk+t−1), (vk+1, vk+t−1)}.

We consider the subgraph D′ of D induced by A. Then it is easy to check that

CCE(D′) = Cv,m. Since D is a (2, 2) digraph, D′ is a (2, 2) digraph, which contradicts

that the CCE graph of a (2, 2) digraph has at least two isolated vertices.

Given a vertex set X of a digraph D, we denote by N+(X) and N−(X) the sets

{v ∈ V (D) | (x, v) ∈ A(D), x ∈ X, v /∈ X} and {v ∈ V (D) | (v, x) ∈ A(D), x ∈ X, v /∈ X},

respectively.

Lemma 5.27. Let G be the CCE graph of a (2, 2) digraph D. Suppose that G has

a cycle C of length m for some m ≥ 3. Then the following are true:

(i) |N+(C)| = |N−(C)| = m;

(ii) |N+(C) ∪N−(C)| ≥ m+ 3 and |N+(C) ∩N−(C)| ≤ m− 3;

(iii) each component of G is contained in exactly one of the following:

N+(C)∩N−(C); N+(C)−N−(C); N−(C)−N+(C); V (G)−
(
N+(C) ∪N−(C)

)
.
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Proof. Let C := Cv,m. By Proposition 5.26,

N+(C) = {v−1,2, v−2,3, . . . , v−m,1} and N−(C) = {v+1,2, v+2,3, . . . , v+m,1}.

By Proposition 5.12(i), |N+(C)| = |N−(C)| = m and so part (i) is true.

To show part (ii), suppose, to the contrary, that |N+(C) ∪ N−(C)| ≤ m + 2.

Then, since |N+(C)| = |N−(C)| = m,

|N+(C) ∩N−(C)| ≥ m− 2.

Then

|N+(C)−N−(C)| ≤ 2. (5.4)

Take a vertex x1 in N+(C) ∩ N−(C). Then x1 → vj and x1 → vj+1 for some

j ∈ {1, . . . ,m}. Let ui = v−i,i+1 for each i = 1, . . . ,m (us+m = us and v−s+m,t+m =

v−s,t for any positive integers s, t). Since {uj−1, uj, uj+1} ⊆ N+(C), at least one

of uj−1, uj, uj+1 belongs to N+(C) ∩ N−(C) by (5.4). Let x2 be one of such ver-

tices. Then, since vj → uj−1, vj → uj, and vj+1 → uj+1, we obtain a (x1, x2)-

directed walk W1. By similar argument, we obtain a (x2, x3)-directed walk W2 for

some x3 ∈ N+(C) ∩ N−(C). By repeating this process, we obtain the directed

walk W := W1 → W2 → · · · → Wm where Wi is a (xi, xi+1)-directed walk and

xi ∈ N+(C)∩N−(C) for each i = 1, . . . ,m. Then {x1, . . . , xm+1} ⊆ N+(C)∩N−(C).

By the way, since |N+(C)∩N−(C)| ≤ m, xk = x` for some distinct k, ` ∈ [m+1]. Thus

W contains a closed directed walk, which contradicts the fact that D is acyclic. Hence

|N+(C)∪N−(C)| ≥ m+3. Then, since |N+(C)| = |N+(C)| = m, |N+(C)∩N−(C)| ≤
m− 3. Therefore part (ii) is true.

To verify part (iii), suppose that there exists a component T of G such that

T ∩
(
N+(C) ∪N−(C)

)
6= ∅.

Without loss of generality, we may assume T ∩ N+(C) 6= ∅. Then, by Proposi-

tion 5.12(ii), T ⊆ N+(C) and so T ∩ (N−(C)−N+(C)) = ∅. If there is an edge uv
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in T such that u ∈ N+(C)−N−(C) and v ∈ N+(C) ∩N−(C), then u ∈ N−(C) by

Proposition 5.12(ii), a contradiction. Therefore every edge of T has end vertices in

N+(C)−N−(C) or every edge of T has end vertices in N+(C)∩N−(C). Then, since

T is a component, T ⊆ N+(C) − N−(C) or T ⊆ N+(C) ∩ N−(C). Hence part (iii)

is true.

Theorem 5.28. Let G` be the set of graphs having the least components among (2, 2)

CCE graphs containing a cycle of length ` ≥ 3 and G` be a graph in G` with the least

order. Then the following are true:

(i) G` contains at least six isolated vertices;

(ii) G3
∼= C3 ∪ 6P1 and G4

∼= C4 ∪ 7P1;

(iii) ` = 3 if and only if G`
∼= C` ∪ 6P1.

Proof. Fix an integer ` ≥ 3. For notational convenience, we simply write G for G`.

Let D be a minimal digraph of G. Take a sink x in D. Then x is isolated in CCE(D)

and so, by Proposition 5.23(i), x cannot have indegree 1. If x has indegree 0, then

CCE(D−x) is a graph having less components than G and CCE(D−x) still has a

cycle of length `, which contradicts the choice of G. Thus x has indegree 2. Hence the

predators of x are adjacent in G by Proposition 5.23(ii). Suppose that the predators

of x lie on a path component P in G. Then the predators have no common prey in

D−x by Proposition 5.23(iii) and so they are not adjacent in CCE(D−x). Therefore

the component P breaks up into two pieces in CCE(D − x) while one component

disappears by deleting x. Thus CCE(D−x) has the same number of components as

CCE(D). By the way, CCE(D − x) still has a cycle of length `, which contradicts

the choice of G. Therefore the predators of x lie on a cycle component in G. Since x

was arbitrarily chosen, we conclude that

(†) each sink in D has two predators which are consecutive vertices on a cycle.

Thus each predator of a sink has outdegree 2 by Lemma 5.2(i) and so

(‡) each predator of a sink has a prey distinct from the sink in D.
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If D has exactly one sink x, then D − x has no sink by (‡), which is impossible.

Thus D has at least two sinks. By the way, we may show that D has at least three

sinks. To show it by contradiction, suppose that x and x′ are the only sinks in D. If

there is no common predator of x and x′, then D−{x, x′} has no sink by (‡), which

is impossible. Thus there exists a common predator y of x and x′. Then y lies on a

cycle by (†). Thus N−D (x) = {y, y′} and N−D (x′) = {y, y′′} where y′yy′′ is a section of

C. Since yy′ and yy′′ are edges of G, y has two predators z1 and z2 such that

N+
D (z1) = {y, y′} and N+

D (z2) = {y, y′′}.

By the assumption that x and x′ are the only sinks in D, the sinks of D′ := D −
{x, x′, y} belong to N−D (x) ∪N−D (x′) ∪N−D (y)− {x, x′, y} = {y′, y′′, z1, z2}. However,

none of these can be a sink of D′. For, it is easy to check that z1 and z2 are not sinks

of D′. Since each of y′ and y′′ has degree 2 in G, each of y′ and y′′ has outdegree

2 by Lemma 5.2(i) and so has a prey not belonging to {x, x′}, Moreover, y′ 6→ y

and y′′ 6→ y by Proposition 5.26. Therefore y′ and y′′ are not sinks in D′ and so D′

has no sinks, which is impossible. Thus D has at least three sinks. Hence D has at

least three sources by Proposition 5.22. By (†), D has no vertex of indegree 0 and

outdegree 0. Therefore G has at least three sinks and at least three sources. Thus G

has at least 6 isolated vertices and so part (i) is true. Let C be a cycle of length ` in

G. Then

(♦) C ∪ 6P1 is an induced subgraph of G.

Since V (C)∩(N+(C)∪N−(C)) = ∅ by Proposition 5.26, |V (G)| ≥ |V (C)|+|N+(C)∪
N−(C)|. Then, since |N+(C) ∪N−(C)| ≥ `+ 3 by Lemma 5.27(ii),

|V (G)| ≥ |V (C)|+ |N+(C) ∪N−(C)| ≥ 2`+ 3.

If ` = 3, then G ∼= C3 ∪ 6P1 by (♦), the digraph D5, and its CCE graph CCE(D5)

given in Figure 5.4. Suppose ` ≥ 4. If ` = 4, then |V (G)| ≥ 11 and so G ∼= C ∪ 7P1

by (♦), the digraph D6, and its CCE graph CCE(D6) given in Figure 5.4. Thus part
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Figure 5.4: Digraphs and its CCE graphs in the proof of Theorem 5.28

(ii) is true. Moreover,

|V (G)| ≥ 2`+ 3 > `+ 6 = |V (C)|+ |V (6P1)|

and so G must contain a component not belonging to C ∪ 6P1. Hence the “if” part

of part (iii) is true and so, by part (ii), the “only if” part is true. Therefore part (iii)

is true.

Finally, we give a sufficient condition on the number of components for a (2, 2)

CCE graph being an interval graph.

Theorem 5.29. Let G be a (2, 2) CCE graph and t be a number of components of

G. If t ≤ 7, then G is an interval graph. Further, the inequality is tight.

Proof. Suppose that G is not interval. Then, by Proposition 5.1, G contains a cycle

component of length ` ≥ 4. Let G` be the set of graphs having the least components

among the (2, 2) CCE graphs containing a cycle of length ` and G` be a graph
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in G` with the least order. Then, by (i) and (iii) of Theorem 5.28, G` contains at

least eight components. Thus t ≥ 8. Therefore we have shown that any (2, 2) CCE

graph with at most seven components is interval. Furthermore, by Theorem 5.28(ii),

G4
∼= C4 ∪ 7P1, which has eight components. Since G4 is not an interval graph, the

inequality is tight.

Now, we give a characterization of (2, 2) CCE graphs with the least components

among (2, 2) CCE graphs containing at most one cycle and exactly two isolated

vertices as follows.

Theorem 5.30. Let G be a graph with the least components among the (2, 2) CCE

graphs containing a cycle and exactly two isolated vertices. Then G ∼= C3 ∪ 2P3 ∪
2P2 ∪ 2P1. Further, if D is a minimal digraph of G, then D is isomorphic to D∗ or

D? given in Figure 5.6.

Proof. Let D be a minimal digraph of G. By Proposition 5.20(i), D has a unique

source x and a unique sink y, which are the only isolated vertices in G. By (ii) and

(iii) of Lemma 5.25, there exist nontrivial paths Pv,m and Pw,n such that

N+(x) = {v1, v2}, N−(v1) = {x}, N−(y) = {w1, w2}, N+(w1) = {y} (5.5)

for some integers m,n ≥ 2. To the contrary, suppose w2 → w1. Then, by Proposi-

tion 5.23(ii), w2 has degree 2 and so n ≥ 3. Thus, by (c) of Lemma 5.25(v), there exists

a CCE graphG′ of a (2, 2) digraph such thatG′ is isomorphic toG−{w1, . . . , wn−1, y}.
We note that wn and x are the only isolated vertices in G′, that is, G′ contains ex-

actly two isolated vertices and G′ has one less nontrivial component than G, which

contradicts the choice of G. Therefore

w2 6→ w1. (5.6)

Take a cycle C of length ` in G for some integer ` ≥ 3. Then x /∈ N+(C) and

y /∈ N−(C). Since the prey of x are on Pv,m and the predators of y are on Pw,n, x /∈
N−(C) and y /∈ N+(C). Since |N+(C)| = |N−(C)| = ` and |N+(C)∩N−(C)| ≤ `−3

145



by (i) and (ii) of Lemma 5.27,

N+(C)−N−(C) 6= ∅ and N−(C)−N+(C) 6= ∅.

Thus there exist components X1 and X2 such that X1 ∩ (N+(C)−N−(C)) 6= ∅ and

X2 ∩ (N−(C)−N+(C)) 6= ∅. Then, since x and y are the only isolated vertices in G

and neither x nor y belongs to any of N+(C) and N−(C), it is true that X1 and X2

are nontrivial. Moreover, by Lemma 5.27(iii),

X1 ⊆ N+(C)−N−(C) and X2 ⊆ N−(C)−N+(C). (5.7)

By Proposition 5.26, C 6= X1 and C 6= X2 and so C1, X1, X2 are three nontrivial

components of G. Let

N = N+(C) ∪N−(C).

We first claim that

Pw,n ∩N = ∅. (5.8)

To show the claim by contradiction, suppose Pw,n ∩ N 6= ∅. If Pw,n ∩ N−(C) 6= ∅,
then, by Lemma 5.27(iii), Pw,n ⊆ N−(C) and so y ∈ V (C) (recall N+(w1) = {y}),
a contradiction. Therefore Pw,n ∩ N−(C) = ∅. Thus Pw,n ∩ (N+(C) − N−(C)) 6= ∅.
Then, by Lemma 5.27(iii),

Pw,n ⊆ N+(C)−N−(C).

However, by (5.6) and, Lemma 5.25(iv)(a), there exists a predator w∗ of w1 which

has outdegree 1 and is an end vertex on some nontrivial path in G. Then the vertex

adjacent to w∗ is w+
1,2 and so N−D (w1) = {w∗, w+

1,2}. Since w∗ and w+
1,2 are on a path,

w1 /∈ N+(C) and so Pw,n 6⊆ N+(C), a contradiction. Thus (5.8) is valid. Since Pw,n

is a component containing predators of the sink and Pv,w is a component containing

prey of the source, by Proposition 5.22, the following is also valid:

Pv,m ∩N = ∅ (5.9)
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Now we claim that

Claim A. If Pw,n = Pv,m, then n ≥ 3, x = w+
n−1,n, and there is a nontrivial path

component Pz,t for some integer t ≥ 2 such that N+(z1) = {w1}, w1 = z−1,2, Pz,t 6=
Pw,n, and Pz,t ∩N = ∅.

Proof of Claim A. Suppose Pw,n = Pv,m. Then, by Lemma 5.25(iii), N+(x) 6= N−(y).

Thus

n ≥ 3 and x = w+
n−1,n

Then, by (5.6) and Lemma 5.25(iv)(a), there exists a predator, namely w′, of w1

having outdegree 1 in D and w′ is an end vertex of some nontrivial path component

Pz,t distinct from Pw,n. Without loss of generality, we may assume w′ = z1. To show

Pz,t ∩N = ∅, suppose Pz,t ∩N 6= ∅. Then

Pz,t ⊆ N+(C)−N−(C) or Pz,t ⊆ N+(C) ∩N−(C) or Pz,t ⊆ N−(C)−N+(C)

by Lemma 5.27(iii). Since z1 has outdegree 1, z1 /∈ N−(C) by Lemma 5.2(iv) and so

z1 ∈ N+(C)−N−(C). Then

w2 6→ z1.

Thus there exists one predator of z1 having outdegree 1 by Lemma 5.25(iv)(b).

However, since z1 ∈ N+(C) − N−(C), each predator of z1 has outdegree 2 in D, a

contradiction. Therefore we have shown that the claim is true.

By Claim A, (5.8), and (5.9), whether Pv,m = Pw,n or not, G has at least two

nontrivial paths each of which has no intersection with N . Thus G has at least five

nontrivial components.

We may check that the CCE graph of a (2, 2) digraph given in Figure 5.6 is

isomorphic to C3 ∪ 2P3 ∪ 2P2 ∪ 2P1. Thus the existence of a (2, 2) digraph given in

Figure 5.6 guarantees that G has exactly five nontrivial components. Then G has

exactly two nontrivial paths each of which has no intersection with N . Therefore

X1 = N+(C) and X2 = N−(C), (5.10)
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so

|X1| = |X2| = `

by Lemma 5.27(i).

To show Pw,n 6= Pv,m by contradiction, we suppose Pw,n = Pv,m. Then, by Claim

A, n ≥ 3, x = w+
n−1,n, and there is a nontrivial path component Pz,t for some integer

t ≥ 2 such that

N+(z1) = {w1}, w1 = z−1,2, Pz,t 6= Pw,n, and Pz,t ∩N = ∅.

Thus the nontrivial components of G are Pw,n, Pz,t, X1, X2, and C. Since N+(z1) =

{w1} and w1 = z−1,2, z2 = w+
1,2. If n ≤ t, then A(D) contains an outer arc set

of z1, z2, . . . , zn toward w1, w2, . . . , wn−1 by Corollary 5.7 and so {x, zn−1, zn} ⊆
N−(wn−1), which is impossible. Thus

n > t ≥ 2

and A(D) has an outer arc set of z1, z2, . . . , zt toward w1, w2, . . . , wt−1 by Corol-

lary 5.7. Then zt → wt. To show w2 6→ z1 by a contradiction, suppose w2 → z1. Then

z1 = w−2,3 and w3 = z+1,2. Thus A(D) contains an outer arc set of w2, w3, . . . , wt+1

toward z1, z2, . . . , zt−1 by Corollary 5.7. Then wt+1 → zt. By Proposition 5.22 and

Claim A, since Pw,n, Pz,t, X1, X2, and C are the nontrivial components of G, one of

the following holds:

• N−(z1) = {wn} and wn = z+1,2;

• N−(zt) = {wn} and wn = z+t−1,t.

Recall that z1 = w−2,3 and wt+1 → zt. Thus N−(zt) = {wn}, wn = z+t−1,t, and t +

1 = n. Since x is isolated, N−(wn) = {x} by Proposition 5.23(ii). Thus V (Pw,n) ∪
V (Pz,t) ∪ {x, y} forms a weak component D̃1 (see Figure 5.5(c)) and so D is not

weakly connected, which contradicts Proposition 5.20(iii). Hence

w2 6→ z1.
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Therefore at least one predator of z1 has outdegree 1 by Lemma 5.25(iv)(b). Let z′

be the predator of z1 having outdegree 1. Thus z′ 6= wi for each 2 ≤ i ≤ n − 1 and

z′ 6= zi for each 1 ≤ i ≤ t− 1. Further, since N+(w1) = {y}, z′ 6= w1. We will claim

that z′ 6= wn and z′ 6= zt to show z′ 6∈ Pw,n ∪Pz,t. Since x and y are the only isolated

vertices, z′ has degree 1. In addition, since z′ has outdegree 1, z′ 6= z+1,2 and so

N−(z1) = {z′, z+1,2}.

Therefore z1, which is the only prey of z′, has indegree 2 and so z′ 6= wn. Recall

that A(D) has an outer arc set of z1, z2, . . . , zt toward w1, w2, . . . , wt−1, and zt → wt.

Thus N+(zt) = {wt−1, wt}. Hence z′ 6= zt and so z′ /∈ Pw,n ∪ Pz,t. Then, since

Pw,n, Pz,t, X1, X2 and C are the components of G, z′ ∈ X1 or z′ ∈ X2. If z′ ∈ X2,

then z1 ∈ V (C) by (5.7), which is impossible. Thus

z′ ∈ X1

and so, by (5.7), z′ is a common prey of two consecutive vertices on C. Recall

C = Cu,`. Without loss of generality, we may assume z′ = u−1,2. Since D is acyclic,

D̃2 := D − {y, w1, z1, z
′} has a sink. The possible sinks of D̃2 are the predators of

one of y, w1, z1, z
′, so w2, z2, u1, and u2 are only possible sinks of D̃2. However, none

of these can be a sink of D̃2. For, if w2 → z′, then w2 = u1 or w2 = u2 and so

w2 ∈ V (C), which is impossible. Thus w2 6→ z′. Since w2 has a prey not belonging

to {y, w1, z1}, w2 is not a sink in D̃2. Since w2 is a prey of z2, z2 is not a sink in D̃2.

Since N−(z1) = {z′, z+1,2}, u1 6→ z1 and u2 6→ z1. We note that each of y and w1 has

two predators distinct from u1 and u2. Now, since u1 and u2 have outdegree 2, each

of them has a prey not belonging to {y, w1, z1, z
′}. Therefore D̃2 has no sink and we

reach a contradiction. Consequently, we have shown

Pw,n 6= Pv,m. (5.11)

Thus Pw,n, Pv,m, X1, X2, and C are the nontrivial components of G. To show n = 2 by

contradiction, suppose n ≥ 3. Then we may check that the CCE graph of a digraph
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D− y is a union of C, X1, X2, Pv,m, Q, and two isolated vertices x and w1, where Q

is a nontrivial path w2w3 · · ·wn. We consider the set D of spanning subdigraphs of

D − y whose CCE graphs are isomorphic to

C ∪X1 ∪X2 ∪ Pv,m ∪Q ∪ {w1, x}

and take a minimal digraph D′ in D. Then w1 is a unique sink of D′. By applying

Lemma 5.25(ii) to D′, we may claim that there is a nontrivial path Pu,l in C ∪X1 ∪
X2∪Pv,m∪Q such that N−D′(w1) = {u1, u2} and N+

D′(u1) = {w1}. Then Pu,l is one of

X1, X2, Pv,m, and Q. Note that C ∪X1 ∪X2 ∪Pv,m ∪Q is a graph still satisfying the

property that it has the least components among the (2, 2) CCE graphs containing

a cycle and exactly two isolated vertices. Thus, by applying (5.8) to D′, we may

assert that Pu,l is neither X1 nor X2. Moreover, by (5.11) applied to D′, Pu,l 6= Pv,m.

Therefore Pu,l = Q. Since w2 6→ w1 by (5.6), u1 6= w2 and so u1 = wn and u2 = wn−1.

Then w1 = w−n−1,n and wn−1 → w1 in D. By Theorem 5.9 applied to P−1w,n, wn = w+
1,2

and so wn has outdegree 2 in D. Since wn−1 has degree 2 in G, it has outdegree 2

in D. Thus each predator of w1 has outdegree 2 in D, which is a contradiction to

Lemma 5.25(iv)(a). Consequently, we have shown

n = 2.

Since n is the order of the component containing the predator of the sink and m is

the order of the component containing the prey of the source,

m = 2

by Proposition 5.22. Hence Pw,2, Pv,2, X1, X2, and C are the nontrivial components

of G. Moreover, N+(w1) = N+(w2) = {y} and N−(v1) = N−(v2) = {x} by Proposi-

tion 5.23(ii). Since X2 = N−(C), w+
1,2 6∈ X2 and so w+

1,2 ∈ Pv,2 or w+
1,2 ∈ X1.

To show that w+
1,2 has degree 2 by contradiction, suppose that w+

1,2 has degree

not equal to 2. Since w+
1,2 6= x and w+

1,2 6= y, w+
1,2 has degree at least 1 and so

w+
1,2 has degree 1. Then, for the vertex, say w∗, adjacent to w+

1,2, either w∗ → w1
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or w∗ → w2 by Proposition 5.23(iii). Without loss of generality, we may assume

w∗ → w1. Then w∗ 6→ w2. Since each of w2 and w+
1,2 has degree 1, N−D (w2) = {w+

1,2}
by Proposition 5.23(ii). We consider a digraph D − {w2, y}. It is easy to check that

the CCE graph of D − {w2, y} is isomorphic to X1 ∪ X2 ∪ C ∪ Pv,m ∪ {w2, x},
which contradicts the choice of G. Thus w+

1,2 has degree 2. Hence w+
1,2 /∈ Pv,2 and so

w+
1,2 ∈ X1. Therefore X1 contains a path z1z2z3 (not necessary be an induced path)

such that

z1 → w1, z2 = w+
1,2, z3 → w2. (5.12)

Since X1 = N+(C), there are consecutive vertices, say u1, u2, u3, u4, on C such that

z1 = u−1,2, z2 = u−2,3, z3 = u−3,4 (5.13)

by Proposition 5.6. Since u1 has degree 2, u1 has a prey not belonging to {z1, z2}.
Suppose, to the contrary, that z1 or z3 has outdegree 2. Without loss of generality,

we may assume that z3 has outdegree 2. Then z3 has a prey distinct from w1 and w2

and the prey does not belong to V (C) since X1 ∩ X2 = ∅ and X2 = N−(C). Now

we consider the digraph D̃3 := D − {y, w1, w2, z1, z2, u2}. Since D is acyclic, D̃3 has

a sink. The possible sinks of D̃3 are u1, u
+
1,2, u

+
2,3, u3, z3 (see Figure 5.5(c)) and we

may check that those vertices are not sinks in D̃3. Thus D̃3 has no sink, which is a

contradiction. Therefore each of z1 and z3 has outdegree 1 and so each of them has

degree 1 in G. Hence u1 = u4 and X1 = z1z2z3 = u−1,2u
−
2,3u

−
3,1. Then, since X1 is the

component containing prey of the vertices on C and X2 is the component containing

predators of the vertices on C, X1 and X2 have the same length by Proposition 5.22.

Accordingly, ` = 3. Thus G ∼= C3 ∪ 2P3 ∪ 2P2 ∪ 2P1.

Note that D was chosen to be a minimal digraph of G. Thus “further” part is

true if D is isomorphic to D∗ or D? in Figure 5.6. By applying Proposition 5.22 to

the previous argument, X2 is of the form

X2 = z′1z
′
2z
′
3
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with

N−(z′1) = {v1}, z′2 = v−1,2, N−(z′3) = {v2}, and {z′1, z′2, z′3} = {u+1,2, u+2,3, u+3,1}.

Then, together with (5.5), (5.12), and (5.13), we may fix some subdigraph D̃ of D as

in Figure 5.6(a) under the isomorphism. Moreover, the remaining arcs of D except

the ones in D̃ are determined by {z′1, z′2, z′3} = {u+1,2, u+2,3, u+3,1}. By the way, there are

exactly four automorphisms on D̃. To see why, we consider the two weak components

of D̃. We denote the weak components by F1 and F2 as shown in Figure 5.6(a). It

is easy to check that each of them has exactly one nonidentity automorphism as

follows:

• f : V (F1)→ V (F1) defined by f(a) = a for each a ∈ V (D)−{w1, w2, u
−
1,2, u

−
3,1, u2, u3}

and

(f(w1), f(w2), f(u−1,2), f(u−3,1), f(u2), f(u3)) = (w2, w1, u
−
3,1, u

−
1,2, u3, u2),

that is, f is the map only switching between w1 (resp. u−1,2, u2) and w2 (resp.

u−3,1, u3;

• g : V (F2)→ V (F2) defined by g(a) = a for each g ∈ V (D)−{z′1, z′3, v1, v2} and

(g(z′1), g(z′3), g(v1), g(v2)) = (z′3, z
′
1, v2, v1),

that is, g is the map only switching between z′1 (resp. v1) and z′3 (resp. v2).

Since F1 and F2 are not isomorphic, the automorphisms on D̃ are

idV (D), h1, h2, and h3

where idV (D) is the identity map on V (D) and the rest are

h1 :=

f(v) if v ∈ V (F1)

v if v ∈ V (F2)
, h2 :=

v if v ∈ V (F1)

g(v) if v ∈ V (F2)
, h3 :=

f(v) if v ∈ V (F1)

g(v) if v ∈ V (F2)
.
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Figure 5.5: Digraphs in the proof of Theorem 5.30

Under the group action of the automorphism group {idV (D), h1, h2, h3} on the set

of six digraphs from D̃ obtained by determining a bijection from {z′1, z′2, z′3} to

{u+1,2, u+2,3, u+3,1}, it is not difficult to see that there are exactly two orbits:

• one consisting of digraphs determined by (z′1, z
′
2, z
′
3) = (u+1,2, u

+
2,3, u

+
3,1) or (z′1, z

′
2, z
′
3) =

(u+3,1, u
+
2,3, u

+
1,2), which are isomorphic to D∗;

• the other one consisting of digraphs determined by (z′1, z
′
2, z
′
3) = (u+1,2, u

+
3,1, u

+
2,3),

(z′1, z
′
2, z
′
3) = (u+2,3, u

+
3,1, u

+
1,2), (z′1, z

′
2, z
′
3) = (u+3,1, u

+
1,2, u

+
2,3), or (z′1, z

′
2, z
′
3) = (u+2,3, u

+
1,2, u

+
3,1),

which are isomorphic to D?.

Therefore D is isomorphic to D∗ or D? given in Figure 5.6.

Corollary 5.31. Let G be a (2, 2) CCE graph with exactly two isolated vertices. If

G has at most four nontrivial components, then G has no cycle.
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Figure 5.6: A subdigraph D̃ and two digraphs D∗ and D? in the proof of Theorem 5.30

Theorem 5.32. Let G be a graph with the least components among the (2, 2) CCE

graphs containing at least three vertices exactly two of which are isolated. Then G ∼=
2P1 ∪Pm for some positive integer m. Further, if G is isomorphic to 2P1 ∪Pm, then

a digraph D whose CCE graph is G is isomorphic to: a subdigraph of D∗m if m = 1;

D∗m or D∗m− (v2, v3) if m = 2; D∗m otherwise where D∗m is the digraph given in Figure

5.7.

Proof. If G has a cycle, then G contains at least five components by Theorem 5.30.

Since each component of G is a path or a cycle by Proposition 5.1, it is sufficient to

prove the statement by constructing a (2, 2) digraph whose CCE graph is isomorphic

to 2P1∪Pm for each m. We consider the digraph D∗m with V (D∗m) = {v1, v2, . . . , vm+2}
having an arc (v1, v2) and an outer arc set of v1, . . . , vm+1 toward v3, . . . , vm+2. Then

we can check that CCE(D∗m) is isomorphic to 2P1 ∪ Pm and so D∗m is the desired

one.

To show the “further” part, suppose that G ∼= 2P1∪Pm for some positive integer

m. LetD be a (2,2) digraph whose CCE graph isG. supposem = 1. Then |V (D)| = 3.

Since D is acyclic, D is isomorphic to a subdigraph of D∗m.
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Now we suppose m ≥ 2. Then, by Proposition 5.20(i), D has exactly one source x

and exactly one sink y. Therefore x has a prey x′ of indegree 1 and y has a predator

y′ of outdegree 1 by Proposition 5.20(ii). Since x and y are the only two trivial paths

in G, x′ and y′ have degree 1 in G by Lemma 5.2(i) and the vertices other than x

and y are on Pm. Let Pm = Px,m. Suppose x′ = y′. Then, without loss of generality,

we may assume x′ = y′ = x1. If m ≥ 3, then x2 has degree 2 and so, by Lemma 5.4,

xm is a prey of x2 and a predator of x2, which contradicts that D is acyclic. Thus

m = 2. Then x2 must be a prey of x and a predator of y. Therefore D is isomorphic

to D∗m − (v2, v3). Now we suppose

x′ 6= y′.

Since G has exactly two vertices of degree 1, {x′, y′} = {x1, xm}. Without loss of

generality, we may assume that x′ = x1 and y′ = xm. Then, since x1 has indegree 1

and x1 is adjacent to x2 in G, x is a common predator of x1 and x2. Moreover, xm

has outdegree 1 and xm−1 is adjacent to xm in G, y is a common prey of xm−1 and

xm. Since D is a (2, 2) digraph,

N+(x) = {x1, x2}, and N−(y) = {xm−1, xm}.

Then, since D is acyclic, D is isomorphic to D∗m or D∗m − (v2, v3) if m = 2.

Now we consider the case m ≥ 3. Since D is a (2, 2) digraph, x−1,2 6= y. Since x is a

source, x−1,2 6= x. Thus x−1,2 = xt for some integer 2 < t ≤ m. Then, by Theorem 5.9,

xm−t+1 ∈ N−(xm).

Suppose, to the contrary, that t 6= 3. Then t ≥ 4 and so m ≥ 4. We consider the

digraph D′ := D − y. Then we can check that xm is a sink in D′ and CCE(D′) is

isomorphic to {x}∪{xm}∪Px,m−1. Then, since xm−1 has degree 1 in CCE(D′), xm is

a common prey of xm−1 and xm−2 in D′ by the above argument. Thus xm is a common

prey of xm−1 and xm−2 in D. By the way, since t ≥ 4, xm−t+1 6= xm−1 and xm−t+1 6=
xm−2 and so xm has at least three predators, a contradiction. Therefore t = 3. Then
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v1 v2 v3 vm vm+1 vm+2

. . .

Figure 5.7: The digraph D∗m

xi has exactly two prey that are determined for 1 ≤ i ≤ m − 1 by Theorem 5.9.

Moreover, the arcs incident to each vertex in {x, y, xm} were determined. Then, by

letting x = v1, y = vm+2, and xi = vi+1 for each 1 ≤ i ≤ m, we can check that D is

isomorphic to D∗m.

The above theorem says that a (2, 2) CCE graph G with exactly two isolated

vertices has exactly one nontrivial components if and only if G is isomorphic to

Pm ∪ 2P1 for some integer m ≥ 2. Extending the result, the following theorem gives

a characterization of (2, 2) CCE graphs G having exactly two isolated vertices and

two nontrivial components.

Theorem 5.33. Let G be a (2, 2) CCE graph with exactly two isolated vertices. Then

G has exactly two nontrivial components if and only if it is isomorphic to one of the

followings:

(a) 2P1 ∪ P2 ∪ Pm for some m ≥ 2;

(b) 2P1 ∪ 2Pm for some m ≥ 3;

(c) 2P1 ∪ Pm ∪ Pm+1 for some m ≥ 3.

Proof. To show the “only if” part, suppose that G has exactly two nontrivial com-

ponents. Then there exists a weakly connected minimal digraph D of G ∪ 2P1 by

Proposition 5.20(iii). By Corollary 5.31, each nontrivial component of G is a nontriv-

ial path. In addition, by Proposition 5.20(i), D has a unique source x and a unique

sink y such that CCE(D) = G ∪ {x, y}. Then, by Lemma 5.25(ii), there exists a

nontrivial path Pw,n such that y is a common prey of w1 and w2, i.e.,

N−(y) = {w1, w2}. (5.14)
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By the hypothesis, there is the other nontrivial path Pv,m of G ∪ 2P1. If n = 2 or

m = 2, then (a) holds. Suppose

n ≥ 3 and m ≥ 3.

To the contrary, suppose w2 → w1. Thus w1 = w−2,3. By (a) and (b) of Lemma 5.25(v),

wn → wn−1 andA(D) contains an outer arc set of w2, w3, . . . , wn toward w1, w2, . . . , wn−2

and w+
n−1,n is an end vertex of a nontrivial path distinct from Pw,n. Thus w+

n−1,n ∈
Pv,m. Without loss of generality, we may assume that w+

n−1,n = v1. Then N+(v1) =

{wn−1, wn} and N−(wn−1) = {wn, v1}. Thus wn = v−1,2. Since N−(wn−1) = {wn, v1},
wn−1 cannot be a prey of v2. Thus, by Lemma 5.4 (where u = v2), the prey of v2 other

than wn is an end vertex of a path in G, which is a common prey of v2 and v3. We note

that none of y, w1, and wn can be v−2,3 since N−(y) = {w1, w2}, N−(w1) = {w2, w3},
and N−(wn) = {v1, v2}. Thus v−2,3 is either v1 or vm. If v−2,3 = v1, then wn and v1 have

a common prey wn−1 and a common predator v2, which contradicts to the hypothesis

that Pw,n and Pv,m are distinct two paths. Therefore v−2,3 = vm. Then, by applying

Theorem 5.9 to the (v2, vm)-section of Pv,m, we may show {wn, vm−1, vm} ⊆ N+(v2),

which is impossible. Then

w2 6→ w1,

so, by Lemma 5.25(iv)(a), v1 or vm is a predator of w1 and has outdegree 1. Without

loss of generality, we may assume that v1 is a such a vertex. Then N+(v1) = {w1},

w1 = v−1,2, and v2 → w2. (5.15)

To reach a contradiction, suppose n > m + 1. Then, by (5.15) and Corollary 5.7,

there is an outer arc set of v1, . . . , vm toward w1, . . . , wm−1 and so vm = w+
m−1,m.

Moreover, wm+1 exists, and w+
m,m+1 and vm are not adjacent. Then, since w+

m,m+1

and vm are predators of wm, w+
m,m+1 is a vertex of degree at most 1 by Lemma 5.4.

Hence w+
m,m+1 = x or wn. If w+

m,m+1 = x, then wm+1 = wn by Lemma 5.25(i),

which contradicts the case assumption. Thus w+
m,m+1 = wn. Then wn−1 → wm or

wn−1 → wm+1. If wn−1 → wm+1, then, by Theorem 5.9 applied to the (wn, wm)-
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section of P−1w,m, wn−1 → wm. Thus wn−1 → wm and so, by Theorem 5.9 applied to

the (wn, wm−1)-section of P−1w,m, wn−1 → wm−1. Hence {vm−1, vm, wn−1} ⊆ N−(wm−1),

a contradiction. Thus

n ≤ m+ 1. (5.16)

To show n ∈ {m−1,m,m+1}, suppose n < m−1. Then, by (5.15) and Corollary 5.7,

there is an outer arc set of v1, . . . , vn+1 toward w1, . . . , wn. Thus N+(x) = {v1, v2} or

{vm−1, vm}. Then, by Proposition 5.3 and (5.16), m ≤ n + 1, which contradicts the

assumption n < m − 1. Therefore n ∈ {m − 1,m,m + 1} and so the “only if” part

is true.

Now we show the “if part”. First suppose that (a) holds. Then P2 is a component

of G. By Theorem 5.32, 2P1 ∪ Pm is the CCE graph of the digraph D∗m given in

Figure 5.7 for each m ≥ 2. We obtain a digraph D∗∗m from D∗m by removing arcs

(vm, vm+2), (vm+1, vm+2) and adding two vertices y1, y2 and arcs

(vm, y1), (vm+1, y1), (vm+1, y2), (y1, vm+2), (y2, vm+2).

Then, in CCE(D∗∗m ), v1 and vm+2 are the only isolated vertices, {v2, . . . , vm+1} forms

a path of length m, and {y1, y2} forms a path of length 2. Thus CCE(D∗∗m ) ∼=
2P1 ∪ P2 ∪ Pm.

Second, suppose that (b) holds. Then G is isomorphic to 2P1 ∪ 2Pm for some

m ≥ 3. Fix m ≥ 3. We consider the digraph D1 with the vertex set V (D1) =

{u1, . . . , um, v1, . . . , vm, x, y} and the arc set

A1 ∪ A2 ∪ {(um, vm−1), (vm, um), (u1, y), (u2, y), (x, vm−1), (x, vm)}

where A1 (resp. A2) is the outer arc set of v1, v2, . . . , vm (resp. u2, u3, . . . , um) toward

u1, u2, . . . , um−1 (resp. v1, v2, . . . , vm−2) (see the digraph D1 given in Figure 5.8 for

an illustration). Obviously, x and y are isolated in CCE(D1). We can check that

CCE(D1) = Pu,m ∪ Pv,m ∪ {x, y}.
Finally suppose that (c) holds. Then G is isomorphic to 2P1∪Pm∪Pm+1 for some

m ≥ 3. We consider the digraphD2 with vertex set V (D2) = {u1, . . . , um+1, v1, . . . , vm, x, y}
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(b) D2

Figure 5.8: The digraphs D1 and D2 in the proof of Theorem 5.33

and the arc set

A1 ∪ A2 ∪ {(um, vm), (um+1, vm), (u1, y), (u2, y), (x, um), (x, um+1)}

whereA1 (resp.A2) is the outer arc set of v1, v2, . . . , vm (resp. u2, u3, . . . , um+1) toward

u1, u2, . . . , um−1 (resp. v1, v2, . . . , vm−1) (see the digraph D2 given in Figure 5.8 for an

illustration). Then in a way similar to the case (b), we can check that CCE(D2) =

Pu,m+1 ∪ Pv,m ∪ {x, y} and this completes the proof of the “if” part.

By Theorems 5.30 and 5.32, we completely characterize graphs G having the

least components among (2, 2) CCE graphs having at most one cycle component

with exactly two isolated vertices. Furthermore, we completely identify CCE graphs

G consisting of two nontrivial components with exactly two isolated vertices by

Theorem 5.33. Naturally, we come up with a question, “Which (2, 2) CCE graph has

two nontrivial components with not two but exactly three isolated vertices?” The

following partially answers the question (Theorem 5.36).

Lemma 5.34. Let G1 ∪ iP1 and G2 ∪ jP1 be (2, 2) CCE graphs for some positive

integers i and j. Then G1 ∪G2 ∪ (i+ j − 1)P1 is a (2, 2) CCE graph.

Proof. Let D1 and D2 be (2, 2) digraphs whose CCE graphs are G1∪iP1 and G2∪jP1,

respectively. Since D1 and D2 are acyclic digraphs, D1 contains a sink u and D2
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contains a source v. Then we obtain a digraph D from D1 and D2 by identifying u

with v. Obviously, D is a (2, 2) digraph and CCE(D) = G1 ∪ G2 ∪ (i + j − 1)P1.

Therefore the CCE graph of D is G1 ∪G2 ∪ (i+ j − 1)P1.

Proposition 5.35. For each positive integer t, a graph consisting of t path compo-

nents and t+ 1 isolated vertices is the CCE graph of a (2, 2) digraph.

Proof. Fix a positive integer t. Let T1, T2, . . . , Tt be the path components. Then, by

Theorem 5.32, there exists a digraph Di whose CCE graph is Ti∪2P1 for each 1 ≤ i ≤
t. Therefore, by applying Lemma 5.34 to D1 and D2, we obtain a (2, 2) digraph D′1

whose CCE graph is T1∪T2∪3P1. Then we apply Lemma 5.34 to D′1 and D3 to obtain

a (2, 2) digraph D′2 whose CCE graph is T1 ∪ T2 ∪ T3 ∪ 4P1. We repeat this process

until we obtain a digraph D′t−1 whose CCE graph is T1∪T2∪· · ·∪Tt∪ (t+1)P1.

Theorem 5.36. If Pn ∪ Pm ∪ iP1 is a (2, 2) CCE graph with 3 ≤ n and n + 2 ≤ m

for some positive integer i, then i ≥ 3, further, the inequality is tight.

Proof. Since every (2, 2) CCE graph contains two isolated vertices, i ≥ 2. By The-

orem 5.33, Pn ∪ Pm ∪ 2P1 cannot be a (2, 2) CCE graph. Thus i 6= 2 and so i ≥ 3.

Now we show “further” part. By Proposition 5.35, there exists a (2, 2) digraph whose

CCE digraph is isomorphic to Pn ∪ Pm ∪ 3P3 and so the inequality is tight.
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국문초록

이논문에서경쟁그래프의주요변이들중 m-step경쟁그래프, (1, 2)-step경쟁그래프,

계통 그래프, 경쟁공적그래프에 대한 연구 결과를 종합했다. Cohen [11]은 먹이사슬

에서 포식자-피식자 개념을 연구하면서 경쟁그래프 개념을 고안했다. 생태계는 상호

작용하는 종들과 그들의 물리적 환경의 생물학적 체계이다. 생태계의 각 종에 대해서,

토양, 기후, 온도 등과 같은 다양한 차원의 하계 및 상계를 고려하여 좋은 환경을 m개

의 조건들로 나타낼 수 있는데 이를 생태적 지위(ecological niche)라고 한다. 생태학적

기본가정은두종이생태적지위가겹치면경쟁하고(compete),경쟁하는두종은생태

적 지위가 겹친다는 것이다. 흔히 생물학자들은 한 체제에서 서식하는 종들의 경쟁적

관계를각종은꼭짓점으로,포식자에서피식자에게는유향변(arc)을그어서먹이사슬

로 표현한다. 이러한 맥락에서 Cohen [11]은 다음과 같이 유향그래프의 경쟁그래프를

정의했다. 유향그래프(digraph) D의 경쟁그래프(competition graph) C(D)란 V (D)

를 꼭짓점 집합으로 하고 두 꼭짓점 u, v를 양 끝점으로 갖는 변이 존재한다는 것과 꼭

짓점 w가 존재하여 (u,w), (v, w)가 모두 D에서 유향변이 되는 것이 동치인 그래프를

의미한다. Cohen이경쟁그래프의정의를도입한이후로그변이들로 m-step경쟁그래

프(m-step competition graph), (i, j)-step 경쟁그래프((i, j)-step competition graph),

계통그래프(phylogeny graph), 경쟁공적그래프(competition-common enemy graph),

p-경쟁그래프(p-competition graph), 그리고 지위그래프(niche graph)가 도입되었고

연구되고 있다.

이논문의연구결과들의일부는다음과같다.삼각형이없이연결된m-step경쟁그

래프는트리(tree)임을보였으며 2 ≤ m < n을만족하는정수 m,n에대하여꼭짓점의

개수가 n개이고 m-step 경쟁그래프가 별그래프(star graph)가 되는 유향그래프를 완

벽하게 특징화 하였다.

k ≥ 3이고 방향지어진 완전 k-분할 그래프(oriented complete k-partite graph)의

(1, 2)-step 경쟁그래프 C1,2(D)에서 각 분할이 완전 부분 그래프를 이룰 때, C1,2(D)을

모두 특징화 하였다. 또한, C1,2(D)의 각 성분(component)의 지름(diameter)의 길이

가최대 3이며 C1,2(D)의지배수(domination number)에대한상계와최댓값을구하고

구간그래프(interval graph)가 되기 위한 충분 조건을 구하였다.

차수가제한된유향회로를갖지않는유향그래프(degree-bounded acyclic digraph)
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의 계통그래프와 경쟁공적그래프에 대해서도 연구하였다. 양의 정수들 i, j에 대하여

(i, j) 유향그래프란 각 꼭짓점의 내차수는 최대 i, 외차수는 최대 j인 유향회로 갖지

않는 유향그래프이다. 만약 유향그래프 D에 각 꼭짓점이 내차수가 최대 i, 외차수가

최대 j 인 경우에 D를 〈i, j〉 유향그래프라 한다.

D가 (i, 2) 유향그래프일 때, D의 계통그래프가 현그래프(chordal graph)가 되기

위한 D의 방향을 고려하지 않고 얻어지는 그래프(underlying graph)에서 길이가 4

이상인회로(hole)의길이에대한충분조건을구하였다. 게다가 (i, j)유향그래프의계

통그래프에서 나올 수 없는 생성 부분 그래프(forbidden induced subgraph)를 특징화

하였다.

(2, 2) 유향그래프 D의 경쟁공적그래프 CCE(D)가 2개의 고립점(isolated vertex)

과 최대 1개의 회로를 갖으면서 가장 적은 성분을 갖는 경우일 때의 구조를 규명했

다. 마지막으로, CCE(D)가 구간그래프가 되기 위한 성분의 개수에 대한 충분조건을

구하였다.

주요어휘: 경쟁그래프, m-step 경쟁그래프, (1, 2)-step 경쟁그래프, 계통그래프, 경쟁

공적그래프

학번: 2020–36139
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