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Abstract

Myungho Choi
Department of Mathematics Education
The Graduate School

Seoul National University

In this thesis, we study m-step competition graphs, (1,2)-step competition graphs,
phylogeny graphs, and competition-common enemy graphs (CCE graphs), which
are primary variants of competition graphs. Cohen [11] introduced the notion of
competition graph while studying predator-prey concepts in ecological food webs.
An ecosystem is a biological community of interacting species and their physical
environment. For each species in an ecosystem, there can be m conditions of the good
environment by regarding lower and upper bounds on numerous dimensions such
as soil, climate, temperature, etc, which may be represented by an m-dimensional
rectangle, so-called an ecological niche. An elemental ecological truth is that two
species compete if and only if their ecological niches overlap. Biologists often describe
competitive relations among species cohabiting in a community by a food web that is
a digraph whose vertices are the species and an arc goes from a predator to a prey. In
this context, Cohen [11] defined the competition graph of a digraph as follows. The
competition graph C'(D) of a digraph D is defined to be a simple graph whose vertex
set is the same as V(D) and which has an edge joining two distinct vertices u and v
if and only if there are arcs (u,w) and (v, w) for some vertex w in D. Since Cohen
introduced this definition, its variants such as m-step competition graphs, (i, j)-step

competition graphs, phylogeny graphs, CCE graphs, p-competition graphs, and niche



i

graphs have been introduced and studied.

As part of these studies, we show that the connected triangle-free m-step compe-
tition graph on n vertices is a tree and completely characterize the digraphs of order
n whose m-step competition graphs are star graphs for positive integers 2 < m < n.

We completely identify (1,2)-step competition graphs C} (D) of orientations D
of a complete k-partite graph for some k£ > 3 when each partite set of D forms
a clique in C (D). In addition, we show that the diameter of each component of
C12(D) is at most three and provide a sharp upper bound on the domination number
of C12(D) and give a sufficient condition for C} 5(D) being an interval graph.

On the other hand, we study on phylogeny graphs and CCE graphs of degree-
bounded acyclic digraphs. An acyclic digraph in which every vertex has indegree at
most ¢ and outdegree at most j is called an (i, j) digraph for some positive integers
i and j. If each vertex of a (not necessarily acyclic) digraph D has indegree at most
i and outdegree at most j, then D is called an (i, j) digraph. We give a sufficient
condition on the size of hole of an underlying graph of an (i,2) digraph D for the
phylogeny graph of D being a chordal graph where D is an (4,2) digraph. Moreover,
we go further to completely characterize phylogeny graphs of (i, j) digraphs by listing

the forbidden induced subgraphs.

We completely identify the graphs with the least components among the CCE
graphs of (2,2) digraphs containing at most one cycle and exactly two isolated ver-
tices, and their digraphs. Finally, we gives a sufficient condition for CCE graphs

being interval graphs.

Key words: competition graphs, m-step competition graphs, (1, 2)-step competition
graphs, phylogeny graphs, competition-common enemy graph
Student Number: 2020-36139
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Chapter 1

Introduction

1.1 Graph theory terminology and basic concepts

We introduce some basic notions in graph theory, which shall be commonly used in
this thesis. For undefined terms, readers may refer to [4].

A graph G is defined as an ordered pair (V, E') where V is a set and F is a family
of unordered pairs of elements in V. An element of V' and an element of E are called
a verter and an edge of G, respectively. If e = {u, v} is an edge, then we simply write
it by wv for convenience when there is no confusion. The set of vertices and the set of
edges of a graph G are called the vertex set and the edge set of G, respectively, and
denoted by V(G) and E(G), respectively. Any graph with just one vertex is referred
to as trivial. All other graphs are nontrivial.

Let G be a graph with an edge e = {u, v} of G. Then we say that e connects (or
joins) u and v, u and v are the end vertices of e, and u and v are adjacent in G. In
addition, each of u and v is said to be incident with e, and vice versa. If u = v, then e
is called a loop. If u # v and there is an edge distinct from e connecting v and v, then
{u,v} is called a multiple edge (or parallel edge). A graph is simple if it has no loops
or parallel edges. The number of vertices and edges in G are called the order and
size of G, respectively. Given a simple graph G, the complement G of G is defined
to be a simple graph obtained by reversing the adjacency of G, i.e., V(G) = V(G)

and F(G) = {w | wv ¢ E(G)}. The adjacency matriz of G is a square matrix A of



size n x n such that its element A;; is one when there is an edge from a vertex v; to
vertex v;, and zero when there is no edge. The diagonal elements of the matrix are
all zero, since edges from a vertex to itself (loops) are not allowed in simple graphs.

Let G be a graph and v be a vertex of G. A vertex of G adjacent to v is called a
neighbor of v. The set of neighbors of v is called the neighborhood of v and denoted by
N¢(v). The degree of v is the number of edges incident to v and denoted by dg(v) (or
degy(v)). A vertex of degree 0 is called an isolated vertex. If no confusion is likely, we
sometimes omit the letter G' from graph-theoretic symbols and write, for example,
N(v), d(v), and deg(v) instead of Ng(v), dg(v), and degg(v), respectively.

A walk in a graph G is a sequence W := vy, eq,v1,...,V,_1, €, Vp Whose terms
are alternately vertices and edges of G (not necessarily distinct) such that v;_; and
v; are the end vertices of e; for each 1 < i < k. We refer to W as a vgui-walk. W
is closed if vg = vi. In a simple graph, W is commonly specified by the sequence
Vo, V1, - - ., U Of its vertices. The length ¢(W') of a walk W is the number of edges
belonging to it. The vertices vy and v, are called the end vertices of W, vy being
its initial vertex and vy, its terminal vertex, the vertices vy,...,vx_1 are its internal
vertices. If there exists a walk starting from a vertex v to a vertex w, then we say
that v and w are connected by a walk. If any two vertices are connected by a walk
in a graph G, then we say G is connected. Otherwise, GG is said to be disconnected.
A maximally connected subgraph of G is called a component of G.

If the vertices in a walk are distinct, then the walk is called a path. A trail is a
walk without repeated edges. A closed trail whose initial vertex and internal vertices
are distinct is called a cycle. We denote a path on n vertices by P, and a cycle on
n vertices by C,,. The length of a path or a cycle is the number of its edges. A cycle
of length 3 is called a triangle. A complete graph is a simple graph in which any two
vertices are adjacent, an empty graph one which no two vertices are adjacent (that
is, one whose edge set is empty). We denote a complete graph of order n by K.

A digraph (or directed graph) D is defined as an ordered pair (V(D), A(D)) where
V(D) is a set and A(D) is a family of ordered pairs of elements in V(D). An element
of V(D) and an element of A(D) are called a vertexr and an arc (or directed edge)

of D, respectively. The number of vertices in D is called the order of D. A digraph



(resp. graph) is finite if both its vertex set and arc set (resp. edge set) are finite. We
can associate a graph G on the same vertex set as V(D) simply by replacing each arc
(u,v) with an edge wv. This graph is said to be the underlying graph of D. A digraph
D is called weakly connected if the underlying graph of D is connected and a weak
component of D is a subdigraph of D induced by a component in the underlying
graph of D.

Let D be a digraph with an arc (u,v). Then we say that u and v are the tail and
the head of (u,v), respectively. In addition, u and v are said to be adjacent in D.
For convenience, we often use the notation u — v for “there is an arc (u,v) in D”.
If u = v, then the arc (u,v) is called a loop. If there are at least two arcs with the
same heads and the same tails, then we call them parallel edge. A digraph is simple
if it has no loops or parallel arcs.

Let D be a digraph and v be a vertex of D. We say a vertex w is an out-neighbor
or prey (resp. in-neighbor or predator) of v if (v,w) € A(D) (resp. (w,v) € A(D)).
The set of out-neighbors (resp. in-neighbors) of v is called the out-neighborhood (resp.
in-neighborhood) of v in D and denoted by N} (v) (resp. Np(v)). The outdegree df(v)
is the number of arcs outgoing from v and the indegree d,(v) is the number of arcs
incoming toward v. We call a vertex with outdegree 0 (resp. indegree 0) a sink (resp.
source) of D.

A directed walk in a digraph D is a sequence
W =g, a1,v1,az, ..., V61, Ak, Vg

whose terms are alternately vertices and arcs of D where v; is a vertex for each 0 <
¢ < k and a; is an arc from v;_; to v; for each 1 < j < k. We refer to W as a directed
(vo, v )-walk. If D has no multiple arcs, W is abbreviated as vg — vy — -++ — vg.
The concepts of directed trails, directed paths, and directed cycles in a digraph are
defined analogously to the trails, paths, cycles in a graph, respectively. If D has no
directed cycle, then D is said to be acyclic.

Two graphs (resp. digraphs) G’ and H are said to be isomorphic if there exist
bijections 0 : V(G) — V(H) and ¢ : E(G) — E(H) (resp. ¢ : A(G) — A(H)) such



that for every edge e € E(G) (resp. arc a € A(G)), e connects vertices u and v in
G (resp. a = (u,v)) if and only if ¢(e) connects vertices #(u) and 6(v) in H (resp.
o(a) = (0(u),0(v))). If G and H are isomorphic, then we write G = H.

Given a graph G (resp. digraph), we call a graph (resp. digraph) H a subgraph
(resp. subdigraph) of G if V(H) C V(G), E(H) C E(G) (resp. A(H) C A(G)),
and we write H C G. The subgraph (resp. subdigraph) of G whose vertex set is X
and whose edge set (resp. arc set) consists of all edges (resp. arcs) of G which have
both ends in X is called the subgraph (resp. subdigraph) of G induced by X and is
denoted by G[X]. The subgraph (resp. subdigraph) induced by V(G) — X is denoted
by G — X. For notational convenience, we write G — v instead of G —{v} for a vertex
v in G. An induced subgraph (resp. induced subdigraph) is a graph (resp. digraph)
by some nonempty subset of V(G). We say that G is H-free if no induced subgraph
(resp. subdigrph) of G is isomorphic to H. A vertex subset S of V(G) is called a
clique if the induced subgraph G[S] is complete. A mazimal clique of a graph G is a
clique X of vertices of GG, such that there is no clique of G that is a proper superset of
X. The size of a maximum clique of a graph G is called a clique number and denoted
by w(G). We call a cycle of length at least 4 as an induced subgraph of G a hole. A
graph is said to be chordal if it does not contain a hole.

In this thesis, we mainly study finite simple graphs and finite digraphs without
multiple arcs, and the terms ‘graph’ and ‘digraph’ always means ‘finite simple graph’

and ‘finite digraph without multiple arcs’, respectively.
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The set of positive integers

The set of integers

The vertex set of a graph (or a digraph) G

The edge set of a graph (or a digraph) G

The arc set of a graph (or a digraph) G

The edge between a vertex u and a vertex v in a graph G
The arc from a vertex v and a vertex v in a digraph D
The complement a graph G

The subgraph of a graph GG induced by a vertex subset X
The subgraph of a graph G induced by V(G) — X

The subgraph of a graph G induced by V(G) — {v}

The neighborhood of a vertex v in a graph G

The degree of a vertex v in a graph G

The out-neighborhood of a vertex v in a digraph D

The in-neighborhood of a vertex v in a digraph D

A path of length n

A cycle of length n

A comple graph of n vertices

the clique number of a graph G




1.2 Competition graphs and its variants

1.2.1 A brief background of competition graphs

An ecosystem is a biological community of interacting species and their physical
environment. For each species in an ecosystem, survival is a major issue and there
can be conditions of the good environment by regarding lower and upper bounds on
numerous dimensions such as soil, climate, temperature, etc. If m different factors
of an environment are measured, then m dimensions are needed to describe the
environment. Moreover, if the range of each factor is determined, then there is a
corresponding region R in m-dimensional Euclidean space such that each point in R
lies within the bounds and R is a m-dimensional rectangle with sides parallel to the
coordinate axes. Danzer and Griinbaum [16] call such a region a box. In addition,
this region is frequently called the species’ ecological niche and the m-dimensional
Euclidean space is called ecological phase space. An elemental ecological truth is that
two species compete if and only if their ecological niches overlap. In this context,
Cohen [11] suggested the following question: what number of dimensions is sufficient
to describe an ecological phase space only when considering competitive relations
among species living together in a biological community? [50]

Biologists often describe competitive relations among species cohabiting in a com-
munity by a food web that is a digraph whose vertices are the species and an arc
goes from a predator to a prey. Given a food web, we say that two species u and
v compete if and only if they have some common prey. To be more precise about
competitive relations, Cohen [11] introduced the competition graph of a food web as

follows:

Definition 1.1. The competition graph C(D) of a digraph D is a simple graph,
which has the same vertex set as D and has an edge between two distinct vertices u

and v if and only if the arcs (u,x) and (v, x) are in D for some vertex x € V(D).

Ecological applications of competition graphs can be found in [11, 12]. For a

comprehensive introduction to competition graphs, see [17,42].
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Figure 1.1: A food web and its corresponding digraph and competition graph.

Figure 1.1 shows a simple food web and its competition graph. For example, the
Hawk and the Owl compete because they both prey on the Frog. The competition
graph of a food web is useful in understanding its structure. Given a graph G, we
would like to find a number k£ and an assignment to each vertex v of a box B(v) in

Euclidean k-space such that
w € E(G) < B(u)NB(v) #0. (1.1)

Following Roberts [48], we call the smallest k satisfying the property in (1.1) the
bozicity b(G) of G. In addition, he proved that the boxicity of any graph on n vertices



cannot be greater than [n/2|. Cozzens [15] showed that computing the boxicity of a
graph is an nondeterministic polynomial-hard problem (NP-hard problem for short).
Later, this was improved by Yannakakis [60], and finally by Kratochvil [36] who
showed that deciding whether the boxicity of a graph is at most 2 itself is an NP-
complete problem.

Graphs with boxicity at most 1 are called interval graphs. There have been a large
number of applications of interval graphs in various fields such as genetics, biology,
computer science, and scheduling theory. For those applications, the readers may
refer to the book [24] and the paper [49].

Interval graphs admit the elegant structure characterizations, for example, see
[22,23]. One of the significant characterizations was introduced by Lekkerkerker and
Boland [40]. To state their result, we need a notion of asteroidal triple. Given a graph
G, an asteroidal triple (AT for short) is a set of three vertices such that no two of
the three vertices are adjacent and, for each pair of these vertices, there is a path in

G that does not contain any vertex of the neighborhood of the third.

Theorem 1.2 ([40]). A graph is an interval graph if and only if it is chordal and
AT-free.

As we have seen previously, interval graphs are related to competition graphs of
food webs. The remarkable empirical observation of Cohen [11-13] is that every food
web gives rise to a competition graph which is an interval graph, which led to a great
deal of research in ecology to determine just why this might be the case. Mathe-
matically, it also has led to a great deal of research on the structure of competition
graphs and on the relation between the structure of digraphs and their corresponding

competition graphs.

1.2.2 Variants of competition graphs

Many variations of ordinary competition graph have been introduced and studied
by many researchers. Analogously to competition graph, the common enemy graph

(resource graph) was introduced by Lundgen and Maybee [42].



Definition 1.3. The common enemy graph CE(D) of an acyclic digraph D is the
graph which has the same vertex set as D and an edge between two distinct vertices
w and v if and only if there exists a vertex w in D such that (w,u) and (w,v) are

arcs in D.

Scott [56] introduced the competition-common enemy graphs as natural extension

of competition and common enemy graphs.

Definition 1.4. The competition-common enemy graph CCE(D) of an acyclic di-
graph D is the graph which has the same vertex set as D and an edge between two
distinct vertices u and v if and only if there exist vertices w and x such that (u,w),

(v,w), (z,u), and (x,v) are arcs of D.

Since the competition-common enemy graphs of an acyclic digraph D is the in-
tersection of its competition graph and its common enemy graph, it is natural to also

consider the union of them, which is a niche graph by Cable [5].

Definition 1.5. The niche graph N(D) of an acyclic digraph D is the graph which
has the same vertex set as D and an edge between two distinct vertices u and

v if and only if there exist vertices w or = such that {(u,w),(v,w)} C A(D) or

{(z,u), (x,v)} € A(D).

Kim et al. [35] introduced the notion of p-competition graph by changing the

condition of the number of the common out-neighbors as follows:

Definition 1.6. Given a positive integer p, the p-competition graph C,(D) of an
acyclic digraph D (loops allowed) is the graph which has the same vertex set as D
and an edge between two distinct vertices u and v if and only if v and v share p

out-neighbors in D.

As another variant related to underlying graph, the notion of phylogeny graphs
was introduced by Roberts and Sheng [51].

Definition 1.7. The phylogeny graph P(D) of an acyclic digraph D, is the graph

which has the same vertex set as D and has an edge between two distinct vertices u



and v if and only if there exists an arc from u to v or an arc from v to u or a common

out-neighbor of u and v in D

In studying competition graph and its variants, we frequently assume that a
digraph is acyclic. However, the assumption is no longer necessary in more recent
study of the variants of competition graphs. Cho et al. [7] introduced the notion of

m-step competition graph as follows:

Definition 1.8. Given a positive integer m, the m-step competition graph C™(D)
of a digraph D is the graph which has the same vertex set as D and has an edge
between two distinct vertices u and v if and only if there exist a directed (u, w)-walk

of length m and a directed (v, w)-walk of length m for some w in V(D).

Extending the concept of m-step competition graphs, Factor et al. [20] introduced

the notion of (7, j)-step competition graph.

Definition 1.9. Given positive integers ¢ and j, the (¢, j)-step competition graph
C;;(D) of D, is the graph which has the same vertex set as D and has an edge between
two distinct vertices u and v if and only if (i) dp_,(u, w) < ¢ and dp_,(v,w) < j or
(ii) dp_p(u,w) < j and dp_, (v, w) < 4.

See the competition graph and its variants of an acyclic digraph D given in
Figure 1.2 for an illustration.

In the following subsections, we take a look at some results of m-step competition
graph, (1,2)-step competition graph, CCE graph, and phylogeny graph, which will
be mostly dealt with in the body of this thesis. For further information on variants
of competition graphs, readers may refer to the survey articles by Kim [33] and
Lundgren [42].

1.2.3 m-step competition graphs

Given a digraph D and a positive integer m, we define the m-step digraph D™ of D
as follows: V(D™) = V(D) and there exists an arc (u,v) in D™ if and only if there

exists a directed walk of length m from a vertex u to a vertex v. A vertex y (resp. x)

10
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Figure 1.2: The competition graph and its variants of an acyclic digraph D



is an m-step prey (resp. m-step predator) of a vertex x (resp. y) if and only if there
exists a directed walk from z to y of length m.
A relationship between the m-step competition graph and the ordinary competi-

tion graph was given by Cho et al. [7] as follows:

Theorem 1.10 ([7]). For a digraph D (possibly with loops) and a positive integer
m, C™(D) = C(D™).

Since the notion of an m-step competition graph was introduced by Cho et al. [7],
it has been extensively studied. In 2000, Cho et al.[7] posed the following question: For
which values of m and n is P, an m-step competition graph? In 2005, Helleloid [27]
partially answered the question and study connected triangle-free m-step competition

graphs as follows.

Theorem 1.11 ([27]). For all positive integers m > n, the only connected triangle-

free m-step competition graph on n vertices is the star graph.

In 2010, Kuhl et al. [37] gave a sufficient condition for C™ (D) = P,. Finally, in
2011, Belmont [3] presented a complete characterization of paths that are m-step

competition graphs as follows.

Theorem 1.12 ([3]). There exists a digraph D such that C™(D) = P, if and only
ifm|n—1o0orm|n—2.

The structural properties of m-step competition graphs and the matrix sequence
{C™(D)}so_, for a digraph D were studied in [7,8, 19, 28, 43] and [6, 10, 31, 45],
respectively. In addition, there is the relation between m-step competition graphs
and matrix theory. For the two-element Boolean algebra B = {0, 1}, B, denotes the
set of all n x n matrices over B. Under the Boolean operations (1+1=1,040 =0,
140=1,1x1=1,0x0=0, 1 x0=0), matrix addition and multiplication are
still well-defined in B,,. Throughout this thesis, a matrix is Boolean unless otherwise
mentioned. Let D be a digraph with vertex set {vq,vs,...,v,}, and A = (a;;) be the

(Boolean) adjacency matrix of D such that

1 if there is an arc (v;,v;) in D,
CLZ'j = .
0 otherwise.

12



Theorem 1.13. The adjacency matriz of C™ (D) for a digraph D of order n is the
matriz A%, obtained from A™(AT)™ by replacing each of diagonal element with 0

where A is the adjacency matrixz of D.

To see why, we take two distinct vertices u and v of D and suppose that the ith

row and the jth row are the rows corresponding to u and v, respectively. Then

u and v are adjacent in C™(D)
< wu and v have an m-step common prey in D
< inner product of the ith row and the jth row of A™ is 1
< the (7, 7)-entry of A% is 1.

Thus u and v are adjacent in C™(D) if and only if the (i,j)-entry of A is 1.
Therefore the statements of m-step competition graphs may be restated in terms
of matrices, which describe properties of a matrix and give solutions of a particular

matrix equation, and so on.

1.2.4 (1,2)-step competition graphs

An orientation of a graph G is a digraph having no directed 2-cycles, no loops, and
no multiple arcs whose underlying graph is G. A tournament is an orientation of a
complete graph.

In 2011, Factor et al. [20] characterized the (1,2)-step competition graphs of
tournaments and extended some results to the (i, j)-step competition graphs of tour-

naments.

Theorem 1.14 ([20]). A graph G in n > 5 vertices is the (1,2)-step competition
graph of some strong tournament if and only if G is K,,, K, — E(P,), or K,, — E(P3).

Theorem 1.15 ([20]). A graph G on n vertices is the (1,2) step competition graph

of some tournament if and only if G is one of the following graphs:
(1) K,, wheren # 2,3,4,
(1) K1 UKy, wheren > 1,
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(iii) K, — E(P;) where n > 2,
(iv) K, — E(P,) where n # 1,4, or
(v) K, — E(K3) where n > 3.

Then Zhang and Li [62] and Zhang et al. [61] studied the (1,2)-step competi-
tion graphs of non-round decomposable pure local tournament and round digraphs,
respectively. Recently, Li et al. [41] studied the (1, 2)-step competition graph of a hy-
pertournament. On the other hand, Kim et al. [34] studied the competition graphs of
orientations of complete bipartite graphs. In 2017, Choi et al. [9] studied the struc-
ture of (1,2)-step competition graphs of orientations of complete bipartite graphs

and obtained the following, which are natural extension of existing results.

Theorem 1.16 ([9]). Let D be an orientation of complete bipartite graph. Then
Ch2(D) has at most one non-trivial component of diameter at most three or consists

of exactly two complete components of size at least three.

In addition, they completely characterized the complete graphs and the discon-
nected (1,2)-step competition graph C} (D) of an orientation of complete bipartite

graph D, which is the disjoint unions of complete graphs, as follows.
Theorem 1.17 ([9]). The following are true:

(1) For positive integers m and n with m > n, the disjoin union of the complete
graphs K, and K, is a (1,2)-step competition graph of an orientation of a
complete bipartite graph if and only if one of the following holds: n = 1; m >
n>6;m>10 and n = 5.

(i1) For a positive integer [, the complete graph K, is a (1,2)-step competition graph
of an orientation of a complete bipartite graph if and only if | > 12
1.2.5 Phylogeny graphs

Pearl [47] introduced the notion of Bayesian network. A Bayesian network (also

known as a Bayes network) is a probabilistic graphical model that represents a set of
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variables and their conditional dependencies via a digraph. “Moral graphs” having
arisen from studying Bayesian networks are the same as phylogeny graphs (Defi-
nition 1.7). One of the well-known problems, in the context of Bayesian networks,
is concerned with the propagation of evidence. It is composed of the assignment
of probabilities to the values of the rest of the variables, once the values of some
variables are known.

As Cooper [14] showed, this problem is NP-hard. Most remarkable algorithms for
this problem are given by Pearl [46], Shachter [57] and by Lauritzen and Spiegelhalter
[38]. A step of triangulating a moral graph, adding edges to a moral graph to form a
chordal graph, is required in those algorithms (refer to remaining step in Jensen [29]).
Thus triangulation of the moral graphs plays a significant role in the process of
solving the propagation problem. Even though chordal graphs can be identified in
polynomial time, deciding whether or not a graph is moral is NP-complete by Verma
and Pearl [59]. In this context, the problem whether phylogeny graph of an acyclic
digraph is a chordal or not have been studied.

Steif [58] showed that it might be difficult to figure out the structural properties
of acyclic digraphs whose competition graphs are interval. In that regard, Hefner et
al. [26] studied degree bounded acyclic digraphs having restrictions on the indegree
and the outdegree of its vertices to obtain the list of forbidden subdigraphs for acyclic
digraphs whose competition graphs are interval. They called an acyclic digraph each
vertex of which has indegree at most ¢ and outdegree at most j an (i, j) digraph for
positive integers ¢ and j. Hefner et al. [26] gave a characterization of (2,2) digraphs
whose competition graphs are interval. The gain of this characterization is a sufficient
condition for (2,2) digraphs having chordal competition graphs.

Recently, research of the phylogeny graphs of degree-bounded have mainly been
conducted in two directions: chordality and clique number. Lee et al. [39] gave a
sufficient condition and a necessary condition for (2, 2) digraphs having chordal phy-

logeny graphs in terms of its underlying graphs as follows:

Theorem 1.18 ([39]). Let D be a (2,2) digraph. If the underlying graph of D con-
tains a hole H of length at least 7, then the subgraph of the phylogeny graph of D
induced by V(H) has a hole.
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Theorem 1.19 ([39]). Let D be a (2,2) digraph. If the underlying graph is chordal,
then the phylogeny graph of D is also chordal.

Further, Eoh et al. [18] studied on chordality of the phylogeny graphs of (i, )
digraphs by extending the result given by Lee et al. as follows:

Theorem 1.20 ([18]). Let D} ; be the set of (i,j) digraphs whose underlying graphs
are chordal for positive integers i and j. Then the (i,j) phylogeny graph of D is
chordal for any D € D;; if and only of i <2 or j = 1.

Then they showed that the phylogeny graph of a (2,2) digraph is planar if the
underlying graph of a (2,2) digraph is chordal and completely characterized the
phylogeny graph of a (1,7) digraph and an (i, 1) digraph, for any positive integer i.

Lee et al. [39] and Eoh et al. [18] gave an upper bound for the clique number of
phylogeny graphs of (2,2) digraphs and phylogeny graphs of (2, 7) digraphs, respec-

tively, as follows:

Theorem 1.21 ([18,39]). Let D be a (2,7) digraph for a positive integer j. Then

W(P(D)) < J+2 afj<2;

J+3 otherwise

and the inequalities are tight.

In this context, we study the chordality of phylogeny graphs of (i,2) digraphs and
characterization of its forbidden induced subgraphs in the Chapter 4, which extend
the results given by Lee et al. [39]. For more information on study on phylogeny
graphs, readers may refer to [25,44,52-54,63].

1.2.6 CCE graphs

In 1978, Robert [50] defined k(G), the competition number of a graph G, to be the
smallest integer k£ such that GUI} is a competition graph of an acyclic digraph, where

I}, is a set of isolated vertices added to GG by observing that a competition graph is
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obtained by adding sufficiently many isolated vertices to G. Analogously, Scott [56]
defined dk(G), the double competition number, to be the smallest integer k such that
G U I is a CCE graph of an acyclic digraph, where I is a set of isolated vertices
added to G by proving that dk(G) is well-defined. In addition, Scott [56] characterize
the CCE graphs of acyclic digraphs by computing the double competition numbers

as follows.

Theorem 1.22 ([56]). If G is a path of length at least 2, a cycle of length of at length

at least 3, a complete graph of order at least 2 or a nontrivial tree, then dk(G) = 2.
Theorem 1.23 ([56]). If G is a chordal graph or an interval graph then dk(G) < 2.

In this context, we mainly study the CCE graphs of (2, 2) digraphs having exactly
two isolated vertices in Chapter 5 and characterize them.

Hefner et al. [26] studied competition graphs of (7, j) digraphs, which they called
(1,7) competition graphs, and gave a characterization of (2,2) digraphs whose com-

petition graphs are interval graphs as follows.

Theorem 1.24 ([26]). Let G be a competition graph of a (2,2) digraph. G is an
interval graph if and only if each component is an isolated vertex, a path, or a triangle,

and the number of isolated vertices is at least 1.

In this vein, we give a sufficient condition on the number of components for CCE
graphs being interval graphs in Chapter 5. For more results on CCE graphs, readers
may refer to [1,2,21,30,32,55].

1.3 A preview of the thesis

In Chapter 2, we completely characterize the digraphs of order n whose m-step
competition graphs are star graphs for positive integers 2 < m < n. This result in
matrix version identifies the solution set to the matrix equation X™(XT)™ = A, +1I,,
for positive integers 2 < m < n where [, is the identity matrix of order n and A,
is a (0,1) Boolean matrix such that the first row and the first column consist of 1’s

except (1, 1)-entry and the remaining entries are 0, which is the adjacency matrix of
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a star graph of order n. We also derive meaningful properties of the digraphs whose
m-step competition graphs are trees. In the process, we extend a result of Helleloid
(Theorem 1.11) by showing that for all positive integers m > 2 and n, the connected
triangle-free m-step competition graph on n vertices is a tree.

In Chapter 3, we study C} (D) when D is an orientation of a complete k-partite
graph for some k& > 3. We completely identify C}2(D) when each partite set of D
forms a clique in C 5(D). Even if there exists a partite set of D which does not form
a clique in C9(D), we figure out most of the structure of Cj (D). Based on these
results, we show that the diameter of each component of C} (D) is at most three
and provide a sharp upper bound on the domination number of C} 5(D). In addition,
we list all possible C12(D) when D has no vertices of outdegree 0 and Cj2(D) is
disconnected. Finally, we give a sufficient condition for C (D) being an interval
graph.

In Chapter 4, we give a sufficient condition on the size of hole of an underlying
graph of D for P(D) being a chordal graph where D is an (i, 2) digraph. Moreover, we
go further to completely characterize (i, j) phylogeny graphs by listing the forbidden
induced subgraphs.

In Chapter 5, We characterize the graphs with the least components among the
CCE graphs of (2,2) digraphs containing at most one cycle and exactly two isolated
vertices, and their digraphs, which gives a sufficient condition on the number of com-
ponents for CCE graphs being interval graphs. Further, we completely characterize
the graphs having exactly two nontrivial components among the CCE graphs of (2, 2)

digraphs with exactly two isolated vertices.
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Chapter 2

Digraphs whose m-step competition graphs

are trees!

Recall that given a positive integer m, the m-step competition graph C™(D) of a
digraph D is the graph which has the same vertex set as D and has an edge between
two distinct vertices u and v if and only if there exist a directed (u, w)-walk of length
m and a directed (v, w)-walk of length m for some w in V(D) (Definition 1.8).

For two vertex-disjoint weakly connected digraphs D; and D, it is true that
C™(Dy U Dy) = C™(Dy) U C™(Dy) for any positive m. In this vein, it is sufficient
to consider weakly connected digraphs throughout this chapter. From now on, we
assume that any digraph in this chapter is weakly connected unless otherwise men-
tioned.

We call a complete bipartite graph K;; for some positive integer [ a star graph.

In this chapter, we show the following theorem (the definitions of a windmill

digraph and an m-conveyor digraph will be given right after the theorem statement).

Theorem 2.1. For positive integers 2 < m < n, the star graph is an m-step com-
petition graph of a digraph D with n wvertices if and only if one of the following
holds:

(1) D is a windmill digraph,

!The material in this chapter is from the manuscript ‘Digraphs whose m-step competition graphs
are trees’ by Myungho Choi and Suh-Ryung Kim. The author thanks Prof. Suh-Ryung Kim for
allowing him to use its contents for his thesis.
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Dy D,
Figure 2.1: The windmill digraphs with three vertices.

(ii) D is an m-conveyor digraph;
(11i) m =2 and D is isomorphic to the digraph given in Figure 2.5.

A windmill digraph is defined to be a digraph satisfying the following three con-

ditions:

(W1) D has exactly one source v;

(W2) D — v is a vertex-disjoint union of directed cycles;
(W3) each vertex except v is a prey of v

(see the windmill digraphs of order 3 in Figure 2.1 for an illustration).
We call a nontrivial directed path or cycle connecting vertices of indegree 2 an
internally secure lane if each of its interior vertices has indegree 1.

We call a digraph D an m-conveyor digraph for some m > 2 if D has a vertex v

satisfying the following conditions:

(M1) v is the only predator of v;

(M2) D — v is a vertex-disjoint union of directed cycles;
(M3) each internally secure lane in D has length at most m

(see the 2-conveyor digraphs of order 4 in Figure 2.2 for an illustration).
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Figure 2.2: The 2-conveyor digraphs of order 4

VAN

u zZ u z

Figure 2.3: A digraph and its 2-step competition graph
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0 J - J poQm  Q
O T, O O O I, O O 0 11
: . ; . , , |1 00
O 0 0T, 0O 0 O T.

Figure 2.4: Adjacency matrices of a windmill digraph, a m-conveyor digraph, and
the digraph given in Figure 2.3, respectively, where the blocks J and O stand for a
matrix of all 1’s and a zero matrix, respectively.

The adjacency matrix of a windmill digraph is in the form of the first matrix
given in Figure 2.4. Here, I',, is the adjacency matrix of a directed cycle of length n,
that is,

1 ifj=i+1lor(i,5) =(n,1);
(Fn)ij = )
0 otherwise.
The adjacency matrix of an m-conveyor digraph is in the form of the second matrix
given in Figure 2.4. The first row represents v satisfying (M1) and (M2). By (M3),

the (0, 1) nonzero matrix Q,gm) has size 1 x k and satisfies the following properties:
(F1) the number of consecutive zeros is at most m — 1;

(F2) if the (1, 1)-entry and the (1, k)-entry equal 0, then the number of first consec-

utive zeros and that of last consecutive zeros add up to at most m — 1.

Theorem 2.1 may be restated in terms of matrices. Therefore we have the following

corollary restating Theorem 2.1 in terms of matrices:

Corollary 2.2 (Matrix version). For positive integers 2 < m < n, a square matriz X
of order n satisfies X™(XT)™ = A, + I, if and only if PYX P for some permutation
matriz P of order n is one of the matrices given in Figure 2.4, where I,, is the identity
matriz of order n and A, is the square matrix of order n with the first row and first

column of A, consisting of 1’s except (1,1)-entry and the remaining entries being 0.

We also prove the following result.

22



Theorem 2.3. For all positive integers 2 < m < n, the connected triangle-free

m-step competition graph on n vertices is a tree.

Even for a digraph D and an integer m > |V(D)|, the same is true as follows.

By Theorems 1.11 and 2.3 we have the following more general result.

Corollary 2.4. For all positive integers m > 2 and n, the connected triangle-free

m-step competition graph on n vertices is a tree.

As the rest of this chapter is devoted to proving Theorems 2.1 and 2.3, we may
assume from now on that m > 2 and m < n whenever we are given a digraph of

order n whose m-step competition graph is triangle-free.

2.1 The triangle-free m-step competition graphs

In this section, we show that all the connected triangle-free m-step competition
graphs are trees.

Let D be a digraph and v be a vertex of D. We denote the m-step prey of v by
N (v) and the m-step predators of v by Np,,.(v), respectively. When no confusion
is likely, we will just write N (v) and N (v). We note that N;"(v) = NT(v) and
Ny (v) = N~ (v). Technically, we write N, (v) = Ny (v) = {v}. We call |N; (v)| and
|N;"(v)| the i-step indegree and the i-step outdegree of v, respectively, and denote
them by d; (v) and d (v), respectively. We note that di (v) = d™(v) and dj (v) =
d—(v).

We make the following useful observations.

Lemma 2.5. Let D be a digraph such that C™ (D) is triangle-free. Then the following

are true:
(1) Any vertex in D has i-step outdegree at least 1 for any positive integer i.
(2) Any vertex in D has i-step indegree at most 2 for any positive integer i < m.

(3) If a directed walk contains at least two vertices and its origin and terminus

have indegree 2, then it is a juxtaposition of internally secure lanes.
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(4) For any two internally secure lanes W and W’ in D starting at w and w/,
respectively, and sharing v as an interior vertex, the (w,v)-section of W and

the (w’,v)-section of W’ coincide.

Proof. Since we have assumed that any digraph has no sinks, part (1) is true.

To prove part (2), suppose, to the contrary, d; (u) > 3 for some vertex u of D and
a positive integer ¢ < m. Then there exist three distinct ¢-step predators z, y, and z
of u. By part (1), v has an (m —i)-step prey v. Then v is an m-step common prey of
x,y, and z. Thus z,y, and z form a triangle in C™ (D), a contradiction. Hence part
(2) is true.

Part (3) immediately follows from the definition of internally secure lane and part
(2).
To show part (4), let W =w - vy —» -+ myand W =w - v] —» -+ = v},
be a pair of internally secure lanes sharing v as an interior vertex for some positive
integers [ and I’. Then v = vy = v}, forsome k € {1,...,I—1}and ¥’ € {1,...,I'—1}.
By the definition of internally secure lane, d~(v;) = d~(v},) = 1 for each 1 < i < k
and 1 < 4" < k. Therefore the (w,vy)-section of W and the (w’, v},)-section of W'
coincide. Thus part (4) is true. O

Theorem 2.6. Let G be the m-step competition graph of a digraph D such that G is

triangle-free and has the edges as many as the vertices. Then the following are true:

(1) For each vertex u of outdegree at least 2 in D, each prey of u has indegree 2 in
D.

(2) Every vertex in D lies on some internally secure lane.
(3) Each internally secure lane of D has length m.

Proof. We consider a set

A= {(uv {U7w}) | v # W, {U’w} - Nrr_z(u)}
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By the definition of m-step competition graph, |A| > |E(G)|. Thus, by the definition
of A and Lemma 2.5(2),

paza- Y (") ¥ () -voi-vel

veV (D) veV (D)

Then, since |E(G)| = |V(G)| by the hypothesis,
d (v)=2 (2.1)
for each vertex v in D. In addition, if u and v are adjacent in GG, then
[N (u) NN ()] =1,
so, for each pair of vertices v and v in D,
[N (u) N N (v)] < 1

and
IN,.(u) NN, (v)] <1. (2.2)

Suppose for a contradiction that there exist two vertices u and v such that | N ]+ (w)N
N. ;“(v)| > 2 for some positive integer j < m. Take two distinct vertices w; and ws in
N (u) W N; (v). Then {u,v} C N; (wi) N N; (w;). Therefore N7~ (wy) = Nj (wy) =
{u,v} by Lemma 2.5(2). Thus N, (w1) = N, (ws). Then, since d_ (wy) = d, (wy) = 2
by (2.1), |N,,(wy) N N,,(ws)| = 2, which contradicts (2.2). Therefore, for each pair
of vertices u and v,

[N (u) NN (v)] <1 (2.3)

for any positive integer i < m.

To show part (1) by contradiction, suppose that there exist a vertex u of outdegree
at least 2 and a prey v of u has indegree not equal to 2 in D. Then, by Lemma 2.5(2),
v has indegree 1. In addition, since u has outdegree at least 2, u has a prey w

other than v. By (2.1), N,,(v) = {z,y} for some vertices  and y in D. Since u
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is the only predator of v, N, ,(u) = {x,y}. Therefore {z,y} C N, (w) and so
{z,y} C N,,(v) N N,,(w), which contradicts (2.2). Hence part (1) is true.

To show part (2), take a vertex v in D. If any i-step prey of v has indegree
at most 1 for each 1 < ¢ < m, then there is an m-step prey of v having m-step
indegree 1, which contradicts (2.1). Therefore there exists a j-step prey z of v having
indegree at least 2 for some j € {1,...,m}. Thus z has indegree 2 by Lemma 2.5(2).
If v has indegree 2, then a directed (v, z)-walk contains an internally secure lane on
which v lies. Suppose that v has indegree not equal to 2. Then v has indegree 1 by
Lemma 2.5(2) and (2.1). If each i-step predator of v has indegree at most 1 for each
1 <i<m—1, then d,,(v) < 2, a contradiction to (2.1). Thus there exists a k-step
predator y of v having indegree at least 2 for some k € {1,...,m — 1}. Then, by
Lemma 2.5(2), each of x and y has indegree 2. Hence we may conclude that every
vertex in D lies on some internally secure lane.

To show part (3), take an internally secure lane W := vy — v; — --- — v; for

some positive integer j. Then, by the definition of an internally secure lane,
N~ (vo) ={z,y}, N (v) = {vj1, w}
for some vertices x,y, and w in D. Then
Niii(vi) 2 {z, y} (2.4)
for each 0 < ¢ < j. If j > 2, then
N~ (vig1) = {vi} (2.5)
for each 0 <i < j — 2 by the definition of internally secure lane and so, by part (1),
N™(v;) = {vit1} (2.6)

foreach 0 <7 < j — 2.
To reach a contradiction, suppose j # m. If j > m, then j > 2 and so, by (2.5),
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N, (vj—1) = {vj_m—1}, which contradicts (2.1). Therefore j < m. Then

Nipi(vi) = {z, y}

for each 0 < i < j by (2.4) and Lemma 2.5(2). Since a j-step predator of w is a (j+1)-
step predator of v;, N (w) C {z,y}. Since N; (v;_1) = {z,y}, N; (w) € {z,y}
by (2.3). Then, since D has no source by (2.1), N; (w) = {x} or {y}. Without
loss of generality, we may assume N, (w) = {z}. Then there exists a directed walk
W* of length j from z to w. If j = 1, then d~(w) = 1, w is a prey of z, and
{vg,w} € N7T(x), which contradicts part (1). Therefore j > 2. Let z be the vertex
which z is immediately going toward on W*. If z = vy, then w = v;_; by (2.6) and
we reach a contradiction. Therefore z # vg. Thus x has outdegree at least 2. Hence
z has a predator z’ other than x by part (1). Then attaching the arc (z/, z) to the
(z,w)-section of W* results in a directed walk of length j from 2’ to w. Therefore
{z,2"} € N; (w), which contradicts the assumption that N, (w) = {z}. Thus we may

conclude that j = m. Since W was arbitrarily chosen from D, part (3) is valid. [

Given an internally secure lane W = vy — vy — -+ — v,,, we call v, the kth

interior verter of W for each 1 < k < m.

Theorem 2.7. If the m-step competition graph of a digraph is triangle-free and has

the edges as many as the vertices, then it has at least m components.

Proof. Suppose that there exists a digraph D whose m-step competition graph G
is triangle-free and has the edges as many as the vertices. Take an internally secure
lane W in D (it exists since every vertex in D lies on some internally secure lane
by Theorem 2.6(2)). By Theorem 2.6(3), W has length m. Let W = vy — v; —
-+« = v, and take vy, for some k € {1,...,m—1}. Suppose that there exists a vertex
wy, adjacent to v in G. Then they have an m-step common prey in D and so vy
and wy have an [-step common prey z that has indegree at least 2 in D for some
[ € {1,...,m}. Therefore z has indegree 2 by Lemma 2.5(2). Then there exist a
directed (vg, z)-walk W; of length [ and a directed (wy, z)-walk W5 of length [. Since

z has indegree 2, the directed walk W' obtained by concatenating the (vg, vy )-section
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of W and W; contains an internally secure lane. We note that the origin and the
terminus of W' have indegree 2. Then, since the length of W' is at most 2m — 1,
W’ must be an internally secure lane by Lemma 2.5(3) and Theorem 2.6(3). Thus
[ = m — k. By Theorem 2.6(3) again, W5 must be a section of an internally secure

lane of length [. Thus we may conclude that

(x) each vertex adjacent to the kth interior vertex of an internally secure lane is

the kth interior vertex of an internally secure lane.

Now, for each 1 < i < m — 1, we define a vertex set V; as follows: v € V; if and only
if v is the ith interior vertex of some internally secure lane. Then V;NV; = 0 if ¢ # j
by Lemma 2.5(4). Moreover, since v; € V;, V; # () for each 1 <i <m — 1.

Now we choose j € {1,...,m — 1}. Then take a vertex v in V; and let X be the
component containing v in G. Take a vertex w in X. Then there exists a shortest
path P from v to w. By repeatedly applying (x) to each vertex on P from the nearest
to the farthest from v, we may show that w € V;. Therefore X C V;. Then, since
VinV; =0 fori#jand Vg # 0 for each 1 < k < m — 1, G has at least m — 1
components each of which is included in V; for some j € {1,...,m—1}. We note that
each vertex in U:’:ll V; is an interior vertex of an internally secure lane and so, by the
definition of internally secure lane, it has indegree 1 for each 1 < i < m—1. Therefore
the origin and the terminus of any internally secure lane in D cannot belong to any

of the components obtained previously. Hence GG has at least m components. O
Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Suppose, to the contrary, that there exists a digraph D such
that C™(D) is triangle-free and connected but is not a tree. Then, since C™(D)
is connected but is not a tree, |E(C™(D))| > |V(C™(D))| — 1. By Lemma 2.5(2),
d.(v) = 2 for each vertex v in D. Therefore |E(C™(D))| < |V(C™(D))| and so

|[E(C™(D))| = |[V(C™(D))|. Thus C™(D) is disconnected by Theorem 2.7 and we
reach a contradiction. Hence C™(D) is a tree. [
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2.2 Digraphs whose m-step competition graphs are trees

In this section, we deduce basic properties of digraphs whose m-step competition
graphs are trees.

We call a digraph D with at least three vertices an m-step tree-inducing digraph
if the m-step competition graph of D is a tree for some integer m > 2. A digraph is
said to be a tree-inducing digraph if it is an m-step tree-inducing digraph for some

integer m > 2.

Proposition 2.8. Let D be an m-step tree-inducing digraph. Then N, (u) # N;"(v)

for any distinct vertices u and v in D and any positive integer i < m.

Proof. Suppose N;"(u) = N, (v) for some distinct v and v in D and a positive
integer ¢ < m. Then N} (u) = N,}(v). Since N,/ (u) # 0 by Lemma 2.5(1), u and v
are adjacent in C™ (D). Moreover, N, (w) = {u,v} for each vertex w € N, (u) by

Lemma 2.5(2). Therefore an edge uv is a component in C™ (D), a contradiction to
the connectedness of C™ (D). O

Proposition 2.9 (Helleloid [27]). Let D be a digraph with n vertices whose m-
step competition graph C™(D) is a tree. Then there is a one-to-one correspondence
between the n — 1 pairs of adjacent vertices in C™(D) and n — 1 of n wvertices of
D; namely, all but one vertex in D serves as the m-step common prey for exactly
one pair of adjacent vertices in C™ (D). The remaining vertez of D can either be

the m-step prey of no vertices, of any one vertex, or of any two vertices adjacent in
C™(D).

Based upon the above proposition, Belmont [3] called the remaining vertex « in
D not assigned in a bijection between the edges of C™ (D) and n—1 of the n vertices
of D anomaly. The author observed that if the remaining vertex of D is the m-step
prey of any two vertices adjacent in C"™ (D), then the anomaly is not well-defined
since there are two vertices with this property and went on to call the one arbitrarily
chosen between the two vertices an anomaly. By the definition of an anomaly, it is

clear that each tree-inducing digraph has a unique anomaly.
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The following proposition gives a necessary and sufficient condition for a vertex
of a tree-inducing digraph D being the anomaly, which is actually a restatement of

Proposition 2.9.

Proposition 2.10. Let D be an m-step tree-inducing digraph. Then o in D 1is the
anomaly if and only if a has either at most one m-step predator in D or exactly
two m-step predators that have another vertex B as an m-step common prey in D.
Furthermore, if the latter of the “if” part is true, then o and 3 are the only vertices

that share two m-step common predators.

Corollary 2.11. Let D be an m-step tree-inducing digraph. Then the following are

true:

(1) If NS (u) NN (v)| > 2 for some u and v in D, then the anomaly is contained
in N,F(u) NN, (v).

(2) If d. (v) <1, then v is the anomaly.

Corollary 2.12. Let D be an m-step tree-inducing digraph. For the anomaly o of

D, exactly one of the following is true:

(1) a has ezactly two m-step predators that have a vertex v other than « as an
m-step common prey in D, and o and v are the only vertices that share two

m-step common predators;

(11) « has at most one m-step predator and each verter except o has exactly two

m-step predators.

Theorem 2.13. Let D be a digraph such that C™(D) is triangle-free and connected.

Then the following are true:
(1) U, NT(v)| > |U] for any proper subset U of V(D).
(2) For any vertices u and v in D, [N;"(u) N N;"(v)] < |N;F(u) 0 NS (v)] for any

positive integers i,7 with 1 < 7 < m.
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(3) For each vertex v in D, d (v) < df(v) for any positive integers i,j with i <
J<m.

Proof. We begin with the proof of the following claim:

Claim. For any nonempty proper subset U of V (D), there exists a vertex u €
Upeo N T (v) such that [N~ (u) NU| = 1.

To reach a contradiction, suppose that there exists a nonempty proper subset U*
of V(D) with [N~ (v) N U*| # 1 for each vertex v in J, ¢« NT(v). Since any vertex
in Jyep- N*(v) is a prey of a vertex in U*, [N~ (v) N U*| > 1 for each vertex v
in J,cp- N*(v) and so, by Lemma 2.5(2), [N~ (v) N U*| = 2. Since U* is a proper
subset of V(D), V(D) — U* # (). Since U* # () and C™(D) is connected, there exists
a vertex x in V(D) — U* which is adjacent to a vertex w € U* in C™(D). Then,
w and z have an m-step common prey a,, and so there exists a directed (w, a,,)-
walk of length m in D. Let a; be the vertex outgoing from w on this walk. Then
ay € NY(w) € U,ep- N (v). By the choice of U*, each vertex of |, NT(v) has
two predators in U*. Thus there is the other predator y of a; that belongs to U*.
Since x ¢ U* and y € U*, y and x are distinct. Further, y is an m-step predator of
a,, and so {w,z,y} C N, (a,,), which is a contradiction to Lemma 2.5(2). Therefore
the claim is valid.

We prove part (1) by induction on |U|. If U = (), then the inequality trivially
holds. Now suppose that ||,
V(D) with |U| < k for a nonnegative integer k such that k < |V(D)| — 2. Take a
proper subset W of V(D) with k + 1 elements. Then W is nonempty. Suppose, to

N*t(v)] > |U| for any proper vertex subset U of

the contrary, that ||J,c,y VT (v)| < |[W/|. By the above claim, there exists a vertex
w € J,ew Nt (v) such that [N~ (w) N W[ = 1. Then N~ (w) N W = {z} for some
vertex « € W. Since z is the only predator of w in W, w ¢ ey (3 N7 (v). Then,

since w € Jyepy N*(v),

U Mwl<IUNwl-L

veW—{w} veW

31



By the assumption that |{J, o N (v)] < |W],

U N <w]-1 (2.7)

veW —{w}

Yet, since W — {x} is a proper subset of V(D) with k elements, by the induction
hypothesis,

U N =W —{a}| = W| -1,
veW —{w}
which contradicts (2.7). Therefore part (1) is true.

To verify part (2), take two vertices u and v of D and fix a positive integer i. We
first consider the case N;"(u) N N;"(v) = V(D) and take a vertex w. Then w has at
least one predator z € N;"(u) N N;"(v). Therefore w € N, (u) N N, (v). Since w
was arbitrarily chosen from D, N, (u) N N/, (v) = V(D).

Now consider the case N;"(u) N N;"(v) C V(D).

By part (1),

U N*(w)| > [N;" (u) N N;F (v)].
weN; (w)NN; (v)

Then, since
U N+(w) gNj_l(u)ﬂsz_l(’U),

wGN;r(u)ﬂNf(v)
[N () VNG (0)] < INGE (u) NN (0)]

We may repeat this process until we have |N;"(u) N N;"(v)| < [N (u) N N, (v)| for
any integer j with ¢ < j < m, which will complete the proof of part (2). Part (3) is

an immediate consequence of part (2). O

The inequality in Theorem 2.13(1) is true only for a proper subset of V(D) as

shown by the following example.

Example 2.14. Fix some integer m > 2. Let D be the windmill digraph with
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V(D) = {on,0 .., vmw} and AD) = {(vnvier) | 1 < i < m} U {(om,00)} U
{(w,v;) | 1 < i < m}. Then C™(D) is a star graph with the center w. However,
INT(V(D))| < |V(D)] since w ¢ N*(V(D)).

Proposition 2.15. Let D be an m-step tree-inducing digraph with the anomaly .
Suppose d (u) > 1 for a verter w in D and positive integers | and i < m. Then the
degree of u is at least | — 1 in C™(D). Especially, if the degree of u equals | — 1 in
C™(D), then d (u) =1 and a € N} (u) in D.

Proof. Denote by d(u) the degree of a vertex u in C™(D). Since d; (u) > I, d (u) > 1
by Theorem 2.13(3). Then there are at least [ — 1 vertices in N,/ (u) each of which
serves as the m-step common prey for exactly one pair of adjacent vertices in C™ (D)
by Proposition 2.9. Therefore d(u) > [—1. To show the “especially” part, suppose, to
the contrary, that d(u) = {—1 but d (u) # I. Then, by the hypothesis, d.} (u) > [+1.
Thus, by the previous argument, d(u) > [, a contradiction. Therefore d (u) = I. Yet,
dlu) =1-1,s0 a € N} (u). O

Theorem 2.16. Let D be a tree-inducing digraph without sources. Then each vertex

lies on a directed cycle in D.

Proof. Suppose, to the contrary, that there exists a vertex u which does not lie on

any directed cycle in D. Let A, B, and C be subsets of V(D) such that

A=JNw); B=JN (v); C=V(D)-(AUB).

i>1 i>1

By the hypothesis, N~ (u) # (), so B # (). By Lemma 2.5(1), N*(u) # ), so A # (.
Since there is no directed cycle containing u, AN B = 0. If u € A or u € B, then
there exists a closed directed walk containing u and so there exists a directed cycle
containing w«, which contradicts our assumption. Thus v € C' and so C' # (). We will

claim the following:
A-»B, A-»C, and C-» B (2.8)

where X — Y for vertex sets X and Y of D means that there is no arc from a vertex
in X to a vertex in Y. Take three vertices a € A, b € B, and ¢ € C.
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Figure 2.5: A digraph with no sources and no directed cycles containing vs

If there exists an arc (a,b), then a directed (u,a)-walk, the arc (a,b), and a
directed (b, u)-walk form a closed directed walk containing v and we reach a contra-
diction. If there exists an arc (a,c) (resp. an arc (c,b)), then a directed (u,a)-walk
and the arc (a, ¢) form a directed (u, ¢)-walk (resp. the arc (¢, b) and a directed (b, u)-
walk form a directed (¢, u)-walk), which contradicts the choice of ¢. Since a, b, and ¢
were arbitrarily chosen from A, B, and C| respectively, the claim is valid.

By choice of the set C,

{u} » C, and C - {u} (2.9)

Since D is a tree-inducing digraph, by Proposition 2.9, there is a bijection between
E(C™(D)) and V(D)—{w} where w is the anomaly. Then each of at least | B| vertices
in BU{u} serves as an m-step common prey of a pair of adjacent vertices in C™ (D).
Since u € C, no vertex in AUC' can be an m-step predator of a vertex in BU{u} by
(2.8) and (2.9). Therefore each vertex in B U {u} has an m-step predator only in B.
Consequently, we may conclude that the subgraph H of C"™(D) induced by B has
at least |B| edges. Thus H contains a cycle. Then this cycle is contained in C™ (D)
and we have reached a contradiction to the hypothesis that C™(D) is a tree. O]

Remark 2.17. It is likely that, for each vertex of a digraph without sources, there
is a directed cycle containing it. However, it is not true. For example, the digraph

given in Figure 2.5 has no source and no directed cycle containing the vertex vs.

Remark 2.18. For some tree-inducing digraph D with a source, Theorem 2.16 may
be false. For example, the vertex w given in Example 2.14 does not lie on any directed

cycle in D.

If an m-step tree-inducing digraph D has a loop incident to a vertex on a directed
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Figure 2.6: A duck digraph with the neck vertex v; and the tail vertex vy

cycle of length 2, then C™(D) is not a star graph, which will be shown in Lemma 2.27.
We call such a configuration a duck digraph. That is, a duck digraph is isomorphic
to the digraph given in Figure 2.6. We call the vertex with a loop in a duck digraph
the neck vertex and the other one the tail vertex. Given a digraph D, if D contains

no subdigraph isomorphic to a duck digraph, we call D a duck-free digraph.

Proposition 2.19. Let D be an m-step tree-inducing digraph such that (a) there
exists a vertex u incident to a loop in D and (b) if m = 2, then D is duck-free. Then

exactly one of the following statements is true.

(i) The vertex u has exactly one predator other than v and N*(u) = {u}.

(i) The vertex u has at least one prey other than u and N~ (u) = {u}.

Furthermore, if (i) holds for the vertex u, then the vertex in N~ (u) — {u} either is

a source or is incident to a loop and (ii) holds for it.

Proof. By the condition (a), {u} € N~ (u) and {u} C N*(u). If N~ (u) = N*(u) =

{u}, then u is an isolated vertex in C™ (D), which is a contradiction. Therefore
{u} € N~ (u) or {u} € NT(u). (2.10)

If N~(u) = {u}, then the statement (i) does not hold for w and, by (2.10),
{u} € N*(u) so that (ii) holds for .
Now suppose that {u} € N~ (u). Then (ii) does not hold for u. Since d~(u) < 2
by Lemma 2.5(2),
N7 (u) = {u, v}

for some vertex v in D. Then
u e Nt (v).
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Suppose, to the contrary, that there exists a vertex z in N~ (v)—{u, v}. Then, by using
the loop incident to u, we may produce a directed (u, u)-walk, a directed (v, u)-walk,
and a directed (z,u)-walk, respectively, of length m. Since m > 2, {u,v,z} C N, (u),

which is a contradiction to Lemma 2.5(2). Hence

N~ (v) C {u,v}. (2.11)
To reach a contradiction, suppose that v € N~ (v). Then

{u,v} C N*(u). (2.12)

In this case, the subdigraph of D induced by {u, v} is a duck digraph. Then, by the
condition (b), m > 3. Suppose that there exists a vertex z in N*(v) — {u,v}. By
using the loop incident to u, we have {u,v,z} C N} (v) N N} (u) for each m > 3
and so, by Corollary 2.11(1), the anomaly of D is contained in N} (v) N N, (u).
Therefore | N} (v) N N} (u)| = 2 by Corollary 2.12(i), which contradicts the fact that
{u,v,2} C N} (v) N N;}(u). Thus

u € NT(v) C {u,v}. (2.13)

Suppose that there exists a vertex y in N*(u) — {u,v}. Then, by using the loop
incident to u, we have {u,v,y} C N\ (u) N N (v) and so we reach a contradiction
similarly as above. Therefore N (u) = {u,v} by (2.12). Thus, by (2.13), N,}(u) =
N (v) = {u,v}, which contradicts Proposition 2.8. Hence u ¢ N~ (v) and so,
by (2.11),

N-(v)=0 or N (v)={v}. (2.14)

Then, by (2.14) and Corollary 2.11(2), v is the anomaly. Now suppose, to the contrary,
that {u} € N*(u). Take a vertex w in N (u) —{u}. Then {u,w} C N} (u) NN} (v).
Since v is the anomaly of D, v € N} (u) N N,;(v) by Corollary 2.11(1). However,
v ¢ N} (u) by (2.14), which is a contradiction. Hence N*(u) = {u} and so the
statement (i) holds for u. The “furthermore” part is true by (2.14). O
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Corollary 2.20. Let D be an m-step tree-inducing digraph for an integer m > 3.
Then D is duck-free.

Proof. Since m > 3, the condition (b) in Proposition 2.19 is vacuously satisfied.
Suppose that there exists a vertex v with a loop in D. Then v satisfies the condition
(a) in Proposition 2.19. Thus, by Proposition 2.19, N*(v) = {v} or N~ (v) = {v}.
Thus D is duck-free. ]

Theorem 2.21. Let D be a duck-free tree-inducing digraph with a loop and with-
out sources. Then there is a vertex u with outdegree at least 2 and N~ (u) = {u}.
Moreover, u is the only one vertex with this property and d—(v) = 2 for each vertex
v e NT(u) — {u}.

Proof. We note that D satisfies the conditions (a) and (b) of Proposition 2.19. Let
w be a vertex incident to a loop. If |[N*(w) — {w}| > 1, then Proposition 2.19(ii)
holds for w and so we take w as u. Suppose that |[NT(w) — {w}| = 0. Then Propo-
sition 2.19(i) holds. By the “furthermore” part of Proposition 2.19, the vertex in
N~ (w) —{w} either is a source or is incident to a loop and Proposition 2.19(ii) holds
for it. Since each vertex has indegree at least 1 by the hypothesis, the latter is true
and so we take the vertex in N~ (w) — {w} as u.

To show the uniqueness, suppose that there exist two vertices x and y each of
which has outdegree at least 2 and indegree 1 and is incident to a loop. Therefore
N, (z) = {z} and N,,(y) = {y}. Then, by Corollary 2.11(2), z and y are anomaly.
Therefore x = y by Corollary 2.12(ii). Thus u is the unique vertex with d*(u) > 2
and N~ (u) = {u}.

Suppose, to the contrary, that d~(v) # 2 for some vertex v € N*(u) — {u}. Then
d-(v) < 1 by Lemma 2.5(2). Since D has no source by the hypothesis, d~(v) >
1 and so N~ (v) = {u}. On the other hand, since D is a tree-inducing digraph
without sources, there exists a directed cycle C' containing v in D by Theorem 2.16.
Since N~ (v) = {u}, u lies on C. Therefore there exists the (v, u)-section of C.
However, since N~ (u) = {u}, there is no directed (v, u)-walk in D and we reach a

contradiction. O
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2.3 The digraphs whose m-step competition graphs are star

graphs

In this section, we completely characterize the digraphs whose m-step competition

graphs are star graphs. The following lemma is easy to check.

Lemma 2.22. For a digraph D, D 1is a vertex-disjoint union of directed cycles if
and only if each vertex has outdegree 1 in D and any pair of vertices has no common

prey in D.

Theorem 2.23. An m-step tree-inducing digraph having a source is a windmill di-

graph.

Proof. Let D be an m-step tree-inducing digraph having a source v. Then N, (v) = 0,
so v is the anomaly by Corollary 2.11(2). Therefore v is the only source of D by
Proposition 2.9. Thus D satisfies the condition (W1) for being a windmill digraph.
In addition,

d; (u) =2 (2.15)

m

for each vertex u € V(D) — {v} by Corollary 2.12(ii).

Fix v € V(D) — {v}. Then d~(u) > 1 by (2.15). By Lemma 2.5(2), d~(u) < 2.
Suppose, to the contrary, that d~(u) = 1. Then N~ (u) = {x} for some vertex x
of D, 50 u ¢ Uyevp)_gsy N*(v). Since N7 (v) = 0, v & Upey(p)_gzy V' (v) and so
Usevipy- V() € (V(D) — fu,0}).

Therefore

U N < IVD) ~ {0} < [V(D) — {z}].

veV(D)—{x}

Since V(D) — {z} is a proper subset of V (D), we reach a contradiction to Theo-
rem 2.13(1). Therefore
d~(u) = 2. (2.16)

By Lemma 2.5(1), d*(u) > 1. Suppose, to the contrary, that d*(u) > 2. Then,
by Theorem 2.13(3), d._;(u) > 2. On the other hand, by (2.16), u is a common prey
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Figure 2.7: A digraph and its 2-step competition graph

of two vertices y and y'. Then there exist arcs (y,u) and (3/,u) in D. Take a vertex
zin N,/ _;(u). Then there exists a directed (u, z)-walk W of length m — 1. Therefore
y — W is a directed (y, z)-walk and ' — W is a directed (y/, z)-walk both of which
have length m. Thus z € N5 (y) N N5 (y') and so N,%_(u) C N, (y) NN, (y'). Then,
since .}, (u) > 2, [N} (y)NN, (y/)] > 2. Therefore the anomaly v must be contained
in N} (y) N N5 (y') by Corollary 2.11(1), which contracts the fact that N~ (v) = 0.
Therefore

d(u) = 1. (2.17)

Since u was arbitrarily chosen, (2.16) and (2.17) hold for any vertex in V(D) — {v}.
Now take two distinct vertices  and y in V(D) — {v} (they exist since D has at
least three vertices by the definition of m-step tree inducing digraph). Then d*(x) =
d* (y) = 1. Therefore, by Proposition 2.8, N*(x)NN*(y) = (). Thus, by Lemma 2.22,
D — v is a vertex-disjoint union of directed cycles and so D satisfies the condition

(W2). Hence (2.16) and (2.17) deduce that D satisfies the condition (W3). O
Lemma 2.24. Let D be a digraph without sources whose m-step competition graph
C™(D) s a star graph. Then the following are true:

(1) There exist at most two vertices of i-step outdegree at least 2 for each 1 <1i < m.

(2) If a vertex v has a predator distinct from v, then d*(v) < 2.

(3) FEach vertex of indegree 2 is a prey of the center of C™(D).

Proof. Suppose that there are three vertices x,y, and z having j-step outdegree at

least 2 for some j € {1,...,m}. Since C™(D) is a star graph, at least two of x,y,
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and z have degree 1 in C™ (D). Without loss of generality, we may assume that y
and z have degree 1 in C™ (D). Then the anomaly of D is an m-step common prey
of y and z by the “especially” part of Proposition 2.15. Therefore yz is an edge in
C™(D). Then, since y and z have degree 1 in C"™ (D), yz is a component in C™ (D),
a contradiction. Thus part (1) is true.

To show part (2), suppose that there exists a vertex v that has a predator v’
distinct from v. If d*(v) > 3, then dj (v') > 3 and so, by Proposition 2.15, v and v’
have degree at least 2 in C™(D), a contradiction. Therefore d*(v) < 2.

Suppose that there exists a vertex of indegree 2 that is a common prey of two
vertices x and y. Then = and y are adjacent in C™ (D) by Theorem 2.13(2). Therefore
x or y is the center of C™ (D). Thus part (3) is true. O

We call a directed cycle C' in a digraph D an induced directed cycle if C' is an
induced subdigraph of D.

Theorem 2.25. Let D be a loopless digraph whose m-step competition graph is a
star graph. If D has no sources, then m = 2 and D is isomorphic to the digraph

given in Figure 2.3.

Proof. Suppose that D has no sources. Then, by Theorem 2.16, D has a directed
cycle. We first claim that each directed cycle in D has length at least m. To reach
a contradiction, suppose that there exists a directed cycle C' :== vy — v; — -+ —
vi_1 — vg of length [ < m — 1. Since D is loopless, [ > 2 and m > 3.

Suppose that C'is not an induced directed cycle. Then, since D is loopless, [ > 3.
Moreover, there is an arc (v;,v;) for some 7,7 € {0,1,...,1 — 1} so that it together
with a section of C forms a directed cycle of length at most [ — 1. Without loss of
generality, we may assume that ¢ = 0. Then j ¢ {0,1} and v; is a common prey
of vp and v;_;. Accordingly, v; is a 2-step common prey of v;_; and v;_,. Therefore
vovj—1 and v;_1vj_o are edges in C™(D) by Theorem 2.13(2). Thus C™(D) is not a
star graph, a contradiction. Hence C' is an induced directed cycle.

Suppose, to the contrary, that no vertex in V(D) — V(C) has a prey in V(C).
Then, since C' is an induced directed cycle, each vertex on C' has exactly one m-step

predator in D. Therefore each vertex on C'is the anomaly by Corollary 2.11(2). Since
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[ > 2, we reach a contradiction to the uniqueness of the anomaly. Therefore there
exists a vertex a in V(D) — V(C') that has a prey on C. Without loss of generality,
we may assume that vy is a prey of a. Therefore vy is a common prey of a and
v;—1 and so, by Theorem 2.13(2), av;—; is an edge in C™ (D). Thus a or v;_; is the
center of C™(D). On the other hand, since a is not source, a has a predator b. To
show b # v;_s, suppose b = v;_5. Then {a,v;_1} C NT(v;_s). Therefore d (v;_3) > 2
and dj (v;_4) > 2 (we assume that each subscript of the vertices on C' is reduced
to modulo ). Thus each of v;_5,v;_3, and v;_4 has an m-step outdegree at least 2
by Theorem 2.13(3). Hence v;_y = v;_4 by Lemma 2.24(1) and so [ = 2. Then we
can check that d*(vg) > 2, dj (v) > 2, and dg (a) > 2. Therefore each of vy, vy,
and a has an m-step outdegree at least 2 by Theorem 2.13(3), which contradicts
Lemma 2.24(1). Thus

b 7£ Vi—9.

If b is distinct from v;_q1, then v;_5 and b are adjacent since vy is a 2-step common
prey of v;_s and b, a contradiction to the fact that a or v;_; is the center of C™ (D).
Therefore b = v;_;. Thus vy is a 3-step common prey of v;_s and v;_3 and so, by
Theorem 2.13(2), v;_ov;_3 is an edge in C™ (D). Hence v;_5 or v,_3 is the center of
C™(D). Then, since v;_g # v;_1, and a or v;_; is the center of C™ (D), v;_1(= v;_3) is
the center of C™ (D). Therefore [ = 2. Thus vy — v; = a — vg and a — vy — v — Vg
and so, by Theorem 2.13(2), vpa is an edge in C™ (D), which contradicts the fact that
vy is the center of C™(D).

Hence we have shown that
(%) each directed cycle in D has length at least m.

Since D is loopless and has no sources,

d*(v) < 2 (2.18)

for each vertex v in D by Lemma 2.24(2). If each vertex has outdegree 1, then each

vertex has indegree 1 since D has no sources, and so C™ (D) is edgeless. Therefore
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there exists a vertex u of outdegree at least 2. Thus
dt(u) =2 (2.19)
by (2.18). Since D has no sources, there exists a directed walk
Wi=x—y—u (2.20)

in D. Suppose, to the contrary, that m > 3. Then, by (x), z, y, and u are distinct.
Since d*(u) = 2, dj (z) > 2, and dj (y) > 2. Therefore each of x,y,u has m-step
outdegree at least 2 by Theorem 2.13(3), which contradicts Lemma 2.24(1). Thus
m < 2 and so

m = 2.

Let ¢ be the center of C?(D). Since dj (v) < 4 for each vertex v in D by (2.18), ¢
has degree at most 4 in C?(D) by Lemma 2.5(2) and so |V (D)| < 5. Since |V (D)| >
m =2, |V(D)| € {3,4,5}.

Suppose |V (D)| = 3. Then, since u # y, V(D) = {u,y, z}. By Theorem 2.16,
there exists a directed cycle in D. We take a longest directed cycle C' of length .
Then, since D is loopless and |V(D)| = 3,1 =2 or 3. If | = 2, then, by Theorem 2.16,
D is isomorphic to the digraph given in Figure 2.7 and so C?(D) has an isolated
vertex, a contradiction. Thus [ =3. ThenC =u = 2z =y s uvoru —y — 2z — u.
We note that N*(u) = {y, 2z} and, by (2.20), y = u. To show C =u — z = y — u,
suppose C' = v — y — 2z — u. Then u is a common prey of y and z and z is
a common prey of u and y, so, by Theorem 2.13(2), yz,uy are edges in C*(D).
Moreover, z is a 2-step common prey of u and z, and so uz is an edge in C?(D).
Thus C?(D) is a triangle, which contradicts the fact C?(D) is a star. Therefore
C' =u — z = y — u. Since u has outdegree 2 by (2.19), v — y. Therefore we obtain
a subdigraph isomorphic to the one given in Figure 2.3. Thus y is a common prey
of v and z and y is a 2-step common prey of u and y. Hence uz and uy are edges
in C?(D) by Theorem 2.13(2). Now it is easy to check that adding more arcs to the
digraph given in Figure 2.3 results in the edge joining y and z in C?(D). Therefore
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we conclude that D is isomorphic to the one given in Figure 2.3.

Now suppose that |V(D)| =4 or 5. Then ¢ has at least three 2-step prey and so
d*(c) =2

by (2.18). Let u; and uy be the prey of c. If each of u; and uy has outdegree 1, then
¢ has at most two 2-step prey, which is impossible. Therefore at least one of them
has outdegree 2. Without loss of generality, we may assume that u; has outdegree 2.
Then ¢ and u; are the only vertices of outdegree 2 by Lemma 2.24(1). Hence usy has
outdegree 1 by (2.18). Moreover, ¢ has at most three 2-step prey and so ¢ has degree
at most 3 in C?(D). Therefore |V (D)| = 4. Thus ¢ has degree 3 in C*(D).

By Lemma 2.5(2), each vertex is a 2-step common prey of at most two vertices.
Therefore ¢ has exactly three 2-step prey in D. Let x be one of them. Then, other
than ¢, there is exactly one 2-step predator of z. We denote it by z. Then, for distinct
2-step prey = and y of ¢, T # . Suppose that u; has indegree 1. If some prey d of u;
has indegree 1, then d is a 2-step prey of ¢ and N, (d) = {c}, which contradicts the
existence of d. Therefore each prey of u; has indegree 2. Thus, by Lemma 2.24(3),
each prey of u; is a prey of ¢. Since D is loopless and u; has outdegree 2, d*(c) > 3,
a contradiction. Thus u; has indegree 2 and [N~ (u;) — {c}| = 1. Then the vertex in
N~ (uy) — {c} is a 2-step common predator of the two prey w and z of u;. Now, even

if w # z, w = Z, a contradiction. Hence the statement is true. O

Lemma 2.26. Let D be a windmill digraph or an m-conveyor digraph. Then C™(D)

1S a star graph.

Proof. We suppose that D is a windmill digraph with the source v. Then v and
another vertex w have a common prey by (W2) and (W3). Therefore, by (W2), v
and w have an m-step common prey for any m > 1 and so v and w are adjacent in
C™(D). By (W1) and (W2), any two vertices other than v cannot have an m-step
common prey for any m > 1. Thus C™(D) is a star graph with the center v.

Now we suppose that D is an m-conveyor digraph with the loop v satisfying (M1)

and (M2). Thus any vertex w other than v has a unique m-step prey x on a directed
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cycle containing w and w is the only m-step predator of z in V(D) — {v}, and so
w is not adjacent to any vertex belonging to V(D) — {v} in C™(D). Since D is a
weakly connected digraph, by (M2), each directed cycle in D — v has a vertex that
is a prey of v and so there exists an internally secure lane W in D containing z. By
(M3), W has length at most m. Since v is incident to a loop by (M1), we may obtain
a directed walk of length m from v to x by using the loop incident to v. Hence z is
an m-step common prey of v and w and so v and w are adjacent in C"™ (D), which

implies that C™(D) is a star graph with the center v. ]

Lemma 2.27. Let D be a tree-inducing digraph whose m-step competition graph is

a star graph. Then D is duck-free.

Proof. Suppose, to the contrary, that D contains a subdigraph H isomorphic to a
duck digraph (see Figure 2.6 for an illustration). Then, by Corollary 2.20, m = 2.
Let v; and vy be the neck vertex and the tail vertex, respectively, of H. By the
definition of a duck digraph, {(vy,v1), (v1,v2), (v2,v1)} € A(D). Tt is easy to check
that {v1,v2} € Ny (v1) and {vy,v2} € Ny (v9). By Lemma 2.5(2),

Ny (v1) = Ny (v2) = {v1, 02}
Since a predator of v or vy would belong to Ny (vy),
N7 (v1) ={v1,ve} and {v1} C N (ve) C {vy,v2}. (2.21)

To show N7T(v;) = {v1,v2} by contradiction, suppose that there exists a vertex vz
distinet from v and vy in N*(vy). Then {vy,va,v3} € Ny (v1) N Ny (v2). Therefore
one of vy, Vg, 3 is the anomaly of D by Corollary 2.11(1). Thus | Ny (v1) NNy (v)| = 2
by Corollary 2.12(i), which contradicts the fact that {vi, ve,v3} C N (v1) N NS (v3).
Hence

NT(v1) = {v1,v2}. (2.22)

If N*(vg) C {v1,v2}, then H is a component of C™(D) by (2.21) and (2.22), which
contradicts the hypothesis that C?(D) is a star graph with at least three vertices
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(a tree-inducing digraph has at least three vertices by definition). Therefore there
exists a vertex vz in N (vy) — {v1,v2}. If v3 is incident to a loop, then vy, vy, and
vg are 2-step predators of vz, which contradicts Lemma 2.5(2). Therefore vs is not
incident to a loop. Moreover, v has outdegree at least 1 by Lemma 2.5(1). Then,
by (2.21), neither v; nor vy can be a prey of vz, so there must be a vertex vy in
N7T(v3) — {v1,v2,v3}. Therefore {vy,ve,v4} C Ny (v2) and {vy,v9,v3} C N (vy).
Thus each degree of v; and v, is at least 2 in C*(D) by Proposition 2.15. Hence
C?*(D) is not a star graph, a contradiction. ]

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. To show the “only if” part, suppose that there exists a digraph
D with n vertices whose m-step competition graph is a star graph for some 2 < m <
n. Then D is duck-free by Lemma 2.27. If D has a source, then D is a windmill
digraph by Theorem 2.23. Suppose that D has no sources. If D is loopless, then (iii)
is true by Theorem 2.25. Now we suppose that D has a loop. We will show that D is
an m-conveyor digraph. Since D has a loop and D is duck-free, there exists a vertex
v such that N~ (v) = {v} and d*(v) > 2 by Theorem 2.21. Since N~ (v) = {v}, (M1)
is satisfied and v is the only m-step predator of v. Then, by Corollary 2.11(2), v is
the anomaly.

To reach a contradiction, suppose that there exists a vertex w distinct from v hav-
ing outdegree at least 2. Then d;f (w) > 2 for each 1 < i < m by Theorem 2.13(3). If w
has degree 1 in C™(D), then v € N, (w) by the “especially” part of Proposition 2.15,
which contradicts the fact that v is the only m-step predator of v. Therefore w has
degree at least 2 in C™(D) and so w is the center of C™ (D). Since D has no sources,
w has a predator z. Since N,! | (w) C N (x), x has at least two m-step prey each
of which is not v. Then, since v is the anomaly, x has degree at least 2 by Propo-
sition 2.15, and so x is the center of C™ (D). Thus # = w. Since x was arbitrarily
taken, N~ (w) = {w}. Consequently, w is the anomaly by Corollary 2.11(2). Then,
since v # w, we reach a contradiction to the uniqueness of the anomaly. Therefore v
is the only vertex of outdegree at least 2 in D and so, by Lemma 2.5(1), each vertex
in V(D) — {v} has outdegree 1. Thus any pair of vertices in V(D) — {v} has no
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common prey by Proposition 2.8. Hence D — v is a vertex-disjoint union of directed
cycles by Lemma 2.22 and so (M2) is satisfied.

Suppose that there exists an internally secure lane W of length at least m + 1.
Then the mth interior vertex v' on W has exactly one m-step predator in D. Thus
v’ is the anomaly in D by Corollary 2.11(2). However, since N~ (v) = {v}, we obtain
v" # v and so we reach a contradiction to the uniqueness of the anomaly. Therefore
each internally secure lane of D has length at most m and so (M3) is satisfied. Thus
D is an m-conveyor digraph. Hence the “only if” part is true.

Now we show the ‘if” part. If D is a windmill digraph or an m-conveyor digraph,
then C™ (D) is a star graph by Lemma 2.26. In addition, it is easy to check that the
2-step competition graph of the digraph given in Figure 2.3 is a star graph. Therefore
the “if” part is true and so this completes the proof. ]
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Chapter 3

On (1,2)-step competition graphs of multi-

partite tournaments!

Recall that given positive integers ¢ and j, the (4, j)-step competition graph C; ;(D)
of D is the graph which has the same vertex set as D and has an edge between two
distinet vertices u and v if and only if either dp_,(u,w) < i and dp_,(v,w) < j or
dp—v(u,w) < j and dp_, (v, w) < i. (Definition 1.9).

For a digraph D, we say that vertices v and v in D (1, 2)-compete provided there

exists a vertex w distinct from u, v and satisfying one of the following:

e there exists an arc (u,w) and a directed (v, w)-path of length 2 not traversing

u;
e there exists a directed (u, w)-path of length 2 not traversing v and an arc (v, w).

We call w in the above definition a (1,2)-step common out-neighbor of u and v.
It is said that two vertices compete if they have a common out-neighbor. Thus,
wv € E(Cy5(D)) if and only if v and v compete or (1, 2)-compete. In such a case, we
say that u and v {1, 2}-compete in D. If two vertices of a digraph D are adjacent in
Ch2(D), then we just say that they are adjacent in the rest of this chapter.

!The material in this chapter is written based on the manuscript ‘On (1,2)-step competition
graphs of multipartite tournaments’ by Myungho Choi and Suh-Ryung Kim. The author thanks
Prof. Suh-Ryung Kim for allowing him to use its contents for his thesis.
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We call an orientation of complete k-partite graph for some positive integer k
a k-partite tournament. A k-partite tournament for some integer £ > 3 is called a
multipartite tournament while a 2-partite tournament are called a bipartite tourna-
ment. A tournament of order n may be regarded as an n-partite tournament for some
positive integer n.

Let D be a multipartite tournament. For simplicity, we call a partite set of D
clique if it forms a clique in C}5(D). If a partite set of D is not clique, we say that
it is non-clique. In this thesis, we first completely characterize C2(D) when each
partite of D is clique (Theorem 3.18, and the “especially” part of Theorem 3.19)
and the size of partite sets of D when Cj 2(D) is complete (Theorem 3.25). Even if
there exists a non-clique partite set, we figure out most of the structure of Cy2(D)
(Theorems 3.9 and 3.16). Then we show the diameter of each component of C (D)
is at most three (Theorem 3.26) and provide a sharp upper bound on the domination
number of C4 2(D) (Theorem 3.27). In addition, we list all possible C} 2(D) when D
has no vertices of outdegree 0 and C} 5(D) is disconnected (Theorem 3.30). Finally,

we give a sufficient condition for C} 5(D) being an interval graph (Theorem 3.37).

3.1 Preliminaries

Let D be a multipartite tournament. We call a vertex of outdegree 0 in a digraph
D a sink of D. It is obvious that each non-sink vertex has at least one out-neighbor.
For a non-sink vertex v and a vertex v, u — v means that v is the only out-neighbor
of u. We write u /% v for the negation of u = v, that is, there is an out-neighbor
of u distinct from v. Given a vertex set 7" of D, we say a vertex v is T'-biased if
NT(w)NT # () and N*(v) C T. See the digraph given in Figure 3.1 for an illustration.

By definition, if two vertices u and v are X-biased for some partite set X of a
multipartite tournament, then u and v cannot (1,2)-compete. We may ask if the
converse is true. By the way, as long as u and v belong to the same partite set of
a multipartite tournament, the answer is yes. For, by the structure of multipartite
tournaments, non-sink vertices u and v in the same partite set of a multipartite

tournament (1, 2)-compete if an out-neighbor of u and an out-neighbor of v belong
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Figure 3.1: {v1,v2}, {vs}, and {v4, vs} are the sets of Xy-biased vertices, X3-biased
vertices, and X;-biased vertices, respectively.

to distinct partite sets. Thus we have shown the following.

Proposition 3.1. Let D be a multipartite tournament and v and v be two non-sink
vertices belonging to the same partite set in D. Then u and v do not (1,2)-compete

if and only if u and v are X -biased for some partite set X of D

Proposition 3.2. Let D be a multipartite tournament and v and v be two non-sink

vertices belonging to the same partite set in D. Then the following are equivalent:
(i) uw and v are not adjacent;
(11)) NT(u) N Nt (v) =0 and, v and v are X -biased for some partite set X of D

Proof. By Proposition 3.1, N*(u) N N*(v) = 0 and, u and v are X-biased for some
partite set X in D if and only if v and v neither compete nor (1,2)-compete in D,

equivalently, v and v are not adjacent. ]

Proposition 3.3. Let D be a digraph. Suppose u = v for some vertices u and v in

D. Then u and v are not adjacent.

Proof. Since u —» v, each directed path from u to z must traverse v, so dp_,(u, z) #
1,2 for each vertex z in V(D) \ {u, v}. Therefore uv ¢ E(C}2(D)). O
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Proposition 3.4. Let D be a multipartite tournament and u and v be two non-sink
vertices with (u,v) € A(D) belonging to the distinct partite sets in D. Then the

following are equivalent:
(1) w and v are not adjacent;

(i) either u = v, or NT(u)NN*(v) = 0 and v is X -biased and u is X U{v}-biased

for some partite set X.

Proof. We first show that (ii) implies (i). If = v then u and v are not adjacent
by Proposition 3.3. Suppose that u % v, N*(u) N N*(v) = (), and v is X-biased for
some partite set X and u is X U {v} biased. Then

(NT(u)UNT(v)) \ {u,v} C X. (3.1)

Suppose, to the contrary, that v and v are adjacent. Then, since N*(u)NN*(v) = (),
w and v must (1,2)-compete. Let w be a (1,2)-step common out-neighbor of u and
v. Without loss of generality, we assume that there exist a directed (u,w)-path P =
u — u' — w for some vertex v and an arc (v,w). Then v’ and w are out-neighbor
of u and v, respectively, distinct from u and v. Therefore {v/,w} C X by (3.1).
However, (v/,w) is an arc on P and so we reach a contradiction. Thus u and v are
not adjacent.

Now we show that (i) implies (ii). Suppose that v and v are not adjacent. Then
u and v have no common out-neighbor. If © = v, then we are done. Suppose u /4 v.
Then N*(u) \ {v} # 0. Since N*(v) \ {u} # 0, there exist an out-neighbor z of u
and an out-neighbor y of v distinct from v and u, respectively. If x and y belong
to different partite sets, then (z,y) or (y,z) € A(D) and so u and v (1,2)-compete,
which is a contradiction. Therefore  and y belong to the same partite set. Since x
and y are arbitrarily chosen, we conclude that v is X-biased and u is X U {v} biased

for some partite set X. O

The following corollary is immediately true by Propositions 3.2 and 3.4.
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Corollary 3.5. Let D be a multipartite tournament and u, v be two vertices in D.
Suppose that u 5 v, v 5 u, and whenever v (resp. w) is X -biased for some partite
set X, u is not X U {v}-biased (resp. v is not X U {u}-biased). Then u and v are

adjacent.

A stable set of a graph is a set of vertices no two of which are adjacent. A stable
set in a graph is mazimum if the graph contains no larger stable set.

As we characterized complete k-partite graphs which can be oriented to become k-
partite tournaments whose (1, 2)-step competition graph are complete, we take a look
at multipartite tournaments whose (1,2)-step competition graphs have maximum
stable sets of sizes at least two.

We note that the (1,2)-step competition graph of a multipartite tournament of
order n with a sink constituting a trivial partite set is isomorphic to K,,_; U K;. In
this vein, we only consider a multipartite tournament without a trivial partite set

consisting of a sink in the rest of this chapter.

3.2 (45(D) with a non-clique partite set of D

In this section, we characterize (1,2)-step competition graphs of multipartite tour-
naments with a non-clique partite set.

By our assumption that any multipartite tournament does not have a trivial
partite set consisting of a sink, a multipartite tournament with a sink has a non-
clique partite set.

We need the following proposition to characterize (1,2)-step competition graphs
of multipartite tournaments with a non-clique partite set.

Given a multipartite tournament D, we say that a vertex set S of D is a {1,2}-
stable set if no two vertices in S {1, 2}-compete. We note that a vertex set S of D is
a {1, 2}-stable set if and only if S is a stable set of Cy (D).

Proposition 3.6. Let D be a multipartite tournament with a {1,2}-stable set S of
size at least two. If S is contained in one partite set X of D, then the following parts

are valid:
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(1) Uues N7 (u) is contained in one partite set unless S contains a sink and evactly

one non-sink vertex;

(2) if S has at least three vertices, then any pair of vertices in V(D) \ X has a

common out-neighbor in S;

Proof. Suppose that S is contained in a partite set X of D. Suppose that S contains
a sink. Then there exist at least two non-sink vertices x and y and so, by Proposi-
tion 3.2, N*(x) U N*(y) is contained in a partite set X’ of D. Since x and y were
arbitrarily chosen from S, each non-sink vertex in S is X’-biased. Therefore the part
(1) is true. Now we suppose that S contains no sinks. Since no two vertices in S
{1, 2}-compete, that is, no two vertices in S are adjacent, the part (1) is true by
Proposition 3.2.

To show the part (2), we assume |S| > 3. Since no two vertices in S {1,2}-
compete, each vertex in V(D) \ X has at least |S| — 1 out-neighbors in S. Since
|S| >3, 2(]S| — 1) > |S] and so, by the Pigeonhole principle, there exists a common
out-neighbor in S of each pair of vertices in V(D) \ X. Therefore the part (2) is
true. ]

From now on, when we mention a k-partite tournament D with a non-clique
partite set X; for some k > 3, we assume that X5, ..., X, are the remaining partite
sets of D. Then

e if D has a sink u, then w is contained in Xj.

Take a k-partite tournament D with a non-clique partite set X; for some k > 3.

We first consider the case where D has a sink «. Then
N~ (u)=V(D)\ X;. (3.2)

Suppose that a vertex v in X; has two out-neighbors w and z belonging to distinct
partite sets. Then we take a non-sink vertex y. If y € V(D) \ X1, then u is an out-
neighbor of y and so, by Corollary 3.5, v and y are adjacent. If y € X;, then an
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out-neighbor of y and at least one of w or x belong to distinct partite sets and so,

by the same corollary, v and y are adjacent. Thus we may conclude that

I. if D has a sink and a vertex in X; has out-neighbors in distinct partite sets,
then it is adjacent to all the non-sink vertices (refer to the blocks in the row

and column corresponding to X; of Figure 3.2).

Now we consider the case where D has no sinks. Let S be a {1.2}-stable set
included in X;j. Suppose that a vertex v in X; has two out-neighbors x; and x,
belonging to distinct partite sets. Then u ¢ S by Proposition 3.6(1), Moreover, u
is adjacent to every vertex in X; by Corollary 3.5. Since |S| > 2, each vertex in
V(D) \ X1 has at least one out-neighbor in S. Therefore u is adjacent to every vertex

in X by Corollary 3.5. Thus we may conclude that

IT. if D has no sink and a vertex in X; has out-neighbors in distinct partite sets,
then it is a universal vertex (refer to the blocks in the row and column corre-

sponding to X7 of Figure 3.2).
By Observations I and II, we have the following proposition.

Proposition 3.7. Let D be a k-partite tournament D with a non-clique partite set
Xy for some k > 3. If a vertex in X1 has out-neighbors in distinct partite sets, then

the vertex is adjacent to all the non-sink vertices.

Hence, in order to characterize C; 5(D) for a multipartite tournament D with a
non-clique partite set X, it remains to take a look at a vertex in X; with all of its
out-neighbors in the same partite set.

If a k-partite tournament D with a non-clique partite set X; has a {1, 2}-stable set
S with size at least two in X; unless S contains a sink and exactly one non-sink vertex,
then each vertex of S is X-biased for some j € {2,...,k} by Proposition 3.6(1). We
may assume j = 2, i.e. each vertex in S is Xs-biased for any k-partite tournament D

with a non-clique partite set X; and a {1, 2}-stable set S of size at least two in X.

Theorem 3.8. Let D be a multipartite tournament with a non-clique partite set X;.

Then the following parts are valid:
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(1) For2 <i <k, each X;-biased vertex belongs to X;;

(2) UL, X forms a clique in Cyo(D) and each vertex in \JS_, X; is adjacent to
each vertez in Xs in C12(D);

(3) each X;-biased vertex is adjacent to each X;-biased vertex and each vertex in
X for distinct integers 2 < 1,5 < k;

(4) a X;-biased vertex x is not adjacent to a vertex y in X; for somei € {2,...,k}

if and only if v = y ory = x;

(5) if D has a sink or {1,2}-stable set of size at least three in one partite set, then

Xy forms a clique in Cy2(D).

Proof. We first show the parts (1) and (2). Let S be a {1, 2}-stable set with size two
in X;. Then each vertex in Uf:z X; has an out-neighbor in S C X;. Therefore no
vertex in [JY_, X; is a X;-biased for any 2 < i < k and so the part (1) is true.

For simplicity, let F; denote the set of X;-biased vertices for each 2 < ¢ < k.
If S contains a sink wu, then w is an out-neighbor of each vertex in Uf:?) X; and so
Uf:g X; forms a clique in Cj2(D). Suppose that S does not contain a sink. Then
S C F, by the assumption. Therefore the out-neighborhood of each vertex in S is
included in X5. Thus each vertex in S is an out-neighbor of each vertex in Uf:3 X;.
Hence Uf:g X; forms a clique in C} 5(D). In addition, since each vertex in X, has an
out-neighbor in S C X;, each vertex in Uf:s X; is adjacent to each vertex in X5 in
C12(D) and so the part (2) is true.

To show the part (3), take two vertices v € F; and x € X; U Fj for distinct ¢ and j
in {2,...,k}. f 2 € F}, then {v, 2} C X; by the part (1) and so, by Corollary 3.5, v
and w are adjacent. Suppose € X;. Then z is not an out-neighbor of v. Therefore v
is an out-neighbor of x. Moreover, since v € F;, v has an out-neighbor distinct from
x. Thus, by Corollary 3.5, it is suffices to show that x has an out-neighbor distinct
from v. If S has a sink u, then u is an out-neighbor of x distinct from v and we are

done. Therefore we assume that S has no sinks.
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Suppose j # 2. Then, since S C F, by the assumption, each vertex in S cannot
have € X; as an out-neighbor. Therefore S C N*(x). Thus x has at least two out-
neighbor in S C X since |S| > 2. Hence x has an out-neighbor in X; distinct from
v. Now we suppose j = 2. Then ¢ # 2. Since |S| > 2, x has at least one out-neighbor
2’ in S. Since S C F; by the assumption, 2’ is distinct from v. In each case, x has an
out-neighbor in X distinct from v. Therefore v and x are adjacent by Corollary 3.5.
Since v and x were arbitrarily chosen from F; and X, respectively, the part (3) is
true.

The “if” part of the part (4) is true by Proposition 3.3. To show the “only if”
part of the part (4), suppose, to the contrary, that there exist a vertex x in F; and a
vertex y in X; for some i € {2, ..., k} such that they are not adjacent, N*(z) # {y},
and N*(y) # {z}. Then, since x and y are non-sink vertices, N*(z) \ {y} # 0 and
NT(y)\ {z} # 0. Since y € X;, (NT(y) \ {z}) N X, # 0 for some j distinct from 1.
In addition, since z € F;, ) # N*(z) \ {y} € N™(z) C X;. Therefore x and y are
adjacent by Corollary 3.5, a contradiction.

The part (5) is an immediate consequence of (3.2) and Proposition 3.6(2). [
Proposition 3.7 and Theorem 3.8 may be summarized as follows.

Theorem 3.9. Let D be a multipartite tournament with a non-clique partite set Xy
and U be the set of sinks in D (U is possibly vacuous). Then the adjacency matriz
of C12(D) is in the form given in Figure 3.2.

By Theorem 3.9, we have the following corollary.

Corollary 3.10. Let D be a multipartite tournament with a non-clique partite set.

Then the following are true:
(1) each component of Cy2(D) has diameter of at most two;
(2) D has no sinks if and only if C1 (D) is connected;

(3) each stable set of Cy (D) is contained in at most two partite sets of D.
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U F, [ F. X Xy X Xk
U /0 O O O O o) @) @)
KRlo 72 J J J ? J J
FElo J 72 J J J ? J
Flo J J ? J J J ?
xXs1lo J J J J—1 J J J
Xlo ?720J J J M J J
X;lo J 7 J J J J-1T J
X, \O J J ? J J J J—1

Figure 3.2: The adjacency matrix of C »(D) for a multipartite tournament D with a
non-clique partite set X; where U is the set of sinks in D (U is possibly vacuous); Fj,
O, J, and I stand for the set of X;-biased vertices, a zero matrix, a matrix of all 1’s,

and an identity matrix, respectively; X7 = X; \ (Uf:z F,uU ); M is undetermined,

yet, if D has a sink or {1, 2}-stable set of size at least three in one partite set, then
M = J — I; Blocks marked with ? are undetermined.
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Proof. By Theorem 3.9, the adjacency matrix of C »(D) is in the form of the matrix
given in Figure 3.2. Therefore it is easy to see from the matrix given in Figure 3.2
that any pair of vertices of each component is at distance at most two and so the
part (1) is true. Moreover, C} (D) is connected if and only if U = ), which can be
seen from the matrix given in Figure 3.2. By Theorem 3.9, U is the set of sinks in
D. Therefore D has no sinks if only if U = (). Thus the part (2) is true.

Now we prove the part (3). Since D has a non-clique partite set, a stable set S of
C12(D) intersects with at most one partite set among Xo, ..., Xj by Theorem 3.8(2).

Therefore S intersects with at most two partite sets of D. ]

Motivated by Corollary 3.10(3), we may ask the question “Given a multipartite
tournament D, what is a biggest set among the {1, 2}-stable sets that are not included
in any partite set of D?” Given a positive integer m > 2 and a tripartite tournament
D of order m+ 1 with m — 1 sinks constituting one partite set, C; o(D) is isomorphic
to Ky with m — 1 isolated vertices and so a biggest {1,2}-stable set of D has size
m. However, if a multipartite tournament D has no sinks, then the size of such a
{1,2}-stable set of D is at most four, which is told by Theorem 3.12.

To justify Theorem 3.12, we need the following lemma.

Lemma 3.11. Let D be a digraph having a directed cycle C of order | for some
[ € {3,4} and X be a subset of V(D). Suppose that each vertex u in X \ V(C) has
two out-neighbors uy; and us on C' such that both (uy,us)-section and (us,uy)-section
of C" have length at most 2. Then each vertex in X \ V(C) is adjacent to each vertex
in X in Cy2(D).

Proof. We take a vertex u in X \ V(C). Let u; and us be out-neighbors of u on C'
satisfying the given condition. Without loss of generality, we may assume that the
(u1, ug)-section of C' has length 2. Then uy is a (1,2)-step out-neighbor of u; and
u. If | = 3, then u; is a common out-neighbor of uy and u. If [ = 4, then u; is a
(1,2)-step common out-neighbor of u and uy. Any vertex on C' other than uy and u4
shares us or u; as an out-neighbor with wu.

Let v be a vertex distinct from u in X \ V(C). If w and v do not share a common

out-neighbor on C, then [ = 4 and uy is a (1, 2)-step common out-neighbor of u and
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. ]

Theorem 3.12. Let D be a multipartite tournament of order n with a {1,2}-stable
set S which s not included in any partite set of D. Suppose that D has no sinks.
Then |S| < 4. Especially, if |S| = 4, then the following are true:

(1) there exist two partite sets Xy and Xy of D such that |[SN X1 = |SNXy| =2;
(2) n Z 5 and Clvg(D) = Kn - E(K4)

Proof. Let Xi,..., X} be the partite sets of D and
A={i| SNX; #0}.

Since there is no partite set of D including S, |A| > 2. Suppose |A| > 4. We take four
vertices in distinct partite sets of D. Then they induce the tournament 7" of order
4, so there exists a pair of vertices competing in T" since T has four vertices and six
arcs. Therefore |A| < 3. Suppose |S| > 4. Then there exists a partite set including
at least two vertices in S. Therefore D has a non-clique partite set. Thus |A| < 2 by
Corollary 3.10(3) and so |A| = 2. Hence |S N X;| =2 and |SN X, =2 by (3) of the
same corollary for some partite sets X; and X, of D, and so |S| = 4. Hence we have
shown that |S| < 4. In addition, we have shown that if |S| = 4, then there exist two
partite sets X; and Xy of D such that |[S N X;| = |S N X, = 2 and so (1) of the
“especially” part is true.

To show (2) of the “especially” part, suppose |S| = 4. As we have shown (1)
of the “especially” part, there exist two partite sets X; and X, of D such that
SN X3 = |SN X = 2. Then D has a non-clique partite set. In addition, since

k > 3, there exists the partite set X3 with at least one vertex and so
n > 5.

We note that SN X, := {uy,us} and SN Xy := {ug,us} are stable sets of size two

in C}2(D). Therefore neither u; nor us is a common out-neighbor of us and u, and
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vice versa. Without loss of generality, we may assume

{(ula u3)7 <u27 U4), (Ug, UQ), (U4, ul)} C A(D)

Therefore each of u; and wus, and each of uz and u, are Xs-biased and X;-biased,
respectively, by Proposition 3.6(1). Now, since D has a non-clique partite set, by
Theorem 3.8(4),

* * * *
Uy —» Uz, Uy —> Uy U3 —> Uz, and 1wy — Uj.

Then the vertices in S form a directed cycle C' := u; — us — us — uy — uq of
order 4 in D. Take a vertex z in V(D)\ V(C). If z € X; or x € X5 , then {ug,us} C
N*t(z) or {ug,ue} € NT(x). If x ¢ Xy U Xy, then V(C) C N*(x). Therefore x
has two out-neighbors y and z on C' such that both (y, z)-section and (z, y)-section
of C have length at most 2. Since z was arbitrarily taken from V(D) \ V(C), we
conclude that each vertex in V(D) \ V(C) has two out-neighbors in S satisfying the
condition given in Lemma 3.11. Therefore each vertex in V(D) \ V(C) is adjacent
to each vertex in V(D) in C} (D). Then, since S = {uy, ug, us,us} is a stable set,
C12(D) = K,, — E(K,). O

Corollary 3.13. Let D be a multipartite tournament. If there exists a {1,2}-stable

set of size at least four, then D has a non-clique partite set.

Proof. Suppose that D has a {1,2}-stable set S of size at least four. If D has a
sink, then D has a non-clique partite set. Suppose D has no sinks. If there exists a
partite set containing S, then D has a non-clique partite set. If there is no partite set
containing S, then |S| = 4 and there exists a partite set X of D such that |[SNX| =2
by Theorem 3.12, and so D has a non-clique partite set. O

Now we characterize the (1,2)-step competition graph of a multipartite tourna-
ment D if D has a sink or D has no sinks and C (D) has a stable set S of size
at least 3 included in one partite set of D. For simplicity, we assign a type to each

multipartite tournament D whose (1, 2)-step competition graph in the following way:
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e Type I'if D has a sink;

e Type II if D has no sinks and C} (D) has a stable set S of size at least 3

included in one partite set of D;

Let D be a k-partite tournament of Type I or II for some £ > 3 and U be the
(possibly vacuous) set of sinks in D and F; denote the set of X;-biased vertices for
each 2 < ¢ < k. By Theorem 3.9, except that among the vertices in F; and that
between F; and X; for each 2 < i <k, the adjacency between two vertices in Cy 5(D)
is determined. Yet, Proposition 3.2 tells us that

P1. the vertex set and edge set of the subgraph of C 2(D) induced by F; are covered
by the set {N~(v) | v € X;} of cliques for each 2 < i < k.

We fix i € {2,...,k} and take a vertex v in X;. Take a vertex w € N~ (v) N F;. If v is
the only out-neighbor of a vertex w, then v is not adjacent to w by Proposition 3.3.
Now suppose that w has an out-neighbor other than v. Then it is easy to see that a
sink u or a vertex in S is a (1, 2)-step common out-neighbor of v and w. Since v was

arbitrarily chosen from X;, we may conclude that for each 2 <: < k and v € X;,

P2. if a vertex w in N~ (v) N F; has an out-neighbor other than v, then v and w are
adjacent in Co(D);

P3. if v is the only out-neighbor of a vertex w in N~ (v) N F;, then v and w are not

adjacent in C 5(D).

A vertex in N~ (v) N F; and a vertex y in X; distinct from v have a sink u or a vertex

in S as a (1,2)-step common out-neighbor by (3.2) and Proposition 3.6(2), so

P4. each vertex in N~ (v) N F; and each vertex in X; distinct from v are adjacent
in CLQ(D) .

If a graph G is the (1,2)-step competition graph of a multipartite tournament D of
Type I or II, then G satisfies the properties given in Theorem 3.9 and P1-P4. Then

we come up with a question,
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“Is any graph satisfying these properties the (1, 2)-step competition graph

of a multipartite tournament D of Type I or 117"

To answer this question, we consider the set G; of graphs G satisfying the good

property stated as follows:

The vertex set of G can be partitioned into {Xj, ..., X;} for some k& > 3
so that the set U of isolated vertices or a stable set of size at least three
is included in X; and there exist mutually disjoint subsets Fs, ..., Fy of
X; \ U such that the adjacency matrix of G is in the form of the matrix

given in Figure 3.2 and F5, . . ., F} satisfy the following covering condition:

For each 2 < i < k, we may assign an empty set or a clique K, C F; to

each vertex v € X; so that

(1) the vertex set and edge set of the subgraph of G induced by F; are
covered by K; := {K, | v € X;} in such a way that, for each vertex
vin X;, a vertex in K, is adjacent to v if and only if there is another

clique in IC; which covers it; each vertex not in K, is adjacent to v;

(2) each vertex in K, and each vertex in X; \ {v} are adjacent in G;

Example 3.14. The graph given in Figure 3.3 belongs to G;. To see why, we denote
it by G. We partition the vertex set of G into X; = {1, x9,23}, Xo = {24}, and
X3 = {z5} so that the set U := {z} of isolated vertices in G is included in X;. Now
we let Fy = {x9, 23} and F3 = (). Then the adjacency matrix of G is in the form of
the matrix given in Figure 3.2 and so the good property is satisfied. Now we assign

{z2, 23} to 24 and () to x5. Then the covering condition is satisfied. Therefore G € Gj.

Example 3.15. The graph G obtained by deleting the edge xsx3 from the one
given in Figure 3.3 does not belong to G for any & > 3. To reach a contradiction,
suppose that G belongs to G;. Then V(G) is partitioned into X7, ..., X} for some
k > 3 satistying the conditions for a graph belonging to G;. The vertex z; is the
only isolated vertex in G, so U = {21} C Xj. By the good property, there exist

mutually disjoint subsets Fy, ..., Fj, of X; \ U. Since the size of maximal clique of
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Ty T4
SN
D) T3
Figure 3.3: A graph belonging to G3

G is 2, k = 3 by the form of the adjacency matrix of G given in Figure 3.2. For the
same reason, x5 belongs to Xy or X3 and | Xs| = | X3| = 1. Without loss of generality,
x5 € Xy and z4 € X3. Then, by the form of the matrix in Figure 3.2, {zo, 23} = F3
or {9, x5} = F3. Since x4 is adjacent to neither x5 nor 3, {xq,x3} # F5. Therefore
{xy, 23} = F3. Then we must assign a clique to x; to cover the vertices F3 by the

covering condition(1), which is impossible. Hence we have shown G ¢ G;.

Let D be a k-partite tournament of Type I or II for some k > 3 and v be a vertex
in a partite set X of D not containing a sink or a stable set of C o(D) with size at
least three. Then we take N~ (v) N F as K, for the pure in-neighborhood F' of X and

o
(%) the (1,2)-step competition graph of D belongs to G;.

Suppose that a graph G belonging to Gj is the (1, 2)-step competition graph of some
k-partite tournament D for some integer k > 3. If D is a multipartite tournament of
Type I or II, then the answer to the above question is yes.

Now we answer the proposed question.

Theorem 3.16. A graph G is the (1,2)-step competition graph of a k-partite tour-
nament of Type I or II for some k > 3 if and only if G € G}

Proof. The “only if” part is immediately true by (%).

To show the “if” part, suppose G € Gj. Then, by the good property, V(G) is
partitioned into {Xi,..., X} for some k£ > 3 so that a stable set of size at least
three or the set U of isolated vertices in G is included in X; and there exist mutually
disjoint subsets Fy, ..., F} so that the adjacency matrix of GG is in the form of the

matrix given in Figure 3.2 and Fy, ..., F}, satisfy the covering condition.
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Given the empty graph with the vertex set V(G), we add the arcs in the following
way: We first add the following arc sets whether or not U = {):

{(Ky,v) |ve UXi,KU £ 0} (3.3)
and .
Ul A} | K, € Fov e X3 (3.4)

where K, is assigned to v in the covering condition (1);

k

@ w) [vel JX;we F} (3.5)

1=2 e

{(v,w)|v€X1\<UUUF,~),wEUXZ}. (3.6)

If U # (), then we add the arc set

{(v,u) |ve UXu e U}. (3.7)

Other than those arcs in the above sets, we add arcs arbitrarily oriented to complete
a k-partite tournament D with the partite sets X1, ..., Xj. By (3.3) and (3.5), F; is
the pure in-neighborhood of X; for each 2 < i < k.

If U # (), then D has a sink by (3.7) and so D is of Type L.

Suppose U = (). Then G has a stable set S of size [ for some integer [ > 3. By the
good property, S C Uf:z F;. Then, by the form of the adjacency matrix of G given
in Figure 3.2, there exists a subset Fj including S for some integer j € {2,...,k}.

By permuting partite sets, we may assume

SCF,. (3.8)
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Then, since F5 is the pure in-neighborhood of X5, N*(s) C X5 for each vertex s in
S by (3.8). Since S is a stable set of G, there is no clique K, in F; containing any pair
of vertices of S and so, by (3.3) and (3.4), any pair of vertices of S has no common
out-neighbor in Xs. Therefore S forms a stable set in C} (D) by Proposition 3.2.
Thus D is of Type II.

The (possibly vacuous) set U is the set of isolated vertices in Cj (D). To see
why, take an isolated vertex z in Cj5(D) if any. Suppose, to the contrary, that x
is not a sink in D. If x € V(D) \ Xi, then x is not isolated in C (D) by (3.7)
or Proposition 3.6(3). Therefore x € X;. Since z is not a sink, there exists an out-
neighbor 2’ of z in V(D)\ X; and so a sink w in U or a vertex s in S is an out-neighbor
of 2. Let y be an out-neighbor in UU S of 2’. Then, since k > 3, there exists a vertex
z distinct from 2’ in V(D) \ X; such that y is a common out-neighbor of z and «’.
Since there is a (z,y)-directed path of length 2 in D, x is adjacent to z in Ci (D),
which is a contradiction. Thus x is a sink in C}2(D) and so x € U. Hence the set of
isolated vertices in C}2(D) is included in U. By (3.7), there is no arc outgoing from
a vertex in U. Consequently, U is the set of isolated vertices in C 5(D).

Now we show that G is isomorphic to C 2(D). We first show that the adjacency

matrix of C2(D) is in the form of the matrix given Figure 3.2, that is,

o (X1 \ (Ufzg Fi U U)) U UL, X; forms a clique in Cy o(D);

e The complete multipartite graph with the nonempty sets among X\ (Uf:z FuU ) ,

Fy, ..., F} as the partite sets is a subgraph of C o(D);

o If F; # () for some i € {2,...,k}, then the complete bipartite graph with the

77777

By (3.6) and Corollary 3.5, X; \ (U?:zFi U U) forms a clique in C}2(D). By
(3.7), (3.8), and Proposition 3.6(2),

(f) any pair of vertices in Uf:z X; has a common out-neighbor in U or S.

Therefore UfZQ X; forms a clique in C} o(D). Moreover, any pair of a vertex in Xj \
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<Uf:2 F,uU ) and a vertex in [J*_, X, has a (1,2)-step common out-neighbor. Thus
(Xl \ (Uf:z F; U U)) U Uf:2 X; forms a clique in C} (D).

Since K, were chosen to have {K, | v € X;} cover F; for each i = 2,...,n,
the nonempty sets among X \ (Uf:2 F, U U), Fy, ..., F form the partite sets of
complete multipartite graph contained in C} »(D) by Proposition 3.6(2), (3.3), (3.6),
and Corollary 3.5. For the same reason, each sink or each vertex in S is a 2-step
out-neighbor of each vertex in F; if F; # (. Thus, by (f) and Theorem 3.8(3), the
complete bipartite graph with the partite sets F; and | ie(2, N\ (i} X is a subgraph
of C1 (D) if F; # 0. Hence we have shown that the adjacency matrix of C o(D) is
in the form of the matrix given in Figure 3.2.

Now consider the adjacency of G not covered by the matrix given in Figure 3.2.
We first show that two vertices in F; are adjacent in G if and only if they are adjacent
in C (D) for each 2 < i < k. Suppose that two vertices v and w in F; are adjacent
in G for some i € {2,...,k}. Then v and w belong to K, for some x € F;. By (3.3),
v and w are adjacent in C} 2(D). Now suppose that two vertices v and w in F; are
not adjacent in G for some i € {2,...,k}. Then there is no K, for any x € X; such
that {v,w} C K. Therefore v and w has no common out-neighbor in D by (3.3),
(3.4) and (3.5). Thus they are not adjacent in C 2(D) by Proposition 3.2.

Now we show that a vertex x in F; and a vertex y in X; are adjacent in G if and
only if they are adjacent in C} (D) for each 2 < i < k. Suppose that x is adjacent
to y in G. Then there exists a vertex z in X; \ {y} such that = € K, by the covering
condition(1). Therefore (x, z) € A(D) by (3.3). Thus u or a vertex in S is a (1, 2)-step
common out-neighbor of z and y by (3.7) and Proposition 3.6(2). Hence x and y are
adjacent in Ci5(D). Now we suppose = is not adjacent to y in G. Then = € K, and
r ¢ K, for any z € X; \ {y} by the covering condition(1). Therefore y is the only
out-neighbor of x by (3.3), (3.4), and (3.5). Thus «z is not adjacent to y in Ci (D)
by Proposition 3.3. Hence we have shown that G is isomorphic to Cy (D). ]
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3.3 (412(D) without a non-clique partite set of D

In this section, we study a multipartite tournament without a non-clique partite sets,
that is, a multipartite tournament each of whose partite sets is clique in its (1,2)-
step competition graph. By Corollary 3.13, each {1,2}-stable set of a multipartite
tournament without a non-clique partite set has size at most three. In each case
of the sizes two and three, we will characterize the (1,2)-step competition graph
of a multipartite tournament each of whose partite sets is clique with a maximum
{1,2}-stable set of a given size to come up with Theorems 3.18 and 3.19, whichever

applicable.

Lemma 3.17. Let D be a multipartite tournament without sinks and a non-clique
partite set. Suppose D has a set S = {uy,up} with uy — uy, For any {1,2}-stable set
V' of size 2 with V- N .S =0, then the following are true:

(1) V = {v1, v} with vy 25 vy

(2) v1 and uy belong to the same partite set of D, and vy and us belong to distinct

partite sets of D.

Proof. Let X, and X5 be partite sets of D containing u; and us, respectively. Then
N~ (u1) = V(D)\(X;U{uz}). Suppose that D has a {1,2}-set {vy,vo} with {vy, v2}N
S = 0. If {vy,v2} N Xy = 0, then u; is a common out-neighbor of v; and v, a
contradiction. Therefore {vy,v2} N X7 # (. Then, every partite set of D is clique,
not both v; and vy belong to X;. Without loss of generality, we may assume v; € X3
and ve ¢ X;. Then, v; and u; belong to the same partite set, so they {1, 2}-compete.
Since vy # ug, uy is an out-neighbor of vy. If v; has an out-neighbor distinct from vy,

then, by Proposition 3.4, v; and vy {1,2}-compete, a contradiction. Therefore
V1 — V2

. . . . *
since vy is not a sink. Then, since u; — uy and uy # vo, u; and v; do not compete

and so u; and vy (1,2)-compete. We also note that u; and v; are Xy-biased and the
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partite set X containing vy. Then, by Proposition 3.2, X # Xs. Therefore we have
shown that the parts are valid. O

The complement of a graph G is a graph G on the same vertices such that two
distinct vertices of G are adjacent if and only if they are not adjacent in G. A tree
containing exactly two non-pendant vertices is called a double-star. A caterpillar is

a tree in which all the vertices are within distance 1 of a central path.

Theorem 3.18. Suppose that a multipartite tournament D has a mazimum {1,2}-
stable set of size two and every partite set of D is clique. Then the complement of

C12(D) is one of the following types:
A. a star graph with isolated vertices;
B. a double-star graph with isolated vertices;
C. a disjoint union of at least two star graphs with isolated vertices;

D. a caterpillar which has at least one internal vertex of degree 2 with isolated

vertices.

Proof. Suppose that D has sinks. Since every partite set of D is clique, D has a sink
constituting a trivial partite set of D and so C} (D) is isomorphic to Ky (p)-1 with
an isolated vertex. Therefore the complement Co(D) of C (D) is of Type A.
Now we assume that D has no sinks. Let {uy,us} be a {1,2}-stable set in D, and
X, and X5 be partite sets of D containing u; and us, respectively. Without loss of
generality, we may assume
(u1,u2) € A(D).

If Cy2(D) — {uy,us} is a complete graph, then Cy5(D) is of Type A of Type B.
Now we suppose that Cy2(D) — {u;,us} is not a complete graph. Then there exist
two nonadjacent vertices vy and vq in Cy2(D) — {uy, ug}.

To show u; = Ug, We suppose that wug 7Z> u. Then wuy is not the only out-

neighbor of u;. Consequently, by Proposition 3.4, there exists a partite set X’ such
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that @ # N*(uy) \ {uz} € X’ and 0 # N (up) \ {u1} € X’. Then X' # X; and
X' # X5. Thus N*(uy) N Xy = {us} and Nt (uy) N Xy = 0.

Now we show that each of v; and vy has u; or uy as an out-neighbor. If v; € Xj,
then uy is an out-neighbor of vy since Nt (ug) N X; = (). If v; € Xy, then uy is an
out-neighbor of vy since NT(uy) N Xy = {us}. If v1 ¢ X7 U Xy, then at least one of
uy and ug is an out-neighbor of vy since u; and us have no common out-neighbor.
Therefore v; has u; or uy as an out-neighbor. By symmetry, v, has u; or us as an

out-neighbor. Thus v; and vy {1,2}-compete and we reach a contradiction. Hence

*

Uy — Usy.

For simplicity, we call a {1, 2}-stable set {x1, x5} with z1 = 25 picky. Then {uy, uy} is
picky. Therefore {vy,v,} is also picky by Lemma 3.17(1). Without loss of generality,
we may assume

*
V1 — V.

Then v; € X and vy ¢ X5 by Lemma 3.17(2). We may assume v, € X3 where X3 is
a partite set of D. Then, since u; — uy, any pair of vertices in V(D) \ X, distinct
from {ug, v} has a common out-neighbor u; or v;. Moreover, every partite set of D

is clique, X; forms a clique in C 5(D). Therefore

(1) any {1,2}-stable set of size 2 distinct from {us, vo} intersects with both X; and
V(D) \ X,.

Case 1. ug and vy {1,2}-compete in D. Then, by (}),
(§) any {1,2}-stable set of size 2 intersects with both X; and V(D) \ X;.

Let k be the maximum number of disjoint {1,2}-stable sets with size 2 of D.
Subcase 1. k > 3. Let & = {51, 5,,...,Sk} where S; is a {1,2}-stable set with
size 2 of D for each 1 <i < k and Sy,...,S; are mutually disjoint. Without loss of
generality, we may assume S; = {uy,us} and Sy = {vy,v.}. Since k > 3, S3 € S.
Then S is picky by Lemma 3.17(1). We denote Sz by {s31,532} with s3; — s3..
Since S; is picky and S; N S5 =0, Then s3; € X, and s32 ¢ Xo by Lemma 3.17(2).
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Since Sy is also picky and Sy N S3 = 0, s32 ¢ X3 by the same lemma. Therefore
we may assume Szo € Xy where X, is a partite set of D. Inductively, we may let
Si = {8@1, Si’Q} so that

*
Si1 — Si2, Si1 € Xl, and Si2 € Xi+1 (39)

where X;,; is a partite set of D for each 1 <17 < k.

Now take a {1,2}-stable set {y1,y2} of D with {y1,92} ¢ S. Then, by the max-
imality of S, there exists a pair {s;1,s;2} in S such that {s;1,s;2} N {y1,y2} # 0
for some j € {1,...,k}. Without loss of generality, we may assume y; € X; and
Yo € V(D)\ X1 by (§). We first suppose {s;1, 52} {y1,y2} = {s;1}, thatis, y1 = s;1
and yo # s;jo. Then, y, has at least &k — 1 out-neighbors in T" = {11, 521,...,Sk1}
by (3.9). In addition, for each 1 < i < k except i = j, there exists a directed path
P, := sj1 — s;2 — s;1 which dose not traverse y,. Therefore sy 1,521, .., sk, except
s;1 are 2-step out-neighbors of s;; obtained by P, ..., P,. Since T D (N (y2)NT) U

({s1.1,82,15 58k b\ {851}),

k=T > |(N"(y2) N T)| + {511,521, - - 8k1} \ {851}
—[(N"(y2) N T) N ({511,821, -+ 8k1 ) \ {551})]
> 2k =2 |(N"(y2) N T) N ({511, 82,1, -+ Sk} \ {851 })]-

Since k > 3,

|N+(y2) N T N ({5171, 5271, ey Sk:,l} \ {Sj71}>| Z 1.

Therefore there exists a (1,2)-step common out-neighbor of s;; and yo, which
belongs to {s11, 521, --,Sk1} \ {Sj1}, a contradiction. Thus {s;1,s;2} N {y1,92} =
{sj2}, that is, y1 # s;1 and yo = s;2. We will claim that s, is the only vertex in
{$12,822,...,5k2} which is not adjacent to y; in C;2(D). Since k > 3, there exist
two vertices sj 1 and sj,1 for some ji,j52 € {1,...,k} \ {j} and, by (3.9), every
vertex except sj, o and sj, o is an in-neighbor of s;, ; and s;, ;. Thus s; 1 and sj,1

are out-neighbors of s;9 and so s; 9 has an out-neighbor distinct from y; in X;. Since
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D has no sinks, y; has an out-neighbor. If y; has an out-neighbor distinct from s; o,
then y; and s;, are adjacent by Corollary 3.5, which is impossible. Therefore s; 2
is the out-neighbor of y;. Thus y; is not adjacent to s;2 by Proposition 3.3. Since
551 N s;2 by (3.9), s;1 is a common out-neighbor of s19, 529,532, ...,Sk2 except
s;2. Then, since y; # s;1, S;2 is a (1,2)-step common out-neighbor of y; and s; » for
each 1 <1i <k except i = j. Thus s, is the only vertex in {s12,529,..., 52} which
is not adjacent to y; in C4 (D).

Since {y1,y2} and j were arbitrarily chosen, we may conclude that, for every edge
except the edges s11512,...,5k15k2, the vertex s;, for some j € {1,...,k} is the
only vertex incident to it in Cy (D). This implies that C, (D) is a disjoint union of
k star graphs whose centers are sy 2,822, ..., 5,2 With some isolated vertices and so
is of Type C.

Subcase 2. k = 2. If {uy,us} and {vy, ve} are the only {1, 2}-stable sets in D, then
C12(D) is of Type C. Suppose that there exists a {1,2}-stable set {w;,ws} in D
distinet from {uy,us} and {vy,v9}. Then, since k = 2, {wq, wa} N {uy, ug, v1,v9} # 0.
Without loss of generality, we may assume w; € X; and wy € V(D) \ X; by (§).
We first suppose {wy,wy} C {uq,us,v1,v2}. Then, either w; = uy and wy = vy or
wy; = vy and we = uy. We consider the case where w; = u; and wy = v9. Then u; and
ve are not adjacent. If (vg, us) € A(D), then us is a common out-neighbor of u; and
v, a contradiction. Therefore (uy,vy) € A(D). Thus v, is a common out-neighbor
of v; and uy and so vy and uy are adjacent. In case wy; = v; and wy = ug, we may
conclude that vy and u; are adjacent by a similar argument. Thus we have shown
that

(P1) if {wy,we} C {uy,us,v1,v2}, then exactly one of {uy,vo} and {us,v1} is a
{1, 2}-stable set in D.

Now we suppose {wy, ws} & {uq,usz,v1,v2}. Then |[{wy, we} N{uy, us, vy, 02} = 1. To
the contrary, suppose {wy,ws} N {uy, ug, v1,v2} = {w;y}. Then wy = uy or wy = vy.
Without loss of generality, we may assume w; = wu;. We note that u, 5wy and
v1 = vy. Then v is an out-neighbor of uy. Since wy € V(D) \ X; and wy # vy, vy is

an out-neighbor of wy. Then, since wy # ug, vy is a (1, 2)-step common out-neighbor
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of u; and ws, a contradiction. Therefore {w,wy} N {uy, us,v1,v2} = {ws}. Then
Wy = U Or Wy = vy. In addition, wy # u; and wy # v1. Thus vy € N (ug) \ {w;} and
up € Nt (vg) \ {w1} (be reminded that v; € N*(uz) and uy € NT(vq)). Since w; is a
non-sink vertex, N (w) # (). Then, since us and vy are distinct, NT(wy) \ {ua} # 0
or Nt (wq)\{ve} # 0. Therefore w, is adjacent to us or ve in Cy 2(D) by Corollary 3.5.
Then, since wy = ug or wy = vy, exactly one of {wy, us} and {wy,vs} is a {1, 2}-stable

set in D. Hence we have shown that

(P2) if {wy,we} & {uy,us,v1,v2}, then {wy, wo} N{uy, us, v1,v2} = {wy} and exactly
one of {wy,us} and {wy,ve} is a {1,2}-stable set in D.

Since {wy, ws} was arbitrarily chosen, we may conclude that, for every edge e except
Uiz, v1ve in Cp (D), (i) if the end points of e are contained in {uy, ug, vy, v}, then
the subgraph induced by {u,us,v1,v2} is an induced path of length 3 by (P1); (ii)
otherwise, one end point u of e is contained in {uy, us, v1,v2} and the other end point
v of e must be adjacent to exactly one of uy and v, and not adjacent to u; and vy
in C1 (D) by (P2). Hence C} (D) is of Type C or Type D. Especially, if the latter
case holds, then u; or v; is an internal vertex with degree 2 in C_'LQ(D).

Case 2. uy and vy do not {1,2}-compete in D. Suppose, to the contrary, that
there exists a {1,2}-stable set {wy,wy} in V(D) \ {ug,v2}. Then, by (), we may
assume w; € X; and we € V(D) \ X;. Since wy # v9, vy is an out-neighbor of w,
in D. If w; = uy, then vy is a (1,2)-step common out-neighbor of w; and wy since
u; — ug — vy is a directed path in D, a contradiction. Therefore w; # u;. Then,
since wq # ug, {wy,wy} is a {1, 2}-stable set in V(D) \ {uy,us}, so, by Lemma 3.17,
w; — wsy. Therefore w; is a common out-neighbor of uy and vy in D, which is a
contradiction to the case assumption. Thus there exists no {1, 2}-stable set of size 2
in V(D) \ {uz,v2}, that is, C 2(D) — {ug, v2} is complete. Then, since uy and vy do
not {1,2}-compete in D by the case assumption, us and vy are adjacent in C} (D)
and so they are non-pendant vertices (be reminded that w; is adjacent to uy and vy
is adjacent to vy in Cy5(D)). Therefore Cy 5(D) is of Type B. O

Theorem 3.19. Let D be a multipartite tournament of order n with a {1,2}-stable

set S which is not included in any partite set of D and t be the number of partite
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sets which intersect with S. Then t < 3. Especially, if t = 3, then |S| = 3 and one of

the following is true:
(a) Cro(D) = K, — E(K3);

(b) n >4 and C12(D) = K,, — (E(K3) U E(K1;)) for a positive integer | < n — 3
where the center of K1, is a vertex v such that V(K3) NV (K1) = {v}.

Proof. Suppose t > 4. Then |S| > 4 and, by Corollary 3.10(3), every partite set of D
is clique. Therefore |S| < 3 by Corollary 3.13, which is a contradiction. Thus ¢ < 3.

To show the “especially part”, suppose t = 3. If |S| > 4, then D has a non-clique
partite set, which contradicts Corollary 3.10(3). Therefore |S| < 3. Since t = 3,
|S| = 3. Let S = {ug,us,usz} and X, X5, and X3 be the partite sets of D with
u; € X; for each 1 < ¢ < 3. Since S is a {1, 2}-stable set in D, the vertices in S form

a directed cycle C' of order 3 in D. Without loss of generality, we may assume

{(u1,us), (ug,usz), (us,u1)} C A(D).

Case 1. d™(u;) = 1 for each 1 < i < 3. Then each vertex in V(D) \ V(C)
has at least two out-neighbors in V(C'). Therefore each vertex in V(D) \ V(C) is
adjacent to the vertices in V(D) in C (D) by Lemma 3.11. Thus Cy 5(D) contains
a subgraph isomorphic to K, — E(K3). Then, since S is a stable set in C (D),
Ci2(D) = K, — E(K3).

Case 2. d*(u;) # 1 for some j € {1,2,3}. Then d*(u;) > 2. Without loss of
generality, we may assume j = 1. Then, since (u1,us) € A(D) and (ug, uz) € A(D),

0 # NT(ur) \ {u2} € X5 (3.10)

by Proposition 3.4 and so
n > 4.

We first show that u; is the only vertex on C of outdegree at least 2. Suppose that
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u; has outdegree at least 2 for some ¢t € {2,3}. Then

N*(u) \ {ur} # 0

and there exists a partite set X such that

(N () \ {ur b UNT () \ {us}) € X

by Proposition 3.4. By (3.10), X = Xj3. Therefore t # 3 and so t = 2. Then d*(uy) >
2. Since N (ug) = N (ug) \ {u1} C X3, there exists a vertex x € X3\ {us} belonging
to Nt (uz). Then (uy,x) € A(D) or (z,u;) € A(D). If (uy,x) € A(D), then z is a
common out-neighbor of u; and wus, a contradiction. Therefore (x,u;) € A(D) and
so uq is a (1, 2)-step common out-neighbor of uy and ug, a contradiction. Thus vy is

the only vertex on C' of outdegree at least 2. Hence
uy —>uz  and  uz > uy. (3.11)

We denote N*(uq) \ {ug} by N. Then N # (). By (3.10) and (3.11), each vertices in
(V(D)\ N)\ V(C) has at least two out-neighbors in V(C'). Since the length of C
is 3, each vertex in (V(D) \ N) \ V(C) is adjacent to the vertices in V(D) \ N in
C12(D) by Lemma 3.11.

Now we will show that uy is the only vertex nonadjacent to each vertex in N.
Take v € N. Then v € X3. Since uy — us, v and us have no common out-neighbor in
D. In addition, u; is the only two-step out-neighbor of uy by (3.11), and v € N (uy).
Therefore us is not adjacent to v in Cy2(D). On the other hand, by (3.10), us is a
common out-neighbor of u; and v and it is a (1, 2)-step common out-neighbor of v
and ug. Therefore v is adjacent to u; and uz in Cy (D). Moreover, since each vertex
in V(D) \ V(C) has at least one out-neighbor in V(C') by (3.11), v is adjacent to each
vertex in V(D) \ V(C). Therefore us, is the only vertex nonadjacent to v in Cy »(D).
Since v was arbitrarily chosen in IV, us is the only vertex nonadjacent to each vertex
in N. Then, since S is a stable set, C 5(D) is the graph obtained from the complete
graph with the vertex set V(D) by deleting the edges both of whose ends belong to

73



V(C) and the ones on the star graph with vertex set N U {us} having us as a center.
Thus CLQ(D) = Kn - <E<K3) U E(KLl)). O

Remark 3.20. Given a multipartite tournament D without a non-clique partite set,
each stable set of C 5(D) has size at most three by Corollary 3.13. Thus Theorem 3.18
and the “especially” part of Theorem 3.19 completely characterize the (1,2)-step

competition graphs of multipartite tournaments without a non-clique partite sets.

3.4 C()2(D) as a complete graph

In this section, we characterizes the sizes of partite sets of multipartite tournaments
whose (1, 2)-step competition graphs are complete.

If a tournament of order greater than or equal to 5 has minimum outdegree at
least two, then, for any pair of vertices u and v, none of u and v is X-biased for any
vertex subset X of order 1. Since a tournament of order £ > 5 may be considered as

a k-partite tournament, the following is true by Corollary 3.5.

Corollary 3.21. Let D be a tournament with at least five vertices. If each vertex in

D has outdegree at least two, then Cy (D) is complete.

A tournament D is regular provided all vertices in D have the same out-degree.
We say that D is near reqular provided the largest difference between the out-degrees
of any two vertices is 1. It is well-known fact that, for each positive integer n, there
exists a regular tournament if n is odd and a near regular tournament when if n
is even. Since a regular or near regular tournament with at least five vertices has

minimum outdegree at least two, the following is immediately true by Corollary 3.21.

Lemma 3.22. For n > 5, there ezists a tournament of order n whose (1,2)-step

competition graph is complete.

Let G be a graph. Two vertices v and v of GG are said to be true twins if they
have the same closed neighborhood. We may introduce an analogous notion for a
digraph. Let D be a digraph. Two vertices u and v of D are said to be true twins if

they have the same open out-neighborhood and open in-neighborhood.
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Given a digraph D, if there is a directed path of length 2 from a vertex x to a

vertex y in D, we call y a 2-step out-neighbor of x.

Lemma 3.23. If two non-sink vertices are true twins in a digraph D, then they are

true twins in Ch (D).

Proof. Suppose that there exist two non-sink vertices v and v which are true twins
in D. Since u is a non-sink vertex, u has an out-neighbor z. Then, since u and v are
true twins, x is also an out-neighbor of v. Therefore u and v compete.

Take a vertex w # v adjacent to u in C o(D). If u and w compete, then v and w
also compete since u and v are true twins in D. Suppose that u and w (1, 2)-compete.
Then u and w have a (1, 2)-step common out-neighbor y. If y is an out-neighbor of
u, then y is also an out-neighbor of v and so v and w (1, 2)-compete. Suppose that y
is a 2-step out-neighbor of u. Then there exists a directed path u — z — y for some
vertex z in D. Since u and v are true twins in D, v — z — y is a directed path and

so y is also a 2-step out-neighbor of v. Thus v and w (1,2)-compete. O

Lemma 3.24. Let k be a positive integer with k > 3; nq,...,n; be positive integers
such that ny > -+ > ng; nl,...,n}, be positive integers such that ny > --- > nj,
ny > mny, ny > N, ..., and nj, > ng. If D is an orientation of K, ., whose (1,2)-

step competition graph is complete, then there exists an orientation D' of Ky,

whose (1,2)-step competition graph is complete.

Proof. Suppose that D is an orientation of K, . ,, whose (1,2)-step competition
graph is complete. Let X, Xy, ..., Xi be the partite sets of D satisfying |X;| = n;
for each 1 < i < k. Then we construct an orientation of K p, ., Whose (1,2)-step
competition graph is complete in the following way. If n} = ny, then we take D as a
desired orientation. Suppose nj > n;. Then we add a new vertex v to X; and an arc

(v, x) for each out-neighbor = of some vertex u in X; to obtain a digraph D; so that
A(D) C A(Dy), and Npj(u) = Nj (u) = Np, (v).

Therefore N (u) = Np (u) = Np (v) and so v and v are true twins in D;. Since
C12(D) is complete and |V (D)| > 2, N} (u) # (). Therefore C 5(D;) is complete by
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Lemma 3.23. We may repeat this process until we obtain a desired orientation D, ;.
Inductively, we obtain an orientation D; of Ky, — whose (1,2)-step competition
graph is complete where t = (n} +---4+nj) — (n1+- - - +ny). Therefore the statement

is true. O

The following theorem characterizes the sizes of partite sets of multipartite tour-

naments whose (1, 2)-step competition graphs are complete.

Theorem 3.25. Let k be a positive integer with k > 3 and ny,ne, ..., ni be positive

integers such that ny > --- > ny. There exists an orientation D of K, n, .. n, whose

k

(1,2)-step competition graph is complete if and only if one of the following holds:
(a) k=3, and (1) no > 3 and ng =1 or (ii) ny > 2;
(b) k=4, and (i) ny >3 and ny =1 or (ii) ny > 2;
(c) k>5.

Proof. We first show the “only if” part. Suppose that there exists an orientation D
of Kn1,n2,~~7n

|[V(D)| > 3 and so each vertex has outdegree at least 1 in D. If there exists a vertex

. whose (1,2)-step competition graph is complete. Then, since k > 3,
v of outdegree 1 in D, then there exists a vertex nonadjacent to v in C (D) by
Proposition 3.3. Therefore

dt(v) > 2 (3.12)

for each vertex v in D. Thus
2|V(D)| < |A(D).

Let Xi,..., X% be the partite sets of D satisfying | X;| = n; for each 1 < i < k.
Suppose k = 3. Then, if ny = 1, then |V(D)| = ny + 2 and so |A(D)| = 2ny + 1,
which contradicts 2|V (D)| < |A(D)|. Therefore ny > 2. To show by contradiction,
suppose n3 = 1 and ny = 2. Let Xy = {v1, v}, X3 = {v3}. Then each vertex in X,
is not a common out-neighbor of two vertices in X, U X3 by (3.12). Therefore each

pair of {vy,v3} and {vs,v3} has a (1, 2)-step common out-neighbor in D.
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Let u be a (1,2)-step common out-neighbor of v; and v3. Then u € N*(vy) or
u € Nt (v3). Suppose u € NT(v1). Then u € X; and there exists a (vs, u)-directed
path P of length 2 not traversing v;. Thus the interior point on the directed path
must be vy and so (ve, u) € A(D). Hence u has outdegree at most one, a contradiction
to (3.12). Therefore v € N*(v3). Then u is a 2-step out-neighbor of v;. However,
each (v, u)-directed path of length 2 must traverse vz and so v; and v3 cannot have a
(1,2)-step common out-neighbor, a contradiction. Therefore u ¢ X;. By symmetry,
any (1,2)-step common out-neighbor of vy and vs does not belong to X;. Thus
u = vy and v; is the only (1,2)-step common out-neighbor of v, and v3. Hence v,
and v, must be 2-step out-neighbors of v and vy, respectively, and so out-neighbors
of vg. Therefore N*(vy) U N*(v2) € X;. Thus v; and vy do not (1,2)-compete by
Proposition 3.1 and so have a common out-neighbor z. Then 2 € X; and d*(z) < 1,
which contradicts (3.12). Thus ny > 3 or ng > 2 and so (a) holds.

Suppose k = 4 and ny = 1. Then |V(D)| = ny + 3 and |A(D)| = 3n, + 3. By
(3.12), 2|V(D)| = 2(n1 + 3) < |A(D)| and so ny > 3. Therefore (b) holds. Thus we
have shown that the “only if” part is true.

Now we show the “if” part.

Case 1. k = 3 or 4. We consider orientations D;, Dy, D3, and Dy of K331, K22,
K311, and Ks 11, respectively, given in Figure 3.4 whose (1,2)-step competition
graphs are complete. By applying to Lemma 3.24 to Dy, Ds, D3, and Dy, respec-
tively, we may obtain an orientation of K, n, ., whose (1,2) competition graph is
complete when (a) k = 3, and (i) ne > 3 and ng = 1 or (ii) ng > 2; (b) k = 4, and
(i) ny > 3 and ny = 1 or (ii) ny > 2.

Case 2. k > 5. We obtain a tournament D of order k whose (1, 2)-step competition
graph is complete by Lemma 3.22. Then, by applying to Lemma 3.24 to D, we may

obtain an orientation of K, ,, ., whose (1,2)-step competition graph is complete.

k

Therefore the “if” part is true. O
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D3 D4

Figure 3.4: Dy, D,, D3, and Dy are orientations of K331, K299, K3111, and Ks9711,
respectively, whose (1,2)-step competition graphs are complete
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Figure 3.5: A tripartite tournament and its (1, 2)-step competition graph having the
diameter three

3.5 Diameters and domination numbers of ' »(D)

See the tripartite tournament Dy and its (1, 2)-step competition graph C4 2(Dy) given
in Figure 3.5. It is easy to check that C 2(Dy) has a diameter 3. We note that C; 2(Dy)
has a maximum stable set S := {uy,us} of size 2 and S intersects with two partite
sets of D. As a matter of fact, this phenomenon always happens for the (1,2)-step

competition graph of a multipartite tournament.

Theorem 3.26. Let D be a multipartite tournament. Then each component of Cy (D)
has the diameter at most three. FEspecially, if there exists a component having the di-
ameter three, then the component itself is Cy 2(D), and each mazimum stable set of

C12(D) has size two and intersects with two partite sets of D.

Proof. We first consider the case where D has a sink. If a sink constitutes a trivial
partite set of D, then C} (D) is isomorphic to K,,_; with an isolated vertex and so
the statement is true. If a sink does not constitute a trivial partite set of D, then D
has a non-clique partite set and so, by Corollary 3.10(1), the statement is true.

Now we consider the case where D has no sink. If a pair of vertices in the same
partite in D is not adjacent, then D has a non-clique partite set and so, by Corol-
lary 3.10(1), the diameter has at most two.

We suppose that each partite set forms a clique. Let S be a maximum stable set

in Cy2(D). If |S| = 1, then the statement is obviously true. Consider the case where
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Figure 3.6: A tripartite tournament and its (1, 2)-step competition graph having the
diameter two

|S| > 2. Since each partite set forms a clique, S cannot be included in any partite
set of D. Suppose |S| = 2. Then each component of C} 5(D) has diameter at most 3.
Moreover, if there exists a component having diameter 3, then C 2(D) is connected.
Now suppose |S| > 3. Since each partite set forms a clique, |S| = 3 by Corollary 3.13.
Thus it is easy to check that C} (D) has a diameter 2 by applying Theorem 3.19.

Therefore the statement and the “especially” part are true. O

The converse of the “especially” part of the above theorem may be false. To see
why, consider the tripartite tournament D;q given in Figure 3.6, which is obtained
from Dy given in Figure 3.5 by adding a vertex ug and arcs (us, ug), (ug, ug), (ug, u4),
and (ug,us). Then the only pairs of nonadjacent vertices in Cj2(Dyg) are {uq, uq}
and {uy,us}. Therefore each maximum stable set of C2(Djg) has size two and is
intersecting with two partite sets of D. However, C 2(Djo) has the diameter two.

A set S of vertices in a graph G is called a dominating set if every vertex v € V
is either an element of S or is adjacent to an element of S. The domination number
~v(G) of a graph G equals the minimum cardinality of a dominating set in G.

Given a digraph D, each sink in D is isolated in C} 5(D) and so m < v(C1 (D))
where m is the number of sinks in D. The following theorem gives upper bound for

the domination number of C} (D) when D is a multipartite tournament.
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Theorem 3.27. Let D be a multipartite tournament with m sinks. Then m <

Y(C12(D)) < m + 2 unless Cy2(D) is isomorphic to three isolated vertices.

Proof. We first suppose that each partite set of D is a clique. Then, by Corollary 3.13,
each {1,2}-stable set of D has size at most three. Suppose that D has a {1,2}-
stable set of size three. Then ¢ = 3 in Theorem 3.19. If C)5(D) is isomorphic to
Kv(p)— E(K3), then C 5(D) has an universal vertex, which implies v(C (D)) = 1.
If C15(D) is isomorphic to Ky (p) — (E(K3) UE(K1,)), then the center v of Ky, and
a vertex w in K \ {v} forms a dominating set in C} 5(D) and so v(Ci (D)) < 2. If
D has a maximum {1, 2}-stable set of size two, then the complement of C 2(D) has
at least one edge and so, by Theorem 3.18, there exists an edge wv which is incident
to a pendent vertex in the complement of C o(D), which forms a dominating set in
Ci2(D). If D has a maximum {1, 2}-stable set of size one, then C} (D) is complete.

Now we suppose that C (D) has a non-clique partite set. If D has a sink, then
let X; be a partite set containing a sink. If D has no sink, then we let X; be a
non-clique partite set each of whose {1,2}-stable sets is X,-biased for some partite
set X by Proposition 3.6. Now we take a vertex uw in Xj. If u is adjacent to all
vertices except sinks, then v(C12(D)) = m + 1 since each sink is an isolated vertex
in C}2(D). Suppose that there exists a non-sink vertex v nonadjacent to u. We will
show v = u as follows:

Case 1. D has a sink. Then, since X contains a sink, V(D) \ X; forms a clique
and so v € X;. Suppose v % . Then, since each sink is an out-neighbor of u, u /% v.
Therefore u and v are adjacent by Corollary 3.5, a contradiction. Thus v = u.

Case 2. D has no sink. Then the adjacency matrix M of C (D) is in the form
given in Figure 3.2 by Theorem 3.9 in which X; was assumed to be a non-clique
partite set of D and contain a {1,2}-stable set S with size at least two that is Xo-
biased. Then, since v is not adjacent to u, v € F3, that is, v is a X3-biased vertex by
the structure of M. Therefore v = u or u = v by Theorem 3.8(4). Since S C N (u),
u /v and so v = u.

Thus we have shown that v = u. Then u,v together with the sinks form a
dominating set in C}2(D). To see why, we recall that v was arbitrarily chosen from

non-sink vertices nonadjacent to u. Therefore u is an out-neighbor of the non-sink
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Figure 3.7: A graph with diameter three and domination number three

vertices nonadjacent to u. Thus the set of the non-sink vertices nonadjacent to u

forms a clique in Cy (D). O

Remark 3.28. The graph G given in Figure 3.7 has diameter three. However, G
has domination number three and so G' cannot be the (1, 2)-step competition graph

of a multipartite tournament by Theorem 3.27.

3.6 Disconnected (1,2)-step competition graphs

In this section, we list all disconnected (1, 2)-step competition graphs of multipartite
tournaments without sinks.

We denote the set of k isolated vertices in a graph by [ for some positive integer

k.

Proposition 3.29. Let D be a multipartite tournament without a non-clique par-
tite set. Suppose that Cy2(D) has a mazimum stable set of size two. If Cy2(D) is
disconnected, then C 2(D) is isomorphic to K, U I; for some n > 3.

Proof. Suppose that C} (D) is disconnected. Then C »(D) has at least two compo-
nents. Since C 5(D) has a maximum stable set of size two, C 2(D) has exactly two
components each of which is complete. Therefore C (D) is isomorphic to K, U K,
for some positive integers n and m with n +m = |V(D)| and n > m. If n,m > 2,
then the complement of C'y »(D) must have a cycle, which contradicts Theorem 3.18.
Therefore n = 1 or m = 1. Since n > m, m = 1. If n = 2, then D must have a
sink that forms a trivial partite set, which is the case not to consider (see the last

paragraph of section 2). Thus n > 3. O
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Now we are ready to introduce one of our main results.

Theorem 3.30. A disconnected graph G is the (1,2)-step competition graph of a
k-partite tournament of order n without sinks for some k > 3 if and only if G is
1somorphic to

13 n:3,
(Kn_l—E(KQ))Ull or Kn_1UIl 7124

Proof. To show the “only if” part, suppose that a disconnected graph G is the (1, 2)-
step competition graph of a k-partite tournament D of order n without sinks for some
k > 3. If D has a non-clique partite set, then G is connected by Corollary 3.10(2).
Therefore every partite set of D is clique. Since G is disconnected, G' has a maximum
{1.2}-stable set S of size at least two. By Corollary 3.13, |S| < 3. If |S| = 3, then
S intersects with three partite sets of D since each partite set of D is clique, and
so, by Theorem 3.19, G = K3 — E(K3) or G = K,, — (F(K3) U E(K;,_3)) where
n > 4. Therefore G = I3 or G = (K,,—1 — E(K3)) U I, where n > 4. If |S| = 2, then
G = K,,_1 UI; where n > 4 by Proposition 3.29.

Now we show the “if” part. Let Dy, be a directed cycle of order 3. Then C o(D1;) =

I3. Suppose n > 4. Let Dj5 be a tripartite tournament with the partite sets {u;},

{uz}, and {us, uy,...,u,} and the arc set

A(D12) = {(u1, us), (w2, ur), (us, uz) } U {(ui, wa), (ug, w;) |4 <i <n}

(see the digraph Dis given in Figure 3.8 for an illustration). Then u; is an isolated
vertex in C}5(Dia). The vertex u; is a common out-neighbor of ug, uy, ..., u,. In
addition, it is a (1,2)-step common out-neighbor of uz and wu; for each 4 < i < n.
Moreover, us is not adjacent to ug by Proposition 3.3. Therefore C o(D1a) = (K1 —
E(K,))U 1.

Let D13 be a tripartite tournament with the partite sets {u}, {us}, {us, ..., u,},

and the arc set

A(D13) = {(u1, uz), (ug, uz), (us, u1)} U {(uz, us), (us,ur) |4 <i<nj
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U2

(51 > PO U3
Uy
Up
Dqs Dq3

Figure 3.8: Tripartite tournaments in the proof of Theorem 3.30

(see the digraph D3 given in Figure 3.8 for an illustration). Then wu; is an isolated
vertex in C o(Ds3). The vertex u; is a common out-neighbor of us, . .., u, and a (1, 2)-
step common out-neighbor of uy and w; for each 3 < i < n. Therefore C}5(D13) =
K, _1UI4. Since each of Dy1, D15, and Dq3 has no sink, we have shown that the “if”

part is true. O]

Remark 3.31. Let D be a multipartite tournament of order n whose (1,2)-step
competition graph is disconnected. If D has no sink, then Cj2(D) is completely
determined by Theorem 3.30. Suppose that D has a sink. If a sink constitutes a
trivial partite set, then C)2(D) = K,y U I;. If a sink does not constitute a trivial
partite set, then D has a non-clique partite set, so the structure of C (D) is mostly

determined by Theorem 3.9.

3.7 Interval (1,2)-step competition graphs

An asteroidal triple of a graph is a set of three vertices such that every pair of vertices

are joined by a path outside of the closed neighborhood of the third.

Theorem 3.32. Let D be a multipartite tournament. If Cy2(D) has an asteroidal
triple, then it is contained in a partite set X and V(D)\ X forms a clique in Cy (D).

Proof. Suppose that C2(D) has an asteroidal triple z, y, and z. Then {z,y, 2z}

forms a stable set of size three in € 5(D). Therefore D has a non-clique partite set
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by Theorem 3.19 and so, by Theorem 3.9, the adjacency matrix M of Cj2(D) is in
the form given in Figure 3.2. Since Uf:?) X, is a clique in C »(D), at least two vertices
in {z,y, 2z} is contained in a partite set X; or Xy of D. If {z,y, 2z} is contained in
Xy, then X5 is non-clique. Therefore we may apply Theorem 3.9 to X5 and so we
may assume {z,y} C Xj. Since z and y are not adjacent, {x,y} C F; for some
Jj € {2,...,k}. Suppose, to the contrary, that z ¢ X;. Then, since X, is the only
partite set that might have a vertex not adjacent to a vertex in Fj, we have z € X;.
Since z and y have no common out-neighbor and z is not adjacent to z and y, we
may assume = — z and z —» 3 by Theorem 3.8(4). By the way, since {z,y, 2} is an
asteroidal triple, y and z are connected by a path P avoiding the neighbourhood of
x. Let w be a vertex on P which is adjacent to z. Then w is not adjacent to x and so
w € Fjorw € X;. Suppose w € X;. Then, since 5 2, there is an arc from w to z in
D and x is X-biased. Therefore w is X;-biased or X;U{x}-biased by Proposition 3.4.
Since w € X, w is X; U {z}-biased. Therefore w % x. Then, since z — y, w and 2
has no common out-neighbor. Moreover, w and z are X;-biased and so they are not
adjacent in Co(D) by Proposition 3.2, a contradiction. Therefore w ¢ X; and so
w € Fj. Thus there is an arc between w and z. Then, since z > y, (w, z) € A(D) and
so z is a common out-neighbor of w and z, a contradiction. Therefore {z,y, z} C Xj.
Thus V(D) \ X; forms a clique by the structure of M. O

Remark 3.33. By Theorem 3.25, there is a multipartite tournament D whose (1, 2)-
competition graph is complete. Such a multipartite tournament satisfies the neces-
sary condition of Theorem 3.32 but its (1, 2)-competition graph does not contain an

asteroidal triple. Therefore the converse of Theorem 3.32 is not valid.

Lemma 3.34. Let D be a multipartite tournament with a non-clique partite set.
If two adjacent X;-biased vertices w and v are not true twins in Cy (D) for some

i€ {l,...,k}, then each vertex in X; is adjacent to at least one of u and v.

Proof. Suppose that there are two adjacent X;-biased vertices u and v which are not
true twins in Ci (D) for some i € {1,...,k}. To the contrary, suppose there is a
vertex w in X; not adjacent to both u and v. If u — w and v — w, then u and v are

not true twins in D and they are true twins in C 2(D) by Lemma 3.23. Therefore
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u A w or v & w. Without loss of generality, we may assume u 2 w. Then w = u
by Theorem 3.8(4) Therefore w 7 v and so, by the same theorem, v — w. Thus u
and v has no common out-neighbor. Hence u and v are not adjacent in C} (D) by

Proposition 3.2, a contradiction. O

Proposition 3.35. Let D be a multipartite tournament. For two adjacent vertices
which are not true twins in a non-clique partite set X of D, any vertex not adjacent

to the two vertices belongs to X.

Proof. Suppose that there exist two adjacent vertices u, v which are not true twins
in a non-clique partite set X of D and a vertex w not adjacent to any of them. Then,
since X is a non-clique, the adjacency matrix M of C42(D) is in the form given in
Figure 3.2 by Theorem 3.9 in which X = X was assumed. If w ¢ X, then w € X;
for some i € {2,...,k} and so, by the structure of M, the u and v are X;-biased,
which implies that w is adjacent to one of u and v by Lemma 3.34. Therefore we

reach a contradiction and so the statement is true. O

Given a graph G, we call a vertex of G universal if it is adjacent to all other

vertices of (.

Theorem 3.36. Let D be a multipartite tournament. If Cyo(D) has a hole H of
length at least five, then the following are true:

(1) there exists a partite set X such that V(D) \ X forms a clique in Cy2(D) and
every hole L of length at least five is contained in the set of Y -biased vertices

included in X for some partite set Y of size at least |V (L)|;

(2) |V(D)| > 2|V(H)| + 1 and if the equality holds, then every vertex not on H is

a universal vertex.

Proof. Suppose that C)2(D) has a hole H = vgv; ...v_1v9 of length [ > 5. Then
the complement of H contains a cycle of length at least five, so the complement of
C1.2(D) contains a cycle of length at least five. Suppose that each partite set is clique
in C1 (D). Then C (D) has a stable set of size at most three by Theorem 3.19 .
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Therefore C 2(D) is isomorphic to one of the graphs given in Theorem 3.18 or in the
“especially part” of Theorem 3.19, none of which contains a cycle of length at least
five in its complement. Hence D has a non-clique partite set and so the adjacency
matrix M of C 2(D) is in the form given in Figure 3.2 by Theorem 3.9 in which X;
was assumed to be a non-clique partite set of D.

To show the part (1), we first suppose [ > 6. Then there exists an asteroidal triple
{z,y,z} on H and so, by Theorem 3.32, {x,y, z} is contained in a partite set X of
D. Since {x,y, z} forms a stable set, we may apply Proposition 3.6(2) to claim that
if X = X5, then X, forms a clique to reach a contradiction. Therefore {z,y, 2} C Xj.
Since [ > 6 by our assumption, each vertex on H can form an asteroidal triple with
two vertices on H and so V(H) C Xj.

We suppose | = 5. We first assume that there is no partite set X such that
|[V(H) N X| > 3. Then, since [ = 5, there are at least three partite sets intersecting
with V(H). Therefore V(H) intersects with two partite sets X; and X, for some
distinet 4,5 € {2,...,k}. By the way, we see from the structure of M that each
vertex in X; is adjacent to all vertices in X;. Thus there exist a vertex in V/(H)NX;,
and a vertex in V' (H) N X; which are consecutive on H. Without loss of generality,
we may assume vg € X; NV(H) and v; € X; N V(H). Then, since v is adjacent
to neither vy nor vy, vs ¢ Uf:z X;. Hence v3 € X; and so vz € F; U F;. However,
since the structure of M shows that each vertex in F; (resp. F}) is adjacent to all
vertices in X; (resp. X;), vs is adjacent to vy or vy, which is impossible. Therefore
there exists a partite set X such that |V (H) N X| > 3. Then, since [ = 5, there exist
two consecutive vertices on H belonging to X. Without loss of generality, we may
assume {vg,v1} C X. Then, by Proposition 3.35, v3 € X. Suppose, to the contrary,
that vy ¢ X and vy ¢ X. Then vy € Y for a partite set Y distinct from X. Since
{vo,v1,v3} C X, X is a non-clique. Then X = X; or Xs.

We first assume X = X;. Since v; is not adjacent to vy, € Y, we see from the
structure of M that v; is Y-biased. Therefore v; — vy or v4 — v; by Theorem 3.8(4).
If vy = vy, then vy is a common out-neighbor of vy and v3 and so vy and vz are
adjacent, which is impossible. Therefore v; = vy. By the same argument, we may

* . o . . .
show vy — v9. Then, if vy or v4 is an out-neighbors of vs, then vs is adjacent to vy or
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vy, which is impossible. Thus v, and v4 are in-neighbors of v3 and so v, and v4 are
adjacent, a contradiction. Therefore vy € X or vy € X. Then, by Proposition 3.35,
ve € X ifvy € X, orvg € X if vg € X, so V(H) C X. Then, since any three
vertices on H do not form a triangle, each vertex in V(D) \ X has at most 2 in-
neighbors in V(H) and so has at least |V (H)| — 2 out-neighbors in V(H), that is,
INT(w) NV (H)| > |V(H)| — 2 for each vertex w in V(D) \ X. Now, for a pair of
vertices u and v in V(D) \ X,

| (N () NNT () NVH)| = [N (u) NV (H)| + [N (0) NV (H)| = |V (H)]
> 2|V(H)| =2) = [V(H)| = [V(H)| -4 > 1.

Therefore any pair of vertices in V(D) \ X has a common out-neighbor in V(H) and
so V(D) \ X forms a clique in C (D).

Now we assume X = X,. Then we may switch X; with X5 to still have the
adjacency matrix of C}5(D) in the from given in Figure 3.2 since Theorem 3.9 is
applicable to any non-clique partite set. Thus we may apply the above argument to
conclude that V(D) \ X, forms a clique in C} (D). However, since X; was assumed
to be a non-clique partite set, we reach a contradiction. Therefore X # X5 and so
X = X;. Thus X; is the only partite set containing a hole of length at least five.
Fix i € {2,...,1 —2}. Then vy and v; are not adjacent, so {vg,v;} C Fj for some
Jj €12,...,k} by the structure of M. Since F5, ..., F} are mutually disjoint, for any
ie{2,...,1 =2}, {vo,v;} C Fj and so {vg,va,v3,...,v_2} C Fj. Moreover, since v;
and v;_; are not adjacent to vs and vq, respectively, {vy, v,—1} C F;. Thus V/(H) C F.
Hence any pair of adjacent vertices in V' (H) must have a common out-neighbor in X
by Proposition 3.2. Then, since each vertex in X; can be a common out-neighbor of
at most two vertices in V(H), |E(H)| < |Xj|. Since |V(H)| = |E(H)|, |V(H)| < |X}]
and so the part (1) is true. Moreover, since D has at least k > 3 partite set, D has
a partite set X, distinct from X; and X; and so

V(D) = [Xa]| + |1X;| + | Xon| 2 [VH)| + [V(H)| + 1 > 2|V (H)[ + 1.
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Therefore the inequality of the part (2) is true. Now suppose the equality holds, that
is, |V(D)| = 2|V(H)| + 1. Then X;, X; and X,, are the only partite sets of D and
X, =V(H),|X,| = |V(H)|,|X:n| = 1. Therefore every vertex in X; is a common
out-neighbor of exactly two vertices in X;. Thus we may label the vertices in X as

wo, . .., w;_1 so that
w; € NT(0;) " NT(v41), X1\ {vi, vig1} © N (wy)

for each 0 < ¢ < 1—1, identifying v; with vg. In addition, since V(H) = X; and each
vertex on H is Xj-biased, each vertex in X; is an out-neighbor of the vertex in X,,.
Moreover, since each vertex in X; has exactly two out-neighbor in X, each vertex
in X; is adjacent to each vertex in X; U X,, by Corollary 3.5. By the claim (C),
X; UX,, forms a clique in C; 5(D). Therefore each vertex in X; U X, is a universal
vertex. Thus the part (2) is true. O

Theorem 3.37. Let D be a multipartite tournament such that there exists no partite
set X such that V(D) \ X forms a clique in Cy (D). Then Cy2(D) is an interval
graph unless Cy 2(D) has a hole of length four.

Proof. We assume that C}2(D) has no hole of length four. To reach a contradic-
tion, suppose that Cj (D) is not an interval graph. Then C} (D) has a hole or an
asteroidal triple by Theorem 1.2. If C}5(D) has an asteroidal triple, then there ex-
ists a partite set X such that V(D) \ X forms a clique by Theorem 3.32, which is
impossible. Therefore C} (D) has a hole H. By our assumption, H has length at
least five. Then there exists a partite set X such that V(D) \ X forms a clique by
Theorem 3.36(1), a contradiction. O
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Chapter 4

The forbidden induced subgraphs of (i, )
phylogeny graphs!

A graph G is an (4, ) phylogeny graph if there is an (i, j) digraph D such that the
phylogeny graph of D is isomorphic to GG. Throughout this chapter, we assume that
variables ¢ and j belong to the set of positive integers unless otherwise stated.

We present two main theorems in this chapter. One of them gives a necessary

condition for an (4, 2) digraph having a chordal phylogeny graph as follows:

Theorem 4.1. Let H be a hole with length | of the underlying graph of an (i,2)
digraph D. If | > 3i + 1, then the subgraph of the phylogeny graph of D induced by
V(H) has a hole. Further, the inequality is tight.

It extends Theorem 1.18 to (i,2) phylogeny graphs.

The join of two graphs G and H, denoted by G V H, is the graph formed from
disjoint copies of G and H by connecting each vertex of GG to each vertex of H.

Based upon the other main theorem in the following, P; V I}, C7 V I, K; 4, and
K3 5 are also forbidden induced subgraphs of (2, 2) phylogeny graphs other than K,
which extends Theorem 1.21.

!The material in this chapter is written based on the manuscript ‘The forbidden induced sub-
graphs of (4, j) phylogeny graphs’ by Myungho Choi and Suh-Ryung Kim. The author thanks Prof.
Suh-Ryung Kim for allowing him to use its contents for his thesis.

90



Theorem 4.2. The graphs below list forbidden induced subgraphs of the phylogeny
graph of an (i,j) digraph with i,5 > 2:

Kijio; Kjpija; Pz VI Oz VI

Kiji1, further, ifi >4 and j = 2, KL%H?'

We denote the set of out-neighbors and the set of in-neighbors of a vertex v in
a digraph D by N} (v) and N (v), respectively. In addition, we denote the set of
neighbors of a vertex v in a graph G by Ng(v). When no confusion is likely to occur,
we omit D or G to just write N*(v), N~ (v), and N(v).

4.1 A necessary condition for an (i,2) phylogeny graph being
chordal

Let D be an acyclic digraph. Suppose that the underlying graph U (D) of D has a hole
H = vyvy - - - yuy of length [ for some [ > 5. Let G be the subgraph of the phylogeny
graph P(D) induced by V(H) and Dg be the subdigraph of D induced by V(H).
Then, since each vertex has degree 2 in U(Dpy), each of vy, vs,...,v; has (i) exactly
two in-neighbors, or (ii) exactly one out-neighbor and exactly one in neighbor, or
(iii) exactly two out-neighbors in Dy. Since D is acyclic, Dy is acyclic and so there
exists a vertex in Dy of indegree 2. Let v, vy, . . ., v, be the vertices in V' (H) having
two in-neighbors in Dy for an integer £ > 1. We denote the set {v;,vy,,..., v, } by
['y. Then any two vertices in I'y do not lie consecutively on H and so 1 < k < L%J
Therefore we obtain the cycle C' of length [ — k in P(D) by deleting vy, vy, ..., v,
from G satisfying the property that each edge of C' either is taken care of some vertex
in I'y or lies on H. We call such a cycle the cycle obtained from H by I'y. When no
confusion is likely to occur, we omit I'y in the cycle obtained from H by I'y to just
write the cycle obtained from H. We note that the length of C is at least [ — L%J
and at most [ — 1. Moreover, by (ii) and (iii), each vertex on C has at least one out-
neighbor in V(H). It is easy to check that the number of vertices on C' having two
out-neighbor in V(H) is equal to |I'g|. In addition, there is no arc in V(H) between
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nonconsecutive vertices on C'; which implies that each chord of C'is a cared edge by

a vertex in V(D) — V(H). Hence we immediately have the following lemma.

Lemma 4.3. Let H be a hole with length | > 5 in the underlying graph of an acyclic
digraph D and C' be the cycle obtained from H by I'y. Then the following are true:

(1) the length of C is at least | — | 1| and at most 1 — 1;
(2) each vertex on C' has at least one out-neighbor in V(H);
(3) the number of vertices on C' having two out-neighbors in V (H) is equal to |T'y|;

(4) for each chord uv of C in P(D), uv is a cared edge and each vertex taking care
of uwv belongs to V(D) — V(H).

We obtain some useful characteristics on the cycle obtained from a hole in the

underlying graph of an (i,2) digraph as follows.

Proposition 4.4. Let H be a hole with length | > 5 in the underlying graph of an
(1,2) digraph D and C' be the cycle obtained from H. Suppose that C' has a chord uv
in P(D). Then the following are true:

(1) there exists exactly one vertex w taking care of uv in D;
(2) w is the only out-neighbor in V(D) — V(H) of each of u and v,

(3) for the subgraph induced by the chords of C' in P(D), if T is ils component
containing uv, then w is the common out-neighbor in D of the vertices in T
and V(T) forms a clique in P(D).

Proof. Since uv is a chord of C'in P(D), uv is a cared edge and there exists a vertex
w taking care of uv, which belongs to V(D) — V(H) by Lemma 4.3(4). Then w is
a common out-neighbor of w and v. Since D is an (i,2) digraph, each of u and v
has outdegree at most 2. Then, by Lemma 4.3(2), each of u and v has at most one
out-neighbor in V(D) — V(H). Therefore w is the only out-neighbor of each of u and
vin V(D) — V(H) and so w is the only vertex taking care of uv in D. Hence parts
(1) and (2) are true.
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To show part (3), suppose, for the subgraph induced by the chords of C' in P(D),
T is its component containing uv. Then take a vertex v; distinct from w in T'. Then
there exists a path P = vy ---vu in T and each edge in P is a chord in C'. Therefore
each edge in P is a cared edge by Lemma 4.3(4). Let y be a vertex taking care of
wvg. Then y € V(D) — V(H) by Lemma 4.3(4). Since w is the only out-neighbor
in V(D) - V(H) of u, w =y and so w is an out-neighbor of v;. If £ > 2, then, by
applying a similar argument for the chord vv;_1, w takes care of v,v;_1; and w is
the only out-neighbor in V(D) — V(H) of v; by parts (1) and (2). Therefore w is an
out-neighbor of v;,_; if ¢ > 2. We repeat this process until we conclude that w is an

out-neighbor of v;. Therefore part (3) is true. O

Corollary 4.5. Let H be a hole with length | > 5 in the underlying graph of an (i, 2)
digraph D and C' be the cycle obtained from H. Then, for each vertex on C having
two out-neighbors in V(H), it is not incident to any chord of C'.

Proof. Let u be a vertex on C having two out-neighbors in V(H). Suppose, to the
contrary, that u is incident a chord wv of C. Then there exists a vertex w in V(D) —
V(H) such that w is a common out-neighbor of u and v by Proposition 4.4(2). Thus
u has at least three out-neighbors, which contradicts the fact that D is an (i,2)
digraph. 0]

To prove one of our main theorems, we need one more result.

Lemma 4.6 ([18]). Given a graph G and a cycle C of G with length at least four,
suppose that a section () of C' forms an induced path of G and contains a path P
with length at least two none of whose internal vertices is incident to a chord of C'
in G. Then P can be extended to a hole H in G so that V(P) C V(H) C V(C) and

H contains a vertex on C' not on Q.

Given a vertex subset X of a graph G, a mazximum cliqgue in X means a clique

in G[X] whose size is the maximum among the cliques in G[X].

Theorem 4.7. Let D be an (i,2) digraph and C be the cycle of length | > 4 obtained
Jrom a hole in U(D). If a mazimum clique in V(C) has size at most |5*], then the
subgraph of P(D) induced by V(C') has a hole.
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Proof. Suppose that a maximum clique K in V/(C) has size at most |52 ]. If C has
no chord, then C' is a hole and so we are done. Suppose that C' has a chord. If a
maximum clique has size at least three in V' (C), then the clique must contain a chord
of C. Otherwise, each chord is a maximum clique itself. Therefore we may assume

that {u,v} C V(K) for a chord uv of C. We note that

[—1 [+1 [

V(| - |V(K)| >1- {TJ = [T-‘ > 5

Therefore there exist two consecutive vertices 1 and x5 on C each of which does not
belong to V(K). Starting from x; (resp. x2), we traverse the (z1,x2)-section (resp.
the (xq,z1)-section) of C' that is not the edge zjx5 until we first meet a vertex y
(resp. z) belonging to V(K). Then the (y, x1)-section obtained in this way, the edge
x12T9, and the (x4, 2)-section obtained in this way form the (y, z)-section @ of C' such
that y and z are the only vertices belonging to V' (K). Since x; and x5 are contained
in @, @ has length at least 3. Let () = vgvivs - - - vy where vg = y and v; = 2z for an
integer ¢t > 3. Then v; ¢ V(K) for each 1 <i <t — 1. If g = v, then V(Q) = V(C)
and so V(K)NV(C) = {ve}, which contradicts that the existence of the chord wv.

Therefore

Vg # vy

Since {vg,v:} C V(K), vovy is an edge in P(D). If vov; is not a chord of C, then
C' = vyvy - - - 109 and so, by the choice of @, V(K') does not contain any chord, which
is a contradiction. Therefore vyv; is a chord of C.

Let T" be the component containing vgv; in the induced subgraph by the chords
of C'. We note that

(x) any vertex in 7' cannot be joined to a vertex on C'— T by a chord of C.

Let Cy be the cycle obtained from adding vyv; to Q. Suppose V(T') = {vg, v4}. Then
Cy has length at least four and, by (%), P, := wvjvor; is an induced path. Since

V(T) = {vo, v}, vo is not incident to any chord of C' except vov; and so vy is not
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incident to any chord of ;. Now we suppose

V(T) # {vo, i}

Then |V(T')| > 3. By the way, since [ > 4, the hole in U(D) containing the vertices
on C has length at least 5 by Lemma 4.3(1). Therefore V(T") forms a clique in P(D)
by Proposition 4.4(3) and so |V (K)| > 3 by the maximality. By the choice of Q, K
contains a vertex on the (v, v)-section, say L, of C' other than Q. Since vgv; is a
chord of (', L has length at least two.

Case 1. L has length 2. Let w be the internal vertex on L. Then V (K') = {vg, w, v;}
and so, by the maximality of K, |V(T)| = 3. Therefore T' = {vg,v;,v;} for some
je{l,....,t —1}.1f 1 <6, | 5] < 3, which contradicts the fact that K has size 3.
Therefore [ > 7 and so

t>5.

If j =1 or 2, then, by (%), P := vv;vj1; is an induced path and v; is not incident
to any chord of Cy where (s is the cycle of length t — j + 1 obtained from adding
vjvy to the (v;, ve)-section of Q. If j > 3, then, by (x), Ps := v1vpv; is an induced
path and vy is not incident to any chord of C'5 where Cj is the cycle of length 7 + 1
obtained from adding vov; to the (vp, v;)-section of ). We note that ¢t —j + 1 > 4 if
j=1or2and j+12>4for j > 3. Therefore each of C'; and C5 has length at least
4.

Case 2. L has length at least 3. Then, for each vertex z on K, vgxr or vz is a
chord of C. Therefore V(K) C V(T) and so, by the maximality, V(K) = V(T).
Thus, by (%), Pi = v199v; is an induced path and vy is not incident to any chord of
the cycle C.

For each 1 <1 < 3, by applying Lemma 4.6 to P; and C;, we may conclude that
P; can be extended to a hole in P(D) whose vertices are on C;. Since the cycles
C1, Cy, and Cj are contained in V(C'), the subgraph of P(D) induced by V(C') has

a hole and so the statement is true. O

Lemma 4.8. Let G be a graph and C be a cycle of G. Suppose that there exists a
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mazximum clique K of size at least four in V(C). If C has length at least five, then,
for each pair of vertices in K, there is a path between them consisting of only chords

of C.

Proof. Suppose that C has length at least five. Let K* be the graph obtained from K
by deleting edges of C' in K. Since |V (K*)| = |V (K)|, there are at least four vertices
in V(K*) and we take four vertices vy, v, vs,v4 in V(K™). Let T be the subgraph
induced by {vq,v2,v3,v4} in K*. Since C' has length at least five, at most three edges
of C' were deleted from the clique on {vy,v9,vs,v4} to obtain 7. Even when three
edges were deleted, T' is isomorphic to a path of length 3. Thus 7' is connected.
Since vy, v, v3, and vy were arbitrarily chosen from V(K*), we conclude that K* is

connected and so the statement is true. O]

Lemma 4.9. Let H be a hole with length | > 5 in the underlying graph of an (i, 2)
digraph D and C' be the cycle obtained from H. If i > 3, then a maximum clique in
V(C) has size at most i in P(D).

Proof. To the contrary, we suppose that ¢ > 3 and there exists a clique K in V(C)
of size at least i + 1. Then |V(K)| > 4. We first assume that C' has length at least
five. Then, by Lemma 4.8, for each pair of vertices in K, there is a path between
them consisting of only chords of C'. Therefore, by Proposition 4.4(3), there exists
a common out-neighbor w of the vertices in K. Thus w has indegree at least ¢ + 1,
which contradicts the fact that D is an (4,2) digraph. Hence C has length at most
4. Then, since |V (K)| > 4, C has length 4 and so |V (C)| = |V (K)| = 4. Thus each
vertex on C' is incident to a chord. However, since |I'g| > 1, there is a vertex on C'
having two out-neighbors in V(H) by Lemma 4.3(3). Thus the vertex on C' is not
incident to any chord by Corollary 4.5 and so we reach a contradiction. Hence the

statement is true. OJ

Theorem 4.10. Let H be a hole with length | > 5 in the underlying graph of an
(1,2) digraph D with i > 3 and C be the cycle of length at least four obtained from
Hbyly. If

=Tyl >2i+1 or <3|l
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then the subgraph of the phylogeny graph of D induced by V(C') has a hole.

Proof. By the definition of C, |V(C)| = | — |T'y|. Since @ > 3 by the assumption,
each maximum clique in V' (C) has size at most ¢ by Lemma 4.9.

We first suppose | — |I'y| > 2i + 1. Then % > 4. Since |V(C)| <1 -1 by
Lemma 4.3(1),

V() -1 12 V_lJ
< < .
2 - 2 = 2

5

and so, by Theorem 4.7, the statement is true.

Therefore

Now we suppose

Let
A={veV(C)| IN*(v) NV(H)| =2}

and
B={veV()||INT(v)NV(H)| =1}.

Take a vertex v on C. Then, by Lemma 4.3(2), N*(v) N V(H) # . Since D is an
(1,2) digraph, [IN*(v) N V(H)| < 2 and so v € AU B. Therefore V(C) = AU B
where A LI B represents the disjoint union of sets A and B. Then, since |A| = |T'y]
by Lemma 4.3(3), |B| = |V(C)| — |A| =1 —2|l'y|. Thus |B| < |A| by (4.1). Hence
there exist two consecutive vertices u and v on C that belong to A. We take the
section @ := wvw of C. Since {u,v} C A, neither u nor v is incident to any chord
of C' by Corollary 4.5. Therefore () is an induced path of length two. Thus () can
be extended to a hole in P(D) whose vertices are on C' by Lemma 4.6. Thus the

statement is true. ]

At the end of preparation for the proof of Theorem 4.1, we need a notion of perfect
elimination orderings. A perfect elimination ordering in a graph is an ordering of the

vertices of the graph such that, for each vertex v, v and the neighbors of v that come
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after v in the order form a clique. It is well-known that a graph is chordal if and only
if it has a perfect elimination ordering. A simplicial verter is one whose neighbors
form a clique.

From now on, we use the notation u — v (resp. u # v) to represent “(u,v) is

(resp. is not) an arc of a digraph”.

Proof of Theorem 4.1. Suppose | > 3t + 1. If © = 2, then the statement is true by
Theorem 1.18. Now we assume ¢ > 3. Let C' be the cycle obtained from H by I'py.

Since i > 3, % > % > 5. Then, since |[V(C)| > 1 — Léj > % by Lemma 4.3(1), C

has length at least five. To the contrary, we suppose, that
I =Tyl <2 and [ >3y

Then 3|I'y| — |I'y| < 1 — |I'y| < 2i and so we obtain |I'y| < i. Since [ > 3i + 1,
[ — |T'g| > 2i + 1, a contradiction. Therefore

Thus the statement is true by Theorem 4.10.
To show the “further” part, we consider an (i,2) digraph D with the vertex set

V(D) = {U, V0,1, V0,2, V0,3, V1,1, V1,2, V1,3, - - - , Vi—1,1, Vi—1,2, Uz‘—l,g}
and the arc set
A(D) = {(vj1,v52), (vj2,053), (Vj1,Vj-13), (Vj2,u) [0 < j <i—1}

(each subscript of the vertices in D is reduced to modulo i and see the digraph
given in Figure 4.1 for an illustration). Then V(D) — {u} forms a hole H of length
3i in U(D). Since vj_12 — vj_13 and v;; — vj_13 foreach 0 < j <i—1, C =
V0 1V0,2V1,1012 * -+ Vi—11Vi—12V01 18 the cycle obtained from H in P(D). Since u is a

common out-neighbor of any pair in K := {v;» | 0 < j <i—1}, K forms a clique in
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Vo,2

Figure 4.1: The digraph D in the proof for the “further” part of Theorem 4.1
P(D). We can check that for each 0 < j <i—1,in P(D),

N(u) =K, N(vj1)={vj-13,vj-12 Vj2},

N(Uj,g) = {u, Uj71, Uj73, Uj+1’1} L K, and N(Uj,g) = {Uj’g, Uj-l—l,l}‘

We note that, for each 0 < j <i—1, v;3 is a simplicial vertex in P(D) — u and v;

is a simplicial vertex in P(D) — {u,v93,v13,...,vi—13}. Therefore

u,vo,3,01,3 - - -, Vi—1,3,00,1, V1,15 - - - , Vi—1,1, V0,2, V1,2, - - - , Vj—12

is a perfect elimination and so P(D) is chordal. Then, since |V (H)| = 3i, we conclude
that the desired bound 37 + 1 is achieved by D. [

4.2 Forbidden subgraphs for phylogeny graphs of degree bounded
digraphs

Proposition 4.11. Let D be an (i,7) digraph and N be a set of neighbors of some
vertex in P(D). If any k vertices in N do not form a clique in P(D) for some positive
k, then |IN| < (k—1)(j +1).

Proof. Let u be a vertex such that N is a set of its neighbors in P(D). Suppose that

any k vertices in N do not form a clique in P(D) for some positive integer k.
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By the definition of phylogeny graph,

Nwy=| |J N (v)={u} | UNT() UN"(u). (4.2)
)

vENT(u

Take a vertex v in D. Then N~ (v) U {v} forms a clique in P(D) and so (N~ (v) U
{v}) N N is an empty set or forms a clique in P(D). Thus, by our assumption,

IN“(0) " N| < [(N"(v) U{o}) " N| < k— 1. (4.3)
Further, if v € N, then [N~ (v) N N| < [(N~(v) U {v}) N N| and so
IN“(0) N N| <k —2. (4.4)
We note that N(u) "N = N and v ¢ N. Then, by (4.2), (4.3), and (4.4),
N < ST N @NAN+ Y IN @) NN+ [N () AN+ [N (u) ]

vENT(u)NN vENT(u)—N

<(k=2)-IN*(w)NN|+(k—=1)-[N*(u) = N|+ |NT(u) " N| + (k= 1)

= (k= D(NT(u) NN+ [N (u) = N[ + 1) = (k = )(IN"(u)| + 1) < (k = 1)(j 1)

We say that a graph G is (¢, ) phylogeny-realizable through an (i,7) digraph if
it is the (,7) phylogeny graph of an (, j) digraph. (when no confusion is likely to
arise, we omit ‘“‘phylogeny” and “through an (7, j) digraph’)

Proposition 4.12. If an (i,j) phylogeny graph contains an induced subgraph H
isomorphic to Ky, for some positive integer I, then | < j+1 and H = K ji; is

realizable.

Proof. We suppose that an (i,j) phylogeny graph P(D) contains an induced sub-
graph H isomorphic to K ;2. Let u be the center of H. Then V(H)—{u} is a subset
of N(u) such that any two vertices in V(H) — {u} do not form a clique in P(D).
Therefore |V(H) — {u}| < j+ 1 by Proposition 4.11, which is a contradiction.
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To show that H = K j; is realizable, let D be a digraph with the vertex set
V(D) =A{u,v,wq,...,w,}

and the arc set

A(D) = {(u, 0)} U{(v,w) [ 1 <k <3}

Then we can check that D is a (1, j) digraph and P(D) is isomorphic to K ;41 with

the center v and so the statement is true. O]

Lemma 4.13. If an (i,j) phylogeny graph contains an induced subgraph H isomor-
phic to K j41 with the center v, then [N~ (v) NV (H)| = 1.

Proof. Suppose that, for an (7, j) digraph D, P(D) contains an induced subgraph H
with the center v isomorphic to K j11. Since H is triangle-free, [N~ (v) NV (H)| < 1.
To the contrary, suppose that |[N~(v) N V(H)| = 0. Then, if all the edges in H are
cared edges, v has at least 7 + 1 out-neighbors, which contradicts the fact that D is
an (7, j) digraph. Therefore H has at least one edge in U (D). Let [NT(v)NV (H)| =k
for a positive integer k. Then

INT(v) = V(H)| <j—k (4.5)
since v has at most j out-neighbors. Moreover, there are j+1—k cared edges incident
to v. Let uv be a cared edge. Then, by the definition of cared edges, v and v have a
common out-neighbor w. Since H is triangle-free, w belongs to N*(v) — V(H) and
N~ (w) N V(H) = {u,v}. Since the cared edge uv was arbitrarily chosen, we may

conclude that the number of cared edges, which equals 7+ 1 —k, is less than or equal

to |[N*(v) — V(H)|, which contradicts (4.5). O

Proposition 4.14. If an (i,j) phylogeny graph contains an induced subgraph H
isomorphic to K, ,, for some positive integers m and n, thenm < j+1 andn < j+1
where the equalities cannot hold simultaneously, and H = Kji, ; is realizable unless
i=1.
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Proof. We suppose that there exists an (4, 7) phylogeny graph P(D) containing an
induced subgraph H isomorphic to K,,, for some positive integers m and n. Take
a vertex v in the partite set of H with size m. Let X be the other partite set of H.
Then ({v}, X) is the bipartition of a subgraph isomorphic to K;,. Thus n < j +1
by Proposition 4.12. By symmetry, we conclude m < j + 1.

To show that either m < j+1 or n < 741 by contradiction, suppose m = n = j+1.
Let v be a vertex in H as before. Then there exists a subgraph H, in H isomorphic
to K ;41 such that v is the center of H,. Therefore, by Lemma 4.13, v has one in-
neighbor in the subdigraph induced by V' (H,). Then, since H, is a subgraph of H,
v has one in-neighbor in V(H). Since v was arbitrarily chosen from H, each vertex
in the subdigraph induced by V(H) has one in-neighbor in V(H). Take a vertex v;
in V(H). Then there exists an in-neighbor vy in V/(H). We may repeat this process
until we obtain a directed cycle, which contradicts the fact that D is acyclic.

Now we show that H = K4 ; is realizable. We construct an (7, j) digraph whose
phylogeny graph contains an induced subgraph isomorphic to Kj; ; for an integer
1 > 2. Let D be a digraph with the vertex set

V(D) ={uy,ug ..., uj41,01,09,...,0; U{wpm | 1 <1,m < j},
and the arc set

A(D) = {(u,v) | 1 < T < jRU{ (v, wim) | 1< 1,m < j}
U {(u, wimy) [ 1< Em < g, T#Fm} U {(ujp,wy) | 1 <1< 5}

(see the (2,2) digraph whose phylogeny graph having an induced subgraph isomor-
phic to K39 with the bipartition ({uy,us,us}, {v1,v2}) given in Figure 4.2 for an
illustration). Then we can check D is an (i, j) digraph and

{urs vz ujend, {vr, 02,00, 05})
is the bipartition of a subgraph isomorphic to K;.; ; in P(D). O
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Figure 4.2: A (2,2) digraph whose phylogeny graph contains K3 as an induced
subgraph

For i =1 or j = 1, an (4,j) phylogeny graph is completely characterized by the
following theorems. Hereby, we only consider (i,j) phylogeny graphs for ¢ > 2 and
J =2

Theorem 4.15 ([18]). For a positive integer j, a graph is a (1,7) phylogeny graph

if and only if it is a forest with the mazimum degree at most j + 1.

Given a graph G, we denote the size of a maximum clique in G by w(G). The
clique graph of a graph G, denoted by K(G), is a simple graph such that (i) every
vertex of K (G) represents a maximal clique of G and (ii) two vertices of K(G) are

adjacent when they share at least one vertex in common in G.

Theorem 4.16 ([18]). For a positive integer i, a graph is an (i,1) phylogeny graph
if and only if it is a diamond-free chordal graph with w(G) < i+ 1 and its clique
graph is a forest.

Proposition 4.17. If an (i,j) phylogeny graph contains an induced subgraph H
isomorphic to a fan P,V Iy or a wheel Cy V Iy for some positive integers i, j, { with
i, > 2, then { <2j+2, and H= P9V I, and H = Cy;,9 V Iy are realizable.

Proof. Suppose there exists an (7, j) digraph D whose phylogeny graph contains an
induced subgraph H isomorphic to a fan P,V{u} or a wheel CyV{u} in P(D) for some
vertex v in D and some positive integer £. Since j > 2, 27+2 > 4 and so the statement
is immediately true if ¢ < 4. Suppose ¢ > 4. Then V(H) — {u} € N(u) and any 3
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Figure 4.3: The (2,3) digraphs D; and Dy and the phylogeny graphs P(D;) and
P(Dy) containing P V I; and Cg V I; as an induced subgraphs, respectively



vertices in V(H)—{u} do not form a clique in P(D). Therefore |V (H)—{u}| < 2(j+1)
by Proposition 4.11. Thus ¢ < 2(j + 1).

To show that H = P9 V I} and H = Cyj49 V I; are realizable, let D and D,
be (i, 7) digraphs with the vertex sets

V<D1) = {’U,, U1, V2,3, V4, W1, . . . 7w2j*2}7 V(D2) = V(Dl) U {.T},
the arc sets

A(Dq) ={(u,wy) | k is an even integer} U {(wy, wr41) | 1 < k < 25 — 2}

U {(Uh u), (U27 u)v (7}27 U3)7 (U37 U4>7 (u7 U4)7 (U47 wl)}

and A(Ds) = A(D1)U{(v1, ), (waj—_2,7)} (see Figure 4.3 for the digraphs D; and D,
when i = 2 and j = 3). Then one may check that u is adjacent to vy, va, vg, vg, w1, . .., Waj_2
in both P(D;) and P(Ds). Moreover, P := v1090304wiWs - - - Wa;_o is an induced path
of length 25 + 1 in P(D;) and C := v1090304wws - - - Wej_ovy is an induced cycle of
length 25 + 2 in P(D,), respectively. Thus PV {u} and C' V {u} are the desired
induced subgraphs. Therefore the the statement is true. ]

We call a vertex of indegree 0 in a digraph a source.
The following lemma is immediate consequence from the definition of phylogeny

graphs.

Lemma 4.18. Let D be an (i,7) digraph. Suppose that a vertex u has ij neighbors
in the phylogeny graph of D and D' is the subdigraph induced by u and these ij

neighbors. If u is a source of D', then the following are true:
(1) u has outdegree j in D';
(2) Each out-neighbor v of u has indegree i in D' and Np(v) N N (u) = 0;
(3) Np(v) N Np(w) = {u} for each pair {v,w} of the out-neighbors of .

Lemma 4.19. Let D be an acyclic digraph. If u is a source in D and each of its

out-neighbors has indegree at least 2, then D has a source distinct from it.
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Proof. Suppose that u is a source in D and each of its out-neighbors has indegree
at least 2. Then, since D is acyclic, D — u is acyclic and so there exists a source
v in D — u. Since each out-neighbor of v has indegree at least 2 in D, v is not an

out-neighbor of u in D. Therefore v is a source in D. [
Now we are ready to extend Theorem 1.21 in Lee et al. [39] for an (7, j) digraph.

Theorem 4.20. Let G be an (i,7) phylogeny graph for positive integers i,j with
i,7 > 2. Then w(G) < ij and the inequality is tight for i <3 and j = 2.

Proof. To reach a contradiction, suppose that there is an (i,j) digraph D whose
phylogeny graph P(D) contains an induced subgraph H isomorphic to K;j41. Let Dy
be the subdigraph of D induced by V(H). Since D, is acyclic, there is a source u in
D;. Then [N}, (u)| = j by Lemma 4.18(1). Therefore

Np, (u) = Nf (u).

Let
(v)” = Np, (v) — {u}

for each v € N}, (u). Then, since ij edges in H incident to u, for each v € N} (u),

()" [=i=1,  (v)” CV(H), (4.6)
and
(V)" N NA(u) =0 (4.7)
by Lemma 4.18(2) and
(V)"0 (w)~ =10 (4.8)

for each pair {v, w} of the out-neighbors of u by Lemma 4.18(3). Therefore N, (v) =
Np(v) by (4.6) and so
(0)” = Np(v) = {u}

for each v € N} (u). We note that [N (u)| = j and |[(v)~| =i —1 for each v € N} (u)
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by (4.6). Therefore

V(H)={u}uNjwu | []| @ ]. (4.9)

’UENg(’U,)

Since each out-neighbor of u has indegree i in D; by Lemma 4.18(2), D; has a source
w distinct from u by Lemma 4.19. Then w € |_|U€N$(u) (v)~ by (4.9) and so w € (vy)~
for some v; € NJ(u). Thus, by (4.8),

w A v (4.10)

for any v € N (u) — {v1}. Since w is a source, by Lemma 4.18(1) and (2) applied to
w, the out-neighbors of w belong to V(H) and

(I (4.11)

for any z € (v)~. Take vy in N7 (u) — {v1}. Then, by (4.10), w # vy. Moreover,
since w is a source, vs /4 w and so w and vy have a common out-neighbor y; in
V(H). By (4.11), y ¢ (v1)~. Then, since u — vy, and vy — y1, u # y1. If y; € N (u),
then vy € (y1)~, which contradicts (4.7). Thus y; ¢ N} (u). Then, since y; # u,
v € Upeng(v)™ by (4.9). Therefore y1 € (vs)™ for some vy € N7 (u). Then
y1 — vs. In addition, since w — yi, y1 ¢ (v1)~ by (4.11) and so vz # v;. We
obtain a directed path P, := v, — y; — v3 whose sequence has two terms v, and wvs
belonging to N/ (u) — {v;}. We note that we only used the fact that v, belongs to
N (u) — {v1} to derive the directed path P;. Since vz also belongs to N} (u) — {v;},
we may apply the same argument to obtain a directed path P, := v3 — 1y — vy for
some vertices y, in V(H) and vy in Nj(u) — {v;}. In the above process, we observe
that a directed path P, — P, was obtained where P, = v,11 — Y, — Uqyo for
each a € {1,2}, {vg,v3,v4} C Njy(u) — {v1}, and {1,492} € V(H). We continue in
this way to obtain the directed walk P := P, — P, — --- — P,;_;. By the way,

P contains a closed directed walk. For, vg,...,v;41 belong to Nj)(u) — {v;} and
INS(u) — {v1}| = j — 1 (recall that u has outdegree j) and so v; = v, for some
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distinct integers I,m € {2,...,j + 1}. Therefore we reach a contradiction to the
fact that D is acyclic. Hence P(D) is K;;41-free. Consequently, if an (¢, j) phylogeny
graph contains an induced subgraph isomorphic to K; for positive integers i > 2,
j >2and [, then [ <ij.

By the digraphs given in Figures 4.4 and 4.5, the inequality is tight when ¢ < 3

and j = 2. Therefore the statement is true. O

Lemma 4.21. If there exists an (i,j) phylogeny graph containing an induced sub-
graph H isomorphic to K; for a positive integer | > 2, then, for any positive integer
m, there exists an (i+m, j) phylogeny graph containing an induced subgraph isomor-

phic to Ky p,.

Proof. Suppose that there exists an (7, j) digraph D whose phylogeny graph P(D)
contains an induced subgraph H isomorphic to K; for some positive integer [ > 2.
To show the statement, it suffices to construct an (i + 1, j) digraph whose phylogeny
graph contains an induced subgraph isomorphic to K.

Let Dy be the subdigraph induced by V(H) of D. Since D is acyclic, Dy is
acyclic. Then there exists a source u in D;. Take a vertex v € V(H). Then v = u
or v € Nj (u) or u and v have a common out-neighbor, i.e. v € Np(z) for some
x € Nj(u). Since Nj, (u) € Nj)(u), we have shown

vHE) S [ | Np() | UNS(u). (4.12)

xENg(u)

Then, since |V (H)| =1 > 2, there exists a vertex y in V' (H) distinct from u. Therefore
y € UzeNg(u) N (z) or y € Nj(u). Thus, in each case, we show N} (u) # (. We add
a new vertex w and the arc set {(w,z) | (u,z) € A(D)} to D. Then the resulting
digraph D’ is an (i + 1,j) digraph. Moreover, for each v in V(H), v and w have
a common out-neighbor or w — v by (4.12). Thus V(H) U {w} forms a clique in
P(D"). O

Given an (i,2) phylogeny graph G for positive integer i > 2, w(G) < 2i by
Theorem 4.20. Further, if i > 4, w(G) < %, which is strictly less than 2i, by the

2
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following theorem.

Theorem 4.22. Let G be an (i,2) phylogeny graph for a positive integer i > 4. Then
w(G) < % + 1 and the inequality is tight.

Proof. Suppose, to the contrary, that there exists an (i,2) digraph D whose phy-
logeny graph contains an induced subgraph isomorphic to K; for some positive in-
tegers ¢ > 4 and [ > % + 1. It suffices to consider the case where [ is the minimum

satisfying the inequality and so we may assume

31 1 )

If ¢ is even, then there exists an (i + 1,2) digraph D whose phylogeny graph con-

tains an induced subgraph isomorphic to K ] " by Lemma 4.21 (note that

G | (i1

(A+i+2)+1= L@J + (i + 1) + 2). By replacing D with D, we may assume

that i is odd. Therefore D is a (2k — 1,2) digraph whose phylogeny graph contains

an induced subgraph H isomorphic to K3 for some integer k > 3. We assume that

(A) D has the smallest number of arcs among the (7,2) digraphs with the vertex
set V(D) whose phylogeny graphs contain a subgraph isomorphic to K.

Then
(B) every vertex not belonging to V(H) has no out-neighbor in D.
Let Dy be the subdigraph induced by V(H) of D. Then V' (D;) forms a clique in P(D).

Moreover, D; is acyclic and so D; has a source. If a source in D; has outdegree at
most 11in D, then it is adjacent to at most 2k—1 vertices in H and so it is nonadjacent
to some vertex in H in P(D), which is impossible. Therefore each source in D; has

outdegree 2 in D. Take a source u in Dy. Then
Np (u) = {v, w}
for some vertices v, w in D. For simplicity, we let
[u]* = Nj (w), [o] = Np()NV(H), and [uw]” = Np(w) N V(H).
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Take a vertex h € V(H)—{u}. Then h is adjacent to u. Therefore one of the following
is true: (i) h € [u]T; (ii) h is an in-neighbor of exactly one of v and w, that is, h
belongs to the symmetric difference [v]~ A [w]™; (iii) A is a common in-neighbor of
v and w, i.e. h € [v]” N [w]” — {u}. This together with the fact that u € [v]” N [w]~
implies that

V(H) = ([v]” A fw]” = [u]) Uu]" U (o] N [w]7). (4.13)

Thus
3k =|[]” Aw)” = [W]*| + |[u]T] + [[v]” N [w]|. (4.14)
Hence
3k < Hv]_ A [w]_‘ + Hu]ﬂ + |[U]_ N [w]_‘ = Hv]_ U [w]_‘ + Hu]ﬂ )
Therefore
|[v]” = [w]™| = |[o]” U [w]7| = |[w] 7| > |[o]" U w]7| = (2k = 1)
>3k — [t - 2k —1)=k+1— |

and so

0] = [w]™| = k+1—|[u]]. (4.15)

Since there is no distinction between v and w,
[w]™ =[] 7| = k41— |[u]*]. (4.16)

By our assumption, k£ > 3 and |[u]*| < 2. Therefore we have the following by (4.15)
and (4.16):
[0]” —[w]7| >2 and |[w]” —[v]7|>2 (4.17)

Suppose |[u]T| = 0. Then {v,w} NV (H) = @ and so, by the property (B), N (v) =
N (w) = 0. Let Dy be the subdigraph of D; induced by [v]~ A [w]~. Then Dy is

acyclic and so D, has a source, namely u’. Without loss of generality, we may assume
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v € [w]” —[v]”. Then we obtain the digraph D’ by deleting the arc (uv’, w) and adding
the arc (v,w) in D. We can check that D’ is a (2k — 1,2) digraph and the graph
induced by (V(H) — {u'}) U {v} of P(D’) is isomorphic to K3;. Thus it suffices to
consider the case

[u]*| > 1.

Claim A. If v € [u]T (resp. w € [u]T) and v — w (resp. w — v), then N} (v) = {w}
(resp. N (w) = {v}).

Proof of Claim A. Suppose that v € [u]", v — w, and N} (v) # {w}. Then v has
the other out-neighbor w’ distinct from w. By (4.13), V(H) = [v]” U[w]~ U[u]T. Let
D" be the digraph obtained from D by deleting the arc (v, w’). The adjacency of two
vertices except v in V(H) does not change in P(D"). Now take a € V(H) — {v}.
Then a € [v]” U [w]” U u|t. If a € [v]7, then (a,v) € A(D"). If a € [w]™, then
w is a common out-neighbor of a and v in D”. If a € [u]", then a = w and so
(v,a) = (v,w) € A(D"). Thus, in each case, v is adjacent to a in P(D”). Hence
P(D") contains H. Since D" # D, we reach a contradiction to the property (A).
Thus N} (v) = {w}. Since there is no distinction between v and w, N (w) = {v} if

w € [u]t and w — v. Therefore Claim A is true. O
Without loss of generality, we may assume
v € [u]t.

Claim B. If there is no arc between v and w, then there exists a vertex v’ distinct

from v and w such that

(o] = fwl™) U (fw]” = o]” = {v'}) € Np ().

Proof of Claim B. Suppose that there is no arc between v and w. There exists a
vertex wy in [w]~ — [v]” by (4.17). Suppose w; — a for some a € [v]” — [w]~. Then
Nt (w;) = {a,w}. Since v € [u]t C V(D;), wy and v are adjacent. Then, since v /4 a

and there is no arc between v and w, w; and v have no common out-neighbor and
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so v — wy. Thus v — w; — a — v is a directed cycle, which is impossible. Hence
N (wy) N ([o]” = [w]™) = 0. Since w; was arbitrarily chosen from [w]™ — [v]™, we
conclude that

NiG) N (] = [w]”) =0 (4.18)

for each z in [w]™ — [v]7. Take a vertex vy in [v]” — [w]™. If N} (v;) = {v}, then
v is not adjacent to any vertex in [w|™ — [v]” by (4.18) (note that v 4 w). Thus
N (v1) = {v,0v'} for some vertex v' distinct from v. Then v # w. Take a vertex
wy in [w]” — [v]7 — {v'}. Then v; and w; are adjacent. By (4.18), wy # v;. Since
wy 7 v, wy — v'. Since w; was arbitrarily chosen from [w]™ — [v]” — {v}, v/ is an

out-neighbor for each in [w]™ — [v]” — {v'}. Thus

{oip U ([w]” =[] = {v'}) € Np(©). (4.19)

Suppose vy 4 v’ for some vy in [v]” — [w]” — {v1}. There exists a vertex wy in
[w]” — [v]” — {v'} by (4.17). Then wy — w. Moreover, by (4.19), wy — v’. Thus
Nt(wy) = {v/,w}. Hence vy and wy have no common prey. Then, since v, and
wy are adjacent and wy 4 vy by (4.18), v3 — wy and so Np(ve) = {v,wy}. If
v € [w]” — [v]7, then v' 4 vy by (4.18) and so v’ and v, are not adjacent, which is
impossible. Thus v' & [w]™ — [v]~. Then there exists a vertex ws in [w]™ — [v]” —{ws}
by (4.17). Since v' & [w]™ — [v]7, w3 # v'. In addition, vy 4 w3 and w3 /4 vy. Since
vy and wjy are adjacent, w3 — wq and so, by (4.19), {v/,w,wy} C N} (w3), which is
impossible. Thus there exists an arc from any vertex in [v]~ — [w]™ — {v; } to v/, that
is, [v]” — [w]” — {v1} € N, (V). Hence, by (4.19),

(0] = [w]”) U ([w]” = []” = {v'}) € Np(v'). =

Case 1. |[u]t] = 2. Then [u]" = {v,w}. If w — y for some y € [v]” and v — z
for some z € [w]™, then w - y — v — z — w is a closed directed walk, which is

impossible. Thus either w /4 y for any y € [v]” or v 4 z for any z € [w]~. Since
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[u]" = {v,w}, we may assume, without loss of generality, that

w Ay (4.20)

for any y € [v]~. There exists a vertex vy in [v]” —[w]” —{w} by (4.17). Then w 4 vy,
v; 4 w, and w and v; are adjacent. Therefore there exists a common out-neighbor
v* of w and v;.

Subcase 1-1. w — v. Then, by Claim A, N*(w) = {v} and so v* = v. Thus

v € N (vy).

Since w — v,

v A w.

If v — z for some z € [w]~, then v — z — w — v is a directed cycle. Thus

vz (4.21)

for any z € [w]~. There exists a vertex w; in [w]™ — [v]~ by (4.17). Then v /4 wy,
wy /4 v, and v and w; are adjacent. Therefore there exists a common out-neighbor
w* of v and wy. Thus w* & [v]~ and w* # w. Hence N (w;) = {w,w*}. In addition,
w* & [w]~ by (4.21) and so

w* & [v]” U w]".

Since v; and w; are adjacent and wy 4 vy, v1 — w* or v; — wy. By the way, there
exists a vertex wsy in [w]~ —[v]” —{w } by (4.17). Since v 4 wy and wy 4 v, v and wy
have a common out-neighbor w**. Then w** ¢ [w]~ by (4.21). In addition, w* & [v]~
and w** # w. Then N} (wq) = {w,w**}. Suppose v; — w;y. Then N} (v1) = {v,w;}.
Since v, and wy are adjacent, w** = w; and so w** € [w]|~, which is impossible. Thus

vy — w* and so Nj(v1) = {v,w*}. Since v; and wy are adjacent and w* # ws, we

conclude w* = w**. Since wy was arbitrarily chosen from [w]|™ — [v]™ — {w },
[w]™ =[] € Np(w?),
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Moreover, v; € N (w*). Since v; was arbitrary chosen from [v]” — [w]™ — {w},
[o]” = fw]” = {w} € Np(w).

Since w — v,

v ¢ [w]” = v, (4.22)

Then, since v € N, (w*),
([o]” = [w]™ = {w}) U (fw]” = [o]7) U {v} € Np(w").
Let s = [[v]” — [w]” — {w}| and t = [[w]™ — [v]7]. Since w — v,
w e ] = [w]. (4.23)
Then, by (4.15) and (4.16), s > k—2 and ¢ > k — 1. Then, since | N, (w*)| < 2k — 1,
(s,t) e {(k=2,k—1),(k—1,k—1),(k—2,k)}.
and so s + ¢ < 2k — 2. Then, since [u]* = {v, w},
o] Aw]™ = [u]" = ([o]” = [w]” = {w}) U ([w]” = [o])
by (4.22) and (4.23), and so |[v]"Afw]™ — [u]*| = s + t. Accordingly, by (4.14),
W] Nw] | =3k —(s+t+2) >3k -2k =k (4.24)
Thus |[v]~ N [w]~| > k. Hence
2k — 1> |[Np(w)| > |[w]” =[] |+ ] Nw] | >k—14+k=2k-1
and so | N, (w)| = 2k — 1. Therefore t = |[w]™ — [v]7| = k — 1 and |[v]” N [w]~| = k.

Then s+t = 2k — 2 by (4.24) and so s = |[v]” — [w]” — {w}| = k — 1. Further, since
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{wi U ([o]” = [w]” = {wh) U ([o]” N w]™) € Np(v),
{w} +[[o]” = [w]” = {w} + |p]” N [w]"[ =1+ (k= 1) + k =2k < [N (v)],

which is impossible. Therefore Subcase 1-1 cannot happen, i.e. w /4 v.

Subcase 1-2. v — w. Then, by Claim A, N (v) = {w}. Thus v 4 z for any z €
[w]~. Hence, by (4.20), the argument obtained by replacing v with w and adjusting
other vertices based upon the replacement in the argument for Subcase 1-1 may be
applied to reach a contradiction.

Subcase 1-3. There is no arc between v and w. Then, by Claim B, there exists a

vertex v’ such that
([v]” = [w]7) U ([w]™ = [v]” = {v'}) € Np ().

Then v; — v'. Since Nj(vy) = {v,v'}, v = v*. Since w — v*, v* & [w]~ — [v]~ and
S0

(o] = Twl™) U (fw]” = [o]) U {w} € Np(v").
Then, since [N, (v*)| < 2k — 1, |[v]” — [w]7| = |[w]” = [v]7| = k — 1 by (4.15) and
(4.16). Hence

([o]™ = [w]™) U ([w]™ = ] 7) U {w} = Np (v7).

Then v 4 v*. Take a vertex z in [w]™ — [v]~. Therefore Nj(z) = {v*,w}. Then,
since v 4 w, v and z have no common out-neighbor. Since v is adjacent to z,
z —vorv— 2z Thus z € NJ(v). Since z was arbitrarily chosen from [w]™ — [v],
[w]™ — [v]” € N} (v) and so, by (4.17), N} (v) = [w]™ — [v]~. Thus v and w have no
common out-neighbor. Moreover, since w /4 v and v 4 w, v and w are not adjacent,
which is a contradiction.

Case 2. |[u]T| # 2. Then
[u]" = {v}.
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Thus w ¢ V(H) and so, by the property (B),
Nj(w) = 0.
Suppose v /4 w. Then, by Claim B, there exists a vertex v’ such that
(o] — [w]) U (fw]” — [l — {v'}) € Np ().
Then
Bk —1< (] — o] )|+ (] — o] — {o'})] < [Np@)] <2k~ 1

by (4.15) and (4.16). Thus |[v]” — [w]7| =k, |[w]” = [v]” = {V'} =k -1,

v e [w]T =], (4.25)

and
([o]” = [w]") U ([w]” = ] = {v'}) = Np(v"). (4.26)
Then, since v & [w]~, v &€ Np(v') by (4.26) and so v 4 v'. Since |[w]™ — [v]” —
{v'}| = k—1 > 2, there are two vertices w; and ws in [w]™ — [v]” — {v'}. Then
N7 (wy) = Nj(wq) = {w, v’} and so each of w; and ws, shares no out-neighbor with
v. Therefore N (v) = {w;,wy}. Then, since {w;,wy} C [w]™ — [v]” — {v'}, v and
v" have no common out-neighbor by (4.26). In addition, since v' € [w]~ — [v]~ by

(4.25), v" 4 v. Hence v and v are not adjacent, which is impossible. Consequently,

we have shown

v — w.
Then, by Claim A,
Np(v) = {w}.
Let Dj be the subdigraph of D induced by [v]~ A [w]™ — {v}. Since Dj is acyclic,
Dj; has a source, say x. Then x € [v]” — [w]” or z € [w]™ — [v]".
Then we claim the following
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Claim C. z € [v]” — [w]” and there exists an out-neighbor x* of = such that
[0]” A w]™ —{v, 27} = Np(a").

Proof of Claim C. Let « denote a vertex between v and w with x € [a]” — [B]~
and 3 denote the other vertex. If Nj(z) = {a}, then = cannot be adjacent to any
vertex in [3]” — [a]” — {a} since x is a source in D3. Thus N} (x) # {a} and so
N (z) = {a,z*} for some z*.

To show N (z*) C [v]” Aw]” —{v, 2"}, take b € N (2*). Then b € V(H) by the
property (B). Moreover, b # z*. If b € [v]” N [w]~, then N} (b) = {v, w, z*}, which is
impossible. Therefore b & [v]” N [w]~. By (4.13), b € [v]” A[w]” —[u]T or b € [u]*. If
b € [u]T, then b = v and so N} (b) = N (v) = {w}, which implies b &€ N, (z*). Thus

be [v]” Afw]” —[u]t. Then, since b # z*, b € [v]” A [w]” — {v,2*} and so
Np(@®) € [o]” A& w]™ —{v,27}. (4.27)
Since x € [a]” — [B]7, " # B. Moreover, since z is a source in D3 and z is
adjacent to any vertex in [3]” — [a]” — {«, z*}, 2* is an out-neighbor of any vertex

in [5]” — [a]” — {a,2*}. Thus

1B =)™ ={a, 2"} € Np(27) (4.28)
and
Np(2) = {z", B} (4.29)
for each z in [B]” — [a|” — {a, 2*}.

To show [a]” — [6]” — {a,2*} C N(z*), we note that [a]” — [5]” — {o, 2%} =
[a]” =[] — {x*}. Take a vertex y; in [a|” — [8]” — {z*}. To the contrary, suppose
y1 & Np(x*),ie. y1 4 a*. Then, since z — x*, y; # x. Take z; in [f]”—[a]”—{a, z*}.
Such a vertex exists since |[3]” — [a]” — {«,2*}| > 1 by (4.15) and (4.16). Then y;
and z; are adjacent, so y; — 21 by (4.29). Therefore N*(y;) = {«, z1}. Since z; was
arbitrarily chosen from [5]” — [a]” — {a, 2*}, [B]” — [a]” — {a, 2*} € NT(y1) and so
B =lel™ ={e, 2"} = {=z1}. Thus [B]” —[a]” € {e, 2", 21} Since [[6] —[a]"| > k >3
by (4.15) and (4.16), [5]” — [a]” = {a, 2%, 21}. Then z* and ¥, are adjacent. Since
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y1 /4 =* and x* and y; share no out-neighbor, z* — y;. Thus y; — 21 — 2" — y; is a

directed cycles, which is impossible. Hence y; — x*. Since y; was arbitrarily chosen

from [a]™ — [5]" — {7},
[]” = 18" —{a, 2"} = [o]” = []” = {27} € Np(2).

Then
w]” Aw]” —{a,27} C Np(z7)

by (4.28). Since v € [v]” A [w]™, @ = v and [v]” A [w]” — {v,2*} = Np(z*) by
(4.27). O

Since v — w and {v} = [u]" C [v]” A [w] ™,
by (4.13). Thus, by Claim C,
Np(z)u (([v]” A w]) n{o,2*}) U (] N{w]”) = V(H). (4.30)

Then, since |Np(2*)| <2k — 1 and |V (H)| = 3k, we conclude

o] N[> k-1 (4.31)

By the way, since [u]" = {v} and v € [w]™, |[v]” U [w]~| = 3k by (4.13). Then,
since |[u]*| =1,

W] = [w]"| >k and |[w]” —[]7| >k (4.32)

by (4.15) and (4.16). Therefore |[v]~ A [w]~| > 2k. Since |[v]~ U [w]~| = 3k,
(o] N [w]™| = |[v]” Uw]~| = |v]” Aw]"| <3k —2k =k

If |[[v]” N [w]~| = k, then, by (4.32), [[v]7| = |[v]” N[w]~| + |[v]” = [w]~| > 2k, which
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is impossible. Suppose |[v]” N [w]~| = k — 1. Then |[v]” A [w]~| = 2k + 1 and so
0]” =[] |=k+1 or |w]” =[] |=k+1

Hence [[v]™| = [[v]~N[w]~|+|[o] " —[w]~| = 2k or [[w]™| = |[o]~N[w]” |+|[w]” =[] =
2k, which is impossible. Therefore |[v]” N [w]~| < k — 2, which contradicts (4.31).
Thus we have shown that there is no (2k — 1,2) digraph D whose phylogeny graph
contains an induced subgraph isomorphic to K3 and so we conclude w(G) < % + 1.

To show that the inequality is tight, we present a (2k,2) digraph and a (2k+1, 2)
digraph each of whose phylogeny graphs contains Ks;; and K32 as an induced
subgraph, respectively, for any integer k£ > 2. Fix an integer k£ > 2. Let D; be a
(2k,2) digraph with

V(Dl) = {u,v,w,xl,xg, e T2k—15Y1 - - >yk7172}

and

2k—1

A(Dl) :{(u,v),(u,w),(v,w),(w,z)}U U {(ZL‘,,U)}
k—1 k—1 - 2k—1
U L w), (i, 2)y 0 (i w)y U [ {0, 2)}
=1 i=k

=1

(see the (4,2) digraph given in Figure 4.6 for an illustration). In the following, we
show that V(D;) — {z} forms a clique of size 3k + 1 in P(D;). We note that

Nt(u) ={v,w}, veNT(u)NNT(z;), and we N*(u)NN*(y;)

foreach 1 <i¢ <2k —1and 1 <j <k — 1. Therefore u is adjacent to the vertices in
V(Dy) — {u, z}. We can check that

N*(w)={w}, veN*(x;), and we N"(v)NN*(y;)
foreach 1 <7 <2k —1and 1 <j <k — 1. Therefore v is adjacent to the vertices in
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D X

Figure 4.4: A (2,2) digraph and its phylogeny graph

o @

Figure 4.5: A (3,2) digraph and its phylogeny graph

V(Dy) — {v, z}. Since
we N ()N NT(y;) and z€ N*(w)NN(z;)

foreach1 <i < k—1landk < j < 2k—1, wis adjacent to the vertices in V(D) —{w}.
Take x; for some i € {1,...,2k —1}. Since {z1,..., 291} C N~ (v), {z1,..., 2251}
forms a clique. If 1 <i < k — 1, then x; — w and so w is a common out-neighbor of
x;and y; foreach 1 < j < k—-1.1f k£ <¢ <2k —1, then z; — 2z and so z is a common
out-neighbor of z; and y; for each 1 < j5 < k — 1. Therefore z; is adjacent to the
vertices in {yi, ..., yk_1}. Thus ; is adjacent to the vertices in V(D) —{z;, z}. Since
{v1,. -, ye—1} € N~ (w), {1, ..., yx—1} forms a clique. Therefore we have shown that
V(Dy) — {z} forms a clique in P(D;). Then, by Lemma 4.21, we obtain a (2k + 1, 2)
digraph whose phylogeny graph contains an induced subgraph isomorphic to K3xo.
Hence we have shown that the inequality is tight. O

Proof of Theorem 4.2. Propositions 4.12, 4.14, 4.17, and Theorems 4.20 and 4.22
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Figure 4.6: A (4,2) digraph and its phylogeny graph

may be summarized in the aspect of forbidden subgraphs in an (i,j) phylogeny
graph with 7,5 > 2. ]

121



Chapter 5

On CCE graphs of (2,2) digraphs!

The (i, ) digraph is a simple digraph satisfying d~(z) < i and d*(z) < j for every
vertex x in V(D). By definition, a (4, j) digraph is a (i, j) digraph. Given a graph G,
we say that G is a (i,7) CCE graph if it is the CCE graph of a (i, j) digraph.

Proposition 5.1. The degree of each vertez in a (2,2) CCE graph is less than or
equal to 2. That is, a (2,2) CCE graph has only path components and cycle compo-

nents, where we identify an isolated vertex with a trivial path.

Proof. Let D be a (2,2) digraph. Take a vertex v of CCE(D). Since D is a (2,2)
digraph and CCE(D) is a simple graph, the ends of each edge incident to v in
CCE(D) have a common prey which is different from a common prey of the ends of
another edge incident to v. This implies that v has preys in D at least the number
of edges incident to v in CCE(D). Since v has at most 2 prey by (2,2) digraph D,
the degree of v in CCE(D) is at most 2. O

The following is an immediate consequence of the definitions of CCE graph and
(2,2) digraph.

Lemma 5.2. Let D be a (2,2) digraph and u be a vertexr which has degree 2 in
CCE(D). Then the following are true:

IThe material in this chapter is written based on the manuscript ‘Interval competition-common
enemy graphs of degree-bounded digraphs’ by Myungho Choi, Hojin Chu, and Suh-Ryung Kim.
The author thanks the coauthors for allowing him to use its contents for his thesis.
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(i) d*(u) = d—(u) = 2;

(i1) two prey (resp. predators) of u have u as the only common predator (resp.

prey);
(111)) Nt(u) # NT(v) and N~ (u) # N~ (v) for any vertex v in V(D) — {u};

(iv) each prey (resp. predator) of u is a common prey (resp. predator) of u and one
of its neighbors in CCE(D).

Given a (2,2) digraph D, CCE(D) = CCE(D*) where D* is the digraph ob-
tained from D by reversing the direction of each arc in D. Thus, given a (2,2) CCE
graph G and the collection D of (2,2) digraphs each of whose CCE graph is G, if a
digraph D chosen arbitrarily from D has a property «, then D% also has the property

a since D € D. Therefore the following proposition is true.

Proposition 5.3. Let G be a (2,2) CCFE graph and D be a (2,2) digraph satisfying
G = CCE(D). Then if « is a property of D, then the statement obtained from « by
replacing the term ‘prey’ (resp. ‘predator’) with the term ‘predator’ (resp. ‘prey’) is
a property of D.

Lemma 5.4. Let G be the CCE graph of a (2,2) digraph D. In addition, let u be a
vertex of degree 2 in G and two vertices v and w be the prey or the predators of u in

D. Then v and w are adjacent in G, or each of v and w has degree at most 1 in G.

Proof. By Proposition 5.3, it is sufficient to handle the case where v and w are the
prey of uw in D. Suppose that v and w are the prey of u in D. Assume that one of
v and w has degree at least 2 in GG. Without loss of generality, we may assume that
v has degree at least 2 in GG. Then v has degree 2 in G by Proposition 5.1. Since
u € N~ (v), by Lemma 5.2(iv), u is a common predator of v and one of its neighbors

in G. Thus, since N*(u) = {v,w}, v and w are adjacent in G. O

Definition 5.5. Let D be a digraph.
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(a) An outer arc set of vy, va, ..., vy, toward (b) An inner arc set of vy, va, ...,y from
W1, W2, -+« y Wm—1 UL, U2y -y Um—1
Figure 5.1: An outer arc set and an inner arc set of vy, va, ..., Up,.
(i) Given a vertex sequence vy, vs, ..., v, of D for some integer m > 2, if an arc
set
{(v1,w01), (V2 w1), (V2,w2), - - s (Vi—1, Win—1)s (Vs Win—1) }
exists, then we call it an outer arc set of (the sequence) vy, vs, ..., v, toward
(the sequence) wy, wa, . .., wn,—1 (see Figure 5.1(a))
(ii) Given a vertex sequence vy, v, ..., U, of D for some integer m > 2, if an arc
set
{(ur, v1), (wr,v2), (U2, v2), s (U1, V1), (U1, V) }
exists, then we call it an inner arc set of vi, v, ..., Uy from uy, us, ..., Up_1

(see Figure 5.1(b)).

We denote a path of length m — 1 and a cycle of length m by P,, and C,,,
respectively, for a positive integer m. Especially, we denote the path viv, - - - v, and
the cycle vivg - - - v, 01 by Py, and C,, ,, respectively. For a given C, ,,, we identify
Um4; With v; for any integer j.

By Lemma 5.4 and the definition of outer arc sets and inner arc sets, we have the

following proposition and corollaries.

Proposition 5.6. Let G be the CCE graph of a (2,2) digraph D and P,, and P, ,,
be two nontrivial paths of G. Suppose that there is an arc from u; to v; for some

positive integers 1+ < £ and 7 < m. Then there is either an outer arc set of u;, ..., U,
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toward vj, ..., v, or an inner arc set of v;,..., vy from u;, ..., u, where the positive

integers a and b satisfy one of the following:
(a) i<a<l;j<b<m;|la—i)—(b—j)=1,a=0o0rb=m;
(b)i<a<tl;b<j;|(la—i)—(j—=0b)|=1,a=Lorb=1;
(c)a<i;j<b<m;|(i—a)—(b—j)=1,a=10rb=m;
(d) a<i;b<j;|i—a)—(j—0b)=1,a=1o0rb=1.

Recall that we use the notation u — v (resp. u # v) to represent “(u,v) is (resp.

is not) an arc of a digraph”.

Corollary 5.7. Let G be the CCE graph of a (2,2) digraph D and P,, and P, , be
two nontrivial paths of G. Suppose that uwy — v, us — v, and ug — vi 1 for some
integer 1 < t < m. Then there is an outer arc set of uy,...,u, toward vy,..., v

where the integers a and b satisfy
l<a<?t;, t<b<m; (a—1)—(b—-t)=1; a=Lorb=m.

Corollary 5.8. Let G be the CCE graph of a (2,2) digraph D and P,, and P, , be
two nontrivial paths of G. Suppose that v, — uy, vy — uy, and v, — ug for some
integer 1 <t < m. Then there is an inner arc set of uy,...,uq from vy, ..., v, where

the integers a and b satisfy
l<a<?t; t<b<m; (a—1)—(b—-t)=1; a=Lorb=m.

If the CCE graph of a digraph D contains P, ,, or C,, ,, for an integer m > 3, then
v; and v;;1 have a unique common prey and a unique common predator in D (refer

to Figure 5.1) and we denote them by V; i1 and v:“z 41, respectively. For a given C, ,,,

and v

i respectively, for any integers ¢

we identify v with v;; and v

m-i,m-+j (VR

and j.
If P, = P, in Corollary 5.7, then the condition Vg =1 implies vo — v;41 and

we have the following useful theorem.
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Figure 5.2: The arc set in Theorem 5.9

Given a walk W, we denote by W~! the walk obtained from W by reversing its

sequemnce.

Theorem 5.9. Let G be the CCE graph of a (2,2) digraph D and P, ,,, be a path in G
for some integer m > 3. If v; , = v; for some integer 3 <t < m, then v, | = Vi

and v} ; o, = Vi for each integer 1 <i <m —t+1 (see Figure 5.2).

Proof. Suppose vy, = v; for some integer 3 < ¢ < m. Then N~ (v;) = {v1,v2} and
so v, is either vy or vy. To the contrary, suppose v;";, = v. Then vy — vy_y.
Since vy 5 = vy, by applying Corollary 5.7 to P, ,, and Pv}ln, there is an outer arc set

vy, Vg, ..., U, toward vy, v4_1,...,v, where the integers a and b satisfy the following:
l<a<m; 1<b<t; (a—1)—(t—b)=1; a=morb=1.

Ifb =1, then a = t+1 and so the outer arc set of vy, va, ..., vy toward ve, ve_1,..., 01
contains a loop, which is a contradiction. Thus b # 1. Then a = m and b =t —m+2.
Since t < m, b < 2 and so b = 2. Then t = m. Thus the outer arc set of vy, v, ..., vy,
toward U, U1, - - . , U contains a loop, which is a contradiction. Therefore v;" 1=
vy. Then, if vy, exists, v:t 41 must be vy and so, by applying Corollary 5.7 to P, ,

and itself, we reach a desired conclusion. O
By Proposition 5.3, the following corollary immediately follows.

Corollary 5.10. Let G be the CCE graph of a (2,2) digraph D and P,,, be a path
in G for some integer m > 3. If U1+,2 = v for some integer 3 < t < m, then

+ - — s ] —
Ujhig1 = Vrpic1 and U o4y, =5 foreach 1 <i<m—1t+1.
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Note that vf:2 or vy, may not be well-defined if P, is a component of the
CCE graph of a (2,2) digraph. For example, a (2,2) digraph with the vertex set
{v1,v9,a,b,c} and the arc set {(vy, a), (v1,b), (va, a), (va,b), (¢, v1), (¢, v9)} has its CCE
graph P, o with isolated vertices a, b, and ¢, yet v; and vy have a and b as common

prey. This observation may be generalized as follows.
Proposition 5.11. Let G be the CCE graph of a (2,2) digraph.

(i) Given the path P,,, (not necessarily a path component) in G for some integer
m > 3, the sequence

U19VU23 " U 1m

determines the unique outer arc set of P,,, (toward it), while the sequence

UIQU;r,s e 'U:rrz—l,m
determines the unique inner arc set of P, ., (from it). We denote the outer
arc set and the inner arc set of Py, by 0T(P,m) and 0~ (P,,,), respectively.
Conversely, if a vertex sequence vy,vs, ..., U, has both an inner arc set and an

outer arc set, then it forms P, ,, in CCE graph.
(it) Given the cycle C, , in G for some integer m > 3, the sequences

+ + +

- - - +
V1 9V23 " Uy 1,mUm,1 and U19VU23 " U 1,mUm,1

determine the arc sets

a+(Pv,m) U {(Uh UnZ,l)v (UWH U;n,1>} and ai(Pv,m) U {(U;rLz,h Ul)? (U;rm,lv Um)}7

respectively, which are the unique outer arc set and the unique inner arc set,
respectively, of Cy,, and we denote them by 07 (C, ) and 0~ (Cym), respec-
tively. Conversely, if a vertex sequence vy,vs, ..., Uy, v1 has both an inner arc

set and an outer arc set, then it forms C,,,, in CCE graph.
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The degree boundedness of (2, 2) digraph and the previous proposition ensure the

following proposition.

Proposition 5.12. Let G be the CCE graph of a (2,2) digraph D. Given the path
P, ., (resp. the cycle C,,,) in G for some integer m > 3,

(1) v #0540 and vy # vj sy for distinet 1 < 4,5 <m —1 (resp. 1 <4,j <

m);

(ii) N(U;,Li—i—l) C {Uz‘tl,wUIA,HQ} and N(Uz‘ji—f—l) C {Uiil,iavi:-1,i+2} for each 2 <1 <
m—2 (resp. 2 <1< m).

5.1 CCE graphs of (2,2) digraphs

This section is devoted to proving the following theorem which characterizes the
(2,2) CCE graphs.

Theorem 5.13. A graph is a (2,2) CCE graph if and only if each connected com-

ponent is a path or a cycle, and the only path component, if exists, is trivial.
Lemma 5.14. A nontrivial path is not a (2,2) CCE graph.

Proof. To the contrary, suppose that a nontrivial path P,,, is the CCE graph of a
(2,2) digraph D for some integer m > 1. Any two adjacent vertices of P, ,, must have
a common prey and a common predator which are distinct in D. Thus m > 4. Since
D is loopless, vy, = v; for some integer 3 < ¢ < m. By Theorem 5.9, v, = vy1i1
and v, 5, = v; foreach 1 <i <m —t+1. Then v;" |, = vy. Since v; is already
an outneighbor of vy, the only neighbor v, of vy in G' cannot be v;”,, ;. Thus, by
Lemma 5.4, we have v;“_ 9t-1 = Um- Then v;_; is a common prey of v; and v,,. If
t < m, since the only neighbor v,, ; of v, cannot be v, , . ,.; by Lemma 5.4
again, v, ;.. 44 = U1 and so v,,_¢1+1 1S a common predator of v; and v,,. Suppose
t = m. That is, Vig = Um. Since v;_1 is a common prey of v; and v,,, the only
neighbor v,,_1 of v,, cannot be 0;3. Thus vy 3 = v; by Lemma 5.4. Then vy is a

common predator of v; and v,,. Whether t < m or t = m, v; and v,, have a common
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prey and a common predator in D. Thus v; and v, are adjacent in CCE(D), which

is a contradiction. O]

t
Given a positive integer m > 3, we consider a digraph D’ with the vertex set

V(Dg:m) = {U17U27 <o 7Um}

and the arc set

A(D;;) = U{(Ukath), (Vk, Up41) }
k=1
for some t € {1,...,m—2} (identify v,,; with v; for each integer 7). For each vertex
v; in Dj?m,
N+('UZ') = {Ui—i-ta vi—HH—l} and N~ (1}1) = {Uz'—t—b Ui—t}- (51)

Since t € {1,...,m — 2}, D s loopless and so it is a (2,2) digraph. Moreover,

v,m

Virt+1 (resp. v;_¢) is a common prey (resp. predator) of v; and v;;; for each integer
1 < ¢ < m. Therefore

CCE(D,,) = Com (5.2)
and
U:_i—&-l = Vg1 and v = Uiy (5.3)

in Difm for each integer 1 < ¢ < m. Hence we obtain the following proposition.
Lemma 5.15. A cycle of length at least 3 is a (2,2) CCE graph.
Proposition 5.16. For positive integers m and n, P, U P, is a (2,2) CCE graph.

Proof. Fix positive integers m and n. Since an edgeless graph is a (2,2) CCE graph,
the case m = n = 1 is clear. Without loss of generality, we assume m > 2. We
consider the digraph

D:=D"  _ (U1, V).

v,m+n
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Since D, s a (2,2) digraph, D is a (2, 2) digraph. By (5.3),

v,m+n
- _ +
Viit1 = Vitm and Viig1 = Viemt1

_l’_

m—1
in D, ., for each integer 1 < i < m + n. Especially, v, ., = vy and vy, .y

v,m+n = U

m—1
in D, ., since we identify v,,,; with v; for each integer j. Thus removing the arc

v,m+n

(v1,vp,) from Dm&1 deletes the edges {v1, Umin} and {v,, vy,y1} so that the CCE

v,m+n

graph of D is the union of paths

VU2 Uy ANd U1 U2 * U,

by (5.2). Hence CCE(D) = P, U P,. O

We denote k path components P, of a graph by kP, for positive integers k > 2

and m. We also denote t isolated vertices by I; for a positive integer ¢.
Proposition 5.17. For positive integers m and n, 2P,, U P, is a (2,2) CCE graph.

Proof. Fix positive integers m and n. Since P, U I; is a (2,2) CCE graph by Propo-
sition 5.16, P, U I, is a (2,2) CCE graph. Now we assume m > 2. We consider the
digraph

m—1
D = Dvgm+n - (Ulvvm> - (Uerla U2m)-

Since D, . is a (2,2) digraph, D is a (2,2) digraph. Note that by (5.3),

v,2m+n

- +
Viip1 = Vigm AN U5 = Vi

m—1

in D5, for each integer 1 < ¢ < 2m + n. Especially, vy, 1,1 = Um, vy,

v,2m-+n mm+1 — UL,

-1
— o + o . ms .
Vppms1 = Vom, and vy, o0 = Upyr in D5, . Thus removing the arcs (vy,v,,) and

m—1
(Uerla UZm) from Dv3m+n deletes the edges {Ula UQern}a {Uma Um+1}7 and {U2ma UQerl}

so that the CCE graph of D is the union of paths

VIV2* *Um,  Umg1Umg2*** V2m,  and  Vopmi1V2mi2 * - Vaman
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by (5.2). Hence CCE(D) = 2P, U P,. O

Proposition 5.18. For positive integers [, m and n, P,U P,, U P, is a (2,2) CCE
graph.

Proof. Fix positive integers [, m, and n. By Propositions 5.16 and 5.17, it suffices to

consider the case 1 <[ < m < n. Suppose
l<li<m<n.

Let D; = Dl”_x1 and Dy = D"~ l We consider two digraphs

u,l+m v,m+n’
D3 = Dl — 651 (UQZ s Ul+m) - (uerla ul+m)

and

D4 = D2 - 852 (UernflJrl tr Uern) - (UnJrl; Um+n)

(see Figure 5.3 and, for the notation J,(X), refer to Proposition 5.11). Now we
obtain a digraph D from digraphs D3 and D, by identifying u;; with v,,,1_; for
each 1 <1i < m. Since D; and Dy are (2,2) digraphs, D3 and D, are (2,2) digraphs.
To show that D is a (2,2) digraph, it suffices to check the outdegree and indegree of
the vertices identified in D3 and Dy. By (5.1), we may check the following:

o dp (wi1) =" =dp (ug-1) =2,dp, (ua) = 1,dp, (uns1) = - = dp, (Uym) =
0;

. dl+)3 (ul+1> == leS?’ (um> = 07 dE?) (um+1> = 17 dgg (um+2) == dl+)3 (ul+m) =
2;

o dp,(Vni1) = - =dp, (Vmin-1) = 2, dp,(Vmin-i11) = 1, dp, (Vmyn-142) = -+ =

d54 (Vmin) = 0;

o dp(an) = - = dhy(Waricr) = 0, dp,(wurs) = L, dh, (varis) = - =

d£4 (um+n) = 2.
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Thus each vertex identified in D3 and D, has outdegree 2 and indegree 2 in D.
Therefore D is a (2,2) digraph. By (5.3), we may check the following:

e A(Ds) is the union of an outer arc set of w41, .., Uym, U1, .., u toward
Uy, ..., Uuy—1 and an inner arc set of wy, ..., uy from w0, ... U, g, - . ., U

e A(Dy) is the union of an outer arc set of vy, ..., Vmin,v1,...,0, toward
U1, .-, Untn; and an inner arc set of vy, ..., Vg1 from vy, - ooy UV, U1, - -

Since we have identified w;,; with v,,1,41-; for each 1 < i < m, CCE(D) is the

union of paths uy - - - uy, wpyq - Uprm, and vy - - - v,. O

Lemma 5.19. Let G be a disjoint union of paths. Then G is a (2,2) CCE graph if

and only if G is not isomorphic to a nontrivial path.

Proof. The “only if” part follows from Lemma 5.14. Suppose that G is not isomorphic
to a nontrivial path. If G is a trivial graph, then it is clear. Assume that G is not a
trivial graph. Then G has at least 2 path components. Thus there is a partition P of
the set of path components of G such that each part of P has size 2 or 3. For each
part X, there is a (2,2) digraph Dx whose CCE graph is X by Proposition 5.16 if
| X| = 2 and by Proposition 5.18 if | X'| = 3. Then Jy.p Dx is a (2, 2) digraph whose
CCE graph is G. Thus we have shown the “if” part. ]

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13. For (2,2) digraphs Dy and Do, we may check that CCE(D;U
Dy) = CCE(D;) UCCE(D,). Thus the “if” part follows by Lemmas 5.15 and 5.19.

To show the “only if” part, suppose that G is the CCE graph of a (2, 2) digraph D.
By Proposition 5.1, GG is a disjoint union of paths and cycles. To the contrary, suppose
that P,; is the unique path component of GG for an integer [ > 2. By Proposition 5.1,
each component of GG is either a path or a cycle. Since a nontrivial path cannot be
the CCE graph of a (2,2) digraph by Lemma 5.14, there is a cycle component C,
in G such that some consecutive vertices of P,; have a common prey or a common

predator on C,,, for some positive integer m. Without loss of generality, we may
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Figure 5.3: Digraphs in the proof of Proposition 5.18
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assume that some consecutive vertices of P,; have a common predator on C, ,.
Then v; — u; for some 1 < i <land 1 < j <m. Thus v, is either Vi1 0T V. By
Proposition 5.12, since P,; is the only path component in G, | = m and there is a
positive integer ¢ such that 1 <t <m and {uy,w} = {v;_,;, v, }. Then v, = uf,.
By Proposition 5.3, there is a cycle component Cy, in G such that ws; = uy, for
some 1 < s < [. Thus u; and u; have a common prey v; and a common predator
ws. Therefore u; and w; are adjacent in G, which is a contradiction that P,; is a
path. O

5.2 CCE graphs of (2,2) digraphs

We only consider (2,2) digraphs with at least three vertices unless otherwise men-
tioned. Recall that we call a vertex of indegree 0 (resp. outdegree 0) in a digraph D
a source (resp. sink) of D. It is a well-known fact that if a digraph D is an acyclic,
then D has a sink and a source. Each sink and each source of a digraph form isolated
vertices in its CCE graph. In this context, it is natural to start with a (2,2) CCE

graph including exactly two isolated vertices.

Proposition 5.20. Let G be a (2,2) CCE graph with ezactly two isolated vertices.
If D is a (2,2) digraph satisfying CCE(D) = G, then the following are true:

(1) D has exactly one source x and exactly one sink y which are the two isolated

vertices in G.
(11) = has a prey of indegree 1 and y has a predator of outdegree 1 in D.
(111) D is weakly connected.

Proof. Suppose that D is a (2, 2) digraph with CCE(D) = G. Part (i) is immediately
true by the previous observation. If z (resp. y) has no prey (resp. predator) of indegree
1 (resp. outdegree 1), then D — x (resp. D — y) has no a vertex of indegree 0 (resp,
outdegree 0), which contradicts the fact that D —x (resp. D —y) is an acyclic. Thus

part (ii) is true. To show part (iii) by contradiction, suppose that D is not weakly
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connected. Then there exist subdigraphs D; and D, of D such that Dy U Dy = D
and V(D) NV (Dy) = 0. Thus G = CCE(D) = CCE(D,) U CCE(D,). Since at
least one of D; and D, is a nontrivial acyclic digraph, CCE(D;) or CCE(D;) has
at least two isolated vertices and so GG has at least three isolated vertices, which is

impossible. Therefore D is weakly connected. ]

Given a family D of digraphs, we say that a digraph in D is minimal in D if
there is no proper subdigraph D’ of D in D such that CCE(D) = CCE(D’). By the

Well-Ordering Axiom, the following lemma is true.

Lemma 5.21. For a (2,2) CCE graph G and the set Dg of (2,2) digraphs whose
CCE graphs are G, there exists a minimal digraph in Dg.

Given a (2,2) CCE graph G, we say that a digraph is a minimal digraph of G if
D is a minimal digraph among the (2,2) digraphs whose CCE graphs are G.

It is easy to check that if D is a minimal digraph of a (2,2) CCE graph G,
then D is also a minimal digraph of G. Therefore the following is also true by

Proposition 5.3.

Proposition 5.22. Let G be a (2,2) CCE graph and D be a (2,2) minimal digraph
of G. Then if o is a property of D, then the statement obtained from « by replacing
the term ‘prey’ (resp. ‘predator’) with the term ‘predator’ (resp. ‘prey’) is a property
of D.

Proposition 5.23. Let D be a minimal digraph of a (2,2) CCE graph G. Then the

following are true:

(1) if a vertex v has exactly one predator (resp. one prey), then v has degree 1 in G
and the predator (resp. the prey) of v has the other prey (resp. predator) that

is adjacent to v in G.

(11) if a vertex v has two predators (resp. two prey), then v has degree 2 or the

predators (resp. the prey) of v are adjacent in G.

(111) any two distinct vertices have at most one common prey and at most one com-

mon predator.
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Proof. By Proposition 5.22, for showing (i) and (ii), it is sufficient to handle the case
where a vertex v has indegree 1 or 2.

To show part (i), suppose that v has indegree 1 in D. Then, since D is a (2, 2)
digraph, v has degree at most 1 in G. Suppose that v has degree 0 in G. Then
CCE(D') = G for the subdigraph D" with V(D') = V(D) and A(D') € A(D)
obtained from deleting the incoming arc to v, which contradicts the minimality of
D. Therefore v has degree 1 in G. Thus the predator of v has the other prey that is
adjacent to v in G.

To verify part (ii), we suppose that v has indegree 2 in D. Let w and z be the
predators of v. Assume that v has degree at most 1, and w and z are not adjacent in
G. Then deleting any arc of (w,v) and (z,v) does not change the adjacency between
w and z. Moreover, since v has degree at most 1 and D is a (2,2) digraph, we may
delete one arc of (w,v) and (z,v) so that the degree of v stays the same in the CCE
graph of the resulting digraph D’. Thus A(D') € A(D) and CCE(D') = G , which
contradicts the minimality of D. Hence v has degree 2 or w and x are adjacent in G.

To show part (iii), suppose to the contrary that there are two distinct vertices
up and us such that they have at least two common prey or at least two common
predators. By Proposition 5.22, we may assume that u; and us have at least two

common prey v; and v. Since D is a (2,2) digraph,
Nj(u1) = Nj(uz) = {v1, vz}
and

Np(v1) = Np(va) = {u1, ua}.

Then the pairs that may be affected by deleting the arc (uy,v;) from D are that of
uy and uy and that of vy and ve. Yet, the adjacency of u; and us is preserved by the
arcs (uy,v9) and (ug,v9) and that of v; and vy is preserved by the arcs (ug,v;) and
(ug,vq). Therefore the CCE graph of the digraph D — (uq,v;) is isomorphic to G,
which contradicts the fact that D is minimal. ]

Remark 5.24. By Proposition 5.23(iii), two adjacent vertices in the CCE graph G
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of a (2,2) minimal digraph have a unique common predator and a unique common
prey. Therefore the notations vff » and vy, may be used for the common predator and

the common prey of those two vertices on P, o.

For notational simplicity, given an induced subgraph H of a graph, we may write

H to stand for V(H).

Lemma 5.25. Let G be a (2,2) CCE graph with exactly two isolated vertices and D
be a minimal digraph of G Then the following are true:

(i) there exists a nontrivial path P, ,, in G such that Nt (z) = {v1,ve} and N~ (v1) =

{x} where x is the source of D;

(it) there ezxists a nontrivial path P, in G such that N~ (y) = {w, w2} and
Nt (wy) = {y} where y is the sink of D;

(iti)) G = 2P, U Py if and only if N*(z) = N~ (y);
(i) if n > 3 and wy 4 wy, then

(a) wy has a predator w* of outdegree 1 that is an end vertex of some nontrivial
path distinct from Py, ,;
(b) if we /A w*, then one predator of w* has outdegree 1 and the other predator
of w* has outdegree 2.
(v) if n >3 and we — wy and G has at least two nontrivial components, then
(a) w, = w,_1 and A(D) contains an outer arc set of wq, ws, ..., w, toward
wy, W2, ..., Wp—2,

(b) w:{_m is an end vertex of a nontrivial path distinct from P, ,,;

(c) the CCE graph of D—{wy, ..., wn_1,y} is isomorphic to G—{w1, ..., w,_1,y}.

Proof. By Proposition 5.20(i), D has a unique source x. Since D is weakly connected
and x is a source, x has outdegree at least 1. If x has outdegree 1, then x has degree

1 in G by Proposition 5.23(i), which is impossible. Therefore = has outdegree 2. Thus
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the prey v; and vy of x are adjacent in G by Proposition 5.23(ii). Then, since x is
the only source in D, vy or vs has indegree 1 by Proposition 5.20(ii). Without loss
of generality, we may assume v; has indegree 1. Then v; has degree 1 in G and so
a path P,,, exists for some integer m > 2. Hence part (i) is true. Therefore, by
Proposition 5.22, D has a unique sink y and N~ (y) = {wy, w2} and N~ (w,) =y for
a nontrivial path P, , in G. Thus part (ii) is true.

Now we show part (iii). If G = 2P, U P, then G has a unique nontrivial path
and so P,y = P, 5. Suppose {vy,v2} = {wy, we}. To the contrary, assume that vy has
degree 2 in GG. Then m > 3 and so there exists a common prey v’ of v, and v3. Since
vy is a predator of y, y # v" and so v, is not a sink in D—{y, v, }. Since N~ (v;) = {z},
N~ (y) = {v1,v}, and N*(x) = {v1,v2}, D — {y,v1} has no sink, a contradiction.
Therefore vy has degree 1 in GG. Then, since x and y are the isolated vertices, each of vy
and vy has outdegree 1 and indegree 1 by Proposition 5.23. Thus {z, v, vs,y} forms
a weakly connected component D’ in D and so, by Proposition 5.20(iii), D' = D.
Thus G = 2P, U P,.

To show part (iv), suppose that n > 3 and (wy,w;) ¢ A(D). Then wy has degree
2 and so d*(wg) = 2. Accordingly, d* (wy) = 2 together with N (w;) = {y} implies
that w; is the only sink in the digraph D — {y}. Now, if each predator of w; has
outdegree 2, then D — {y,w, }, which is acyclic, has no sink since (wsy,w;) ¢ A(D),
a contradiction. Therefore at least one predator w* of w; has outdegree 1 in D.
Moreover, d*(wfg) = 2. Thus w* is a unique predator of w; having outdegree 1 in D.
Since w* has outdegree 1, w* has degree 1 by Proposition 5.23(i) and so w* is an end
vertex on some nontrivial path. To the contrary, suppose w* € P, ,. Then w* = wy,

since w* # w;. Now, since w* is a predator of w; and has outdegree 1, w; = w,_, .
Thus, by Theorem 5.9(i), wi, = w, and so w, has outdegree 2, a contradiction.
Hence w* ¢ P, . Therefore we have shown that (a) holds.

To show (b), suppose wy 4 w*. By (a), w* is an end vertex of some nontrivial
path, namely P, ., for some integer ¢t > 2 with P,; # P, ,. Without loss of generality,
we may assume w* = z;. Then, since w; is the only prey of 21, N (wy) = {21, 22} and
29 = wfg. Now we consider the digraph D" := D — {wy, z1,y}. Then D" is acyclic

and the possible sinks of D” are the predators of some vertex in {wy, z1,y} that are
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ws, 22, and the predators of z;. Yet, ws is not a sink in D" since df(ws) = 2, wy # 21,
and wy 4 wy. Since zy = wIQ, 29 18 not a sink of D”. Thus one of predator of z;
must be a sink of D”. Since 2, is not a sink of D", there exists a predator z of z
that is a sink of D”. Then z # ws and z # z3. If 2z has outdegree 2 in D, then w; or
y is a prey of z and so z = 25 or z = wy, which is impossible. Thus z has outdegree
1in D and so (b) is true.

To show part (v), suppose n > 3 and wy — w; and G has at least two nontrivial
components. Then w; = wy3. Accordingly, wf’2 = ws. Thus, by Corollary 5.10,
A(D) contains an arc (wp,w,_1) and an outer arc set of wsy, ws,...,w, toward
wy, Wa, ..., Ws_2, and so (a) is true. Hence every vertex on P, , except w,_; and

wy, has indegree 2 which is fulfilled by vertices on P, ,. By Lemma 5.2(i), w,_; has

+

two predators. Then the predator of w,_; other than w, is w,_, ,

and, by Lemma 5.4,

is an end vertex of a path in G. If w} | € P,,, then w/ ;, = w;, which

+
w n—1n n—1,n
+

n—1,n

contradicts part (ii). Thus w,_, ,, & Py.,. Suppose that w is an isolated vertex.

n—1,n
Then w,,_, ,, = « by part (i). Hence the subdigraph D; induced by V(P,,) U {z,y}
is isomorphic to the digraph D}, given in Figure 5.7. Further, it can easily be
checked that every vertex in V(D) — {w,, x} has indegree 2 in D; and every vertex
in V(Dy) — {wy,y} has outdegree 2 in D;. By part (i), N~ (w,) = {z}. By part
(i), N*(w;1) = {y}. Thus D; is a weak component and so, by Proposition 5.20(iii),
D = D,. Therefore CCE(D,) = G = P, ,,U{z, y}, which contradicts the assumption

that G has at least two nontrivial components. Hence w_

n—1n 18 not isolated and so

is an end vertex of a nontrivial path distinct from P, ,,. Therefore (b) is true.

Now we consider the digraph Dy := D — {wy,...,w,—1,y}. As we have shown
above, all prey in D of each vertex in P, , U{y} lie on P, ,, and every vertex on P,
except w,_; and w, has indegree 2 in D which is fulfilled by vertices on P, . Thus
the adjacency of any pair of vertices in V/(G) — {wy, ..., w,_1,w,, y} is preserved in
the CCE graph G’ of Dy. We have also shown that the predators of w,_; are w,
and wy_, ,
CCE graph G’ of Dy. Therefore G’ is isomorphic to G — {wy, ..., w,_1,y} and so (c¢)
holds. [

Proposition 5.26. Let G be the CCE graph of a (2,2) digraph D. If there is a cycle

in D and w,_; and w, are not adjacent in G. Hence w,, is isolated in the
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in G, then there is no arc between its vertices.

Proof. To the contrary, suppose that there is a cycle C, ,, in G and an arc between
some vertices on C,, ,,, in D. By symmetry, we may assume that there is an arc from v,
to v, for some t € {2,...,m}. Since v; is adjacent to vy and vy, v; is a prey of ve or vy,.
We may assume that v, is a prey of vs. Then 2 < t < m. By applying Theorem 5.9 to
Cym—U1Upm, We have vy, - - -, v, as common prey of vy and vg, - - -, Upy—t41 and Vy—y49,
respectively. By Theorem 5.9 applied to the path C, ,,, —v1v2, v1 is a common prey of
Um—t+2 and v,,_413. By applying the same theorem to C,,,, — vovs, ..., Cypm — V410

repeatedly, we may obtain an arc set of D

m

A= U {(Uk, Uk+t—1), (Uk+1, Uk;+t—1)}-

k=1

We consider the subgraph D’ of D induced by A. Then it is easy to check that
CCE(D') = C, . Since D is a (2, 2) digraph, D’ is a (2, 2) digraph, which contradicts
that the CCE graph of a (2,2) digraph has at least two isolated vertices. O

Given a vertex set X of a digraph D, we denote by N*(X) and N~ (X) the sets

{veV(D)|(z,v) € AD),z€ X,v¢g X} and {veV(D)]| (v,z)e A(D), z€ X, v¢ X},

respectively.

Lemma 5.27. Let G be the CCE graph of a (2,2) digraph D. Suppose that G has
a cycle C' of length m for some m > 3. Then the following are true:

(i) INT(C)] = [N~(C)| = m;
(ii) IN*(C)UN=(C)] = m+3 and [N*(C) " N=(C)| < m — 3;

(111) each component of G is contained in exactly one of the following:

NHCNNT(C); NT(C)-N"(C); N7 (C)=N"(C); V(G)=(NT(C)UN(C)).
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Proof. Let C := C, ,,,. By Proposition 5.26,
N+(C) = {vi27 Vg gy - 7U;7,,1} and N™(C) = {U1+,27'U§r,37 e 7'0:1,1}-

By Proposition 5.12(i), |[N*(C)| = |[N~(C)| = m and so part (i) is true.
To show part (ii), suppose, to the contrary, that |[N*(C)U N~ (C)| < m + 2.
Then, since |[N*T(C)| = [N~ (C)| =m,

INH(C) NN (C)| > m —2.

Then
INT(C) - N~ (O)] < 2. (5.4)

Take a vertex x; in NT(C) N N~(C). Then ;1 — v; and x; — v;41 for some
j€A{l,...,m}. Let u; = v;;,, foreach i = 1,...,m (U = us and vy, 11y =
v,, for any positive integers s,t). Since {w;_1,uj,uj41} © NT(C), at least one
of w;_1,uj,uj11 belongs to N*(C) N N~(C) by (5.4). Let x5 be one of such ver-
tices. Then, since v; — wuj_1, v; = u;, and v;41 — w41, we obtain a (xy,xs)-
directed walk Wj. By similar argument, we obtain a (x9, z3)-directed walk Wy for
some 23 € NT(C) N N~ (C). By repeating this process, we obtain the directed
walk W := W) —» Wy — -+ — W, where W; is a (z;, x;11)-directed walk and
z; € NY(C)NN~(C) foreachi =1,...,m. Then {xy,...,2pm1} C NT(C)NN—(C).
By the way, since [N1T(C)NN~(C)| < m, x, = x, for some distinct k, £ € [m~+1]. Thus
W contains a closed directed walk, which contradicts the fact that D is acyclic. Hence
INT(C)UN~(C)| > m+3. Then, since [NT(C)| = [NT(C)| = m, INT(C)NN~(C)| <
m — 3. Therefore part (ii) is true.

To verify part (iii), suppose that there exists a component 7" of G such that
TN (NH(C)UN(C)) # 0.

Without loss of generality, we may assume 7N NT(C) # (. Then, by Proposi-
tion 5.12(i1), T € N*(C) and so TN (N (C) = NT(C)) = 0.1

f there is an edge uwv
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in T such that u € N*(C) — N~(C) and v € NT(C)N N~(C), then u € N~ (C) by
Proposition 5.12(ii), a contradiction. Therefore every edge of T" has end vertices in
NT(C)—N~(C) or every edge of T has end vertices in N*(C)NN~(C). Then, since
T is a component, T'C N*(C) — N~ (C) or T C N*(C) N N~ (C). Hence part (iii)

is true. ]

Theorem 5.28. Let G, be the set of graphs having the least components among (2, 2)
CCFE graphs containing a cycle of length ¢ > 3 and G, be a graph in G, with the least

order. Then the following are true:
(1) Gy contains at least siz isolated vertices;
(1)) G3 = C3U6P; and G4 = C,UTP;;

(111) € =3 if and only if G, = Cy UGP,.

Proof. Fix an integer ¢ > 3. For notational convenience, we simply write G for G,.
Let D be a minimal digraph of G. Take a sink z in D. Then z is isolated in CCE(D)
and so, by Proposition 5.23(i), x cannot have indegree 1. If x has indegree 0, then
CCE(D — x) is a graph having less components than G and CCE(D — z) still has a
cycle of length ¢, which contradicts the choice of GG. Thus x has indegree 2. Hence the
predators of x are adjacent in G by Proposition 5.23(ii). Suppose that the predators
of x lie on a path component P in GG. Then the predators have no common prey in
D —x by Proposition 5.23(iii) and so they are not adjacent in CC' E(D —z). Therefore
the component P breaks up into two pieces in CCE(D — z) while one component
disappears by deleting x. Thus CCE(D — x) has the same number of components as
CCE(D). By the way, CCE(D — x) still has a cycle of length ¢, which contradicts
the choice of G. Therefore the predators of x lie on a cycle component in G. Since x

was arbitrarily chosen, we conclude that
(t) each sink in D has two predators which are consecutive vertices on a cycle.
Thus each predator of a sink has outdegree 2 by Lemma 5.2(i) and so

(1) each predator of a sink has a prey distinct from the sink in D.
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If D has exactly one sink x, then D — z has no sink by (I), which is impossible.
Thus D has at least two sinks. By the way, we may show that D has at least three
sinks. To show it by contradiction, suppose that x and z’ are the only sinks in D. If
there is no common predator of x and «’, then D — {z, 2’} has no sink by (1), which
is impossible. Thus there exists a common predator y of x and z’. Then y lies on a
cycle by (f). Thus N, (z) = {y,y'} and N, (2') = {y,y"} where y'yy” is a section of
C'. Since yy' and yy” are edges of GG, y has two predators z; and z such that

Np(z1) ={y,y'} and Np(z)={y,y"}.

By the assumption that z and 2’ are the only sinks in D, the sinks of D' := D —
{z,2',y} belong to Ny (z) U Ny (2") U Np(y) —{z, 2", y} = {V,y", 21, 22 }. However,
none of these can be a sink of D’. For, it is easy to check that z; and z, are not sinks
of D'. Since each of ¢/ and y” has degree 2 in G, each of 3/ and y” has outdegree
2 by Lemma 5.2(i) and so has a prey not belonging to {x,z'}, Moreover, y' 4 y
and y” 4 y by Proposition 5.26. Therefore y' and y” are not sinks in D’ and so D’
has no sinks, which is impossible. Thus D has at least three sinks. Hence D has at
least three sources by Proposition 5.22. By (f), D has no vertex of indegree 0 and
outdegree 0. Therefore G has at least three sinks and at least three sources. Thus G

has at least 6 isolated vertices and so part (i) is true. Let C' be a cycle of length ¢ in
G. Then

($) C'U6P; is an induced subgraph of G.

Since V(C)N(NT(C)UN~(C)) = () by Proposition 5.26, |V (G)| > |[V(C)|+|N*(C)U
N~(C)|. Then, since [INT(C)U N~ (C)| > ¢ + 3 by Lemma 5.27(ii),

V(G = [V(O) + [NT(CY)UNT(O)] > 2¢ +3.

If £ =3, then G = C5U6P; by (), the digraph Dj, and its CCE graph CCE(Ds)
given in Figure 5.4. Suppose ¢ > 4. If £ = 4, then |V(G)| > 11 and so G 2 C U TP,
by ({), the digraph Dg, and its CCE graph CCE(Dg) given in Figure 5.4. Thus part
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Figure 5.4: Digraphs and its CCE graphs in the proof of Theorem 5.28

(ii) is true. Moreover,
V(G| =20+3>0+6=|V(C)|+|V(6P)

and so GG must contain a component not belonging to C' U 6P;. Hence the “if” part
of part (iii) is true and so, by part (ii), the “only if” part is true. Therefore part (iii)

is true. ]

Finally, we give a sufficient condition on the number of components for a (2, 2)

CCE graph being an interval graph.

Theorem 5.29. Let G be a (2,2) CCE graph and t be a number of components of
G. Ift <7, then G is an interval graph. Further, the inequality is tight.

Proof. Suppose that G is not interval. Then, by Proposition 5.1, G’ contains a cycle
component of length ¢ > 4. Let G, be the set of graphs having the least components
among the (2,2) CCE graphs containing a cycle of length ¢ and G, be a graph
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in G, with the least order. Then, by (i) and (iii) of Theorem 5.28, G, contains at
least eight components. Thus ¢ > 8. Therefore we have shown that any (2,2) CCE
graph with at most seven components is interval. Furthermore, by Theorem 5.28(ii),
G, = Cy U TP, which has eight components. Since G4 is not an interval graph, the
inequality is tight. ]

Now, we give a characterization of (2,2) CCE graphs with the least components
among (2,2) CCE graphs containing at most one cycle and exactly two isolated

vertices as follows.

Theorem 5.30. Let G be a graph with the least components among the (2,2) CCE
graphs containing a cycle and exactly two isolated vertices. Then G = C5 U 2P; U
2P, U2P;. Further, if D is a minimal digraph of G, then D 1is isomorphic to D* or
D* given in Figure 5.6.

Proof. Let D be a minimal digraph of G. By Proposition 5.20(i), D has a unique
source x and a unique sink y, which are the only isolated vertices in G. By (ii) and

(iii) of Lemma 5.25, there exist nontrivial paths P,,, and P, , such that

N¥(x) ={vr, v}, N7(v) ={z}, N7 (y) ={wi, w2}, NT(wi)={y} (55)

for some integers m,n > 2. To the contrary, suppose ws — w;. Then, by Proposi-
tion 5.23(ii), wy has degree 2 and son > 3. Thus, by (c) of Lemma 5.25(v), there exists
a CCE graph G’ of a (2, 2) digraph such that G’ is isomorphic to G—{wy, ..., w,_1,y}.
We note that w, and x are the only isolated vertices in G’, that is, G’ contains ex-
actly two isolated vertices and G’ has one less nontrivial component than G, which

contradicts the choice of GG. Therefore

wy 7> wy. (5.6)

Take a cycle C of length ¢ in G for some integer ¢ > 3. Then x ¢ N*(C) and
y ¢ N=(C). Since the prey of z are on P,,, and the predators of y are on P, ,,, = ¢
N=(C)and y ¢ N*(C). Since [N*(C)| = |[N~(C)| = £ and |[N*(C)NN—(C)| < £—3
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by (i) and (ii) of Lemma 5.27,
NT(C)=N(C)#0 and N (C)— N"(C) #0.

Thus there exist components X; and X5 such that X; N (N*(C) — N—(C)) # () and
XoN(N~(C)— NH(C)) # 0. Then, since x and y are the only isolated vertices in G
and neither x nor y belongs to any of N*(C') and N~ (C), it is true that X; and X,

are nontrivial. Moreover, by Lemma 5.27(iii),
X, CNYHC)=N(C) and X, C N (C)—NT(CO). (5.7)

By Proposition 5.26, C' # X; and C' # X5 and so C, X1, X5 are three nontrivial
components of G. Let
N=N"C)UN (C).

We first claim that

To show the claim by contradiction, suppose P,, " N # 0. If P,, N N~ (C) # 0,
then, by Lemma 5.27(iii), P,,, € N~ (C) and so y € V(C) (recall N*(w;) = {y}),
a contradiction. Therefore P, N N~ (C) = 0. Thus P,, N (N*t(C) — N~ (C)) # 0.
Then, by Lemma 5.27(iii),
Pyn CNT(C)— N (C).

However, by (5.6) and, Lemma 5.25(iv)(a), there exists a predator w* of w; which
has outdegree 1 and is an end vertex on some nontrivial path in GG. Then the vertex
adjacent to w* is wi, and so N (wy) = {w*, wi,}. Since w* and w, are on a path,
wy ¢ NT(C) and so P,,, € NT(C), a contradiction. Thus (5.8) is valid. Since P, ,
is a component containing predators of the sink and P, ,, is a component containing

prey of the source, by Proposition 5.22, the following is also valid:

P,mNN =10 (5.9)
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Now we claim that

Claim A. If P,,, = P,n, thenn > 3, z = w;ll’n, and there is a nontrivial path
component P, ; for some integer ¢+ > 2 such that N¥(z1) = {w1}, wi = 215, Py #

Py, and P,; NN = 0.

Proof of Claim A. Suppose P, ,, = P, . Then, by Lemma 5.25(iii), N (z) # N~ (y).

Thus

+

n>3 and z=w, ,,

Then, by (5.6) and Lemma 5.25(iv)(a), there exists a predator, namely w’, of w;
having outdegree 1 in D and w’ is an end vertex of some nontrivial path component
P, , distinct from P, ,. Without loss of generality, we may assume w’ = z;. To show

P,,N N =0, suppose P,; N N # (). Then
Py,CNT(C)—N (C)or P,, CNT(C)NN~(C)or P.,, CN (C)— N*(C)

by Lemma 5.27(iii). Since z; has outdegree 1, z; ¢ N~ (C) by Lemma 5.2(iv) and so
z1 € NT(C) — N~ (C). Then
w9 7L> 21

Thus there exists one predator of z; having outdegree 1 by Lemma 5.25(iv)(b).
However, since z; € NT(C) — N~ (C), each predator of z; has outdegree 2 in D, a

contradiction. Therefore we have shown that the claim is true. O]

By Claim A, (5.8), and (5.9), whether P,,, = P,, or not, G has at least two
nontrivial paths each of which has no intersection with N. Thus G has at least five
nontrivial components.

We may check that the CCE graph of a (2,2) digraph given in Figure 5.6 is
isomorphic to C3 U 2P; U 2P, U 2P;. Thus the existence of a (2,2) digraph given in
Figure 5.6 guarantees that G has exactly five nontrivial components. Then G has

exactly two nontrivial paths each of which has no intersection with N. Therefore

X; =NHC) and Xo= N(C), (5.10)
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SO

| Xy = [Xa| = ¢

by Lemma 5.27(i).
To show P, ,, # P, by contradiction, we suppose P, , = P, ,,. Then, by Claim
An>3 z=w'

w1, and there is a nontrivial path component P, ; for some integer
t > 2 such that

NT(z1) ={w1}, w1 =2y, P.t# Pyn, and P,,NN =0.

Thus the nontrivial components of G are P, ,,, P+, X1, Xs, and C. Since N*(z) =
{wi} and wy = z7,, 22 = wf,. If n < ¢, then A(D) contains an outer arc set
of z1,29,...,2, toward wy,ws,...,w,_1 by Corollary 5.7 and so {z,z,-1,2,} C

N~ (wy_1), which is impossible. Thus
n>t>?2

and A(D) has an outer arc set of zq,z,...,2 toward wy,ws,...,w;,—; by Corol-
lary 5.7. Then z; — w;. To show wy 4 z; by a contradiction, suppose ws — 2. Then
21 = W,y and w3 = szz. Thus A(D) contains an outer arc set of wq,ws, ..., w1
toward 2z, 29,...,21 by Corollary 5.7. Then w;1; — 2. By Proposition 5.22 and
Claim A, since P, ,,, P.;, X1, X2, and C are the nontrivial components of G, one of
the following holds:

e N (z)=A{w,} and w, = szQ;
o N (z)={w,} and w, = 2z ,.

Recall that z) = wy3 and w1 — 2. Thus N7 (2) = {w,}, w, = z;L_l,t, and t +
1 = n. Since z is isolated, N~ (w,) = {z} by Proposition 5.23(ii). Thus V (P, ,) U
V(P,,) U {z,y} forms a weak component D; (see Figure 5.5(c)) and so D is not

weakly connected, which contradicts Proposition 5.20(iii). Hence

W9 7L> Z1-
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Therefore at least one predator of z; has outdegree 1 by Lemma 5.25(iv)(b). Let 2’
be the predator of z; having outdegree 1. Thus 2’ # w; for each 2 < i < n — 1 and
2" # z for each 1 <i <t — 1. Further, since N*(wy) = {y}, 2 # w;. We will claim
that 2’ # w,, and 2’ # 2, to show 2’ € P, ,, U P,,. Since x and y are the only isolated

vertices, 2’ has degree 1. In addition, since 2z’ has outdegree 1, 2’ # zf’ 5 and so
N™(z1) = {, 7, }.

Therefore z;, which is the only prey of 2/, has indegree 2 and so 2z’ # w,. Recall
that A(D) has an outer arc set of 2y, 29, ..., 2, toward wy, ws, ..., wy_1, and z; — wy.
Thus N*(z;) = {wi—1,w}. Hence 2/ # z and so 2/ ¢ P,, U P,;. Then, since
Py, Pot, X1, X5 and C are the components of G, 2’ € Xj or 2/ € Xy. If 2/ € Xy,
then z; € V(C) by (5.7), which is impossible. Thus

ZIGXl

and so, by (5.7), z is a common prey of two consecutive vertices on C. Recall
C = Cyy. Without loss of generality, we may assume 2’ = u;,. Since D is acyclic,
152 := D — {y, w1, 21,2’} has a sink. The possible sinks of 152 are the predators of
one of y,wy, z1, 2, S0 Wa, 22, u1, and uy are only possible sinks of D,. However, none
of these can be a sink of Ds. For, if wy — 2/, then wy = u; or wy = uy and so
wy € V(C'), which is impossible. Thus wy 4 2’. Since ws has a prey not belonging
to {y,ws, 21}, wy is not a sink in D,. Since ws is a prey of 2y, 2o is not a sink in Ds.
Since N~ (z1) = {2/, 25}, w1 # 21 and uy /4 2. We note that each of y and w; has
two predators distinct from u; and us. Now, since u; and uy have outdegree 2, each
of them has a prey not belonging to {y,wy, z1, 2'}. Therefore D, has no sink and we

reach a contradiction. Consequently, we have shown
Pyn # Pym. (5.11)

Thus Py, Pom, X1, X2, and C are the nontrivial components of G. To show n = 2 by
contradiction, suppose n > 3. Then we may check that the CCE graph of a digraph
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D —yis a union of C, Xy, Xy, P, ,, (), and two isolated vertices z and w;, where )
is a nontrivial path wews - - - w,. We consider the set D of spanning subdigraphs of

D — y whose CCE graphs are isomorphic to
OUX1UX2UPU’mUQU{U}17ZL'}

and take a minimal digraph D’ in D. Then w; is a unique sink of D’. By applying
Lemma 5.25(ii) to D', we may claim that there is a nontrivial path P,; in C'U X; U
X5UP,,,UQ such that N, (w;) = {uy,us} and N}, (u1) = {w;}. Then P, is one of
X1, Xo, P, m, and Q. Note that CUX; UX,U P, ,,, UQ is a graph still satisfying the
property that it has the least components among the (2,2) CCE graphs containing
a cycle and exactly two isolated vertices. Thus, by applying (5.8) to D', we may
assert that P,; is neither X; nor X,. Moreover, by (5.11) applied to D', P,; # Py .

Therefore P,; = Q. Since wy /4 wq by (5.6), uy # wy and so u; = wy, and uy = w,,_;.

n—1n

and w,_; — w; in D. By Theorem 5.9 applied to P} w, = wa

w,n?

Then w; = w
and so w, has outdegree 2 in D. Since w,_; has degree 2 in G, it has outdegree 2
in D. Thus each predator of w; has outdegree 2 in D, which is a contradiction to

Lemma 5.25(iv)(a). Consequently, we have shown
n=2.

Since n is the order of the component containing the predator of the sink and m is

the order of the component containing the prey of the source,
m =2

by Proposition 5.22. Hence P, s, P, 2, X1, X2, and C are the nontrivial components
of G. Moreover, N*(w;) = N*(wy) = {y} and N~ (v1) = N~ (ve) = {x} by Proposi-
tion 5.23(ii). Since Xy = N~ (C), wiy € X5 and so w), € P, or wy, € X;.

To show that w{, has degree 2 by contradiction, suppose that wi, has degree
not equal to 2. Since wy, # = and wy, # y, w;, has degree at least 1 and so

wa has degree 1. Then, for the vertex, say w*, adjacent to wa, either w* — w,
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or w* — wy by Proposition 5.23(iii). Without loss of generality, we may assume
w* — wy. Then w* # w,. Since each of wy and wy, has degree 1, N (ws) = {wi,}
by Proposition 5.23(ii). We consider a digraph D — {ws, y}. It is easy to check that
the CCE graph of D — {ws,y} is isomorphic to X; U Xy U C U P,,, U {ws,z},
which contradicts the choice of G. Thus wy, has degree 2. Hence wi’, ¢ P, and so
wiQ € X;. Therefore X; contains a path z12923 (not necessary be an induced path)
such that

21 — wy, ZQZ'LUI27 23 — Wo. (5.12)

Since X; = NT(C), there are consecutive vertices, say uy, s, us, g, on C' such that
21 = Uy, 2o = Uy, 23 = Ugy (5.13)

by Proposition 5.6. Since u; has degree 2, u; has a prey not belonging to {z1, 20 }.
Suppose, to the contrary, that z; or z3 has outdegree 2. Without loss of generality,
we may assume that z3 has outdegree 2. Then z3 has a prey distinct from w; and wo
and the prey does not belong to V(C') since X1 N Xy = () and Xy = N~ (C). Now
we consider the digraph D3 := D — {y,wy, wa, 21, 22, u}. Since D is acyclic, D3 has
a sink. The possible sinks of Ds are u, uj,, ujs, us, 23 (see Figure 5.5(c)) and we
may check that those vertices are not sinks in 153. Thus 153 has no sink, which is a
contradiction. Therefore each of z; and 23 has outdegree 1 and so each of them has
degree 1 in G. Hence u; = ug and X7 = 212923 = Uy 9lUg gz - Then, since X is the
component containing prey of the vertices on C' and X5 is the component containing
predators of the vertices on C'; X; and X, have the same length by Proposition 5.22.
Accordingly, ¢ = 3. Thus G = C3U2P; U2P, U2P,.

Note that D was chosen to be a minimal digraph of G. Thus “further” part is
true if D is isomorphic to D* or D* in Figure 5.6. By applying Proposition 5.22 to

the previous argument, X5 is of the form

R A A 4
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with
N7(2) ={u}, 2 =v, N (z)={vn}, and {2, 25, 23} = {u)y, us3,u3,}.

Then, together with (5.5), (5.12), and (5.13), we may fix some subdigraph D of D as
in Figure 5.6(a) under the isomorphism. Moreover, the remaining arcs of D except
the ones in D are determined by {{, 2}, 24} = {ui 5, u3s, us, }. By the way, there are
exactly four automorphisms on D. To see why, we consider the two weak components
of D. We denote the weak components by F; and F, as shown in Figure 5.6(a). It
is easy to check that each of them has exactly one nonidentity automorphism as

follows:

o f:V(F1) — V(Fy)defined by f(a) = afor each a € V(D)—{wy, wa, uy,, uz;, s, us}

and

(f(w1), f(wa), fuys), fluzy), f(uz), f(us)) = (w2, w1, uzy, uy 5, us, ug),

that is, f is the map only switching between w; (resp. uy,, uz) and ws (resp.

u{;la us;
o g:V(F,) = V(F;) defined by g(a) = a for each g € V(D) — {2, 2}, v1,v2} and
(9(21), 9(23), 9(v1), 9(v2)) = (25, 21, v2, 01),

that is, ¢ is the map only switching between 2| (resp. vy) and zj (resp. vs).

Since Fy and F, are not isomorphic, the automorphisms on D are
idy(py, hi, ho, and hs
where idy (py is the identity map on V(D) and the rest are

P f(v) ifveV(F) P if veV(F) . f(v) ifveV(F)
e wvevim) 0 g itvevim) o |glv) ifveV(R)
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® Ul ® Us 12 ® ® Uy s

Figure 5.5: Digraphs in the proof of Theorem 5.30

Under the group action of the automorphism group {idy(py, k1, ho, hs} on the set
of six digraphs from D obtained by determining a bijection from {2}, z}, 24} to

{ufg, u3'73, u;{,l}, it is not difficult to see that there are exactly two orbits:

‘s : : Y Y A S + + A AV AN
e one consisting of digraphs determined by (21, 25, 23) = (U} 9, Uy 3, U3 1) O (21, 25, 23) =

+ ot - : - %
(uz,u33,u],), which are isomorphic to D*;

e the other one consisting of digraphs determined by (2, 25, 25) = (u}y, u3,, u33),
+

(Ziv Zé? Zi/’,) = (ué’_,?n u;la u1,2)7 (217 Zév Zé) = (ui—’ib UI% u;_,?;)v or (Ziv Zéa Zé) = (U,;:?), ui% Uf&)v
which are isomorphic to D*.
Therefore D is isomorphic to D* or D* given in Figure 5.6. [
Corollary 5.31. Let G be a (2,2) CCE graph with exactly two isolated vertices. If

G has at most four nontrivial components, then G has no cycle.
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(a) D (b) D* (c) D*

Figure 5.6: A subdigraph D and two digraphs D* and D* in the proof of Theorem 5.30

Theorem 5.32. Let G be a graph with the least components among the (2,2) CCE
graphs containing at least three vertices exactly two of which are isolated. Then G =
2P, U P, for some positive integer m. Further, if G is isomorphic to 2P, U P,,, then
a digraph D whose CCE graph is G is isomorphic to: a subdigraph of D}, if m =1;
D? or D!, —(vg,v3) if m = 2; D, otherwise where D}, is the digraph given in Figure
5.7.

Proof. If G has a cycle, then G contains at least five components by Theorem 5.30.
Since each component of (G is a path or a cycle by Proposition 5.1, it is sufficient to
prove the statement by constructing a (2, 2) digraph whose CC'E graph is isomorphic
to 2P, UP,, for each m. We consider the digraph D}, with V(D)) = {v1,va, ..., Ui}
having an arc (v, v,) and an outer arc set of vy, ..., v, toward vs, ..., Uyio. Then
we can check that CCE(D},) is isomorphic to 2P, U P,, and so D}, is the desired
one.

To show the “further” part, suppose that G = 2P, U P,, for some positive integer
m. Let D be a (2,2) digraph whose CCE graph is G. suppose m = 1. Then |V (D)| = 3.
Since D is acyclic, D is isomorphic to a subdigraph of Dy,.
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Now we suppose m > 2. Then, by Proposition 5.20(i), D has exactly one source x
and exactly one sink y. Therefore x has a prey 2’ of indegree 1 and y has a predator
y" of outdegree 1 by Proposition 5.20(ii). Since « and y are the only two trivial paths
in G, 2/ and y' have degree 1 in G by Lemma 5.2(i) and the vertices other than x
and y are on P,,. Let P, = P, ,,. Suppose ' = y'. Then, without loss of generality,
we may assume x’ =y’ = x7. If m > 3, then x5 has degree 2 and so, by Lemma 5.4,
T, is a prey of xo and a predator of x5, which contradicts that D is acyclic. Thus
m = 2. Then x5 must be a prey of x and a predator of y. Therefore D is isomorphic

to D, — (vg,v3). Now we suppose
£y

Since G has exactly two vertices of degree 1, {2/,y'} = {x1,z,,}. Without loss of
generality, we may assume that 2’ = x; and ¥’ = x,,. Then, since x; has indegree 1
and x; is adjacent to x5 in G, x is a common predator of x; and zs. Moreover, x,,
has outdegree 1 and z,,_; is adjacent to z,, in G, y is a common prey of z,,_; and

Tpm. Since D is a (2,2) digraph,
N+(Jf) = {I17ZE2}7 and N_(y) - {’r’m—hx’m}'

Then, since D is acyclic, D is isomorphic to D}, or D}, — (ve,v3) if m = 2.
Now we consider the case m > 3. Since D is a (2,2) digraph, x7, # y. Since z is a

source, Ty 9 # . Thus z;, = z; for some integer 2 < ¢ < m. Then, by Theorem 5.9,
Tm—t+1 € N~ (iL'm)

Suppose, to the contrary, that ¢ # 3. Then ¢ > 4 and so m > 4. We consider the
digraph D' := D — y. Then we can check that x,, is a sink in D" and CCE(D') is
isomorphic to {x}U{zy, } UP; ;n—1. Then, since x,,_; has degree 1 in CCE(D'), x,, is
a common prey of z,,_ and x,,_5 in D’ by the above argument. Thus z,, is a common
prey of x,, 1 and x,, o in D. By the way, since t > 4, x,, 411 # Ty—1 and x,, 411 #

Tm—o and so x,, has at least three predators, a contradiction. Therefore ¢t = 3. Then
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Figure 5.7: The digraph D},

x; has exactly two prey that are determined for 1 < ¢ < m — 1 by Theorem 5.9.
Moreover, the arcs incident to each vertex in {x,y,x,,} were determined. Then, by
letting © = vy, y = Ve, and x; = v,y for each 1 < i < m, we can check that D is

isomorphic to Dy,. O

The above theorem says that a (2,2) CCE graph G with exactly two isolated
vertices has exactly one nontrivial components if and only if G is isomorphic to
P,, U2P, for some integer m > 2. Extending the result, the following theorem gives
a characterization of (2,2) CCE graphs G having exactly two isolated vertices and

two nontrivial components.

Theorem 5.33. Let G be a (2,2) CCE graph with exactly two isolated vertices. Then
G has exactly two nontrivial components if and only if it is isomorphic to one of the

followings:
(a) 2P, U P, U P, for some m > 2;
(b) 2P, U2P,, for some m > 3;
(¢c) 2P, U P,, U P, 11 for some m > 3.

Proof. To show the “only if” part, suppose that G has exactly two nontrivial com-
ponents. Then there exists a weakly connected minimal digraph D of G U 2P; by
Proposition 5.20(iii). By Corollary 5.31, each nontrivial component of G is a nontriv-
ial path. In addition, by Proposition 5.20(i), D has a unique source x and a unique
sink y such that CCE(D) = G U {x,y}. Then, by Lemma 5.25(ii), there exists a

nontrivial path P, , such that y is a common prey of w; and ws, i.e.,

N™(y) = {wr, wa}. (5.14)
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By the hypothesis, there is the other nontrivial path P,,, of GU2P;. If n = 2 or
m = 2, then (a) holds. Suppose

n>3 and m > 3.

To the contrary, suppose wy — wy. Thus w; = w, 3. By (a) and (b) of Lemma 5.25(v),
wy, — w,_1 and A(D) contains an outer arc set of wg, ws, . . ., w, toward wy, wa, ..., Wy_2
and w

n—1,n €

P, n. Without loss of generality, we may assume that w,,_; , = v;. Then N*(v;) =

is an end vertex of a nontrivial path distinct from P, ,. Thus w:{_lm
{wn-1,w,} and N~ (wy—1) = {wp, v1}. Thus w, = vi,. Since N~ (w,—1) = {wy,v1},
wy,_1 cannot be a prey of vy. Thus, by Lemma 5.4 (where u = vy), the prey of vy other
than w, is an end vertex of a path in GG, which is a common prey of v, and v3. We note
that none of y, w;, and w, can be v, 3 since N~ (y) = {wi,wa}, N~ (w;) = {ws, w3},
and N~ (wy,) = {v1,va}. Thus vy 3 is either vy or vy,. If vy 3 = vy, then w, and v; have
a common prey w,_; and a common predator v, which contradicts to the hypothesis
that P, , and P,,, are distinct two paths. Therefore Vg3 = Un. Then, by applying
Theorem 5.9 to the (vq, vy, )-section of P, ,,, we may show {w,, Upm—1,0m} C NT(vq),
which is impossible. Then

w2 7L>w17

so, by Lemma 5.25(iv)(a), v; or v, is a predator of w; and has outdegree 1. Without

loss of generality, we may assume that vy is a such a vertex. Then N (v;) = {w;},
wy =v,, and vy — ws. (5.15)

To reach a contradiction, suppose n > m + 1. Then, by (5.15) and Corollary 5.7,

+

there is an outer arc set of vy,...,v,, toward wy,...,w,,_1 and so v,, = Wy 1

. + . . +
Moreover, wy,,; exists, and w,, ., and v, are not adjacent. Then, since wy, .,

and v,, are predators of wy,, w;ym 41 1s a vertex of degree at most 1 by Lemma 5.4.

. = x or w, Ifw | = x then w,y = w, by Lemma 5.25(i),

+
Hence w mmt

m,m-+

which contradicts the case assumption. Thus w;

a1 = Wy, Then w,_; — wy, or

Wp_1 — Wyt I w1 — w1, then, by Theorem 5.9 applied to the (w,, w.,)-
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section of P> ! w,_, — w,,. Thus w,_; — w,, and so, by Theorem 5.9 applied to

w,m?

the (wp, Wm—1)-section of Py}, wn_1 — wy—1. Hence {vn_1, Um, wn—1} © N~ (Wp-1),

a contradiction. Thus
n<m+ 1. (5.16)

To show n € {m—1,m, m+1}, suppose n < m—1. Then, by (5.15) and Corollary 5.7,
there is an outer arc set of vy, ..., v,.1 toward wy, ..., w,. Thus N*(z) = {vy, v} or
{Vm-1,Um}. Then, by Proposition 5.3 and (5.16), m < n + 1, which contradicts the
assumption n < m — 1. Therefore n € {m — 1,m,m + 1} and so the “only if” part
is true.

Now we show the “if part”. First suppose that (a) holds. Then P, is a component
of G. By Theorem 5.32, 2P, U P,, is the CCE graph of the digraph D} given in
Figure 5.7 for each m > 2. We obtain a digraph D;* from D], by removing arcs

(U, Vma2)s (Uma1, Umee) and adding two vertices yi, yo and arcs

(Umv y1)7 (/Um+17 y1)7 (Um+l> y2)7 (yla UerQ)v <y27 Um+2)'

Then, in CCE(D}), vy and v,,,42 are the only isolated vertices, {vs, ..., vy41} forms
a path of length m, and {yi,y2} forms a path of length 2. Thus CCE(D}) =
2P U P, U P,

Second, suppose that (b) holds. Then G is isomorphic to 2P, U 2P, for some
m > 3. Fix m > 3. We consider the digraph D; with the vertex set V(D) =

{u1, ..., Um, V1, ..., 0m, x,y} and the arc set

Al U A2 U {(umvvm—1>’ (Umv um)? (ulu y)? (u27 y), (‘r7 Um—l)v (ZE, Um)}

where A; (resp. As) is the outer arc set of vy, vs, ..., vy, (resp. ug, us, .. ., Uy) toward
UL, Uy« oy U1 (TESP. V1, Vg, ..., Uy_o) (see the digraph D; given in Figure 5.8 for
an illustration). Obviously,  and y are isolated in CCE(D;). We can check that
CCE(Dy) =P, U P, U{z,y}.

Finally suppose that (c) holds. Then G is isomorphic to 2P, U P, U P, for some

m > 3. We consider the digraph D, with vertex set V(D) = {u1, ..., Umi1,V1, -+, U, T, Y}
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Figure 5.8: The digraphs D; and D, in the proof of Theorem 5.33

and the arc set

Al U AQ U {(um7 Um)’ (um-i-lv Um)7 (ulv y)? (u27 y)’ (:L" um)? (:L“, um—i-l)}

where A; (resp. As) is the outer arc set of vy, vg, . .., Uy, (T€SP. U, U, . . . , Upy1) toward
UL, Uy« oy U1 (TESP. V1, Vo, . .., Um—1) (see the digraph D, given in Figure 5.8 for an
illustration). Then in a way similar to the case (b), we can check that CCE(Dy) =
P, m+1 U P, U{z,y} and this completes the proof of the “if” part. O]

By Theorems 5.30 and 5.32, we completely characterize graphs G having the
least components among (2,2) CCE graphs having at most one cycle component
with exactly two isolated vertices. Furthermore, we completely identify CCE graphs
G consisting of two nontrivial components with exactly two isolated vertices by
Theorem 5.33. Naturally, we come up with a question, “Which (2,2) CCE graph has
two nontrivial components with not two but exactly three isolated vertices?” The

following partially answers the question (Theorem 5.36).

Lemma 5.34. Let G1 UiP; and Gy U jPy be (2,2) CCE graphs for some positive
integers i and j. Then Gy UGy U (i +j —1)P; is a (2,2) CCE graph.

Proof. Let Dy and D, be (2,2) digraphs whose CCE graphs are G1Ui Py and GoUj Py,

respectively. Since D; and Dy are acyclic digraphs, D; contains a sink u and D,
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contains a source v. Then we obtain a digraph D from D; and D, by identifying u
with v. Obviously, D is a (2,2) digraph and CCE(D) = Gi UGy U (i +j — 1) P;.
Therefore the CCE graph of D is Gy UG U (i +j — 1)Py. O

Proposition 5.35. For each positive integer t, a graph consisting of t path compo-
nents and t + 1 isolated vertices is the CCE graph of a (2,2) digraph.

Proof. Fix a positive integer t. Let T},T5, ..., T; be the path components. Then, by
Theorem 5.32, there exists a digraph D; whose CC'E graph is T;U2P,; for each 1 < i <
t. Therefore, by applying Lemma 5.34 to D; and D,, we obtain a (2,2) digraph D]
whose CCE graph is 77 UT,U3P;. Then we apply Lemma 5.34 to D} and D3 to obtain
a (2,2) digraph D) whose CCE graph is T} U T, U T3 U 4P;. We repeat this process
until we obtain a digraph D;_; whose CCE graph is Ty UToU---UT,U(t+1)P. O

Theorem 5.36. If P, U P,, UiP; is a (2,2) CCE graph with 3 <n andn+2 <m

for some positive integer i, then i > 3, further, the inequality is tight.

Proof. Since every (2,2) CCE graph contains two isolated vertices, ¢ > 2. By The-
orem 5.33, P, U P,, U2P; cannot be a (2,2) CCE graph. Thus ¢ # 2 and so i > 3.
Now we show “further” part. By Proposition 5.35, there exists a (2, 2) digraph whose
CCE digraph is isomorphic to P, U P,, U3P; and so the inequality is tight. ]
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