ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

A Dissertation for the Degree of Doctor of Philosophy in Pharmacy

Evolution of a Strategy For Concise
 Enantioselective Total Synthesis of the Salinosporamide Family of Natural Products

Salinosporamide 계열 천연물들의 효율적인 전합성 수행 및 이를 위한 비대칭 합성법 개발

February 2023

Graduate School of Pharmacy
Seoul National University
Pharmaceutical chemistry Major

Soojun Park

Evolution of a Strategy For Concise Enantioselective Total Synthesis of the Salinosporamide Family of Natural Products

by
Soojun Park
Under the guidance of Professor Sanghee Kim
Submitted to the Faculty of the College of Pharmacy in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY
December 2022

Pharmaceutical Chemistry Major, College of Pharmacy
Graduate School of Seoul National University
Seoul, Korea

A Dissertation Approved on
December 2022
by the following Dissertation Committee

Chair

Vice Chair
Committee Member
Committee Member
Committee Member

Abstract

Owing to their challenging structural features and significant biomedical properties, salinosporamides have attracted great interest from scientists within the chemical and medicinal research communities. This article reports the evolution of a synthetic strategy aimed at rapidly accessing highly functionalized pyrrolidinone cores with correct stereochemistries. Our first strategy involved combined use of memory of chirality and dynamic kinetic resolution principles in intramolecular aldol reactions of a 5-oxazolidinone aldol substrate, which was successful in terms of diastereoselectivity but ultimately unsuccessful with respect to enantioselectivity. This failure led us to the revised strategy, with which we installed the C-2 stereocenter prior to use of the intramolecular aldol reaction. The influence of the stereocenter in the 5-oxazolidinone enabled selective installation of the $\mathrm{C}-2$ stereocenter. The intramolecular aldol reaction of the C-2 stereodefined 5oxazolidinone aldol substrate was successful. An interesting and unexpected hydrolytic dynamic kinetic resolution was observed in hydrolyses of the 5oxazolidinone/pyrrolidinone bicyclic aldol products. This unprecedented substratedriven hydrolytic dynamic kinetic resolution was utilized in preparing the pyrrolidinone core with excellent efficiency. Through this strategy, a 9-step total synthesis of salinosporamide B and a 12 -step synthesis of salinosporamide A were achieved with conciseness and high selectivity from silyl-protected serine as the only chiral source. In addition, the total syntheses of cinnabaramides A, E, and F were achieved by using the same chemistry.

Key word: Aldol cyclization, Salinosporamide, Hydrolytic dynamic kinetic resolution, 5-oxazolidinone, Total synthesis

Student Number: 2015-21874

Table of Contents

I. Introduction 1
II. Results and Discussion 4
III. Conclusions 28
IV. Experimental 31
V. References 100
Appendix I 106
Abstract in Korean 144

I. Introduction

Salinosporamides constitute a family of natural products produced by marine bacteria of the genus Salinispora (Figure 1). The characteristic structural feature of these compounds is a densely functionalized γ-lactam- β-lactone bicyclic core. The first and representative member of the salinosporamide family is salinosporamide A (1), which was isolated from Salinispora tropica by Fenical and coworkers in 2003. ${ }^{1}$ Compound $\mathbf{1}$ is a highly potent irreversible inhibitor of the 20S proteasome and exhibits potent in vitro cytotoxicity. Due to its significant biomedical properties, ${ }^{2}$ this compound was entered into human clinical trials under the name marizomib. ${ }^{3}$ After the identification of 1, several other salinosporamides were identified from S. tropica, including its deschloro analog salinosporamide B (2) and methyl congener salinosporamide D (3). C-2 epimers of $\mathbf{1}$ and $\mathbf{3}$ (salinosporamides $\mathrm{F}(\mathbf{4})$ and $\mathrm{G}(\mathbf{5})$, respectively) as well as the C-3 ethyl analog salinosporamide I (6) were also identified. ${ }^{4}$ The salinosporamide family also encompasses chemically related terrestrial metabolites, cinnabaramides, isolated from a terrestrial strain of Streptomyces. ${ }^{5}$ The structures of cinnabaramides basically differ from those of salinosporamides in possessing a hexyl substituent at C-2. Cinnabaramides $\mathrm{A}(7)$ and $\mathrm{B}(\mathbf{8})$ have bicyclic γ-lactam- β-lactone ring systems similar to those of salinosporamides, while cinnabaramides $\mathrm{D}(\mathbf{9})$ and $\mathrm{E}(\mathbf{1 0})$ are
seco-forms of the corresponding β-lactone moieties. Cinnabaramides F (11) and G (12) are thioester derivatives and are considered analogs of the natural product lactacystin. Interestingly, cinnabaramide A (7) strongly inhibited the 20S proteasome with a potency similar to that of $\mathbf{1},{ }^{5}$ even though the former lacked the chlorine substituent essential for the strong activity of the latter.
(a) salinosporamides

salinosporamide $A(1): R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\cdots \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ salinosporamide B (2): $R^{1}=M e, R^{2}=\cdots \mathrm{Et}$ salinosporamide $D(3): R^{1}=M e, R^{2}=\cdots M M e$ salinosporamide F (4): $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ salinosporamide $G(5)$: $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=-\mathrm{Me}$ salinosporamide I (6): $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\cdots \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(b) cinnabaramides

cinnabaramide $A(7): R=H \quad$ cinnabaramide $D(9): R=O H$ cinnabaramide $F(11): R=H$ cinnabaramide B (8): $R=O H$ cinnabaramide $E(10): R=H$ cinnabaramide $G(12): R=M e$

Figure 1. Structures of the salinosporamide family.

The challenging structural features of salinosporamides, which have a highly functionalized skeleton and five contiguous stereogenic centers, including adjacent quaternary centers, have attracted tremendous interest from the synthesis community. The first total synthesis of salinosporamide was achieved by Corey. ${ }^{6 a}$ To date, fifteen successful total syntheses of salinosporamide A (1) and seven formal syntheses have been reported. ${ }^{6,7}$ Total syntheses of other salinosporamides
have not been reported. The synthesis of cinnabaramide A (7) has been reported once, by Romo. ${ }^{6 \mathrm{n}}$ Most synthetic strategies differ in how they access the highly decorated pyrrolidinone core, as depicted in Figure 2. While Corey ${ }^{6 a}$ and Omura ${ }^{6 e}$ constructed the pyrrolidinone ring through a ring closure involving formation of a bond between $\mathrm{C}-2$ and $\mathrm{C}-3$, Borhan ${ }^{61}$ and Chida ${ }^{6 \mathrm{i}}$ constructed the ring by joining the nitrogen function to $\mathrm{C}-1$. An important approach to the pyrrolidinone ring involved bond formation between C-3 and C-4. In this regard, Burton ${ }^{6 \mathrm{k}}$ and Hatakeyama ${ }^{6 \mathrm{~d}}$ employed oxidative cyclization and the Conia-Ene reaction of amidomalonate substrates, respectively. Moreover, several groups, including the Potts and Romo groups, used an intramolecular aldol reaction to connect C-3 and C-4. ${ }^{6 c, f, \mathrm{f}, \mathrm{j}, \mathrm{m}, \mathrm{m}}$

It is surprising, considering the considerable recent advances in synthetic strategies and methods, that most syntheses of these comparably small but complex natural products have required more than 15 steps. ${ }^{6-e \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}, 1}$ Given our interest in asymmetric and concise total synthesis using a minimum number of chiral sources, ${ }^{8,9}$ we sought a retrosynthetic scheme that would lead to the amino acid as the only chiral source in the synthesis of salinosporamides. Herein, we report concise total syntheses of salinosporamides A (1) and B (2) as well as cinnabaramides $A(7), E(10)$, and $F(11)$ from serine through a strategy that features a number of chirality induction processes.

Baylis-Hillman <Corey>

oxidativ radical cyclization
<Burton>

Conia-Ene <Hatakeyama>

aldol
<Omura>

aldol
<Potts>
ydroamination
<Borhan>

skeletal rearrangement
<Chida>

Figure 2. Previous strategies for preparing pyrrolidinone cores of salinosporamides.

II. Results and Discussion

We previously reported an application of the principles of "memory of chirality" $(\mathrm{MOC})^{10}$ and "dynamic kinetic resolution" $(\mathrm{DKR})^{11}$ to intramolecular aldol reactions for asymmetric construction of the pyrrolidinone cores of some natural products by using simple amino acids as the only chiral source (Scheme 1a). ${ }^{8}$ The excellent MOC and DKR outcomes were attained with the relatively weak base NaOEt in a protic solvent. Building on our previous work, we designed an approach that would implement the combined use of MOC and DKR for concise
synthesis of the salinosporamide family. As shown in Scheme 1b, we expected that the aldol reaction of d-serine derivative $\mathbf{1 3}$ would yield pyrrolidinone $\mathbf{1 4}$. The predicted product $\mathbf{1 4}$ might have the C-2 and C-3 stereochemistries (natural product numbering) required for syntheses of the target salinosporamides. On the other hand, the configuration of the C-4 quaternary center was not suitable for concise synthesis. The oxidation levels of two substituents on the C-4 carbon should be reciprocally changed, which would make any given synthetic route longer. In fact, many previous syntheses of salinosporamides required several extra steps to adjust the oxidation levels of C-4 substituents or to differentiate two identical C-4 ester groups. ${ }^{6 \mathrm{~b}-\mathrm{d}, \mathrm{j}, \mathrm{m}, \mathrm{o}}$

To shorten the synthesis by avoiding redox adjustment steps, we devised an alternate route involving 1 -serine-derived 5 -oxazolidinone 15 (Scheme 1 b). We envisioned that the intramolecular aldol reaction of $\mathbf{1 5}$ via enolate $\mathbf{1 6}$ might afford aldol product $\mathbf{1 7}$ with the proper configuration required to proceed swiftly to the salinosporamides. Although this stereochemical outcome was postulated on the basis of our previous MOC-DKR aldol reactions (Scheme 1a), there were several stereochemical concerns to be addressed. Two of the major questions were whether the axially chiral endocyclic enolate $\mathbf{1 6}$ was obtainable with appropriate selectivity and whether the resulting chiral enolate would have a sufficiently sizeable energy barrier for racemization to allow the MOC aldol reaction. Successful MOC
reactions via endocyclic enolates were reported by the Alezra group, who employed amino acid-derived 5-oxazolidinone with a bulky naphthyl amide moiety. ${ }^{12}$ This bulky moiety was used to enhance the stability of the dynamic axial chirality in the endocyclic enolate. However, our designed aldol substrate 15 possesses a sterically less demanding alkyl amide group. Another major stereochemical concern was whether the DKR process would occur at the C-2 position of $\mathbf{1 5}$ during the aldol reaction. While a stereocenter adjacent to two carbonyl groups is generally readily epimerizable, the epimerization would not easily occur in some special systems, such as with Evans' 2-oxazolidinonesubstituted β-ketoimides. ${ }^{13}$ To the best of our knowledge, no study has reported epimerization of a 5-oxazolidinone-substituted β-ketoamide system.
(a) Our previous MOC and DKR assisted aldol-type cyclization

(b) Predicted aldol cyclization of oxazolidine-4-carboxylate 13 and 5-oxazolidinone 15

Scheme 1. Implementation of the MOC and DKR strategy toward salinosporamides

Despite these uncertainties, we decided to pursue the synthesis using 5oxazolidinone 18 as a model study and a possible intermediate to salinosporamide B (2), as shown in retrosynthetic Scheme 2. If successful, this approach would enable total synthesis of the salinosporamide family with a minimum number of chiral sources and chemical steps. Specifically, aldol substrate $\mathbf{1 8}$ would be available by condensation of serine-derived oxazolidinone 19 with β-ketoacid 20. We assumed that the C-2 stereocenter would not require installation because the DKR process might occur during the basic aldol reaction. The aforementioned MOC- and DKR-involved aldol reaction of $\mathbf{1 8}$ was envisioned to afford bicyclic
pyrrolidinone-oxazolidinone 21 . The resulting aldol product $\mathbf{2 1}$ might serve as an advanced intermediate en route to $\mathbf{2}$. Attachment of the 2-cyclohexenyl group at the C-4 hydroxy methylene group in 22 was expected to proceed via Corey's protocol. ${ }^{6 a}$ Subsequent β-lactone ring formation with the two functional groups appropriately positioned in $\mathbf{2 3}$ would complete the total synthesis.

Scheme 2. Retrosynthetic analysis of salinosporamide B.

Our initial study began with the preparation of aldol substrate $\mathbf{1 8}$ (Scheme 3). First, oxazolidinone 19 was prepared from the sodium salt of silyl-protected serine $24{ }^{14}$ by applying the procedure described by Alezra. ${ }^{12}$ As this compound was unstable, it was coupled in situ with the known β-ketoacid 20 to afford $\mathbf{1 8}$ as a 1:1.3 mixture of C-2 diastereomers. During this operation, no epimerization occurred at the C-4 position.

Scheme 3. Synthesis of aldol substrate 18. Reagents and conditions: (a) AlMe_{3} (1.0 equiv), $4 \AA$ molecular sieves (excess), acetone, $\mathrm{rt}, 16 \mathrm{~h}$, then the acid chloride of 20 (1.5 equiv), rt, $2 \mathrm{~h}, 68 \%$; (b) $(\mathrm{COCl})_{2}\left(1.2\right.$ equiv), cat. DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h} . \mathrm{DMF}=$ dimethylformamide.

With a diastereomeric mixture of $\mathbf{1 8}$ in hand, we investigated the intramolecular aldol reaction. Initially, $\mathbf{1 8}$ was subjected to the previously established reaction conditions ${ }^{8}$ (NaOEt in EtOH at $0{ }^{\circ} \mathrm{C}$) for the MOC- and DKR-involved aldol reaction (Scheme 4). Unlike in our previous work, ${ }^{8}$ the reaction of $\mathbf{1 8}$ was not selective and afforded three different products. The major product (47%) was bicyclic aldol product 25, for which the enantiopurity was 91% ee. A structural determination by NMR showed that the C-3 stereocenter was epimeric to those of the target natural products, while two stereocenters at C-2 and C-4 had the desired configurations. Another product (29\%) was acyclic compound 26, which arose from the oxazolidinone ring-opening reaction of the starting substrate $\mathbf{1 8}$ with ethoxide. The other minor product was pyrrolidinone 27, which was formed with a yield of 18% and enantiopurity of 90% ee. The relative stereochemistry of $\mathbf{2 7}$, as determined by 2D NMR analysis, suggested first that 27 was derived from the
oxazolidinone ring-opening reaction of our initially envisioned bicyclic aldol product 21. Later, it was found that 27 was derived from the ring-opening reaction of ent-21, not from the reaction of $\mathbf{2 1}$ (vide infra). ${ }^{15}$

Other sodium alkoxides with bulky organic substituents were employed to suppress ring-opening of the oxazolidinone moiety. NaOiPr and NaOt Bu also afforded bicyclic 25 at low temperatures (Scheme 4a, table, entries 1-2). Instead of the oxazolidinone ring cleavage products 26 and 27, these bases afforded another bicyclic aldol product. The obtained bicyclic species was not our initially envisioned aldol product 21, but was, to our surprise, the enantiomer of 21 (ent21). ${ }^{16}$ The combined yield of the two aldol products 25 and ent- 21 was very high (ca. 90%), and the product ratio was 1:1.2. The enantiopurities of $\mathbf{2 5}$ and ent-21 obtained from the reaction with $\mathrm{NaO} t \mathrm{Bu}$ in $\mathrm{THF} / \mathrm{DMF} / t \mathrm{BuOH}$ were 90% and 91% ee, respectively. A sterically hindered strong organic base, KHMDS, also afforded the same two products with 90% ee and a yield and ratio similar to those of $\mathrm{NaO} t \mathrm{Bu}$ (entry 3).

These results, including the similar diastereomeric ratios of the substrate and product, led us to suspect that the C-2 stereochemistry might be an important factor in determining the stereochemical outcome of the process. To comprehend the reaction, we performed additional experiments. When the two separated C-2 diastereomers of $\mathbf{1 8}$ were independently subjected to the aldol reaction conditions
with $\mathrm{NaO} t \mathrm{Bu}$ in $\mathrm{THF} / \mathrm{DMF}$, each diastereomer produced a 9:1 mixture of diastereomeric aldol products (Scheme 4b). The ($2 R$)-18 isomer ${ }^{17}$ rapidly produced $(2 R, 3 R, 4 R)-\mathbf{2 5}$ as the major diastereomer along with its $\mathrm{C}-3$ epimer 21, while the reaction of the ($2 S$) $\mathbf{- 1 8}$ isomer less rapidly afforded ent-21 with the $(2 S, 3 R, 4 S)$ configuration as the major isomer and its C-3 epimer ent-25 as the minor isomer. The enantiopurities of the obtained isomers were excellent to very high. Conducting the reaction in the presence of a protic solvent resulted in a very similar outcome (see experimental section for details). These results explained the stereoselectivities obtained for the reaction with the C-2 diastereomeric mixture 18. In addition, these results led us to conclude that the stereochemical outcome was controlled by the C-2 stereocenter rather than the envisioned MOC and DKR principles.
(a) aldol cyclization of 18

${ }^{\text {a }}$ isolation yield. ${ }^{b}$ ee value was determined by chiral HPLC
${ }^{c}$ ratio of THF/DMF/tBuOH $=1: 1: 0.1,{ }^{d}$ ratio of THF/DMF $=1: 1$
(b) aldol cyclization of (2R)-18 and (2S)-18

Scheme 4. Aldol cyclization of 18.

At the outset of this study, we assumed that the configuration at the C-2 stereocenter would not be important because the DKR might occur at the epimerizable C-2 position. However, unlike our previous studies with oxazolidine-4-carboxylate, ${ }^{8 b, c}$ DKR was not operating with the 5 -oxazolidinone substrate 18. A
deuteration study of (2S)-18 with $\mathrm{NaOEt} / \mathrm{EtOD}$ at $-40^{\circ} \mathrm{C}$ showed a negligible level of deuterium incorporation at C-2 (Figure 3a). On the other hand, appreciable deuterium exchange was observed at C-4. Interestingly, the stereocenters of recovered (2S)-18 were not racemized. ${ }^{8 a}$ The obtained aldol product showed no detectable deuterium incorporation at $\mathrm{C}-2$ (see SI). The deuteration study of $(2 R)$ 18 was aborted because of its very fast aldol reaction rate. However, it provided information indicating that the aldol product also did not contain deuterium at the C-2 position (see SI). These results implied a low kinetic acidity for the C-2 hydrogen atom of substrate $\mathbf{1 8}$ under the reaction conditions. One reasonable explanation for the low kinetic acidity exhibited by the hydrogen atom on C-2 adjacent to two carbonyl groups could be 1,3-allylic strain in the deprotonation transition state, which could arise from the presence of the 5-oxazolidinone amide group, as shown in the brackets. ${ }^{13}$ This explanation was supported by the observation that oxazolidinone ring seco substrate 26 showed facile basic deuteration at C-2 (Figure 3b).
(a) H/D exchange of (2S)-18

(b) H/D exchange of $\mathbf{2 6}$

Figure 3. H/D exchange of 18 and 26 in EtOD.

Based on these results and our earlier reports, an aldol reaction mechanism of $\mathbf{1 8}$ was proposed, as shown in Scheme 5. An axially chiral enolate A, generated from the favored conformer ($2 R$)-18, undergoes a rapid aldol reaction via conformer AII to yield aldol product 25. The reaction via conformer A-I would be less preferred because of the unfavorable dipole interaction between two carbonoxygen bonds in a synclinal disposition. In the aldol reaction of (2S)-18, axial chiral enolate A-III was generated, similar to the reaction of (2R)-18. However, the C-2 alkyl group in A-III hinders enolate addition to the carbonyl group and prevents formation of the corresponding aldol product. Because the $\mathrm{C}-2$ stereocenter of $\mathbf{1 8}$ is not readily epimerizable, (2S)-18 takes an alternative reaction
pathway that involves epimerization of the chiral enolate. In this event, the C-2 alkyl group no longer blocks the enolate addition to the carbonyl group as shown in conformer B. The conformer B-I would suffer from a severe steric interaction between the methyl group and the gem-dimethyl moiety of the oxazolidinone ring. Thus, the aldol reaction of $(2 S)-\mathbf{1 8}$ would proceed via conformer B-II to give ent21 despite the dipole interaction.

Scheme 5. Plausible aldol reaction mechanism of 18

We observed an interesting phenomenon in attempted basic hydrolyses of bicyclic aldol products. While hydrolysis of the oxazolidinone ring of ent-21 with KOH in THF/water was very fast and gave the corresponding hydrolysis product ent-28, the hydrolysis of $\mathbf{2 5}$ was sluggish and produced the C-3 epimerized hydrolysis product

28 without loss of enantiopurity (Figure 4 a). To understand this unexpected C-3 epimerization, we performed the basic hydrolysis of $\mathbf{2 5}$ in deuterated THF with $\mathrm{D}_{2} \mathrm{O}$ (Figure 4b). Monitoring of the reaction by NMR indicated the presence of peaks for $\mathbf{2 1}$ or ent-21. Hydrolysis product 28 was progressively formed without detectable deuterium incorporation at $\mathrm{C}-2$ as the reaction progressed. The ratio of 25 to 21 was unchanged (15:1) throughout the experimental period. These observations suggested that 21 was an intermediate for formation of $\mathbf{2 8}$ and was in equilibrium with $\mathbf{2 5}$ under basic conditions. To further understand this interesting phenomenon, the reaction of $(2 R)-\mathbf{1 8}$ was monitored over time. As mentioned above, formation of the two bicyclic aldol products $\mathbf{2 5}$ and its C-3 epimer 21 was very fast. The product ratio was constant over time and favored $\mathbf{2 5}$ (Figure 4 c). ${ }^{18}$ This result suggested that $\mathbf{2 5}$ might be the thermodynamic and kinetic product of the reaction of $(2 R)-\mathbf{1 8}$. Our density functional theory (DFT) calculations using simplified enolate 29 supported the experimental suggestion. As shown in Figure 4 d , formation of the $(2 R, 3 R, 4 R)$-isomer was favored both thermodynamically and kinetically. The energy differences calculated for products P1 and P2 correlated well with the diastereomeric ratios obtained in the aldol reaction. Considering the low activation barriers, the aldol adducts might be in rapid equilibrium with each other.
(a) hydrolysis of ent-21 and 25

(c) Time-course monitoring of aldol reaction of $(2 R)-18$

(d) energy profiles for the aldol/retro-aldol equilibrium (wB97XD/6-31 $+\mathrm{g}(\mathrm{d})$)

Figure 4. Hydrolysis of aldol products and mechanistic studies.

Based on the above experimental and computational studies, a hydrolytic C-3 epimerization mechanism of $\mathbf{2 5}$ was proposed, as shown in Scheme 6. Aldol product $\mathbf{2 5}$ is converted to its C-3 epimer $\mathbf{2 1}$ via a retroaldol-realdol process, ${ }^{19}$ and
the two are in fast equilibrium with one another. The minor aldol product $\mathbf{2 1}$ would experience more rapid hydrolysis because its C-3 hydroxyl group is syn to the adjacent oxazolidinone ring. This proximal C-3 hydroxyl group can cooperate or be involved in hydrolysis of the oxazolidinone ring, thus accelerating the rate of hydrolysis. ${ }^{20}$ One possible route for participation is through intramolecular hydrogen-bond formation to promote hydrolysis. ${ }^{20 a, d}$ The other possible participation route for this proximal group is irreversible formation of the reactive β-lactone intermediate 30. Although we could hardly detect it via NMR monitoring, we found that β-lactone 30, which was obtained by intramolecular cyclization of 28, was hydrolyzed extremely rapidly to afford 28 under the above basic conditions (see SI). As a result of neighboring group participation by the C-3 hydroxyl group, the hydrolysis product distribution would not reflect the equilibrium distribution of the two aldol products, and the only hydrolytic product 28 arose from a minor component 21. To the best of our knowledge, this type of substrate-driven hydrolytic DKR of diastereomers has not been reported thus far, although there are enzymatic or catalytic examples of hydrolytic DKR. ${ }^{21}$

Scheme 6. Plausible hydrolytic epimerization mechanism of $\mathbf{2 5}$

The initially envisioned MOC- and DKR-involved aldol approach with C-2 diastereomeric mixture $\mathbf{1 8}$ proved to be unsuccessful, especially with respect to the enantioselectivity; $(2 R) \mathbf{- 1 8}$ produced the desired stereomer $\mathbf{2 8}$ after aldol reaction and consequent hydrolysis, while (2S)-18 afforded ent-28. Thus, we developed a new synthetic approach, as shown in Scheme 7. The endgame disconnections of our revised synthetic plan remained identical and would lead to pyrrolidinone 28, which would be accessible via an intramolecular aldol reaction and hydrolysis of oxazolidinone 18. Central to the new approach was selective installation of the $\mathrm{C}-2$ stereocenter prior to the intramolecular aldol reaction. We envisioned that diastereoselective 1,4 -reduction of α, β-unsaturated 1,3 -dicarbonyl substrate 31 could be achieved with control by the stereocenter in the 5 -oxazolidinone ring to afford either $(2 S) \mathbf{- 1 8}$ or $(2 R)-\mathbf{1 8}$. Although no precedent for this type of selective
reduction has been reported, we deemed it possible based on Evans' oxazolidinone chemistry. ${ }^{13}$

The required substrate $\mathbf{3 1}$ was prepared as a $1: 1.5$ mixture of E / Z isomers by condensation of oxazolidinone 19 with the known β-ketoacid $32 .{ }^{22}$ This mixture was subjected to various 1,4-reduction conditions. Gratifyingly, we found that reduction with NaBH_{4} in the presence of CoCl_{2} in methanol proceeded with high diastereoselectivity (12:1) to afford (2R)-18 as a major isomer. ${ }^{23}$ Based on the stereochemical outcome at the C-2 center, we proposed that the reduction proceeded through 33 involving chelation and minimized allylic strain wherein a substituent on the oxazolidinone ring blocked the approach of the reductant from the $r e$ face.

From our prior synthetic campaigns (Figure 4c), ${ }^{18}$ it seemed that, under the correct conditions, the intramolecular aldol reaction of $(2 R)-\mathbf{1 8}$ could occur in tandem with DKR hydrolysis. Thus, we sought reaction conditions for the one-pot tandem reaction. After some trials, we found that the reaction of $(2 R)-\mathbf{1 8}$ with $\mathrm{NaO} t \mathrm{Bu}$ in slightly wet $t \mathrm{BuOH}(\sim 0.1 \%(\mathrm{v} / \mathrm{v})$ water in $t \mathrm{BuOH})$ at room temperature gave the desired pyrrolidinone 28 directly in 90% yield and with 96% ee. Increasing the water content was detrimental to the yield because excess water led to hydrolysis of the oxazolidinone ring prior to the aldol reaction.

Having achieved a selective route to 28, the main task remaining for the total synthesis was attachment of the 2-cyclohexenyl group to the C-4 functional group with concomitant installation of the C-5 and C-6 stereogenic centers. We planned to achieve this goal by employing Corey's approach, ${ }^{6 a}$ which entailed the addition of a cyclohexenylzinc reagent to the C-4 aldehyde group. Corey's process is very commonly applied in syntheses of salinosporamides. ${ }^{6 a, b, d, e, i-k, m, o}$ However, success with this process required protection of the amide nitrogen, presumably due to the instability of the aldehyde intermediate and low diastereoselectivity. ${ }^{6 j, k}$ Only the Burton group has reported successful addition of the cyclohexenylzinc reagent to the unstable aldehyde substrate without a protecting group on the amide nitrogen, albeit in moderate yield. ${ }^{6 \mathrm{k}}$ Encouraged by Burton's work, we proceeded to install the cyclohexene ring and stereocenters. To this end, the carboxylic acid in $\mathbf{2 8}$ was first converted to its t-butyl ester 34, and the silyl protecting group was removed to afford 35. Dess-Martin oxidation of $\mathbf{3 5}$ afforded the unstable aldehyde 36, which was immediately subjected to the next reaction after filtration. The reaction of $\mathbf{3 6}$ with the cyclohexenylzinc reagent, which followed the Corey procedure, ${ }^{6 a,}$ gave a mixture of two diastereomers (5:1 d.r.) with desired isomer 37 as the major component, albeit in modest yield (54\%). Alternatively, we found that indiummediated Barbier-type allylation, which greatly simplified the experimental operation, afforded the desired product with much improved yield (70\%) and
selectivity (10:1 d.r.). The best outcome was obtained when THF was employed as the solvent and ammonium chloride as an additive.

With a route to 37 secured, we proceeded to construct β-lactone ring with two substituents at C-3 and C-4. Toward this end, t-butyl ester was hydrolyzed with trifluroacetic acid (TFA) and the resulting crude acid 38 was treated with $\mathrm{BOP}-\mathrm{Cl}$ and triethylamine to give salinosporamide B (2) in good yield. Overall, this asymmetric total synthesis was completed in only 9 steps from known silylprotected serine $\mathbf{2 4}$ and 12\% overall yield.

Scheme 7. Revised scheme for the total synthesis of salinosporamide B. Reagents and conditions: (a) $(\mathrm{COCl})_{2}\left(1.2\right.$ equiv), cat. DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}$; (b) acid chloride of $\mathbf{3 2}$ (1.5 equiv), acetone, $\mathrm{rt}, 2 \mathrm{~h}, 64 \%$; (c) CoCl_{2} (4.0 equiv), NaBH_{4} (5.0 equiv), $\mathrm{MeOH}, \quad-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 72 \%$ ($12: 1$ d.r.); (d) $\mathrm{NaO} t \mathrm{Bu}$ (5.0 equiv), $t \mathrm{BuOH}, \mathrm{rt}, 30 \mathrm{~min}, 90 \%\left(96 \%\right.$ ee); (e) $50 \% \mathrm{HClO}_{4}(\mathrm{aq}) / t \mathrm{BuOAc}(1: 50), \mathrm{rt}, 16$ h, 75% ($91 \% \mathrm{brsm}$); (f) TBAF (2.0 equiv), AcOH (4.0 equiv), THF, $0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 78 \%$; (g) DessMartin periodinane (1.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{rt}, 2 \mathrm{~h}$; (h) In (5.0 equiv), 3-bromocyclohexene (3.0 equiv), $\mathrm{NH}_{4} \mathrm{Cl}$ (5.0 equiv), THF, rt, $6 \mathrm{~h}, 70 \%$ ($10: 1$ d.r.) for 2 steps; (i) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 2 h ; (j) BOP-Cl (3.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 10 \mathrm{~h}, 74 \%$ for 2 steps. $\mathrm{TBAF}=$ tetrabutylammonium fluoride, $\mathrm{DMP}=$ Dess-Martin periodinane; TFA $=$ trifluoroacetic acid, $\mathrm{BOP}-\mathrm{Cl}=$ bis(2-oxo-3oxazolidinyl)phosphinic chloride.

Using essentially the same chemistry described for the synthesis of 2, we also accomplished the total syntheses of cinnabaramides, as briefly depicted in Scheme 8. The total synthesis of cinnabaramide A (7) was accomplished from 19 and 39 via the same process shown in Scheme 7. During this endeavor, cinnabaramide E (10) was obtained as a precursor to 7, and cinnabaramide F (11) was derived from 7 by a reaction with N -acetylcysteine. The spectral data and optical rotations for the obtained cinnabaramides were in good agreement with those of the natural products, ${ }^{5}$ thus confirming the structures of these natural products.

Scheme 7. Revised scheme for the total synthesis of salinosporamide B. Reagents and conditions: (a) $\mathrm{NaO} t \mathrm{Bu}$ (5.0 equiv), $t \mathrm{BuOH}, \mathrm{rt}, 30 \mathrm{~min}, 88 \%$ (98% ee); (b) $\mathrm{BOP}-\mathrm{Cl}$ (3.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 10 \mathrm{~h}, 87 \%$; (c) N -Acetyl-l-cycstein (1.0 equiv), Et 3 N (3.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 48 \%$ ($75 \% \mathrm{brsm}$). ${ }^{b}$ The synthesis was performed with the same procedure as in Scheme 7. For details, see the supporting information.

Having established a concise route to salinosporamide B and cinnabaramides, we turned our attention to the total synthesis of salinosporamide A (1). We anticipated that the synthesis would be achieved by using basically the same chemistry, although it would require additional steps due to the presence of a reactive chlorine substituent. To this end, several attempts were first made to prepare the C-2 stereodefined aldol substrate $\mathbf{4 2}$ from $\mathbf{1 9}$ with the same 1,4-reduction protocol used for (2R)-18 (Scheme 9a). However, all attempts were unsuccessful, mainly due to the instabilities of reduction substrate $\mathbf{4 3 a}$ and the required β-ketoacids $\mathbf{4 4 b}$.

As an alternate strategy, we envisioned that the reaction of $\mathbf{4 5}$ with an alkylating reagent could selectively afford 46 (Scheme 9b). A related system that used Evans' 2-oxazolidinones has been reported. ${ }^{24}$ However, a base-mediated alkylation of the Evans' auxiliary substituted β-ketoimides afforded very poor diastereoselectivity, probably because exposure of the products to basic conditions during the long reaction time led to epimerization at the stereocenter adjacent to the two carbonyl groups. In light of the notable configurational stability observed for $\mathrm{C}-2$ of the 5oxazolidinone 18 under basic conditions, we hypothesized that it could be possible to obtain 46 without substantial epimerization at C-2. Thus, we investigated the diastereoselective alkylation of 5-oxazolidinone-substituted β-ketoamide 45.

(b) revised strategy

Scheme 9. Synthesis of the C-2 stereodefined aldol substrate for synthesis of salinosporamide A.

Given that the 5-oxazolidinone moiety in $\mathbf{4 5}$ effectively acts as a chiral auxiliary, the alkylation reaction would proceed via transition state 47 , and thus, the major product would have the $2 S$ stereochemistry (Scheme 9b). Because the $2 S$ stereoisomer would lead to synthesis of the enantiomer of natural 1, d-serinederived oxazolidinone ent-19 was employed as the precursor to (-)-1. (Scheme 10). Condensation between ent-19 and the known β-ketoacid chloride $\mathbf{4 8}^{25}$ in the presence of pyridine provided β-ketoamide ent- $\mathbf{4 5}$ without epimerization at the $\mathrm{C}-4$ position. Gratifyingly, the reaction of ent-45 with allyl bromide afforded the C-2 allylated product $(2 R)-49$ in good yield and with high diastereoselectivity ($>16: 1$ d.r.). Notably, the diastereo-selectivity reported for alkylation of Evans' auxiliary substituted β-ketoimide with allyl halide was very low (up to $2: 1$ d.r.), ${ }^{24 \mathrm{a}, \mathrm{c}}$ which suggested the potential utility of the 4 -substituted 5-oxazolidinone moiety in asymmetric synthesis.

Scheme 7. Revised scheme for the total synthesis of salinosporamide B. Reagents and conditions: (a) 3-oxobutanoyl chloride (1.5 equiv), pyridine (2.5 equiv), acetone, rt, $2 \mathrm{~h}, 58 \%$ ($98 \% \mathrm{ee}$); (b) allyl bromide (5.0 equiv), NaH (1.1 equiv), $\mathrm{DMF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 82 \%$ ($16: 1$ d.r.); (c) $\mathrm{NaO} t \mathrm{Bu}$ (5.0 equiv), $t \mathrm{BuOH}, \mathrm{rt}, 30 \mathrm{~min}, 88 \%$ (96% ee); (d) $50 \% \mathrm{HClO}_{4}(\mathrm{aq}) / t \mathrm{BuOAc}(1: 50)$, rt, $16 \mathrm{~h}, 70 \%$; (e) O_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1),-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then NaBH_{4} (10 equiv), $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$; (f) $\mathrm{Boc}_{2} \mathrm{O}$ (5.0 equiv), VOF $_{3}$ (0.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 48 \mathrm{~h}, 87 \%$; (g) TBAF (2.0 equiv), AcOH (4.0 equiv), THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}, 91 \%$; (h) Dess-Martin periodinane (1.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$; (i) In (5.0 equiv), 3bromocyclohexene (3.0 equiv), $\mathrm{NH}_{4} \mathrm{Cl}$ (5.0 equiv), THF, rt, 6 h, 73% ($10: 1$ d.r.) for 2 steps; (j) i. BCl_{3} (3.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii. BOP-Cl (3.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine (2:1), rt, 8 h ; iii. $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ (2.0 equiv), $\mathrm{CH}_{3} \mathrm{CN} /$ pyridine (1:1), rt, $4 \mathrm{~h}, 62 \%$ for 3 steps.

The one-pot tandem aldol reaction and hydrolysis protocol was also successfully applied to $(2 R)-49$ to give the desired pyrrolidinone 50 (96% ee) via intermediate 51. After conversion of the carboxylic acid moiety in $\mathbf{5 0}$ to the t-butyl ester, ozonolysis followed by reductive work-up yielded 52. The primary hydroxyl group
in 52 was protected with a Boc group, and the silyl protecting group was removed to afford 53. Dess-Martin oxidation of $\mathbf{5 3}$ and a subsequent indium-mediated Barbier-type allylation afforded 54 with a good two-step yield (73\%) and high diastereoselectivity (10:1 d.r.). After removal of the two acid-labile protective groups, lactonization with BOP-Cl followed by chlorination with $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ afforded $(-)-\mathbf{1}$ in good overall yield. The spectral data and optical rotation obtained for $\mathbf{1}$ were in good agreement with those of natural salinosporamide A. ${ }^{1,6}$

III. Conclusion

In this article, we have described the evolution of an asymmetric total synthetic strategy for preparing salinosporamide natural products. Given the challenging structural features and significant biomedical properties, salinosporamides have attracted great interest from the synthetic community, and many elegant synthetic strategies have been reported. However, there is still room for more efficient and selective synthetic routes. Our endeavors resulted in a 9-step concise total synthesis of salinosporamide B (2) and a 12-step route to salinosporamide A (1) with excellent stereoselectivities from the known O-protected amino acid serine. In addition, the total syntheses of several natural congeners, including cinnabaramides A (7), E (10), and F (11) were achieved with the same chemistry, and this
confirmed their structures. Initially, we focused on an approach that would implement a combination of MOC and DKR principles in the intramolecular aldol reaction of a 5-oxazolidinone aldol substrate for rapid access to the highly decorated pyrrolidinone core. However, unlike our previous studies with oxazolidine-4-carboxylate, MOC and DKR did not operate with the 5oxazolidinone substrate. Throughout this study, efforts were made to explore and exploit the innate properties of the 5-oxazolidinone moiety as a stereochemical inducer. Indeed, we have found that the 5-oxazolidinone moiety acts as in a manner similar to that of Evans' 2-oxazolidinone chiral auxiliary, and we utilized this moiety for selective installation of the C-2 stereocenter. In the revised synthetic approach, the C-2 stereocenter was installed prior to the intramolecular aldol reaction and was used to determine the stereochemical outcome of the aldol reaction. During our use of pyrrolidinone aldol products to synthesize the target products, we observed an interesting and unexpected hydrolytic DKR during hydrolyses of 5-oxazolidinone/pyrrolidinone bicyclic aldol products. This type of substrate-driven hydrolytic DKR with diastereomers has not been reported thus far and was utilized to prepare the pyrrolidinone core with excellent efficiency. Because of both the conciseness and potential modularity of this synthetic sequence, we anticipate that various analogs, including stereoisomers and congeners, will be easily accessible; this will provide a chance to achieve a greater
understanding of the biomedical properties of salinosporamide natural products and lead to new drug discovery. In addition, given the excellent stereochemical induction observed, we believe that the 4 -substituted 5-oxazolidinone moiety might serve as an effective chiral auxiliary or substrate in asymmetric synthesis. Such investigations are underway in our laboratory.

IV. Experimental

IV-1. General.

All chemicals were of reagent-grade and were used as purchased. All reactions were performed under an inert atmosphere of dry nitrogen using distilled dry solvents. The reactions were monitored with TLC analysis using silica gel 60 F-254 thin layer plates. Compounds on the TLC plates were visualized under UV light and by spraying with either potassium permanganate or anisaldehyde solutions. Flash column chromatography was conducted on silica gel 60 (230-400 mesh). Melting points were measured using a Buchi B-540 melting point apparatus without correction. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNMECZ400S (400 MHz) spectrometer at 278 K if not noted otherwise. Chemical shifts are reported in ppm (δ) units relative to the undeuterated solvent as a reference peak $\left(\mathrm{CDCl}_{3}-d_{1}: 7.24 \mathrm{ppm} /{ }^{1} \mathrm{H}\right.$ NMR, $77.16 \mathrm{ppm} /{ }^{13} \mathrm{C}$ NMR; $\mathrm{CD}_{3} \mathrm{OD}-d_{4}$: $3.30 \mathrm{ppm} /{ }^{1} \mathrm{H}$ NMR, $49.00 \mathrm{ppm} /{ }^{13} \mathrm{C}$ NMR; DMSO- $d_{6}: 2.50 \mathrm{ppm} /{ }^{1} \mathrm{H}$ NMR, 39.52 $\mathrm{ppm} /{ }^{13} \mathrm{C}$ NMR). The following abbreviations are used to represent NMR peak multiplicities: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), dq (doublet of quartets), td (triplet of doublets), and br (broad signal). The IR spectra were measured by an Agilent Technologies 5500 Series FT-IR spectrometer. The optical rotations were measured on a Jasco P-

2000 Polarimeter using sodium light (D line 589.3 nm) and a $3.5 \times 100 \mathrm{~mm}$ or 3.5 $\times 10 \mathrm{~mm}$ cell. The values are reported as the specific optical rotation with exact temperature, concentration (c ($10 \mathrm{mg} / \mathrm{mL}$)) and solvent. High-resolution mass spectra (HRMS) were recorded using fast atom bombardment (FAB) mass spectrometry.
sou wom wesan

IV-2. Experimental procedure and spectroscopic data analysis

IV-2-1. Exploratory studies to determine the mechanism of the aldol and hydrolysis reaction

Compound S1: To a solution of ethyl 2-ethylacetoacetate ($5.00 \mathrm{~g}, 31.6 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, potassium hydroxide (5.32 g , 94.8 mmol) was added at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 2 h . Then, MeOH was removed under reduced pressure. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and acidified (ca. pH 2) with 1 n HCl aqueous solution, poured into water, extracted three times with EtOAc, dried over MgSO_{4} and then concentrated in vacuo to provide carboxylic acid. The crude carboxylic acid and DMF ($20 \mu \mathrm{~L}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ $\mathrm{mL}), 2.0 \mathrm{M}$ oxalyl chloride solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL}, 38 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The reaction mixture was concentrated under reduced pressure to provide acid chloride $\mathbf{S 1}$. The crude mixture was used in next step without further purification.

Compound 18: To a solution of L-serine-OTBDPS ($4.0 \mathrm{~g}, 11.6 \mathrm{mmol}$) in THF, $\mathrm{NaH}\left(310 \mathrm{mg}, 90 \mathrm{wt} . \%\right.$, dry, 11.6 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 2 h . The solvents were evaporated under low pressure to obtain sodium salt form of L-serine-OTBDPS. To stirred mixture of sodium salt of L-serine-OTBDPS and oven activated $4 \AA$ molecular sieves in dry acetone under nitrogen atmosphere was slowly added a solution of 2.0 M trimethylaluminium solution in hexane ($5.8 \mathrm{~mL}, 11.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature. After stirring for 16 h at the same temperature, acid chloride $\mathbf{S 1}$ (17.4 mmol) was slowly added at $0^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The mixture was filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to yield a 1:1.3 mixture of $(2 R)-\mathbf{1 8}$ and (2S)-18 (3.9 g, 68\%) as a colorless oil. (2R)-18 and ($2 S$) $\mathbf{- 1 8}$ were isolated from the mixture via recycling preparative HPLC (HPLC conditions: JAIGEL-ODS-AP-L (20 mm (i.d.) x $500 \mathrm{~mm}(1), 10 \mu \mathrm{~m}$), $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=86: 14$, flow rate $=10 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm})$.
$(2 R)-18: R_{f}=0.31$ (hexane/EtOAc, 3:1); $[\alpha]^{20}{ }_{\mathrm{D}}+15.8\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two rotamers in a $15: 1$ ratio) $\delta 7.66-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.31$ $(\mathrm{m}, 6 \mathrm{H}), 4.51(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $(\mathrm{s}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=204.7,168.9,166.1,135.9$ (2C), 135.6 (2 C), 132.3, 131.6, 130.3, 130.2, 128.1 (2C), 128.0 (2C), 99.0, 64.7, 62.3, 59.5, 26.9 (3C), 26.7, 26.2, 25.9, 22.1, 19.3, 12.1; IR (neat, cm^{-1}) $v_{\max } 2962,2933,2860,1794,1656$, 1366, 1262, 1105, 969, 821; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 496.2519, found 496.2517.
$(2 S)-18: R_{f}=0.31$ (hexane/EtOAc, 3:1); $[\alpha]^{20}{ }_{\mathrm{D}}+27.4\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, two rotamers in a $8: 1$ ratio) $\delta=7.59(\mathrm{ddt}, J=16.3,7.9,1.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 6 \mathrm{H}), 4.36(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{dd}, J=11.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, 7.2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.8,168.7,167.6,135.9$ (2C), 135.6 (2C), $132.4,131.8,130.2$ (2C), 128.0 (4C), 99.1, 64.8, 61.5, 60.1, 27.4, 26.9 (3C), 26.4, 26.0, 24.5, 19.3, 12.0; IR (neat, cm^{-1}) $v_{\max } 2964,2930,2858,1791,1655,1365$, 1263, 1105, 969, 820; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$496.2519, found 496.2517.
[Determination of the enantiomeric excess of 18]
The enantiomeric purities of $(2 R)-\mathbf{1 8}$ and (2S)-18 were analyzed via chiral HPLC. The chiral HPLC chromatograms of $(2 R) \mathbf{- 1 8}$ and $(2 S) \mathbf{- 1 8}$ were compared with those of $\mathrm{rac}-(2 R)-\mathbf{1 8}$ and $\mathrm{rac}-(2 S)-18$. Based on this comparison, the enantiomeric purity of $\mathbf{1 8}$ was determined to be 98%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=97: 3(\mathrm{v} / \mathrm{v})$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in

Figure S1.

Figure S1. Chiral HPLC chromatograms of $\mathrm{rac}-(2 R)-18$ and ($2 R$)-18.

Figure S2. Chiral HPLC chromatograms of rac-(2S)-18 and (2S)-18.

To a solution of $\mathbf{1 8}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL}), \mathrm{NaOEt}(20 \mathrm{mg}, 0.30$ mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and concentrated under reduced pressure to remove EtOH . The mixture was extracted with EtOAc three times and the combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane/EtOAc = 5:1, v/v) to yield $25(22 \mathrm{mg}, 44 \%)$ as a colorless oil, $26(16$ $\mathrm{mg}, 33 \%$, d.r. $=1: 1)$ as a colorless oil, $27(9 \mathrm{mg}, 20 \%)$ as a colorless oil. The relative configuration of $\mathbf{2 5}$ and $\mathbf{2 7}$ were determined by NOESY experiments.

25: $R_{f}=0.34$ (hexane/EtOAc, 3:1); $[\alpha]^{20}{ }_{\mathrm{D}}-48.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.32(\mathrm{~m}, 6 \mathrm{H}), 4.22(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, $1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.2,170.2,135.9$ (2C), 135.7 (2C), 132.1, 131.7, 130.4, 130.3, 128.17 (2C), 128.15 (2C), 96.7, 81.3, 74.6, 65.6, 55.6, 29.3, 27.0 (3C), 25.6, 19.3, 19.2, 17.8, 12.7; IR (neat, cm^{-1}) $v_{\max } 3441$, 2963, 2934. 2860, 1786, 1720, 1698, 1385, 1290, 1263, 1105, 822, 703; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 496.2519$, found 496.28.
$26: R_{f}=0.28$ (hexane/EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.68-7.50$ (m, 4H), $7.44-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.61$ $(\mathrm{t}, J=2.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.27-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.21(\mathrm{~m}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 1.5 \mathrm{H}), 2.22(\mathrm{~s}, 1.5 \mathrm{H}), 1.99-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, 9H), $0.98-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.4,170.2,168.7$, 135.6 (4C), (132.80, 132.78), 132.70, 130.10, 130.08, 128.0 (2C), 127.9 (2C), (64.3, $64.2),(62.9,62.7),(61.8,61.8),(54.3,54.3),(29.6,29.5), 26.8(3 \mathrm{C}),(23.8,23.6)$, 19.4, 14.3, (12.0, 11.9); IR (neat, cm^{-1}) $v_{\max } 3332,2961,2933,2859,1743,1722$, 1665, 1515, 1428, 1359, 1197, 1104, 822, 736; HRMS (FAB): calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 484.2519$, found 484.2527.
$27: R_{f}=0.2$ (hexane/EtOAc, 3:1); $[\alpha]^{20}{ }^{\mathrm{D}}-67.4\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.74(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.60$
(s, 1H), $4.29(\mathrm{dq}, J=11.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.4,8.3 \mathrm{~Hz}, 2 \mathrm{H}), .3 .58(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=177.5,171.4,135.8$ (4C), 132.9, 132.8, 130.0 (2C), 128.0 (2C), 127.9 (2C), 78.8, 76.0, 66.4, 62.1, 53.2, 26.7 (3C), 20.8, 19.3, $16.6,14.3,13.6$; IR (neat, cm^{-1}) $v_{\max } 3308,2960,2931,2859,1730,1693,1428$, 1371, 1240, 1114, 823, 703; HRMS (FAB): calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 484.2519, found 484.2511.
[Determination of the enantiomeric excess of 25]
The enantiomeric purity of $\mathbf{2 5}$ was analyzed via chiral HPLC. The chiral HPLC chromatogram of $\mathbf{2 5}$ was compared with that of rac-25. Based on this comparison, the enantiomeric purity of $\mathbf{2 5}$ was determined to be 96%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=98: 2(v / v)$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in Figure S3.

Figure S3. Chiral HPLC chromatograms of rac-25 and 25.
[Determination of the enantiomeric excess of 27]
The enantiomeric purity of 27 was analyzed via chiral HPLC. The chiral HPLC chromatogram of $\mathbf{2 7}$ was compared with that of rac-27. Based on this comparison, the enantiomeric purity of 27 was determined to be 100%. However, the minor peak might be eclipsed by the major peak. Therefore, we also hydrolyzed 27 to obtain 28 and verify the ee value (see 'Procedure for the modification of $\mathbf{2 8}$ for determination of the enantiomeric excess of $\mathbf{2 8}$ ' on page S19). The enantiomeric purity of $\mathbf{2 7}$ was determined to be 90%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=93: 7(v / v)$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in

Figure S4.

Figure S4. Chiral HPLC chromatograms of rac-27 and 27.

Compound ent-21: To a solution of ($2 S$)-18 ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF (1 mL) and DMF (1 mL), sodium tert-butoxide ($29 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The reaction was quenched with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to yield a 9.6:1 mixture of ent-21 and ent-25 (42 mg, 85\%) as a colorless oil. ent-21 and ent-25 were isolated
from the mixture via flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=30: 1\right.$, $v / v)$. The relative configuration was determined by NOESY experiments.
ent-21 : $R_{f}=0.34$ (hexane/EtOAc, 3:1); $[\alpha]^{20}{ }^{\mathrm{D}}-63.0\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.95(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) 1.81$ $-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=178.1,170.1,136.0(2 \mathrm{C}), 135.7$ (2C), 132.2, 131.7, 130.41, 130.36, 128.2 (2C), 128.1 (2C), 98.1, 80.8, 77.4, 65.0, 55.7, 29.5, 27.0 (3C), 24.9, 20.6, 19.3, 16.5, 13.5; IR (neat, cm^{-1}) $v_{\max } 3442,2961$, 2933, 2860, 1782, 1703, 1462, 1428, 1385, 1270, 1112, 1071, 1030, 942, 822; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 496.2519$, found 496.2531 .
[Determination of the enantiomeric excess of ent-21]

The enantiomeric purity of ent-21 was analyzed via chiral HPLC. The chiral HPLC chromatogram of ent-21 was compared with that of rac-21. Based on this comparison, the enantiomeric purity of ent-21 was determined to be 96%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=98: 2(v / v)$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in Figure 55.

Figure S5. Chiral HPLC chromatograms of rac-21 and ent-21.

To a solution of $(2 R) \mathbf{- 1 8}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF (1 mL) and DMF (1 mL), sodium tert-butoxide ($29 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The reaction was quenched with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v)$ to yield a 9.8:1 mixture of 25 and $21(43 \mathrm{mg}$, 86%) as a colorless oil. 25 and 21 were isolated from the mixture via flash
chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=30: 1, v / v\right)$.

Table S1. Aldol cyclization of $\mathbf{1 8}^{a}$

entry	reagent (equiv)	solvent (0.05 M)	tempera ture	time	yield of $\mathbf{2 3}^{b}$ (ee \%) ${ }^{\text {c }}$	yield of $\mathbf{2 4}^{b}$ $(\text { ee } \%)^{c}$
1	NaOiPr (3)	$i \mathrm{PrOH}$	$-30^{\circ} \mathrm{C}$	12 h	41\% (77)	50\% (77)
2	$\mathrm{NaO} t \mathrm{Bu}(3)$	$\begin{gathered} \text { THF/DMF/tBuOH } \\ =10: 10: 1 \end{gathered}$	$-78{ }^{\circ} \mathrm{C}$	0.5 h	40\% (90)	48\% (91)
3	KHMDS (3)	$\begin{gathered} \text { THF/DMF } \\ =1: 1 \end{gathered}$	$-78{ }^{\circ} \mathrm{C}$	0.5 h	39\% (90)	47\% (91)
$4^{\text {d }}$	NaOtBu (3)	THF/DMF $=1: 1$	$-78{ }^{\circ} \mathrm{C}$	5 min	78\% (96)	8\% (-99)
$5^{\text {d }}$	NaOtBu (3)	THF/DMF/ $t \mathrm{BuOH}$ = 10:10:1	$-78{ }^{\circ} \mathrm{C}$	5 min	77\% (96)	9\% (-96)
$6^{\text {e }}$	$\mathrm{NaO} t \mathrm{Bu}(3)$	THF/DMF $=1: 1$	$-78{ }^{\circ} \mathrm{C}$	0.5 h	8\% (-93)	77\% (96)
$7{ }^{\text {e }}$	$\mathrm{NaO} t \mathrm{Bu}(3)$	$\begin{gathered} \mathrm{THF} / \mathrm{DMF} / t \mathrm{BuOH}= \\ 10: 10: 1 \end{gathered}$	$-78{ }^{\circ} \mathrm{C}$	0.5 h	8\% (-92)	75\% (96)

${ }^{a}$ Reactions were run with 0.1 mmol of $\mathbf{1 8}$ (1:1.3 d.r.). ${ }^{b}$ Isolated yield. ${ }^{c}$ ee value was determined by chiral HPLC. ${ }^{d}$ Reactions were rim with 0.1 mmol of $(2 R)-18 .{ }^{e}$ Reactions were performed with 0.1 mmol of $(2 S)$ -
18.

General procedure for Table S1: To a solution of $18(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in solvent $(0.05 \mathrm{M})$, base (0.3 mmol) was added at above temperature and stirred for
time at the same temperature. The reaction was quenched with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to yield 25 and ent-21 as a colorless oil. 25 and ent-21 were isolated from the mixture via flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=30: 1, v / v\right)$.

Table S2. H/D exchange of (2S)-18 with $\mathrm{NaOEt} / \mathrm{EtOD} .{ }^{a}$

${ }^{a}$ Reactions were run with 0.1 mmol of $(2 S)-\mathbf{1 8}$ and $\mathrm{NaOEt}(20 \mathrm{mg}, 0.3 \mathrm{mmol})$ in EtOD (2 mL).
${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Isolated yield.
Note: We conducted the intramolecular aldol reaction of (2S)-18 in EtOD and analyzed the remaining deuterated (2S)-18 in the incomplete reaction mixture ($\mathrm{NaOEt} / \mathrm{EtOD},-40^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ in $\mathrm{D}_{2} \mathrm{O}$ solutions after 5
$\min , 10 \mathrm{~min}$ and 20 min$)$ by ${ }^{1} \mathrm{H}$ NMR. The hydrogen at the α-carbon (C-4) of ($2 S$)18 was gradually exchanged with deuterium over the course of the reaction. However, the hydrogen at C-2 of (2S)-18 was hardly deuterated. This result showed a much less facile H / D exchange for the $\mathrm{H}-2$ proton than the $\mathrm{H}-4$ proton. The obtained aldol product ent-21 showed no detectable deuterium incorporation at C-2 and C-6. The above result also suggested that C-4 of ($2 S, 4 S$)-18 (starting material) was not racemized under reaction conditions since $(2 S, 4 R)-\mathbf{1 8}$ (enantiomer form of $(2 R, 4 S)$-18) was not detectable. To understand the rare racemization at the C-4 well, we performed an additional experiment.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of $(2 S)-\mathbf{1 8}$ and $d-(2 S) \mathbf{- 1 8}$ after the corresponding reaction times.

Table S3. Chiral HPLC analysis of $\mathbf{1 8}$ with $\mathrm{NaOEt} / \mathrm{EtOH} .{ }^{a}$

time	recovered (2R)-18		recovered (2S)-18		25^{b}	ent-21 ${ }^{\text {b }}$	26^{b}	$27^{\text {b }}$
	yield ${ }^{\text {b }}$	$\mathrm{ee}^{c}(\%)$	yield ${ }^{\text {b }}$	$\mathrm{ee}^{c}(\%)$				
3 min	10\%	98	58\%	98	35\%	18\%	24\%	trace
10 min	0	-	15\%	98	39\%	16\%	32\%	8\%
20 min	0	-	trace	-	40\%	5\%	35\%	17\%

${ }^{a}$ Reactions were run with 0.2 mmol of $\mathbf{2 5}$ and $\mathrm{NaOEt}(40 \mathrm{mg}, 0.6 \mathrm{mmol})$ in EtOH (4 $\mathrm{mL}) .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC.

Procedure for Table S3: To a solution of $\mathbf{1 8}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{EtOH}(4 \mathrm{~mL})$, $\mathrm{NaOEt}\left(40 \mathrm{mg}, 0.6 \mathrm{mmol}\right.$) was added at $-40^{\circ} \mathrm{C}$ and stirred. A portion of mixture (1 mL) was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $3 \mathrm{~min}, 10 \mathrm{~min}$ and 20 min. Each mixture was concentrated under reduced pressure to remove EtOH. The mixture was extracted with EtOAc three times and the combined organic layer was dried over MgSO 4 and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to give recovered 18, 25, ent-21, 26 and 27. (2R)-18 and (2S)-18 were isolated via Recycling preparative

HPLC (HPLC conditions: JAIGEL-ODS-AP-L (20 mm (i.d.) x $500 \mathrm{~mm}(1), 10 \mu \mathrm{~m}$), water $/ \mathrm{MeOH}=86: 14$, flow rate $=10 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$). The ee value of $\mathbf{1 8}$ was determined by 'Determination of the enantiomeric excess of $\mathbf{1 8}$ (Figure 1)'. The ee value of recovered ($2 R$)-18 and ($2 S$)-18 were not changed.

Note: Considering that H / D exchange occurred at $\mathrm{C}-4$ of $(2 S) \mathbf{- 1 8}$, as shown in Table S1, this suggested that even though deprotonation/reprotonation occurred at C-4 during the aldol reaction, the $\mathrm{C}-4$ of $\mathbf{1 8}$ was not racemized. (if $\mathrm{C}-4$ of ($2 S$)-18 or $(2 R)-\mathbf{1 8}$ had been racemized, the ee value for recovered $(2 S) \mathbf{- 1 8}$ or $(2 R)-\mathbf{1 8}$ should have been decreased.)

H/D exchange of ($2 R$)- $\mathbf{1 8}$ with $\mathrm{NaOEt} / \mathrm{EtOD}$.

To a solution of (2R)-18 (100 mg, 0.20 mmol$)$ in EtOH (4 mL), NaOEt (41mg, 0.60 mmol) was added at $-40^{\circ} \mathrm{C}$ and stirred for 10 min at the same temperature. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and concentrated under reduced pressure to remove EtOH . The mixture was extracted with EtOAc three times and the combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v)$ to give $d-25(42 \mathrm{mg}, 42 \%), d-26(45 \mathrm{mg}, 46 \%)$. The obtained aldol product d - $\mathbf{2 5}$ showed no detectable deuterium incorporation at C-2.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 5}, d \mathbf{- 2 5}, \mathbf{2 6}$ and $d \mathbf{- 2 6}$ after the reaction in EtOD $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

서울대학교
sou wom wean

Table S4. H/D exchange of $\mathbf{2 6}$ with $\mathrm{NaOEt} / \mathrm{EtOD} .{ }^{a}$
H/D exchange of 26

26

d-26
\(\left.$$
\begin{array}{ccccc}\hline \text { entry } & \text { time } & \begin{array}{c}\text { \% D at C-2 } \\
\text { of } d-\mathbf{2 6}^{b}\end{array}
$$ \& \begin{array}{c}\% D at C-4

of d-\mathbf{2 6}^{b}\end{array} \& yield{ }^{c}[\%]\end{array}\right]\)| | | | |
| :---: | :---: | :---: | :---: |
| 1 | 5 min | 32 | 0 |
| 2 | 10 min | 54 | 0 |

${ }^{a}$ Reactions were run with 0.1 mmol of 26 and $\mathrm{NaOEt}(20 \mathrm{mg}, 0.3 \mathrm{mmol})$ in EtOD (2 mL). ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Isolated yield.

Note: We conducted the H/D exchange reaction of $\mathbf{2 6}$ with NaOEt in EtOD at $40{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ in $\mathrm{D}_{2} \mathrm{O}$ solutions after $5 \mathrm{~min}, 10 \mathrm{~min}$ and 20 min . The obtained $d-26$ was analyzed by ${ }^{1} \mathrm{H}$ NMR. The hydrogen at C-2 of $\mathbf{2 6}$ was gradually exchanged with deuterium over the course of the reaction. However, the hydrogen at C-4 of $\mathbf{2 6}$ was not deuterated. This result suggested that the epimerization at C-2 of $\mathbf{2 6}$ was more facile than C-4 of 26, unlike 18. Even after 3 h , the deuterium content at C-2 of $\mathbf{2 6}$ was 60%. Partial deuterium/hydrogen exchange occurring during the work-up appears to be responsible for the incomplete deuteration at these positions. When the deuteration exchange reaction was conducted at room temperature, the hydrogens at C-2 and C-6 of 26 were deuterated; however, hydrogen at C-4 was not deuterated. This
result indicated that 26 rarely underwent aldol reaction under $\mathrm{NaOEt} / \mathrm{EtOH}$ conditions.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 6}$ and $d-\mathbf{2 6}$ after the corresponding reaction times.

서울대학교
SEOUL NATONAL LNNERSITY

Procedure for the hydrolysis reaction of 25 and ent-21

To a solution of $25(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, potassium hydroxide ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction was acidified (ca. pH 2) with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic $\operatorname{acid}=20: 1: 0.2, v / v / v)$ to give $\mathbf{2 8}(41 \mathrm{mg}, 91 \%)$ as a white solid and $\mathbf{S} 2(3.6 \mathrm{mg}, 8 \%$, 1:1.1 d.r.) as a colorless oil.

28:mp $184-188{ }^{\circ} \mathrm{C} ; R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=10: 1: 0.1, v / v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}$ +13.1 (c 0.5, MeOH); ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) 7.76 - 7.56 (m, 4H), 7.56 $7.35(\mathrm{~m}, 6 \mathrm{H}), 3.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=179.8,172.6,136.9(2 \mathrm{C}), 136.7$ (2C), 133.9, 133.6, 131.2, 131.1, 129.0 (2C), 128.9 (2C), 80.0, 75.6, 67.6, 54.9, 27.3 (3C), 21.1, 20.0, 17.9, 14.0; IR (neat, cm^{-1}) $v_{\max } 3300,2930,2857,1607,1589$, 1428, 1376, 1113, 825, 702; HRMS (FAB): calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$
456.2206, found 456.2207.

S2 (1:1.1 d.r.) : $R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=10: 1: 0.1, v / v / v\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta=7.73-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.66-4.52(\mathrm{~m}$, 1H), $4.14-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.18(\mathrm{~s}, 3 \mathrm{H}$, major), 2.20 ($\mathrm{s}, 1 \mathrm{H}$, minor), $2.01(\mathrm{~s}, 1 \mathrm{H}$, major), $1.94-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$, $0.96-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=(206.6,206.4), 172.8,171.8$, 136.74 (2C), 136.69 (2C), 134.2, 134.0, 131.1 (2C), 128.90 (2C), 128.87 (2C), 65.0, (63.0, 62.9), 56.1, 29.1, 27.3 (3C), (23.3, 22.9), 20.1, (12.1, 12.0); IR (neat, cm^{-1}) $v_{\max } 2960,2930,1735,1654,1522,1427,1202,1112 ;$ HRMS (FAB): calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 456.2206$, found 456.2204.

Procedure for the modification of 28 for determination of the enantiomeric excess of 28

Compound 30: To a solution of 28 ($20 \mathrm{mg}, 0.044 \mathrm{mmol}$) in THF (1 mL), $\mathrm{EDC} \cdot \mathrm{HCl}(17 \mathrm{mg}, 0.089 \mathrm{mmol})$ was added at room temperature and stirred for 12 h . The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=4: 1, v / v$) to give
$30(16 \mathrm{mg}, 82 \%)$ as a colorless oil.
$30: R_{f}=0.3$ (hexane/EtOAc $\left.=4: 1, v / v\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.70-$ 7.57 (m, 4H), $7.53-7.33$ (m, 6H), 5.97 (brs, 1H), 3.95 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.1,168.0,135.8$ (2C), 135.7 (2C), 132.0, 131.9, 130.5, 130.4, 128.3 (2C), 128.2 (2C), 85.3, 76.0, 58.9, 50.5, 26.9 (3C), 20.5, 19.3, 19.1, 12.8; HRMS (FAB): calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 438.2101$, found 438.2088 .
[Determination of the enantiomeric excess of 30]
The enantiomeric purity of I was analyzed by chiral HPLC. The chiral HPLC chromatogram of $\mathbf{3 0}$ was compared with that of rac-30. Based on this comparison, the enantiomeric purity of $\mathbf{3 0}$ was determined to be 96%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=97: 3(v / v)$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in Figure S9.

Figure S9. Chiral HPLC chromatograms of rac-30 and $\mathbf{3 0}$.

To a solution of ent-21 (50 mg, 0.10 mmol$)$ in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, potassium hydroxide ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was slowly warm up to room temperature and stirred for 8 h . The reaction was acidified (ca. pH 2) with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $=$ 20:1:0.2, $v / v / v)$ to give ent-28 (44 mg, $96 \%)$ as a white solid and $\mathbf{S} \mathbf{2}(1.3 \mathrm{mg}, 3 \%)$ as a colorless oil.

Table S5．NMR study on the hydrolysis of 25．${ }^{a}$（Figure 4b in main text）

entry	time	ratio b of $\mathbf{2 5 : 2 1 : 2 8}$
1	10 min	$15: 1: 2$
2	30 min	$15: 1: 23$
3	1 h	$16: 1: 40$
4	2 h	$16: 1: 93$
5	3 h	$1: 0: 39$

${ }^{a}$ Reactions were run with 0.02 mmol of $\mathbf{2 5}$ and $\mathrm{KOH}(11.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in d－THF $(0.4 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(0.4 \mathrm{~mL}) .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR．

In an NMR tube， $\mathbf{2 5}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in d－THF $(0.4 \mathrm{~mL})$ and treated with potassium hydroxide $(11 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(0.4 \mathrm{~mL}) .{ }^{1} \mathrm{H}$ NMR of the sample was checked at $10 \mathrm{~min}, 30 \mathrm{~min}, 1 \mathrm{~h}, 2 \mathrm{~h}$ and 3 h ．The result shows the ratio of $\mathbf{2 5}$ and $\mathbf{2 1}$ was about 15：1 during the reaction．

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of reaction mixture at corresponding reaction times $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, d-THF).

SEOUL NATONAL LNNVERSITY

Table S6. Time-course monitoring of aldol reaction of ($2 R$)-18. ${ }^{a}$ (Figure 4 c in main text)

${ }^{a}$ Reactions were run with 0.1 mmol of $(2 R)-\mathbf{1 8}$ and $\mathrm{NaO} t \mathrm{Bu}(20 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF/DMF $=1: 1(2 \mathrm{~mL}) .{ }^{b}$ Isolated yield.

To a solution of $(2 R)-18(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and DMF $(1 \mathrm{~mL})$, sodium tert-butoxide ($29 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and stirred for certain time ($5 \mathrm{~min}, 30 \mathrm{~min}, 3 \mathrm{~h}$) at the same temperature. The reaction was acidified (ca. pH 2) with 1 n HCl aqueous solution and warmed to room temperature. The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1$, v / v to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /$ acetic acid $\left.=20: 1: 0.2, v / v / v\right)$ to give mixture of $\mathbf{2 5}$ and 21 as a colorless oil and $\mathbf{2 8}$ as a white solid. The mixture of $\mathbf{2 5}$ and $\mathbf{2 1}$ were isolated from the mixture via flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=20: 1, v / v\right)$.

Procedure for the hydrolysis reaction of 30

To a solution of $\mathbf{3 0}(30 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$, potassium hydroxide ($39 \mathrm{mg}, 0.70 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred for 2 min at the same temperature. The reaction was acidified (ca. pH 2) with 1 n HCl aqueous solution at $0{ }^{\circ} \mathrm{C}$ and extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic $\operatorname{acid}=20: 1: 0.2, v / v / v)$ to give $28(30 \mathrm{mg}, 94 \%)$ as a white solid.

IV-2-2. Total synthesis of salinosporamide B (2)

Compound S4: To a solution of E / Z mixture ($\sim 1: 1$) of $\mathbf{S 3}^{1}(4.0 \mathrm{~g}, 22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, TFA (10 mL) was added at $0{ }^{\circ} \mathrm{C}$ slowly and stirred at room temperature for 1 h . TFA was removed by co-evaporation with toluene in vacuo to provide carboxylic acid. The crude carboxylic acid and DMF (20 $\mu \mathrm{L}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(44 \mathrm{~mL})$, oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL}, 26 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The reaction mixture was concentrated under reduced pressure to provide acid chloride $\mathbf{S 4}$. The crude mixture was used in next step without further purification.

Compound 31: To a solution of 1-serine-OTBDPS ($4.0 \mathrm{~g}, 11.6 \mathrm{mmol}$) in THF, $\mathrm{NaH}\left(310 \mathrm{mg}, 90 \mathrm{wt} . \%\right.$, dry, 11.6 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 2 h . The solvents were evaporated under low pressure to obtain sodium salt form of 1 -serine-OTBDPS. To stirred mixture of sodium salt of 1-serine-OTBDPS and oven activated $4 \AA$ molecular sieves in dry acetone under
nitrogen atmosphere was slowly added a solution of trimethylaluminium in hexane $(5.8 \mathrm{~mL}, 11.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture is slowly warmed to room temperature. After stirring for 16 h at the same temperature, acid chloride $\mathbf{S 4}$ was slowly added at $0^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The mixture was filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to $($ hexane $/ \mathrm{EtOAc}=3: 1, v / v$ to hexane/EtOAc $=1: 1, v / v)$ to yield a $1: 1.5 \mathrm{E} / \mathrm{Z}$ mixture of $\mathbf{3 1}(3.6 \mathrm{~g}, 64 \%)$ as yellowish oil. The minor form of $\mathbf{3 1}$ was slowly transformed to major form of $\mathbf{3 1}$ or decomposed.

31 (major) : $R_{f}=0.38$ (hexane/EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.63$ $-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=195.2,169.2,164.7,141.3,136.1(2 \mathrm{C}), 135.9(2 \mathrm{C}), 135.6,132.6,131.7$, 130.2 (2C), 127.9 (4C), 99.0, 63.6, 59.8, 26.9 (5C), 26.3, 25.9, 19.2; IR (neat, cm^{-1}) $v_{\max } 2932,2858,1791,1650,1589,1392,1369,1293,1260,1105,1046,968,940$, 885; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+494.2363$, found 494.2382 .

31 (minor) : $R_{f}=0.5$ (hexane/EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57$ $(\mathrm{dt}, J=8.1,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.11(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$,
$1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $196.7,169.1,164.7,141.7,136.1$ (2C), 135.9 (2C), 135.7, 132.6, 131.7, 130.3, 130.2128 .02 (2C), 127.95 (2C), 99.0, 63.6, 60.1, 30.5, 26.93 (2C), 26.87 (3C), 25.9, 19.2; IR (neat, cm^{-1}) $v_{\max } 2934,2859,1793,1696,1654,1395,1368,1105$, 1045, 966, 938, 884; HRMS (FAB): calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$494.2363, found 494.2375.

Compound ($2 R$)-18: To a solution of $\mathbf{3 1}$ mixture ($3.0 \mathrm{~g}, 6.1 \mathrm{mmol}$) in MeOH $(122 \mathrm{ml}), \mathrm{CoCl}_{2}-6 \mathrm{H}_{2} \mathrm{O}(5.8 \mathrm{~g}, 24.4 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.1 \mathrm{~g}, 30 \mathrm{mmol})$ was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was slowly warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was concentrated under reduced pressure to remove MeOH . The mixture was filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to yield a $12: 1$ mixture of $(2 R)-\mathbf{1 8}$ and $(2 S)-\mathbf{1 8}(2.7 \mathrm{~g}, 91 \%)$ as a colorless oil. $(2 R)-\mathbf{1 8}$ and $(2 S)-\mathbf{1 8}$ were isolated from the mixture via recycling preparative HPLC (HPLC conditions: JAIGEL-ODS-AP-L (20 mm (i.d.) x $500 \mathrm{~mm}(1), 10 \mu \mathrm{~m})$, water $/ \mathrm{MeOH}=86: 14$, flow rate $=10 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm})$.

Compound 28: To a stirred solution of ($2 R$) $\mathbf{- 1 8}(2.5 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $t \mathrm{BuOH}(100$ mL), Sodium tert-butoxide ($2.4 \mathrm{~g}, 25 \mathrm{mmol}$) was added at room temperature. The mixture was stirred at room temperature for 30 min and quenched with 1 n HCl aqueous solution and extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $=$ 20:1:0.2, $v / v / v)$ to give $28(2.1 \mathrm{~g}, 90 \%)$ as a white solid. The enantiomeric excess of 28 was determined to be 96%.

Compound 34: To a solution of $28(2.0 \mathrm{~g}, 4.4 \mathrm{mmol})$ in tert-Butyl acetate (44 $\mathrm{mL})$, aqueous $50 \% \mathrm{HClO}_{4}(880 \mu \mathrm{~L})$ was added at room temperature. The mixture was stirred at room temperature for 16 h and quenched with saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel
(hexane/EtOAc $=4: 1, v / v)$ to yield $34(1.7 \mathrm{~g}, 75 \%)$ as a colorless oil, and 28 (320 $\mathrm{mg}, 16 \%$) was recovered.
$34: R_{f}=0.31\left((\right.$ hexane $/ E t O A c=4: 1, v / v) ;[\alpha]^{20}{ }_{\mathrm{D}}-44.4\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $8.57(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) 1.05(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=177.5,170.1,135.8$ (4C), 133.1, 132.7, 130.0, 129.9, 128.0 (2C), 127.9 (2C), 82.9, 78.8, 75.9, 66.6, 53.2, 28.0 (3C), 26.9 (3C), 20.8, 19.3, 16.7, 13.5; IR (neat, cm^{-1}) $v_{\max } 3302,2941,2897,1720,1686$, 1366, 1159, 1112, 1076; HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$512.2832, found 512.2829.

Compound 35: To a solution of $34(1.0 \mathrm{~g}, 2.0 \mathrm{mmol})$ in THF $(9.8 \mathrm{~mL})$, acetic acid $(452 \mu \mathrm{~L}, 7.90 \mathrm{mmol})$ and 1.0 M TBAF solution in THF ($3.9 \mathrm{~mL}, 3.9 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature and stirred for 12 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 2, v / v)$ to yield $35(426 \mathrm{mg}$,
78%) as a white solid.
35: mp $163-166{ }^{\circ} \mathrm{C} ; R_{f}=0.28$ (hexane $/ \mathrm{EtOAc}=1: 3$); $[\alpha]^{20}{ }_{\mathrm{D}}-10.6(c \quad 0.5$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=3.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.50(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $=179.7,170.2,83.3,80.1,75.8,65.5,54.7,28.3(3 C), 21.2,17.9,13.9$; IR (neat, $\left.\mathrm{cm}^{-1}\right) v_{\max } 3334,3000,2456,1716,1685,1654,1369,1153,754 ;$ HRMS (FAB): calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 274.1651$, found 274.1652.

Compound 37: To a stirred solution of $\mathbf{3 5}(150 \mathrm{mg}, 0.547 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5$ $\mathrm{mL})$, DMP ($280 \mathrm{mg}, 0.656 \mathrm{mmol}$) was added at room temperature and stirred for 2 h. In the meantime, to a solution of indium ($315 \mathrm{mg}, 2.74 \mathrm{mmol}$) in THF (5.5 mL), ammonium chloride ($144 \mathrm{mg}, 2.74 \mathrm{mmol}$) was added at room temperature. After 30 min, 3-bromocyclohexene ($184 \mu \mathrm{~L}, 1.59 \mathrm{mmol}$) was slowly added at room temperature stirred for 30 min . After completion of DMP oxidation, the mixture was filtered through syringe filter for removing precipitate, and added to indium, ammonium chloride and 3-bromocyclohexane solution at room temperature. The reaction mixture was stirred for 6 h and filter through a pad of Celite, rinsed with

EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 1, v / v)$ to yield $37(135 \mathrm{mg}, 70 \%$, 10:1 d.r.) as a white solid.

37: mp 180-183 ${ }^{\circ} \mathrm{C} ; R_{f}=0.3$ (hexane:EtOAc $=1: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}-174.4$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.46($ brs, 1 H$), 6.14-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.89$ $-5.75(\mathrm{~m}, 1 \mathrm{H}), 8.46(\mathrm{brs}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=7.6,5.9 \mathrm{~Hz}$, 1H), 2.27 (brs, 1H), 2.01 - 1.93 (m, 2H), $1.89-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 4 \mathrm{H})$, $1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=180.1,171.5,135.1,123.7,83.7,81.7,78.8,75.8,53.1,38.5$, 29.4, 28.2 (3C), 25.0, 20.8, 20.6, 16.7, 13.6; IR (neat, cm^{-1}) $v_{\max } 3313,2977,2931$, $2875,1714,1688,1458,1370,1290,1253,1158,1098,1018,950,886,845,759$, 691; HRMS (FAB): calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 354.2280$, found 354.2290.

Compound 38: To a stirred solution of $\mathbf{3 7}(68 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ $\mathrm{mL})$, TFA $(0.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was slowly warm up to room temperature and stirred for 2 h . The resulting mixture was concentrated under reduced pressure to provide carboxylic acid $\mathbf{3 8}(53 \mathrm{mg})$. The crude mixture was used in next step without further purification.

Salinosporamide B (2): To a solution of crude carboxylic acid prepared above $(53 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, triethylamine ($\left.167 \mu \mathrm{~L}, 1.2 \mathrm{mmol}\right)$ and BOP-Cl (147 $\mathrm{mg}, 0.579 \mathrm{mmol}$) was added at room temperature. The mixture was stirred at the same temperature for 10 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=3: 1$, $v / v)$ to yield salinosporamide B ($39.8 \mathrm{mg}, 74 \%$ for 2 steps) as a white solid.

2: $R_{f}=0.5$ (hexane $\left./ E t O A c=1: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-57(c 0.286, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}) $\delta=8.93(\mathrm{~s}, 1 \mathrm{H}), 5.86-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.65(\mathrm{~m}, 1 \mathrm{H})$, $5.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=8.5,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H})$, $1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=175.9,168.9,128.6$, $127.7,86.2,78.6,69.1,49.1,37.7,25.3,24.6,21.0,20.2,18.1,12.4$; IR (neat, cm^{-1}) $v_{\max } 3355,3341,2960,2925,1821,1697,1681,1445,1309,1029 ;$ HRMS (FAB): calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$280.1549, found 280.1557.

IV-2-3.Total synthesis of cinnabaramide A, E, F.

Compound S6: To a solution of E/Z mixture ($\sim 1.5: 1$) of $\mathbf{S 5}(4.0 \mathrm{~g}, 17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$, TFA (8 mL) was added at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 1 h . TFA was removed by co-evaporation with toluene in vacuo to provide carboxylic acid 39. The crude carboxylic acid and DMF ($20 \mu \mathrm{~L}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 20 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The reaction mixture was concentrated under reduced pressure to provide acid chloride $\mathbf{S 6}$. The crude mixture was used in next step without further purification.

Compound S7: To a solution of L-serine-OTBDPS ($4.0 \mathrm{~g}, 11.6 \mathrm{mmol}$) in THF, $\mathrm{NaH}\left(310 \mathrm{mg}, 90 \mathrm{wt} . \%\right.$, dry, 11.6 mmol) was added at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 2 h . The solvents were evaporated under low pressure to obtain sodium salt form of L-serine-OTBDPS. To stirred mixture of sodium salt of L-serine-OTBDPS and oven activated $4 \AA$ molecular sieves in dry acetone under
nitrogen atmosphere was slowly added a solution of trimethylaluminium in hexane $(5.8 \mathrm{~mL}, 12 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture is slowly warmed to room temperature. After stirring for 12 h at the same temperature, acid chloride $\mathbf{S 6}$ was slowly added at $0^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The mixture was filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to $($ hexane $/ E t O A c=5: 1, v / v$ to hexane/EtOAc, 3:1) to yield a $1: 1.4 \mathrm{E} / \mathrm{Z}$ mixture of $\mathbf{S} 7$ (3.6 g, 57%) as yellowish oil. The minor form of $\mathbf{S} 7$ was slowly transformed to major form of $\mathbf{S 7}$ or decomposed.

S7 (major): $R_{f}=0.33$ (hexane/EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.63$ $-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{dd}, J=8.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-$ 2.09 (m, 2H), 2.15 (s, 3H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.28-$ $1.16(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=195.5,169.2,164.7,150.1,140.0,136.1$ (2C), 135.8 (2C), 132.7, 131.7, 130.21, $130.15,127.94$ (2C), 127.92 (2C), $99.0,63.9,59.9,31.5,30.5,28.0,26.9,26.8$ (3C), 26.4, 25.9, 22.4, 19.2, 14.0; IR (neat, cm^{-1}) $v_{\max } 2957,2933,2860,1796,1656$, 1411, 1365, 1261, 1112, 968, 822; HRMS (FAB): calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}]^{+}$ 550.2989, found 550.2996.

S7 (minor): $R_{f}=0.5$ (hexane/EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.62-$
$7.52(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.13$ (brs, 1H), $4.00(\mathrm{dd}, J=11.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.72(\mathrm{brs}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{~s}$, 9H), $0.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=196.9,169.0,166.0$, 147.0, 138.7, 136.0 (2C), 135.6 (2C), 132.6, 131.8, 130.3, 130.2, 128.1 (2C), 128.0 (2C), 98.7, 63.2, 60.3, 31.6, 30.5, 29.3, 28.4, 26.94 (3C), 26.88 (2C), 22.4, 19.3, 14.0; IR (neat, cm^{-1}) $v_{\max } 2957,2932,2856,1796,1716,1650,1428,1411,1261$, 1224, 1150, 967, 822; HRMS (FAB): calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$550.2989, found 550.2996.

Compound (2R)-40: To a solution of $\mathbf{S} 7(3.3 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{MeOH}, \mathrm{CoCl}_{2}{ }^{-}$ $6 \mathrm{H}_{2} \mathrm{O}(7.1 \mathrm{~g}, 30 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.1 \mathrm{~g}, 30 \mathrm{mmol})$ was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was slowly warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was concentrated under reduced pressure to remove MeOH . The mixture was filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=8: 1, v / v)$ to yield a $14: 1$ mixture of $(2 R)-40$ and $(2 S)-40(2.4 \mathrm{~g}$, 71%) as a colorless oil.
$(2 R)-40: R_{f}=0.55($ hexane $/ E t O A c, 3: 1) ;[\alpha]^{20}{ }_{\mathrm{D}}-30.5\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers in a $25: 1$ ratio) $\delta=7.68-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.50-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 4.56-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=$ 11.2, 2.2 Hz, 1H), 3.19 (dd, $J=7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.71(\mathrm{~m}, 2 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=204.9,168.9,166.2,135.89$ (2C), 135.56 (2C), 132.4, 131.7, 130.4, 130.2, 128.13 (2C), 128.08 (2C), 99.0, 64.8, 61.2, 59.5, $31.5,29.3,28.8,27.6,26.9$ (3C), 26.6, 26.3, 25.9, 22.7, 19.3, 14.2; IR (neat, cm^{-1}) $v_{\max } 2954,2930,2858,1794,1709,1655,1402,1262,1105,1044,990 ;$ HRMS (FAB): calcd. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 552.3145$, found 552.3141 .
(2S)-40 : $R_{f}=0.68\left(\right.$ hexane/EtOAc, 3:1)ff; $[\alpha]^{20}{ }_{\mathrm{D}}+33\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, two rotamers in a $7: 1$ ratio) $\delta=7.66-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34$ $(\mathrm{m}, 6 \mathrm{H}), 4.34(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=11.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.95$ $(\mathrm{s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.11(\mathrm{~m}, 8 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=203.9,168.8,167.7,136.0(2 \mathrm{C}), 135.7$ (2C), 132.4, $131.8,130.3,130.2,128.02$ (2C), 127.96 (2C), 99.1, 64.8, 60.2, 60.1, 31.5, 31.2, 29.2, 27.5, 27.4, 27.0 (3C), 26.4, 26.0, 22.6, 19.3, 14.1; IR (neat, cm^{-1}) $v_{\max } 2954$, 2928, 2858, 1794, 1709, 1655, 1426, 1378, 1261, 1224, 1174, 968, 915; HRMS (FAB): calcd. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 552.3145$, found 552.3146 .

Compound 41: To a stirred solution of $(2 R)-40(1.1 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $t \mathrm{BuOH}(40$ mL), Sodium tert-butoxide ($961 \mathrm{mg}, 10.0 \mathrm{mmol}$) was added at room temperature. The mixture was stirred at room temperature for 30 min and acidified with 1 n HCl aqueous solution at $0{ }^{\circ} \mathrm{C}$ and extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $=20: 1: 0.2, v / v / v)$ to give $41(898 \mathrm{mg}, 88 \%)$ as a white solid. The enantiomeric excess of $\mathbf{4 1}$ was determined to be 98%.

41: mp 150-154 ${ }^{\circ} \mathrm{C} ; R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=10: 1: 0.1\right) ;[\alpha]^{20} \mathrm{D}+$ $47.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.71-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}) 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=179.9,172.6,136.9$ (2C), 136.7 (2C), 133.9, 133.5, 131.2, 131.1, 129.00 (2C), 128.96 (2C), 80.0, 75.7, $67.5,53.0,32.9,30.7,29.8,27.3$ (3C), 24.6, 23.7, 21.0, 20.1, 14.5; IR (neat, cm^{-1}) $v_{\max } 2954,2928,2855,1708,1615,1362,1219,1112,1174,825 ;$ HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 512.2832$, found 512.2827.

Procedure for the modification of 41 for determination of the enantiomeric

 excess of 41

Compound S8: To a solution of 41 ($17 \mathrm{mg}, 0.033 \mathrm{mmol}$) in THF (1 mL), $\mathrm{EDC} \cdot \mathrm{HCl}(16 \mathrm{mg}, 0.083 \mathrm{mmol})$ was added at room temperature and stirred for 12 h . The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1, v / v$) to yield $\mathbf{S 8}(13 \mathrm{mg}, 80 \%)$ as a colorless oil.

S8: $R_{f}=0.33($ hexane $/ E t O A c=3: 1, v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69-$ $7.56(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=9.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=176.2,168.0,135.8$ (2C), 135.7 (2C), 132.0, $131.9,130.5,130.4,128.3$ (2C), 128.2 (2C), 85.3, 75.9, 59.0, 49.0, 31.6, 29.4, 27.9, 26.8 (3C), 25.7, 22.7, 20.4, 19.2, 14.2; HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 429.2727$, found 429.2720.
[Determination of the enantiomeric excess of S8]

The enantiomeric purity of I was analyzed by chiral HPLC. The chiral HPLC
chromatogram of $\mathbf{S 8}$ was compared with that of rac-S8. Based on this comparison, the enantiomeric purity of $\mathbf{S 8}$ was determined to be 99%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=97: 3(v / v)$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in

Figure S11.

Figure S11. Chiral HPLC chromatograms of rac-S8 and S8.

Compound S9: To a solution of $\mathbf{4 1}(721 \mathrm{mg}, 1.41 \mathrm{mmol})$ in tert-Butyl acetate (14 $\mathrm{mL})$, aqueous $50 \% \mathrm{HClO}_{4}(280 \mu \mathrm{~L})$ was added at room temperature. The mixture was stirred at room temperature for 12 h and quenched with saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under
reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=6: 1, v / v)$ to yield $\mathbf{S 9}(568 \mathrm{mg}, 71 \%)$ as a colorless oil, and $\mathbf{4 1}$ ($107 \mathrm{mg}, 15 \%$) was recovered.

S9: $R_{f}=0.4($ hexane/EtOAc $=5: 1, v / v) ;[\alpha]^{20}{ }_{\mathrm{D}}-29.9\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.68(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{ddt}, J=26.7,6.5,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.52-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 1 \mathrm{H})$ $1.31-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=177.7,170.2,135.80$ (2C), 135.79 (2C), 133.1, 132.7, 130.0, 129.9, 128.0 (2C), 127.9 (2C), 82.8, 78.7, 76.0, 66.6, 51.6, 31.9, 29.9, 28.8, 28.0 (3C), 26.9 (3C), 23.6, 22.8, 20.7, 19.3, 14.2; IR (neat, cm^{-1}) $v_{\max } 3315,2954,2928$, 2856, 1722, 1690, 1368, 1315, 1252, 1163, 1077; HRMS (FAB): calcd. for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 568.3458$, found 568.3460.

Compound S10: To a solution of $\mathbf{S 9}(533 \mathrm{mg}, 0.939 \mathrm{mmol})$ in THF (4.7 mL), acetic acid ($215 \mu \mathrm{~L}, 3.76 \mathrm{mmol}$) and 1.0M TBAF solution in THF ($1.9 \mathrm{~mL}, 1.9$ mmol) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was warm up to room temperature and stirred for 12 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried
over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 2, v / v)$ to yield $\mathbf{S 1 0}(263 \mathrm{mg}$, 85%) as a white solid.

S10: $\mathrm{mp} 113-118{ }^{\circ} \mathrm{C} ; R_{f}=0.5(\mathrm{EtOAc}) ;[\alpha]^{20} \mathrm{D}+44.3(c \quad 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.81(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}$, 3H), $1.39-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $179.8,170.2,83.3,80.1,75.8,65.5,53.0,32.9,30.8,29.8,28.3$ (3C), 24.7, 23.7, 21.1, 14.4; IR (neat, cm^{-1}) $v_{\max } 3337,2954,2926,2856,1719,1685,1677,1655$, 1368, 1319, 1249, 1158, 1020; HRMS (FAB): calcd. for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 330.2280 , found 330.2285 .

Compound S12: To a stirred solution of $\mathbf{S 1 0}$ ($200 \mathrm{mg}, 0.607 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.1 mL), DMP ($309 \mathrm{mg}, 0.728 \mathrm{mmol}$) was added at room temperature and stirred for 2 h . In the meantime, to a solution of indium ($356 \mathrm{mg}, 3.10 \mathrm{mmol}$) in THF (6.1 $\mathrm{mL})$, ammonium chloride ($166 \mathrm{mg}, 3.10 \mathrm{mmol}$) was added at room temperature. After 30 min , 3-bromo cyclohexene ($209 \mu \mathrm{~L}, 1.82 \mathrm{mmol}$) was slowly added at room temperature stirred for 30 min . After completion of DMP oxidation, the crude
mixture of S11 was filtered through syringe filter for removing precipitate, and added to indium, ammonium chloride and 3-bromo cyclohexane solution at room temperature. The reaction mixture was stirred for 12 h and filter through a pad of Celite, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=3: 1, v / v$) to yield $\mathbf{S 1 2}$ ($229 \mathrm{mg}, 92 \%, 11: 1$ d.r.) as a white solid.

S12: mp 165-170 ${ }^{\circ} \mathrm{C} ; R_{f}=0.3$ (hexane/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.35(\mathrm{brs}, 1 \mathrm{H}), 6.06-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H})$, $2.57-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.27($ brs, 1 H$), 2.08-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75$ $-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 6 \mathrm{H})$, $0.93-0.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=180.2,171.4,135.2,123.7$, 83.7, 81.7, 78.7, 75.8, 51.4, 38.5, 31.9, 29.9, 29.4, 28.8, 28.2 (3C), 25.0, 23.6, 22.8, 20.7, 20.6, 14.3; IR (neat, cm^{-1}) $v_{\max } 3580,3337,3330,2928,2866,1789,1673$, 1370, 1294, 1155, 1016; HRMS (FAB): calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 410.2906$, found 410.2911.

Cinnabaramide E (10): To a stirred solution of $\mathbf{S 1 2}$ (117 mg, 0.286 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$, TFA $(0.7 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was slowly warm
up to room temperature and stirred for 2 h . The resulting mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=15: 1: 0.1, v / v / v\right)$ to yield cinnabaramide E (10) $(80 \mathrm{mg}, 79 \%)$ as a white solid.

10: $R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=15: 1: 0.1, v / v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-23.4(c 0.12$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=7.43(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{dq}, J=10.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.63(\mathrm{dq}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{brs}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dq}, J=9.4,5.4,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.65(\mathrm{td}, J=10.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.21(\mathrm{~m}$, $6 \mathrm{H}), 0.85(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=177.7,172.5$, $129.3,127.2,80.1,75.1,74.9,50.7,38.5,31.2,29.1,28.3,26.9,24.5,23.6,22.1$, 21.6, 21.1, 14.0; IR (neat, cm^{-1}) $v_{\max } 2928,1711,1683,1360,1254,1219,1080$, 948; HRMS (FAB): calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 354.2280$, found 354.2278 .

Cinnabaramide A (7): To a solution of $\mathbf{1 0}(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7$ $\mathrm{mL}), \mathrm{Et}_{3} \mathrm{~N}(142 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ and $\mathrm{BOP}-\mathrm{Cl}(130 \mathrm{mg}, 0.51 \mathrm{mmol})$ was added at room temperature. The mixture was stirred at the same temperature for 10 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with

EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=3: 1, v / v$) to yield cinnabaramide A (7) (50 mg, 87\%) as a white solid.

7: $R_{f}=0.45$ (hexane/EtOAc $=1: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}-94.9(c \quad 0.5, \mathrm{MeOH}) ;$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=8.93(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=10.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dq}, J$ $=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (dd, $J=7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 7 \mathrm{H})$, $0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=176.0,168.9,128.6$, 127.7, 86.1, 78.6, 69.1, 47.7, 37.7, 31.0, 28.8, 27.1, 25.3, 24.7, 24.6, 22.0, 21.0, 20.1, 14.0; IR (neat, cm^{-1}) $v_{\max } 3350,2922,2855,1819,1696,1677,1431,1381$, 1355, 1307, 1227, 1043, 826; HRMS (FAB): calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 336.2175, found 336.2184.

Cinnabaramide F (11): To a stirred solution of 7 ($32 \mathrm{mg}, 0.095 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(27 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ and N-acetyl l-cysteine ($16 \mathrm{mg}, 0.095 \mathrm{mmol}$) was added at room temperature. The mixture was stirred at the same temperature
for 12 h and concentrated under reduced pressure. The residue was purified via recycling preparative HPLC (HPLC conditions: JAIGEL-ODS-AP-L (20 mm (i.d.) $\mathrm{x} 500 \mathrm{~mm}(\mathrm{l}), 10 \mu \mathrm{~m}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=20: 80$, flow rate $=10 \mathrm{~mL} / \mathrm{min}, \lambda=202 \mathrm{~nm}$ and 234 nm) to yield cinnabaramide F (11) ($23 \mathrm{mg}, 48 \%$) as a white solid and cinnabarmide A(7)(9 mg, 27\%) was recovered.

11: $R_{f}=0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=10: 1: 0.1, v / v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+38.2(c 0.5$, MeOH); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=8.14(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.78(\mathrm{dd}, J=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=10.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{brs}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=$ $13.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (brs, 1H), $1.88-$ $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.14-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.0,3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (214 MHz, , DMSO- d_{6}) $\delta=201.9,179.1,172.2,169.2,129.4,127.3$, 80.7, 80.0, 75.6, 51.7, 50.6, 38.2, 31.2, 30.1, 29.1, 28.1, 27.1, 24.6, 23.5, 22.5, 22.2, 21.4, 21.1, 14.0; IR (neat, cm^{-1}) $v_{\max } 3362,2927,2858,1657,1650,1420,1375$, 1222, 1129, 1040, 885, 792; HRMS (FAB): calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 499.2478, found 499.2490 .

IV-2-4.Total synthesis of salinosporamide A (1).

Compound 48: To a solution of t butyl acetoacetate ($4.0 \mathrm{~g}, 25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$, TFA $(17 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 1 h . TFA was removed by co-evaporation with toluene in vacuo to provide carboxylic acid. The crude carboxylic acid and DMF (20 $\mu \mathrm{L}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ $\mathrm{mL})$, oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}, 30 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at room temperature. The reaction mixture was concentrated under reduced pressure to provide acid chloride 48. The crude mixture was used in next step without further purification.

Compound ent-45: To a solution of D-serine-OTBPDS (4.0 g, 11.6 mmol) in THF, $\mathrm{NaH}\left(311 \mathrm{mg}, 90 \mathrm{wt} . \%\right.$, dry, 11.6 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 2 h . The solvents were evaporated under low pressure to obtain sodium salt form of D-serine-OTBPDS. To stirred mixture of sodium salt of D-
serine-OTBDPS and oven activated $4 \AA$ molecular sieves in dry acetone under nitrogen atmosphere was slowly added a solution of trimethylaluminium in hexane $(5.8 \mathrm{~mL}, 11.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature. After stirring for 16 h at the same temperature, anhydrous pyridine $(2.3 \mathrm{~mL}, 29$ mmol) and acid chloride 48 was slowly added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at room temperature and filtered through a pad of celite and silica, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to (hexane/EtOAc $=4: 1, v / v$) to yield a 1:1.7 mixture of keto and enol form of ent-45 (3.1 g, 58\%) as a yellowish oil.

$$
\text { ent-45: } \left.R_{f}=0.25 \text { (hexane/EtOAc }=3: 1, v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-77.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}
$$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.73-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.64$ (brs, 1 H, enol), 4.36 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, keto), 4.27 (brs, 1 H , enol), 4.05 (dd, $J=11.2,2.5$ $\mathrm{Hz}, 1 \mathrm{H}$, keto), $4.05-4.00(\mathrm{~m}, 2 \mathrm{H}$, enol) 3.86 (dd, $J=11.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, keto), 3.38 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$, keto), 3.27 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$, keto), 2.18 (s, 3H, keto), 1.91 (brs, 3 H. enol), 1.86 (s, 3 H , enol), 1.84 (brs, 3 H , enol), 1.82 (s, 6 H , keto), 1.04 (s, 9H, keto), 1.01 (s, 9H, enol); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=201.4$ (keto), 177.0 (keto), 169.3 (enol), 168.8 (enol), 164.3 (enol), 135.84 (2C, keto), 135.81 (2C, enol), 135.6 (2C, keto), 135.5 (2C, enol), 132.4 (enol), 132.3 (keto), 131.9 (enol), 131.7 (keto), 130.4 (keto), 130.3 (keto), 130.2 (enol), 130.1 (enol), 128.19 (2C, keto), 128.16 (2C, keto), 128.1 (2C, enol), 127.9 (2C, enol), 99.1 (enol), 98.7 (keto),

89.0 (enol), 64.2 (keto), 62.8 (keto), 60.5 (enol), 59.8 (keto), 59.2 (enol), 51.1 (keto), 30.9 (keto), 26.91 (3C, keto), 26.88 (3C, enol), 26.63 (enol), 26.59 (enol), 26.57 (enol), 26.3 (keto), 26.1 (keto), 22.1 (enol), 19.3 (keto); IR (neat, cm^{-1}) $v_{\max }$ 2933, 2859, 1794, 1631, 1459, 1351, 1262, 1221, 1103, 965, 821; HRMS (FAB): calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 468.2206$, found 468.2216 .
[Determination of the enantiomeric excess of 45]

The enantiomeric purity of $\mathbf{4 5}$ was analyzed by chiral HPLC. The chiral HPLC chromatogram of $\mathbf{4 5}$ was compared with that of rac-45. Based on this comparison, the enantiomeric purity of ent-45 was determined to be 98%.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=93: 7(v / v)$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in Figure S12.

Figure S12. Chiral HPLC chromatograms of rac-45 and ent-45.

Compound (2R)-49: To a solution of ent-45 ($2.2 \mathrm{~g}, 4.7 \mathrm{mmol}$) in anhydrous THF (24 mL), allyl bromide ($2.07 \mathrm{~mL}, 23.5 \mathrm{mmol}$) and $\mathrm{NaH}(138 \mathrm{mg}, 90 \mathrm{wt} . \%$, dry, $5.17 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The mixture was quenched with 1 n HCl aqueous solution and extracted with EtOAc three times. The combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=6: 1, v / v)$ to yield $(2 R)-49(1.8 \mathrm{~g}, 77 \%)$ as a white solid and $(2 S)$ 49 (119 mg, 5\%) as a colorless oil.
(2R)-49: mp 125-130 ${ }^{\circ} \mathrm{C} ; R_{f}=0.4($ hexane $/ \mathrm{EtOAc}=3: 1, v / v) ;[\alpha]^{20}{ }_{\mathrm{D}}+27.4(c 0.1$, CHCl_{3} two rotamers in a $12: 1$ ratio $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.56$ (m, 4H), $7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.62(\mathrm{ddt}, J=17.2,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=$ 17.1, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (ddt, $J=10.1,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (dd, $J=11.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=11.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=9.4$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.7$, 168.7, 167.3, 136.0 (2C), 135.7 (2C), 133.2, 132.4, 131.8, 130.33, 130.28, 128.1 (4C), 119.1, 99.2, 64.9, 60.1, 59.1, 34.9, 27.4, 27.0 (3C), 26.4, 26.1, 19.3; IR (neat, cm^{-1}) $\mathrm{v}_{\text {max }}$

2940, 2932, 2859, 1793, 1710, 1655, 1404, 1367, 1263, 1110, 969, 918, 702; HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 508.2519$, found 508.2526.
(2S)-49: $R_{f}=0.33$ (hexane/EtOAc $\left.=3: 1, v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-27\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ two rotamers in a $14: 1$ ratio) $\delta=7.60(\mathrm{ddt}, J=11.7,6.6$, $1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.62-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{dd}, J=11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=$ 203.9, 168.8, 165.7, 135.93 (2C), 135.61 (2C), 133.7, 132.5, 131.7, 130.4, 130.3, 128.15 (2C), 128.09 (2C), 118.3, 99.0, 64.8, 60.2, 59.6, 32.7, 27.0, 26.9 (3C), 26.3, 25.9, 19.3; IR (neat, cm^{-1}) $v_{\max } 2940,2934,2855,1794,1712,1655,1402,1380$, 1262, 1112, 968, 918, 703; HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 508.2519, found 508.2518.
[Determination of the enantiomeric excess of 49]

The enantiomeric purity of $(2 R)-49$ was analyzed by chiral HPLC. The chiral HPLC chromatogram of (2R)-49 was compared with that of rac-(2R)-49. Based on this comparison, the enantiomeric purity of $(2 R)-49$ was determined to be 98%.

HPLC conditions: CHIRALCEL OD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2propanol $=93: 7(v / v)$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=290 \mathrm{~nm}$. The retention times are
shown in Figure S13.

Figure S13. Chiral HPLC chromatograms of rac-49 and 49.

Compound 50: To a stirred solution of ($2 R$)-49 (2.2 g, 4.3 mmol) in $t \mathrm{BuOH}(86$ $\mathrm{mL})$, Sodium tert-butoxide ($2.06 \mathrm{~g}, 21.5 \mathrm{mmol}$) was added at room temperature. The mixture was stirred at room temperature for 30 min and quenched with 1 n HCl aqueous solution and extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $=$ 20:1:0.2, $v / v / v)$ to give $\mathbf{5 0}(1.8 \mathrm{~g}, 88 \%)$ as a white solid. The enantiomeric excess of 50 was determined to be 96%.

50: mp 180-184 ${ }^{\circ} \mathrm{C} ; R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ acetic acid $\left.=10: 1: 0.1, v / v\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+$ $41.2\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta=7.66(\mathrm{dt}, J=7.9,1.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.59-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.03-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dtd}, J=17.1,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (dtd, $J=10.1,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{MeOD}) \delta=178.9,172.5,138.9,136.8$ (2C), 136.7 (2C), 133.9, 133.6, 131.2, 131.1, 129.0 (2C), 128.9 (2C), 116.3, 79.9, 75.8, 67.5, 53.3, 29.0, 27.3 (3C), 21.2, 20.0; IR (neat, cm^{-1}) $v_{\max } 3370,2934,2929,2857,1687,1589,1427,1376,1112$, 1039, 824, 701; HRMS (FAB): calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 468.2206$, found 468.2205.

Procedure for the modification of 50 for determination of the enantiomeric

 excess of 50

Compound S13: To a solution of $\mathbf{5 0}(18 \mathrm{mg}, 0.038 \mathrm{mmol})$ in THF (1 mL), $\mathrm{EDC} \cdot \mathrm{HCl}(19 \mathrm{mg}, 0.099 \mathrm{mmol})$ was added at room temperature and stirred for 12 h . The mixture was extracted with EtOAc three times. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=4: 1, v / v$) to yield
$\mathbf{S 1 3}$ ($13.5 \mathrm{mg}, 79 \%$) as a white solid.
S13: $R_{f}=0.33$ (hexane/EtOAc $\left.=3: 1, v / v\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68$ $-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ $-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.3,168.0,135.8$ (2C), 135.7 (2C), 135.0, 132.03, 131.93, $130.5,130.4,128.3$ (2C), 128.2 (2C), 118.4, 85.1, 76.2, 58.9, 49.1, 29.6, 26.9 (3C), 20.3, 19.3; IR (neat, cm^{-1}) $v_{\max } 3228,2933,2860,1828,1710,1472,1428,1335$, 1104, 1033, 919, 821; HRMS (FAB): calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$450.2101, found 450.2103 .
[Determination of the enantiomeric excess of S13]
The enantiomeric purity of $\mathbf{S 1 3}$ was analyzed by chiral HPLC. The chiral HPLC chromatogram of I was compared with that of rac-S13. Based on this comparison, the enantiomeric purity of $\mathbf{S 1 3}$ was determined to be $\mathbf{9 6 \%}$.

HPLC conditions: CHIRALCEL AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), hexane/2-propanol $=97: 3(v / v)$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$. The retention times are shown in Figure S14.

Figure S14. Chiral HPLC chromatograms of rac-S13 and S13.

Compound S14: To a solution of $\mathbf{5 0}(1.6 \mathrm{~g}, 3.4 \mathrm{mmol})$ in tert-Butyl acetate (34 $\mathrm{mL})$, aqueous $50 \% \mathrm{HClO}_{4}(680 \mu \mathrm{~L})$ was added at room temperature. The mixture was stirred at room temperature for 16 h and quenched with saturated NaHCO_{3} aqueous solution at $0^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=3: 1, v / v)$ to yield $\mathbf{S 1 4}(1.25 \mathrm{~g}, 70 \%)$ as a colorless oil, and $\mathbf{5 0}$ ($370 \mathrm{mg}, 23 \%$) was recovered.

S14: $R_{f}=0.31$ (hexane/EtOAc $\left.=3: 1, v / v\right) ;[\alpha]^{20} \mathrm{D}-36.2\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.77($ brs, 1 H$), 7.74-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H})$,
$5.97-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dt}, J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.7,170.1,137.8,135.8$ (4C), 133.0, 132.6, 130.02, 129.97, 128.0 (2C), 127.9 (2C), 116.1, 83.0, 78.7, 76.0, 66.6, 51.6, 28.03 (3C), 27.98, 26.9 (3C), 20.9, 19.3; IR (neat, cm^{-1}) $v_{\max } 3309,2941,2932,2958,1722$, 1691, 1473, 1428, 1368, 1253, 1163, 1113, 1077, 938. 702; HRMS (FAB): calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 524.2832$, found 524.2825.

Compound 52: To a solution of $\mathbf{S 1 4}(1.1 \mathrm{~g}, 2.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ and $\mathrm{MeOH}(21 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and bubbled with O_{3} for 10 min . The mixture was slowly warm up to $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(794 \mathrm{mg}, 21 \mathrm{mmol})$ was added to the reaction mixture and stirring for 2 h at the same temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was concentrated under reduced pressure to remove MeOH and extracted with EtOAc three times and the combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 1, v / v)$ to give $52(1.0 \mathrm{~g}$, 91%) as a colorless oil. The relative configuration was determined by NOESY experiments.

52: $R_{f}=0.45$ (EtOAc only); $[\alpha]^{20}{ }_{\mathrm{D}}-12.4\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.91($ brs, 1 H$), 7.75-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{td}, J=10.7,10.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=10.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.79$ $-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=178.5,169.9,135.8(2 \mathrm{C}), 135.7(2 \mathrm{C}), 132.8,132.4,130.14,130.07$, 128.1 (2C), 128.0 (2C), 83.5, 78.8, 77.4, 66.4, 62.4, 52.2, 28.0 (3C), 26.9 (3C), 26.4, 19.8, 19.3; IR (neat, cm^{-1}) $v_{\max } 3315,2962,2935,2861,1723,1690,1682$, 1675, 1428, 1370, 1255, 1162, 1113, 1077, 941, 702; HRMS (FAB): calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$528.2781, found 528.2771.

Compound S15: To a solution of $52(890 \mathrm{mg}, 1.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.4 \mathrm{~mL})$, $\mathrm{Boc}_{2} \mathrm{O}(1.9 \mathrm{~mL}, 8.4 \mathrm{mmol})$ and $\mathrm{VOF}_{3}(209 \mathrm{mg}, 0.169 \mathrm{mmol})$ were added at room temperature. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 48 h and filtered through a short silica plug and rinsed with EtOAc. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (hexane/EtOAc $=5: 1$, $v / v)$ to yield $\mathbf{S} 15(921 \mathrm{mg}, 87 \%)$ as a colorless oil.

S15: $R_{f}=0.4($ hexane $/ E t O A c=5: 1, v / v) ;[\alpha]^{20}{ }_{\mathrm{D}}-12.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.67($ brs, 1 H$), 7.85-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.31(\mathrm{~m}, 6 \mathrm{H})$,
5.60 (brs, 1H), $4.26(\mathrm{dd}, J=7.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=8.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=177.1,170.1,153.6,135.8$ (4C), 133.0, 132.6, 130.05, 129.98, 128.1 (2C), 127.9 (2C), 83.2, 81.8, 78.6, 76.1, 66.6, 65.4, 47.6, 28.0 (3C), 27.9 (3C), 26.9 (3C), 23.1, 20.3, 19.3; IR (neat, cm^{-1}) $v_{\max } 3360,2956,2929,2868,1724,1692$, 1459, 1369, 1279, 1255, 1163, 1114, 1079, 846, 768, 703; HRMS (FAB): calcd. for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{NO}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$628.3306, found 628.3315.

Compound 53: To a solution of $\mathbf{S 1 5}(820 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (13 mL), AcOH ($302 \mu \mathrm{~L}, 5.2 \mathrm{mmol}$) and 1.0M TBAF solution in THF ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred at the same time for 12 h . The reaction mixture was added to a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with EtOAc twice. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 1, v / v)$ to yield $53(461 \mathrm{mg}$, 91%) as a white solid.

53: mp 56-60 ${ }^{\circ} \mathrm{C} ; R_{f}=0.33$ (hexane/EtOAc, 1:2); $[\alpha]^{20}{ }_{\mathrm{D}}-15.6\left(c 0.5, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) 8.16 (s, 1H), 5.09 (brs, 1H), 4.27 (ddd, $J=7.1,5.8,2.1$
$\mathrm{Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=8.1,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.40$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=178.2,169.8,153.6,83.8,82.0,79.3$, 75.6, 65.4, 65.0, 48.1, 28.2 (3C), 27.9 (3C), 23.1, 20.4; IR (neat, cm^{-1}) $v_{\max } 3360$, 2979, 2956, 1719, 1689, 1458, 1395, 1369, 1278, 1253, 1166, 1095, 947, 845, 754; HRMS (FAB): calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+} 390.2128$, found 390.2122.

Compound 54: To a stirred solution of $53(160 \mathrm{mg}, 0.411 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.1$ $\mathrm{mL})$, DMP ($209 \mathrm{mg}, 0.493 \mathrm{mmol}$) was added at room temperature and stirred for 2 h. In the meantime, to a solution of indium ($282 \mathrm{mg}, 2.46 \mathrm{mmol}$) in THF (4.1 mL), ammonium chloride ($132 \mathrm{mg}, 2.46 \mathrm{mmol}$) was added at room temperature. After 30 \min, 3-bromocyclohexene ($141 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) was slowly added at room temperature stirred for 30 min . After completion of DMP oxidation, the mixture was filtered through syringe filter for removing precipitate, and added to indium, ammonium chloride and 3-bromo cyclohexane solution at room temperature. The reaction mixture was stirred for 6 h and filter through a pad of Celite, rinsed with EtOAc and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=2: 1, v / v)$ to yield $54(141 \mathrm{mg}, 73 \%$,

10:1 d.r.) as a colorless oil.
54: $R_{f}=0.2$ (hexane:EtOAc $=2: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.44$ (brs, $1 \mathrm{H}), 6.07-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{brs}, 1 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 2 \mathrm{H})$, 4.07 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.06-$ $1.93(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.53$ $(\mathrm{s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=179.5,171.3$, 153.7, 135.3, 123.6, 84.0, 81.7, 81.5, 79.0, 75.8, 65.6, 47.6, 38.5, 29.4, 28.2 (3C), 27.9 (3C), 25.0, 23.1, 20.6, 20.4; IR (neat, cm^{-1}) $v_{\max } 3360,2980,2931,1741,1713$, 1686, 1458, 1369, 1280, 1254, 1157, 1099, 841, 797, HRMS (FAB): calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+} 470.2754$, found 470.2755.

Compound S16: To a stirred solution of $\mathbf{5 4}(67 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8$ $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.42 \mathrm{~mL}, 0.42 \mathrm{mmol}\right)$ was slowly added and stirred for 1 h at the same temperature. The mixture was quenched with MeOH (1 mL) and stirred for 5 min . The resulting mixture was filtered through silica and celite pad (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1$, v / v to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=4: 1$). The mixture was concentrated under reduced pressure to provide crude carboxylic acid S16 (42 mg). The crude mixture was used in next step without further purification.

Compound S17: To a stirred solution of crude carboxylic acid (42 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$, pyridine $(0.5 \mathrm{~mL})$ and $\mathrm{BOP}-\mathrm{Cl}(107 \mathrm{mg}, 0.42 \mathrm{mmol})$ was added at room temperature. The mixture was stirred at the same temperature for 8 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure to provide crude β-lactone $\mathbf{S 1 7}$ (35 mg). The crude mixture was used in next step without further purification.

Salinosporamide A(1): To a stirred solution of $\mathbf{S 1 7}(35 \mathrm{mg})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ and pyridine $(0.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{PCl}_{2}(93 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added at room temperature. The mixture was stirred for 4 h and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc three times, and the combined organic fraction was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc $=1: 1, v / v$) to yield salinosporamide A (1) ($28 \mathrm{mg}, 62 \%$ for 2 steps) as a white solid.

1: $R_{f}=0.5$ (hexane/EtOAc $\left.=1: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-74.5(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, pyridine- $\left.d_{5}\right) \delta=10.67(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.40(\mathrm{~m}, 1 \mathrm{H})$, 5.91 (ddt, $J=10.1,5.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=10.7,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=10.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82$ (m, 1H), $2.52(\mathrm{ddt}, J=14.4,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $1.98-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (214 MHz ,
pyridine $\left.-d_{5}\right) \delta=176.8,169.3,128.9,128.6,86.2,80.2,70.8,46.0,43.2,39.2,28.9$, 26.3, 25.2, 21.6, 19.9; IR (neat, cm^{-1}) $v_{\max } 2929,2865,1821,1690,1474,1384$, 1354, 1145, 1028, 829; HRMS (FAB): calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$314.1159, found 314.1150.

IV-3. Computational studies

IV-3-1. General procedure for molecular energy calculations

Density functional theory (DFT) calculations were carried out using wB97XD functionals with the $6-31+G(d)$ basis set in Gaussian 16. Transition-state optimizations were performed with the Berny geometry optimization algorithm. Frequency calculations were carried out to ensure that minima structures had no negative frequency and the transition structures had only one imaginary frequency as well as to calculate contributions to the Gibbs free energy (reported at 298.15 K and 1 atm$)$. The connectivity of reactants and products was confirmed by intrinsic reaction coordination (IRC) calculations. All molecules were modeled in the solvent phase (THF/H2O (1:1), solvation model based on density (SMD)).

IV-3-2. Energy profiles for intramolecular aldol cyclization of (2R)-29.

Table S7. Electronic energies (E), zero-point energies (ZPE), enthalpies (H), and Gibbs free energies (G) (in Hartree, Ha) of the compound calculated at the B3LYP, $6-31+G(d)$ level of theory. The relative Gibbs free energy is shown in $\mathrm{kcal} / \mathrm{mol}$, and the imaginary frequency is shown in cm^{-1}.

Compound	E	ZPE	H	G	$\Delta G^{a, b}$	imaginary frequency
$\mathbf{2 9}$	-1307.5582	-1307.1598	-1307.1317	-1307.2189	0.0	-
TS 1	-1307.5529	-1307.1540	-1307.1274	-1307.2080	6.9	-142.82
TS 2	-1307.5597	-1307.1600	-1307.1336	-1307.2140	3.1	-118.82
P1	-1307.5658	-1307.1659	-1307.1390	-1307.2206	-1.1	
P2	-1307.5734	-1307.1726	-1307.1460	-1307.2268	-5.0	

${ }^{a} 1 \mathrm{Ha}=627.509391 \mathrm{kcal} / \mathrm{mol} .{ }^{b}$ Relative energy Gibbs free energy between compound and 29

IV-4. X-ray Crystallographic data for (2S)-18 (CCDC 2179295)

Figure S15. X-ray crystallographic structure of (2S)-18 (dimer form)

Identification code	exp_1774
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$
Formula weight	495.67
Temperature/K	$293.5(6)$
Crystal system	monoclinic
Space group	P 21
a / \AA	$12.288(2)$
b / \AA	$10.6855(17)$
c / \AA	$22.791(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$105.19(2)$
$\gamma /{ }^{\circ}$	90
Volume/ $\AA 3$	$2888.1(10)$
Z	4
ρ calcg/cm3	1.140
$\mu /$ mm-1	0.998
$\mathrm{~F}(000)$	1064.0
Crystal size/mm3	$0.25 \times 0.2 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	7.454 to 149.288
Index ranges	$-14 \leq \mathrm{h} \leq 15,-7 \leq \mathrm{k} \leq 13,-27 \leq 1 \leq 25$
Reflections collected	10877
Independent reflections	$7900[\mathrm{Rint}=0.1605, \mathrm{Rsigma}=0.1058]$
Data/restraints/parameters	$7900 / 1 / 645$
Goodness-of-fit on F 2	1.090
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.1265, \mathrm{wR} 2=0.3721$
Final R indexes [all data $]$	$\mathrm{R} 1=0.1683, \mathrm{wR} 2=0.3965$
Largest diff. peak/hole $/ \mathrm{e} \AA-3$	$0.42 /-0.62$
Flack parameter	$0.02(12)$

V. References

[1] R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauff-man, P. R. Jensen, W. Fenical, Angew. Chem. Int. Ed. 2003, 42, 355-357; Angew. Chem. 2003, 115 , 369-371.
[2] a) W. Fenical, P. R. Jensen, M. A. Palladino, K. S. Lam, G. K. Lloyd, B. C. Potts, Bioorg. Med. Chem. 2009, 17, 2175-2180; b) M. Nett, T. A. Gulder, A. J. Kale, C. C. Hughes, B. S. Moore, J. Med. Chem. 2009, 52, 6163-6167.
[3] T. A. M. Gulder, B. S. Moore, Angew. Chem., Int. Ed. 2010, 49, 9346-9367; Angew. Chem. 2010, 122, 9534 - 9556.
[4] a) P. G. Williams, G. O. Buchanan, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical, J. Org. Chem. 2005, 70, 6196-6203; b) K. A. Reed, R. R. Manam, S. S. Mitchell, J. Xu, S. Teisan, T.-H. Chao, G. Deyanat-Yazdi, S. T. C. Neuteboom, K. S. Lam, B. C. M. Potts, J. Nat. Prod. 2007, 70, 269-276.
[5] M. Stadler, J. Bitzer, A. Mayer-Bartschmid, H. Müller, J. Benet-Buchholz, F. Gantner, H.-V. Tichy, P. Reinemer, K. B. Bacon, J. Nat. Prod. 2007, 70, $246-$ 252.
[6] Enantioselective total synthesis: a) L. R. Reddy, P. Saravanan, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 6230-6231; b) A. Endo, S. J. Danishefsky, J. Am. Chem. Soc. 2005, 127, 8298-8299; c) e) T. T. Ling, V. R. Macherla, R. R.

Manam, K. A. McArthur, B. C. M. Potts, Org. Lett. 2007, 9, 2289-2292; d) K. Takahashi, M. Midori, K. Kawano, J. Ishihara, S. Hatakeyama, Angew. Chem. Int. Ed. 2008, 47, 6244-6246; Angew. Chem. 2008, 120, 6340-6342; (e) H. Nguyen, G. Ma, D. Romo, Chem. Commun. 2010, 46, 4803-4805; (g) Sato, H. Fukuda, M. Tomizawa, T. Masaki, M. Shibuya, N. Kanoh, Y. Iwabuchi, Heterocycles 2010, 81, 2239-2246; h) H. Nguyen, G. Ma, T. Gladysheva, T. Fremgen, D. Romo, J. Org. Chem. 2011, 76, 2-12; i) Y. Kaiya, J. Hasegawa, T. Momose, T. Sato, N. Chida, Chem. Asian J. 2011, 6, 209-219; j) N. Satoh, S. Yokoshima, T. Fukuyama, Org. Lett. 2011, 13, 3028-3031; k) L. B. Marx, J. W. Burton, Chem. Eur. J. 2018, 24, 6747-6754; 1) H. Gholami, A. Kulshrestha, O. K. Favor, R. J. Staples, B. Borhan, Angew. Chem. Int. Ed. 2019, 58, 1011010113; Angew. Chem. 2019, 131, 10216-10219; For racemic total synthesis: m) N. P. Mulholland, G. Pattenden, L. A. S. Walters, Org. Biomol. Chem. 2006, 4, 2845-2846; n) G. Ma, H. Nguyen, D. Romo, Org. Lett. 2007, 9, 2143-2146; (o) N. P. Mulholland, G. Pattenden, I. A. S. Walters, Org. Biomol. Chem. 2008, 6, 2782-2789.
[7] For formal synthesis: a) V. Caubert, J. Masse, P. Retailleau, N. Langlois, Tetrahedron Lett. 2007, 48, 381-384; b) I. V. Margalef, L. Rupnicki, H. W. Lam, Tetrahedron 2008, 64, 7896-7901; c) T. Momose, Y. Kaiya, J. Hasegawa, T. Sato, N. Chida, Synthesis 2009, 17, 2983-2991; d) J. R. Struble, J. W. Bode,

Tetrahedron 2009, 65, 4957-4967; e) R. A. Mosey, J. J. Tepe, Tetrahedron Lett. 2009, 50, 295-297; f) T. T. Ling, B. C. Potts, V. R. Macherla, J. Org. Chem. 2010, 75, 3882-3885; g) A. W. J. Logan, S. J. Sprague, R. W. Foster, L. B. Marx, V. Garzya, M. S. Hallside, A. L. Thompson, J. W. Burton, Org. Lett. 2014, 16, 4078-4081.
[8] a) J. H. Kim, S. Lee, S. Kim, Angew. Chem. Int. Ed. 2015, 54, 10875-10878; Angew. Chem. 2015, 127, 11025-11028; b) J. H. Kim, I. Kim, Y. Song, M. J. Kim, S. Kim, Angew. Chem. Int. Ed. 2019, 58, 11018-11022; Angew. Chem. 2019, 131, 11134-11138; c) Y. Song, J. H. Kim, Y. C. Kim, S. Kim, Chem. Eur. J. 2021, 27, 10731-10736.
[9] J. H. Kim, H. Jeon, C. Park, S. Park, S. Kim, Angew. Chem. Int. Ed. 2021, 60, 12060-12065; Angew. Chem. 2021, 133, 12167-12172.
[10] For reviews, see: a) H. W. Zhao, D. C. Hsu, P. R. Carlier, Synthesis 2005, 116; b) D. Campolo, S. Gastaldi, C. Roussel, M. P. Bertrand, M. Nechab, Chem. Soc. Rev. 2013, 42, 8434-8466; c) V. Alezra, T. Kawabata, Synthesis 2016, 48, 2997-3016.
[11] For reviews, see: a) J. Steinreiber, K. Faber, H. Griengl, Chem. Eur. J. 2008, 14, 8060-8072; b) H. Pellissier, Tetrahedron 2011, 67, 3769-3802; c) H. Pellissier, Tetrahedron 2016, 72, 3133-3150.
[12] a) M. Branca, S. Pena, R. Guillot, D. Gori, V. Alezra, C. Kouslovsky, J. Am.

Chem. Soc. 2009, 131, 10711-10718; b) B. Viswambharan, D. Gori, R. Guillot, C. Kouklovsky, V. Alezra, Org. Lett. 2014, 16, 788-791.
[13] D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel, J. Am. Chem. Soc. 1984, 106, 1154-1156.
[14] O. Popik, B. Zambroń, J. Mlynarski, Eur. J. Org. Chem. 2013, 7484-7487.
[15] The compound ent-21 was rapidly converted to 27 through the oxazolidinone ring opening reaction with NaOEt in EtOH , while 25 was unreactive under the same conditions.
[16] The absolute stereochemistry of ent-21 was determined by the synthesis of salinosporamide $\mathrm{B}(\mathbf{2})$ from ent-21. The sign of the optical rotation $\left([\alpha]^{20}{ }_{D}=\right.$ $+49.4(c 0.3, \mathrm{MeOH}))$ for the obtained 2 was opposite that of the optical rotation reported for the natural product $\left([\alpha]^{25}{ }_{\mathrm{D}}=-54.5(c 0.286, \mathrm{MeOH})\right)$.
[17] The stereochemistry of (2S)-18 was determined by X-ray crystallographic analysis. See the supporting information for details.
[18] As the reaction time was prolonged, $\mathbf{2 8}$ was formed, albeit in small amounts, presumably due to the presence of inadvertent moisture.
[19] For examples of aldol/retro-aldol equilibrium in bicyclic pyroglutamates, see: a) M. G. Moloney, M. Yaqoob, Tetrahedron Lett. 2008, 49, 6202-6204; b) L. Josa-Culleré, C. Towers, F. Willenbrock, V. M. Macaulay, K. E. Christensen, M. G. Moloney, Org. Biomol. Chem. 2017, 15, 5373-5379.
[20] a) T. C. Bruice, T. H. Fife, J. Am. Chem. Soc. 1962, 84, 1973-1979; b) Fife, T. H.; T. H. Fife, B. M. Benjamin, J. Am. Chem. Soc. 1973, 95, 2059-2061; c) J. E. Hutchins, T. H. Fife, J. Am. Chem. Soc. 1973, 95, 3786-3790; d) F. Cuminet, S. Caillol, É. Dantras, É. Leclerc, V. Ladmiral, Macromolecules 2021, 54, $3927-$ 3961.
[21] For examples of enzymatic or catalytic hydrolytic dynamic kinetic resolution (DKR), see: a) M. M. Jones, J. M. J. Williams, Chem. Commun. 1998, 25192520; b) B. Xia, J. Xu, Z. Xiang, Y. Cen, Y. Hu, X. Lin, Q. Wu, ACS Catal. 2017, 7, 4542-4549; c) E. Yama-moto, K. Wakafuji, Y. Furutachi, K. Kobayashi, T. Kamachi, M. Tokunaga, ACS Catal. 2018, 8, 5708-5713.
[22] Y. Li, Z. Wang, X. Huang, Preparation Method of Palbociclib. CN112920182A, 2021.
[23] The replacement of CoCl_{2} with NiCl_{2} resulted in lower diastereoselectivity (d.r. $=8: 1$). When the reaction was performed with Adam's catalyst under hydrogen gas, the d.r. was only 2.7:1.
[24] (a) M. Moreno-Mañas, R. M. Sebastiàn, A. Vallribera, E. Molins, Tetrahedron 1995, 51, 10795-10800; b) J. Clariana, N. Galvez, C. Marchi, M. MorenoMañas, A. Vallribera, E. Molins, Tetrahedron 1999, 55, 7331-7344; c) N. Galvez, E. Molins, M. Moreno-Mañas, R. M. Sebastiàn, N. Serra, E. Trepat, A. Vallribera, J. Heterocycl. Chem., 2000, 37, 895-905; (d) M. De Rosa, L.

Palombi, M. R. Acocella, M. Fruilo, R. Villano, A. Soriente, A. Scettri, Chirality 2003, 15, 579-583; (e) O. S. Shneider, E. Pisarevsky, P. Fristrup, A. M. Szpilman, Org. Lett. 2015, 17, 282-285.
[25] K. Bell, D. V. Sadasivam, I. R. Gudipati, H. Ji, D. Birney, Tetrahedron Lett. 2009, 50, 1295-1297.

Appendix I

Spectral Analysis

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 R) \mathbf{- 1 8}$

서울대학교
SEOUL NATONAL LNNVERSITY
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(2 S)-18$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2S)-18

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 5}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 5}$

서울대학교
SEOUL NATONAL LNNVERSITY

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 6}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 26

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 7}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) of 27

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of ent-21

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of ent-21

[^0]서울대학교
SEOUL NATONAL LINVERSITY

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{2 8}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{2 8}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{S 2}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{S} 2$

20

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 0}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 0}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 1}$ (major)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 1}$ (major)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 1}$ (minor)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{3 1}$ (minor)

[^1]서울대학교
SEOUL NATONAL LNNVERSITY
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 34

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 4}$

[^2]서울대학교
SEOUL NATONAL LNNERSITY
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{3 5}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{3 5}$

$$
\begin{array}{lll}
\stackrel{\circ}{0} & \stackrel{1}{0} \\
\stackrel{N}{\circ} & \stackrel{1}{1}
\end{array}
$$

($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
$\begin{array}{llllllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 7}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) of $\mathbf{3 7}$

[^3]서울대학교
SEOUL NATONAL LNNVERSITY
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) of salinosporamide B (2)

${ }^{13}$ C NMR (400 MHz , DMSO- d_{6}) of salinosporamide B (2)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 7$ (major)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 7$ (major)

서울대학교
SEOUL NATONAL LNNEESITY
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of $\mathbf{S 7}$ (minor)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 7$ (minor)

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\tau} \end{aligned}$		 	¢	$\begin{gathered} \underset{\sim}{N} \\ \\ \hline \end{gathered}$	
\|	11	$1 \rightarrow 113$		11	-

$\mathbf{S 7}$ (minor) $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\begin{array}{ll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

서울대학교
SEOUL NATONAL LINVERSITY
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of (2R)-40

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2R)-40

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (2S)-40

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (2S)-40

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{4 1}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{4 1}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of $\mathbf{S 8}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 8}$

[^4]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 9}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 9$

[^5]서울대학교
SEOUL NATONAL LINVERSITY
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{S 1 0}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{S 1 0}$
$\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 2}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 2}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of cinnabaramide E (10)

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of cinnabaramide E (10)

cinnabaramide E (10)
(100 MHz , DMSO-d6)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of cinnabaramide A (7)

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of cinnabaramide A (7)

$\begin{array}{llllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -11\end{array}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d 6) of cinnabaramide F (11)

${ }^{13} \mathrm{C}$ NMR (214 MHz , DMSO-d6) of cinnabaramide F (11)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of ent-45

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of ent-45

[^6]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2R)-49

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2R)-49

N	$\begin{aligned} & \text { M } \\ & \underset{\sim}{\infty} \\ & \stackrel{\omega}{\circ} \end{aligned}$		$\stackrel{\infty}{\circ}$		

(2R)-49
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2 S)-49

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (2S)-49

$\stackrel{\text { ๗ু }}{\substack{\text { in } \\ \hline}}$		 			

(2S)-49 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

서울대학교
SEOUL NATONAL LNVVERSITY
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{5 0}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{5 0}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of $\mathbf{S 1 3}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 3}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of $\mathbf{S 1 4}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 4}$

$\begin{array}{llllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & -\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 52

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 52

$\begin{array}{llllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \underset{f}{110}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

서울대학교
SEOUL NATONAL LNNVERSITY
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 5}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 5}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 53

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 53

[^7]${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 54

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 54

[^8]SEOUL NATONAL LNNVERSITY
${ }^{1} \mathrm{H}$ NMR (400 MHz , pyridine- d_{5}) of Salinosporamide A (1)

${ }^{13}$ C NMR (214 MHz, pyridine- d_{5}) of Salinosporamide A (1)

국 문 초 록

Salinosporamide 계열 천연물들의 효율적인 전합성 수행 및 이를 위한 비대칭 합성법 개발

Salinosporamide 계열의 천연물은 독특한 화학적 구조와 우수한 20 S proteasome 억제제로 알려져 있으며, 다양한 분야의 연구진들에게 많은 관심을 받아왔다. 현재까지 약 13 편의 salinosporamide A 의 전합성이 보고 된 바 있으며, 대부분은 salinosporamide의 공통 키랄성 pyrrolidinone 골격 을 구축하는 방법에 대한 연구가 논문의 주요 내용으로 보고되었다. 하 지만, 대부분의 전합성 논문에서는 비대칭 pyrrolidinone의 골격을 효율적 으로 합성하지 못하거나, 높은 입체선택성을 도입하기 힘들어서 salinosporamide 계열의 화합물이 비교적 단순함에도 불구하고, 대부분의 전합성 논문에서는 20 step 이상이 소요된다는 문제를 가지고 있다. 이에, 현재까지도 salinosporamide A 전합성에서는 chiral pyrrolidinone을 간결하고 효율적으로 구축할 수 있는 방법론이 요구되며, 다른 C-2 작용기를 가지 는 다양한 salinosporamide 및 cinnabaramide 계열의 천연물을 합성하기 위 해서는 C-2 위치에 다양한 작용기가 도입될 수 있는 확장성이 있는 방법 론의 개발이 필요하다.

본 연구에서는, 천연 아미노산인 L-serine을 출발 물질로 하여, 5oxazolidinone 골격을 가지는 알돌 기질을 확보하고, 알돌 고리화 반응과 가수분해를 동시에 수행하는 반응을 고안하여 3 개의 인접한 입체 중심을 가지는 키랄성 pyrrolidinone 골격을 입체선택적으로 합성하였다. 위의 반 응은 C-2 위치의 입체 중심이 에피머화 되지 않는 Evans' oxazolidinone 원리가 적용된 5-oxazolidinone의 화학적 특징과 'hydrolytic Dynamic kinetic resolution' 원리를 활용하여 C-3, C-4 위치의 입체 선택적으로 도입하는데 성공하였다. 추후, 위의 개발된 반응을 활용하여, C-2 위치에 다양한 작용 기를 가지는 salinosporamide A / B 및 cinnabaramide $\mathrm{A} / \mathrm{E} / \mathrm{F}$ 모두 축약적이고 효율적인 비대칭 전합성을 성공적으로 수행하였다.

주요어: Aldol cyclization, Salinosporamide, Hydrolytic dynamic kinetic resolution, 5-oxazolidinone, Total synthesis

학번: 2012-31107

[^0]: | 20 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{array}{l}110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$ | 100 | 90 | 80 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
 | :--- |

[^1]:

[^2]: $\begin{array}{llllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ f 1(\mathrm{ppm})\end{array} & \mathbf{9 0} & 80 & 70 & \mathbf{6 0} & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

[^3]:

[^4]:

[^5]:

[^6]: $\begin{array}{llllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \underset{f}{110}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

[^7]:

[^8]: $\begin{array}{llllllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \underset{f}{110}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

