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Abstract

Contrastive learning is widely adopted in self-supervised representation learn-

ing (SSL) to learn common attributes from similar sample pairs. In this paper,

we boldly hypothesize that an image and its caption can be simply regarded as

two different views of an underlying semantic, and aim to build a unified vision-

language representation space by inducing a one-tower transformer that can en-

code both type of data samples in a modality-agnostic manner. We show that

applying typical SSL frameworks to vision-language pretraining (VLP) naively

fails to train a generic one-tower model due to a severe modality gap, and pro-

pose One Representation (OneR) to mitigate the disparity. We explore emerg-

ing properties of OneR distinguished from prior works with modality-specific

representation spaces such as zero-shot object localization, text-guided visual

reasoning, and multi-modal retrieval, and analyze our novel multi-modal rep-

resentation learning. Comprehensive evaluations demonstrate the potential of a

modality-agnostic VLP framework that has unified representation space.

keywords: Vision-language Pretraining, Multi-modal, Self-supervised Learn-

ing, Representration Learning, Transformer, Deep Learning

student number: 2021-22933
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Chapter 1

Introduction

Recent boom of large scale pretraining has been triggered by self-supervised

learning (SSL) as it provides means to leverage a huge stack of unlabeled data

handily aggregated from the web. While language modeling [8, 36] is a pretext

task of prevalence in the domain of natural language, contrastive learning is one

of the most popular SSL framework in the computer vision field that essentially

aims to maximize mutual information between related data pairs. When train-

ing with images, this is realized by first generating several distinct views of an

image through random augmentation [6] and encouraging the model to enhance

features’ similarities between them.

Meanwhile, after the seminal work of CLIP [35] has declared the opening of

Vision-Language Pretraining (VLP) era, many works [21, 31, 22, 44, 45, 46, 48]

have exploited the contrastive objective for connecting representations between

images and their descriptions. However, they are fundamentally different from

the aforementioned SSL contrastive frameworks in that they make two separate

representation spaces for vision and language, respectively. The representations

for contrastive learning is computed only after sufficient abstraction operations,
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typically done with modality-specific transformers and learnable projections.

This renders them short for modality-agnostic representation learning, a promis-

ing research direction towards a generic perception model.

Our ultimate goal for training the model to have a unified representation

space in modality-agnostic manner should require capabilities of both 1) map-

ping visual and textual information into a unified representation space at the

global sequence level and 2) processing information within an input sequence

in a modality-blind manner with generic token level attentions. First we hypoth-

esize that an image (e.g. a photo of panda) and its caption (e.g. the phrase “a

photo of panda”) contains common semantics, which can be regarded as two

different views of implicit underlying information, analogous to the randomly

augmented images in vision SSL frameworks. Hence, the contrastive SSL ap-

proach can be applied in vision language pretraining to congregate relevant

semantics, either from visual signals, linguistic descriptions, or their mixture,

into a single unified representation space. This way, our model learns to extract

the modality-agnostic information by associating visual signals with structured

symbols from the lowest level, breaking the boundaries between the two.

As shown in Fig. 2.2, while the conventional VLP works acknowledge the

nature of each modality and inject relevant inductive bias into the model archi-

tecture, our approach adopt a generic single-tower transformer without modality-

specific component to handle two different modalities at once and induce a sin-

gle representation space. We empirically demonstrate that the modality gap is

the main obstacle for training one-tower model in a naive image-text contrastive

learning framework and propose cross-modal mixup as a simple yet effective

remedy. Furthermore, we feed our model concatenation of image and its caption

for contrastive loss computation to enable the model to aggregate information
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Figure 1.1: Typical architectures of vision-language models. (a) is the basic

form, with one transformer encoder and a projector for each modality. (b) adds

fusion encoder transformer blocks on top of (a). (c) uses a single transformer

encoder with modality specific projectors. (d) unifies the two modalities with a

generic one-tower model (OneR).

within each sequence in a modality-agnostic manner. This allows our model to

form integrated representation space even from concatenated inputs of image

and text, achieving both of our previous desiderata. We name our framework

OneR, short for One Representation that suits both modalities.

Apart from the academic pursuit of general intelligence, single tower archi-

tecture has been shown to have benefits in scalability and cross-modal/cross-task

transferability [42, 32]. Furthermore, we observe that our OneR’s capacity to

associate low-level visual signals to language symbols in unified representation

space makes it an excellent zero-shot object localizer, and visual reasoning can

be steered by auxiliary language guidance thanks to its natural ability to process

image+text mixture inputs. The fact that mixture inputs are mapped to the same

One Representation space further renders operations like multi-modal retrieval

straightforward unlike two-leg baselines (e.g., ALBEF [22]). We note that these

properties do not rely on any modality-specific heads, segment tokens, nor spe-

3



cial cross-attention modules, but are natural outcomes of embedding similarity

and input concatenation.

Our key contributions can be summarized as:

• We identify the failure of naive one-tower vision-language contrastive

learning caused by the modality gap, and propose cross-modal mixup to

mitigate it.

• We present OneR, a simple modality-agnostic representation learning frame-

work that combines cross-modal mixup with contextual modality invari-

ance to form a unified embedding space.

• We show extensive qualitative and quantitative results to demonstrate

the advantages of our method, which includes distinguished capabilities

in zero-shot object localization, text-guided visual reasoning and multi-

modal retrieval (See Fig. 5.1).
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Chapter 2

Related Works

2.1 Self-Supervised Learning

Self-supervised learning first thrived in Natural Language Processing as masked

language modeling (MLM) and autoregressive language modeling (LM) en-

abled pretraining large scale language models with huge stock of unlabeled text

corpus, which is crawled from the Internet [8, 36, 20, 26].

In the vision domain, contrastive learning is representative framework of

SSL. MoCo [15] and SimCLR [2] are the pioneers to demonstrate the strong

performance of contrastive representation learning, which we adapt in our VLP

frameworks. BYOL [12] and SimSiam [3] explored a new training algorithm

that exploits positive samples only to mitigate the batch size dependency. Re-

cently, various works [1, 4, 16] actively employ the vision transformer [9] to

improve the performance and discover new properties. This architecture is mod-

ified for VLP as it can model data from different modalities in an elegant and

integrated manner.
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Figure 2.1: Illustration of SimCLR. Random augmentation makes two different

views of an image, and then contrastive learning trains the encoder and projector

to extract the augmentation invariant information from the views. The output of

the encoder is used for downstream tasks.

2.2 Vision-Language Pretraining

Motivated by the success of contrastive based self-supervised learning, CLIP [35]

first proposed contrastive Vision-Language Pretraining framework equipped with

large scale paired image-text dataset. This novel framework can train a Vision-

Language model very efficiently and achieve competitive performance com-

pared to those of fully supervised baselines. ALIGN [17] scaled up the train

dataset with noisy images and alt-text pair data. In another line of works [24,

23, 5, 10], off-the-shelf object detectors are leveraged to extract visual fea-

tures first, and then used to train the multi-modal transformer. In an attempt to

learn cross-modal interactions, ALBEF [22], TCL [44], FLAVA [39], and Flo-

rence [46] adopted transformer blocks with cross-attention as fusion layers on

top of modality-specific transformer encoders. These models show impressive

performance on various vision-language tasks, as they are capable of process-

ing both single-modal and multi-modal inputs. Another group of works [21, 45,

6



Figure 2.2: Typical architectures of vision-language models. (a) is the basic

form, with one transformer encoder and a projector for each modality. (b) adds

transformer blocks on top of (a). (c) uses a single-tower transformer, but has

separate projections. (d) unifies the two modalities with a generic one-tower

model (OneR).

42, 30] explored autoregressive generative model, typically in the form of im-

age captioning, to further advances state-of-the-art performances on challenging

tasks such as visual question answering.

2.3 Unified Vision-Language Framework

Some works have also aimed at integrating modality-specific transformers that

can deal with diverse problem settings with minimal inductive bias alongside the

efforts to push the state-of-the-art further. A single-tower transformer architec-

ture was adopted by Uni-Perceiver [48] to handle a variety of V-L applications.

Using a sequence-to-sequence framework, Unified-IO [29] unified input/output

formats further using a VQ-VAE. Although these works have pointed towards

a unified perception system, they use modality-specific components as well as

a multi-task pretraining strategy, which pools data from different tasks to train

7



the network. The approach has the disadvantage of being less scalable than sim-

pler contrastive frameworks, such as CLIP and ALIGN, which only rely on

weakly linked image-text pairs. UFO [41] has shown that a single transformer

model suffices for typical vision-language pretraining, but falls short towards

a unified vision-language representation space as they attach two independent

projectors to map the modalities together. As a concurrent work, LIMoE [32]

explores single-tower (two heads) VLP with new inductive biases, i.e., mixture

of experts, encoded into the architecture. OneR, in contrast, learns a common

embedding space without any modality-specific components, which empowers

the model with unique capabilities previously demonstrated.
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Chapter 3

Overcoming Modality Gap

Vision-Language Pretraining frameworks that utilize a contrastive objective typ-

ically use batch-dependent InfoNCEs [33] that push negative pairs apart and pull

positive pairs together. We state this image text contrastive (ITC) loss as

LITC = ctr(F(I),F(T )), (3.1)

where ctr(A,B) = (NCE(A,B) + NCE(B,A))/2 employs the generic In-

foNCE formulation, NCE(l, r), with the right term (r) being the EMA (expo-

nential moving average) model output in our setting. F(X) refers to the final

transformer hidden state, and I, T stands for image and text respectively.

This formulation works well in two-tower settings (Fig. 2.2a, 2.2b) with sep-

arate modality-specific encoders [35, 22], but we have observed training failure

for a generic single-tower model (Fig. 2.2d, Tab. 3.1a) without any modality-

specific components. In Fig. 3.1a, visualization of the representation space dis-

plays a severe modality gap, as visual signals and linguistic symbols are signif-

icantly dissimilar in their data structure. Hence, the model is not able to encode

positive {image, text} pairs close together, being incapable of mixing these two

9



(a) Naive single-tower ITC. (b) OneR at the beginning and the end of the training.

Figure 3.1: T-SNE [40] representation visualization. Single-tower model trained

with naive image-text contrastive objective fails to blend two distant modali-

ties (left). Note that image features (blue dots) almost perfectly overlap with

concatenation features (green dots), possibly due to sequence length bias (best

viewed zoom-in). Cross-modal mixup maps embeddings from two disjoint

modalities to a common middle ground, and the corresponding image, text and

image+text embeddings are well clustered after 40 epochs of training (right).

distant modalities in a unified representation space.

3.1 Cross-Modal Mixup

Mixup [47] was initially developed in the vision community as a data augmen-

tation strategy to improve classification performance, robustness, and general-

ization by interpolating linearly from training data distributions. In a concurrent

study [13], mixup has been incorporated into VLP in a similar manner, using

mixup augmentation within each modality separately. Different from this, we

boldly apply mixup across modality, not as a means to augment the training

data but as a projection to map image and text embeddings to a common middle

10



ground. We find it to be an extremely simple yet effective starting point to evade

the image-text modality gap, from which the traditional contrastive learning suc-

cessfully guides the model for instance discrimination. The formal definition of

our cross-modal mixup constrastive (XMC) loss can be stated as

LXMC = ctr(
F(I) + F(T )

2
,
F(I) + F(T )

2
), (3.2)

where we use an online model and its momentum (EMA) counterpart for fea-

ture extraction in practice as we mentioned above1. Using this straightforward

approach with the ITC loss to mitigate the modality gap works surprisingly

well, blending representations from the two distant modalities into a single em-

bedding space successfully and thereby stabilizing training. Full quantitative

evaluations are presented in Tab. 5.4.

Imagenet 0-shot Top-1 Acc. Top-5 Acc.

ITC 1.65 5.25

ITC (two heads) 17.46 35.32

ITC + XMC 22.12 42.12

ITC + XMC + CIC 22.86 42.88

ITC + CMC 23.70 43.15

(a) Zero-shot ImageNet [7] evaluations.

Method Formulation

ITC F(I) F(T )

XMC (F(I) + F(T ))/2 (F(I) + F(T ))/2

CIC (F(I|T ) + F(T |I))/2 (F(I) + F(T ))/2

CMC F(I, T |I, T ) (F(I) + F(T ))/2

(b) Summary of the contrastive objectives.

Table 3.1: Experiments about proposed losses and summary of each objectives.

Note that all models are one tower except for the second row in (a). Adding

XMC enables one tower contrastive learning, and enforcing modality-blind to-

ken attentions further improves the performance. Masked modeling is included

in all experiments.

1Note that ctr by definition in eqn. 3.2 uses two separate feature extractors (online and EMA)

symmetrically.
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Chapter 4

Modality-agnostic Representations

As we revealed in the previous section, the modality gap is the major obsta-

cle to learning a unified vision-language representation space, and XMC loss is

proposed to reconcile distant modalities. Stepping further, under the hypothe-

sis that paired image and text contain similar information, a modality-agnostic

representation should depend only on the content of the underlying information,

not the modality (format; text or image) it is expressed in. In other words, the

final embedding should be similar regardless of whether the context is an image

or a text (i.e., key and value in self-attention) In order to enforce such behavior,

we devise Contextual Invariance Contrastive (CIC) loss and incorporate it into

our framework.

4.1 Contextual Modality Invariance

The high-level idea is to encourage the model to bring the representation from

an image context to be close to that from the text context. To be specific, from

a pair, either the image or the text is selected as the query. Then, at one side,

we use image tokens for key and value, while on the other side, we use the text

12



tokens. The CIC penalizes the distance between the final representations from

each side, guiding the model to extract similar information regardless of the

modality of the context. The formal definition is

LCIC = ctr(
F(I|T ) + F(T |I)

2
,
F(I|I) + F(T |T )

2
), (4.1)

where F(X|Y ) refers to the final embedding of X (query) given Y as the

context (key and value). We note that F(X) in eqn. 3.1 and eqn. 3.2 is an ab-

breviated expression equivalent to F(X|X).

4.2 Contextual Mixup Contrast

As is evident from Tab. 3.1a, adding CIC loss improves overall performance by

encouraging the model not only to embed paired image and text close together

but also utilize information from image and text tokens in a similar fashion from

the lowest level. To maximally leverage CIC’s generic information aggregation

capacity, we adapt our model for mixed-modality input scenario. Formally, we

can incorporate the XMC and CIC into a single loss by replacing the left term

in Eqn. 4.1 with a simple concatenation of {image, text} (F(I, T )) and train the

model to optimize Contextual Mixup Contrastive (CMC) objective instead.

LCMC = ctr(F(I, T |I, T ), F(I|I) + F(T |T )
2

) (4.2)

This is a generalized form which explicitly guides the model to embed mixed-

modality inputs to the unified V-L representation space after adequate integra-

tion of information from two different modalities. We utilize this property for

text-guided visual reasoning (Tab. 5.1) and multi-modal retrieval (Fig. 5.1). The

high-level idea is that the self-attention feature of concatenated input can be

roughly decomposed to self-attention feature of each plus the cross-attention

features, and the theoretical verification is provided in the following section.
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Figure 4.1: Graphical illustration of the proposed contrastive components. Blue

dots represent the momentum features and red dots indicate the online network

features. Note that these can be swapped in practice.

4.3 Theoretical Explanation of CMC

In this paper, we propose XMC and CIC loss as

LXMC = ctr(
F(I|I) + F(T |T )

2
,
F(I|I) + F(T |T )

2
) (4.3)

LCIC = ctr(
F(I|T ) + F(T |I)

2
,
F(I|I) + F(T |T )

2
). (4.4)

We combine these two components to obtain the concise formulation of CMC

as illustrated below.

LXMC + LCIC

2
≃ A(LXMC ,LCIC) (4.5)

= ctr(
F(I|I) + F(I|T ) + F(T |T ) + F(T |I)

4
,
F(I|I) + F(T |T )

2
)

(4.6)

where A(·, ·) is a kind of average operation (this will be different from arith-

metic mean, harmonic mean or geometric mean) which will be approximately

equal to the arithmetic mean.

Then, we define the attention module f(X|Y ) as

f(X|Y ) = S(
QXKT

Y√
dk

)VY , (4.7)
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where S is the softmax operation along each row.

f(X|X,Y ) = S(
QXcat(KX ,KY )

T

√
dk

)cat(VX , VY ) (4.8)

= S(
cat(QXKT

X , QXKT
Y )√

dk
)cat(VX , VY ) (4.9)

= cat(λXS(
QXKT

X√
dk

), (I − λX)S(
QXKT

Y√
dk

))cat(VX , VY )

(4.10)

= λXS(
QXKT

X√
dk

)VX + (I − λX)S(
QXKT

Y√
dk

)VY (4.11)

= λXf(X|X) + (I − λX)f(X|Y ) (4.12)

Here, cat(·, ·) is the concatenate operation, I is the identity matrix, and λX is a

diagonal matrix which can be defined as

λ
(i)
X =

∑lX
j=1 exp(Q

(i)
X K

(j)
X )∑lX

j=1 exp(Q
(i)
X K

(j)
X ) +

∑lY
j=1 exp(Q

(i)
X K

(j)
Y )

(4.13)

λX =


λ
(1)
X

. . .

λ
(lX)
X

 (4.14)

with lX and lY being the sequence length of X and Y, respectively. So far, we

have decomposed the softmax of concatenated input into weighted sum of two

terms. If we consider the final transformer output F(X|Y ) as the average pool-

ing of the attention module f(X|Y ),

F(X|Y ) =
1

lX
1T

f(X|Y ), (4.15)

where 1 is the all-one vector, then we can further decompose the final self-

attention output of the concatenated input as four different terms with corre-
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sponding weights as follows

F(X,Y |X,Y ) =
1

lX + lY
1T

f(X,Y |X,Y ) (4.16)

= α
1

lX
1T

f(X|X,Y ) + (1− α)
1

lY
1T

f(Y |X,Y ) (4.17)

= αλX
1

lX
1T

f(X|X) + α(1− λX)
1

lX
1T

f(X|Y ) (4.18)

+ (1− α)λY
1

lY
1T

f(Y |Y ) + (1− α)(1− λY )
1

lY
1T

f(Y |X)

(4.19)

= β1F(X|X) + β2F(X|Y ) + β3F(Y |Y ) + β4F(Y |X).

(4.20)

Here, α is the sequence length ratio lX
lX+lY

, and β1+β2+β3+β4 = 1. Note that

we substitute Eqn.(4.12) into Eq.(4.17) to obtain the result. In order to simplify

the formulation, we assume β1 = β2 = β3 = β4 in practice, which allows

substituting Eqn.(4.20) to Eq.(4.6) to obtain the final equivalence.

A(LXMC ,LCIC) ≃ ctr(F(I, T |I, T ), F(I|I) + F(T |T )
2

) = LCMC .

(4.21)

We note that this is not a rigorous theoretical proof for our CMC formula-

tion. Rather, it is to show how we combine XMC with CIC to formulate CMC, a

concise form that explicitly trains the model for mixed-modality input scenario.

4.4 One Representation

Fig. 4.2 illustrates the overall pipeline of OneR. Model input can be one of im-

age, text or image+text, and CMC objective in Eqn. 4.2 is combined with the tra-

ditional image-text contrastive (ITC) loss. Masked modeling is also carried out
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Figure 4.2: Overview of OneR. Image-text contrastive and contextual mixup

contrastive objective provide guidance in parallel with masked modeling for

three input types: image, language and multi-modal (image+text).

for all three input types (i.e., image, text and mixture of them). Our framework

employs no modality-specific architectural component except for the initial to-

ken embedding layer (i.e. patch projector and word embedding layer), making

our model generic and modality-agnostic with minimal inductive bias. Tab. 3.1b

summarizes the overall formulations.
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Chapter 5

Experiment

In this section, we will describe our experimental setting and show qualitative

and quantitative results that demonstrate the advantages of OneR.

5.1 Experimental Setup

5.1.1 Datasets

Following prior works [22, 44, 10], we train OneR on the combination of CC3M [38],

SBU Captions [34], Visual Genome [18] and COCO [25], which sums up to 4M

images and 5.1M image-text pairs. All ablation models are trained on CC3M.

5.1.2 Implementation Details

We adopt the model architecture of Masked AutoEncoder [14] with BERT [8]

word embeddings and language modeling head. Unlike most prior works on

VLP, we initialize our entire model from scratch, as neither ViT nor BERT suits

our goal towards a unified VL representation space. 1D and 2D sinusoidal posi-

tional encodings are added to text and image respectively, and a single [CLS]
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token is prepended to all three input types. Special modality indicator tokens

(e.g., separate token [SEP] or segment token [SEG]) are further removed from

typical one tower baselines in order to train a fully modality-agnostic represen-

tation learner.

Overall, we follow the MoCo-v3 settings [4], but with learnable ConvStem [43]

as the image patch projector. A 3-layer MLP projector and a 2-layer predictor

are used as in [2], and momentum ratio was fixed to 0.996 throughout the whole

training process. We choose the base learning rate of 1e-4 with linear scaling

rule [19, 11] that adapts the learning rate as lr×BatchSize/256. The first 4 epochs

are for warm up and cosine scheduling [27] decays the lr for a total of 40 epochs.

After 40 epochs of training on 224×224 resolution images, we further train with

384×384 upsampled resolution for additional 5 epochs with positional embed-

dings interpolated correspondingly. Batch size is 4,096 for 224×224 stage and

1,024 for 384×384. We optimize with AdamW [28] under the weight decay of

0.1.

Unlike recent works [22, 44] that go through additional forward passes for

masked modeling during training, OneR computes the contrastive loss and the

masked modeling loss simultaneously in a single forward pass. Only the online

network learns masked modeling, thus clean inputs are fed to the momentum

model. MLM masking ratio is set to 0.15 as done in [22, 8], and MIM ratio is

raised from 0.1 to 0.5. In our early experiments, when MIM is combined with

contrastive learning, a high masking ratio seems to make the instance discrimi-

nate task too difficult, especially in the early stages of learning.
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Figure 5.1: A truly unified vision-language representation space displays in-

triguing properties. (top) Visualization of embedding similarities between im-

age patches and the text prompt. (bottom left) Steering image classification with

additional text input provided as simple token sequence concatenation. Here,

we plot the attention map of [CLS]. (bottom right) This mixture input can also

control image retrieval by combining the information from two modalities.

5.2 Qualitative Results

5.2.1 Zero-shot Localization

Conventional vision-language transformers typically rely on cross-attention map

or Grad-CAM [37] for visualization. However, the former attributes the global

semantics to each local region, rendering it unsuitable for complex scene un-

derstanding such as multi-class localization (Fig. 5.1), while the latter requires

a separately devised procedure that involves back propagation. One of the most

distinguished qualities of OneR is its natural proficiency for object localization.

Throughout the paper, we simply compute the cosine similarities between im-

age patch embeddings and the average-pooled text embedding for visualization.
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Figure 5.2: Patch embedding similarity map w.r.t. the text query. This clearly

shows that two towers (e.g., CLIP), two legs (e.g., ALBEF) and two heads

all learn modality-specific features spaces, forbidding similarity operations be-

tween embeddings. Projections are not applicable since they are only suited for

the [CLS] token.

This is possible only because OneR maps both visual and textual information

to a unified embedding space where their feature similarity correctly indicates

the semantic relevance. Otherwise, the cosine similarity map between sepa-

rately embedded tokens cannot convey meaningful information, as illustrated

in Fig. 5.2.

We present qualitative comparison on zero-shot localization with two com-

petitive baselines, CLIP and ALBEF, where Grad-CAM is used for their visual-

izations as it yields the best output. Looking at Fig. 5.3, we can see that Grad-

CAM of ALBEF better captures the spatial details compared to CLIP, but OneR

has the most fine-grained visual reasoning, resulting in almost segmentation-

map-like patch similarity maps. This clearly shows that OneR has the capacity

to relate low-level visual signals to their corresponding linguistic concepts in a

unified vision-language representation space.

Additional examples of patch embedding similarity visualization are pre-

sented in Fig. 5.4.
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Figure 5.3: Qualitative evaluation for object-level scene understanding. We sim-

ply compute token similarities for OneR, and Grad-CAM is used for CLIP and

ALBEF. It is visually apparent that OneR correctly associates low-level visual

signals to its corresponding language symbol, resulting in segmentation-map-

like patch similarity maps.

5.2.2 Text-guided Visual Reasoning

As illustrated in Fig. 5.1, OneR’s ability to understand image+text mixture in-

put opens up possibilities for diverse forms of multi-modal reasoning. For ex-

ample, we can simply concatenate additional text to the image input sequence

to guide its visual representation, which can be particularly useful in a complex

scene understanding setting where an image contains more than one dominant

semantic. In such cases, we can tell the model where to focus to suit our goals.

We provide quantitative results to further demonstrate this property in Tab. 5.1,

where we bootstrap with language guidance to improve zero-shot classification

accuracy. Specifically, for each image, we retrieve top-10 class labels upon em-

bedding similarity. After that, we concatenate each to the image sequence and
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Figure 5.4: Additional zero-shot localization results.

Bootstrapped Language Guidance
ImageNet 0-shot CIFAR100 0-shot

top-1 top-5 top-1 top-5

OneR (4M) 27.33 50.17 31.45 57.52

OneR-Bootstrapped (4M) 28.00 50.69 32.23 58.24

Table 5.1: Evaluation with bootstrapped language guidance. We can feed pre-

dicted class labels in simple concatenation to the input image to further improve

accuracy. Note that this is not possible with two-tower or two-leg models, as

the former does not accept mixture inputs and the latter forms a separate feature

space after fusion, forbidding the similarity operation.

compute similarity once more, similar to sample re-ranking. The intuition is

that when image+text input is given, the image patches that strongly attend to

the text label are strengthened by the attention mechanism, resulting in clearer

representations. We note that we do not provide any external guidance during

this procedure, which makes these gains essentially free.
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5.2.3 Multi-modal Retrieval

Unlike the existing two-tower model, OneR can also perform image-text to im-

age and image-text to text retrieval because all three input types exist in the

same representation space as in Fig. 5.1. While two-leg model combine image

and text information using fusion layer, the concatenated representation is inde-

pendent from image and text representation.

5.3 Visual Reasoning Analysis

We further analyze the visual reasoning mechanism of OneR to provide insights

into the properties of unified vision-language representation space.

Figure 5.5: As OneR learns to associate low-level visual signals to the language,

it shows robust visual reasoning even with a relatively small pretraining dataset.

Above, OneR robustly recognizes bicycle from different visual clues (e.g., han-

dles, wheels or the body).

5.3.1 Robustness

Fig. 5.5 shows an example of how OneR recognizes an object (bicycle, in this

case) with different visual clues. OneR recognizes a bicycle even from partial
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images of handles or wheels, which we believe is key to its robustness in visual

understanding.

Figure 5.6: (left) Patch embedding similarity (OneR) and Grad-Cam (ALBEF).

(right) Patch embedding similarity map w.r.t. definitions of zebra and giraffe.

5.3.2 Multi-level vision-language connection

Looking at Fig. 5.6, OneR recognizes the moon as being visually similar to

banana in terms of embedding cosine similarity, while ALBEF condenses the

global semantic in [CLS], resulting in a randomly scattered Grad-CAM, which

means ALBEF does not perceive banana in the image. Although this can be

viewed as a failure case of OneR, it reveals how OneR perceives the visual sig-

nals. On the right, we can see that zebra and giraffe are visually similar, and

their definitions contain similar phrases such as ‘an African mammal’, result-

ing in some overlaps in the two similarity maps. However, after abstracting the

linguistic semantics, the model correctly identifies each, which shows its abil-

ity to process high-level semantics as well. Overall, OneR learns both low-level

and high-level vision-language connections, making it a competent modality-

agnostic representation learner. Additional examples of zero-shot localization

with the definition are presented in Fig. 5.7.
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Figure 5.7: Additional zero-shot localization results by the definition. We com-

pute cosine similarity between image patches and the text sentence (definition).

Method Architecture Pre. #Images

Zero-shot MS-COCO (5K) Fine-tuned MS-COCO (5K)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ImageBert† Single Tower O 6M 44.0 71.2 80.4 32.3 59.0 70.2 66.4 89.8 94.4 50.5 78.7 87.1

ViLT Single Tower O 4M 56.5 82.6 89.6 40.4 70.0 81.1 61.5 86.3 92.7 42.7 72.9 83.1

Uni-Perceiver Single Tower X 44.3M 57.7 85.6 92.3 46.3 75.0 84.0 64.7 87.8 93.7 48.3 75.9 84.5

OneR One Tower X 4M 62.9 86.3 92.5 47.0 74.7 84.1 66.1 87.8 93.2 48.3 76.0 85.2

CLIP Two Towers X 400M 58.4 81.5 88.1 37.8 62.4 72.2 - - - - - -

FLAVA Two Legs O 70M 42.7 76.8 - 38.4 67.5 - - - - - - -

ALBEF Two Legs O 4M 68.7 89.5 94.7 50.1 76.4 84.5 73.1 91.4 96.0 56.8 81.5 89.2

TCL Two Legs O 4M 71.4 90.8 95.4 53.5 79.0 87.1 75.6 92.8 96.7 59.0 83.2 89.9

Table 5.2: Quantitative evaluations on COCO image and text retrieval. Two-

legs models generally perform better as they have modality-specific encoders

and more parameters. Pre. means that vision-language models initialize their

weights from a pretrained model. Single tower architecture refers to the fact

that it uses a same transformer for both modalities but does not have a unified

representation like one tower. † indicates the use of an additional object detec-

tion module.

5.4 Quantitative Results

5.4.1 Image-text Retrieval

Tab. 5.2 shows the quantitative comparison with state-of-the-art methods on the

widely used image-text retrieval benchmark. Models with modality-specific en-
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coders typically show better performance, as they have more parameters and

architectural inductive bias. Among one-tower baselines, OneR shows the best

zero-shot performance, sometimes with significant margins. We note that OneR

achieves such a competent outcome without any initialization prior commonly

used in the literature, such as pretrained BERT or ViT. This shows that vision

and language modalities can be effectively encoded in a single representation

space with minimal inductive bias, once the aforementioned obstacle (i.e., in-

nate modality gap) is overcome.

5.4.2 Cross-modal Knowledge Transfer

We hypothesize that under a unified vision-language representation space, addi-

tional training on one modality should benefit performance in the other modal-

ity. Tab. 5.3 validates our conjectures, as additional training with language data

results in greater gains for the unified one-tower model. This could indicate bet-

ter scalability of one-tower models, as there is much more single-modality data

Cross-modal Transfer Architecture
0-shot INet MS COCO

top-1 TR@1 IR@1

SBU
two heads 7.28 8.88 5.73

one tower 6.49 8.60 5.77

SBU + CC3M (caption only)
two heads 8.59 10.41 6.87

one tower 8.54 11.31 7.20

Gain
two heads 1.31 1.53 1.14

one tower 2.07 2.71 1.43

Table 5.3: Cross-modal knowledge transfer. Under a unified representation

space, additional training in one modality benefits performance in the other

modality with bigger margins. TR and IR is for text and image retrieval, re-

spectively.
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available than image-text pairs in the web, which we leave for future works.

5.5 Ablation Study

5.5.1 Proposed Loss Ablation

In Tab. 5.4, we present ablation experiments for our framework. Naive ITC with

single tower fails due to the modality gap, and adding modality-specific pro-

jectors can be the minimal architectural modification that works, but still lags

behind our method. CMC combines XMC and CIC into a concise formulation,

resulting in the best performance that surpasses the competent two-tower base-

lines.

Method
Imagenet MS-COCO

Top-1 Acc. TR@1 TR@5 IR@1 IR@5

CLIP 17.1 15.0 34.8 10.9 26.7

SLIP 23.0 21.7 45.1 15.6 35.2

ITC 1.6 0.8 2.5 0.7 2.2

ITC (two heads) 17.5 10.4 26.8 10.7 26.4

ITC + XMC 22.1 25.2 48.1 15.2 33.6

ITC + XMC + CIC 22.9 25.4 48.1 16.3 35.5

ITC + CMC (OneR) 23.7 25.5 48.2 16.9 36.9

Table 5.4: Method ablation. Our proposed components consistently improve

performance, with the final CMC outperforming the two-tower baseline that

uses more parameters and intra-modal contrastive loss (SLIP) with large margin

in retrieval task, especially.
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5.5.2 Masked Modeling Ablation

We also present masked modeling ablations to distinguish how masked mod-

eling affects our framework in Tab. 5.5. We observe that training with masked

image modeling (MIM) and masked language modeling (MLM) helps the per-

formance but is not the most crucial component.

Method
Imagenet MS-COCO

Top-1 Acc. TR@1 TR@5 TR@10 IR@1 IR@5 IR@10

OneR 23.7 25.5 48.2 60.2 16.9 36.9 47.9

OneR - MIM 23.4 24.7 46.9 58.7 16.9 36.8 47.7

OneR - MIM - MLM 22.9 23.3 47.2 58.1 13.6 33.3 45.6

Table 5.5: Ablations on masked modeling objectives.
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Chapter 6

Discussion

Random Augmentation In our early experiments, while random augmenta-

tion is a critical component to make different views in vision SSL frameworks,

we have observed that adding random augmentations does not help the overall

model performance. We conjecture this could be due to the difficulty of the task:

learning a single vision-language representation space. As we have discussed in

this paper, our basic hypothesis is that a paired image and text can be seen as two

different (but closely related) views of an underlying common semantic. Hence,

additionally performing strong augmentations on one side could be unnecessary.

Nevertheless, we believe that there is much room for more sophisticated designs

to incorporate data augmentation into our framework, which we leave to future

works.

Momentum Teacher As we remove strong image augmentations, the presence

of a momentum teacher is critical to the performance of OneR. Although it is

a relatively common belief that contrastive learning with a momentum teacher

network improves the performance [22, 44], we observe that it matters more

in a unified single-tower setting. We speculate that momentum teacher works
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as a augmentation along weight space in XMC, which uses the exactly same

representation as a positive pair if only using an online network. Exploring such

behaviors could be another promising research direction.
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Chapter 7

Conclusion

Modality-agnostic representation learning is a meaningful step toward a generic

perceptual agent that understands the environment in a similar way as humans

do. In this work, we explore the difficulties of unifying modalities into a single

representation space and introduce OneR as a generic framework that shows

unique qualities as a modality-agnostic representation learner.
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초록

Contrastive learning은 자기지도학습(Self-supervised learning, SSL)에서

널리 채택되어 비슷한 데이터에서 공통된 특징을 추출하도록 하는 학습방

법론이다. 본 논문에서, 우리는 이미지와 이에 대응되는 설명문을 공통된 정

보를바탕으로다르게표현된데이터로가정하고,단일타워의트랜스포머를

활용하여이미지와텍스트를하나의표현공간으로매핑하려고한다.기존의

자기지도학습방법론들을단순히시각언어사전학습에적용하는것은표현

양식의 차이로 인한 어려움이 존재하고, 이를 해결하기 위해 One Represen-

tation (OneR) 을 제안한다. OneR은 시각과 언어 각각에 특정한 표현공간을

가지는 이전의 연구들과 달리 흥미로운 특성들이 나타나며, 이를 zero-shot

시각화,자연어기반의시각적이해및멀티모달검색을통해보인다.또한,포

괄적인 평가를 통해 통합된 표현 공간을 가지며, 표현 양식에 구애받지 않은

시각언어사전학습방법론의잠재력을보여주며이에대한분석을제공한다.

주요어:시각언어사전학습,멀티모달,자기지도학습,표현학습,트랜스포머,

딥러닝

학번: 2021-22933
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