

의학박사 학위논문

Induction of the *BRAF*^{V600E} Mutation in Thyroid Cells Leads to Frequent Hypermethylation

갑상선 세포주에 유도된 *BRAF^{V600E}* 돌연변이에 의한 메틸화 변화

2023년 2월

서울대학교 대학원

의학과 외과학 전공

이 진 욱

갑상선 세포주에 유도된 *BRAF^{V600E}* 돌연변이에 의한 메틸화 변화

지도교수 이 규 언

이 논문을 의학박사 학위논문으로 제출함 2022 년 10월 서울대학교 대학원 의학과 외과학 전공 이 진 욱

이진욱의 의학박사 학위논문을 인준함

2023년 1월

위원	셴 장	(인)
부 위	원 장	(인)
위	원	(인)
위	원	(인)
위	원	(인)

Induction of the *BRAF*^{V600E} Mutation in Thyroid Cells Leads to Frequent Hypermethylation

by Jin Wook Yi, M.D.

(Directed by Kyu Eun Lee, M.D., Ph.D.) A Thesis Submitted to the Department of Surgery in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Medicine (Surgery) at Seoul National University College of Medicine, Seoul, Korea

January 2023

Approved by thesis committee

Professor	 Chairman
Professor	 Vice Chairman
Professor	
Professor	
Professor	

Abstract

Induction of the *BRAF*^{V600E} Mutation in Thyroid Cells Leads to Frequent Hypermethylation

Jin Wook Yi

Medicine (Surgery)

The Graduate School

Seoul National University

Background:

The $BRAF^{V600E}$ mutation is a major driver mutation in papillary thyroid cancer. The aim of this study was to elucidate the correlation between DNA methylation and gene expression changes induced by the $BRAF^{V600E}$ mutation in thyroid cells.

Methods:

I used Nthy/BRAF cell lines generated by transfection of Nthy/ori cells with the wild-type BRAF gene (Nthy/WT cells) and the V600E mutant-type *BRAF* gene (Nthy/V600E cells). I performed gene expression microarray and DNA methylation array analyses for Nthy/WT and Nthy/V600E cells. Two types of array data were integrated to identify inverse correlations between methylation and gene expression. The results were verified in silico using data from The Cancer Genome Atlas (TCGA) and in vivo through pyrosequencing and quantitative real-time polymerase chain reaction (qRT-PCR).

ii

Results:

In the Nthy/V600E cells, 199,821 probes were significantly hypermethylated, and 697 genes showed a "hypermethylationdownregulation" pattern in Nthy/V600E. Tumor suppressor genes and apoptosis-related genes were included. In total, 66,446 probes were significantly hypomethylated, and 227 genes showed a "hypomethylation-upregulation" pattern in Nthy/V600E cells. Protooncogenes and developmental protein-coding genes were included. In the TCGA analysis, 491/697 (70.44%) genes showed a hypermethylation-downregulation pattern, and 153/227 (67.40%) genes showed a hypomethylation-upregulation pattern. Ten selected genes showed a similar methylation-gene expression pattern in pyrosequencing and qRT-PCR.

Conclusions:

Induction of the $BRAF^{V600E}$ mutation in thyroid cells led to frequent hypermethylation. Anticancer genes, such as those involved in tumor

iii

suppression or apoptosis, were downregulated by upstream hypermethylation, whereas carcinogenic genes, such as protooncogenes, were upregulated by hypomethylation. Our results suggest that the *BRAF*^{v600E} mutation in thyroid cells modulates DNA methylation and results in cancer-related gene expression.

-

Keywords: Thyroid neoplasm, methylation, gene expression

Student number: 2016 – 36691

Contents

Abstract	i
Contents	V
List of tables and figuresv	i

Introduction	1
Materials and Methods	5
Results	17
Discussion	66
References	79
Acknowledgement	80
Abstract in Korean	90

List of Tables and Figures

- Table 1.
 Sequences of primers used for quantitative real-time polymerase chain reaction (qRT-PCR)
- **Table 2.** Primer design for pyrosequencing
- **Table 3.** Top 20 genes with DNA hypermethylation above the exonic area anddownregulation of exons in Nthy/V600E cells
- Table 4.Top 20 genes that had an inverse correlation with hypomethylation and
upregulation in Nthy/V600E cells
- Table 5.
 SP-PIR keywords obtained from 697 hypermethylated-downregulated

 genes in Nthy/V600E cells
- Table 6.
 SP-PIR keywords from 227 hypomethylated-upregulated genes in

 Nthy/V600E cells
- Table 7.
 Validation of inverse correlation pattern of 924 genes in Nthy/V600E cell

 and TCGA PTC with *BRAF* mutation tissue

- Figure 1. Schematic diagram of the correlation analysis between differentially methylated probes (DMPs) in promoters and differentially expressed genes in exons. UTR, untranslated region.
- Figure 2. Microarray (MA) plot for the DEGs in the Nthy/V600E cells.
- Figure 3. Distribution of differentially methylated probes according to genomic location and CpG site. (A) Number of hypermethylated probes in Nthy/V600E cells; genomic structure. (B) Number of hypermethylated probes in Nthy/V600E cells; geographic regions from the CpG area. (C) Number of hypomethylated probes in Nthy/V600E cells; genomic structure. (D) Number of hypomethylated probes in Nthy/V600E cells; geographic regions from the/V600E cells; geographic regions from the CpG area. UTR, untranslated region; IGR, intergenic region.
- Figure 4. Pyrosequencing and quantitative real-time polymerase chain reaction results for selected genes. (A) Methylation status of selected genes that showed hypermethylation and downregulation in Nthy/V600E cells. (B) mRNA expression status of selected genes that showed hypermethylation and downregulation in Nthy/V600E cells. (C) Methylation status of selected genes that showed hypomethylation and upregulation in Nthy/V600E cells. (D) mRNA expression status of selected genes that

showed hypomethylation and upregulation in Nthy/V600E cells.

Figure 5. Possible carcinogenic mechanisms of the $BRAF^{V600E}$ mutation

I. Introduction

Thyroid cancer is one of the most common solid organ cancers, and its incidence has increased dramatically in the last decade [1,2]. Papillary thyroid carcinoma (PTC) is the most common histologic subtype and is associated with the $BRAF^{V600E}$ somatic mutation (Substitution of a valine by a glutamate at reside 600), which is known to be associated with poor prognostic factors such as lymph node metastasis, extrathyroidal extension, and advanced stage [3,4]. Recent report suggested that increased incidence of $BRAF^{V600E}$ mutation is identified with increasing the thyroid cancer incidence [5].

The $BRAF^{V600E}$ mutation is the highest signal activator of the mitogen-associated protein kinase (MAPK)/extracellular signalregulated kinase (ERK) pathway. It activates a carcinogenic signal cascade in thyroid cells and makes them more proliferative [3]. Recent whole-genome sequencing performed by The Cancer Genome Atlas (TCGA) project further revealed that $BRAF^{V600E}$ mutant-type PTC showed significant upregulation of the pERK-DUSP (Erk transcriptional program) pathway, possibly due to the insensitivity of $BRAF^{V600E}$ to ERK inhibition feedback [6].

The molecular mechanism of gene expression alterations resulting from the $BRAF^{V600E}$ driver mutation have not yet been fully understood. Beyond the genomic transcription, epigenomic changes, such as DNA methylation, histone modification and microRNAs can act as important factors that modulate gene expressions without the changing of DNA structure [7]. Among them, DNA methylation is special phenomenon that attach the methyl (-CH) group to the 5th carbon in Cytosine. It occurs in the repeated sequence area of C following G (CpG island) and frequently found in the upstream area (Promotor site) in DNA from the exon sequence. DNA hypermethylation or hypomethylation in the CpG island can change downstream gene expression into down- or up-regulation like a genomic switch. It is known that DNA methylation always occurred prior to the corresponding gene expression change, and DNA methylation can be changed by environmental factors surrounding organism [8].

Therefore, it can be hypothesized that when $BRAF^{V600E}$ mutation occur in thyroid cells, DNA methylation may be altered by the $BRAF^{V600E}$ signal activation, resulting in changes in downstream gene expression. In thyroid cancer, prior laboratory studies have suggested that specific aberrant DNA methylation is found in cancerrelated genes such as *PTEN* and *RASSF1A* [7,9]. According to advancement of next generation sequencing, genome-wide integrated analyses of methylation and expression array or sequencing from the thyroid cancer tissue or thyroid cancer cell lines are also reported elsewhere [10–17]. However, previous studies could not determine the actual consequence of primal *BRAF*^{V600E} mutation, because cancer cell lines which used in previous studies are closed to dedifferentiated thyroid cancers such as anaplastic or already been changed into thyroid cancer [18].

Our aim of study is to investigate subsequent change of DNA methylation and gene expression in thyroid cell, initiated by primal $BRAF^{V600E}$ mutation. I used special "Nthy/BRAF" cell line – transfected BRAF gene either wild type BRAF (Nthy/WT) and mutant type BRAF (Nthy/V600E) into Nthy/ori cells, which was developed by authors' institution [19]. I performed both gene expression microarrays and methylation microarrays, and performed integrated analysis for two types of data to find the correlation between DNA

methylation with gene expression, induced by $BRAF^{V600E}$ mutation in normal thyroid cells.

II. Materials and Methods

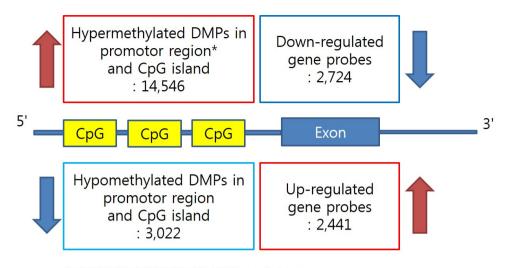
Nthy/BRAF cell line and gene expression microarray

I used previously reported Nthy/ori cell lines expressing the *BRAF* gene with or without V600E mutation [19]. Two types of Nthy/BRAF cells were presented: Nthy/WT (Nthy cells with wild-type *BRAF* gene) and Nthy/V600E (Nthy cells with V600E mutant-type *BRAF* gene). Cells were grown in RPMI-1640 (Biowest, Riverside, MO, USA) supplemented with 10% FBS (Biowest),

2 mM GlutaMAX (Gibco; Thermo Fisher Scientific, Waltham, MA, USA), and 100 U/mL penicillin-streptomycin (Gibco) in a humidified atmosphere of 5% CO2 at 37°C. They were cultured in 100-mm dishes until confluent monolayers were reached, and RNA was extracted using an easy-spin total RNA extraction kit (iNtRON Biotechnology, Seoul, Korea). Total RNA was quantified using a Nanodrop ND-1000 spectrophotometer. The Illumina HumanHT-12 v4 Expression Bead Chip (Illumina Inc., San Diego, CA, USA) microarray services were provided by Macrogen (Macrogen Inc., Seoul, Korea). Two arrays were conducted for each cell type (2xNthy/WT and 2xNthy/V600E).

Methylation microarray

For DNA extraction, Nthy/WT and Nthy/V600E cells were cultured until a confluent monolayer was formed. Cells were harvested by trypsin-EDTA treatment, and DNA was extracted using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). DNA concentration was quantified using a spectrophotometer (NanoDrop, Wilmington, DE, USA). After DNA extraction, methylation microarray services were provided by Macrogen (Macrogen Inc., Seoul, Korea) using Illumina Infinium Methylation EPIC Bead Chip Kits (850K; Illumina Inc., San Diego, CA, USA). Three arrays were conducted for each cell type (3xNthy/WT and 3xNthy/V600E).


Bioinformatic analysis

Microarray data were analyzed according to two groups: Nthy/WT and Nthy/V600E. Raw data derived from the Illumina Genome Studio

version 2011.1 and Gene Expression Module version 1.9.0 were transformed into a "LumiBatch" object using "Lumi R package". Variance stabilization of gene expression counts was performed using the variance-stabilizing transformation (VST) method. Quantile normalization method was applied to gene expression data after VST. Packages "Annotate" and "IlluminaHumanv4.db" were used for microarray chip probe annotation, provided by Bioconductor (<u>http://www.bioconductor.org</u>). To find differentially expressed genes (DEGs), moderated *t*-test using the "Limma" was applied [20]. The Benjamini-Hochberg (BH) method was applied to correct false positive rate from multiple comparisons. A log fold change value of 2 was used as the cutoff to identify significant DEGs.

Methylation array data were analyzed by "ChAMP" package provided by Bioconductor [21]. Data preparation was followed by the raw data loading, quality control, normalization, and variation control by singular value decomposition (SVD). From the filtered data, "limma" method was also applied to identify differentially methylated probes (DMPs) [20]. False positive rate correction was performed with the BH method. Adjusted p-value under 0.05 was considered statistically significant for both gene expression and methylation analysis.

Genes with inverse methylation-expression patterns were identified according to the following criteria: differentially hypermethylated probes in the promoter region with downregulated gene expression or promoter region hypomethylation with upregulated gene expression, as illustrated on figure 1. The promoter region was defined as CpG islands in TSS1500, TSS200, the 5'untranslated region (UTR) and the 1st exon area.

*TSS1500, TSS200, 5'-UTR and 1st exon

Figure 1. Schematic diagram of the correlation analysis between differentially methylated probes (DMPs) in promoters and differentially expressed genes in exons. UTR, untranslated region.

To find functional terms of inversely correlated genes, Database for Annotation, Visualization, and Integrated Discovery (DAVID 6.7) and Swiss-Prot Protein Information Resource (SP-PIR) were used [22,23]. Adjusted p-value less than 0.1 was considered statistically significant in functional analysis. All statistical analyses were performed with the R programming language (https://www.Rproject.org/).

Validation of inverse correlations using a dataset from TCGA

To validate genes with inverse-correlation patterns using other public databases, I assessed somatic mutations, mRNA expression by RNA sequencing and DNA methylation by Illumina Infinium Methylation 450K from the TCGA data (https://gdc.cancer.gov/).

Patients in the TCGA cohort were divided into two groups according to *BRAF* mutation status: *BRAF* wild-type PTC versus *BRAF* mutant-type PTC. From the methylation data, only selected the methylation status from the CpG island in promotor area (TSS1500, TSS200 and other promotor region). mRNA expression was extracted from the normalized gene expression results. Inverse correlation was detected by the Spearman correlation analysis between the methylation and gene expression value. If the same hypermethylation-downregulation or hypomethylation-upregulation pattern was observed, it was marked as "TRUE"; otherwise, it was marked as "FALSE."

Validation of gene expression by quantitative real-time

polymerase chain reaction (qRT-PCR)

Nthy/WT and Nthy/V600E were grown in RPMI-1640 (Biowest) supplemented with 10% FBS (Biowest), 2mM GlutaMAXTM (Gibco), and 100U/ml penicillin-streptomycin (Gibco) in humidified atmosphere of 5% CO2 at 37°C. Cells were cultured in 100-mm dishes until confluent monolayers were formed, and total RNA was extracted using RNeasy Mini Kit (Qiagen) and quantified using Nanodrop One (Thermo Fisher). cDNA was transcribed from 1 μg of RNA using Legene Premium Express 1st strand DNA Synthesis System Kit (LeGene Biosciences, San Diego, CA, USA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using PowerTrack SYBR green master mix (Applied Biosystems, Waltham, MA, USA) and a QuantStudio 3 real-time PCR System (Applied Biosystems); all samples were run on the same 96-well plate. Relative mRNA expression levels were calculated by normalizing the value for each gene to that of the housekeeping gene ACTB (beta-actin). The primer sequences for qRT-PCR are described in table 1.

Gene	NCBI Reference	Forward Primer $(5' \rightarrow 3')$	Reverse Primer $(5' \rightarrow 3')$
b-Actin	NM_001101.5	GGACTTCGAGCAAGAGATGG	AGCACTGTGTTGGCGTACAG
PTEN	NM_000314.8	ACCAGGACCAGAGGAAACCT	GCTAGCCTCTGGATTTGACG
RUNX3	NM_001031680.2	CAGAAGCTGGAGGACCAGAC	TCGGAGAATGGGTTCAGTTC
MEST	NM_002402.4	CGCAGGATCAACCTTCTTTC	CATCAGTCGTGTGAGGATGG
TP53INP1	NM_033285.4	GGCCCACGTACAATGACTCT	CTGGTTCTTGGTTGGAGGAA
RASSF4	NM_032023.4	GCAAGTGGCTCAGAAAAAGG	CCCACAGGAACCAGTAGGAA
GPX3	NM_002084.5	TGCAACCAATTTGGAAAACA	TTCATGGGTTCCCAGAAGAG
CCND1	NM_053056.3	GAGGAAGAGGAGGAGGAGGA	GAGATGGAAGGGGGAAAGAG
BCL2	NM_000633.3	GGATGCCTTTGTGGAACTGT	AGCCTGCAGCTTTGTTTCAT
DUSP6	NM_001946.4	ATGGTAGTCCGCTGTCCAAC	AATGGCCTCAGGGAAAAACT
EGFR	NM_005228.5	AGGTTGTAAGGGGGGAGCACT	CCAGTGCCTTTCCTGCTAAG
ZEB1	NM_001128128.3	TGCACTGAGTGTGGAAAAGC	TGGTGATGCTGAAAGAGACG

Table 1. Sequences of primers used for quantitative real-time polymerase chain reaction.

Validation of promoter methylation status by pyrosequencing

Nthy/WT and Nthy/V600E cells were cultured until confluent monolayers were formed. Genomic DNA was extracted using QIAamp DNA mini kit (Qiagen) according to manufacturer's recommendations. The genomic DNA (gDNA) concentration was quantified using a Nanodrop One (Thermo Fisher), and >1 μg/20 μL of gDNA was provided for pyrosequencing analysis.

Pyrosequencing was performed by Macrogen (Seoul, Korea) using PyroMark Q48 Autoptrep (Qiagen) system. Primers for pyrosequencing are described in table 2. EpiTect Fast DNA Bisulfite Kit (QIAGEN) was used for bisulfite treatment. The methylation rate was compared between the two types of pyrosequencing data before and after bisulfite treatment. For plotting the pyrosequencing and qRT-PCR validation results, GraphPad Prism ver. 9.1.0 for Windows (GraphPad, San Diego, CA, USA) was used.

Table 2. Primer design for pyrosequencing

Gene	Target Location	Forward Primer	Reverse Primer
RUNX3	cg13461622 :chr1: 25291385-25291385	AGGAAAGTAAGTTTTTGTTTGTATTTAAG	AACTCCTCCACCCTAACT
MEST	cg14088957 :chr7: 130131085-130131085	AGAATAGTGGGTATAATTAGGAGAGT	AATTAAAAAAATTCCTCCCTCTTTCT
TP53INP1	cg16049864 :chr8: 95962084-95962084	GAGGGTTTGGGGTATAAAGG	TCCCAACACCCTAACTACAC
RASSF4	cg02841844 :chr10: 45455421-45455421	GTTGGAGGGGGGGGGGGGTTT	TCCCCTCCCACCCAAAACTACCAC
GPX3	cg14237894 :chr5: 150400040-150400040	GGTGGGGAGTTGAGGGTAA	CCCAACCACCTTTCAAAC
CCND1	cg24387864 :chr11: 69454823-69454823	GGTTTTGTTGGGGGGTGTAG	ATAATATTAAAAAACCCTCTCATATAACC
BCL2	cg16445842 :chr18: 60986860-60986860	AGAGGGGAAGATGAAGGAGT	TCCTACCTTCATTTATCCAACAACTTT
DUSP6	cg20143530 :chr12: 89747082-89747082	GTTTGGTTGTGTAGAAAATTAGAAGAA	ATTCCCCCCAACAATAACTTATAACTCC
EGFR	cg03860890 : chr7: 55086288-55086288	TAGTGTTGTAGGGGAGGT	TCCCCCTTTCCCTTCTTTAT
ZEB1	cg00520933 :chr10 :31607160-31607160	TAGGTGGTAGGATTTAGAGTTAAGG	ATCTTTTCAAAAATCCCAAAACTTATAC

Ethical statement

This is not the study that deals with human or animal subjects, so it doesn't need to gain the approval from Institutional Review Board/Institutional Animal Care and Use Committee (IACUC).

III. Results

Gene Expression Microarray

In total, 5,165 genes were differentially expressed between Nthy/WT and Nthy/BRAF cells. Number of up-regulated DEGs in Nthy/V600E were 2,441 and down-regulated DEGs were 2,724 (Figure 2) [19].

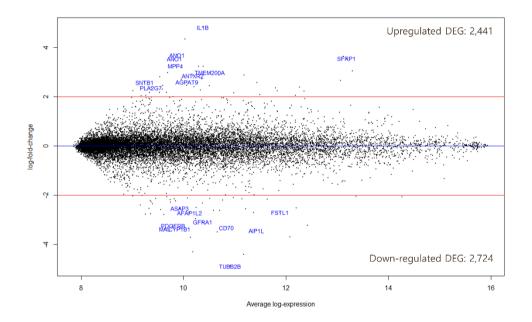


Figure 2. Microarray (MA) plot for the DEGs in the Nthy/V600E cells.

Methylation Microarray

In the methylation array analysis, total of 266,267 probes were differentially methylated between the Nthy/WT and Nthy/V600E cells. The detailed number of DMPs according to the genomic structure and geographic region of the CpG island is shown in Figure 3. Based on the side of Nthy/V600E cells, total of 199,821 probes were hypermethylated whereas 66,446 probes were hypomethylated (Figure 1).

Figure 3. Distribution of differentially methylated probes according to genomic location and CpG site. (A) Number of hypermethylated probes in Nthy/V600E cells; genomic structure. (B) Number of hypermethylated probes in Nthy/V600E cells; geographic regions from the CpG area. (C) Number of hypomethylated probes in Nthy/V600E cells; genomic structure. (D) Number of hypomethylated probes in Nthy/V600E cells; geographic regions from the CpG area. UTR, untranslated region; IGR, intergenic region.

Integrated Analysis of Microarrays

In the Nthy/V600E cells, number of hypermethylated DMPs in promotor region with CpG island were 14,516. Number of significantly down-regulated genes in Nthy/V600E cells were 2,724. According to genomic location, total 697 genes showed the inverse correlation pattern (Promoter hypermethylation with exonic down-regulation) in Nthy/V600E cells. Table 3 lists the top 20 genes that showed promoter hypermethylation and gene down-regulation, sorted by the number of hypermethylated probes of CpG islands in the promoter region. Apoptosis-related genes (*FASKT*, *PTEN*, *EPB41L3*), structural constituent-related genes (*FBLN2*), DNA repair genes (*MAD2L2*), and scavenger receptor genes (*SCARF2*) were included.

Gene name	Number of upstream	log FC	t-value	Adjusted	Selected gene function from gene ontology
	hypermethylated probes			p-value	database
SGCE	22	-0.872	-11.014	0.002	Calcium ion binding, cytoskeleton, cytoplasm
EPB41L3	15	-1.364	-19.244	0.001	Cell-cell junction, apoptotic process, regulation of cell shape
FASTK	12	-0.658	-5.482	0.017	Serine/threonine kinase activity, apoptotic signaling pathway
DPYSL4	11	-1.232	-15.216	0.001	Pyrimidine nucleobase catabolic process, axon guidance
PTEN	11	-0.495	-6.981	0.009	Apoptotic process, epidermal growth factor

Table 3. Top 20 genes with DNA hypermethylation above the exonic area and downregulation of exons in Nthy/V600E cells

					signaling pathway
KIAA1217	10	-1.020	-10.900	0.003	Cytoplasm Embryonic skeletal system development
NTF3	10	-0.398	-6.606	0.010	Activation of MAPK activity
FAM163A	10	-0.344	-5.730	0.015	Integral to membrane
PAOX	9	-1.329	-14.875	0.001	Cellular nitrogen compound metabolic process
RUNX3	9	-0.902	-11.945	0.002	Negative regulation of transcription and cell cycle
ZFP3	9	-0.392	-6.522	0.010	DNA-templated, regulation of transcription
PRMT6	9	-0.335	-4.078	0.040	Histone methylation, negative regulation of transcription

UNC45A	9	-0.294	-4.076	0.040	Cell differentiation, perinuclear region of cytoplasm
MEST	9	-0.250	-4.026	0.041	Endoplasmic reticulum, regulation of lipid storage
CYP24A1	8	-1.604	-4.462	0.031	Vitamin D receptor signaling pathway
FAM110A	8	-0.539	-8.772	0.005	Cytoplasm, microtubule organizing center
FBLN2	8	-0.466	-4.293	0.035	Extracellular matrix structural constituent
SAMD11	8	-0.397	-4.283	0.035	Negative regulation of transcription from RNA polymerase II
MAD2L2	8	-0.317	-4.440	0.031	Negative regulation of transcription, DNA repair

SCARF2	7	-1.081	-15.262	0.001	Scavenger receptor activity

Conversely, the number of hypomethylated DMPs in the promoter region in Nthy/V600E cells was 3,022, and 2,441 genes were significantly upregulated. Total 227 genes had inverse correlation pattern of promoter hypomethylation and exon upregulation in Nthy/V600E cells. Table 4 shows the top 20 genes that have the DNA hypomethylation and exon up-regulation in Nthy/V600E cells. Cell cycle-related genes (*CCND1*, *BCL2*, *PSMD5*), MAPK activation-related genes (*GHR*), and transmembrane transporter-related genes (*SLC6A15*, *BCL2*, *HOXB7*, *NPAS2*, *KCNK1*, *ARHGAP22*) were included.

Gene name	Number of upstream	log FC	t-value	Adjusted	Selected gene function from gene ontology
	hypomethylated probes			p-value	database
CCND1	8	1.184	11.630	0.002	Mitotic cell cycle, positive regulation of protein phosphorylation
THBD	7	0.570	9.215	0.004	Negative regulation of platelet activation, leukocyte migration
NTNG1	6	0.594	7.708	0.007	Axonogenesis, anchored to plasma membrane
NPAS2	5	2.031	24.169	0.000	DNA binding transcription factor, signal transducer
SLC6A15	5	0.961	8.960	0.004	Proline:sodium symporter activity,

Table 4. Top 20 genes that had an inverse correlation with hypomethylation and upregulation in Nthy/V600E cells

					neurotransmitter transporter
HOXB7	5	0.667	10.938	0.003	Sequence-specific DNA binding transcription factor activity
BCL2	5	0.666	11.088	0.002	G1/S transition of mitotic cell cycle, negative regulation of apoptotic process and mitotic cell cycle
TMEM108	5	0.439	7.422	0.007	Integral to membrane
SPRY4	4	2.731	18.910	0.001	Negative regulation of MAP kinase activity
SATB2	4	1.690	20.881	0.001	Negative regulation of transcription from RNA polymerase II
GAD1	4	1.259	14.122	0.001	Glutamate decarboxylation to succinate

KCNK1	4	1.077	16.265	0.001	Potassium ion transport, synaptic transmission
GHR	4	0.939	15.545	0.001	Activation of MAPK activity, activation of JAK2 kinase activity
ARHGAP22	4	0.897	9.592	0.004	Regulation of small GTPase mediated signal transduction
PSMD5	4	0.705	11.726	0.002	Signal transduction by p53 class mediator resulting in cell cycle arrest
SLAINI	4	0.681	7.139	0.008	NA
HAS3	4	0.525	4.934	0.023	Positive regulation of transcription, hyaluronan biosynthetic process
RIPPLY2	4	0.435	6.315	0.011	Ossification, somitogenesis

MRPS14	4	0.295	4.582	0.029	Structural mitochondric	constituent	of	ribosome,
CPEB1	4	0.264	4.027	0.041	Cytoplasmic	mRNA process	ing	

Data Based Functional Analysis

SP-PIR keywords obtained from 697 hypermethylateddownregulated genes in Nthy/V600E are listed in Table 5. Tumor suppressor genes (*RASSF4, PRR5, PLA2G16, CADM1, EFNA1, PYCARD, BIN1, MN1, PTEN, MTUS1*) were downregulated in response to upstream hypermethylation in Nthy/V600E cells. Table 6 lists the SP-PIR terms corresponding to the 227 hypomethylatedupregulated genes in Nthy/V600E cells. Protooncogenes (*EGFR, FGF5, CCND1, FLI1, MAFB, BCL2, ETV1, FOXO1, MECOM, CBFB*) were upregulated in response to upstream hypomethylation in Nthy/V600E cells. **Table 5.** SP-PIR keywords obtained from 697 hypermethylated-downregulated genes in Nthy/V600E cells

Term	P-value	Fold enrichment	Genes
Glyoxylate bypass	0.069	28.370	IDH2, IDH1
Stress-induced protein	0.030	10.639	STK25, HSPB1, SERPINH1
Ehlers-Danlos syndrome	0.055	7.737	COL1A1, B4GALT7, ADAMTS2
Cholesterol biosynthesis	0.004	7.466	CYB5R3, TM7SF2, HMGCR, CYP51A1, FDFT1
Sterol biosynthesis	0.011	5.674	CYB5R3, TM7SF2, HMGCR, CYP51A1, FDFT1
Tyrosine-specific phosphatase	0.004	5.491	PTPRM, PTPRE, PTPN2, PTPRA, PTPRN, CDC25B
Dwarfism	0.010	4.480	COL9A2, FGFR3, PTH1R, DYM, COL1A1, FLNB

Steroid biosynthesis	0.013	4.256	CYB5R3, TM7SF2, HMGCR, CYP51A1, ACAT2, FDFT1
Homotetramer	0.087	3.783	ASS1, GUSB, ALDH2, FUCA1
Triple helix	0.094	3.661	COL9A2, COL6A1, COL1A1, COL16A1
Hydroxylysine	0.094	3.661	COL9A2, COL6A1, COL1A1, COL16A1
Phospholipid biosynthesis	0.059	3.377	CHKA, CPT1B, ISYNA1, CRLS1, ETNK2
Fatty acid biosynthesis	0.064	3.299	PTGIS, SCD, ELOVL2, FADS3, FADS2
Phosphoric monoester hydrolase	0.011	3.289	PTPRM, PTPRE, PTPN2, PTPRA, PGAM1, PPP3CC, PTPRN, CDC25B
Lipid synthesis	0.002	3.184	CYB5R3, TM7SF2, A4GALT, PTGIS, HMGCR, CYP51A1, SCD, ELOVL2, FADS3, FADS2, FDFT1

Copper	0.050	2.986	ATOX1, COX17, MT1X, MOXD1, APLP1, MT1F
Tyrosine-specific protein kinase	0.088	2.955	DDR1, FGFR4, FGFR3, ERBB2, ROR2
LIM domain	0.039	2.797	LIMS2, LMO1, PRICKLE1, LIMK2, PDLIM1, ISL1, TES
Collagen	0.019	2.688	CTHRC1, COL9A2, C1QL1, COL6A1, SCARA3, COL1A1, C1QL4, COL16A1, WDR33
GTP binding	0.087	2.541	RAB31, TUBB2B, GNB2, GNA11, TUBB2A, RHEB
Heterodimer	0.029	2.479	INHBB, HLA-H, TUBB2B, TUBB2A, ITGB4, TUBA4A, PPP3CC, HLA-B, ADD3
Blocked amino end	0.043	2.467	SRI, CYB5R3, PFN1, GSTM3, SERPINB6, GNAI1, CSTB, COL6A1
Growth factor	0.017	2.382	INHBB, VEGFB, FGF18, PDGFB, NTF3, GDF6, NRG1,

			GDF15, VGF, MDK, NGF
Tyrosine-protein kinase	0.042	2.300	DDR1, FGFR4, FGFR3, CLK3, ERBB3, ERBB2, TESK1, ROR2, EPHB4
Prenylation	0.022	2.182	RND2, PALM, RAB31, PRICKLE1, MRAS, RHEB, RAB15, RAB6B, RHOD, RAB20, RASD2, GNG7
Protein phosphatase	0.040	2.182	MTMR3, DUSP18, PTPRM, PPM1E, PTPRE, PTPN2, PTPRA, PPP3CC, PTEN, CDC25B
Tumor suppressor	0.053	2.071	RASSF4, PRR5, PLA2G16, CADM1, EFNA1, PYCARD, BIN1, MN1, PTEN, MTUS1
Actin-binding	0.007	2.067	MYO1C, HIP1R, SPIRE1, TMSB10, MTSS1L, PALLD, TPM2, TPM1, FLNB, DSTN, PFN1, EPB41L3, CORO1A, AIF1L,

			ADD3, FHOD1, ADD1, SNTA1
NADP	0.049	2.000	BLVRA, ME1, TM7SF2, CYP24A1, HMGCR, CYP51A1, IDH2, IDH1, NADK, HSD11B1L, FDFT1

SP-PIR, Swiss-Prot Protein Information Resource.

Table 6. SP-PIR keywords from 227 hypomethylated-upregulated genes in Nthy/V600E cells

Term	P-Value	Fold Enrichment	Genes
Proto-oncogene	0.001	3.767	EGFR, FGF5, CCND1, FL11, MAFB, BCL2, ETV1, FOXO1, MECOM, CBFB
Chromosomal rearrangement	0.000	3.727	SATB2, CCND1, FLI1, BRD3, BCL2, MSI2, ETV1, FOXO1, MECOM, CHCHD7, HMGA1, CBFB
Cytoplasmic vesicle	0.020	2.912	SLC2A8, TM9SF1, ICA1, NPTX1, CADPS2, PRDX6, AGTRAP, PHLDA1
Homeobox	0.022	2.864	TSHZ3, IRX3, SATB2, MSX1, HOXB7, ZHX2, MKX, ZEB1
Developmental protein	0.000	2.447	TSHZ3, FZD8, IRX3, SATB2, EGFL7, ANO1, FOXA1, NTNG1,

			ANPEP, MECOM, PPDPF, SPRY4, ZIC2, ARHGAP22, NOTCH1, MSX1, HOXB7, SFRP1, POGK, RIPPLY2, MKX, TWIST2
Activator	0.007	2.333	MAFB, FOXA1, PPARG, KLF15, CPEB1, ZEB1, CITED4, NOTCH1, FLI1, GATA3, DNER, ETV1, NFIL3, ETV4
Repressor	0.029	2.191	IRX3, SATB2, MSX1, MAFB, FOXA1, ZHX2, ZNF503, CPEB1, ZEB1, NFIL3, TWIST2
DNA binding	0.099	2.039	MSX1, FLI1, HOXB7, PPARG, NR3C2, ZEB1, NR2F2, HMGA1

SP-PIR, Swiss-Prot Protein Information Resource

Validation by TCGA

Numbers of PTC with *BRAF* mutation in TGGA was 251 and PTC with *BRAF* wild type was 243. In silico validation using TCGA data showed that 491 of 697 genes (70.44%) presented the same promoter hypermethylation with a gene down-regulation pattern in PTC with the *BRAF*^{V600E} mutated PTC, compared to the PTC tissue without the *BRAF*^{V600E} mutation. Furthermore, 153 of 227 genes (67.40%) showed hypomethylation with a gene up-regulation pattern in PTC with the *BRAF*^{V600E} mutated tumors. Details of TCGA validation results for 924 genes described in table 7. **Table 7.** Validation of inverse correlation pattern of 924 genes in Nthy/V600E celland TCGA PTC with *BRAF* mutation tissue.

Hypermethyl-downregulated		I	Hypomethyl-upregulated
Genes	Logics for inverse correlation pattern, 491/697 (70.44%)	Genes	Logics for inverse correlation pattern, 153/227 (67.40%)
SGCE	TRUE	SLC6A15	FALSE
EPB41L3	TRUE	NTNG1	TRUE
FASTK	TRUE	BCL2	TRUE
DPYSL4	TRUE	CCND1	TRUE
PTEN	FALSE	GAD1	TRUE
KIAA1217	TRUE	KCNK1	TRUE
NTF3	FALSE	SLAINI	FALSE
FAM163A	TRUE	SPRY4	TRUE
PAOX	TRUE	THBD	TRUE
RUNX3	TRUE	ANO1	FALSE
ZFP3	FALSE	CA2	TRUE
PRMT6	TRUE	NACC2	TRUE
UNC45A	FALSE	PLXNA2	TRUE
MEST	TRUE	SKAP2	TRUE
CYP24A1	TRUE	C9orf64	FALSE
FAM110A	TRUE	HOXB7	FALSE
FBLN2	TRUE	NPAS2	FALSE
SAMD11	TRUE	TMEM108	FALSE
MAD2L2	TRUE	ADCY1	FALSE
SCARF2	FALSE	ALDH1A3	TRUE
INA	TRUE	ARHGAP22	TRUE
FAM84B	TRUE	CERS2	FALSE
TP53INP1	FALSE	CPEB1	TRUE
GRB10	TRUE	DUSP6	TRUE
CENPV	TRUE	GHR	TRUE

NDRG2	TRUE	HAS3	TRUE
PTHIR	TRUE	HMGA1	TRUE
CD01	TRUE	ICA1	TRUE
RPP25	TRUE	KANKI	FALSE
IGFBP3	TRUE	KCTD12	TRUE
PRKCZ	FALSE	KHDRBS3	TRUE
ROR2	TRUE	MRPS14	TRUE
LRRC61	FALSE	NR2F2	TRUE
RASD2	TRUE	PSMD5	TRUE
JDP2	TRUE	RIPPLY2	FALSE
FAM133B	TRUE	SATB2	FALSE
PAPLN	TRUE	<i>SLC39A8</i>	TRUE
CHFR	TRUE	ANPEP	TRUE
PPM1E	TRUE	C3orf52	TRUE
MGMT	TRUE	DPYSL3	TRUE
CLDN11	TRUE	EPDR1	FALSE
PLBD1	TRUE	FERMTI	TRUE
FAT4	TRUE	IRX3	FALSE
AHDC1	TRUE	LRRC34	TRUE
LEPR	FALSE	MKX	TRUE
CHST13	TRUE	NAV2	TRUE
CPTIC	TRUE	POGK	TRUE
IRF8	TRUE	SEC16A	TRUE
COLIAI	TRUE	SQRDL	TRUE
P4HA2	TRUE	TM9SF1	FALSE
COL16A1	TRUE	ABCA1	TRUE
CTHRC1	TRUE	ADORA2B	TRUE
CIQLI	TRUE	AGTRAP	TRUE
CCDC85C	FALSE	AKAP12	FALSE
PMP22	TRUE	ARHGDIA	FALSE
MNI	FALSE	ARID3A	TRUE

TRABD	TRUE	ATRIP	TRUE
KRBA1	FALSE	BRD3	TRUE
FUCA1	TRUE	C3orf70	TRUE
C9orf142	TRUE	C9orf85	FALSE
GNG7	TRUE	CADPS2	TRUE
FZD9	TRUE	CBFB	TRUE
HPSE	TRUE	CORO2B	TRUE
MGATI	TRUE	DUSP1	TRUE
TSTD1	FALSE	ETV4	TRUE
FADS2	TRUE	FAM102A	FALSE
MYADM	TRUE	FAM129A	TRUE
EXO5	FALSE	FAM184A	FALSE
MBP	TRUE	FAM43B	TRUE
FAIM	FALSE	FGF5	TRUE
EIF4E3	TRUE	FOXA1	TRUE
FNDC4	TRUE	FRMD3	TRUE
GCHFR	FALSE	FZD8	TRUE
MAGOH	TRUE	GALC	FALSE
MCOLN3	TRUE	GLDC	TRUE
FSTL1	TRUE	LPAR1	FALSE
PRSS23	TRUE	LRRCC1	FALSE
LOC728392	FALSE	MANSCI	TRUE
ANXA3	TRUE	MLPH	TRUE
STXBP2	TRUE	MSI2	TRUE
BLVRA	FALSE	MTSS1	TRUE
GFRA1	TRUE	PHLDA1	TRUE
RBCK1	FALSE	PKIA	FALSE
RASSF7	FALSE	PLD6	TRUE
NGF	TRUE	PNMAL1	TRUE
AP1M2	FALSE	PRKD1	FALSE
CASZI	FALSE	QPCT	TRUE

ALDH2	TRUE	RPL31	FALSE
GPX7	TRUE	SIPR3	FALSE
SPINT2	TRUE	SLC38A1	TRUE
EFNA1	TRUE	SOX9	FALSE
RAPIGAP	TRUE	ST3GAL1	TRUE
WNT5A	TRUE	ST8SIA5	TRUE
COX17	TRUE	TOX2	FALSE
ETS2	FALSE	TWIST2	TRUE
TSPAN9	FALSE	VPS37B	TRUE
PLEK2	FALSE	ZEB1	TRUE
IQCA1	FALSE	ZHX2	TRUE
LBH	TRUE	ABCG1	FALSE
FARP1	TRUE	AGPAT9	TRUE
TFAP2A	FALSE	AHNAK2	TRUE
PLAGL1	FALSE	AK1	FALSE
NRG1	FALSE	AK5	FALSE
APLP1	TRUE	ALDH3A2	TRUE
RAB15	TRUE	ASB13	TRUE
S100A10	TRUE	ASTN2	TRUE
MAP6D1	FALSE	C19orf24	TRUE
SGSM3	TRUE	C9orf89	FALSE
STOX2	FALSE	CAMK2N2	FALSE
ABCG1	FALSE	CANTI	TRUE
SLC29A2	TRUE	CCDC8	TRUE
CNIH2	FALSE	CHCHD7	TRUE
SAP25	FALSE	CHGB	TRUE
СНКА	TRUE	СНЅҮ3	FALSE
PARP9	TRUE	CITED4	TRUE
SOX12	TRUE	СКВ	TRUE
NINL	FALSE	CMBL	TRUE
RHEB	TRUE	СРХМІ	TRUE

FAM83H	TRUE	DDN	TRUE
PLXND1	FALSE	DECR1	TRUE
TP53111	TRUE	DLAT	FALSE
GRINA	TRUE	DNER	FALSE
GCC1	TRUE	DYNC111	FALSE
SLC30A3	TRUE	EGFL7	FALSE
SCRNI	TRUE	EGFR	TRUE
GDF6	FALSE	EIF5A2	TRUE
ZNF32	TRUE	ELMO1	TRUE
PDLIMI	TRUE	ERRFII	TRUE
UBE2L6	TRUE	ETVI	TRUE
DYSF	FALSE	FAM92A1	TRUE
UPP1	TRUE	FBLN5	FALSE
VANGL2	TRUE	FBXL16	TRUE
MT1F	TRUE	FBXO33	TRUE
PALM	TRUE	FGFRL1	TRUE
АТОН8	TRUE	FLII	TRUE
JUP	TRUE	FLRT2	FALSE
MEGF6	TRUE	FOXO1	TRUE
TCEA2	TRUE	FOXQ1	TRUE
DSP	TRUE	FTL	FALSE
ACAT2	FALSE	GABBR2	TRUE
IGFBP7	TRUE	GALNT14	TRUE
STRA13	TRUE	GALNT6	TRUE
PPL	TRUE	GATA3	TRUE
ADAMTS5	TRUE	GLUDI	TRUE
CDC25B	TRUE	GPR19	TRUE
CCDC136	TRUE	GTF3C6	FALSE
DLK2	FALSE	HERC5	TRUE
ENO2	TRUE	HJURP	TRUE
CENPB	FALSE	HRASLS	TRUE

PFKP	TRUE	HSPA4L	FALSE
CHCHD10	TRUE	HTRA1	TRUE
CLDN23	FALSE	IER2	TRUE
IL6ST	TRUE	ITGA2	TRUE
SLC4A11	TRUE	KATNB1	FALSE
C7orf57	FALSE	KLF15	TRUE
PBX4	TRUE	KLHL21	TRUE
PTPRA	TRUE	LMBRD2	FALSE
MFSD10	TRUE	LYSMD2	TRUE
OCLN	TRUE	MAFB	TRUE
FGFR4	TRUE	MARCH06	FALSE
PRR36	FALSE	MARK1	TRUE
DIABLO	TRUE	MDGA2	FALSE
ANKDD1A	TRUE	MECOM	FALSE
PRR5	FALSE	MIRLET7I	FALSE
CRLS1	FALSE	MRAP2	FALSE
RAB6B	TRUE	MSX1	TRUE
SMARCD3	TRUE	MYRIP	TRUE
PPP1R3C	TRUE	NALCN	TRUE
FDFT1	TRUE	NEDD4L	TRUE
YBX2	TRUE	NFIL3	TRUE
BCATI	TRUE	NOTCH1	TRUE
EHBP1L1	TRUE	NPTXI	TRUE
SUNI	FALSE	NPY	TRUE
SPIRE1	TRUE	NR3C2	TRUE
GREB1L	TRUE	NTSR1	TRUE
TES	TRUE	OPCML	FALSE
SCARA3	TRUE	OSR1	TRUE
FAM64A	TRUE	PACSIN3	TRUE
SLC22A17	TRUE	PAIP1	TRUE
KLC3	TRUE	PDE12	FALSE

CYP51A1	TRUE	PLXNA4	FALSE
CCNF	FALSE	PPARG	TRUE
PTPRN	TRUE	PPDPF	FALSE
CD40	TRUE	PPFIBP2	FALSE
ELOVL2	TRUE	PPM1A	TRUE
SNTA1	TRUE	PPP2R2B	TRUE
IFI30	TRUE	PRDX6	TRUE
KCNH3	TRUE	PRR16	FALSE
FTH1	TRUE	RAI14	TRUE
EBF4	FALSE	RAPGEF5	FALSE
JMJD8	FALSE	RAVER1	FALSE
MYBL2	TRUE	RGS17	TRUE
ASSI	TRUE	RTNI	FALSE
ACOT4	FALSE	SAMD10	FALSE
ATF3	FALSE	SFRP1	TRUE
HSD11B1L	TRUE	SH3BGRL2	TRUE
МҮОІС	TRUE	SLC16A9	TRUE
UQCRC1	TRUE	SLC2A8	TRUE
ADCK2	TRUE	SLC35A3	TRUE
MEG3	TRUE	SLC35F3	FALSE
CABP7	FALSE	SLC7A2	TRUE
MRAS	FALSE	SNHG7	FALSE
FGF18	TRUE	SNTB1	FALSE
DGATI	TRUE	SOCS4	TRUE
SLC38A3	TRUE	STOM	TRUE
LRRN2	TRUE	TENM4	FALSE
FAM50B	TRUE	TMEM115	TRUE
NPPB	TRUE	TMEM163	TRUE
CYP1B1	TRUE	TMEM2	TRUE
CRISPLD2	FALSE	TMEM238	FALSE
CXXC5	TRUE	TNFRSF11B	TRUE

BNIP3	FALSE	TRIM7	FALSE
AFAP1L2	TRUE	TSEN2	TRUE
KRT7	TRUE	TSHZ3	FALSE
AIF1L	FALSE	UBE2E3	FALSE
BIN1	TRUE	WNK4	TRUE
TUBA4A	TRUE	WSCD1	FALSE
FBLN1	TRUE	ХРОТ	FALSE
NUAKI	TRUE	ZDBF2	TRUE
F2R	FALSE	ZFP36L1	TRUE
STC2	TRUE	ZIC2	FALSE
SMAD6	TRUE	ZMYND19	FALSE
CAND2	TRUE	ZNF503	TRUE
RNF144B	FALSE	ZNF544	TRUE
HOXC8	FALSE	ZNF583	TRUE
SLC37A3	FALSE	ZNF704	FALSE
CD14	FALSE	ZSCAN18	TRUE
SMO	TRUE		
CUXI	TRUE		
INHBB	FALSE		
GLIS3	FALSE		
SLC12A8	FALSE		
ADD3	FALSE		
VGLL2	FALSE		
EPHB4	TRUE		
ZBTB46	FALSE		
TWSG1	FALSE		
HOMER2	TRUE		
HES4	TRUE		
SCPEP1	TRUE		
SRI	TRUE		
SH3BP4	TRUE		

SSBP2	TRUE	
SIDT2	FALSE	
ZNF467	TRUE	
MAP1B	FALSE	
MAP1LC3A	TRUE	
PITPNM1	TRUE	
KLHDC8B	TRUE	
COL6A1	TRUE	
ME1	TRUE	
NRSN2	FALSE	
CIQL4	TRUE	
ARHGEF16	TRUE	
ZNF395	TRUE	
PCYOX1L	TRUE	
VEGFB	TRUE	
ТРМ2	TRUE	
EFHD1	FALSE	
GPX3	TRUE	
NMU	TRUE	
C11orf68	TRUE	
MARCKSL1	TRUE	
CHAF1B	TRUE	
ARHGEF10	FALSE	
RGS7	TRUE	
IDH2	TRUE	
HSPA2	TRUE	
DDX41	TRUE	
PER3	FALSE	
ATP6V1A	TRUE	
ZBTB42	TRUE	
PAPSS2	TRUE	

NDUFA12	TRUE	
ZFP90	TRUE	
KAZN	FALSE	
ALDOA	TRUE	
P2RX6	FALSE	
LITAF	TRUE	
C17orf100	FALSE	
MOXD1	TRUE	
ECHDC3	TRUE	
FHOD1	TRUE	
SULF2	TRUE	
ADCY9	TRUE	
SNRPB2	FALSE	
ITGB4	TRUE	
POFUT2	TRUE	
ZC3H12A	TRUE	
RHPN2	FALSE	
PRUNE2	TRUE	
RALBP1	TRUE	
SBK1	TRUE	
DTD1	TRUE	
NSUN5	FALSE	
ARNT2	TRUE	
GDPD5	TRUE	
STK25	TRUE	
STMND1	FALSE	
TUB	TRUE	
ZBTB48	TRUE	
AGAP3	TRUE	
SERPINB6	TRUE	
LAYN	TRUE	

TTC39C	TRUE	
URGCP	TRUE	
AZIN2	FALSE	
DDAH2	TRUE	
RNF207	FALSE	
TNFRSF19	TRUE	
ADAMTS2	TRUE	
FAM175B	FALSE	
TAXIBP1	TRUE	
CLEC16A	TRUE	
LPAR2	TRUE	
HEYL	FALSE	
RFC4	FALSE	
EBF1	TRUE	
LRRC32	TRUE	
ATRN	TRUE	
WDR33	TRUE	
SLC16A3	TRUE	
CYB5R3	FALSE	
SMAD7	TRUE	
GPRIN2	TRUE	
KANK2	TRUE	
RND2	TRUE	
XRN2	TRUE	
TMSB10	TRUE	
STARD10	TRUE	
GSTM3	FALSE	
ERI3	TRUE	
A4GALT	FALSE	
VPS28	TRUE	
LZTS2	TRUE	
۱ <u> </u>		

DSC2	TRUE	
KATNALI	TRUE	
SLC25A40	TRUE	
VASHI	FALSE	
ATP5A1	TRUE	
ISYNA1	TRUE	
KRIT1	TRUE	
SLC6A9	TRUE	
FADS3	TRUE	
PTPN2	TRUE	
DDHD2	FALSE	
LPPR5	TRUE	
ATG5	FALSE	
NADK	FALSE	
<i>РРРЗСС</i>	TRUE	
FRMD8	TRUE	
RELL2	TRUE	
MRPS6	TRUE	
ADAMTS7	TRUE	
TUBB2B	FALSE	
CD70	TRUE	
ACKR3	FALSE	
MATN2	TRUE	
PLAC8	TRUE	
CGNL1	TRUE	
PALLD	TRUE	
MAL	FALSE	
PTPRE	TRUE	
VASN	TRUE	
PYCARD	TRUE	
MLLT11	FALSE	

FSTL3	TRUE	
H1F0	TRUE	
ISL1	TRUE	
ABCC3	TRUE	
ADA	TRUE	
SCD	TRUE	
PTPRM	FALSE	
CELSR2	TRUE	
FOXN3	TRUE	
CDH2	TRUE	
CXCL16	TRUE	
RAB31	TRUE	
ZNF789	TRUE	
MYL9	FALSE	
PEG10	TRUE	
TUBB2A	FALSE	
RAB11FIP1	TRUE	
MALL	FALSE	
PRRX2	TRUE	
ZNF362	TRUE	
DOCK2	TRUE	
SLC7A5	TRUE	
DSTN	TRUE	
FGFR3	TRUE	
HLA-B	TRUE	
ABHD12	TRUE	
PGM1	FALSE	
CDC42EP5	FALSE	
RBPMS2	TRUE	
PGAM1	FALSE	
PRDX5	TRUE	

SLC22A5	FALSE	
EFNB3	FALSE	
LDOC1L	TRUE	
PLXNB2	TRUE	
MX1	TRUE	
HSPB1	TRUE	
SLC25A13	TRUE	
OLFML2B	TRUE	
PHLDB1	FALSE	
CARD10	TRUE	
GPRC5C	FALSE	
TMEM45A	TRUE	
BMPER	FALSE	
COL9A2	FALSE	
HMGCR	TRUE	
SERPINHI	FALSE	
WWC1	FALSE	
CHST15	TRUE	
RBP7	TRUE	
GYPC	TRUE	
FAM46B	TRUE	
MIF	TRUE	
XPNPEP1	FALSE	
EFEMP2	FALSE	
NIPAL3	TRUE	
SMIM1	FALSE	
NPTN	TRUE	
TMEM91	TRUE	
PLCE1	TRUE	
CDK5RAP3	TRUE	
RARRES2	TRUE	

RHOD	TRUE	
TUBB6	TRUE	
GUSB	FALSE	
IDH1	TRUE	
CDK14	TRUE	
MXD3	TRUE	
PLA2G16	FALSE	
ETNK2	TRUE	
МСМ7	TRUE	
OLFML2A	TRUE	
SCMH1	FALSE	
MKRN1	TRUE	
C17orf97	TRUE	
PRICKLE1	TRUE	
PLEKHA1	TRUE	
ERBB2	TRUE	
SMAD3	TRUE	
ADD1	TRUE	
CHN1	FALSE	
PPP1R12B	TRUE	
PTGIS	FALSE	
RARA	TRUE	
SELM	TRUE	
PKD2	TRUE	
HBP1	TRUE	
CCDC74B	FALSE	
USP46	TRUE	
ZNF775	TRUE	
CAMTA1	FALSE	
SLC26A11	TRUE	
INSIG1	TRUE	

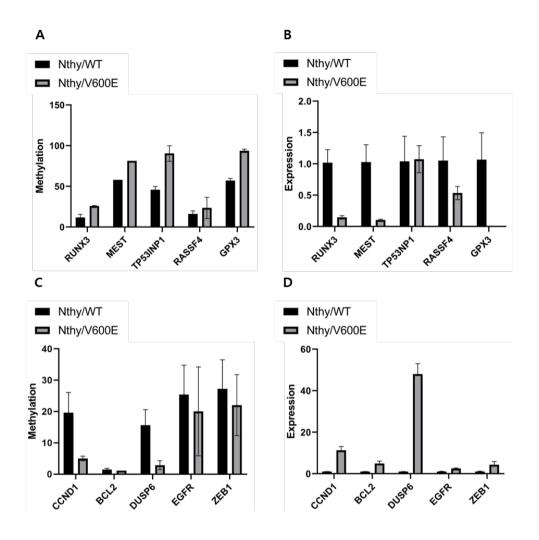
CPE	TRUE	
UBE4B	TRUE	
ZNF133	TRUE	
RBX1	FALSE	
UQCRQ	FALSE	
CYTL1	FALSE	
PANX2	FALSE	
NT5DC2	FALSE	
LYSMD4	FALSE	
HIP1R	TRUE	
SREBF1	TRUE	
RILPL1	TRUE	
ABHD8	TRUE	
LRRC42	FALSE	
C14orf132	FALSE	
MDK	TRUE	
ZC3HC1	TRUE	
PGRMC2	TRUE	
CD276	FALSE	
UBE2H	TRUE	
INTS12	FALSE	
HLA-H	TRUE	
NFIB	TRUE	
SSPN	TRUE	
CADM1	TRUE	
TMEM120A	TRUE	
CAVI	TRUE	
MTMR3	TRUE	
PDGFB	TRUE	
OCEL1	TRUE	
RIMKLA	TRUE	

SPNS1	TRUE	
UBE2F	TRUE	
CTNNA1	TRUE	
DGCR2	TRUE	
GDF15	TRUE	
NCOA4	TRUE	
TBCA	FALSE	
МСМ8	TRUE	
OPRL1	FALSE	
TM7SF2	TRUE	
ITFG3	TRUE	
GNB2	FALSE	
AHNAK	TRUE	
TESK1	FALSE	
KDM5B	TRUE	
AFF4	TRUE	
TDG	FALSE	
DVL2	TRUE	
MOCOS	FALSE	
CGN	TRUE	
H2AFY2	FALSE	
FAM53B	TRUE	
RYBP	TRUE	
SHANK3	TRUE	
DBI	TRUE	
GGA2	FALSE	
LIMS2	TRUE	
CLK3	TRUE	
ASPHD2	TRUE	
SPIDR	FALSE	
C4orf48	FALSE	

VGF	TRUE	
ADAMTSL4	FALSE	
NCAPG2	TRUE	
FBXO6	TRUE	
POLR2J	TRUE	
PON2	TRUE	
ARID1A	FALSE	
CKAP4	FALSE	
TECPR1	FALSE	
PHF13	TRUE	
RNF130	FALSE	
BBS9	TRUE	
DUSP18	TRUE	
HSPB11	TRUE	
COMMD4	FALSE	
RERE	FALSE	
RUFYI	TRUE	
BRI3	FALSE	
RASSF4	TRUE	
SLC27A3	TRUE	
CECR5	TRUE	
ATOX1	TRUE	
DAGLA	TRUE	
MTUS1	TRUE	
SAMM50	TRUE	
GALNT11	TRUE	
C7orf50	TRUE	
MUM1	TRUE	
B4GALT7	FALSE	
EPB41L5	FALSE	
AP2M1	TRUE	

ZFYVE16	FALSE	
МАРК6	FALSE	
PRRT3	TRUE	
PDXP	TRUE	
KREMEN2	TRUE	
PIK3CD	TRUE	
GAA	TRUE	
DBNDD1	TRUE	
NANP	TRUE	
FKBP14	FALSE	
GPS2	FALSE	
PLEKHA2	FALSE	
TMEM134	FALSE	
KIAA1147	TRUE	
NQO2	TRUE	
TPM1	FALSE	
PFN1	FALSE	
WTIP	TRUE	
AP4E1	TRUE	
ERBB3	TRUE	
MIER1	TRUE	
TMEM8B	TRUE	
ACTB	FALSE	
VASH2	TRUE	
JOSD1	TRUE	
TMEM97	FALSE	
LRRC20	FALSE	
FLYWCH2	TRUE	
SNX7	TRUE	
CABLES2	FALSE	
ARL4A	TRUE	

SUSD3	TRUE	
HDHD2	TRUE	
SERAC1	TRUE	
GTF2IRD1	TRUE	
MYL12A	TRUE	
TEAD3	TRUE	
TFIP11	FALSE	
EML4	TRUE	
PDCD4-AS1	FALSE	
MTG1	TRUE	
PXYLP1	FALSE	
GLOD4	TRUE	
DYM	FALSE	
CPTIB	FALSE	
ABCC5	FALSE	
MPST	FALSE	
RAP1GDS1	TRUE	
OBSL1	TRUE	
HMGN2	FALSE	
CAST	TRUE	
MKL2	FALSE	
LOC284023	TRUE	
IER3	TRUE	
PSMA5	FALSE	
ALG10B	TRUE	
DDR1	TRUE	
RRAGC	TRUE	
B4GALT1	TRUE	
DBF4	TRUE	
TETI	FALSE	
FBXO2	TRUE	


CCM2	TRUE	
GCSH	TRUE	
TEF	FALSE	
SELO	TRUE	
ITGB3	TRUE	
ZNF280B	FALSE	
RRBP1	FALSE	
IL15	FALSE	
BACE2	TRUE	
FAM178A	TRUE	
RAB20	TRUE	
FLNB	TRUE	
LSM5	TRUE	
SYT11	TRUE	
PEX6	FALSE	
MMP2	TRUE	
SLFN13	FALSE	
UBXN2A	FALSE	
AGFG2	FALSE	
RSPH3	TRUE	
CORO1A	TRUE	
MTF2	FALSE	
CTSH	TRUE	
TMEM107	FALSE	
RCOR2	FALSE	
C18orf25	FALSE	
ATXN10	FALSE	
LYPD1	TRUE	
DNMT3B	TRUE	
CSTB	TRUE	
NICNI	TRUE	

TIMM8B	TRUE	
MSRB1	FALSE	
MTSS1L	TRUE	
DNAJB6	TRUE	
PLIN2	TRUE	
WDR91	TRUE	
HAPLN3	TRUE	
H2AFY	TRUE	
RADIL	TRUE	
NARF	FALSE	
MTIX	TRUE	
HSF2	FALSE	
MAPRE2	TRUE	
TP53BP1	FALSE	
RPS23	FALSE	
GLI3	TRUE	
PDPR	FALSE	
MIS12	TRUE	
SLCO3A1	FALSE	
PCGF6	TRUE	
CASP2	TRUE	
PPCS	TRUE	
ВОК	TRUE	
ZNF580	TRUE	
HOOK1	TRUE	
TMEM222	TRUE	
DNAJC4	TRUE	
ZNF514	FALSE	
LIMK2	TRUE	
LMO1	TRUE	
TMEM256	FALSE	

IFFO2	TRUE	
Clorf159	TRUE	
TTC26	FALSE	
BRE	TRUE	
PLA2G15	FALSE	
PNPLA8	FALSE	
TMEM14A	TRUE	
P2RY6	TRUE	
ZMYM5	TRUE	
TIGD7	TRUE	
SNX5	TRUE	
ALDH4A1	TRUE	
CCDC138	FALSE	
ESCO1	TRUE	
ТМСО3	FALSE	
HDAC7	FALSE	
LCMT2	FALSE	
GNAII	TRUE	
RAN	TRUE	
ZNF514	FALSE	
ZNF775	TRUE	

Validation by Pyrosequencing and RT-PCR

Figure 4 shows the *in-vitro* validation results for part of inversely correlated genes (RUNX3, MEST, TP53INP1, RASSF4, and GPX3 among the hypermethylated genes with downregulation in Nthy/V600E cells; CCND1, BCL2, DUSP6, EGFR, and ZEB1 among the hypomethylated genes with upregulation in Nthy/V600E cells). Pyrosequencing was used for the methylation analysis, and qRT-PCR was used for mRNA expression analysis. RUNX3, MEST, TP53INP1, RASSF4, and GPX3 showed higher promoter methylation rates in Nthy/V600E cells than in control cells (Figure 4A). RUNX3, MEST, RASSF4, and GPX3 also showed lower mRNA expression in Nthy/V600E cells (Figure 4B). CCND1, BCL2, DUSP6, EGFR, and ZEB1 showed lower promoter methylation rates in Nthy/V600E cells, and these genes showed higher mRNA expression in Nthy/V600E cells (Figure 4C and 4D).

Figure 4. Pyrosequencing and quantitative real-time polymerase chain reaction results for selected genes. (A) Methylation status of selected genes that showed hypermethylation and downregulation in Nthy/V600E cells. (B) mRNA expression status of selected genes that showed hypermethylation and downregulation in Nthy/V600E cells. (C) Methylation status of selected genes that showed

hypomethylation and upregulation in Nthy/V600E cells. (D) mRNA expression status of selected genes that showed hypomethylation and upregulation in Nthy/V600E cells.

Discussion

Somatic $BRAF^{V600E}$ mutation is major driver mutation in thyroid cancer in differentiated PTC. Prevalence of $BRAF^{V600E}$ mutation in thyroid cancer reported up to 30–80% and known to be associated with aggressive characteristics of thyroid cancer including extrathyroidal extension, advanced stage, lymph node or distant metastasis [3,24–26]. Basic molecular mechanism of $BRAF^{V600E}$ mutation in thyroid cancer is activate mitogen–activated protein kinase (MAP kinase)/extracellular–signal–regulated kinase (ERK) pathway. Activation of MAP kinase related gene expression in cell considered as major tumorigenic mechanism of various cancers, with enhanced cell cycle with uncontrolled division and over–proliferation [27,28].

Concurrent genomic and epigenomic change that initiated by $BRAF^{V600E}$ mutation in thyroid cancer had been specifically demonstrated in previous research. Gene expression and DNA methylation changes in MAP kinase pathway genes are associate with the specific clinicopathologic characteristics in thyroid cancer [12,29].

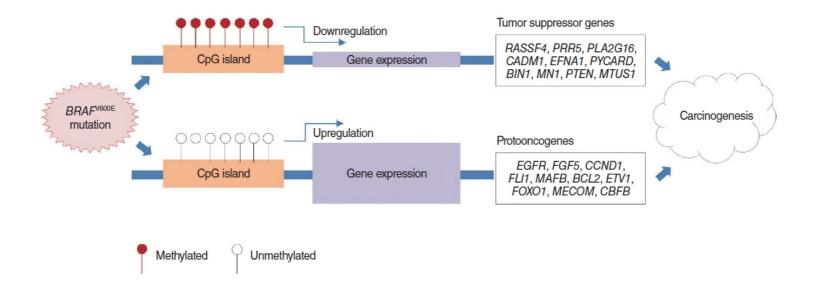
TCGA project and other next generation sequencing studies also revealed that specific sets of gene expression alteration patterns are present in thyroid cancer, follows by $BRAF^{V600E}$ mutation [6,30]. According to TCGA, $BRAF^{V600E}$ like thyroid cancer is related with upregulated ERK related genes including DUSP genes which is initiate the Erk transcription, whereas low thyroid differentiation score. And methylation signature also differentially classified between BRAFtype and RAS type thyroid cancer6. However, intracellular mechanism that how the $BRAF^{V600E}$ driver mutation alter the various gene expressions in thyroid cells has not yet been clearly elucidated. TCGA shown that two DNA methylation clusters were gathered in the $BRAF^{V600E}$ like thyroid cancer but molecular consequence of CpG methylation and gene expression change was not assessed [6].

DNA methylation is an epigenomic phenomenon that methyl group is attached to the 5th carbon of cytosine residue in CpG dinucleotide. Clusters of CpG dinucleotides are called as "CpG island" and generally located in promotor area. Hypermethylation of promotor CpG island repress the transcription of downstream exon and result in suppress gene expression [8,31]. Hou *et al.* initially proposed that

BRAF^{V600E} mutation may alter the MAP kinase gene expression through DNA methylation [16]. They reported functional association of *BRAF*^{V600E} mutation with methylation change in thyroid cancer cells and suggested that $BRAF^{V600E}$ mutation has possible ability to epigenetic change. They used BCPAP and OCUT1 cell lines which harbor the $BRAF^{V600E}$ mutation [16]. For the control group, they used shRNA method to knock-down the BRAF gene from the thyroid cancer cell lines. There were studies to demonstrate the correlation between DNA methylation and gene expression in thyroid cancer according to $BRAF^{V600E}$ mutation, using patient derived papillary thyroid cancer and normal thyroid tissue as control [12,14,32-34]. These studies found that hyper-methylation of tumor suppressor genes (*PTEN, RASSF1A, TIMP3, SLC5A8, DAPK, RAR*\$2, etc.) and hypo-methylation of tumorigenic genes (VEGF, etc.) were identified in thyroid cancer with *BRAF*^{V600E} mutation. However, previous studies used the final product of thyroid cancer tissue, that cannot determine the order of genomic consequence of primitive BRAF^{V600E} mutation, subsequent methylation, and gene expression alteration is followed. Although Hou et al. used the BRAF knock-down PTC cell lines, it still not the initial period of carcinogenesis induced by $BRAF^{V600E}$ mutation. As so, previous studies have limitation to explain the cellular consequence, between epigenomic and genomic correlation by the $BRAF^{V600E}$ mutation.

To overcome the mentioned limitation above, I used *BRAF* gene transfected Nthy-ori cell-lines (Nthy/WT and Nthy/V600E)19. In our initial research, Nthy/WT cell showed similar biologic behavior with Nthy/Ori cells. In contrast, Nthy/V600E cells showed increased anchorage independent growth, invasion ability and up-regulated genes with ERK/MAPK cascade over time, and gradually becoming a thyroid cancer cell. It can suggest that Nthy Nthy/V600E cell is a good model to study early period biologic consequence, induced by $BRAF^{V600E}$ mutation in thyroid cell. Other thyroid cell lines have already been changed into late stage or aggressive type of thyroid cancer such as anaplastic or follicular cancer subtype [18,19].

Our research showed that induction of *BRAF*^{V600E} mutation in Nthy-ori cell result in frequent DNA hypermethylation; 199,821 probes were hypermethylated in Nthy/V600E, compared with 66,446 probes in Nthy/WT. In the correlation analysis between methylation and gene expression, 697 genes were hypermethylated with underexpressed in Nthy/V600E cells. These genes are related with strong inducer of apoptosis and promote immune mediated response (FASTK) [35], tumor suppressor genes in many cancers (PTEN) [36], significantly increased CpG methylation state in gastric cancer (SGCE) [37], its' inhibition resulted in rapid cell death of progenitor cells (PAOX) [38], loss of expression with methylation was related with carcinogenesis (*MEST*) [39,40], and site-specific hypermethylation predicts PTC recurrence (*RUNX3*)[41]. In the protein information analysis, tumor suppressor genes that repress the carcinogenesis (*RASSF4*, *PRR5*, *PLA2G16*, CADM1. EFNA1. PYCARD, BIN1, MN1, PTEN, MTUS1) also downregulated in Nthy/V600E cell. On the contrary, 227 genes showed hypomethylated with over-expressed in Nthy/V600E cell. These genes include transport of glucose and other sugars and hypermethylated in cancer (*SLC6A15*) [42], blocks the apoptotic death and differentially methylated in breast cancer (BCL2) [43], alters cell cycle progression with contribute to tumorigenesis and hypomethylated-high gene (*CCND1*) [44]. expression Proto-oncogenes that promote


carcinogenesis (*GFR, FGF5, CCND1, FLI1, MAFB, BCL2, ETV1, FOXO1, MECOM, CBFB*) were significantly enriched in protein information analysis.

Selected 10 genes for validation analysis are as follows: RUNX3, MEST, TP53INP1, RASSF4, GPX3, CCND1, BCL2, DUSP6, *EGFR* and *ZEB1*. *RUNX* is one of the tumor suppressor genes that its methylation in thyroid cancer and can predict the recurrence of PTC [41,45,46]. DNA methylation subsequent *MEST* gene expression knockdown is proposed as thyroid cancer cell survival [47]. For the TP53IP1, loss of p53 function is important for immortalization in thyroid cancer cell lines [48]. Methylation of Ras association domain family (*RASSF*) genes were reported in thyroid cancer [49]. *GPX3* is frequently methylated in human PTC tissue and expression was regulated by promotor methylation and it was associated with tumor size and lymph node metastasis [50]. CCND1 gene enhanced expression proposed as a prognostic factor and possible mechanism for recurrent in PTC [51]. Higher expression of BCL2 gene was associated with poor survival in thyroid cancer and modulated by miRNA regulation mechanism [52]. Increased expression of *DUSP6* gene with decreased DNA methylation was reported in PTC tissue [32]. Overexpression of *EGFR* in thyroid cancer is well known and associated with tumor aggressiveness and progression [53,54]. Overexpression of *ZEB1* was associated with aggressive tumor progression of PTC and its expression can be knock down by siRNAs or miRNAs [55–57]. For those genes, same methylation alteration patterns were obtained in promotor sites by pyrosequencing, and inverse correlations of mRNA expression were also identified as shown in figure 4. Therefore, we can propose that inverse correlated genes from our microarrays can be reliable finding, with the validation of important genes by pyrosequencing and RT–PCR

I checked the methylation and gene expression changes of significant genes in the TGCA data, part of *in-silico* validation. Results identified that 491 of 697 genes (70.44%) showed the same hypermethylation-downregulation pattern, and 153 of 227 genes (67.40%) showed hypomethylation-upregulation in $BRAF^{V600E}$ mutated PTC tissue. The remaining 30% of genes did not show significant methylation-gene expression changes. This difference is probably because one experiment was performed on cell lines and

another experiment was performed on surgically removed cancer tissue. Although the cancer cell line has very similar properties to those of the cancer tissue from which it originated, it is inevitably genetically different from cancer tissue growing in the human body as a result of being grown in an in vitro environment. Therefore, threedimensional cell line models such as organoids are being used in recent studies. This finding suggest that future research should investigate these issues using three-dimensional cell lines.

Based on our analysis, it suggest that initiation of the $BRAF^{V600E}$ mutation in thyroid cells can modulate cancer-related gene expression by altering promoter site CpG island methylation. The possible carcinogenic mechanism is illustrated in Figure 5.

Figure 5. Possible carcinogenic mechanisms of the *BRAF*^{V600E} mutation

There have been many reports of methylation changes caused by *BRAF* mutations in various cancers. However, there has been relatively little research on the mechanism that how the BRAF mutation directly or indirectly effects on the DNA methylation change. From the previous literature, DNMT1 gene act for the maintenance of methylation, and *DNMT3a* and *DNMT3b* are effect on the de-novo methylation. TET family genes (TET1, TET2 and TET3) have a role of DNA de-methylation. *TET3* act prior to the differentiation and TET1 act after the differentiation [16]. It also reported that BRAF mutation results in the deregulation of the TET genes (TET1, TET2, TET3). which encode DNA demethylases, leading and to demethylation in colon cancer [58]. Another report implies that the BRAF oncoprotein activates the transcriptional repressor MAFG to mediate CpG island methylation and make a epigenetic silencing [59]. Association study of DNA methylation pathway related genes and BRAF mutation should be required to identify the biological connections between *BRAF* mutation and DNA methylation. Moreover, further study with histone modifications and microRNAs with BRAF mutation also be helpful to find the mechanism of epigenomic

modulation by the BRAF mutation.

According to our analysis, it suggests that initiation of BRAF^{V600E} mutation in thyroid cell can modulate cancer related gene expressions by changing promotor site CpG island methylation. *BRAF*^{V600E} mutation suppress the anti-tumor related gene expression by promotor hypermethylation whereas enhance the tumorigenic effect genes by hypomethylation. In particularly, this study strongly supports this argument unlike the previous research, as this study experimented with both gene expression and methylation arrays in the process of cancer-processing normal thyroid cells, induced by BRAF^{V600E} driver mutation which is the highest trigger in MAPK pathway. This study also the first report that uses the latest methylation array chip – Infinium MethylationEPIC BeadChip (850k) in thyroid cancer study. Using the higher density chip, this study also able to more detailed analysis of promotor site methylation, compared with previous studies that used the 27K or 450K chips [12,33,34].

The results of our study are suggested to have the following clinical implications. If a test method using a DNA methylation biomarker related to the *BRAF* mutation is developed and applied in the clinical field, the diagnostic accuracy for ambiguous thyroid nodules could be improved. Thus, unnecessary re-testing or diagnostic surgery could be reduced. In addition, the *BRAF* mutation is expected to be used as a biomarker to determine the prognosis and future treatment policies for patients undergoing surgery for thyroid cancer. Finally, since methylation changes are epigenetic, meaning that they are easier to modify than DNA mutations or gene expression alterations, there may be the potential to develop a methylationtargeted therapeutic agent to control CpG islands located on carcinogenic genes.

This study has certain limitations. Although our cell lines are good models for studying the genomic consequences of the $BRAF^{V600E}$ mutation, they are not yet standardized worldwide. Further studies including previously known BRAF mutation-dominant, or RASmutation-dominant thyroid cancer cell lines are needed to support our results [18]. In addition, our study could not conclude that methylation changes due to BRAF gene mutations can be reversed by BRAF gene suppression (e.g., with BRAF inhibitor treatment). Finally, this study did not identify the direct mechanisms of how the BRAF mutation affects methylation in thyroid cancer cell lines, because our study dealt with associations using two types of microarrays. I intend to address these limitations in our subsequent research.

In summary, induction of the $BRAF^{V600E}$ mutation in normal thyroid cells changed gene expression by affecting the frequency of DNA methylation of promoter site CpG islands. This result suggests that the $BRAF^{V600E}$ mutation modulates DNA methylation to change gene expression in the carcinogenic cascade. In future research, this result will be used to identify potential diagnostic and therapeutic targets in thyroid cancer.

References

1. Kitahara CM, Sosa JA: The changing incidence of thyroid cancer. Nat Rev Endocrinol 12:646-653, 2016

2. Jung KW, Won YJ, Kong HJ, et al: Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2015. Cancer Res Treat 50:303-316, 2018

3. Xing M: BRAF mutation in thyroid cancer. Endocr Relat Cancer 12:245-62, 2005

4. Li C, Lee KC, Schneider EB, et al: BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab 97:4559-70, 2012

5. Jung CK, Little MP, Lubin JH, et al: The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab 99:E276-85, 2014

6. Cancer Genome Atlas Research N: Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676-90,

7. Faam B, Ghaffari MA, Ghadiri A, et al: Epigenetic modifications in human thyroid cancer. Biomed Rep 3:3-8, 2015

Bird A: DNA methylation patterns and epigenetic memory.
 Genes Dev 16:6-21, 2002

9. Xing M: Gene methylation in thyroid tumorigenesis. Endocrinology 148:948-53, 2007

10. Chen YC, Gotea V, Margolin G, et al: Significant associations between driver gene mutations and DNA methylation alterations across many cancer types. PLoS Comput Biol 13:e1005840, 2017

11. Chai L, Li J, Lv Z: An integrated analysis of cancer genes in thyroid cancer. Oncol Rep 35:962-70, 2016

12. Ellis RJ, Wang Y, Stevenson HS, et al: Genome-wide methylation patterns in papillary thyroid cancer are distinct based on histological subtype and tumor genotype. J Clin Endocrinol Metab 99:E329-37, 2014

13. Beltrami CM, Dos Reis MB, Barros-Filho MC, et al: Integrated

80

data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas. Clin Epigenetics 9:45, 2017

14. Kikuchi Y, Tsuji E, Yagi K, et al: Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation. Front Genet 4:271, 2013

15. White MG, Nagar S, Aschebrook-Kilfoy B, et al: Epigenetic Alterations and Canonical Pathway Disruption in Papillary Thyroid Cancer: A Genome-wide Methylation Analysis. Ann Surg Oncol 23:2302-9, 2016

16. Hou P, Liu D, Xing M: Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer 18:687-97, 2011

17. Ozer B, Sezerman OU: A novel analysis strategy for integrating methylation and expression data reveals core pathways for thyroid cancer aetiology. BMC Genomics 16 Suppl 12:S7, 2015

18. Saiselet M, Floor S, Tarabichi M, et al: Thyroid cancer cell lines: an overview. Front Endocrinol (Lausanne) 3:133, 2012 Kim BA, Jee HG, Yi JW, et al: Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFV600E Mutation.
 Cancer Genomics Proteomics 14:53-67, 2017

20. Ritchie ME, Phipson B, Wu D, et al: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47, 2015

21. Morris TJ, Butcher LM, Feber A, et al: ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30:428-30, 2014

22. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57, 2009

23. Yip YL, Scheib H, Diemand AV, et al: The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat 23:464-70, 2004

24. Nikiforova MN, Kimura ET, Gandhi M, et al: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399-404, 2003

25. Kim KH, Kang DW, Kim SH, et al: Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J 45:818-21, 2004

26. Namba H, Nakashima M, Hayashi T, et al: Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88:4393-7, 2003

27. Hilger RA, Scheulen ME, Strumberg D: The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 25:511-8, 2002

28. Peyssonnaux C, Eychene A: The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62, 2001

29. Giordano TJ, Kuick R, Thomas DG, et al: Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24:6646-56, 2005

30. Yoo SK, Lee S, Kim SJ, et al: Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet 12:e1006239, 2016 31. Jones PA, Baylin SB: The epigenomics of cancer. Cell 128:683-92, 2007

32. Lee EK, Chung KW, Yang SK, et al: DNA methylation of MAPK signal-inhibiting genes in papillary thyroid carcinoma. Anticancer Res 33:4833-9, 2013

33. Rodriguez-Rodero S, Fernandez AF, Fernandez-Morera JL, et al: DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab 98:2811-21, 2013

34. Cai LL, Liu GY, Tzeng CM: Genome-wide DNA methylation profiling and its involved molecular pathways from one individual with thyroid malignant/benign tumor and hyperplasia: A case report. Medicine (Baltimore) 95:e4695, 2016

35. Simarro M, Giannattasio G, De la Fuente MA, et al: Fasactivated serine/threonine phosphoprotein promotes immunemediated pulmonary inflammation. J Immunol 184:5325-32, 2010

36. Ng EK, Shin VY, Leung CP, et al: Elevation of methylated DNA in KILLIN/PTEN in the plasma of patients with thyroid and/or breast cancer. Onco Targets Ther 7:2085-92, 2014

84

37. Sepulveda JL, Gutierrez-Pajares JL, Luna A, et al: Highdefinition CpG methylation of novel genes in gastric carcinogenesis identified by next-generation sequencing. Mod Pathol 29:182-93, 2016

38. Salati S, Zini R, Nuzzo S, et al: Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. Int J Cancer 138:1657-69, 2016

39. Dohi O, Yasui K, Gen Y, et al: Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 42:411-8, 2013

40. Vidal AC, Henry NM, Murphy SK, et al: PEG1/MEST and IGF2 DNA methylation in CIN and in cervical cancer. Clin Transl Oncol 16:266-72, 2014

41. Wang D, Cui W, Wu X, et al: RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am J Cancer Res 4:725-37, 2014

42. Mitchell SM, Ross JP, Drew HR, et al: A panel of genes

85

methylated with high frequency in colorectal cancer. BMC Cancer 14:54, 2014

43. Loginov VI, Pronina IV, Burdennyi AM, et al: Role of Methylation in the Regulation of Apoptosis Genes APAF1, DAPK1, and BCL2 in Breast Cancer. Bull Exp Biol Med 162:797-800, 2017

44. Liu J, Li H, Sun L, et al: Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer. Cancer Cell Int 17:75, 2017

45. Botezatu A, Iancu IV, Plesa A, et al: Methylation of tumour suppressor genes associated with thyroid cancer. Cancer Biomark 25:53-65, 2019

46. Ko HJ, Kim BY, Jung CH, et al: DNA methylation of RUNX3 in papillary thyroid cancer. Korean J Intern Med 27:407-10, 2012

47. Boot A, Oosting J, de Miranda NF, et al: Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. J Pathol 240:72-83, 2016

48. Landa I, Pozdeyev N, Korch C, et al: Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin Cancer Res 25:3141-3151, 2019

49. Schagdarsurengin U, Richter AM, Hornung J, et al: Frequent epigenetic inactivation of RASSF2 in thyroid cancer and functional consequences. Mol Cancer 9:264, 2010

50. Zhao H, Li J, Li X, et al: Silencing GPX3 Expression Promotes Tumor Metastasis in Human Thyroid Cancer. Curr Protein Pept Sci 16:316-21, 2015

51. Sanjari M, Kordestani Z, Safavi M, et al: Enhanced expression of Cyclin D1 and C-myc, a prognostic factor and possible mechanism for recurrence of papillary thyroid carcinoma. Sci Rep 10:5100, 2020

52. Zhang C, Bo C, Guo L, et al: BCL2 and hsa-miR-181a-5p are potential biomarkers associated with papillary thyroid cancer based on bioinformatics analysis. World J Surg Oncol 17:221, 2019

53. Fallahi P, Ruffilli I, Elia G, et al: Novel treatment options for anaplastic thyroid cancer. Expert Rev Endocrinol Metab 12:279–288, 2017

54. Sethi K, Sarkar S, Das S, et al: Biomarkers for the diagnosis of thyroid cancer. J Exp Ther Oncol 8:341-52, 2010

55. Gao H, Sun X, Wang H, et al: Long noncoding RNA SNHG22 increases ZEB1 expression via competitive binding with microRNA-429 to promote the malignant development of papillary thyroid cancer. Cell Cycle 19:1186-1199, 2020

56. Yan R, Yang T, Zhai H, et al: MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAF(V600E) mutation in papillary thyroid cancer cells. J Cell Biochem 119:8763-8772, 2018

57. Zhang Y, Liu G, Wu S, et al: Zinc finger E-box-binding homeobox 1: its clinical significance and functional role in human thyroid cancer. Onco Targets Ther 9:1303-10, 2016

58. Noreen F, Kung T, Tornillo L, Parker H, Silva M, Weis S, et al. DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clin Epigenetics. 2019 Dec;11(1):196.

59. Fang M, Ou J, Hutchinson L, Green MR. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell. 2014 Sep;55(6):904-15.

Acknowledgement

This study was published in the SCIE journal, Clinical and Experimental Otorhinolaryngology 2022; 15(3): 273-282. I would like to express my sincere gratitude to all my collaborators who helped me with this research (Seong Yun Ha, Hyeon-Gun Jee, Kwangsoo Kim, Su-jin Kim, Young Jun Chai, June Young Choi, and Kyu Eun Lee.)

국문 초록

갑상선 세포주에 유도된 *BRAF^{V600E}* 돌연변이에 의한 메틸화 변화

서울대학교 대학원

의학과 외과학 전공

이 진 욱

배경 및 목적: BRAF^{V600E} 돌연변이는 갑상선 유두암을 일으키는 주된 발암 변이이다. 본 연구의 목적은 갑상선 세포에 BRAF^{V600E} 돌연변이가 유도되었을 때 발생하는 DNA 메틸화와 유전자 발현 양상의 변화를 확인하는 것이다.

대상 및 방법: 연구자는 Nthy/ori 갑상선 세포주에 *BRAF* 유전자를 전사시켜 Nthy/BRAF 라는 세포주를 만들었고, *BRAF*^{V600E} 돌연변이가

있는 Nthy/V600E, *BRAF* 유전자에 돌연변이가 없는 Nthy/WT 로 구분하였다. Nthy/WT 와 Nthy/V600E 세포주별로 유전자 발현 마이크로어레이와 DNA 메틸화 어레이를 시행하였고, 두 타입의 데이터를 병합하여 DNA 메틸화와 유전자 발현이 역상관관계로 나타나는 유전자 부위를 탐색하였다. 어레이 분석 결과는 The Cancer Genome Atlas (TCGA) 데이터를 활용한 in-silico 방법과, 파이로서열분석 및 실시간 역전사 중합효소 연쇄반응 (qRT-PCR)을 통한 in-vivo 방법을 통해 검증하였다..

결과: Nthy/V600E 세포주를 기준으로, 199,821 개의 프로브가 유의한 과메틸화를 보였으며, 697개의 유전자가 "과발현-유전자 발현 억제" 양 상을 보였다. 이들 유전자군 중에는 종양 억제 유전자들과, 세포자멸사 관련 유전자들이 포함되었다. 66,446 개의 프로브는 유의한 저메틸화를 보였고, 227개의 유전자들이 "저메틸화-유전자 발현 증가" 양상을 보였 다. 이들 유전자군 중에는 전암유전자와 단백질을 코딩하는 유전자들이 포함되었다. TCGA 검증에서, 491/697 (70.44%) 개의 유전자들이 동일 한 "과메틸화-유전자 발현 억제" 양상을 보였으며, 153/227 (67.40%) 개의 유전자들이 동일한 "저메틸화-유전자 발현 증가" 양상을 보였다. 10개의 선택된 유전자들에서 파이로서열분석 및 qRT-PCR 결과가 마이 크로어레이 결과와 유사한 양상을 보였다.

91

결론: 갑상선 세포에 유도된 *BRAF*^{V600E} 돌연변이는 더 많은 과메틸화 양상을 보였다. 종양 억제 유전자 및 세포자멸사 등의 항암 관련 유전자들이 과메틸화에 의해 발현이 억제되는 양상이 확인되었고, 전암유전자와 같은 발암 관련 유전자들이 저메틸화에 의해 발현이 증가되는 양상이 확인되었다. 본 연구의 결과는 *BRAF*^{V600E} 돌연변이가 DNA 메틸화 기전을 통해 종양과 관련된 유전자 발현을 조절할 수 있다는 것을 시사한다.

주요어: 갑상선 종양, DNA 메틸화, 유전자 발현

학 번: 2016-36691