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Abstract 

 

Kim, Eunjin 

Department of Linguistics 

The Graduate School 

Seoul National University 

 

Since training continuous prompts is a parameter-efficient way to tune a Pre-

trained Language Model (PLM) on a target task, recent works suggest various 

training methods utilizing continuous prompts. However, few studies investigate the 

explainability of continuous prompts, which is critical to enhancing the confidence 

of PLM in a real-world scenario. To deal with the problems of the unexplainable 

continuous prompts, this study explores the effects of Prompt-tuning v1 (Lester et 

al., 2021) and Prompt-tuning v2 (Liu et al., 2022) on PLM.  

More precisely, we conducted the experiments using a multilingual GPT to 

generalize our observations both on tasks and languages. We also analyzed the 

results of transfer learning using continuous prompts. We first confirmed whether 

continuous prompts are gathered according to tasks or languages, and then analyzed 

how continuous prompts utilize PLM in terms of the three main architectures of GPT: 

the attention mechanism and the activated neurons, and the label space. 

In this study, we tried to answer the following research questions: (1) Can we 

distinguish continuous prompts according to the encoded information about target 

tasks or target languages? (2) Can we find any explainable patterns in the changes in 
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the attention mechanism after Prompt-tuning? (3) Can we observe any explainable 

patterns in the activated neurons of continuous prompts through layers? (4) Can we 

capture that continuous prompts interact with the label space of PLM? 

First, we find that continuous prompts have different space according to the 

encoded information about target tasks. Second, continuous prompts exploit the 

attention mechanism of PLM by using the attention heads that encode the content-

dependent information. Third, the activated neurons have task-specific information 

in the deeper layers. However, the second to last layer has rather task-common 

neurons. Lastly, despite the low isotropy, continuous prompts make the decoding 

token closer to the label words. Overall, we observe consistent results after transfer 

learning. As a result, we conclude that continuous prompts are trained while 

employing the knowledge PLM obtained during pre-training to solve the target task. 

 

Keyword : Natural Language Processing, GPT, Prompt-tuning, Continuous Prompts, 
Multilinguality, Explainability 
Student Number : 2021-21283 
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Chapter 1. Introduction 

 

In Natural Language Processing (NLP), one of the traditional ways to solve 

Natural Language Understanding (NLU) and Natural Language Generation (NLG) 

tasks is fine-tuning a Pre-trained Language Model (PLM) with a full labeled dataset. 

Since the Transformer-based PLMs, such as Transformer (Vaswani et al., 2017), 

BERT (Devlin et al., 2019), and GPT-2 (Radford et al., 2019), have achieved the 

state-of-the-art for various NLP tasks, many studies have focused on the pre-train 

and fine-tune paradigm. However, this paradigm has several inevitable drawbacks. 

One of the biggest problems of fine-tuning is that its objective is different from 

the objective of pre-training. In language modeling, the model is pre-trained to 

predict the next word (e.g., for GPT-2) or the masked word (e.g., for BERT) in a 

sentence. On the other hand, during fine-tuning, a new added linear classifier is 

trained to predict the label on a target task. Also, the context embeddings fed to the 

linear classifier compress the input sentence so much that we cannot assure that 

sufficient information is provided to the model to solve the target task. Besides, it is 

hard to know whether the model exploits the knowledge gained after pre-training.  

To deal with such problems of fine-tuning, discrete prompts were first 

suggested to close the gap between the objective functions of pre-training and fine-

tuning. Discrete prompts consist of a natural language template and a verbalizer, 

where the model should predict the verbalizer corresponding to the gold label. In this 

way, we maintain the model structure of pre-training so that PLM can employ the 

knowledge obtained from pre-training. However, the prompt engineering including 

the template design and the verbalizer design requires a human effort. 
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Subsequently, continuous prompts were proposed, which are embedding 

parameters that can be used without the manual prompt design. P-tuning (Liu et al., 

2021) showed high performances in several NLU tasks when training GPT-2 with 

continuous prompts. Furthermore, toward parameter-efficient learning, Lester et al. 

(2021) suggested Prompt-tuning v1, where only continuous prompts are trainable. 

After Prompt-tuning, we just need to save the trained continuous prompts which have 

much fewer parameters than the PLM. They showed that Prompt-tuning is useful for 

transfer learning because once trained continuous prompts can be re-used for other 

tasks. Finally, Prompt-tuning v2 was suggested by Liu et al. (2022). Deep continuous 

prompts are injected into every layer of PLM. With more parameters, the 

performances rise close to the performances of fine-tuning on various NLU tasks in 

the fully-supervised setting.  

Despite the great promise of the pre-train and prompt-tune paradigm, it is 

problematic that the difficulty of faithfully interpreting continuous prompts in 

natural language could potentially lead to concealed adversarial attacks (Khashabi et 

al., 2022). For example, the prompt designer could hide his or her social bias in the 

prompts. Ultimately, it makes PLM unexplainable in that we cannot assure how 

continuous prompts operate in PLM, which means that we lose the controllability of 

PLM. Without the explainability of continuous prompts, it is hard to utilize Prompt-

tuning in a real-world scenario however Prompt-tuning is efficient. Still, few studies 

have tried to reveal the details of the relationship between Prompt-tuning and PLM, 

which are essential to the explainable continuous prompts.  

Meanwhile, several studies have shown that continuous prompts are one of the 

parameter-efficient training methods in a cross-lingual setting (Zhao and Schütze, 

2021; Vu et al., 2022a), which means that continuous prompts encode the task-
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relevant information in the multilingual space. Since the generalizability of tasks and 

languages can improve the explainability of PLM, it is important to capture the 

features shared in each task and language. Accordingly, in this study, we investigate 

how continuous prompts save and utilize the information of a multilingual PLM, 

mGPT (Shliazhko et al., 2022), focusing on English and Korean.  

This study also aims to figure out the effects of Prompt-tuning v1 and Prompt-

tuning v2 on the multilingual PLM, so that we provide fundamental directions to 

enhance the interpretability and explainability of PLM and Prompt-tuning. 

Accordingly, we analyze the changes after Prompt-tuning in terms of three major 

structures of GPT: the attention mechanism, the activated neurons, and the label 

space.  

Additionally, we factorize continuous prompts breaking down into task sub-

prompts and language sub-prompts so that each sub-prompt can be transferred in the 

cross-task and cross-language settings. We believe that the transferability of 

continuous prompts and the effects of transfer learning can explain which knowledge 

of PLM continuous prompts utilize.  

To this end, we address the following research questions: 

1. Can we distinguish continuous prompts according to the encoded 

information about target tasks or target languages?  

2. Can we find any explainable patterns in the changes in the attention 

mechanism after Prompt-tuning?  

3. Can we observe any explainable patterns in the activated neurons of 

continuous prompts through layers?  

4. Can we capture that continuous prompts interact with the label space of 

PLM? 
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Introducing previous works about prompt-based learnings and the 

interpretability and transferability of continuous prompts in Chapter 2, we 

demonstrate the architecture of Transformer and GPT in Chapter 3. In Chapter 4, we 

explain the methods used to train and analyze continuous prompts, and the details of 

downstream tasks and datasets. In Chapter 5, we present the results and analysis of 

the experiments, where some patterns of the changes after Prompt-tuning are 

discovered. Additionally, we report the results of the ablation studies. 

We first present the visualizations of continuous prompts which show that deep 

continuous prompts are gathered according to the target tasks in the multilingual 

setting. Second, we find that the attention distribution changes in some layers more 

than in other layers regardless of tasks and languages. Also, in Prompt-tuning v2, the 

changes are explainable because the most changed attention layers are composed of 

content-dependent heads rather than position-based heads. These results suggest that 

continuous prompts utilize the knowledge encoded in the attention mechanism to 

solve the target task.  

Third, we observe a special phenomenon, where the activated neurons show 

task-common behavior rather than task-specific behavior in the second to last layer. 

Subsequently, we find that the decoding token used to predict the label word gets 

closer to the label word than to the non-label word through the layers, which means 

that continuous prompts make the embedding space of PLM adapt to the target task. 

Also, low isotropy and the narrow gap between the two distances at the second to 

last layer suggest that the activated neurons have similar skills because the desired 

label words are actually similar in the label space. Finally, the ablation study supports 

these findings. To the best of our knowledge, this study is the first to probe the 

changes in the PLM after Prompt-tuning. 
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Chapter 2. Related Works 

 

This chapter introduces several prompt-based learning methods using 

continuous prompts for the Transformer-based PLMs, comparing to discrete prompts. 

Also, Section 2.2 discusses the studies about the interpretability and transferability 

of continuous prompts. 

 

2.1. Discrete Prompts vs. Continuous Prompts 

 

Discrete prompts, which are written in human language, were first proposed to 

close the gap between the objective functions of pre-training and fine-tuning. 

Discrete prompts are usually used in two ways: In-context learning and Pattern-

Exploiting Training (PET).  

For In-context learning, Radford et al. (2019) showed that GPT-2 can solve the 

target tasks in the few- and zero-shot settings when trained via language modeling 

with the task instructions. They represented input, output, and task in natural 

language, and set the objective function P(output	|	input, task). If the task is to 

translate French to English, the input is French text and the output is English text, 

and the task instruction is such as “translate French to English”. This allows them 

to train the model on various task types from classification to generation in the 

unsupervised settings.  

GPT-3 (Brown et al., 2020), which has a similar architecture to GPT-2 but a 

larger size, was pre-trained with the instructions and examples of each task. With In-

context learning, GPT-3 showed higher performances in the un- and semi-supervised 
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settings than the performances of T5 (Raffel et al., 2020) in the fully-supervised 

settings for some tasks. These studies suggest that a large-scale PLM can solve tasks 

without any parameter-updates once it is pre-trained. 

Schick and Schütze (2021a) suggested a Pattern-Exploiting Training (PET), 

where they converted an input sentence into a cloze-style phrase with the masked 

token for an encoder-based model such as BERT (Devlin et al., 2019). The objective 

function is 𝑃(𝑦|𝑥) , where 𝑥  is an input including the template and 𝑦  is a 

verbalizer which is the single token mapped to each label. For example, if a task is 

to predict the sentiment of a review sentence, the input is “Best pizza ever! It was 

[MASK]”. The underlined is a designed template, and the model is fine-tuned to fill 

the masked token with a label word like “good” and “delicious”. In their further study 

(Schick and Schütze, 2021b), they combined PET with ALBERT (Lan et al., 2020) 

which is a light version of BERT. Thus, they not only improved the efficiency of 

training but also achieved higher performances than the performances of GPT-3 in 

NLU tasks. Additionally, Schick and Schütze (2021c) suggested PET for an encoder-

decoder based generative PLM such as T5. 

Although discrete prompts are useful in the semi-supervised settings, there are 

some limitations on the prompt engineering. In In-context learning, we cannot know 

how many examples are needed or how well the prepared examples are suitable for 

the target task. Similarly, in PET, the model performance depends on the template 

design, which requires a human to manually design the templates and verbalizers. 

Indeed, we still need to fine-tune the PLM and save the trained PLM, which is not 

efficient. 

To overcome these limitations, Li and Liang (2021) proposed Prefix-tuning for 

a lightweight training. They prepended the continuous task-specific vectors to the 
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input so that their own parameters are only trained. As continuous prompts do not 

limit their space on the embedding of PLM, they are more expressive and can affect 

all layers in PLM. Using GPT-2 and BART (Lewis et al., 2020), they showed that 

the performances on NLG tasks are comparable to the performances of fine-tuning 

both in the fully- and semi-supervised settings. Also, Prefix-tuning performs well on 

the unseen topics. However, they concluded that how Prefix-tuning improves 

extrapolation is an open-question. 

Liu et al. (2021) suggested P-tuning which is more flexible to task types and 

LM types than Prefix-tuning. They added continuous prompts and trained both PLM 

and those continuous prompts. Unlike Prefix-tuning, they implemented continuous 

prompts not only before the input but also after the input and used anchor prompt 

tokens to improve the performances. They reported that the performances improved 

both in GPT and BERT via P-tuning.   

Similarly, Lester et al. (2021) proposed Prompt-tuning v1, where they used only 

continuous prompts by freezing the parameters of PLM. This study was the first to 

train only continuous prompts. They showed that the performances of Prompt-tuning 

are comparable to the performances of fine-tuning, where the capacity of PLM has 

a key role. Thus, they concluded that Prompt-tuning is a parameter-efficient way to 

employ the knowledge LM obtained during pre-training. 

In their ablation studies on NLU tasks, they showed that the longer prompt 

length especially more than 20 is more useful. Also, they found that the prompt 

initialization methods affect the performances, where the initialization with the 

sampled vocabulary or class label embeddings is better than the random uniform 

initialization. However, the largest LM was not affected by the initialization methods.    

Gu et al. (2022) performed pilot experiments to investigate the efficient and 
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effective ways to utilize PLM with Prompt-tuning. They reported that using 

continuous prompts and discrete prompts together improves the performances of 

Prompt-tuning on sentiment analysis tasks. However, the templates in discrete 

prompts affect the performances significantly, which means that a human-effort is 

needed to select the best discrete prompts. Additionally, the verbalizer choice affects 

the performance as well. They found that the words explaining the meaning of the 

corresponding labels are generally good choices. Meanwhile, initializing the 

continuous prompts with the real word of the embedding of PLM was not helpful for 

Prompt-tuning. 

More recently, Prompt-tuning v2 was proposed by Liu et al. (2022). They tried 

to enhance the university of Prompt-tuning across scales and tasks by injecting 

continuous prompts into every layer of PLM. While Prompt-tuning v1 has low 

performances on the hard sequence labeling tasks, Prompt-tuning v2 improves the 

performances of various tasks, namely extracting question answering and named 

entity recognition. Accordingly, they claimed that deep continuous prompts could 

have a more direct impact on predicting the label. 

However, most studies about prompt-based learning have been conducted in 

English. Especially, few studies have covered Korean. Min et al. (2021) showed that 

Prefix-tuning is helpful for classification tasks in Korean using ETRI-BERT① and 

Korean RoBERTa (Min et al, 2019).  

Kim et al. (2021) introduced HyperCLOVA which is a Korean GPT-3 with 82B 

parameters. They trained GPT-3 with different sizes ranging from 137M to 82B. 

They found that the larger the model size is, the better the performance in In-context 

 
① https://aiopen.etri.re.kr/bertModel 
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few-shot learning is, except for a few tasks. Also, they have achieved the state-of-

the-art in the zero- and few-shot settings. In addition, the performances in P-tuning 

are better than the performances in In-context learning, which was the first discovery 

for the large-scale PLMs. They also discussed that the impact of discrete prompts is 

lower in the larger model. 

Furthermore, Shin et al. (2022) investigated the effects of pre-training corpora 

on In-context learning for HyperCLOVA. They reported that the corpus sources have 

a large impact on the performance of In-context learning. Especially, the corpus was 

useful when its domain was relevant to the domain of the downstream task. 

To summarize, the differences between discrete prompts and continuous 

prompts are largely three points. First, while discrete prompts are human-

interpretable tokens, continuous prompts are un-interpretable pseudo tokens. Second, 

discrete prompts require the intervention of humans to design the templates but 

continuous prompts require much less human-effort. Third, continuous prompts are 

more parameter-efficient in that they can be trained by prepending to the frozen PLM.  

Thus, we adopt Prompt-tuning v1 and Prompt-tuning v2 as training methods 

using continuous prompts. This is because they do not need to update the parameters 

of PLM and the intervention of humans in prompt design can be minimized. In other 

words, we can see how continuous prompts drive PLM clearly, minimizing the extra 

interruption that might affect training. 

 

 

 

 

 



 

 10 

2.2. The Interpretability and Transferability of Continuous 

Prompts 

 

Lester et al. (2021) tried to interpret continuous prompts by measuring the 

similarities between the embeddings of learned continuous prompts and the 

vocabulary of PLM. They observed that continuous prompts have ‘word-like’ 

representations, which are relevant to the domain of the target task. An example of 

which is the BoolQ dataset (Clark et al., 2019) of the nature/science category, where 

the continuous prompts are close to the words such as ‘science’, ‘technology’, and 

‘engineering’ in the embedding space. 

To interpret continuous prompts in human language, Khashabi et al. (2022) 

investigated the Prompt Waywardness hypothesis. In this hypothesis, there exists a 

continuous prompt that can solve the target task while becoming close to the arbitrary 

discrete prompt, which is not relevant to the target task. They observed that 

continuous prompts satisfying the Prompt Waywardness hypothesis do exist. They 

also provided some explanations. First, continuous prompts cannot be projected to 

exactly one embedding of discrete prompts. Second, when continuous prompts are 

injected only into the first layer, the deeper layers have more expressivity, where the 

effects of Waywardness get stronger. Finally, they discussed that it is hard to discover 

the human-interpretable continuous prompts, which leads to the side effects in the 

real-world scenario, such as the concealed adversarial attacks.  

Meanwhile, transfer learning using Prompt-tuning is actively researched since 

it is one of the effective ways to utilize large-scale PLMs. Besides, the transferability 

of continuous prompts between tasks and languages is also necessary to discover the 
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way continuous prompts encode task-relevant information.  

Zhao and Schütze (2021) compared three prompt-based methods; discrete 

prompts, continuous prompts, and discrete prompts + continuous prompts (mixed 

prompts), for cross-lingual few-shot learning on NLI tasks. They designed discrete 

prompts and verbalizers in English first and then translated them into target 

languages using Google translation. For mixed prompts, they added continuous 

prompts in the templates. In few-shot settings in English, continuous prompts have 

better performances than discrete prompts for most shots and mixed prompts do not 

have significant improvement. In cross-lingual few-shot settings, discrete prompts 

have rather better performances than continuous prompts. They claimed that the 

code-switched templates are helpful for the cross-lingual ability of PLM. Mixed 

prompts are useful in specific shots (64, 128).  

Vu et al. (2022b) conducted experiments on transfer learning via Prompt-tuning. 

They used 16 source tasks and 10 target tasks, where continuous prompts of the target 

tasks are initialized with the trained source continuous prompts. The source prompts 

improved the target tasks, and especially, the source tasks including high-level 

reasoning skills were useful. Also, they got the task similarity by calculating the 

cosine similarity between continuous prompts to predict the better source task for 

the target task. They found that the transferability of continuous prompts is correlated 

to the task similarity. Notably, the transferability was sensitive to the task type more 

than the domain of the dataset.   

Su et al. (2022) examined the transferability of continuous prompts in the zero-

shot setting. They observed that the source prompts can solve the same type of target 

tasks. However, the performance was low when the target task requires various 

linguistic skills. Also, they calculated the task similarity called ON score by using 
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the activation states of continuous prompts, which is a more suitable indicator of the 

response of PLM. They reported that the performances of transfer learning are more 

correlated to the ON score than to the task similarity using the cosine similarity. 

Vu et al. (2022a) factorized continuous prompts decomposed into task prompts 

and language prompts to improve the zero-shot cross-lingual transferability of 

continuous prompts in summarization tasks. They trained language prompts and task 

prompts via unsupervised learning for each language. After training task prompts on 

English summarization tasks with English language prompts, they replaced the 

language prompts with the language prompts trained in the target language, and 

directly evaluated the performance in the target language. They reported that the 

factorized prompts prevent the catastrophic forgetting problem of the PLM.  

To sum up, the explainability of continuous prompts is still an open question. 

Besides the interpretability of continuous prompts, the changes that continuous 

prompts cause to PLM are also crucial to enhance the explainability of continuous 

prompts. Also, to deal with the second reason Khashabi et al. (2022) mentioned, we 

need to investigate Prompt-tuning v2 where all layers are controlled by continuous 

prompts.  

Thus, our study focuses on the effects of Prompt-tuning v1 and Prompt-tuning 

v2 on PLM through layers, so that we can figure out the operation of continuous 

prompts in an explainable way. While many studies have investigated the influence 

of fine-tuning in PLM, few studies have investigated the influence of Prompt-tuning. 

Again, the transferability of continuous prompts is one of the indicators to investigate 

how PLM reacts according to tasks and languages. Accordingly, this study aims to 

provide the basis for the future studies of the interpretability and explainability of 

continuous prompts through transfer learning.  



 

 13 

Chapter 3. Transformer Architecture 

 

3.1. Transformer  

 

Vaswani et al. (2017) proposed a Transformer whose main part of modeling is 

the attention mechanism (Figure 1). Transformer has an encoder-decoder structure, 

where an input sentence is converted into a continuous vector in the encoder and an 

output sentence is generated in the decoder when given the continuous vectors of a 

previous step. The encoder and decoder are stacked in 𝑁 layers, and Vaswani et al. 

(2017) stacked 6 layers. 

The attention mechanism computes the attention score for each query token (𝑄) 

using key (𝐾) and value (𝑉) vectors. The softmax function is applied to compute the 

weights from 𝑄 and 𝐾, and then we get the final attention result by the dot products 

of the obtained matrix with 𝑉  (Equation 1). In the multi-head attention, we 

concatenate all heads and get the output vector 𝑍 by multiplying them by the weight 

matrix 𝑊!, so that the model can attend to other tokens in different representation 

subspaces at different positions (Equation 2). 

 

 
Attention(𝑄, 𝐾, 𝑉) = softmax3

𝑄𝐾!

4𝑑"
6𝑉	,	 

where	𝑄	 = 	a	Query	matrix, 𝐾 = 	a	Key	matrix,	 
𝑉	 = 	a	Value	matrix,	 and	𝑑" = 	the	dimension	of	a	Key 

(1) 

   

 MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑#, … , ℎ𝑒𝑎𝑑$)𝑊%, 
where	ℎ𝑒𝑎𝑑& = 	Attention(𝑄𝑊&

' , 𝐾𝑊&
( , 𝑉𝑊&

)) 
(2) 
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The encoder has two sub-layers, a multi-head self-attention layer, and a feed-

forward neural network layer. In the self-attention mechanism, 𝑄, 𝐾, and 𝑉 are the 

vectors of all words from the previous layer so that we can relate all positions in the 

input sequence to each other while considering the context. Then, the output vector 

𝑍 is fed into the position-wise feed-forward neural network (FFN) layer. The FFN 

layer is composed of two linear transformations connected with a ReLU activation, 

where the parameters are updated (Equation 3). 

 

 FFN(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥𝑊# 	+	𝑏#)𝑊* 	+	𝑏* (3) 

 

In addition to the two sub-layers of the encoder, the decoder has another multi-

head attention layer to process the output of the encoder. The masked multi-head 

self-attention layer of the decoder allows the model to know only the information 

from the previous tokens by masking the next tokens. When the outputs of the 

Figure 1 The Transformer architecture from Vaswani et al. (2017). 
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encoder 𝐾 and 𝑉 in each step are given, the decoder calculates the probability of 

the next token among the vocabulary of the model in the final linear layer. Then the 

predicted token is fed into the encoder as a new query, and the model keeps 

generating the tokens until the end token. 

To let the model know the order of the sequence, the sinusoidal positional 

encodings are added to the input embeddings at the bottom of the encoder and 

decoder (Equation 4). 

 

PE(,-.,*&) = sinT𝑝𝑜𝑠/10000*&/2!"#$%Z	
PE(,-.,*&3#) = cosT𝑝𝑜𝑠/10000*&/2!"#$%Z	

, where	𝑝𝑜𝑠	is	the	position	and	𝑖	is	the	dimension	of	the	embedding. 
(4) 

 

3.2. GPTs 

 

As Transformer has achieved high performances on the machine translation 

tasks, various models adopting the Transformer mechanism are proposed to solve 

different NLU tasks. GPT is also a Transformer-based model, which uses only the 

decoder part of Transformer. GPT (Radford et al., 2018) is pre-trained via a standard 

language modeling whose objective function is: 

 

 L(𝑈) 	= 	blogP(𝑢&|𝑢&4" , . . . , 𝑢&4#	; 	𝜃	)	
&

 (5) 

 

where 𝑈	 = 	 {𝑢", . . . , 𝑢#} is a sentence and 𝑢$ is a token and 𝑘 is the size of the 

context window, and 𝜃 is the trainable parameters of the model. The conditional 

probability 𝑃  is modeled by the multi-layer Transformer decoders. They 

demonstrate that GPT can be fine-tuned on any type of tasks by predicting a label 
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using start tokens or end tokens. 

Radford et al. (2019) proposed GPT-2 whose architecture is similar to GPT, but 

the scale is larger, 1.5B parameters (Figure 2). Additionally, the layer normalization 

was moved from the next to the attention block to the input of each block, and an 

additional layer normalization was added after the final attention block by removing 

the layer normalization after the FFN layer. Notably, they used language modeling 

as a fine-tuning strategy so that GPT-2 can overcome the inefficiencies of other LMs 

such as BERT.  

 

Finally, GPT-3 (Brown et al., 2020) with 175B parameters, which are 10x larger 

than the parameters of GPT-2, shows higher performances on various NLU tasks in 

few- and zero-shot learning. In addition to GPT-2, they used alternating dense and 

locally banded sparse attention patterns in the layers. Using In-context learning, they 

suggested that the large autoregressive PLM can be helpful for all tasks including 

Figure 2 The GPT-2 architecture with 24 layers from Heilbron et al. (2019). 
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translation, question-answering, and classification without any parameter updates. 

Although GPTs are efficient in the semi- and un-supervised settings, they show 

poor performances when trained via traditional fine-tuning strategy. To overcome 

such limitations of GPT, Liu et al. (2021) suggested P-tuning that leads to both higher 

efficiency and higher performance. 

Since GPT is generative and flexible to task types, we believe that GPT has 

great potential, especially in the multi-lingual and multi-task environment. Also, 

Prompt-tuning aims to improve the parameter-efficiency which is the advantage of 

GPT. For these reasons, this study uses the multilingual version of GPT-3 with 1.3B 

parameters (Shliazhko et al., 2022).  
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Chapter 4. Methodology 

 

In this chapter, we introduce the details about Prompt-tuning v1 and Prompt-

tuning v2 in Section 4.1. From Section 4.2 to 4.4, we discuss the main analysis 

methods including the attention mechanism, the activated neurons, and the label 

space. Lastly, Section 4.5 introduces 6 tasks used for the experiments including 

datasets in English and Korean. 

 

4.1. Prompt-tuning 

 

4.1.1. Prompt-tuning v1 and Prompt-tuning v2 

 

 

Since GPT is an autoregressive model, we make the model generate the labels 

after the separator token </s> until the end token <|endoftext|> and train continuous 

prompts by computing the conditional probability for the label words. ② Also, we 

freeze mGPT and update only the parameters of the prepended prompts. 

 
② The special tokens are the tokens used when pre-training mGPT in Shliazhko et al. 
(2022). 

Figure 3 Prompt-tuning v1 (left) and Prompt-tuning v2 (right) for KLUE-STS. Only 
prompts are trainable. 
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For a single type task, we feed the model the input { 𝑝", … , 𝑝% , < s >

, 𝑥", … , 𝑥#, </s >,𝑤&'() , < |endoftext| >} , where 𝑃 = 	 {𝑝", … , 𝑝%}  is the 

continuous prompts with the length 𝑘, the input sentence 𝑋 is {𝑥", … , 𝑥#} with the 

length 𝑛, and 𝑤&'() is the label words. Then, following Lester et al. (2021), we 

train the continuous prompts maximizing the probability: 

 

 Pr5;5&(𝑤7-82 , < |endoftext| > |𝑝#, … , 𝑝"; 	< s >, 𝑥#, … , 𝑥9, </s >	) (6) 

 

where 𝜃 is the parameters of the model and 𝜃* is the parameters of the prompt 

embeddings. Similarly, for a pair type task, the model maximizes the probability to 

generate the label words after the second separator token: 

 

 Pr5;5&(𝑤7-82 , < |endoftext| > |𝑝#, … , 𝑝"; 	< s >, 𝑥##, … , 𝑥9#, 

</s >, 𝑥#*, … , 𝑥:* , </s >) (7) 

 

In this way, we can use the unified format regardless of the task type, which means 

that continuous prompts can be transferred between any tasks.  

For Prompt-tuning v2, we prepend continuous prompts for all layers using the 

past_key_value element used for the attention mechanism. The difference with the 

original Prompt-tuning v2 (Liu et al., 2022) is that we inject key and value as the 

same one so that we get only one prompt embedding per layer which has the exact 

same dimension as the model. Otherwise, continuous prompts are composed of two 

separate embeddings. Also, we use the LM version of Prompt-tuning v2 to compare 

with Prompt-tuning v1 systematically.  

For both Prompt-tuning v1 and Prompt-tuning v2, we randomly initialize the 

continuous prompt ranging from -0.5 to 0.5 since different initializing for each task, 
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such as using the embedding of label words, leads to fluctuating results. Also, we 

use the prompt length 𝑘 = 20. As previous works suggest, the position of prompts 

and the length of prompts affect the performances inconsistently. In this study, we 

use continuous prompts in the most basic setting because we focus on the 

generalizability of tasks and languages on how continuous prompts operate. 

 

4.1.2. Sub-prompts Transfer Learning 

 

Additionally, this study investigates the transferability of Prompt-tuning by 

splitting continuous prompts into language prompts and task prompts. Motivated by 

Vu et al. (2022a), we get language prompts by post-training mGPT on the 

multilingual Oscar-mini dataset ③  in each language while freezing randomly 

initialized task prompts. We expect that continuous prompts in the multilingual 

model adapt to specific language during post-training by maximizing the probability: 

 

 Pr5;5&%;5&'(𝑥&|𝑝#
8 , . . . , 𝑝#;8 	; 𝑝#< , . . . , 𝑝#;< 	; 𝑥&4" , . . . , 𝑥&4#) (8) 

 

where 𝜃*! is the only trainable parameters. We set language prompts (P+) and task 

prompts (P,) with length 𝑘 = 10 for all tasks, initializing separately. 

After training the language prompts, we trained the task prompts for each task, 

freezing the corresponding language prompts (Equation 9). In this way, we factorize 

the language sub-prompts and task sub-prompts which are available for any 

combination of language and task. 

 
③ https://huggingface.co/datasets/nthngdy/oscar-mini. Oscar dataset (Ortiz Suarez et al., 
2019) is an Open Super-large Crawled Almanach Corpus that is based on the Common 
Crawl corpus(https://commoncrawl.org/). 
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 Pr5;5&%;5&'(𝑡7-82 , < |endoftext| > |	𝑝#8 , … , 𝑝#;8 	; 𝑝#< , … , 𝑝#;< 	;	 

< s >, 𝑥#, … , 𝑥9, </s >	) (9) 

 

Preparing language prompts and task prompts, we conduct transfer learning in 

the cross-task and cross-language settings (Figure 4). For task transfer, the target task 

sub-prompts are replaced with the source task sub-prompts. While the parameters of 

the source language sub-prompts are fixed, the replaced task sub-prompts are trained.  

 

 

For language transfer, we set the source task and target task as the same task in 

other languages. That is, when the source language is English and the target language 

is Korean, we transfer GLUE-STS’ to KLUE-STS. Thus, the target language sub-

prompts are trained while freezing the trained task sub-prompts on the source 

language. By training the language sub-prompts, we believe that the model learns 

the target language from the knowledge of the source language encoded in frozen 

target task sub-prompts. 

Finally, using principal component analysis (PCA), we visualize continuous 

Figure 4 Transfer learning with sub-prompts. ‘Cross-task’ is an example for 
‘GLUE-STS’ to ‘SST2’ and ‘Cross-language’ is an example for English to 

Korean (‘GLUE-STS’ to ‘KLUE-STS’). 
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prompts of each target task to see how continuous prompts are clustered. In the case 

of deep continuous prompts, we analyze continuous prompts for each layer. 

 

4.2. The Attention Mechanism 

 

In GPT, the attention mechanism works in the left-to-right direction, so most 

tokens give the maximum attention to their previous token. For this reason, we try 

to explain the attention of mGPT meaningfully.  

Vig and Belinkov (2019) consider that such a tendency of the attention 

distribution in GPT is based on not the content but the position. To measure how 

attention varies over different input sequences, they suggest attention variability, 

which adopts the basics of the mean absolute deviation: 

 

 
Variability= 	= 	

∑ ∑ ∑ |𝛼&,>(𝑥) − 𝛼n&,>|&
>?#

|A|
&?#A∈C

2 ∙ ∑ ∑ ∑ 𝛼&,>(𝑥)&
>?#

|A|
&?#A∈C

 
(10) 

 

where 𝛼$,.(𝑥)  is the attention score 𝑥$  gives to 𝑥. , and 𝛼Q$,.  is the mean of 

𝛼$,.(𝑥) overall sentences 𝑥 in dataset 𝑋. Meanwhile, the first token of each input 

sequence tends to receive the maximum attention score. Thus, the first token is 

excluded to calculate the variability. Following Vig and Belinkov (2019), we 

compute the variability with the first 𝑁 tokens (𝑁 = 10) excluding the first token 

for each dataset.④ 

 

 
④ For commonsense generation task, we use first 2 tokens without the first token because 
all input sequences include only 3 words. 
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The low variability means that the attention score is given focused on the 

specific position over different input sequences. That is, the head with higher 

variability is a content-dependent head. Figure 5 shows that the attention heads in 

the initial layers are likely to focus on the position rather than the content in GPT-2 

small.  

Since we do not update the parameters of mGPT, we believe that the changes 

in the attention mechanism after Prompt-tuning show the effects of Prompt-tuning 

on mGPT. Thus, we investigate the difference in the attention distribution between 

the pre-trained mGPT and the prompt-tuned mGPT. We use Kullback-Leibler 

divergence which is commonly used to measure the difference between two 

probability distributions: 

  

KLdiv(PromptPLM(𝑋), PLM(𝑌)) 	= 	 b 𝑥 log
𝑥
𝑦

A∈	C,E∈	F

 
(11) 

 

where 𝑋 and 𝑌 are the attention weights of each head for the same input sequence, 

from the prompt-tuned PLM and the pre-trained PLM respectively. 

To get the KL divergence per head, we post-process the attention distributions. 

Figure 5 The heatmap of the attention variability from Vig and Belinkov (2019). 
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We first sum the attention scores of each token, and then remove the attention score 

of the special tokens <s> and </s> in each input. In the case of PromptPLM(X), we 

exclude the attention scores of prompt tokens before post-processing. Finally, we 

replace 𝑥 and 𝑦 with 1e-20 when they are 0 after passing the softmax to avoid 

infinity when computing KL divergence. 

Lastly, we get the correlation between the attention variability and the attention 

changes measured with KL divergence through layers to see whether we can interpret 

the patterns of the changes in terms of the knowledge mGPT learned during pre-

training. We hypothesize that the more changed layers are the layers with the content-

dependent heads since continuous prompts make use of the information actively. 

 

4.3. The Activated Neurons 

 

The hidden states from the self-attention layer are fed into the FFN layers. Dai 

et al. (2022) regard the FFN layer as the emulation of the self-attention layers. 

According to them, the simple equations of each layer are: 

 

 Self − AttG(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄$𝐾$!)𝑉$ (14) 

 FFN(𝐻) 	= 	𝑔𝑒𝑙𝑢(𝐻𝑊#)𝑊* (15) 

 

where ℎ  is an attention head and 𝐻  is the concatenation of the results of all 

attention heads. Given an input vector 𝐻  as a query vector, 𝑊"  and 𝑊/ 

correspond to keys and values. They proposed a new method to detect knowledge 

neurons, which represent the relational fact, via the fill-in-the-blank cloze task. 

When the hidden states pass through the first linear layer, the knowledge neurons are 
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activated, and the second layer combines the corresponding memory (Figure 6). 

They found that the activation of the knowledge neurons is positively correlated to 

the knowledge expression in the prompt.  

Meanwhile, the FFN layers in GPT are different from other transformer-based 

models, in that the linear layer is substituted by the 1-dimensional convolutional 

layer with GELU activation function (Figure 7). Thus, in GPT, c_fc layer and c_proj 

layer correspond to 𝑊" and 𝑊/ in Equation 15.  

 

 

Figure 7 The simplified FFN layer structure in mGPT. The 
number in the bracket is the dimension. 

Figure 6 The knowledge neurons from Dai et al. (2022). 
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As Prompt-tuning fills the gap between pre-training and fine-tuning, Prompt-

tuning is a good way to observe the knowledge that the neurons encode in PLM. Su 

et al. (2022) proposed an ON score, where we can measure the response of the 

prompt-tuned model. Following them, this study computes the ON score using the 

decoding token per layer (Equation 17). Given an input sequence {𝑃,</s >}, we 

regard the output of the c_proj layer in GPT as the activation state of the continuous 

prompts. We compute the ON score between all possible combinations of tasks in 

both languages and get the average of them to see the trend line across layers. 

 

 
ON(𝑃8

<( , 𝑃8
<)) 	= 	

AS(𝑃8
<() 	 ∙ 	AS(𝑃8

<))
||AS(𝑃8

<()||	||AS(𝑃8
<))||

 

, where	AS(𝑃8
<*)	is	the	activation	state	of	decoding	token	 (17) 

</s > 	on	task	𝑡"	in	layer	𝑙 

 

Additionally, we compute the ON score between source prompts and target 

prompts to compare the scores in two conditions: without and with transfer learning. 

For ‘without’ transfer learning, target prompts are the prompts including language 

sub-prompts and task sub-prompts trained on the target task from scratch. For ‘with’ 

transfer learning, target prompts are the prompts including language sub-prompts on 

the target language but task sub-prompts trained on the target task initialized from 

the task sub-prompts of the source task. 

 

4.4. The Label Space 

 

The final outputs of the 𝑙-th layer represent the embedding vectors including 

the context and task knowledge. Especially, we use the representations from the last 



 

 27 

layer to decode the verbalizer, which is one of the key elements in Prompt-tuning. 

However, there is a problem that we cannot guarantee the best verbalizer because 

there always exists better choices and the label space⑤  is not limited to the 

verbalizers. Recently, several studies endeavor to find the optimal label words in an 

automatic way (Schick et al., 2020; Gao et al., 2021). Despite these efforts to 

improve the verbalizer engineering problem, few studies figure out the underlying 

reason for the sensitivity to the verbalizer.  

In this study, we try to explore the interactions between continuous prompts and 

the label space of PLM. First, we measure how well the embedding space represents 

semantics by computing the isotropy of the pre-trained mGPT and the prompt-tuned 

mGPT. We get the isotropy of each dataset using the cosine similarity between the 

𝑁 pairs of the randomly sampled words, following Rajaee et al. (2022) (Equation 

18). For each input, after extracting the representations in all layers, we randomly 

choose a representation of one token. With the selected representations, we paired 

two representations among them randomly to calculate the cosine similarity. 

Second, we compare the isotropy for the prompt-tuned PLM and the pre-trained 

PLM to investigate the effects of Prompt-tuning. If the isotropy of the embedding 

space where continuous prompts are implemented gets higher, Prompt-tuning drives 

PLM to improve semantic expressiveness (Rajaee et al., 2022).  

 

 IsotropyHIJKLM: (𝑊:) 	= 	
1
𝑁b cosine	similarity(𝑥&,𝑦&)

N

&?#,A+OE+	
 

, where	𝑥& ∈ 	𝑋, 𝑦& 	 ∈ 	𝑌	,	 

𝑋	and	𝑌	are	the	sets	of	randomly	sampled	embeddings, 

and	𝑊:	is	the	embedding	matrix	of	the	model	𝑚. (18) 

 
⑤ In this study, we call the space of the verbalizers the label space. 
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Since we exclude the special tokens when computing the isotropy, we get the 

cosine similarity between the decoding token and the randomly sampled word 

(Equation 19). This allows us to see whether the decoding token has different 

representations from other tokens. 

 

IsotropyHIJKLM
2PQ-2&97	<-"P9(𝑊:) 	

= 	
1
𝑁b cosine	similarity(</s >, 𝑦&)

N

&?#,R/.SOE+	
 

(19) 

 

Intuitively, in the embedding space, the decoding token would be closer to the 

corresponding label word than to the non-label word in each example. Thus, we get 

the cosine similarity between the decoding token and the label words across layers 

and compare it to the distance between the decoding token and the non-label words: 

 
 distTUVMT = cosine	similarityT</s >,𝑤7-82Z (20) 

 distLIL4TUVMT = cosine	similarityT</s >,𝑤9-947-82Z (21) 

 

where the label candidate words = {𝑤&'() , 𝑤#'#_&'()} for the binary classification, 

and {𝑤&'() , 𝑤#'#_&'()_", . . . , 𝑤#'#_&'()_%1"}  for the multi classification with 𝑘 

labels. In the case of the multi-label classification tasks, we randomly select a 

𝑤#'#_&'() in {𝑤#'#_&'()_", . . . , 𝑤#'#_&'()_%1"}. Also, we use the first token of the 

label candidate words when split into sub-tokens. 

 

4.5. Tasks 

 

We conduct experiments on 6 tasks: Semantic Textual Similarity (STS), Natural 
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Language Inference (NLI), Sentiment Analysis (SA), Topic Classification (TC), 

Question and Answering (QA), and Commonsense Generation (CG). 

STS. Semantic Textual Similarity is a task to measure the similarity score 

between two sentences from 1 to 5. The higher the score is, the higher the similarity 

is. In this study, we binarize the score into similar and dissimilar class. If the score 

is more than 3, it is labeled as similar and if the score is less than 3, it is labeled as 

dissimilar.  

NLI. Natural Language Inference is a task to decide the semantic relationship 

of two sentences, a premise and a hypothesis, among three categories: entailment, 

contradiction, neutral. Given a premise first, the model should determine if a 

hypothesis is true or false or undetermined.  

SA. Sentiment Analysis is a task to determine the sentiment expressed in a 

sentence. Usually, the sentence is classified into two labels: positive and negative. 

The datasets for SA include user reviews from various industrial domains such as 

movie, restaurant, and product, or comments and texts from Social Network Service 

and News articles. In this study, we use the movie review dataset which is one of the 

popular domains. 

TC. Topic Classification dataset includes sentences or paragraphs from 

different themes. We use news topic classification task, where the topic such as 

IT/science and Social is annotated for each headline. Also, the topics vary for each 

language. 

QA. For Question and Answering for reading comprehension, the model should 

extract the answer to a question from the given context. The answer can be a word 

or spans consisting of more than two words. 

CG. Commonsense Generation is a task proposed to assess the model’s ability 
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to generative commonsense reasoning. Using a set of three common concepts 

including an object (noun) and action (verb), the model generates a full grammatical 

sentence which has a coherence with an everyday scenario.  

 

4.5.1. Evaluation Metrics 

 

The evaluation metric depends on task types. First, for a single-label 

classification task SA, we use accuracy score. Especially, for STS, we report F1 score 

since we binarize the scores. Second, for multi-label classification tasks (NLI, TC), 

we use macro-F1 score.  

Given a confusion matrix (Table 1), we calculate accuracy (Equation 22) and 

F1 scores (Equation 25 & Equation 26), where 𝐹12 is a F1 score for each class 𝑐. 

 

 
Actual Class 

True False 

Predicted Class 
True True Positive (TP) False Positive (FP) 

False False Negative (FN) True Negative (TN) 

Table 1 A confusion matrix. 

 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (22) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (23) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (24) 
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 𝐹1 = 2	 ×	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (25) 

 

 𝑚𝑎𝑐𝑟𝑜	𝐹1 =
1
|𝐶|b𝐹1Q

Q∈W

 
(26) 

 

Third, for QA, which is a span extraction task, Exact Match (EM) and F1 score 

are used. If the model predicts the exact same answer span as the gold answer, EM 

is 1, otherwise, EM is 0. We get the total EM score by averaging the EM scores for 

each sample. For F1 score, individual words in the gold answer are regarded as the 

gold class. 

Lastly, the performance of CG can be assessed by several metrics for generation 

tasks, such as BLEU, ROUGE, and METEOR. However, according to Lin et al. 

(2020), this study uses Coverage score, which is more suitable for the captioning 

tasks by which CG is motivated. Coverage score is the average percentage of the 

input concepts included in the output concepts that are lemmatized. For 

lemmatization, we use NLTK module⑥ for English and Mecab module⑦ for Korean. 

 

4.5.2. English Dataset 

 

GLUE-STS is a dataset of GLUE benchmark (Wang et al., 2018) for STS task. 

GLUE-STS consists of sentence pairs from news headlines, video and image 

captions, and natural language inference data. The similarity score is annotated by 

human ranging 1 to 5.  

SNLI is a Stanford NLI corpus (Bowman et al., 2015), where the premises were 

 
⑥ https://www.nltk.org/ 
⑦ https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/ 
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crawled from caption corpus Flickr30k (Young et al., 2014) and the hypotheses were 

written by 2,500 workers. Flickr30k contains images collected from Flickr, and 5 

reference sentences were captioned by human. 

SST2 (Socher et al., 2013) is the Stanford Sentiment Treebank dataset for SA 

including fine-grained movie reviews from rottentomato⑧ which are introduced in 

Pang and Lee (2005). Each sentence was processed by the Stanford parser and 

annotated by human. 

AGnews is constructed by Zhang et al. (2015) using AG’s news article corpus⑨. 

Each headline is classified into 4 categories: World, Sports, Business, and 

Science/Technic.  

SQuAD 2.0 is a reading comprehension question answering dataset (Rajpurkar 

et al., 2018) consisting of Wikipedia articles. SQuAD 2.0 is a new version of SQuAD 

1.0 (Rajpurkar et al., 2016), in that they add unanswerable questions about the same 

paragraphs. Crowd workers were asked to craft context relevant questions to build 

high-quality dataset. 

CommonGen is constructed to examine the ability to generate sentences with 

commonsense reasoning (Lin et al., 2020). They first collect concept sets from 

visually-grounded sentences extracted from image captioning datasets and video 

captioning datasets. Then crowd workers wrote the sentences using sampled frequent 

concept-sets. They evaluated the generated sentences using NLTK tokenizer.  

 

 

 
⑧	https://www.rottentomatoes.com/ 
⑨ http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html 
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4.5.3. Korean Dataset 

 

KLUE-STS is a dataset of KLUE benchmark (Park et al., 2021) for STS task. 

KLUE-STS contains sentences from various domains and topics, such as airbnb 

review corpus, policy news data, and ParaKQC data⑩. Unlike GLUE-STS dataset, 

the similarity score is annotated by human ranging 0 to 5.  

KorNLI is a NLI dataset constructed by Ham et al. 2020. They translated the 

English NLI datasets: SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), 

and XNLI (Conneau et al., 2018), and the experts post-edited the translated sentences. 

The translation sentences of SNLI and MNLI compose training dataset and the 

translation of XNLI validation and test dataset. 

NSMC⑪ is a naver sentiment movie corpus crawled from naver movie review 

website⑫, which is commonly used to NLU tasks in Korean. Reviews whose rating 

score higher than 9 are labeled as positive reviews, and reviews whose rating score 

from 1 to 4 are labeled as negative reviews. 

KLUE-Ynat is an Yonhap News Agency dataset for Topic classification from 

KLUE benchmark. News headlines are classified into 7 categories: Politics, 

Economy, Society, Culture, World, IT/Science, Sports. 

KorQuAD 1.0 (Lim et al., 2019) is a reading comprehension question 

answering dataset constructed from Wikipedia article corpus. KorQuAD 1.0 was 

constructed in the same way with SQuAD 1.0. In addition, they introduce a Syllable-

level F1 score which is more suitable to Korean. 

 
⑩ ParaKQC is an utterance dataset collected from user utterance at smart home devices.	
⑪ https://github.com/e9t/nsmc 
⑫ https://movie.naver.com/movie/point/af/list.naver 
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KommonGen is a Korean version dataset of CommonGen. Seo et al. (2021) 

used image captioning dataset from AI-HUB⑬ which is a machine translated dataset 

from MS COCO dataset Using Mecab tokenizer, they evaluated the model with 

BLEU, Meteor, Rouge, and Coverage score suggested in Lin et al. (2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
⑬ 
https://aihub.or.kr/aihubdata/data/view.do?currMenu=120&topMenu=100&aihubDataSe=e
xtrldata&dataSetSn=261 
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Chapter 5. Experiments 

 

This chapter discusses the results of the experiments. Section 5.1 reports the 

performance results briefly, and then Section 5.2 presents the PCA of continuous 

prompts. The following three chapters cover the analysis of the attention mechanism, 

the activated neurons, and the label space. Lastly, Section 5.6 reports the results of 

the ablation studies. 

 

5.1. Performance Results 

 

5.1.1. Prompt-tuning v1 and Prompt-tuning v2 

 

 English Korean 

Task V1 V2 V1 V2 

STS 83.2 84.23 38.43 71.59 

NLI 80.95 86.46 45.67 62.8 

SA 87.15 88.18 84.94 87.18 

TC 85.8 87.27 81.18 84.27 

QA 61.98/47.25 67.21/51.91 65.41/59.62 72.32/66.50 

CG 78.4 82.97 87.94 91.33 

Table 2 The Performance results of Prompt-tuning v1 and Prompt-tuning v2. 

 

We used two A100 GPUs with 80G memory for Prompt-tuning. The verbalizers 

for each task are presented in Table 5 in Appendix and the hyperparameters are 

presented in Table 6 in Appendix. The number of the trainable parameters for 

Prompt-tuning v1 is 40960 and the one for Prompt-tuning v2 is 983040.  
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Table 2 shows that every task improves in Prompt-tuning v2. Indeed, the larger 

parameters and the higher controllability in the deeper layers would lead to higher 

performances. On average, the scores improve by 2.85 for English and 10.57 for 

Korean. Especially, while the scores of most tasks rise by under 10, the scores of 

KLUE-STS and KorNLI rise by around 35 and 17, respectively. Since mGPT is 

trained on large English resources but low Korean resources, the number of tokens 

in Korean is much lower than the one in English. Accordingly, we surmise that deep 

continuous prompts are useful for low-resource language in the multilingual model. 

 

5.1.2. Sub-Prompts Transfer Learning 

 

For transfer learning, we used two A100 GPUs mentioned above and three Tesla 

V100 GPUs supported by the National IT Industry Promotion Agency (NIPA) as 

well. We present the performance results of sub-prompts transfer using heatmaps so 

that we can glimpse the transferability between the source task and the target task. 

The full performances are reported in Tables from 7 to 12 in Appendix. 

Figure 8 shows the results of task sub-prompts transfer. We measure the 

transferability by subtracting the standard target score from the transferred target 

score. The standard target score is a score without transfer learning, using 

corresponding task sub-prompts. Thus, the positive values indicate the improved 

scores and the negative values indicate the degraded scores. 

In terms of the target tasks (columns), while most performances improve in 

Prompt-tuning v2, some target task performances are degraded in Prompt-tuning v1. 

Particularly, the performances of NLI (SNLI, KorNLI), CG (CommonGen, and 
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KommonGen) are reduced significantly. Similarly, in terms of the source tasks 

(rows), most source tasks are useful for the target tasks in Prompt-tuning v2, where 

the target performances always improve when the source tasks are NLI, QA (SQuAD, 

KorQuAD), and CG both in English and Korean. These findings confirm the results 

from the previous work, where Vu et al. (2022b) found that the source tasks including 

high-level reasoning skills are useful. 

 

 

 

In Figure 9, the results of language sub-prompts transfer show similar patterns 

as the results of task sub-prompts transfer. The scores in the cells are calculated in 

Figure 8 The performance results of task sub-prompts transfer. The row is 
a source task and the column is a target task.  
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the same way as the scores in Figure 8. CG, QA, and NLI are useful source tasks 

both in English and Korean. Notably, the score of Ynat transferred from AGNews (-

9.12) is degraded a lot in Prompt-tuning v2. Thus, we conclude that the source tasks 

including general linguistic knowledge are more beneficial than the source tasks with 

specific domain and specific knowledge. 

 

 

 

5.2. Analysis 

 

5.2.1. The Visualization of Continuous prompts 

 

Deep continuous prompts encode task-relevant information clustering by 

language. 

We present the visualizations of continuous prompts into 2-dimension using 

PCA to investigate how they encode the knowledge according to task and language. 

Figure 9 The performance results of language sub-prompts transfer. The 
row is a ‘source language to target language’ and the column is a task. 
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While we cannot find any meaningful clusters in Prompt-tuning v1 (Figure 10), 

continuous prompts are grouped in Prompt-tuning v2 through layers (Figure 11). 

Each point in the figures corresponds to one continuous prompt token of the 

corresponding task, where each task has 20 points according to the prompt length. 

After passing the first layer (layer 0), continuous prompts tend to be gathered 

according to the target task. Although continuous prompts are dispersed again in 

layer 5, they keep forming clusters according to the target task. The task clusters in 

different languages are grouped, especially those with high cohesion in the middle 

layers (7~17). Additionally, starting from layer 14, we observe the separation of 

some clusters (NLI, STS, TC) that are not well separated in the previous layers (See 

Figure 31 in Appendix).  

 

Figure 10 The PCA of continuous prompts in Prompt-tuning v1. 
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Deep continuous prompts head for the target task after transfer learning, which 

is varying between task and language sub-prompts. 

Next, we analyze task and language sub-prompts to examine the role of each 

sub-prompt trained to the target tasks. To conserve space, we provide only the PCA 

results of sub-prompts transferred from QA and NLI. The grey points are the source 

task and source language sub-prompts, and the others are the sub-prompts trained on 

Figure 11 The PCA of continuous prompts in Prompt-tuning v2. 
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the target tasks. Since we use the sub-prompt length of 10 here, each sub-prompts 

have 10 points. Similarly, while there are no notable clusters or movements in 

Prompt-tuning v1 (Figure 12 & Figure 13), there are some patterns in Prompt-tuning 

v2, where task sub-prompts and language sub-prompts are separated (Figure 14 & 

Figure 15). 

For each source task, the transferred sub-prompts are clustered by the 

corresponding target task. Also, the clusters are similar to the previous results (Figure 

11), where continuous prompts of QA, CG, and NLI especially form the isolated 

clusters. These results suggest that task sub-prompts move their encoded information 

from the source task to the target task, which is a consistent movement.  

Additionally, in Prompt-tuning v1, the language-transferred sub-prompts are 

not separated from the task-transferred sub-prompts. However, in Prompt-tuning v2, 

the language-transferred sub-prompts are not blended into the task-transferred sub-

prompts, which means that they do have different skills. We believe that the different 

role of each sub-prompt drives the source sub-prompts to better utilize PLM in 

transfer learning. For task transfer learning, the language sub-prompts help the task 

sub-prompts to adapt to the new task while keeping the information about its 

language. Likewise, for language transfer learning, the task sub-prompts help the 

language sub-prompts to learn the new language while keeping the information about 

the target task. 
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Figure 12 The PCA of continuous prompts transferred from QA task in Prompt-tuning v1. 

Figure 13 The PCA of continuous prompts transferred from NLI task in Prompt-tuning v1. 
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Figure 14 The PCA of continuous prompts transferred from QA task in Prompt-
tuning v2. 
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Figure 15 The PCA of continuous prompts transferred from NLI task in Prompt-
tuning v2. 
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5.2.2. The Attention Mechanism 

 

Deep continuous prompts employ content-dependent attention heads, while 

changing the attention scores in the middle-lower and upper layers significantly. 

We find that the lower layers have lower variability (Figure 16), which is a 

consistent result with the observations in the prior work (Figure 5). The lower layers 

have the position-dependent heads that give the max attention scores to the previous 

token. Meanwhile, the attention heads in layers 7~9 have high attention variability 

regardless of tasks and languages, which means that these layers contain the content-

dependent heads. These results show that the attention heads of mGPT have encoded 

context information in a robust way during pre-training (See Figure 32 in Appendix). 

 

 

Figure 17 displays the KL divergence results in Prompt-tuning v1 and Prompt-

tuning v2 on STS (GLUE-STS, KLUE-STS) and TC (AGNews, Ynat) tasks. In 

Prompt-tuning v1, we observe that the attention distribution of the final layer 

Figure 16 The average of the attention variability of all tasks in both languages. 
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changes a lot, followed by the initial layers. In Prompt-tuning v2, the layers between 

6 and 13 change significantly as well, which consist of the content-dependent heads. 

Additionally, the results are consistent with the same task rather than with the same 

language. We present the results of other tasks in Figure 33 and 34 in Appendix. 

 

 

Figure 18 The average of the KL divergence per layer. 

Figure 17 The KL divergence result of STS and TC task. 
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To analyze the changes by layer, we plot the average KL divergence of all tasks 

per language for each layer. Figure 18 shows that the middle layers from 7 to 17 

change remarkably in Prompt-tuning v2 with the peaks at the odd layers {7, 9, 11, 

13, 15, 17}. On the other hand, in Prompt-tuning v1, the changes in the middle layers 

are relatively minor. Also, the peaks appear at different layers for each language; the 

even layers {6, 8, 10} for both languages, the even layers {12, 16} for Korean, and 

the odd layers {13, 15} for English. This is because they do not have a direct impact 

on the deeper layers in PLM (Liu et al, 2022) since continuous prompts are injected 

only in the embedding layer in Prompt-tuning v1.  

 

 

 

Figure 19 The correlation between the attention variability and the KL divergence.  

(a) (b) 

(c) (d) 
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Next, we present the results of the Pearson correlation (p-value < 0.05) between 

the attention variability and the KL divergence in each task. For heads in Prompt-

tuning v1 (Figure 19-a), most results show negative correlations both per heads and 

layers, which means that the changes in the attention mechanism do not depend on 

the content dependency of each head in mGPT. On the other hand, most results show 

positive correlations in Prompt-tuning v2 (Figure 19-b), where more various tasks 

have meaningful relationships in more various heads. Thus, we suggest that Prompt-

tuning v2 uses the information in the heads more actively than Prompt-tuning v1. 

For layers (Figure 19-c & Figure 19-d), grouping the layers into 4 groups 

according to the depth, we sum up the observations in the attention mechanism. First, 

the lower layers (layer 0~5), where the position-based heads are concentrated, show 

a small change both in Prompt-tuning v1 and Prompt-tuning v2. Second, the middle-

lower layers (layer 6~11) have different patterns in Prompt-tuning v1 and Prompt-

tuning v2. Considering that the content-dependent heads are gathered in layers 7~9, 

the positive correlations in Prompt-tuning v2 suggest that deep continuous prompts 

are trained while employing the context information encoded in mGPT.  

Third, the middle-upper layers (layer 12~17) do not show significant changes 

in Figure 18, yet, we observe that the changes in the pair-input type tasks in these 

layers are comparable to the changes in the middle-lower layers (Figure 20). This 

implies that the attention heads in the deeper layers are activated to understand the 

relationship between two sequences. Lastly, the upper layers (layer 18~23) have the 

same pattern in both Prompt-tuning v1 and Prompt-tuning v2, where the last layer 

shows a significant change. Simultaneously, they have negative correlations, which 

implies that the additional elements of PLM are involved in activating the attention 

head to predict the label in these layers. In the following sections, we will see the 
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effects of continuous prompts in terms of other structures of mGPT. 

 

 

Continuous prompts utilize the attention mechanisms more deeply in transfer 

learning.   

After sub-prompts transfer learning, we find that the changes in the deeper 

layers get greater. Particularly, Figure 21 shows that the changes around layer 17 are 

notable in Prompt-tuning v2 since these layers have smaller changes without transfer 

learning (Figure 18). Also, in language sub-prompts transfer (Figure 22), the gap 

between each language is larger than the gap without transfer learning (Figure 18). 

In Prompt-tuning v1, the gap between the peaks at layer 2 is large and the gaps 

become wider after layer 14. In Prompt-tuning v2, the gap between languages in 

layer 7 is large and the gaps fluctuate in the middle and upper layers. 

Considering that the attention changes of the same task in English and Korean 

are parallel in Figure 17, we believe that the language sub-prompts trained on each 

language cause the difference between languages after transfer learning.  

 

 

Figure 20 The average of the KL divergence per layer grouped by input type. Single-
input type includes SA, TC, CG and pair-input type includes STS, NLI, QA. 
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5.2.3. The Activated Neurons 

 

The activated neurons of continuous prompts are task-specific in the deeper 

layers, whereas other features of PLM make the neurons common in the second 

to last layer. 

The results of the average ON score between all combinations of tasks in each 

language are reported in Figure 23, where the lower the score is, the more task-

specific the layer is. We find that the scores in the first layer are high and the scores 

Figure 21 The average of the KL divergence per layer, after task sub-prompts transfer. 

Figure 22 The average of the KL divergence per layer, after language sub-prompts transfer. 
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reduce rapidly in the second layer, which means that the first layer has encoded the 

common information regardless of task and language. Meanwhile, the results in 

layers from 2 to 5 have some fluctuations in Prompt-tuning v1, while there are few 

fluctuations in Prompt-tuning v2. The middle layers (layer 6~17) also have 

fluctuations, but with more narrow gaps between layers. Notably, the scores become 

the lowest in layer 21 in Prompt-tuning v1 and in layer 20 in Prompt-tuning v2.  

While these results suggest that the deeper layers have task-specific neurons, 

the second to last layer shows peaks with high scores near the scores in the first layer, 

which has not been observed in previous works. Since most tasks have highly similar 

neurons in the second to last layer, we hypothesize that other features of PLM affect 

the neurons when solving the target tasks. We also present the ON scores between 

all tasks in Figure 35 and Figure 36 in Appendix. 

 

 

The task-specific neurons are activated consistently after transfer learning. 

After sub-prompts transfer learning, we get the ON score between source tasks 

and target tasks, and between source tasks and target tasks that are initialized by the 

Figure 23 The average ON score between every combination between all tasks. 
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source task. We expect that the score keeps or gets higher with transfer learning 

because source sub-prompts would learn the knowledge about the target task. To be 

specific, the kept score means that consistent neurons are activated with and without 

transfer learning. The higher score indicates that more similar neurons are activated 

when solving the target tasks. We observe both in the results of transfer learning.  

For task sub-prompts transfer, in Figure 24, the scatters are labeled according 

to the source tasks in the legend and the texts for each scatter are the target tasks. For 

instance, the yellow point with ‘glue_sts’ in Figure 24-a has the ON score between 

SQuAD and GLUE-STS as the x-axis and the ON score between SQuAD and 

GLUE-STS, which is transferred from SQuAD, as the y-axis. 

Figure 24 shows two groups of clusters. The orange circles are clusters with 

similar ON scores between tasks with and without transfer learning. This cluster 

suggests that the patterns of the activated neurons between the source tasks and target 

tasks are consistent when the sub-prompts of the target task are initialized from the 

sub-prompts of the source task. Also, the blue circles are clusters with higher ON 

scores between tasks with transfer learning than without transfer learning, which 

means that the target task has more commonly activated neurons with the source task 

after transfer learning.  

For language sub-prompts transfer, in Figure 25, the scores are maintained 

(orange box) or raised (blue box) in most cases. Additionally, we compare the scores 

between languages. In Prompt-tuning v1, the scores between STS, TC, and NLI are 

similar between languages, and in Prompt-tuning v2, the scores between CG and the 

ones between QA are similar between languages.  
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Figure 25 The results of ON score in the last layer without and with language sub-
prompts transfer. 

Figure 24 The results of ON score in the last layer without and with task sub-prompts 
transfer.  

(a) (b) 

(c) (d) 
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5.2.4. The Label Space 

 

Prompt-tuning does not improve the isotropy of PLM. 

We first present the cosine-based isotropy in the PLM and the prompt-tuned 

PLM in Figure 26. We measure the isotropy by calculating the cosine similarities 

between randomly sampled token pairs for each dataset (Equation 18) and getting 

the average of them. Again, the lower the cosine similarity is, the higher the isotropy 

is. Additionally, we get the cosine similarity between the decoding token and the 

randomly sampled token (Equation 19) for each dataset and get the average as well. 

 

 

In the first embedding layer, the cosine similarity is low both in the pre-trained 

PLM (grey lines) and the prompt-tuned PLM (blue lines and purple lines), which 

means that words have discriminative representations. However, the cosine 

similarity increases near 0.8 and keeps high, and then begins increasing around layer 

Figure 26 The average cosine-based isotropy. ‘random’ is IsotropyHIJKLM:  and 
‘random-last’ is IsotropyHIJKLM

XMHIXKLY	ZI[ML. 
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15. Reaching a peak at layer 22, it decreases at the last layer. Also, the decoding 

token does not show different patterns from other tokens. Thus, even though the 

decoding token has a specific role, its semantic representation is not discriminative 

from other common tokens. Finally, despite the trivial gaps between the pre-trained 

PLM and the prompt-tuned PLM, the isotropy is not improved after Prompt-tuning, 

which means that the embedding space of mGPT is anisotropic.  

 

Continuous prompts interact with the representation space of PLM through 

layers. 

To repeat, the low isotropy leads to the high similarity between semantically 

non-related random words. Then the lowest isotropy at layer 22 is one of the 

explanations to the special phenomenon we observed in the previous section, where 

the similarities between any tasks increase at layer 22. Indeed, the model decodes 

the label word using the hidden state of the last layer (layer 23) which contains the 

information passing the second to last layer (layer 22). Thus, the observed high 

similarity in the activated neurons at the second to last layer (Figure 23) could be 

because the labels each model has to decode are actually similar in the representation 

space.  

To test our intuitions, we present the cosine similarities in the label space. 

Figure 27 illustrates that the cosine similarities of the decoding token </s> with the 

gold label words (dist+345+) get higher than the ones with the non-gold label words 

(dist6761+345+) in the deeper layers. Particularly, the second to last layer has the 

trough, where the gaps between two similarities narrow down. We believe that the 

anisotropic embedding space of mGPT could lead the task-common neurons in the 

second to last layer because the desired label words have similar representations in 
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the anisotropic space. Thus, we conclude that these observations are one of the 

possible explanations as to why continuous prompts are hard to interpret.  

Therefore, we claim that continuous prompts interact with PLM since the 

embedding spaces and the activated neurons have explainable relations. In addition, 

while the gap between dist+345+ and dist6761+345+ is not significant in the PLM, 

the gap increases after layer 11 in the prompt-tuned model. Accordingly, continuous 

prompts make use of the task-specific knowledge in the embedding space of the PLM.  

 

 

Prompt-tuning makes the decoding token closer to the label words of target 

tasks than to the label words of source tasks after transfer learning. 

Next, we get the average of the cosine similarities in label space of all 

combinations of tasks for transfer learning. In Figure 28, the dotted lines, which have 

a ‘pre-’ label, are calculated from the prompt-tuned PLM on the source task. The 

results show that the similarity between the decoding token and ‘label-’ is higher 

than the similarity between the decoding token and ‘pre-label-’, especially after layer 

Figure 27 The average of the cosine similarities in the label space. 
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7. Moreover, the gaps between ‘pre-label-’ and ‘pre-non-label-’ are narrow than the 

gaps between ‘label-’ and ‘non-label-’, which means that the decoding token makes 

its representation adapt to the target task during transfer learning.  

 

 

In the case of language transfer learning (Figure 29), the gaps between the ‘pre-’ 

labeled lines are similar to the gaps between the labeled without ‘pre-’ lines, which 

means that the decoding token conserves the information from the source task. 

Figure 28 The average of the cosine similarities in the task-transferred label space.  
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Simultaneously, the similarity between the decoding token and the transferred label 

word is higher. Notably, the gap between the dotted lines and the solid lines widens 

from the lower layers. These results imply that the decoding token makes its 

representation adapt to the target language in a different way from the task transfer 

learning. 

 

 

Figure 29 The average of the cosine similarities in the language-transferred label space. 
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5.3. Ablation Studies 

 

5.3.1. Zero-shot Cross-lingual Results 

 

We measure the zero-shot cross-lingual performance without and with the 

factorization of sub-prompts. Without factorizing, we use the prompts of the source 

language to evaluate the corresponding task in the target language. With factorizing, 

we use the source language sub-prompts instead of the target language sub-prompts.  

To this end, the model generates the label words in the source language. If the 

target task is KLUE-STS, the task sub-prompts of GLUE-STS are prepended and the 

model generates the label words in English. For QA tasks, we let the model generate 

without any other controls. Since the label words should be the same for 

classification tasks, we exclude TC (AGNews, Ynat) here. Also, we exclude the 

generation task, CG (CommonGen, KommonGen).  

 

 

Figure 30 illustrates the results with the factorized sub-prompts. We report the 

relative zero-shot performance (zero-shot cross-lingual performance / original 

Figure 30 The relative zero-shot cross-lingual performance in Prompt-tuning v1 and 
Prompt-tuning v2. The rows with ‘*’ are the scores from the target language sub-prompts 

and the rows without ‘*’ are the scores from the source language sub-prompts. 
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performance). For the scores in the rows named with ‘*’, we use the target language 

sub-prompts and the ones named without ‘*’, the source language sub-prompts. One 

example of this is that when we evaluate KLUE-STS using task sub-prompts trained 

on GLUE-STS, we prepend the Korean sub-prompts for the former case and the 

English sub-prompts for the latter case.  

For STS, English is helpful for Korean, and even the zero-shot cross-lingual 

scores are higher than the original full-shot scores. On the contrary, Korean is not as 

useful as English since the score drops about 50% in Prompt-tuning v1 and about 

30% in Prompt-tuning v2. Similarly, for NLI, only English helps solve Korean NLI 

in Prompt-tuning v1. Meanwhile, in Prompt-tuning v2, Korean is also helpful for 

solving English NLI. This is because, since KLUE-STS and KorNLI show relatively 

low original performances, their task sub-prompts do not have enough knowledge to 

solve the tasks. For SA, the scores are highly comparable to the original full-shot 

scores in both cross-lingual settings. For QA, the scores drop about 20% on average, 

which means that the extraction task is more sensitive to language than the 

classification task. 

In Section 5.2.1, we observe that the language sub-prompts have separate 

spaces from the task sub-prompts in Prompt-tuning v2, which means that they 

encode different information. Thus, we expect that the factorized sub-prompts are 

practical since the model can utilize the source language information from the 

language sub-prompts. However, factorized prompts are not always the best choice. 

In most cases, the scores without factorizing are higher than the ones with factorizing, 

or the differences between them are trivial.  

These results suggest that each sub-prompt employs the information from the 

prepended frozen sub-prompts during updating parameters. We conclude that even 
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if each target language sub-prompts encode language-specific information, the 

relationship between the source task sub-prompts and the source language sub-

prompts is powerful. Thus, more systematic factorizing would be required to gain 

profit in the zero-shot cross-lingual setting. 

 

5.3.2. Deep continuous prompts compression 

 

In this section, we investigate whether deep continuous prompts can better 

utilize the specific layers, where the effects of Prompt-tuning are notable. To this end, 

we feed continuous prompts to the layers, where changes and roles are clear.  

In Section 5.2.2, we find that the changes in the attention distribution show a 

zigzag trend line. The peaks are detected in layers {1, 7, 9, 11, 13, 15, 17, 21} and 

the troughs are detected in layers {2, 8, 10, 12, 14, 16, 18, 20, 22}, both in English 

and Korean. We hypothesize that continuous prompts are more beneficial for the 

layers at the peaks than the layers at the troughs. 

Furthermore, looking at the results of the activated neurons in Section 5.2.3, the 

last layer (23) is a task-specific layer, and the second to last layer shows a special 

phenomenon, where the neurons of all tasks are similar to each other. Also, the 

neurons in layer 20 have the lowest ON score, which means that the neurons are 

activated depending on tasks. 

Motivated by these observations, we group the layers into two categories: peak 

and trough. The peak group includes layers {0, 1, 7, 9, 11, 13, 15, 17, 20, 21, 22, 23}, 

and the trough group includes layers {0, 2, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23}. We 

set the first layer {0} and the last four layers {20, 21, 22, 23} in common, in 
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consideration that the former is the input layer, and the latter ones are task-specific 

layers. Each group includes half of the number of layers of mGPT, which means that 

they have half the parameters of continuous prompts in Prompt-tuning v2. 

This method is similar to Liu et al. (2022). They conducted the ablation study 

of Prompt-tuning v2 by adding continuous prompts to certain layers grouping into 

two groups; the first four layers and the last four layers. On the contrary, this study 

tries to classify the layers in an explainable way. Also, we believe that the alternating 

dense and sparse attention mechanism of mGPT prevents the performances from a 

significant drop when excluding some layers. 

 
 English Korean 

Task Peak Trough Peak Trough 

STS 84.17 83.74 60.32 63.26 

NLI 85.35 84.85 61.97 58.18 

SA 90.02 89.79 86.73 86.25 

TC 86.66 86.46 83.75 82.66 

QA 64.40/49.29 61.82/47.11 68.82/62.41 66.57/60.42 

CG 82.56 81.62 90.43 90.21 

Table 3 The performance results of prompt compression with peak-layers and trough-layers. 

 

Table 3 shows the performances of each group on all tasks. Compared to the 

results of vanilla Prompt-tuning v2 (see Table 2), most scores drop but raise in 

comparison to the results of Prompt-tuning v1. Notably, the scores of both groups on 

SST2 raise compared to Prompt-tuning v2. Except for KLUE-STS, the peak groups 

show higher performances than the trough groups. Thus, we conclude that 

continuous prompts in the peak groups employ the knowledge of mGPT better. 
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Chapter 6. Conclusion 

 

In this study, we investigated how continuous prompts and deep continuous 

prompts encode task-relevant knowledge and employ the knowledge from the PLM. 

Using mGPT, we conducted the experiments on various tasks, including 

classification and generation in each language.  

First, we found that deep continuous prompts show task-specific 

representations in the deeper layers, while continuous prompts in Prompt-tuning v1 

do not. Also, deep continuous prompts have shared task-relevant information within 

languages. Second, we observed that the changes in the attention mechanism after 

Prompt-tuning v2 can be explained in terms of the attention variability. The higher 

the attention variability is where the more significant the changes are. 

Simultaneously, the last four layers show negative correlations between the attention 

variability and the changes in the attention distribution after both Prompt-tuning v1 

and Prompt-tuning v2. Thus, we concluded that these layers play another key role to 

solve the target task.  

Third, the response of the model suggests that the deeper layers have more task-

specific neurons. Unlike previous studies, we reported a special phenomenon in the 

second to last layer, where most of all tasks have unexpected common neurons. Also, 

the transferred neurons are consistent with tasks and languages. Lastly, we confirmed 

that the decoding token becomes closer to the label words after Prompt-tuning. 

Additionally, with the label space, we offered explanations as to the special 

phenomenon in the activated neurons. Since the desired label words are actually 

similar between tasks in the anisotropic space, the activated neurons in the second to 
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last layer show task-common behavior. We hope that this study provides a guide to 

the explainable continuous prompts and the explainable PLM. 

This study, however, has some limitations. Although we explore the 

multilingual space of PLM, our findings are limited to English and Korean. We 

choose Korean as a non-English language because Korean is understudied in 

Prompt-tuning and has different linguistic properties from English, such as typology. 

Also, even though our experiments have a fixed seed (42), other trials with other 

seed numbers are required, since different seed numbers can lead to fluctuating 

results. Additionally, we fail to analyze the observations relating to the performances. 

We encourage further studies to include more various languages and more systemic 

experiments. 
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Task English Verbalizer (train/validation/test) 

STS similar (2994/629), different (2755/871) 

NLI 
entailment (183414/3329/3368), contradiction (183185/3278/3237), 

neutral (182762/3235/3219) 

SA positive (37569/444), negative (29780/428) 

TC business, scitech, sports, world (30000/1900) 

Table 4 The verbalizers (label words) and the number of each example for English classification 
datasets. If test dataset is not provided, we use validation dataset instead. 

 

Task Korean Verbalizer (train/validation/test) 

STS 유사 (5602/220), 상이 (6066/299) 

NLI 
함의 (183382/523/1670), 모순 (183382/524/1670), 중립

(183382/523/1669) 

SA 긍정 (74825/25171), 부정 (75710/24826) 

TC 
정치 (7379/722), 경제 (6118/1348), 생활문화 (5751/1369), 사회 

(5133/3701), IT과학 (5235/554), 세계 (8320/835), 스포츠 (7742/578)  

Table 5 The verbalizers (label words) and the number of each example for Korean classification 
datasets. If test dataset is not provided, we use validation dataset instead. 

 

Task Batch size Epochs Max length 

STS 16 10 180 

NLI 32 16 150 

SA 32 20 256 

TC 64/32 10 80 

QA 16 12 400 

CG 16 20 60 

Table 6 The hyperparameters of each task. For batch size in task TC, 
64 is for English dataset and 32 is for Korean dataset. 
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 GLUE-STS SNLI SST2 AGNews SQuAD CommonGen 

GLUE-STS 81.1 76.97 88.41 85.37 58.98/44.06 78.22 

SNLI 83.11 76.5 88.76 85.47 59.65/45.14 79.81 

SST2 82.99 74.14 88.76 85.88 58.91/44.38 76.5 

AGNews 83.05 71.63 89.44 85.2 57.83/42.74 77.63 

SQuAD 84.13 75.91 89.33 85.59 58.03/43.57 80.53 

CommonGen 83.69 75.36 89.1 86.01 58.76/44.02 79.56 

Table 7 Cross-task performance in English Prompt-tuning v1. The columns are the source 
tasks and the rows are the target tasks. The grey cells are the baseline scores. 

 GLUE-STS SNLI SST2 AGNews SQuAD CommonGen 

GLUE-STS 84.38 85.94 90.59 87.71 66.43/51.16 83.65 

SNLI 86.04 85.57 92.08 87.87 66.79/51.78 80.71 

SST2 85.55 85.78 90.02 87.74 66.16/50.97 78.09 

AGNews 84.67 85.71 91.16 87.31 66.29/51.02 81.75 

SQuAD 84.64 86.16 91.28 87.8 66.18/51.04 80.5 

CommonGen 84.41 86.12 91.28 88 66.29/51.07 78.86 

Table 8 Cross-task performance in English Prompt-tuning v2. The columns are the source 
tasks and the rows are the target tasks. The grey cells are the baseline scores. 

Table 9 Cross-task performance in Korean Prompt-tuning v1. The grey cells are the 
baseline scores. 

  
 
 
 
 

 KLUE-STS KorNLI NSMC Ynat KorQuAD KommonGen 

KLUE-STS 41.15 37.09 83.67 78.01 60.87/54.57 83.26 

KorNLI 64.4 47.12 83.96 78.93 63.15/56.87 82.31 

NSMC 37.11 47.88 83.7 79.88 63.35/57.23 81.6 

Ynat 54.68 52.9 83.92 79.67 58.99/53.13 82.61 

KorQuAD 64.39 53.96 84.33 82.29 61.31/55.12 82.98 

KommonGen 44.92 40.01 84.17 80.18 63.55/56.99 82.9 
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 KLUE-STS KorNLI NSMC Ynat KorQuAD KommonGen 

KLUE-STS 59.24 62.37 86.71 84.3 71.16/65.17 90.89 

KorNLI 78.98 62.48 87.26 84.39 71.96/66.24 90.81 

NSMC 68.37 63.27 86.73 84.58 71.49/65.53 90.65 

Ynat 57.74 63.74 86.84 83.59 71.53/65.58 90.94 

KorQuAD 75.7 63.08 86.96 85.11 70.74/64.65 90.66 

KommonGen 75.87 62.98 87.48 85.24 72.53/66.74 90.48 

Table 10 Cross-task performance in Korean Prompt-tuning v2. The grey cells are the 
baseline scores. 

 
 STS NLI ST TC QA CG 

En_to_ko 43.87 50.88 83.71 78.43 63.85/57.55 81.37 

Ko_to_en 81.61 78.82 89.33 85.05 58.50/43.75 80.55 

Table 11 Cross-lingual performance in Prompt-tuning v1. ‘En_to_ko’ is English to Korean 
and ‘Ko_to_en’ is Korean to English. 

 STS NLI ST TC QA CG 

En_to_ko 72.02 63.26 87.39 74.47 72.01/66.17 91.13 

Ko_to_en 83.55 86 89.67 87.51 66.09/51.19 83.67 

Table 12 Cross-lingual performance in Prompt-tuning v2. ‘En_to_ko’ is English to Korean 
and ‘Ko_to_en’ is Korean to English. 

 STS NLI ST QA 

En_to_ko 37.68 57.49 85.32 34.93/47.84 

En_to_ko* 40.90 50.93 84.51 33.50/46.25 

Ko_to_en 60.42 46.84 79.55 42.29/49.17 

Ko_to_en* 59 40.17 78.91 41.71/48.27 

Table 13 Zero-shot cross-lingual performance in Prompt-tuning v1 with the factorized sub-
prompts. ‘En_to_ko’ is English to Korean and ‘Ko_to_en’ is Korean to English. The rows 
with ‘*’ are the scores using the target language sub-prompts and the rows without ‘*’ are 

the scores using the source language sub-prompts. 
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 STS NLI ST QA 

En_to_ko 68.18 59.10 78.10 42.34/49.79 

En_to_ko* 67.34 56.77 77.62 40.95/48.60 

Ko_to_en 53.86 77.16 80.04 39.10/52.03 

Ko_to_en* 43.44 76.23 80.84 40.04/52.92 

Table 14 Zero-shot cross-lingual performance in Prompt-tuning v2 with the factorized sub-
prompts. ‘En_to_ko’ is English to Korean and ‘Ko_to_en’ is Korean to English. The rows 
with ‘*’ are the scores using the target language sub-prompts and the rows without ‘*’ are 

the scores using the source language sub-prompts. 
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Figure 31 The PCA result in Prompt-tuning v2 over all layers. 
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Figure 32 The attention variability for all tasks. 
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Figure 33 The KL divergence in Prompt-tuning v1. 

Figure 34 The KL divergence in Prompt-tuning v2. 
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Figure 35 ON score in Prompt-tuning v1 between all tasks.  
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Figure 36 ON score in Prompt-tuning v2 between all tasks.  
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국문 초록 

  

사전학습 언어 모델을 효과적으로 원하는 태스크에 사용할 수 있는 

대표적인 파라미터 효율적인 방법 중 하나는 continuous prompts를 

훈련시키는 것이다. 이에 따라 최근에 많은 연구들이 continuous 

prompts를 활용한 학습 방법을 제안하였다. 그러나, continuous 

prompts의 설명가능성이 사전학습 언어 모델의 신뢰성을 높이기 위한 

중요한 요소임에도 불구하고 이와 관련된 연구는 매우 적다. 따라서 본 

연구에서는 continuous prompts의 설명가능성에 대한 문제를 해결하기 

위해 Prompt-tuning v1 (Lester et al., 2021)와 Prompt-tuning v2 (Liu 

et al., 2022)이 사전학습 언어 모델에 미치는 영향을 살펴본다.  

이를 위해 본 연구에서는 다국어 언어 모델 GPT를 사용하여 

실험하여 태스크와 언어에 대해 일반화 가능성을 모색해보았다. 또한, 

본 연구에서는 continuous prompts를 활용한 전이 학습도 진행하였다. 

먼저 continuous prompts가 태스크와 언어에 따라 벡터 공간에서 

모이는지 조사하고자 하였다. 이어서 continuous prompts가 사전학습 

언어 모델을 어떻게 활용하는지를 GPT의 세 가지 주된 구조인 어텐션 

메커니즘, 활성화 뉴런, 레이블 공간에 초점을 맞추어 보고자 하였다. 

이를 위해 본 연구에서는 다음과 같은 연구 질문을 설정하였다: (1) 

continuous prompts를 태스크나 언어에 따라 구별할 수 있을까? (2) 

프롬프트 튜닝 이후 어텐션 메커니즘의 변화에서 설명가능한 패턴을 

발견할 수 있을까? (3) continuous prompts의 활성화 뉴런에서 레이어에 

걸친 설명가능한 패턴을 발견할 수 있을까? (4) 사전학습 언어 모델의 

레이블 공간과 continuous prompts의 상호작용을 포착할 수 있을까? 

첫번째로 continuous prompts가 태스크에 대해 학습한 정보에 따라 

구분되는 공간을 가지고 있음을 관찰하였다. 두번째로 continuous 

prompts가 특히 문맥 의존적인 어텐션 헤드를 활용하면서 사전학습 

언어 모델의 어텐션 메커니즘을 활용하고 있음을 관찰하였다. 세번째로 

활성화 뉴런은 더 깊은 레이어에서 태스크 특징적인 정보를 담고 있었다. 

그런데, 마지막에서 두번째 레이어에서는 오히려 태스크에 공통적인 

행동을 보였다. 마지막으로, 사전학습 언어 모델의 등방성이 낮음에도 

불구하고 continuous prompts는 임베딩 공간 상에서 디코딩 토큰을 

레이블이 아닌 단어보다 레이블인 단어와 더 가깝게 만들고 있었다. 

전체적으로 본 관찰 결과들은 전이 학습 이후에도 일관적으로 나타났다. 



 

 81 

결과적으로, 본 연구에서는 continuous prompts가 사전학습 언어 

모델이 사전학습을 하면서 얻은 지식을 태스크를 해결하는 데 사용하고 

있음을 관찰하였다. 
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