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Abstract

Analogue gravity is an interdisciplinary research program which simulates

curved spacetime physics using tabletop experiments. This study concerns,

in principle, the measurable analogue gravitational effect in quasi-1D finite-

size dilute Bose-Einstein Condensate (BEC) whose inter-particle interaction

is contact interaction. Because the Hamiltonian of the Bose gas has the

global U(1)-symmetry, the total number of particle N is fixed. Hence, in the

large N system, one can use 1/
√
N as a small expansion parameter for the

field. A number-conserving Bogoliubov expansion in this thesis is done by

simply including the N−1/2-order field to the usual non-number-conserving

Bogoliubov expansion which breaks U(1)-symmetry breaking. The included

field is interpreted as a condensate correction induced by the Bogoliubov field.

The expansion validity solely depends on the Bogoliubov assumption of the

smallness of the depletion. And the analysis is done in a valid regime. Especially,

the time scale of such a validity regime is investigated also.

The study covers two finite-size systems which are experimentally feasible in

ultra-cold gas. Firstly, the 1D finite homogeneous BEC is investigated. Using

the number-conserving Bogoliubov expansion, one can get the exact mode

solution for the equations of motion up to N−1/2-order field expansion for this

model. The condensate is assumed to be noninteracting in the beginning, and

in its ground state to ensure a well-defined initial vacuum state. By suddenly

turning on the interaction, the condensate is driven out of equilibrium instanta-

neously. Notably, this assumption of the initial vacuum state allows one to avoid

the ambiguity in choosing a vacuum state for interacting condensate which

is due to phase diffusion and the consequent condensate collapse. Using the
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exact solution of mode expansion in a given initial vacuum state, the depletion

and condensate correction is calculated. It is revealed that the depletion and

condensate density corrections cannot be disentangled by the measurement of

the power spectrum. Furthermore, even though the initial condensate is at rest

and the leading order condensate does not move, the quantum fluctuation of the

depleted particles gives rise to a nontrivial condensate flux in the subleading

order.

Moreover, the quantum backreaction force is identified as the deviation

from the classical Eulerian force which can be obtained by using the Madelung

representation. It is also shown that for the leading order condensate at rest,

the classical force in the working order (N0) is determined by only the total

density of particles. Hence, the knowledge of total density as a function of time

gives the viable route for experimental measurement of quantum backreaction

force. In addition, the classical and total force can be written as a conservative

form, i.e., one can find the scalar potential for them. Because the potential

converges much faster than force, one can get the classical and total force

potential in analytic form and can plot them, from which one can demonstrate

that the quantum backreaction force attenuates a lot of the classical force near

the boundaries.

Secondly, the 1D finite-size piece-wise homogeneous flow model is studied.

The flow is sustained by the coherent source and drain placed at its boundary.

The Mach number in each region is the ratio between the flow velocity and the

sound speed in each region. Especially, the analogue event horizon is determined

by the Mach number exceeding 1. It is shown that, regardless of the non-

ii



Hermicity of the Bogoliubov Hamiltonian, it is, in principle, possible to sustain

the stationary sonic black hole with a single event horizon.

The dynamical instabilities occur like black hole-white hole pairs. The black

hole’s lifetime is defined by the instabilities and the lifetime dependence on the

system parameters is also investigated. Quantum depletion in this model is

suggested as a diagnostic tool to validate the usage of Bogoliubov’s theory and

to describe the analogue Hawking process. One can find the clear signature of

Hawking radiation in the depletion both inside and outside the event horizon.

The relation between the Schiff-Snyder-Weinberg effect to the instability in

the model is also investigated qualitatively.

Keywords: Bose-Einstein Condensate, Analogue Gravity, Depletion, Quantum

Backreaction, Number-Conserving Bogoliubov Expansion

Student ID: 2012-20359
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1 Introduction

Analogue gravity is the research program that investigates the phenomena

coming from general relativity or the quantum field theory in curved spacetime

in the analogous tabletop experiment. The analogous relation between gravity

between other systems is noticed for a long time. Especially, in 1967, Sakharov

noticed that many condensed matter systems are analogous to general relativity

[61]. So, he suggests recognizing gravity not as a fundamental theory but as

an emergent phenomenon from a more fundamental theory similar to the

hydrodynamics that emerges from the motion of particles consisting of fluid.

His idea is called the “induced gravity” or “emergent gravity” scenario of the

quantum gravity model.

A few years later, Unruh showed that accelerating observers in flat space-

time can detect quanta even in the vacuum [73]. Especially, he showed that

Hawking radiation is a general phenomenon of particle creation that can be

obtained by appropriate boundary conditions. Moreover, he suggests the sonic

analogue of the black hole, dumb-hole, which gives the same kinematic equations

of motion for the sound wave and gives a sonic analogue of Hawking radiation

[72].

From Unruh’s suggestion, one can get an idea of getting around the diffi-

culties of research in quantum field theory in curved spacetime and general

relativity. For example, the observation of cosmological Hawking radiation is

1



notorious, because the thermal spectrum of usual massive black holes is ex-

tremely small so it is very weak and is hidden in the relatively high-temperature

thermal bath. It can, in principle, be probed by the emission spectrum of

the primordial black holes, but the primordial black holes themselves are not

detected yet. But, in the analogue system, one can tune up the temperature

of the Hawking radiation spectrum by controlling the experimental system

parameters. Fascinated by this idea, analogue gravity is the research program

that investigates the phenomena coming from general relativity or quantum

field theory in curved spacetime in an analogous tabletop experiment is settled.

Because of its original suggestion from Unruh, the mainstream work was

on exploring Hawking radiation. There was a lot of theoretical improvement in

understanding Hawking radiation, and experimental suggestions on measuring

it. Finally, researchers succeed in measuring the analogue Hawking radiation.

Mainly, in the analogue models of Bose-Einstein condensate (BEC), not only

the thermal spectrum of radiation but also the correlation between Hawking

and its partner mode are observed by the Steinhauer group [51]. There is also a

lot of increase and development in both theoretical and experimental aspects of

analogue gravity in other phenomena also in recent years. It is stated that the

new frontiers of analogue gravity are started and the new goals of investigating

generalized quantum field theory in curved spacetime phenomena are settled

[15].

The depletion is the first-order correlation function which tells how many

of the Bose particles are not in the condensate state. Even though the concept

is simple, measuring depletion is not easy and challenging. Theoretically, its

smallness compared to the total particle tells the validity regime that the

Bogoliubov approximation holds. In analogy with gravity, it is also related
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to particle creation such as Hawking radiation and the backreaction effect.

Hence, the investigation of the depletion measurement is not only hard but also

important. The measurement of the depletion and its importance in analogue

gravity is debated in this study.

The backreaction is how the matter field influences the background space-

time. In analogue gravity in BEC, the condensate is regarded as a background

spacetime. Hence, one needs to include the condensate change caused by the

sound wave or linear field. In order to describe that change properly, one

needs to use the number-conserving theory for Bose gas. Moreover, not like

real gravity, the quantum dynamics of Bose gas are known. Hence, one can

calculate the analogue quantum backreaction for Bose gas dynamics. In this

thesis, the well-defined notion of quantum backreaction in the linearization

procedure is defined. The backreaction in analogue gravity is studied in [38,

55, 4, 74, 32]

In an actual tabletop experiment, we have a finite-size system. Moreover,

Bose-Einstein condensates cannot exist in infinitely extended quasi-1D black

hole models. This can be read, for instance, from the condensate perturbations

of [33], which imply a (generic) logarithmic divergence of the quantum depletion

with the system size at T = 0. At finite temperature, this divergence is stronger

(linear in system size), as dictated by the Hohenberg theorem [28], showing that

finite temperature effects as predicted by quasicondensate models might not be

extendable to condensates. Nonetheless, henceforth our analysis is restricted

to zero point (vacuum) fluctuations (T ∼ 0), which pertain to the theory

sector responsible for the quantum Hawking process. In this regime, a (weak)

logarithmic divergence with the system size means that we can safely consider

larger condensates while maintaining sufficient control of the system depletion.
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Furthermore, another crucial aspect of infinite-size models is linked to

the theory of U(1) symmetry (in the absence of external sources). As the

condensate existence breaks this symmetry, the theory always admits at least

one zero-frequency excitation, and if the condensate is infinite in size, then the

system spectrum is continuous. This is particularly important for black hole

analogues, for the Hawking-like process is a low-energy phenomenon, and thus

more sensitive to boundary conditions. Accordingly, to assume the robustness of

the Hawking process with respect to the system size is a strong assumption that

needs clarification. Indeed, the spectrum cannot even be continuous for finite-

size configurations, and because the system is not homogeneous, nontrivial

filtering of the excitations existent in infinite analogues should occur.

Hence, this thesis devotes to investigating finite-size systems. Two simple

but important systems are investigated. The 1D finite-size uniform condensate

at rest is the simplest system one can imagine. It corresponds to the 1D static

finite-size universe. The backreaction in this model is analytically calculated,

and the measurement is also suggested.

The other system is the 1D finite-size flow with two homogeneous regions

which are called upstream and downstream. By varying the system parameter,

one can control the Mach number of the system and the corresponding metric.

Particularly, one can make the downstream Mach number to be supersonic

to make the analogue Black hole. Not like the torus model, which has only

one horizon. Because of the nonHermicity of the Bogoliubov Hamiltonian, the

finite size flow model can be suffered from dynamical instability. The stability

of the black hole system is investigated.
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2 Quantum Field Theory in Curved Spacetime

2.1 Basic Formulation

Classical Field and Quantization — Quantum field theory in curved spacetime

treats the quantum fields in curved spacetime. One can find the Lagrangian

or equations of motion for the classical field theory. And one can also quantize

the field without ambiguity [17]. For simplicity, let us see the massless scalar

field ϕ coupled to gravity. The spacetime is defined as a 4-dimensional pseudo-

Riemannian manifold (M,O,A,∇, g) (See Sec. 8.1) The action is

S = −1

2

∫
d4x

√−g(∇µϕ∇νϕ+m2ϕ2 + ξRϕ2). (2.1)

where g := det gµν , R is the Ricci (curvature) scalar, and ξ is a dimensionless

constant. ξ = 0 is called the minimal coupling and ξ = 1/6 is called the

conformal coupling. One can easily get the Klein-Gordon (KG) equation by

solving the Euler-Lagrange equation

□ϕ+ (m2 + ξR)ϕ = 0, (2.2)

where □ = gµν∇µ∇ν is the covariant d’Alembertian operator. To get a general

solution of Eq. (2.2), one needs to have a well-posed Cauchy problem. In other

words, spacetime must be globally hyperbolic.
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If a canonical formulation is desired, a decomposition of M in spacetime

must be introduced. Concretely, one needs two ingredients:

• A Global time function t : M → R defining a foliation of M in Cauchy

hypersurfaces Σt labelled by the value of t.

• An “evolution” vector field tµ, satisfying tµ∇µt = 1, which provides an

identification points in different leafs. It provides the “time flow”

For given t, tµ, one can define the time derivative ϕ̇ := tµ∇µϕ and conjugate

momentum

Π :=
δS

δϕ̇
=

√
hnµ∇µϕ, (2.3)

where nµ is the unit normal to Σt and h := det[hµν ] where hµν is an induced

metric on Σt by gµν .

Given a fixed background metric gµν , the KG equation is linear in ϕ. Hence,

the space of complex solutions SC is a vector space. Given two solutions

ϕ1(x), ϕ2(x) one can define the KG current

jKG
µ (ϕ1, ϕ2) := ϕ∗1∇µϕ2 − (∇µϕ

∗
1)ϕ2. (2.4)

And one can also define the KG-product

(ϕ1, ϕ2)KG := i

∫
Σt

dΣµjKG

= i

∫
d3x(ϕ∗1Π2 −Π∗

1ϕ2) (2.5)

where Π1,2 is the conjugate momentum of ϕ1,2 each and dΣµ = d3x
√
hnµ. The

KG product is independent of the choice of Σt chosen in the foliation. It is a

sesquilinear inner product in SC.

Quantization such as canonical quantization, path integral or algebraic

quantization can be done without ambiguity. For example, the canonical
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quantization can be done by imposing

[ϕ̂(t, x), Π̂(t, x′)] = iδ(x− x′). (2.6)

Characterization of Quantum States and Physical Interpretation— As indi-

cated by Fulling, the particle interpretation or Fock space representation is not

adequate for general cases in quantum field theory in curved spacetime [19]. It

is, however, more familiar and historically important. In this thesis, the Fock

space representation is also adopted. The procedure is following

• Choose any splitting of positive/negative subspace such as SC = S+⊕S−

satisfying:

– (·, ·)KG being positive definite in S+.

– S− = (S+)∗ so that (·, ·)KG is negative definite;

– S+⊥S− i.e., for ϕ1 ∈ S+, φ2 ∈ S− : (ϕ1, φ2)KG = 0.

If {φi(x)}∞i=1 is a basis of S+, then {φ∗
i (x)}∞i=1 is a basis of S−.

• Define the representation of “operator valued distribution” ϕ̂(x) as

RF [ ϕ̂(x) ] =
∑
i

φi(x)âi + φ∗
i (x)â

†
i (2.7)

where âi = (φi, RF [ϕ̂])KG and â†i = −(φ∗
i , RF [ϕ])KG. The RF [ · ] means

the representation in Fock space. Hence, the commutation relation Eq. (2.6)

implies

[âi, âj ] = (φi, φ
∗
j ) = 0 (2.8a)

[â†i , â
†
j ] = (φ∗

i , φj) = 0 (2.8b)

[âi, â
†
j ] = (φi, φj) = 0 (2.8c)
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Note that Eq. (2.7) is not the operator, one can define the “smeared

Heisenberg field operator” by introducing the test function and smearing

on it [75].

• The vacuum state |0⟩ associated to the choice of S+ is defined as

∀âi : âi|0⟩ = 0. (2.9)

• The one-particle Hilbert space H is the completion of (S+, (·.·)KG) i.e.,

the space spanned by {â†i |0⟩}∞i=1.

• The symmetric Fock space F built from H is

F(H) :=
∞⊕
n=0

Hn = C⊕H+H2 + . . . (2.10)

where Hn = H⊗s . . .⊗s H︸ ︷︷ ︸
n times

i.e., the space spanned by

∞∏
i=1

(â†i )
ni√

(ni)!
|0⟩

where ni ∈ {0, 1, 2, . . .}.

Note that the concepts of vacuum and particles depend on the choice of S+

or equivalently the choice of representation. Hence, the particle concept is

ambiguous and the physical interpretation of observables and quantum states

is difficult [17].

2.2 Bogoliubov Transformation

Since there are infinitely many choices of representations, one needs to find the

transformation connecting two different representations. Let the two different

choices of representation as in Table. 2.1
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Splitting SC = S+
1 ⊕ S−

1 SC = S+
2 ⊕ S−

2

Basis of positive frequency {φ(1)
i } {φ(2)

i }

Annihilation operator â
(1)
i = (φ

(1)
i , ϕ̂)KG â

(2)
i = (φ

(2)
i , ϕ̂)KG

Vacuum state, Hilbert and Fock Space |0⟩1, H1, F1 |0⟩2, H2, F2

Table 2.1 Table of notation in two different choices of splitting of the

frequency in the positive and negative frequency.

Since {φ(1)
i , φ

(1)∗
i } is a basis of SC, ∃αij , βij ∈ C such that

φ
(2)
i =

∑
j

αijφ
(1)
j + βijφ

(1)∗
j , (2.11)

where the coefficients αij = (φ
(1)
j , φ

(2)
i )KG, βij = −(φ

(1)∗

j , φ
(2)
i )KG are called

the Bogoliubov coefficients.

Because each basis is orthonormal,

∑
k

αikα
∗
jk − βikβ

∗
jk = δij , (2.12a)

∑
k

αikβjk − βikαjk = 0. (2.12b)

And the inverse transformation for the Eq. (2.11) is

φ
(1)
i =

∑
j

α∗
jiφ

(2)
j − βjiφ

(2)∗
j . (2.13)

Let us assume that there is a unitary operator U : F1 → F2 by RF1 [ϕ̂] 7→

URF1 [ϕ̂]U
−1 = RF2 [ϕ̂]. Hence,

U−1â
(2)
i U =

∑
j

α∗
ij â

(1)
j − β∗ij â

(1)†
j (2.14a)

Uâ
(1)
i U−1 =

∑
j

αjiâ
(2)
j − βjiâ

(2)†
j (2.14b)
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Hence, if βij ̸= 0 for some i, j, then the vacuum is different. i.e.,

U |0⟩ ≠ |0⟩2, (2.15)

i.e., U |0⟩1 is not the vacuum in F2. Note that â
(1)
i |0⟩1 = 0. Hence,

0 = Uâ
(1)
i U−1(U |0⟩1) = (

∑
j

αjiâ
(2)
j − βjiâ

(2)†
j )U |0⟩1. (2.16)

The explicit form of the state |0⟩1 in F2 is

U |0⟩1 = N exp
[1
2

∑
i,j

(∑
k

β∗ikα
−1
kj

)
â†i â

†
j

]
|0⟩2. (2.17)

where N is a normalization factor. The number of particles (quanta) corre-

sponds to the mode decomposition φ
(2)
i contained in U |0⟩1 is

1⟨0|U−1â
(2)†
i â

(2)
i U |0⟩1 = 1⟨0|(U−1â

(2)†
i U)(U−1â

(2)
i U)|0⟩1 =

∑
j

|βij |2. (2.18)

is the main idea of understanding particle creation in quantum field theory

in curved spacetime such as the Unruh effect. The nonzero βij for some i, j

means a mode conversion between positive and negative frequency modes. In

finite dimension, Stone-Von Neumann theorem guarantees that there is always

a unitary operator defined as Eq. (2.14). If there is such a unitary operator, one

calls two Fock representations are unitarily equivalent. In field theory, because

of the infinitely many degrees of freedom, the Stone-Von Neumann theorem

does not apply, and so, in general, Fock spaces are not unitarily equivalent.

Practically, one can check whether two Fock spaces are unitarily equivalent

by checking the total number of particles of vacuum states in the other Fock

space representation [1]. The unitary operator U satisfying Eq. (2.14) exists iff

∑
i,j

|βij |2 <∞. (2.19)
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Mathematically, the existence of unitarily inequivalent representations is a

significant problem since one cannot have a consistent formulation of the

quantum theory. It is, however, still possible to construct the “physically

equivalent” quantum theory for the finitely many measurements with finite

accuracy if one considers only the measurable quantities in quantum field

theory by Fell’s theorem [75].

In Minkowski spacetime, there is a preferred vacuum corresponding to the

inertial observer. If there is a globally timelike Killing vector field tµ, there is

a preferred vacuum [2]. But, in general spacetime, there is no globally timelike

symmetry, so there is no preferred vacuum state. Since there is no preferred

Fock space, the vacuum and particle concepts are equally meaningful and

one cannot choose a specific configuration. What one can do is find a locally

timelike Killing vector field (if there exists one) and use it to single out the

preferred vacuum.

2.3 Unruh Effect and Hawking Radiation

The Minkowski spacetime admits global timelike Killing vector. Primarily,

there is a preferred choice of observers who are called inertial observers. There

is another choice of isometries. Especially, one can think about the Killing

vector field of the form

b = a

[
X

∂

∂T
+ T

∂

∂X

]
(2.20)

where T,X are global inertial coordinates, and a is an arbitrary constant which

is interpreted as an acceleration of observer.

In Fig. 2.1, the Minkowski spacetime is divided into four regions. I and II

regions represent the space where the value of the vector field b is timelike.
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X

T

h 2

h
1

III

III

IV

Figure 2.1 Spacetime diagram of Minkowski spacetime. T is the “ordinary”

time direction, and X is chosen to be the spatial direction of the accelerating

observer. Region I is the right Rindler wedge, and region II is the left

Rindler wedge. The pink lines describe the trajectory of constantly accelerating

observers. h1, h2 denotes the null plane. The red dot denotes the bifurcate

Killing horizon. The cyan curve denotes the Cauchy surface in each wedge.

III and IV regions represent the space where the value of the vector field b is

spacelike. h1, h2 lines show the horizon Killing horizon where the Killing vector

field b is null. The congruence of integral curves of b in region I and II is shown

as a pink curve. Each curve describes the trajectory of accelerating observers.

Note that region I is globally hyperbolic (has a Cauchy surface), and the b is

the timelike Killing vector in there. Hence, one can construct the Fock space

FI in region I. Similarly, one can construct the quantum theory in region II

in the same manner. Since in the whole Minkowski spacetime point of view,

the whole cyan curve in Fig. 2.1 can be also understood as the Cauchy surface

with a “bifurcation surface” (the red point) at the origin. In this case, one can

construct F1 as the inertial observer Fock space in Minkowski spacetime and
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F2 be

F2 = FI ⊗FII. (2.21)

The basis expansion analogous to Eq. (2.11) is

φ
(1)
i = αI

iφ
(I)
i + αII

i φ
(II)
i + βIiφ

(I)∗
i + βIIi φ

(II)∗
i (2.22)

where i = (ω, k). Using lightcone coordinate, and conformal invariance of

2-dimensional subspace, one can get the mode solution [50].

Analogous to Eq. (2.17), one gets (for 1 + 1-dimensional subspace)

U |0⟩1 = N exp

[
1

2

∫
dω

2π
e−πω/aâ(I)†ω â(II)†ω

]
|0⟩I ⊗ |0⟩II

= N
∏
ω

∞∑
n=0

enπω/a|nω⟩I ⊗ |nω⟩II. (2.23)

where N is a normalization constant and nω is the notation for n particle with

frequency ω. F1 is not unitarily equivalent to FI ⊗ FRN2 [20]. But, one can

construct the density matrix in FI by taking partial trace in FII for the density

matrix ρ1 := U |0⟩11⟨0|U . In particular, the particle density with the energy ω

is

nω =
1

e2πω/a − 1
. (2.24)

Since Eq. (2.24) is the Bose-Einstein distribution, the Minkowski vacuum is a

thermal bath with the temperature

TU =
a

2π
. (2.25)

The phenomenon of thermal particles noticed by the accelerated observer in

the Minkowski vacuum is called the Fulling-Davis-Unruh effect, or simply the

Unruh effect.
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The simple point of view on Hawking radiation is interpreting Hawking

radiation as a Fulling-Davis-Unruh effect where the accelerating observer is an

observer who stays just outside of the horizon. In this simple view, one needs

extended Schwarzschild spacetime.

In the formal derivation of the Fulling-Davis-Unruh effect, the main idea

is to split the space into two subspaces with timelike Killing vector fields and

construct the quantum theory on each subspace with the Cauchy surface in

each subspace. The existence of a bifurcate Killing horizon shows the nontrivial

attachment of two subspaces. Fig. 2.2 shows the same structure. Hence one

can get the Fulling-Davis-Unruh effect with a black hole horizon, I.e., a black

hole emits thermal radiation with the temperature.

TH =
κ

2π
. (2.26)

where the acceleration being surface gravity κ = 1/4M andM means the mass

of the black hole.

As a final remark, even though the simple view of Hawking radiation as an

example of the Fulling-Davis-Unruh effect is fascinating and gives the correct

Hawking temperature, it is different from Hawking radiation in detail. The

difference is that in a real black hole formed by a gravitational collapse, there

is no region II, III. Hence, the extended Schwarzschild geometry explanation

describes the Hawking radiation from the eternal black hole.
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III

III

IV

i+

i−

i0

J +

J −

Figure 2.2 Penrose diagram for the extended Schwarzschild spacetime. The

i+, i− is the future/past timelike infinity, and i0 is the spatial infinity. J +.J −

is the future/past null infinity. The cyan curve is the Cauchy surface of each

region I and II, and the red point is the bifurcate Killing horizon. The wiggled

line describes the singularity at the center of the black hole.
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3 Number-Conserving Bogoliubov Expansion

3.1 Expansion in Powers of N

The dynamics of the 1+1 dimensional Bose gas comprising atoms or molecules

of mass m within the s-wave approximation is described by the first-order

Lagrangian density

L(∂µΨ,Ψ) =
i

2
(Ψ∗∂tΨ− ∂tΨ

∗Ψ)− 1

2m
|∂xΨ|2 − U |Ψ|2 − g

2
|Ψ|4. (3.1)

where g is the 1D contact interaction coupling constant. There is global U(1)

symmetry in the Lagrangian density Eq. (3.1), which ensures that the total

particle number of the system N is conserved. Namely, the conservation law

∂tρ+∂xJ = 0 holds, where ρ = |Ψ|2, J = (Ψ∗∂xΨ−Ψ∂xΨ
∗)/2mi are the system

particle density and current density respectively, and N =
∫
dxρ. In this thesis,

only the system with a large particle number N ≫ 1 is studied. Hence, one

can expand the bosonic field Ψ in powers of the total particle number N as

Ψ = ϕ0 + χ+ ζ +O(N−3/2). (3.2)

where ϕ0 = O(N1/2), χ = O(N0), and ζ = O(N−1/2). Especially, in the dilute

gas limit,N → ∞ with gN = constant, the Lagrangian density Eq. (3.1) can be

separated by the order ofN also[68] (Note that for long range interactions other

scalings appear in the expansion, cf.[66]). This condition is indeed required for
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a rigorous derivation of the Gross-Pitaevskii energy functional [40], and for

complete Bose-Einstein condensation to occur in the limit N → ∞ [39]. Then

the action is of the form

S =

∫
d2xL = S0 + S1 + S2 + S3 +O(N−1). (3.3)

The leading order of action is

S0 =

∫
d2xL0 =

∫
d2x

i

2
(ϕ∗0∂tϕ0−∂tϕ∗0ϕ0)−

1

2m
|∂xϕ0|2−U |ϕ0|2−g|ϕ0|4 = O(N).

(3.4)

Using the action principle, one can get the usual Gross-Pitaevskii equation.

i∂tϕ0 =

(
− ∂2x
2m

+ U + gρ0

)
ϕ0. (3.5)

where ρ0 = |ϕ0|2 = O(N). It will be assumed that the leading order field ϕ0

satisfies the Gross-Pitaevskii equation. Note that the leading order Lagrangian

is of the same form as the original Lagrangian Eq. (3.1), therefore,

δS0
δϕ∗0

= 0 =⇒

∂µ( ∂L
∂(∂µΨ∗)

)
− ∂L
∂Ψ∗


∣∣∣∣∣∣∣
Ψ∗=ϕ∗

0

= 0, (3.6a)

δS0
δϕ0

= 0 =⇒

∂µ( ∂L
∂(∂µΨ)

)
− ∂L
∂Ψ


∣∣∣∣∣∣∣
Ψ=ϕ0

= 0. (3.6b)

One can easily get the higher order corrections to the action by Taylor expansion

and the equations of motion Eq. (3.6). The first-order correction to the action

is zero.

S1 =

∫
d2x


∂µ( ∂L

∂(∂µΨ∗)

)
− ∂L
∂Ψ∗


∣∣∣∣∣∣∣
Ψ∗=ϕ∗

0

χ∗ + c.c.

= 0. (3.7)
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where c.c. denotes the complex conjugate. The derivatives of Lagrangian by

fields are

∂2L
∂(∂tΨ)∂Ψ∗ =

i

2
,

∂2L
∂Ψ∗2 = −gΨ2,

∂3L
∂Ψ2∂Ψ∗ = −2gΨ∗,

∂2L
∂(∂tΨ∗)∂Ψ

= − i

2
,

∂2L
∂Ψ2

= −gΨ∗2,
∂3L

∂Ψ∗2∂Ψ
= −2gΨ

∂2L
∂(∂xΨ)∂(∂xΨ∗)

= − 1

2m
,

∂2L
∂Ψ∂Ψ∗ = −U − 2g|Ψ|2.

The second-order correction to the action is

S2 =
δ2L

δΨδΨ∗

∣∣∣∣∣
ϕ0,ϕ∗

0

χ∗χ+
1

2

δ2L
δΨ2

∣∣∣∣∣
ϕ0

χ2 +
1

2

δ2L
δΨ∗2

∣∣∣∣∣
ϕ∗
0

χ∗2

=

∫
d2x

i

2
(χ∗∂tχ− ∂tχ

∗χ)− 1

2m
|∂xχ|2 − U |χ|2 − 2gρ0|χ|2 −

g

2
(ϕ∗20 χ

2 + ϕ20χ
∗2),

(3.8)

and the third-order is

S3 =
δ2L

δΨδΨ∗

∣∣∣∣∣
ϕ0,ϕ∗

0

(χ∗ζ + ζ∗χ) +
δ2L
δΨ2

∣∣∣∣∣
ϕ0

χζ +
δ2L
δΨ∗2

∣∣∣∣∣
ϕ∗
0

χ∗ζ∗

+
1

2

δ3L
δΨ2δΨ∗

∣∣∣∣∣
ϕ0,ϕ∗

0

χ+
1

2

δ3L
δΨδΨ∗2

∣∣∣∣∣
ϕ∗
0

χ∗

=

∫
d2x

i

2
(ζ∗∂tχ+ χ∗∂tζ − ∂tζ

∗χ− ∂tχ
∗ζ)

− 1

2m
(∂xχ

∗∂xζ + ∂xζ
∗∂xχ)− U(χ∗ζ + ζ∗χ)− 2gρ0(χ

∗ζ + ζ∗χ)

−g(ϕ∗20 χζ + ϕ20χ
∗ζ∗)− g|χ|2(χ∗ϕ0 + ϕ∗0χ), (3.9)

One gets the Bogoliubov equation from the action S2 by

δS2
δχ∗ = 0 =⇒ i∂tχ =

(
− ∂2x
2m

+ U + 2gρ0

)
χ+ gϕ20χ

∗, (3.10)
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and the equation of motion for ζ can be obtained by the action S3 by

δS3
δχ∗ = 0 =⇒ i∂tζ =

(
− ∂2x
2m

+ U + 2gρ0

)
ζ + gϕ20ζ

∗ + 2g|χ|2ϕ0 + gχ2ϕ∗0

(3.11)

One can also check the δS3/δζ for consistency and can easily notice that it

gives the Bogoliubov-de Gennes equation. Hence, one can consistently expand

the Bose field up to N−1/2-order and can get the consistent equation of motion.

Recall that it is assumed that the ϕ0 satisfies the Gross-Pitaevskii equation

(3.5). The expansion is valid only in the regime of Bogoliubov assumption

holds, i.e., δN :=
∫
dx|χ|2 ≪ N . And by the Penrose-Onsager criterion, the

ratio between condensate particle number and total particle number is finite

nonzero value [57]. Because the total particle number is very big,

δN

N
≈ 1

N
≈ 1

N0
≪ 1 (3.12)

where N0 =
∫
dxρ0. In this thesis, the only quantized field is the Bogoliubov

field χ, and other fields are treated as classical fields i.e., the Bogoliubov field

is promoted to satisfy the bosonic commutation relations.

[χ(t, x), χ†(t, x′)] = δ(x− x′), [χ(t, x), χ(t, x′)] = [χ†(t, x), χ†(t, x′)] = 0.

(3.13)

Especially, the only vacuum expectation value of the quantum operators ⟨χ⟩ = 0

is considered in this thesis.

3.2 Continuity Equations

Until now, the field is just expanded like the usual U(1)-symmetry-breaking

approach and only the difference is the classical correction of the field ζ. To

give a name “number-conserving” to the expansion, one needs to show that
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the continuity equation holds. The continuity equation is the relation between

the density and current which can be also expanded with the total particle

number N

ρ := ⟨Ψ†Ψ⟩ = ρ0 + ρχ + ρζ +O(N−1/2), (3.14a)

J :=
1

m
ℑ[Ψ†∂xΨ] = J0 + Jχ + Jζ +O(N−1/2). (3.14b)

where

ρ0 = ϕ∗0ϕ0, J0 =
1

m
ℑ[ϕ∗0∂xϕ0], (3.15a)

ρχ = ⟨χ†χ⟩, Jχ =
1

m
ℑ[⟨χ†∂xχ⟩], (3.15b)

ρζ = 2ℜ[ϕ∗0ζ], Jζ =
1

m
ℑ[ϕ∗0∂xζ + ζ∗∂xϕ0]. (3.15c)

Note that the two leading-order contributions from χ and ζ are in the same

order. More concretely,

ρχ = O(N0), Jχ=O(N0), (3.16a)

ρζ = O(N0), Jζ=O(N0). (3.16b)

For the leading order condensate, one can easily check from the equation

of motion Eq.(3.5) that for the leading order,

∂tρ0 + ∂xJ0 = 0, (3.17)

the continuity equation holds.

But if one considers the next only the χ contribution, i.e., the depletion

and phonon flux, which is done in the U(1)-symmetry breaking approach, one

gets the relation

∂tρχ + ∂xJχ = −ig(ϕ20⟨χ̂†2⟩ − ϕ∗20 ⟨χ̂2⟩). (3.18)
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By the way, the ζ contribution which is the subleading-order contribution on

the condensate satisfies

∂tρζ + ∂xJζ = ig(ϕ20⟨χ̂†2⟩ − ϕ∗20 ⟨χ̂2⟩). (3.19)

Because the right-hand side of Eq. (3.18) and Eq. (3.19) is nonzero, the

continuity equation for each contribution does not hold, and the number of

each particle is not conserved. But by summing Eq. (3.18) and Eq. (3.19), one

gets

∂t(ρχ + ρζ) + ∂x(Jχ + Jζ) = 0. (3.20)

or equivalently, for the whole density and current,

∂tρ+ ∂xJ = O(N−1/2) ≃ 0. (3.21)

Hence, the continuity equation holds up to the O(N0), if we consider the

condensate and Bogoliubov field contribution consistently.

The physical situation here is the following. If one uses the U(1)-symmetry

breaking approach, one neglects the effect of Bogoliubov field excitation to

the condensate field. It means that even though the particles are excited to

the Bogoliubov mode, the condensate particle number does not change. The ζ

contribution is the condensate correction which is the reduction of condensate

particles by the excitation to the depleted particles. Hence, by including the ζ

contribution, the particle number is conserved in the working order O(N0).

3.3 Comparison with Other Number-Conserving Ex-

pansion

Alternatively, there are different number-conserving approaches from the number-

conserving Bogoliubov expansion in this study. For consistency, one should
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compare the number-conserving Bogoliubov method here with others. In the

working order O(N0), the number-conserving Bogoliubov in this study is the

same with others. Since the equivalence of other methods are already well-

known [25, 22, 5] we can choose one of them to compare. Especially, I mention

[68, 67] for original idea on the backreaction analysis in this study, and hence,

the number-conserving expansion used in them will be compared.

The Girardeau-Arnowitt theory, which is also called the number conserving

Hartree-Fock Bogoliubov theory, can be expressed by expanding the Bose field

operator Ψ̂ as

Ψ̂ = (ϕc + χ̂+ ζ̂)
Â√
N̂

(3.22)

where ϕc = O(N1/2) is condensate wave function, χ̂ = O(N0) is one-particle

excitation, and ζ̂ = O(N−1/2)is the remaining higher order corrections. I keep a

“hat” notation to distinguish the expansion of Girardeau-Arnowitt theory from

the number-conserving Bogoliubov method used in this study. Note that in

this expansion, we start with the fully quantized field in the beginning so that

it is more explained in the language of many-particle quantum mechanics. By

the Penrose-Onsager criterion, the condensate wave function macroscopically

dominates so that the condensate particle number and total particle number are

equivalent (Nc ≃ Ntot). If one carefully distinguishes the condensate and total

particle, he/she must interpret the operator above in the Girardeau-Arnowitt

theory as Â√
N̂

≡ Âc
1√
N̂c

[22, 5]. The subscript c means that it corresponds to

the condensate.

The dynamics of a full Bose field operator are governed by

i
∂Ψ̂(t, x)

∂t
=

(
− ∂2x
2m

+ U − µ

)
Ψ̂(t, x) + gΨ̂†(t, x)Ψ̂(t, x)Ψ̂(t, x) (3.23)
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again, the order of coupling constant g must be g = O(N−1) to ensure that

there is no depletion in the thermodynamic limit i.e., it is 100% condensed in

the thermodynamic limit.[39, 40]

The most important feature of the condensate state and other fields such as

one-particle excitation and higher order correction is that they are orthogonal

[8]. Hence, the commutation relation for them is

[Â, χ̂+ ζ̂] = 0. (3.24)

Now one can get the equation of motion for the following expectation value

of the field 〈
1√
N̂
Â†Ψ̂

〉
= ϕc + ⟨χ̂+ ζ̂⟩ = ϕc. (3.25)

In the last equality, the vacuum choice ⟨χ̂+ ζ̂⟩ = 0 is used.

Let us multiply 1√
N̂
Â† on the left of Eq. (3.23) and take expectation value

i
∂ϕc
∂t

=

(
− ∂2X
2m

+ U − µ

)
ϕc

+ g

〈(
1√
N̂
Â†

)2

(ϕ∗c + χ̂† + ζ̂†)(ϕc + χ̂+ ζ̂)
Â√
N̂

(ϕc + χ̂+ ζ̂)
Â√
N̂

〉

=

(
− ∂2x
2m

+ U − µ

)
ϕc

+ g⟨(ϕ∗c + χ̂† + ζ̂†)(ϕc + χ̂+ ζ̂)2⟩.

(3.26)

Using the self-consistent mean field approximation,

(χ̂† + ζ̂†)(χ̂+ ζ̂)2 ≃ 2⟨(χ̂† + ζ̂†)(χ̂+ ζ̂)⟩(χ̂+ ζ̂) + ⟨(χ̂+ ζ̂)2⟩(χ̂† + ζ̂†) (3.27)

23



One gets

i
∂ϕc
∂t

=

(
− ∂2x
2m

+ U − µ

)
ϕc + g[ρc + 2δρ]ϕc + gδσϕ∗c (3.28)

where the local density approximation applies

ρc ≡ |ϕc|2 (3.29a)

δρ ≡ ⟨δρ̂⟩ = ⟨(χ̂† + ζ̂†)(χ̂+ ζ̂)⟩ ≃ ⟨χ̂†χ̂⟩ (3.29b)

δσ ≡ ⟨(χ̂+ ζ̂)2⟩ ≃ ⟨χ̂2⟩. (3.29c)

Note that the second and third equations are just keeping the leading order

term in the particle number expansion.

Hence, the condensate wave function ϕc satisfies the amended Gross-Pitaevskii

equation [68]

i∂tϕc =

(
− ∂2x
2m

+ U + gρc+2g⟨χ̂†χ̂⟩
)
ϕc+g⟨χ̂2⟩ϕ∗c . (3.30)

where ρc = |ϕc|2, and χ̂ is the corresponding Bogoliubov field. Note that the

condensate in this amended Gross-Pitaevskii equation is related to the above

number conserving expansion is simply ϕc = ϕ0 + ζ + O(N−1) so that the

Eq. (3.30) is equivalent to the Eq. (3.10) and Eq. (3.11) up to the order N−1.

Now, let us multiply 1√
N̂
Â† to the Eq. (3.23) and eliminate terms using

Eq. (3.26)

i
∂(χ̂+ ζ̂)

∂t
=

(
− ∂2x
2m

+ U − µ

)
(χ̂+ ζ̂) + g[ψ̂†ψ̂ψ̂ − ⟨ψ̂†ψ̂ψ̂⟩ (3.31)

Or equivalently, using the self-consistent mean-field approximation Eq. (3.27),

one can write

i
∂(χ̂+ ζ̂)

∂t
=

(
− ∂2x
2m

+ U − µ

)
(χ̂+ ζ̂) + 2gρ(χ̂+ ζ̂) + gσ(χ̂† + ζ̂†) (3.32)
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where the self-consistent density is

ρ := ⟨Ψ̂†Ψ̂⟩ = |ϕc(t, x)|2 + ⟨(χ̂† + ζ̂†)(χ̂+ ζ̂)⟩ ≡ ρc + δρ ≃ ρc (3.33a)

σ := ⟨Ψ̂Ψ̂⟩ = ϕ2c + ⟨(χ̂+ ζ̂)(χ̂+ ζ̂)⟩ ≡ ϕ2c + δσ ≃ ϕc (3.33b)

By sorting the equation by the order, one will get the same form of the

Bogoliubov-de Gennes equation,

i
∂

∂t
χ̂ =

(
−1

2
∂2x + U + g|ϕc|2

)
χ̂+ gϕ2c χ̂

† (3.34)

and corrected equation for ζ̂

i∂tζ̂ =

(
− ∂2x
2m

+ U + 2gρc

)
ζ̂ + gϕ2c ζ̂

†

+ 2g(χ̂†χ̂− ⟨χ̂†χ̂⟩)ϕc + g(χ̂2 − ⟨χ̂2⟩)ϕ∗c . (3.35)

Note that taking the expectation value for the Eq. (3.35) is

i
∂

∂t
⟨ζ̂⟩ ≈

(
−1

2
∂2x + U + g|ϕc|2

)
⟨ζ̂⟩+ gϕ2c⟨ζ̂†⟩, (3.36)

which is just the same as the Bogoliubov de Gennes equation. So, the leading

order of ⟨ζ̂⟩ can be absorbed into χ̂ and vanish. Hence,

⟨ζ̂⟩ = O(N−1) (3.37)

And because ⟨χ̂+ ζ̂⟩ = 0, we get

⟨χ̂⟩ = O(N−1) (3.38)

Now, let us define density and phase operator. The density operator is

ρ̂ = Ψ̂†Ψ̂ = ϕ∗cϕc + (χ̂† + ζ̂†)ϕc + (χ̂+ ζ̂)ϕ∗c + (χ̂† + ζ̂†)(χ̂+ ζ̂) (3.39)
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where Â√
N̂

are canceled in the beginning because of the bilinearity of ρ. By

taking the expectation value, one can get

⟨Ψ̂†Ψ̂⟩ = ϕ∗cϕc + ⟨(χ̂† + ζ̂†)(χ̂+ ζ̂)⟩, (3.40)

which is consistent with Eq. (3.33) and Eq. (3.29).

The leading order expression for ⟨δρ̂⟩ is

⟨δρ̂⟩ = ⟨χ̂†χ̂⟩+O(N−1/2) (3.41)

One must note that, unlike the expectation value, the operator itself is

δρ̂ = (χ̂† + ζ̂†)ϕc + (χ̂+ ζ̂)ϕ∗c + χ̂†χ̂+O(N−1/2) (3.42)

i.e., δρ̂ = O(N1/2). Unfortunately, in this case,⟨δρ̂⟩ ̸= 0. Of course one can

force ⟨δρ̂⟩ = 0, but in that case, ⟨δΨ̂⟩ ≠ 0.

The expectation value of density and current density is

ρ := ⟨Ψ†Ψ⟩ = ρc + ρ̃χ +O(N−1/2), (3.43a)

J :=
1

m
ℑ[Ψ†∂xΨ] = Jc + J̃χ +O(N−1/2). (3.43b)

where ρ̃χ := ⟨χ̂†χ̂⟩, and J̃χ := 1
mℑ[⟨χ̂†χ̂⟩]. In this case, the continuity equation

does not hold each,

∂tρc + ∂xJc = ig(ϕ2c⟨χ̂†2⟩ − ϕ∗2c ⟨χ̂2⟩), (3.44a)

∂tρ̃χ + ∂xJ̃χ = −ig(ϕ2c⟨χ̂†2⟩ − ϕ∗2c ⟨χ̂2⟩). (3.44b)

The sum of both, however, satisfies the continuity equation

∂t(ρc + ρ̃χ) + ∂x(Jc + J̃χ) = 0. (3.45)
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Hence the continuity equation holds for the expansion order O(N0) again.

Note that even though the expansion scheme is a little bit different from the

number-conserving Bogoliubov method used here, the difference is less than

the expansion order, i.e.,

ϕc = ϕ0 + ϕζ +O(N−1)

χ̂ = χ+O(N−1).

Especially, the physical quantities are

ρc = ρ+ 0 + ρζ +O(N−1/2) ≈ ρ+ 0 + ρζ (3.47a)

Jc = J0 + Jζ +O(N−1/2) ≈ J0 + Jζ (3.47b)

ρ̃χ = ρχ +O(N−1/2) ≈ ρχ (3.47c)

J̃χ = Jχ +O(N−1/2) ≈ Jχ. (3.47d)

I will not distinguish the Bogoliubov field contribution from one-particle exci-

tation i.e., drop the “tilde” from now.
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4 Quantum Backreaction

4.1 Backreaction

To understand the terminology of “backreaction”, I define two words for clear

explanation. Typically, the “actor” is the small part of the full system one

wants to describe and the “background” is the (large) rest of the full system.

The background and actor give influence each other. Because the background

is assumed to be very big (or heavy) compared to the actor and is negligibly

affected by it. On the contrary to the typical case, the main target of the

cosmology is the whole universe i.e., one wants to investigate the dynamics

of the full system. It is, however, not possible to access the full system in

cosmology because of the curved nature of the spacetime and not possible to

get the data of whole universe because of the largeness of it. Fortunately, it

is known as the cosmological principle that in the large scale, the universe is

homogeneous and isotropic. Hence, one can solve the large background if they

neglect the effect of the actor (small scale anisotropy or fluctuation) on the

background.

The influence on the background by the actor is called the backreaction.

The reason for neglecting the backreaction in general case is that as Hawking

said in his paper, the backreaction problem is difficult problem [26]. In spite

of its difficulty, the backreaction is inevitable in modern cosmology because
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researchers want to get the more exact nontrivial phenomena in universe.

The backreaction in cosmology can be broadly divided into three categories:

classical backreaction, semi-classical backreaction, and quantum backreaction.

The classical backreaction can be thought as a perturbative effect comes from

classical inhomogeneities. The semi-classical backreaction comes out when one

used the quantum field theory in curved spacetime. Since there is no settled

quantum gravity theory, the quantum field theory in curved spacetime is usually

used to describe the quantum mechanical phenomena in the cosmological

system. In the quantum field theory in curved spacetime, the actor is the

quantum field and the background is the classical gravitation field (spacetime

metric). The expectation value of the energy-momentum tensor gives the

correction on the background.

Gab = 8π⟨Tab⟩. (4.1)

where Gab is the Einstein tensor defined with the classical gravitational field,

and the ⟨Tab⟩ is the quantum expectation value of the energy-momentum tensor.

The quantum backreaction is the remaining contribution of the backreaction

that one cannot obtain in the classical equation of motion. The difference

between semi-classical and quantum backreaction is that the former comes

from the classical equations of motion even though the source (actor) comes

from the quantum fluctuation. In summary, the backreaction in cosmology is

the effects of matter field or cosmological inhomogeneities on the homogeneous

dynamical background degrees of freedom of cosmology [63].
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4.2 Quantum Backreaction in Analogue Model

One of the main physical quantities in this study is the quantum backreaction

of the analogue gravitational system of Bose-Einstein condensates. Because the

exact equation of motion of Bose gas is known, one can obtain the backreaction

at least formally. In this section, the nonzero leading order contribution for

the quantum backreaction force will be derived.

The classical equation of motion Eq. (3.5) or Eq. (3.30) is equivalent to the

fluid equation when one uses the polar representation. It is easier to start with

the full quantum Hamiltonian. In the sense of fluid dynamics, one is tempted

to write the Bosonic field operator with density-phase representation (quantum

Madelung representation) i.e.,

Ψ̂ = eiθ̂
√
ρ̂ (4.2)

Using Eq. (3.23), one can get the time development of an expectation value

of the current density,

∂tJ := ⟨∂tJ(Ψ̂, Ψ̂†)⟩

=
1

m2
∂x

[
1

4
∂2x⟨Ψ̂†Ψ̂⟩ − ⟨∂xΨ̂†∂xΨ̂⟩

]
− 1

m
⟨Ψ̂†Ψ̂⟩∂xU − 1

2gm
∂x⟨g2Ψ̂†2Ψ̂⟩.

(4.3)

If one substitute Eq. (4.2) on this Eq. (4.3), one will get

∂tJ(ρ, θ) =
1

m2
∂x

[
1

4
∂2x ⟨ρ̂⟩ −

〈
∂x(
√
ρ̂e−iθ̂)∂x(e

iθ̂
√
ρ̂)
〉]

− 1

m
⟨ρ̂⟩∂xU − 1

2gm
∂x

[
g2⟨ρ̂2 − δ(0)ρ̂⟩

]
=

1

m2
∂x

[
1

4
∂2x⟨ρ̂⟩ − ⟨(∂x

√
ρ̂)2⟩ −

〈√
ρ̂(∂xθ̂)

2
√
ρ̂
〉]

− 1

m
⟨ρ̂⟩∂xU − 1

2gm
∂x

[
g2⟨ρ̂2 − δ(0)ρ̂⟩

]
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=

〈
ρ̂

m
∂x

(
−∂2x

√
ρ̂

2m
√
ρ̂

)〉
− 1

m2

〈√
ρ̂(∂xθ̂)

2
√
ρ̂
〉

− 1

m
⟨ρ̂⟩∂xU − 1

2gm
∂x

[
g2⟨ρ̂2 − δ(0)ρ̂⟩

]
(4.4)

where δ(0) comes from the equal time commutation relation full bosonic field

[Ψ̂(t, x), Ψ̂†(t, x′)] = δ(x − x′) which can be removed by renormalization i.e.,

normal ordering. One can get the Madelung equation which is a quantum

hydrodynamic equation when one renormalizes and puts the expectation value

for measurable quantities ρ, J to the Eq. (4.4), i.e.,

∂tJc = fcl(ρc, Jc) (4.5)

where Jc :=
1
mℑ[ϕ∗c∂xϕc]. The classical Eulerian force (per unit mass) is

fcl(ρ, J) := −∂x(ρv2)−
ρ

m

(
−∂2x

√
ρ

2m
√
ρ

+ U + gρ

)
. (4.6)

where v = J/ρ. In other words, the condensate field which is treated as a

classical field, satisfies the classical Euler equation, with the classical force

defined with the measurable quantities.

From now, let us suppress the terms which are negligible in our working

order. Note that, however, if the quantized fields are get involved, there is a

modification to the Euler equation.

∂tJ = fcl + fq. (4.7)

Because J and fcl are known, this can be interpreted as a defining equation

for fq

fq := ∂tJ − fcl. (4.8)
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And because of Eq. (4.5), one only needs to use the terms which contain the

Bogoliubov field, (See Sec. 8.2 for detailed calculation)

fq = ∂tJχ − vc∂tρχ + ∂x(Jχvc − ρχv
2
c )− Jχ∂xvc −

ρc
2m

∂x

(
gG(2)

ρc

)

+
ρχ
m
∂x

[
− ∂2x

√
ρc

2m
√
ρc

+ U + gρc

]

−ρc
4
∂x

1
2

1√
ρc
∂2x

(
ρχ√
ρc

)
− ρχ

ρ
3/2
c

∂2x
√
ρc

 . (4.9)

Note that there are no terms only with the classical field, i.e., terms with

subscript c only. Hence, it is easy to find that in our working order N0,

fq = ∂tJχ − v0∂tρχ + ∂x(Jχv0 − ρχv
2
0)− Jχ∂xv0 −

ρ0
2m

∂x

(
gG(2)

ρ0

)

+
ρχ
m
∂x

[
− ∂2x

√
ρ0

2m
√
ρ0

+ U + gρ0

]

−ρ0
4
∂x

1
2

1√
ρ0
∂2x

(
ρχ√
ρ0

)
− ρχ

ρ
3/2
0

∂2x
√
ρ0

 . (4.10)

4.3 The Initial Condition

The two equations

∂tρ = −∂xJ, (4.11a)

∂tJ = fcl + fq, (4.11b)

compose the Cauchy problem for J and ρ, so that for a given initial condition,

one can get a unique solution for ρ and J . It is, however, not simple to

determine the initial conditions for the system since the quantum state for

the field operator χ is also needed. Mathematically one can just split the

density by ρ = ρ0 + ρχ + ρζ + O(N−1/2). But, it is hard to measure each
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contribution experimentally. Because ρχ can only be separately measurable if

it is distinguished from ρζ . If one accepts the infinite size model, there is a

stable vacuum state, and one can wait for the state to be stabilized to that

vacuum state. But, for the finite-size gas, because there is phase diffusion that

spontaneously destroys the off-diagonal long-range order, there is no stationary

condensate. Therefore, there is no stationary vacuum state, and one must

specify the instantaneous vacuum state.

33



5 Homogeneous Gas

The simplest system we can imagine is a homogeneous system that does not

move. This thesis devotes to the finite-size model which is more experimentally

realistic than the infinite-size model. Current technology allows us to treat

the finite-size homogeneous condensate [23]. This might be realizable ever

more accurately experimentally with new trapping techniques being developed

(see [52] for an up-to-date review). In this section, one will treat the finite

stationary homogeneous 1D condensate which does not move. As one will see

later, however, it is not only simple but also has a great property, related to

backreaction analysis.

5.1 Background Condensate

Now, let us find the preparation needed for having the homogeneous gas. The

condensate dynamics are governed by the Gross-Pitaevskii equation (3.5). The

stationary homogeneous but finite size-condensate wave function is

ϕ0 =
√
ρ0e

−iµt, x ∈]− ℓ/2, ℓ/2[, (5.1)

where µ is the chemical potential. It is not hard to see that the potential whose

solution is this wave function (5.1) is

U = µ− gρ0, x ∈]− ℓ/2, ℓ/2[. (5.2)
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One wants the condensate to vanish at the outside of this finite box so that to

describe exactly χ and ζ analytically. So, it decays sharply at the boundary,

more precisely, it is of the form

ϕ0 =
√
ρe−iµtΘ(x+ ℓ/2)Θ(ℓ/2− x). (5.3)

where Θ(x) is the Heaviside step function. The potential which has a solution

of this form is

U = µ− gρ0 +
1

2m
∂x[δ(x− ℓ/2) + δ(x+ ℓ/2)]. (5.4)

By integrating near each boundary (x = ±ℓ/2), one gets Neumann boundary

conditions for each region ∂xϕ0 = 0. Because this discontinuity (and Neumann

boundary conditions) comes from the potential by the same procedure, one

can easily notice that all the field Ψ and so that χ, ζ all satisfies the Neumann

boundary conditions. From now on, the irrelevant outside of the finite region

will be dropped, and only the inside of the finite region x ∈] − ℓ/2, ℓ/2[ will

only be written for simplicity. It is enough to say that at the boundary the

field must satisfy the Neumann boundary conditions.

As explained in the previous section, it is not possible to have stationary

finite condensate forever because of phase diffusion. Hence, the system will

be prepared to be noninteracting (g = 0 at t < 0), and the interaction will

be turned on instantaneously (g = g0 > 0 at t > 0), so that the quantum

fluctuation χ and the correction ζ to be activated at t = 0. And in addition

to ℏ = 1, the units such that m = g0 = 1 would be used. In consequence, the

sound velocity is also normalized to unity i.e., c0 =
√
g0ρ0/m. Equivalently,

the spatial units will be the healing length ξ0 = 1/
√
mg0ρ0 = 1, and time is

unit of ξ20 .
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5.2 Canonical Quantization

Let χ = e−iµtψ. From BdG equation (3.10), one gets the equation of motion

for ψ,

i∂tψ = −1

2
∂2xψ +

g

g0
(ψ + ψ∗). (5.5)

Using Nambu spinor Φ = (ψ,ψ∗)t, one can rewrite Eq. (5.5) in the spinor

form

iσ3∂tΦ =

(
−∂

2
x

2
+

g

g0
σ4

)
Φ = σ3HBdGΦ, (5.6)

where σ4 = 1+ σ1, and σi for i = 1, 2, 3 is the usual Pauli matrices. And one

can also notice easily from the form of the Nambu spinor that

Φ = σ1Φ
∗. (5.7)

The quantization is done by forcing the field mode to satisfy the commu-

tation relation

[ψ(t, x), ψ(t, x′)] = [ψ†(t, x), ψ†(t, x′)] = 0, [ψ(t, x), ψ†(t, x′)] = δ(x− x′).

(5.8)

which is the same as forcing Eq. (3.13).

Using the Nambu spinor, this Eq. (5.9) can be written as

[Φa(t, x),Φ
†
b(t, x

′)] = σ3,abδ(x− x′), (5.9)

where the subscript a, b denotes the matrix component.

Moreover, the Neumann boundary condition also applies to the Nambu

spinor,

∂xΦ|x=±l/2 = 0. (5.10)
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Because of the σ3-pseudoHermicity ofHBdG, one can check the conservation

of the pseudo inner product

⟨Φ,Φ′⟩ =
∫

dxΦ†(t, x)σ3Φ
′(t, x). (5.11)

And because the system only has the real spectrum, all the field modes have a

finite norm and can be normalized as

⟨Φ,Φ⟩ = ±1. (5.12)

The sign distinguishes the positive/negative norm modes each. And because

of Eq. (5.7), one has 1-1 correspondence between positive and negative norm

modes. Let us write the positive norm modes with index by Φn, n ∈ {0, 1, 2, . . .}.

Then the mode expansion is

Φ(t, x) =

∞∑
0

[anΦn(t, x) + a†nσ1Φ
∗(t, x)]. (5.13)

The quantization Eq. (5.9) is equivalent to promote complex frequency an =

⟨Φn,Φ⟩ to be an operator satisfying

[an, a
†
n′ ] = δn,n′ . (5.14)

The vacuum state |0⟩ is defined as usual, i.e.,

an|0⟩ = 0. (5.15)

And using the explicit component of eigenvector Φn = (un, vn)
t, one gets

ψ(t, x) =

∞∑
0

[anun(t, x) + a†nv
∗
n(t, x)]. (5.16)
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5.3 Initial Setup

One must note that the homogeneity of the condensate in the model is not

caused by the repulsive interaction in a hard wall. The sharp derivative of

the delta function wall (5.4) allows the condensate to be uniform in the finite

region regardless of the interaction. Hence one can have noninteracting uniform

gas. The initial setup (t < 0) is a simple Bose gas that does not interact with

each other (g = 0). Hence, the BdG equation (5.6) in this region is simply

i∂tσ3Φ = −∂
2
x

2
Φ. (5.17)

Note that corresponding Hamiltonian HBdG in Eq. (5.6) in this case (g = 0) is

not only pseudoHermitian but also Hermitian. Hence, one has real eigenvalues

only in the noninteracting regime. The system is in a stationary regime so that

the solutions of the form Φ(t, x) = e−iωtΦω(x) exist for ω ≥ 0, such that

ωσ3Φω = −∂
2
x

2
Φω. (5.18)

The solution is just plane wave form Φω(x) = eikxΦω,k where Φω,k is constant

and the wave number k satisfies the dispersion relation

ω = ±k
2

2
. (5.19)

There are 2 real, and 2 imaginary solutions for k : k1 =
√
2ω, k2 = −

√
2ω and

k3 = i
√
2ω, k4 = −i

√
2ω. The corresponding basis as Φω,k1 = Φω,k2 = (1, 0)t,

and Φω,k3 = Φω,k4 = (0, 1)t. The solution for Eq. (5.18) is

Φω = Aω

eik1xΦω,k1 +
∑

i=2,3,4

Skie
ikixΦω,ki

 , (5.20)
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where Ak is the normalization constant, and Ski is introduced to express

the usual S-matrix form. This is just a convenient expression. By imposing

Neumann boundary condition ∂xΦω(±ℓ/2) = 0, one gets Sk3 = Sk4 = 0,

and Sk2 = (−1)n, and k1 = −k2 := kn = nπ/ℓ, n ∈ {0, 1, 2, . . .}. And from

dispersion relation (5.19), one gets ω := Ωn = n2π2/2ℓ2. And one can get

Ak = 1/
√
2ℓ(1 + δn,0) for each n from the normalization condition ⟨Φ,Φ⟩ = 0

Because ω and k are determined by the integer n, let us use the index n. The

solution (5.20) is then

Φn(t, x) =
e−iΩnt[eiknx + (−1)ne−iknx]√

2ℓ(1 + δ0,n)
(1, 0)t (5.21)

with n ∈ {0, 1, 2, . . .} are positive norm modes. One can easily deduce from

the Hermicity of HBdG that the Φn(t, x) spans the whole space.

One can also show completeness directly by showing that the commutation

relation Eq. (5.9) holds, or equivalently Eq. (5.8) holds. By using Eq. (5.16),

[ψ(t, x), ψ†(t, x′)] =
∞∑
n=0

[un(t, x)u
∗
n(t, x

′)− v∗n(t, x)vn(t, x
′)]. (5.22)

From Eq. (5.21) and the form of the Nambu spinor, one gets

[ψ(t, x), ψ†(t, x′)] =
1

2l

∞∑
n=−∞

[
einπ(x−x′)/ℓ + (−1)neinπ(x+x′)/ℓ

]
. (5.23)

By using the Poisson’s summation formula [12],

1

2ℓ

∞∑
n=−∞

einπy/ℓ =

∞∑
n=−∞

δ(y − 2ℓn), (5.24)

one obtains

[ψ(t, x), ψ†(t, x′)] =

∞∑
n=−∞

[δ(x− x′ − 2ℓn) + δ(x+ x′ − 2nℓ− ℓ)]. (5.25)

39



Since x, x′ ∈]− ℓ/2, ℓ/2[, one can easily get x± x′ ∈]− ℓ, ℓ[, so that

[ψ(t, x), ψ†(t, x′)] = δ(x− x′). (5.26)

Accordingly, the general solution for (5.17) is

Φ(t, x) =

∞∑
n=0

[anΦn(t, x) + a†nσ1Φ
∗
n(t, x)]. (5.27)

5.4 Interacting Regime

Now let us see the field when the interaction is on (t > 0). Let us first find

mode expansion in this regime. Now, the field equation is

iσ3∂tΦ =

(
−∂

2
x

2
+ σ4

)
Φ (5.28)

Unfortunately, in this case, the corresponding Hamiltonian HBdG is not Hermi-

tian, but one can still find the orthonormal bases still in this case by explicitly

finding the bases. Because of non-Hermicity, there is “zero norm modes” in

Eq. (5.28). Note that

Φ = Π0 := (1,−1)t (5.29)

is a solution of Eq. (5.28) i.e., it is the right eigenvector ofHBdG with eigenvalue

zero. And one can easily find that its norm is zero (Π†
0σ3Π0 = 0). Hence, it is

one of the zero norm modes. Moreover, σ1Π
∗
0 = −Π0, and hence, one cannot

use the property of the Nambu spinor to find a second linearly independent

solution. It is shown in [8] how to find the missing zero norm modes physically

interpreted as a conjugate phase momentum. But, in the present case, it is

enough to see that

Π̃0 =
1

2
(1, 1)t − itΠ0 (5.30)
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is also a zero norm mode which is orthogonal to Π0. Note that Π̃0 is not

an eigenfunction of time translation generator i∂t : i∂tΠ̃0 = Π0. Hence, the

occurrence of this mode implies that the time translational symmetry is broken,

and there is no stationary BEC without any external source sustaining BEC

itself. It corresponds to the condensate phase diffusion which is negligible

when one treat the infinite size model but gives a significant effect in the

finite size model [8, 37, 29]. Also, one can observe in connection to analogue

gravity in BECs that finite size black hole analogues present generic dynamical

instabilities that also break the system time translation symmetry [59], and

thus our quantum quench from a non-interacting regime offers a route for

studying backreaction also in these systems.

One can get nonzero norm modes in a similar procedure to the noninter-

acting case. Now, the equation of motion for stationary mode is

σ3ωΦ =

(
−∂

2
x

2
+ σ4

)
Φ (5.31)

The plane wave form Φω(x) = eikxΦω,k solution then satisfies

ωσ3Φ =

(
k2

2
+ σ4

)
Φ. (5.32)

To have a nontrivial solution for Φ, the eigenvalues must satisfy the dispersion

relation

ω2 = k2 +
k2

4
(5.33)

Because it is also a 4th-order equation, we have the mode expansion of the

form Eq. (5.20). And imposing the Neumann boundary condition will give the

same ki and Ski . Again using the label of the field as integer n, we have the
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solution

Πn(t, x) =
e−iωnt[eiknx + (−1)ne−iknx]√

2l[1− (ωn − k2n/2− 1)2
(1, ωn − k2n/2− 1)t (5.34)

where ωn =
√
k2n(k

2
n/4 + 1) with n ∈ {1, 2, . . .}. We use Πn to distinguish

the field eigenmode in the interacting regime to distinguish from the noninter-

acting regime. Again, the normalization constant An is chosen to satisfy the

⟨Φn,Φn′⟩ = δn,n′ . Because HBdG is not hermitian, one needs to explicitly the

completeness in the interacting case. But, because it is also normalized, and

plane wave, it is trivial to check (5.26) holds. Hence, the set {Π0, Π̃0,Πn, σ1Π
∗
n}

spans the whole solution space. And because the external potential is constant

in time and the interaction behaves as a step function in time, the eigenmode

Φn is also continuous in time, eventhough it is not the eigenmode at t > 0 i.e,

Φn(0
+, x) = Φn(0

−, x) := Φ
(−)
n . Thus one can expand all Φn by

Φn = αn,0Π0 + βn,0 +

∞∑
j=1

[αn,jΠj − βn,jσ1Π
∗], (5.35)

for t > 0 where each constants are

αn,0 =
⟨Π̃0,Φ

(−)
n ⟩

⟨Π̃0,Π0⟩
, αn,j = ⟨Πj ,Φ

(−)
n ⟩, (5.36a)

βn,0 =
⟨Π0,Φ

(−)
n ⟩

⟨Π0, Π̃0⟩
, βn,j = ⟨σ1Π∗

j ,Φ
(−)
n ⟩, (5.36b)

where j > 0 and the functions Πn are evaluated at t = 0. By performing the

integrals one can find

αn,0 =
δn,0

2
√
ℓ
, αn,j =

δn,j√
1− (ωn − k2n/2− 1)2

, (5.37a)

βn,0 =
δn,0√
ℓ
, βn,j =

(ωn − k2n/2− 1)(−1)nδn,j√
1− (ωn − k2n/2− 1)2

, (5.37b)
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with j > 0. Using these expansions, one can calculate the time evolution of

the fields and can calculate the dynamical quantities (of quantized fields) in

neglecting the backreaction effect.

5.5 Depletion

Note that if one pauses at this step, it is just the usual U(1) symmetry-

breaking approach. Hence, it is also meaningful to calculate the quantities one

can calculate here. The depletion ρχ and phonon flux Jχ are two important

subleading order quantities in the theory of low-temperature Bose gas. For

t < 0, there is no interaction, and the depletion and phonon flux are

ρχ(t < 0) = 0, Jχ(t < 0) = 0. (5.38)

which is a trivial result one can see easily by Eq. (5.21). Recall that χ = e−iµtψ.

By using mode expansion (5.16) and commutation relation (5.14), one can

express expectation values in sum of mode functions. The depletion is

ρχ = ⟨ψ†(t, x)ψ(t, x)⟩ =
∞∑
n=0

|vn|2, (5.39)

and the phonon flux is

Jχ = ℑ[ψ†(t, x)∂xψ(t, x)⟩ =
∞∑
n=0

ℑ[vn∂xv∗n] (5.40)

Direct substitution of Eq. (5.37) to the Eq. (5.35), one gets for n− 0

v0 =
it√
ℓ
, (5.41)

and for n = 1, 2, 3, · · ·

vn =
(ωn − k2n/2− 1)√

2ℓ[1− (ωn − k2n/2− 1)2]

43



×
[
e−iωnt

[
eiknx + (−1)ne−iknx

]
− (−1)neiωnt

[
e−iknx + (−1)neiknx

]]
=

(ωn − k2n/2− 1)√
2ℓ[1− (ωn − k2n/2− 1)2]

[
e−iωnt

×
[
eiknx + (−1)ne−iknx

]
− eiωnt

[
(−1)ne−iknx + eiknx

]]
=

(ωn − k2n/2− 1)√
2ℓ[1− (ωn − k2n/2− 1)2]

[
− 2i sin(ωnt)

][
eiknx + (−1)ne−iknx

]
=
i sin(ωnt)√

2ℓωn

[
eiknx + (−1)ne−iknx

]
. (5.42)

In the last line, the dispersion relation ω2
n = (k2n/2 + 1)2 − 1 is used. Hence,

|v0|2 =
t2

ℓ
(5.43)

and for n = 1, 2, . . .,

|vn|2 =
1

2ℓω2
n

[
sin2(ωnt)

][
2 + (−1)n

(
e2iknx + e−2iknx

)]
=

1

2ℓ

(−1)n

ω2
n

[
(−1)n + cos(2knx)

][
1− cos(2ωnt)

]
. (5.44)

By substituting Eq. (5.43) and Eq. (5.44) to Eq. (5.39), we get

ρχ =
∞∑
n=0

|vn|2

=
t2

ℓ
+

1

2ℓ

∞∑
n=1

(−1)n

ω2
n

[
(−1)n + cos(2knx)

][
1− cos(2ωnt)

]
. (5.45)

The first term t2/ℓ which comes from the zero norm mode shows clearly that

the depletion grows in time [8]. Because the zero norm mode is related to the

condensate phase diffusion, it is the growth of depletion by condensate phase

degrading. Moreover, because of the denominator, if the system size is infinity

(ℓ→ ∞), the phase diffusion does not occur, and this term goes zero. So, for

an infinite system, one does not need to consider phase diffusion. It is, however,
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problematic since the second term diverges. And there is no infinite quasi-1D

condensate exists that satisfies the Hohenberg theorem[28].

Similarly, one can calculate

∂xv
∗
0 = 0 (5.46a)

∂xv
∗
n =

(−1)nkn sin(ωnt)√
2ℓωn

[
eiknx − (−1)ne−iknx

]
for n ̸= 0. (5.46b)

Hence substituting Eq. (5.41) and Eq. (5.42) to Eq. (5.40), one gets

Jχ =
∞∑
n=0

ℑ[vn∂xv∗n]

=
1

2ℓ

∞∑
n=0

ℑ
[
i
(−1)nkn sin

2(ωnt)

ω2
n

[e2iknx − e−2iknx]

]

=
1

ℓ

∞∑
n=0

ℑ
[
(−1)nkn sin

2(ωnt)

ω2
n

sin (2knx)

]
= 0. (5.47)

Therefore Jχ = 0 for all t, and there is no phonon flux in this model.

Hence, one only needs to concentrate on the depletion. And Because the

system has symmetry under x → −x, one needs to consider only half of the

system. In Fig. 5.1, two depletion profiles with size ℓ = 40 and ℓ = 100 are

shown. One can notice that when the interactions are turned on, the depletion

increases from zero. There is a boundary effect coming from the Neumann

boundary condition at the condensate wall which shows a higher increase in

depletion. By comparing the left and right panels, one can also find that the

boundary effect propagates slowly from the wall at almost the same speed

regardless of the size of the condensate. Therefore, the depletion growth far

from the wall i.e., near the center grows insensitively to the boundary effect,

and one can keep it insensitive for more time by increasing the size of the
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condensate. It is not related to the zero norm mode, since one can notice from

Eq. (5.45) the first term that it has no spatial dependence. The boundary effect

Figure 5.1 Left panel: Evolution of the condensate depletion for a condensate

of size ℓ = 40. The curves are plotted for x ≥ 0 only, using that ρχ is an even

function of x [see Eq. (5.45)]. As time passes, we observe an overall depletion

increase, initially more pronounced at the condensate wall at x = ℓ/2. Right

panel: Depletion profile evolution for a system of size ℓ = 100. We note that the

bulk depletion increase is insensitive to the existence of the condensate walls

for the time periods considered in the plots. Here and in the following plots,

units are chosen such that we have the scalings x = x[ξ0], t = t[ξ20 ], densities

ρi = ρi[1/ξ0] with i = χ, ζ, and for the current density Jζ = Jζ [1/ξ
2
0 ].

not only has a similar speed but is also in the same form. In Fig. 5.2 left panel,

we plot the depletion near right wall at t = 5. One can see that the depletion

increase by boundary effect is almost congruent.

Because the growth time is independent of the system size in our parametriza-

tion, the time scale only depends on the chemical potential g0ρ0. Moreover,

this fact reminisces that the quantum depletion in infinite size 3D condensate

in its ground state is
√
g33Dρ3D. In the 1D case, there is no analogue formula for

46



infinite-size condensate, because of the infrared (IR) divergence. In the finite

size case, there is no IR divergence so one can hope to obtain a similar relation

necessarily model dependent. In the homogeneous condensate without flow,

depletion grows with time, but one can obtain the growth rate dependence

on the condensate chemical potential g0ρ0. Indeed, within the time 0 ≤ t ≤ 5

shown in Fig. 5.1, the depletion grows linearly in time insensitive to the system

size. Recall that the time scale used in this model is t ∼ ξ20 = 1/g0ρ0. Hence,

if the units are revived correctly, one can conclude that within that time,

ρχ ∝ g0ρ0t i.e., depletion is also linearly proportional to chemical potential[35,

43].

Figure 5.2 Left panel: Depletion near-boundary behavior for several system

sizes at t = 5. The profiles corresponding to larger condensates are translated to

the left and slightly shifted as to allow comparison with the smaller condensate

profile. Right panel: Total number of particles in the depleted cloud as a

function of time for several condensate sizes. Larger condensates correspond to

faster growth of δN for fixed ρ0. The long-dashed grey line depicts δN without

the phase spreading contribution t2 for ℓ = 40 [cf. Eq. (5.48)], showing that

δN is eventually dominated by condensate phase degradation.
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Before proceeding more, one must check that the approximation we are

using is valid. The assumption used here is just the Bogoliubov approximation

i.e., δN ≪ N where

δN =

∫ ℓ/2

=ℓ/2
dxρχ = t2 +

1

2

∞∑
n=1

1

ω2
n

[1− cos(2ωnt)] (5.48)

is the whole number of depleted particles. In the right panel of Fig. 5.2, the

number of depleted particles as a function of time is shown. One can see that

δN increases faster if the system size is bigger. It is expected behavior since the

bigger the size is, the more the condensate particle numbers are also since ρ0 is

kept constant. Furthermore, for a size ℓ = 40 system, at δN(t = 20) ∼ 600. By

assuming a condensate withN = 5000 particles, δN/N ∼ 0.12. For definiteness,

δN/N ≲ 0.1 is the chosen validity regime in this thesis. Thus, one needs to

consider a smaller time for our theory valid. Fortunately, t < 5 which is in

Fig. 5.1 is valid for all the model treated here.

5.6 Condensate Correction ζ

Now let us analyze the correction on the condensate ζ in the region −ℓ/2 <

x < ℓ/2. One of the virtues of our homogeneous condensate without flow model

is that it is analytically solvable. Let us multiply eiµt
√
ρ0 to the Eq. (3.11),

where

U = µ− gρ0. (5.49)

Then we get

i∂t(e
iµt√ρ0ζ) =

(
− ∂2x
2m

+ gρ0

)
(eiµt

√
ρ0ζ)+gρ0e

iµt√ρ0ζ∗+gρ0(2⟨ψ̂†ψ̂⟩+⟨ψ̂2⟩)

(5.50)
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Let us write a new spinor

F =

 eiµt
√
ρ0ζ

e−iµt√ρ0ζ∗

 . (5.51)

The equation of motion becomes

i∂tσ3F = −1

2
∂2xF + σ4F +

 2ρχ + ⟨ψ̂2⟩

2ρχ+ ⟨ψ̂†2⟩

 . (5.52)

Because of the linearity of the equation, and also because the source is the

sum of modes, we can write the solution in the sum F (t, x) =
∑∞

n=0 Fn(t, x),

where each Fn satisfies

(
i∂tσ3 +

1

2
∂2x − σ4

)
Fn =

(un + 2vn)v
∗
n

(u∗n + 2v∗n)vn

 . (5.53)

Note that in the view of a differential equation, this is just the BdG equation

with source. We know the basis expansion of the general solution for this

equation already. Therefore we will calculate the characteristic solution which

also satisfies the Neumann boundary condition first. And then, because there

is no correction on condensate also before turning on the interaction, we will

use the initial condition F (t = 0) = 0 to determine the general solution.

To get the characteristic solution, let us get the source term.

From substitution of Eq. (5.37) to the Eq. (5.35), one can also get

u0 =
1− it√

ℓ
(5.54)

Hence, with Eq. (5.41),

u0v
∗
0 = − t

2 + it

ℓ
(5.55)
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And

(u0 + 2v0)v
∗
0 =

t2 − it

ℓ
(5.56)

For n ̸= 0,

un =
1√

2ℓ[1− (ωn − k2n/2− 1)2]

×
[
e−iωnt

[
eiknx + (−1)ne−iknx

]
−(ωn − k2n/2− 1)2(−1)neiωnt

[
e−iknx + (−1)neiknx

]]
=

1√
2ℓ[−2ωn(ωn −

√
ω2
n + 1)]

×
[
e−iωnt

[
eiknx + (−1)ne−iknx

]
−(2ωn(ωn −

√
ω2
n + 1) + 1)eiωnt

[
eiknx + (−1)ne−iknx

]]
=

1√
2ℓ

(
i sin(ωnt)

ωn(ωn −
√
ω2
n + 1)

+ eiωnt

)[
eiknx + (−1)ne−iknx

]
=

1√
2ℓ

(
−(ωn +

√
ω2
n + 1)i sin(ωnt)

ωn
+ eiωnt

)[
eiknx + (−1)ne−iknx

]
=

1√
2ℓ

(
−(
√
ω2
n + 1)i sin(ωnt)

ωn
+ cos (ωnt)

)[
eiknx + (−1)ne−iknx

]
(5.57)

Using dispersion relation,

un =
1√
2ℓ

1

ωn

[
− (k2n/2 + 1)i sin(ωnt) + ωn cos (ωnt)

][
eiknx + (−1)ne−iknx

]
(5.58)

With Eq. (5.42),

un + 2vn =
1√
2ℓ

1

ωn

[
(1− k2n/2)i sin(ωnt) + ωn cos (ωnt)

][
eiknx + (−1)ne−iknx

]
Hence,

(2vn + un)v
∗
n =

1

2ℓ

1

ω2
n

[
(1− k2n/2) sin

2(ωnt)− iωn sin (ωnt) cos (ωnt)
]
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×
[
2 + (−1)n

(
e2iknx + e−2iknx

)]
=

1

2ℓ

1

ω2
n

[
(1− k2n/2)

(
1− cos(2ωnt)

)
− iωn sin (2ωnt)

]
×
[
1 + (−1)n cos (2knx)

]
(5.59)

Using the dispersion relation again, one gets

(2vn + un)v
∗
n =

1

ℓ

(−1)n

k2n(k
2
n + 4)

×
[
(−1)n + cos (2knx)

][
(2− k2n)[1− cos(2ωnt)]− 2iωn sin (2ωnt)

]
(5.60)

Now it is time to get the characteristic solutions. For n = 0,

(i∂tσ3 − σ4)F̃0 =
t2 − it

ℓ
(1, 1)t. (5.61)

The characteristic solution is simply

F̃0 = − t2

2ℓ
(1, 1)t. (5.62)

Now one has to solve for n ̸= 0. One can rewrite the Eq. (5.53) as

(
i∂tσ3 +

1

2
∂2x − σ4

)
Fn

=
(−1)n

[
(−1)n + cos (2knx)

]
ℓk2n(k

2
n + 4)

(2− k2n)

1

1



−e2iωnt

 ωn − k2n + 1

−ωn − k2n + 1

− e−2iωnt

−ωn − k2n + 1

ωn − kn/2 + 1


 . (5.63)
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Using the result in the Appendix App. 8.3, the characteristic solution for this

equation is

F̃n =
(−1)n

ℓk2n(k
2
n + 4)

{
(−1)n

[
(2− k2n)F̃n,0 − (1− k2n/2)F̃n,+1 − ωnF̃n,+2

− (1− k2n/2)F̃n,−1 − (−ωn)F̃n,−2

]
+
[
(2− k2n)F̃n,3 − (1− k2n/2)F̃n,+4 − ωnF̃n,+5

− (1− k2n/2)F̃n,−4 − (−ωn)F̃n,−5

]}
(5.64)

Hence,

F̃n = − (−1)n

2ℓk2n(k
2
n + 4)

×

(−1)n

(2− k2n)

1

1

− e2iωnt

ωn

ωn − k2n/2

ωn + k2n/2

− e−2iωnt

ωn

ωn + k2n/2

ωn − k2n/2




+ 2 cos(2knx)

×

 2− k2n
2(k2n + 1)

1

1

+
e2iωnt

k2n

−ωn + k2n/2

ωn + k2n/2

+
e−2iωnt

k2n

 ωn + k2n/2

−ωn + k2n/2





(5.65)

Now, let us find the general solution which satisfies the initial condition.

At t = 0, the characteristic solution F̃ is

F̃ (0, x) =

∞∑
n=1

F̃n(0, x) =
1

2ℓ

∞∑
n=1

(
1

k2n + 4
− (−1)n

k2n(k
2
n + 1)

cos(2knx)

)1

1

 .

(5.66)
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Linearity will be used again. The initial condition is ζ(t = 0) = 0. Hence,

an,0Π0 + bn,0Π̃0 +

∞∑
j=1

[
an,jΠj − bn,jσ1Π

∗
j

]
= −F̃n (5.67)

where

an,0 = −⟨Π̃0, F̃n⟩
⟨Π̃0,Π0⟩

, an,j = −⟨Πj , F̃n⟩ (5.68)

bn,0 = −⟨Π0, F̃n⟩
⟨Π0,Π0⟩

, bn,j = −⟨σ1Π∗
j , F̃n⟩ (5.69)

It is easy to get an,0 = 0 and

bn,0 = − 1

ℓ(k2n + 4)
(5.70)

Using Eq. (5.34) one gets

an,j = − 1

2ℓ

1√
2ℓ[1− (ωj − k2j /2− 1)2]

(
1 ωj − k2j /2− 1

)1 0

0 −1


1

1


×
∫ ℓ

2

− ℓ
2

dx
[
e−ikjx + (−1)jeikjx

]( 1

k2n + 4
− (−1)n

k2n(k
2
n + 1)

cos(2knx)

)
= − 1

2ℓ

(−1)n

k2n(k
2
n + 1)

ωj − k2j /2− 2√
2ℓ[1− (ωj − k2j /2− 1)2]

×
∫ ℓ

2

− ℓ
2

dx
[
e−ikjx + (−1)jeikjx

] (
cos(2knx)

)
= −δj,2n

(−1)n

2k2n(k
2
n + 1)

ωj − k2j /2− 2√
2ℓ[1− (ωj − k2j /2− 1)2]

(5.71)

and

bn,j = − 1

2ℓ

1√
2ℓ[1− (ωj − k2j /2− 1)2]

(
ωj − k2j /2− 1 1

)1 0

0 −1


1

1


×
∫ ℓ

2

− ℓ
2

dx
[
eikjx + (−1)je−ikjx

]( 1

k2n + 4
− (−1)n

k2n(k
2
n + 1)

cos(2knx)

)
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=
1

2ℓ

(−1)n

k2n(k
2
n + 1)

ωj − k2j /2− 2√
2ℓ[1− (ωj − k2j /2− 1)2]∫ ℓ

2

− ℓ
2

dx
[
e−ikjx + (−1)jeikjx

] (
cos(2knx)

)
= δj,2n

(−1)n

2k2n(k
2
n + 1)

ωj − k2j /2− 2√
2ℓ[1− (ωj − k2j /2− 1)2]

(5.72)

Therefore, from the solution of the form

F = F̃0 +
∞∑
n=1

an,0Π0 + bn,0Π̃0 +
∞∑
j=1

[
an,jΠj − bn,jσ1Π

∗
j

]
+ F̃n

 , (5.73)

One gets

eiµt
√
ρ0ζ = − t2

2ℓ
+

∞∑
n=1

[
− 1

2ℓ(k2n + 4)
(1− 2it)

− (−1)n

k2n(k
2
n + 1)

ω2n − k22n/2− 2

2ℓ[1− (ω2n − k22n/2− 1)2]

× cos (k2nx)
{
e−iω2nt + eiω2nt(ω2n − k22n/2− 1)

}
− (−1)n

2ℓk2n(k
2
n + 4)

×

(−1)n

[
(2− k2n)−

e2iωnt

ωn
(ωn − k2n/2)−

e−2iωnt

ωn
(ωn + k2n/2)

]

+ 2 cos(2knx)

×
[

2− k2n
2(k2n + 1)

+
e2iωnt

k2n
(−ωn + k2n/2) +

e−2iωnt

k2n
(ωn + k2n/2)

] .

(5.74)

Because k2n = 2kn,

eiµt
√
ρ0ζ = − t2

2ℓ
− 1

2ℓ

∞∑
n=1

[
1

k2n(k
2
n + 4)

{
k2n(1− 2it)

+

(
(2− k2n)− 2 cos (2ωnt) + i

k2n
ωn

sin (2ωnt)

)}
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+
(−1)n

k2n(k
2
n + 1)

(ω2n − 2k2n − 1)− 1

[1− (ω2n − 2k2n − 1)2]
cos (2knx)

×
{
e−iω2nt + eiω2nt(ω2n − 2k2n − 1)

}
+

(−1)n

k2n(k
2
n + 4)

2 cos(2knx)

[
2− k2n

2(k2n + 1)
+ cos (2ωnt)− 2i

ω2
n

k2n
sin (2ωnt)

]


= − t2

2ℓ
− 1

2ℓ

∞∑
n=1

(−1)n

k2n(k
2
n + 4)

[
2(−1)n

{
1− cos (2ωnt) + ik2n

(
sin (2ωnt)

2ωn
− t

)}

+ cos (2knx)

{
2− k2n
k2n + 1

+ 2 cos (2ωnt)− 4i
ωn

k2n
sin (2ωnt)

− k2n + 4

k2n + 1

1

ω2n − 2k2n

{
(ω2n − 2k2n) cos (ω2nt)

+ i(ω2n − 2k2n − 2) sin (ω2nt)
}}]

(5.75)

Using the dispersion relation, one gets

eiµt
√
ρ0ζ = − t2

2ℓ
− 1

2ℓ

∞∑
n=1

(−1)n

k2n(k
2
n + 4)

2(−1)n

{
1− cos (2ωnt) + ik2n

(
sin (2ωnt)

2ωn
− t

)
+ cos (2knx)

[
2− k2n
k2n + 1

+ 2 cos (2ωnt)− 4i
ωn

k2n
sin (2ωnt)

− k2n + 4

k2n + 1

(
cos (ω2nt) + i

(ω2n − 2k2n − 2)

ω2n − 2k2n
sin (ω2nt)

)]}
(5.76)

Note that

(ω2n − 2k2n − 2)

ω2n − 2k2n
= 1− 2

ω2n − 2k2n

= 1− 1

kn
√
1 + k2n − 1

= −kn
√

1 + k2n
k2n

= −ω2n

2k2n
(5.77)
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Finally, one gets

eiµt
√
ρ0ζ = − t2

2ℓ
− 1

8ℓ

∞∑
n=1

(−1)n

ω2
n

2(−1)n

{
1− cos (2ωnt) + ik2n

(
sin (2ωnt)

2ωn
− t

)
+ cos (2knx)

{
2− k2n
k2n + 1

+ 2 cos (2ωnt)− 4i
ωn

k2n
sin (2ωnt)

− k2n + 4

k2n + 1

(
cos (ω2nt)− i

ω2n

2k2n
sin (ω2nt)

)}]
(5.78)

where 4ω2
n = k2n(k

2
n + 4) is also used also.

Now it is time to calculate correction on the condensate density ρζ and

correction on current Jζ . Note that they are corrections coming from the

existence of the Bogoliubov field. Hence, they represent also the backreaction

effect in the broad sense. The density correction is

ρζ := 2ℜ[ϕ∗0ζ] = 2ℜ[eiµt√ρ0ζ]

= − t
2

ℓ
− 1

4ℓ

∞∑
n=1

(−1)n

ω2
n

{
2(−1)n[1− cos (2ωnt)]

+ cos (2knx)

[
2− k2n
k2n + 1

+ 2 cos (2ωnt)−
k2n + 4

k2n + 1
cos (ω2nt)

]}
.

(5.79)

Note first that∫ ℓ/2

−ℓ/2
dxρζ = −t2 − 1

2

∞∑
n=1

1

ω2
n

[1− cos(2ωnt)] = −δN. (5.80)

Hence, the total particle number is conserved as expected. But, also note that

ρζ ̸= −ρχ which shows that it is not the Bogoliubov field itself. In Fig. 5.3, the

ρζ corresponding to ρχ in Fig. 5.1 is shown. Note that even though they are not

the same with the depletion ρχ, it shows similar behavior. Near the center, they

are almost homogeneous and there is a boundary effect. The difference one
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Figure 5.3 Left panel: Evolution of the condensate correction ρζ for a

condensate of size ℓ = 40. The curves are plotted for x ≥ 0 as ρζ is an even

function of x [see Eq. (5.79)]. As time passes, we observe an overall depletion

increase, initially more pronounced at the condensate wall at x = ℓ/2. Right

panel: ρζ profile evolution for a system of size ℓ = 100. We note that the

condensate bulk corrections are insensitive to the existence of the condensate

wall boundary region for the time scales considered in the plots.

can directly from the plot is that they show more clearly noticeable oscillatory

patterns.

Now, let us calculate the correction on the current Jζ . In our model, because

we have no leading order condensate flow (ρ0 = 0), and no phonon flux (ρχ = 0),

this is the only existing current in our working order (N0). Hence the current

is

Jζ := ℑ[ϕ∗0∂xζ] = ℑ[eiµt√ρ0∂xζ]

= ∂xℑ[eiµt
√
ρ0ζ]

= −2

ℓ

∞∑
n=1

(−1)n sin(2knx)

kn

[
sin(2ωnt)

2ωn
− sin(ω2nt)

ω2n

]
. (5.81)
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One can calculate the total current by∫ ℓ/2

−ℓ/2
Jdx =

∫ ℓ/2

−ℓ/2
Jζdx = 0 (5.82)

which is expected from the x→ −x symmetry of the system. In Fig. 5.4, the

current density of the system with ℓ = 40 is given.
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Figure 5.4 Upper panel: Evolution of the gas density on top of the

condensate background ρ0 for a system of size ℓ = 40 and at several instants of

time. These profiles represent the departure from a uniform density condensate

profile as dictated by number-conserving backreaction effects. Lower panel:

Evolution of the condensate flux Jζ for a condensate of size ℓ = 40 and at

several instants of time. The positive plot range 5 < x < 20 is motivated by

the fact that Jζ is an odd function in view of Eq. (5.81). Note that the flux of

particles vanishes at the condensate walls, reflecting the fact that the particles

are indeed trapped inside the box.
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5.7 Measurement

In this subsection, the possibility of measurement on the contributions sep-

arately or not is investigated. For the flux, there is only one contribution

Jζ . Hence what one measures for the flux is the only current induced by the

backreaction. But there are 3 distinct contributions on the density (ρ0, ρχ, ρζ)

which are all nonzero. Because they have different physical meanings, one may

ask the question of whether we can measure them separately. In [43], the

authors measure quantum depletion ρχ separately. The main idea is that the

condensate density ρ0 is removed by the Bragg scattering technique, and one

can see it by the power spectrum. In number conserving expansion, however,

there is another contribution ρζ . Hence, one needs to separate the correction

of condensate from the depletion. But, at least in our knowledge, the power

spectrum of ρχ and ρζ are not simple to distinguish, and so it is not possible

to determine ρχ or ρζ independently. Hence, if one wants to measure ρχ only,

one must suppress not only the ρ0 but also the ρζ . If not, one can measure

only separately the leading order condensate density ρχ and the subleading

order contribution ρχ + ρζ . Fig. 5.4 shows the subleading order contribution

to the density one can measure by using the Bragg scattering method.

Quantum Backreaction and Quantum Potential— Now, let us investigate

the quantum backreaction more detail. Note that in our expansion, χ is the

only quantized field. As explained in the previous section, the origin of Jζ , ρζ

is affected by the existence of χ. Hence, the dynamic effect coming from the

existence of ρχ and Jχ can be interpreted as a backreaction. Moreover, we also

distinguish the part which satisfies the classical equation of motion fcl and the

remaining part fq The leading order part of fcl can be interpreted as a purely
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classical expression. It comes from the classical equations of motion (Euler

equation) with a classical source. The subleading order of fcl also comes from

the classical equation of motion but with a source determined from quantum

fluctuation. This is the usual semi-classical approximation result, and we call

this also the classical force. In quantum fluid mechanics, it is just the Madelung

equation. The remaining one fq comes from the quantum origin and does not

appear in the classical equations of motion. Hence, it shows that if one considers

the backreaction of the quantum effect, one needs to consider not only the

effect on the source term from quantum fluctuation but also the correction

of the dynamical equation of motion itself. In the system considered, the fact

that J = Jζ simplifies the analysis a lot. Let us calculate the classical force in

that model. Because v0 = 0 in the model, the first term of Eq. (4.6) is

∂x(ρv
2) = ∂x

[
ρ0v

2
0 − (ρζ + ρχ)v

2
0 + 2(Jχ + Jζ)v0

]
= 0. (5.83)

Therefore, classical force reduces to

fcl = −∂x
(
−∂

2
x(ρχ + ρζ)

4
+ (ρχ + ρζ)

)
=

(
∂2x
4

− 1

)
(∂xρχ + ∂xρζ). (5.84)

From the depletion Eq. (5.45), one gets

∂xρχ = −1

ℓ

∞∑
n=1

(−1)nkn sin(2knx)
[1− cos(2ωnt)]

ω2
n

. (5.85)

Similarly, from the condensate density correction Eq. (5.79), one gets

∂xρζ =
1

2ℓ

∞∑
n=1

(−1)nkn sin(2knx)

ω2
n

[
2− k2n
k2n + 1

+ 2 cos 2ωnt−
k2n + 4

k2n + 1
(cosω2nt)

]

=
1

2ℓ

∞∑
n=1

(−1)nkn sin(2knx)

ω2
n

[
− 2[1− cos(2ωnt)]−

k2n + 4

k2n + 1
[1− (cosω2nt)]

]
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= −1

ℓ

∞∑
n=1

(−1)nkn sin(2knx)

[
[1− cos(2ωnt)]

ω2
n

+ 8
[1− cos(ω2nt)]

ω2
2n

]
(5.86)

Substituting these to Eq. (5.84), we get

fcl =
1

ℓ

∞∑
n=1

(−1)n(1 + k2n)kn sin(2knx)

[
2
[1− cos(2ωnt)]

ω2
n

+ 8
[1− cos(ω2nt)]

ω2
2n

]
(5.87)

From induced current Eq. (5.81), one can easily get

∂tJζ =
−2

ℓ

∞∑
n=1

(−1)n sin(2knx)

kn

[
cos(2ωnt)− cos(ω2nt)

]
=

2

ℓ

∞∑
n=1

(−1)n sin(2knx)

kn

{
[1− cos(2ωnt)]− [1− cos(ω2nt)]

}
(5.88)

For convenience, it is better to write

∂tJζ =
1

ℓ

∞∑
n=1

(−1)nkn(2 + k2n/2) sin(2knx)
[1− cos(2ωnt)]

ω2
n

+
1

ℓ

∞∑
n=1

8(−1)nkn(1 + k2n) sin(2knx)
[1− cos(ω2nt)]

ω2n
. (5.89)

By putting Eq. (5.87) and Eq. (5.89) to the Eq. (4.8), one gets

fq = − 3

2ℓ

∞∑
n=1

(−1)nk3n sin(2knx)

ω2
n

[1− cos(2ωnt)]

= −6

ℓ

∞∑
n=1

(−1)nkn sin(2knx)

k2n + 4
[1− cos(2ωnt)]. (5.90)

One can get also this result by direct calculation.

Despite this simple analytic form, numerically plotting the fq directly takes

a too long time, because the series converges very slowly. Hence, in this thesis,

this problem is detoured by calculating the potential. Note that in the system

here, if one defines the potential to satisfy fcl + fq := −∂sV ,

∂tJ = ∂tJζ = −∂xV. (5.91)
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From Eq. (5.88), one can deduce that

V = −1

ℓ

∞∑
n=1

(−1)n cos(2knx)

k2n
[cos(2ωnt)− cos(ω2nt)]. (5.92)

Fortunately, this potential converges much faster. Since Eq. (5.83) holds for

the condensate at rest is that the classical force fcl can be determined by only

the density i.e., fcl = fcl(ρ, ∂xρ, ∂
2
xρ, ∂

3
xρ) in our working order (N0). One can

rewrite Eq. (5.84)

fcl = −∂x

(1− ∂2x
4

)
(ρχ + ρζ)

 . (5.93)

Hence, one can define classical potential which satisfies fcl = −∂xVcl where

vcl =
1

ℓ

∞∑
n=1

(−1)n cos(2knx)

k2n

{
ω2
2n

4ω2
n

[1− cos(2ωnt)]− 1 + cos(ω2nt)

}
. (5.94)

In Fig. 5.5, it is shown that the total potential V and classical potential

Vcl for the system size ℓ = 40. Note that the Vcl is usually bigger than

V . One can deduce that the quantum backreaction attenuates the classical

backreaction effect. Especially, near the boundary, attenuation is a lot, and

quantum potential exceeds the classical potential. And hence, the strong

Eulerian force term at the boundary is reduced by the quantum backreaction

force.

Note that the Jζ in the model can be calculated from the continuity

equation, and fcl is also governed by the total density. Hence, if one measures

the density, one can indirectly measure the quantum backreaction force.
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Figure 5.5 Evolution of the total and classical potentials V and Vcl,

respectively, for a condensate of size ℓ = 40 and at several instants of time.

The slopes of the curves represent the local force density exerted on the system

particles. We note that for the considered time interval, the quantum force has

the effect of attenuating the classical Eulerian force and that this attenuation

is more pronounced near the condensate walls.
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6 Black Hole Model

One of the famous ways of making the black hole configuration in the BEC

experiment is based on the Galilean invariance of the system[51, 31, 49]. In the

laboratory frame, the condensate is at rest, and the moving blue-detuned laser

acts as a moving potential step. In the comoving frame of the moving laser, the

condensate moves through the potential step induced by the laser and one can

think of it as a black hole configuration. The drawback of this model is that

the stationary regime is difficult to establish and fully numerical analysis is

therefore unavoidable. In particular, the moving horizon is responsible for the

emergence of an inner horizon, and a black hole-white hole pair forms [31, 77,

78]. Different techniques possible to establish analogue event horizons include

the condensate being released from a reservoir [53] by an outcoupling, and the

flowing condensate in toroidal configurations [21], the latter always containing

a black hole-while hole pair, as dictated by the very ring topology.

6.1 Background Condensate and Bogoliubov Field

The proposed model in this study is motivated by the atom laser experiment. To

realize a finite-size (and therefore well-defined) quasi-1D black hole model, one

can put the coherent sources and drains at the boundary of the condensate[21,
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9]. So, one needs to add the term corresponding to the source

Ss :=

∫
dx(JeΨ

∗ + J∗
eΨ) (6.1)

to the original action for the Bose gas which is defined as the integration of

the Lagrangian Eq. (3.1). Here, Je represents the external source and drains.

From the total action, one gets an inhomogeneous Gross-Pitaevskii equation

[56] (
i∂t −

∂2x
2m

+ U + g|Ψ|2
)
Ψ = Je. (6.2)

Note that the source field Je can be complex-valued. To understand the physical

meaning of Je, it would be better to rewrite the Eq. (6.2) in the Madelung

representation Ψ =
√
ρeiθ where ρ is the density, and v = ∂xθ/m is the fluid

velocity[68]. One gets the continuity-like equation and the Madelung equation

∂tρ+ ∂x(ρv) = −2ℑ[JeΨ∗], (6.3a)

m∂tθ +
mv2

2
− ∂2x

√
ρ

2m
√
ρ
+ U + gρ =

1

ρ
ℜ[JeΨ∗]. (6.3b)

The continuity-like equation Eq. (6.3a) shows that −2ℑ[JeΨ∗] is the flux of

particles being injected into the system, whereas the Eq. (6.3b) shows that

the ℜ[JeΨ∗]/ρ is the additional force density due to the source is turned on.

It is more clear if we take ∂x in both sides of Eq. (6.3b) to get the Euler-type

equation [68]

(∂t + v∂x)v = − 1

m
∂x

(
− ∂2x

√
ρ

2m
√
ρ
+ U + gρ− 1

ρ
ℜ[JeΨ∗]

)
. (6.4)

The analogue black hole considered here is prepared by adjusting the

source field Je and external potential U to produce the homogeneous flow

with a piecewise homogeneous coupling constant. (See Fig. 6.1) Concretely, it
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is assumed that the condensate density ρ0 and the velocity v0 > 0 are constant.

And the coupling constant g is

g = guΘ(−x) + gdΘ(x), (6.5)

where Θ(x) is the Heaviside step function. The subscript “u” and “d” is used

to denote the upstream/downstream each. In the view of analogue gravity,

upstream is outside of the black hole and downstream is inside the black

hole which is the same notion as the notion in the literature [3, 33, 11]. The

condensate is trapped in the region x ∈ [−ℓ1/2, ℓ2/2].

The model we discuss is the condensate with constant velocity v > 0 to

the right. It can be modelled by letting θ = −µt+ vx, where µ is the chemical

potential. One can make the finite solution as a limiting process. Let the system

xH = 0 x`2
2− `1

2

Upstream flow Downstream flow

m

Figure 6.1 Schematics of the condensate under study, which is assumed to

be a homogeneous quasi-1D condensate of size (ℓ2 + ℓ1)/2 flowing at constant

velocity. The gas flow is sustained by continuous source and drain at x = −ℓ1/2
and x = ℓ2/2, respectively. At x = xH, the Mach number m has a jump-

like discontinuity, separating the system into two regions of different sound

velocities.
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density ρ be

ρ =


ρin x ∈ [−ℓ1/2, ℓ2/2]

ρout x ∈ ]∞,−ℓ1/2 [
⋃

]ℓ2,∞[

(6.6)

where ρin, ρout are constants. Then the flux of particles can be obtained from

Eq. (6.3a) as

ℑ[JeΨ∗] =
v(ρout − ρin)

2
[δ(x+ ℓ1/2)− δ(x− ℓ2/2)]. (6.7)

One also set the external potential as

U =


µ− mv2

2 − gρin x ∈ [−ℓ1/2, ℓ2/2]

γρ
−1/4
out + µ− mv2

2 − gρout x ∈ ]∞,−ℓ1/2 [
⋃

]ℓ2,∞[

(6.8)

where γ > 0 being a constant parameter. From Eq. (6.3b), one gets the

additional force density

ℜ[JeΨ∗]√
ρ

= γρ
1/4
out [Θ(ℓ1/2− x) + Θ(x− ℓ2/2)]

+

√
ρout −√

ρin

2m
[∂xδ(x+ ℓ1/2)− ∂xδ(x− ℓ2/2)]. (6.9)

There are 8 free parameters {µ, v, gu, gd, ℓ1, ℓ2, ρout, ρin} for our piecewise ho-

mogeneous system. The finite size model can be obtained by letting ρout → 0.

Hence, the potential becomes

U =


µ− mv2

2 − gρin x ∈ [−ℓ1/2, ℓ2/2]

∞ x ∈]∞,−ℓ1/2[∪ ]ℓ2,∞[

(6.10)

and the associated force density term becomes

ℜ[JeΨ∗]√
ρ

=
−√

ρin

2m
[∂xδ(x+ ℓ1/2)− ∂xδ(x− ℓ2/2)]. (6.11)
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The condensate particles enter the system at x = −ℓ1/2 and escape at x = ℓ2/2,

similar to the external source considered in [56] As in the homogeneous model,

ψ is defined as χ = e−i(µt−vx)ψ, i.e., ψ is the Bogoliubov wave in the comoving

fluid. Because of the origin of Bogoliubov expansion, one also calls it linearized

fluctuations. The BdG equation Eq. (3.10) then becomes

i∂tψ =

(
− ∂2x
2m

− iv∂x

)
ψ + gρ0(ψ + ψ∗). (6.12)

Because the potential is infinity outside, the wave function must satisfy the

Dirichlet boundary conditions: ψ|x=ℓ1/2 = ψ|x=ℓ2/2 = 0 [69]. From now on,

only the finite region x ∈ [−ℓ1/2, ℓ2/2] will be treated.

Because the model considers the piecewise homogeneous fluid[11], we have

well-defined sound velocity in each region by mc2u,d = gu,dρ0. By dividing the

Eq. (6.12) with gρu = mc2u and using dimensionless spatial unit by x→ x/ξu,

where ξu = 1/
√
mguρ0 = 1/mcu, one will get

i∂tψ =

(
−∂

2
x

2
− imu∂x

)
ψ +

g

gu
(ψ + ψ∗). (6.13)

Here, mu denotes the upstream Mach number. The black hole is formed when

mu < 1 < md holds. Hence, the remaining parameters governing the character-

istics of the black hole configuration are {mu,md, ℓ1, ℓ2}. The quantization is

done in the same manner with homogeneous gas i.e., one forces the Bogoliubov

field ψ to satisfy Eq. (5.8). One can also rewrite the same quantization using

the Nambu spinor Φ = (ψ,ψ∗)t to satisfy Eq. (5.9). But, now the Nambu

spinor must satisfy the equation

iσ3∂tΦ =

(
−∂

2
x

2
− imuσ3∂x +

g

gu

)
Φ. (6.14)
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Note that this can be written in the form

iσ3Φ = σ3HBdGΦ.

and HBdG is also σ3-pseudoHermitian. But now, Φ must satisfy the Dirichlet

boundary conditions

Φ|x=−ℓ1/2 = 0 = Φ|x=ℓ2/2. (6.15)

The pseudoHermicity of HBdG allows one to have an orthonormal basis.

Hence, the spinor can be spanned by the positive norm mode and its correspond-

ing negative norm modes in the form Eq. (5.13) Or equivalently Eq. (5.16)

ψ(t, x) =
∞∑
n=0

[anun(t, x) + a†nv
∗
n(t, x)]. (6.16)

Because the leading order condensate is in the stationary regime, the

solution of the Eq. (6.14) with the stationary form Φ(t, x) = e−iωtΦω exists

where

ωσ3Φω =

(
−∂

2
x

2
− imuσ3∂x +

g

gu

)
Φω. (6.17)

By taking complex conjugate and using the anti-commutation relation of Pauli

matrices, one can notice that σ1Φ
∗ satisfies

− ω∗σ3σ1Φ
∗
ω =

(
−∂

2
x

2
− imuσ3∂x +

g

gu

)
σ1Φ

∗
ω. (6.18)

where σ4σ1 = σ1σ4, since σ4 = 1+ σ1. If ω ∈ R, this shows that considering

the ω > 0 is enough to cover all the real frequencies.

But, now one can have, in principle, the complex frequency because HBdG

is not Hermitian. Fortunately, because the Hamiltonian for full Bose gas is

Hermitian, if ω is in the spectrum, ω∗ must also be in the spectrum[36]. Hence,

one needs to solve Eq. (6.17) with ℜ[ω] ≥ 0∧ℑ[ω] ≥ 0. Note that the ℑ[ω] > 0

mode exhibits dynamical instability.
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Figure 6.2 Bogoliubov dispersion relation ω = ω(k). We set mu = 0.5,

md = 1.1, or gd/gu ∼ 0.2. Left: Dispersion relation in the region x < 0. The

grey dashed lines correspond to the eigenfrequencies within the plot range for a

condensate with −ℓ1/2 = ℓ2/2 = 60. The blue points indicate the real solutions

for k for ω2. Right: Dispersion relation for the region x > 0. Because md > 1,

the negative branch of the dispersion relation presents a local maximum. We

note that the field modes ω1 and ω2 are below this local maximum.

In each homogeneous region, one can use the plane wave form Φω = eikxΦω,k.

And at the horizon (x = 0), the wave mechanics technique applied to Eq. (6.17)

implies that Φω and its first derivative are also continuous [13]. From Eq. (6.17),

one can notice that the k must satisfy the Bogoliubov dispersion relation

(ω −mu)
2 = k2

(
g

gu
+
k2

4

)
. (6.19)

Because this is 4th order polynomial equation, we have 4 solutions for each ω

which is shown in Fig. 6.2. For simplicity, p will denote the downstream wave
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number instead of k. Then, the general solution for Φω is

Φω =


∑

k ske
ikxΦω,k x < 0∑

k spe
ipxΦω,p x > 0

(6.20)

where constants sk, sp are the constants that can be obtained by solving the

boundary conditions, and

Φω,k =

 g/gu

ω −muk − k2/2− g/gu

 . (6.21)

In each ω, there are 8 boundary conditions total (4 from Dirichlet boundary

condition, and 4 at x = 0 which comes from the continuity of Φ and ∂xΦ), and

we have 8 unknowns sp, sk. In the scattering approach we let one of sk(or sp)

to be nonzero. Hence, the 7 equations are used to determine the remaining

unknowns, and the remaining one equation determines the ω in the system

spectrum. Furthermore, because the system is finite-size and the equation is

an analytic function of ω with sk, sp, k, p, the spectrum is discrete.

6.2 Black Hole Lifetimes

In the model, the Dirichlet boundary conditions show that the radiation of the

Bogoliubov field is trapped in the two perfect mirrors. Therefore, the Hawking-

like process also cannot radiate away infinitely and stays contained within the

finite region, i.e., the condensate can be interpreted as a resonant cavity. In

fact, resonance also occurs for the black hole-white hole pair[16]. They show

black hole lasing effect comes from the resonance. But, it is also found that

not all black hole-white hole pairs exhibit the black hole lasing effect, and are

dynamically stable[21]. It is noteworthy that because of the complexity of black
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hole-white hole analogues, the mechanisms leading to stabilization cannon in

general be easily disentangled from one another [70, 30]. In the single black

hole case in this study, one also has a similar interplay between the finite size

and radiation process observed.

In a dynamically unstable case, a natural notion is the black hole’s lifetime,

which is determined by the instability time scale. The instability is investigated

in the black hole-white hole configuration and also the dependence on system

parameters. In this regard, the investigation was done in [21, 48, 47]. More

recently, such an analysis has been pursued in [54] for a (more realistic)

quasicondensate configuration. Because the background is condensate, the

existence of a black hole is related to the time how long the condensate

keeps in the same configuration or equivalently how long the Bogoliubov

approximation holds. Therefore, by ensuring that the system starts from well-

defined quantum fluctuations (e.g., by determining condensate depletion), the

complex frequencies decide the black hole’s lifetime. The analogue black hole

lifetime is defined as

τ := min
ω∈Σ

(2ℑ[ω])−1 (6.22)

where Σ is the set of mode frequencies ω with ℑ[ω] ≥ 0. In the model, four

parameters {mu,md, ℓ1, ℓ2} determines the black hole properties. One can

investigate the black hole’s lifetime with these 4 free parameters. In Fig. 6.3,

the black hole lifetime is given as a function of md with fixed ℓ1 = ℓ2 = 120.

For an infinite system ℓ1 = ℓ2 → ∞, no dynamical instability exists, and the

black hole lifetime is formally infinite, although of course the condensate is

destroyed by phase fluctuations and is completely depleted [28]. Note that in

the finite-size system, there is no monotonic behaviour. One can see from the
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Figure 6.3 Black hole lifetimes as function of the downstream Mach number

md for several choices of mu. Here we set ℓ = 120. Notice that generally no

monotonic behavior is observed. Moreover, the lifetimes diverge (1/τ = 0) for

mu = 0.2 and some values of md, i.e., the black continuous curve then touches

the md axis.

figure that there are some parameter regimes that the 1/τ curve that touches

0 which means that the black hole is stationary.

In Fig. (6.4), the black hole’s lifetime with the system size is shown. Again,

no clear functional dependence with the system parameters can be inferred, a

feature also observed in the black hole-white hole calculations of [21, 48, 47,

54].
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Figure 6.4 Black hole lifetimes as a function of the system size for the fixed

upstream Mach number mu = 0.5 and several choices of md. Similarly to what

is observed in Fig. 6.4, there is no clear functional dependence of the lifetimes

on the system size, and stability regions in the space of parameters exist.

6.3 Vacuum State with Instabilities and Black Hole

Quenching

Field quantization in the presence of instabilities is a well-studied topic [36,

10, 60, 42, 41], and the canonical procedure also in such a case works in

general. If there is no instability, one usually diagonalizes the Hamiltonian

of the Bogoliubov field and defines vacuum to be ⟨ψ⟩ = 0 The presence of

instability precludes the choice of the preferred vacuum state[10]. Hence, it is

not possible to find the vacuum state which allows a stationary state (eigenstate

of i∂t) with a positive norm to span the field configuration. For infinitely

extended 1D quasi-condensate analogue, the further details can be seen in
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[45]. It is, however, possible to define the instantaneous vacuum state with

complex eigenvalue states at a certain time ⟨ψ(t = 0)⟩ = 0. To understand

more details about the instantaneous vacuum, let Ω,Ω∗ be one of the complex

frequency pairs in the spectrum, and the corresponding solution to be of the

form e−iΩtΦΩ(x) and e
−iΩ∗tΦΩ∗(x), respectively, where ℑ[Ω] ≥ 0. Because of

the pseudoHermicity of the HBdG, one can show that both fields are zero norm

fields, i.e., (ΦΩ,ΦΩ)σ3 = 0. But, (ΦΩ,ΦΩ∗)σ3
:= λeiθ ̸= 0, and we can define

two orthogonal sets of fields by the linear combination as

Φ
(+)
Ω,αβ =

α√
λ

[
e−iΩtΦΩ +

(
1

2α2
+ iβ

)
e−iθ−iΩ∗tΦΩ∗

]
, (6.23a)

Φ
(−)
Ω,αβ =

α√
λ

[
e−iΩtΦΩ −

(
1

2α2
− iβ

)
e−iθ−iΩ∗tΦΩ∗

]
, (6.23b)

for α > 0 and β ∈ R. The (±) in the superscript denotes the sign of the

norm explicitly, i.e., (Φ
(+)
Ω,αβ,Φ

(+)
Ω,αβ)σ3 = 1 = −(Φ

(−)
Ω,αβ,Φ

(−)
Ω,αβ)σ3 . If Ω is a pure

imaginary number,i.e., Ω∗ = −Ω, we can add Φ
(+)
Ω,αβ and σ1Φ

(+)∗
Ω,αβ as a positive-

negative norm pair of field modes to the field expansion, whereas if Ω ∈ C \R,

we must add Φ
(+)
Ω,αβ , σ1Φ

(−)∗
Ω,αβ and the corresponding negative norm counterparts

to the expansion. Note that any choice of pairs (α, β) does not affect the field

norm, and all of them are equally acceptable as a basis of field expansion. Each

choice, however, gives a distinct quantum field theory as one can see in the

Bogoliubov transformation between different choices of (α, β). In particular,

in principle, it is possible to have arbitrarily large depletion which makes our

Bogoliubov approximation fails.

Black Hole Quenching— Because there is no preferred stationary vacuum

state, one needs physical reasoning to choose the instantaneous vacuum. One of

the elegant ways of choosing the vacuum state is the use of quenching the black
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hole. Since the system is stationary before the formation of the supersonic

region, one can start with fluid without a horizon, and make downstream

supersonic at t = 0. For instance, in the system in this thesis, one can start

with a configuration with the parameters such that mu,md < 1 for t < 0.

Then, at t = 0, by using the Feshbach resonance, one can tune the coupling

at downstream gd such that md > 1 i.e., quench the black hole. As we work

in the Heisenberg picture, the initial vacuum remains well-defined throughout

the system’s evolution. Specifically, the quantum field Φ has positive norm

expansion in the region t < 0,

Φn(t, x) = e−iνntΦνn (6.24)

where ∀n : νn > 0. Because the black hole is quenched at t = 0, Φn(t = 0)

can be represented as a linear combination of the complete set of field modes

discussed such as

Φn =
∞∑

m=1

[αn,me
−iωntΦωm + βn,me

iωmtσ1Φ
∗
ωm

] +
∑
j∈ΣΩ

γn,je
−iΩjtΦΩj (6.25)

where ΣΩ is the set of the complex frequency spectrum. Note that we do not

have any discontinuity in time on the BdG equation. Hence, Φ is continuous

about t, which amounts to the Fourier expansion

∞∑
m=1

[αn,mΦωm + βn,mσ1Φ
∗
ωm

] +
∑
j∈ΣΩ

γn,jΦΩj = Φνn . (6.26)

Thus by using the orthonormality of the field mode, one can find the coefficients

αn,m, βn,m and γn,j uniquely so that the Bogoliubov field is fixed. By using this

approach instead of instantaneous field quantization at the instability already

existing, the vacuum state is defined to be the quasiparticle vacuum an|0⟩ = 0,

which has a clear interpretation as it is uniquely defined.
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6.4 Quantum Depletion and Validity of Bogoliubov

Expansion

The quantum depletion in black hole configuration is defined as δρ = ⟨ψ̂†ψ̂⟩.

The interpretation of quantum depletion is that even at T = 0, a finite fraction

of the condensed particles leave the condensate due to the inherent quantum

fluctuations caused by the interaction of the particles constituting the system

[58].

The depletion is the fundamental quantity that is necessary to validate the

Bogoliubov expansion. The ratio between depleted particles and condensate

particles should be small to make Bogoliubov expansion consistent. Different

upper bounds for the Bogoliubov expansion applicability can be adopted,

depending on the characteristics of each particular system. For instance, the

simulations that follow are such that the largest number of depleted particles

occurs near the analogue event horizon, roughly when (reinstating units for

clarity) ξuδρ ∼ 2. For a condensate which has ξuρ ∼ 60, this corresponds to

3% of depleted particles near the event horizon. In the present work we fix

by convention that the Bogoliubov theory predictions are considered to be

accurate as long as depletion remains below 10%. From the mode expansion

Eq. (6.16), one can write the depletion as

δρ(t, x) =

∞∑
n=1

|vn(t, x)|2 (6.27)

Before the black hole formation— In Fig. 6.5, the depletion of the piecewise

homogeneous flow with the parameters which does not exhibit the black hole is

given with different system size. For simplicity, we use ℓ ≡ ℓ1 = ℓ2, ad rescale

x to fit the ends. The infrared (IR) logarithmic divergence is a well-known
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Figure 6.5 Quantum depletion for several condensate sizes in the absence

of a black hole md = 0.95. Here, ℓ1 = ℓ2, and we recall that ℓ ≡ (ℓ2 + ℓ1)/2.

The curves are scaled in x to fit in the same plot. The effect of the system size

is to increase the overall depletion logarithmically.

property of the infinite-size homogeneous system (see also for instance [33]).

Hence, one expects the depletion increases with the system size. One can see the

effect in Fig.6.5. Moreover, because gd < gu, the depletion in the downstream

is smaller than the upstream. One can see that the depletion goes to zero at

the boundary. This is just the result of Dirichlet boundary conditions at the

boundaries. Note that because of the external flow which keeps the phase of

the condensate, there is no zero mode, and this depletion is really constant not

like in the homogeneous case without a source before.

Depletion of a Stationary Black Hole— When the black hole is formed,

the depletion curves are qualitatively distinct, and let us consider the first

quantum depletion in stationary (dynamically stable black hole configurations.

In Fig. 6.6, depletion profiles for a fixed upstream Mach number mu = 0.5 and

different md is given. The black and red, blue dotted lines correspond to the

case that black hole is not formed. One can see that before the black hole is

formed, the upstream configuration far from the horizon (|x| ≫ 1) does not

affect it at all. And the downstream depletion decreases when the md increases,

and the shape of it is almost the same. Hence, the depletion is indeed only
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locally affected by the sound barrier: It is not possible to detect its presence

by measurements of the depleted cloud if |x| ≫ 1.

It is possible to directly correlate the imprint on the upstream depletion

cloud far from the analogue event horizon to the Hawking-like radiation if we

assume that the condensate is extremely elongated, by using, for instance, the

field modes of [33]. Such a calculation, however, requires the use of frequency

cutoffs to render depletion finite in our quasi-1D setup; such cutoffs can be

inferred from our finite size model.

When the black is formed, the upstream depletion far from the horizon

(|x| ≫ 1) is also increased, and it can be interpreted that the Hawking-like

radiation affects the upstream. And downstream, there are intricate patterns

now. One can suspect the pattern downstream comes from the Bogoliubov-

Čerenkov-Landau (BCL) radiation [7]. Recently, it is one of the popular sig-

natures in analogue gravity experiments [31]. The BCL radiation is the zero

frequency mode propagating away from the obstacle with respect to the obstacle

frame[78], where the obstacle is downstream boundary x = ℓ2/2 in our system.

But, because the external source and drain in the system keep the phase of

the system to be sustained, there is no zero frequency mode in our system[8].

Hence, there is no BCL effect, and this pattern must be a new effect that comes

from the horizon formation.

Depletion of an Unstable Black Hole— For the dynamically unstable black

hole configuration, one needs to be more careful to make interpretations and

experiments. Because depletion grows exponentially without restriction, it will

continuously extract particles from the condensate, and the whole system will

eventually go to a new configuration. Hence, a fully self-consistent backreaction

analysis is required, but because the external source and drain break the
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Figure 6.6 Several depletion profiles for fixed mu = 0.5, and ℓ = 67.

The continuous black, dashed blue, and dot-dashed red curves correspond,

respectively, to md = 0.5, md = 0.7, and md = 0.9, whereas the dotted brown

curve depicts depletion for the stationary, stable configuration with md = 1.5.

Deep into the upstream region we see that the sound barrier at x = 0 leaves

no imprint in the black hole’s absence, but as the analogue event horizon

forms, the upstream noncondensed cloud changes due to the analogue black

hole Hawking radiation. We also note the intricate depletion behavior at the

downstream region after the black hole formation, which is in sharp distinction

to the featureless depletion profile without the black hole.

U(1) symmetry, one needs to be more careful in taking a number-conserving

approach.

As discussed in Sec. 6.3, there is no stationary vacuum, and hence, one needs

to specify the instance of quantization. In order to gain further insight, this

thesis shall treat an explicit example. Consider the case mu = 0.5,md = 1.1,

and ℓ1 = ℓ2 = 120. It has six complex frequencies in the Bogoliubov spectrum,

obtained from Ω1 ∼ i8× 10−4 and Ω2 ∼ (70.76 + 3i)× 10−4. Therefore, from

the discussion that leads to Eq. (6.23), we see that the space of possible choices

for the system vacuum is parametrized by four real parameters, i.e., α and β

for Ω1,2 each. Because the depletion is given as a mode sum, it can be split

into time-dependent terms which come from the complex frequencies, and time-

independent term δρs which is independent of the vacuum choice. Following

the notation of Eqs.(6.16) and (6.23), the depletion is

δρ = δρs + |v(+)
Ω1,α,β

|2 + |v(+)
Ω2,α′,β′ |2 + |u(+)

Ω2,α′,β′ |2, (6.28)
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where α, α′ > 0 and β, β′ ∈ R are the arbitrary parameters we choose. This

shows that the depletion will vary with time, and the Bogoliubov assumption

breaks down. One can visualize this by counting the total number of depleted

particles, δN =
∫
dxδρ, which in view of Eq. (6.28) splits into stable one and

contribution from Ω1,Ω2 sectors. In Fig. 6.7, the contribution to the number

of depleted particles in the Ω2 sector, for different choices of α′, β′ is shown.

Inspection of Fig. 6.7 reveals that depending on the parameters α′, β′, the

predictions of Bogoliubov theory cannot be expected to be completely reliable.

For instance, for a system with a total of 6000 particles, 1000 depleted particles

correspond to 16% of the particles, not in the condensate. This is bigger than

our small depletion criterion (10%), and the Bogoliubov expansion is not valid.

Figure 6.7 Quantum-depleted number of particles coming from different

choices of instantaneous vacuum states for the sector Ω2. System parameters

are mu = 0.5, mu = 1.1, and ℓ = 120.
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Figure 6.8 Depletion profiles as a function of time for a black hole

characterized bymu = 0.5,md = 1.1, and ℓ = 120, with the system in its vacuum

state of minimum depletion. Three major features are observed: Initially (black

curve) the depletion profile inside the black hole does not resemble the stable

curves of Fig. 6.5; as time passes, the number of depleted particles increases

outside the black hole; an oscillatory pattern emerges inside the black hole.

Here, the lifetime τ is defined in (6.22).

A regime of “Initially” large depletion corresponds to cases where the instability

already played a relevant role, and de-stabilization processes are taking over

the condensate evolution.

On the other hand, as the number of depleted particles is bounded below,

there must be a vacuum state with the smallest depletion. Because each Ωi

contributions to the depletion are independent, one can find the smallest

depletion vacuum by minimizing the number of depleted particles α, α′, β, β′.

In Fig. 6.8, the evolution of depletion in time with the initial vacuum

as a minimal depletion vacuum is shown. Note that at the initial time, the

downstream is different from the stable black hole configuration, As time

passes, the upstream depletion grows which can be interpreted as a Hawking-

like process. And also note that there is an oscillatory pattern that arises

downstream. In the theoretical approach, it is annoying that instability occurs,

because the breaking of time translation symmetry makes one cannot use

the approach to the asymptotic region, at late times. Moreover, the growth
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of depletion means the condensate decrease, and our background is not the

same as what one started. But, this is only of theoretical importance. In

experimental realizations, the condensate and the black hole setting must have

an initial value, which defines the system vacuum (and therefore the condensate)

throughout its evolution. This is done by quenching the black hole configuration.

In Fig. 6.9, the quenching of the unstable black hole configuration from the

initially stable non-black hole configuration is shown. More precisely, the system

with parameters ℓ1 = ℓ2 = 120, mu = 0.5 and md = 0.95 is prepared. At t = 0,

the black hole is turned on by increasing the downstream Mach number to be

md = 1.1 suddenly. By using Ref. [51] and its experimental parameters as a

guide, and returning to dimensionful units, one can find τ ≈8 s for a chemical

potential of 70Hz.

As advocated above, by starting from a truly stationary system in its

uniquely defined quasiparticle vacuum, one can study the system evolution in

a consistent and self-contained way when the Hawking process is switched on.

In Fig. 6.9, the interference pattern downstream can be seen and there is a

continuous increase in the overall number of depleted particles in the whole

system. It is different from the non-black hole case (Fig. 6.5) since the depletion

of downstream monotonously decreases when the md increases. This is just

because the increase of md corresponds to a decrease of interaction strength

gd. So, the interference pattern, and increase of downstream depletion is a

clear notion of black hole formation. And in the upstream, the emergence of

depletion is also the signal of the Hawking effect.

One can follow the ramp-up of the Hawking radiation with a better res-

olution by taking analogue models with higher downstream Mach numbers,

which corresponds to stronger radiation[33]. In Fig. 6.10, the system with
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md = 2 is used keeping other parameters are the same with Fig. 6.9. Now,

the lifetime is τ ∼1 s for the experimental guiding parameters which are about

ten times smaller than Fig. 6.9. Fig. 6.10 shows that, as the Hawking-like

process is switched on, the cloud of depleted particles increases in a manner

directly correlated to the radiated signal. One can see that the depletion growth

propagates from the horizon. The increase makes the depletion break the small

depleted ion assumption and finally, the Bogoliubov approximation does not

hold.

Power spectrum of quantum depletion— Using the Bragg scattering, one

can measure the momentum distribution of the particle. Denoting Fourier trans-

form of depletion as ρ̃(k) =
∫
dxe−ikxρ(x), and simlarly, δ̃ρ(k) =

∫
dxe−ikxδρ(x),

Ref. [43] exploits the fact that in some configurations ρ̃(k) decays faster for large

k in comparison to the polynomial decay of δ̃ρ(k). In the previous homogeneous

model, the condensate correction shows indistinguishable behaviour with the

Figure 6.9 Several depletion profiles as a function of time for a quenched

black hole. The system is set to have mu = 0.5, md = 0.95, and ℓ = 120 for

t < 0, and we change md = 1.1 after the quench at t = 0.
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depletion. But if one suppresses the condensate correction, one obtains a large

k window sensitive to the depletion. The interference pattern downstream

suggests that there must be a peak in the power spectrum as time passes. In

Fig. 6.11, the power spectrum of the black hole configuration for unstable/stable

black hole configuration is shown.

Again, the interference pattern has no relation to BCL radiation, since there

is no zero frequency mode in the obstacle frame, i.e., the LAB frame. One can

see easily from the right panel which corresponds to the stable configuration,

that the zero frequency mode is about k ∼ 0.75. But one can see there is

no peak in there. In the unstable configuration, it is more subtle. The zero

frequency mode is k ∼ 0.42 and it seems that there is such mode. But it is not

Figure 6.10 Quantum depletion for quenched black holes of different sizes.

The black holes have mu = 0.5, and the quench changes md from 0.95 to 2 at

t = 0. The increased downstream Mach number leads to a stronger radiation

[33]. Upper panel: ℓ = 60. Lower panel: ℓ = 120. Both systems present similar

depletion behavior, with the emergence of an oscillatory pattern inside the

black hole, and the peculiar upstream-depleted cloud signal which forms at the

analogue event horizon (x = 0) and then propagates against the condensate

flow.
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Figure 6.11 Power spectrum of the depletion profile for two black hole

analogues. Left panel: The two curves represent the observed spectrum at

different instants of time for an unstable black hole configuration, both at the

beginning of the quench, and after a time t = 2τ , for a black hole characterized

by mu = 0.5, ℓ = 120, and md = 0.95 for t < 0, md = 1.1, t > 0. The black

continuous curve shows the formation of a bump near k ∼ 0.4, absent before

the black hole forms, as indicated by the blue dashed curve. Right panel: Power

spectrum for the stable black hole (continuous black curve) of Fig. 6.6. The

blue dashed curve shows the power spectrum before the black hole formation.

valid, since it grows with time, hence, in fact, even though it has ℜ[k] ∼ 0.42,

its imaginary part is nonzero, and it is not the zero frequency mode. Hence, it

is also not related to BCL radiation at all.

In the many-body problem, elementary excitations often divide into two

general types: ‘quasi-particles’ and ‘collective excitations’[46]. Roughly, the

fluctuations of density can be understood as a collective excitation. One may

interpret the instability as collective excitations if higher-order interaction is

considered. It is however beyond our analysis since we do not include higher

than linearized fluctuation in this model.
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6.5 Schiff-Snyder-Weinberg effect

In 1940, Schiff, Snyder, and Weinberg investigated the radial part of the Klein-

Gordon equation with a static external electrostatic field with the simple step

potential model. By varying the step size, they found the phenomenon that as

the step size increases, two frequencies merges to one value and disappear, and

then the two complex frequency arises[64]. Later, in 1976, Fulling investigate the

same phenomenon with a one-dimensional box in a region [18] x ∈ {−L−, L+}.

The Klein-Gordon equation is

[ωj − eA0(x)]
2ϕj(x) = (−∇2 +m2)ϕj(x) (6.29)

where the electrostatic potential is simple step potential

eA0(x) =


−V x ∈ ]−L−, 0[

0 x ∈ [0, L+[.

(6.30)

He found that the same merging frequency phenomenon occurs, and calls this

critical frequency the “singular mode”. Moreover, if we increase the step size

more the complex frequency disappears to revive the two real frequencies and

this exchange of real to complex and vice versa occurs repeatedly. If the step

size is higher than the first merging, the energy is unbounded below.

The Schiff-Snyder-Weinberg effect is the phenomenon that by varying the

potential strength (system parameter), the real frequencies (energy eigenvalues)

merges to one value and then, the complex modes arise. In cosmology, it is

related to the rotating star. The role of the external electrostatic field is to

decrease the mode frequency for the particle and increase (in the deep potential)

the antiparticle mode frequency. The existence of singular mode implies that
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the vacuum is no longer an isolated state but is degenerate with the state

where the arbitrary particle-antiparticle pairs exist in a polarized way, i.e., the

singular mode is the indicator for the transition to the instability [62].

Recently, it is shown that the mathematical structure of the Klein-Gordon

equation with reinvestigated, and the Schiff-Snyder-Weinberg effect and quan-

tization of this system is also suggested [44]. The Schiff-Snyder-Weinberg effect

can be investigated in the BdG equation, in which apply the synthetic vector

potential to make the equation of motion to be the same form with Eq. (6.29)

[24]. In this section, the qualitative behaviour of the frequency behaviour on

downstream Mach number is shown. In Fig. 6.12, the Schiff-Snyder-Weinberg

effect occurs at md = 1.1026. In contrast to the case of [18], the two positive

frequencies and two negative real frequencies merge in each. There is no mixing

of positive and negative frequency, and there is pure imaginary frequency modes

do not appear.

In Fig. 6.13, the Schiff-Snyder-Weinberg effect also occurs. In this case,

the merging of two real frequencies occurs at zero to make two imaginary

frequencies.
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1.1015 1.1020 1.1025 1.1030 1.1035 1.1040

-0.0010

-0.0005

0.0005

0.0010

Figure 6.12 The lowest four frequencies as a function of md for fixed

upstream Mach number mu = 0.5 and fixed system size ℓ1 = ℓ2 = 120. Singular

mode occurs at md = 1.1026. When md < 1.1026, there are four real frequencies.

When md > 1.1026, there are four complex frequencies. The positive frequency

mode does not go to the negative frequency mode.
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0.0002
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Figure 6.13 The lowest two mode frequencies for mu = 0.5, ℓ1 = ℓ2 = 160 as

a function of md. Singular mode occurs slightly below md = 1.02. In this case,

the merging occurs between positive and negative modes. Both frequencies

approach zero to meet. They split to form real frequency again slightly above

md = 1.04. Note that, unlike Fulling’s case, the split occurs at zero, and the

positive norm and negative norm are separated.
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7 Conclusion

The quantum backreaction force is shown to denote the departure from Eu-

lerian classical hydrodynamics due to the quantum fluctuations. In the most

general cases, it can be written solely in terms of quantities that have direct

interpretation: The quantum depletion, the phonon flux, the leading and

subleading order condensate density fluctuations, and two-point correlation

functions. Furthermore, a discussion regarding the proper construction of the

Cauchy problem for the backreaction analysis, and its relation with condensate

preparation at an experimental level is presented.

Two finite-size Bose-Einstein condensate systems as an analogue model are

investigated in this thesis. Both systems are simple and can be realized in the

tabletop experiment at least approximately in near future. It is important not

only because it is experimental realizable, but also because one can have a finite

number of depletion to make it possible to check the validity of the Bogoliubov

approximation. In analogue gravity language, a uniform finite size condensate

system corresponds to the bounded homogeneous flat (1 + 1)-dimensional

universe. On the other hand, flowing condensate with the sonic horizon, where

the flow speed exceeds the sound speed, is the (1 + 1)-dimensional black hole.

The supersonic region (downstream) is inside the black hole horizon, and the

subsonic region (upstream) is outside of the horizon.
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The homogeneous uniform density condensate serves the exact analytic

solution. In regarding backreaction in BECs, phase diffusion plays a prominent

role. Indeed, the existence of finite size interacting quasi-1D BEC is associated

with the continuous decrease of the off-diagonal long-range-order, which in

particular implies that the system is not stationary Accordingly, because the

classical background (condensate) spontaneously degrades, one needs to specify

the initial configuration of the Bose gas. In this thesis, by assuming the system

starts with the noninteracting regime, the system is indeed stationary and can

be taken to reside in its ground state. The interacting regime can be assessed by

driving the system out of equilibrium. It is discussed that it is not possible, at

least in our model, that the depletion cannot be distinguished from the conden-

sate correction by using the existing power spectrum measurement technique.

Furthermore, even though the condensate is initially at rest, backreaction from

the quantum fluctuations gives rise to a condensate current. The induced

current is governed by the total force which comes from the gradient of the

total potential function. Also, for the condensate at rest, the classical Eulerian

force in working order (N0) is determined solely in the density ρ = ρ0+ρχ+ρζ

which can be probed in the experiment. By comparing the total and classical

force, one can conclude that the quantum force attenuates the classical force

a lot near the condensate walls.

An immediate application of the present approach is furnished by con-

sidering its consequences in analogue gravity say for the backreaction of

the emitted Hawking radiation onto the condensate background. It is also

noteworthy that the connection that classical backreaction has already been

studied experimentally in shallow water tanks.
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In the 1D finite piecewise uniform flowing condensate model, there is a

single event horizon. In the model, not like in the uniform condensate at rest

model, Dirichlet boundary conditions are adopted for the condensate walls so

that not only the condensate but also the fluctuations vanishes there. It is also

better suited for experimental realizations since the condensate is confined in

the trapping potential along its symmetry axis.

Two distinct signatures of the Hawking process emerge when the event

horizon forms. The first one is the appearance of the oscillatory pattern in

the depletion cloud inside the black hole which translates to distinct peaks in

its power spectrum. The pattern is a new effect which is not related to the

famous BCL radiation. The second one is the increase of the depletion outside

of the horizon. The depletion increase is linked to radiation emitted by the

black hole. More precisely, the local depletion at a region outside the black

hole starts to increase as the radiation reaches that region. This represents the

novel signature of Hawking radiation.

The existence of finite-size-induced dynamical instabilities is discussed.

If the Bogoliubov field is not carefully quantized, the theory can represent

the strong depletion which renders the Bogoliubov expansion inconsistent.

The model used in this thesis evades this problem by employing a quenching

from a stationary configuration in its quasiparticle vacuum to the black hole

configuration. Hence, one can simulate the evolution of the depletion cloud

where the instability is onset. The qualitative comparison between the Schiff-

Snyder-Weinberg effect and the dynamical instability in the analogue finite-size

black hole is also given.
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8 Appendix

8.1 The Mathematical Structure of Spacetime

In this section, the mathematical structure of spacetime in general relativity is

summarized [65, 76, 14, 6, 27]. The set is the collection of objects which satisfies

the set-theoretic axiom. Let M be a set whose element is all the spacetime

points and its union. Thus one can say that some points are in spacetime or not.

But in classical physics, one wants to talk about more than just single points.

One of the main objects in classical mechanics is the trajectory of particles

(curve). The structure on a set is just another set inM which gives the relation

between objects inM . When one thinks about the curve, it must be continuous

in some interval. Hence, one needs a structure which can define continuity. It

is called the topology. The topology is a collection of sets O which satisfies 3

properties.

Definition 8.1 Let M be a set. If the set O satisfies

(a) The empty set and the entire set is an element, i.e., ∅,M ∈ O;

(b) Pairwise intersection of elements is an element i.e., ∀u, v ∈ O =⇒ u∩v ∈

O;

(c) Arbitrary union on elements is an element i.e., ∀i ∈ I : ui ∈ O =⇒⋃
i∈I

ui ∈ O,

O is called a topology on M . The tuple (M,O) is called a topological space.
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Now, one can talk about the trajectory of particles. It is, however, not easy

to treat the curve itself. Fortunately, thanks to the equivalence principle, the

space is locally flat.

Definition 8.2 A topological space (M,O) is locally Euclidean of dimension

n if

∀p ∈M : ∃U ∈ O : ∃x : U → Rn

where p ∈ U and φ is the homeomorphism. The pair (U, x) is called a chart,

U is called a coordinate neighborhood, and x is called a coordinate map (or

coordinate system) on U .

And one can now use the coordinate system to describe the position of

spacetime in a given chart. The locally-Euclidean space is called a manifold.

But it contains many pathological spaces and is not so useful in describing our

universe. Hence, we apply further topological conditions to the manifold, and

think of it as a definition of topological manifold [71]

Definition 8.3 A topological manifold of dimension n is a Hausdorff, second

countable, locally Euclidean space of dimension n.

Now one can describe the curve using the coordinate system in each chart.

Let the curve γ : I ⊂ R → U ⊂ M . Using the chart, one can define the

differentiability of the curve on the coordinate system just using undergraduate

calculus. More precisely, x ◦ γ : R → Rn by t 7→ x ◦ γ(t) can be differentiated

by t in elementary calculus. But, the differentiability of one chart does not

guarantee the differentiability of the other chart. Hence, it means that nature

knows what coordinate one uses. It is weird to accept. So, one defines the

compatibility of the chart.
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Definition 8.4 Two charts (U, x) and (V, y) on a topological manifold are

called Ck-compatible if two maps y ◦ x−1 : x(U ∩ V ) → y(U ∩ V ) and x ◦ y−1 :

y(U ∩ V ) → x(U ∩ V ) are both k times differentiable.

The collection of charts that covers the total manifold M is called an atlas

A. If each of the charts in the atlas Ak is Ck-compatible, it is called Ck-atlas.

The maximal atlas is an atlas which is not contained in any other and is called

an maximal atlas or a differential structure. In physics, one usually treats the

C∞ curve. Fortunately, there is a theorem by Whitney

Theorem 8.1 (Whitney) Any Ck>1-atlas Ak contains a C∞-atlas A∞.

Hence, one can always pick C∞-atlas from any Ck differential structure.

Hence, it is common to consider only the C∞-atlas A∞, and from now I will

drop the subscript ∞ in the atlas.

Definition 8.5 A triple (M,O,A) is called a smooth manifold (or C∞-

manifold).

Now one has the well-defined notion of differentiation of the curve. By

using it, one can define the velocity of the curve. Note that the manifold does

not have a vector space structure. Hence, one cannot define the velocity like

in the undergraduate time i.e., a difference between two positions (which is

ill-defined) divided by time. What one can define now is only the velocity at a

given point.

Definition 8.6 Let (M,O,A) be a smooth manifold and the curve γ : R →

M be at least C1. Suppose γ(λ0) = p. The velocity of γ at p is the linear map

vγ,p : C
∞(M) → R.

97



The tangent space at the point p, TpM is the collection of all tangent vectors

at p.1 One can easily check that the tangent space is the vector space. One of the

astonishing points is that the dimension of the velocity is not (Length×Time)

but only Time−1 For calculation, it is worth showing the components in the

specific chart. Let the chart (U, x) ∈ A and curve to be γ : R → U with

γ(0) = p. Then, ∀f ∈ C∞(M),

vγ,p(f) = (f ◦ γ)′(0)

=
(
(f ◦ x−1) ◦ (x ◦ γ)

)′
(0)

= (xi ◦ γ)′(0)
(
∂i(f ◦ x−1)

)
(x(p))

= γ̇ix(0)
∂

∂xi

∣∣∣∣
p

f

The γ̇ix(0) is called the component and ∂
∂xi

∣∣∣
p
is called the coordinate basis of

the velocity. Now one knows the derivatives at one point, and because the TpM

is vector space, one can also add or subtract the velocities at p.

But our spacetime is not the one point. And the most important dynamical

variable in modern physics is the fields. To define the field, one derives the

structure called bundle[34].

Definition 8.7 Let E,M be a manifold and π : E →M be a surjective map.

The triple (E,M, π : E →M) is called the vector bundle if they satisfy

(a) Each set Ep := π−1(p) (called the fiber of E over p) is endowed with the

structure of a vector space.

(b) For each p ∈M : ∃U which is open neighborhood of p and ∃ a diffeomor-

phism φ : π−1(U) → U × Rk called a local trivialization of E, such that

1There is another definition of tangent vectors and space using the derivation at the point
p. It is equivalent to the definition given here.
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the following diagram commutes:

π−1(U) U × Rk

U

π

φ

π1

where π1 is the projection onto the first factor.

(c) The restriction of φ to each fiber. φ : Ep → p×Rk, is a linear isomorphism.

One calls E the total space, M the base manifold, and π the projection.

The bundle structure allows one to extend the concept of continuous

(topology) from the base manifold to the total space. The field in physics

is called a section of the bundle.

Definition 8.8 If π : E →M is a vector bundle over M , a section of E is a

map F :M → E such that π ◦ F = idM (identity in M).

The bundle structure allows one to extend the smoothness of the manifold

to the smoothness of the section i.e., fields. Because the tangent space is also a

vector space, one can define the bundle so-called the tangent bundle TM with

it.

TM := T (M) :=
⋃̇
p∈M

TpM

where
⋃̇

is the disjoint union. Note that the TM is also a manifold. Hence,

one can define higher-order tangent bundles by a repeated process such as

TTM = T (TM).

Until now, the (tangent) vectors in each point, and the smooth vector field

as a smooth section are defined in the manifold structure. There is, however,

no way to compare the vectors at different points in the manifold. Especially, if

one wants to differentiate the sections independent of the chart. The connection
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in the TTM gives the way to differentiate the sections independently on the

chart.

Definition 8.9 Let π : E → M be a vector bundle, T (M) be a smooth

sections of TM , and E(M) be a space of sections on E. A connection in E is

a map

∇ :T (M)× E(M) → E(M) by (X,Y ) 7→ ∇XY

satisfying the following properties:

(a) For f, g ∈ C∞(M) : ∇fX1+gX2Y = f∇X1Y + g∇X2Y ;

(b) For a, b ∈ R : ∇X(aY1 + bY2) = a∇XY1 + b∇XY2;

(c) For f ∈ C∞(M) : ∇X(fY ) = f∇XY + (Xf)Y .

A linear connection is just a restriction of Koszul connection.

∇ : T (M)× T (M) → T (M).

One of the most famous symbols related to the connection is the Christoffel

symbol.

Definition 8.10 Let {Ei} be a local frame i.e., {Ei|p} forms a basis for TpM

in each point p in an open set U . Since

∇EjEi := Γk
ijEk,

one calls Γk
ij the Christoffel symbol (or connection coefficient).

In a manifold with connection i.e., (M,O,A,∇), one can tell how to move

the vectors along a smooth curve in a certain way.
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Definition 8.11 A vector field X is said to be parallel transported if ∇vγX =

0. Especially, if the X is vγ itself, the equation ∇vγvγ is called an auto-parallel

equation.

One can also define tensors using the connection ∇

Definition 8.12 In (M,O,A,∇), a map

T :T (M)× T (M) → T (M)

(X,Y ) 7→ T (X,Y ) = ∇XY −∇YX − [X,Y ]

is a (2, 1)-tensor field called a torsion.

The torsion is assumed zero in the usual theory of general relativity texts

and one says in that case that spacetime is torsion-free. In this thesis, spacetime

is also treated as torsion-free. Another tensor one can define with the connection

is the (Riemann) curvature tensor.

Definition 8.13 In (M,O,A,∇), a map

R :T (M)× T (M)× T (M) → T (M)

(X,Y, Z) 7→ R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

is a (3, 1)-tensor field called the (Riemann) curvature endomorphism.

Until now, the length of the vector is not defined. The length of the vectors

can be determined by the metric tensor.

Definition 8.14 A metric on a smooth manifold (M,O,A) is a 2-tensor field

g i.e., at each point p ∈ M and X,Y ∈ T (M) : g(X,Y )(p) := g|p(X|p, Y |p),

satisfying

101



(a) Symmetric : g(X,Y ) = g(Y,X).

(b) Nondegenerate : ∀0 ̸= Y |p ∈ TpM : ∃X|p ∈ TpM : g(X,Y )(p) ̸= 0.

Using the metric, one can define the speed of a particle at p ∈ M as√
g(v, v)(p). The arc length of a curve γ (or the distance of the trajectory of

a particle) L is defined as

L :=

∫
dλ
√
g(vγ , vγ)(λ) (8.1)

where λ is a parameter for the curve. The geodesic is the curve that the length

is extremum i.e., δL = 0. One must note that the manifold does not have

a vector space structure, and the concept of position vector or displacement

vector in our spacetime is an ill-defined concept. But, with metric, one can

define the distance by the length of the curve by the above definition.

The metric is an independent structure with a connection. But, one can

choose a unique linear connection from the metric if the connection is torsion-

free and compatible with the metric g.

Definition 8.15 In (M,O,A,∇, g), the linear connection ∇ is called metric

compatible if for X,Y, Z ∈ T (M) : ∇Xg(Y, Z) = g(∇Y, Z) + g(Y,∇Z), or

eqivalently ∇g = 0.

In this thesis, the connection is always chosen to be metric-compatible.

In the metric compatible connection, the auto-parallel equation becomes the

geodesic equation in a given chart i.e., in chart map x, the geodesic equation

for curve γ in coordinate basis { ∂
∂xc } is

0 = ∇vγvγ =
(
γ̈c(x) + Γc

(x) abγ̇
a
(x)γ̇

b
(x)

) ∂

∂xc
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where the subscript (x) is used to denote the chart clearly, and γ̇ ≡ d
dλγ(λ).

Similarly, the components of the torsion tensor are

T c
ab := T

(
dxi,

∂

∂xa
,
∂

∂xb

)
= Γc

ab − Γc
ba. (8.2)

And the torsion-free condition is just the symmetry of the subscript in the

Christoffel symbol in the coordinate chart. One can also define the components

of curvature endomorphism in the same way. Moreover, with metric, one can

define the (Riemann) curvature tensor

Definition 8.16 The (Riemannian) curvature tensor is a covariant 4-tensor

Rm := R♭ which is

Rm(X,Y, Z,W ) = g
(
R(x, Y )Z,W

)
.

Its component in coordinate basis is

Rabcd := Rm

(
∂

∂xa
,
∂

∂xb
,
∂

∂xc
,
∂

∂xd

)
= gaf

(
∂

∂xb
Γf
cd−

∂

∂xc
Γf
bd+Γe

bdΓ
f
ce−Γe

cdΓ
f
be

)
(8.3)

8.2 Calculation Details for fq

In this thesis, I show only 1D quantum backreaction force. But, one can show

the more general 3D dimensional expression for fq,3D. Within the Thomas-

Fermi (TF) approximation, it is given in the paper [68]. I show detailed

derivation for general fq,3D here. By definition, the quantum backreaction

is

fq,3D :=
∂

∂t
J(Ψ̂, Ψ̂†)− f(J, ρ)

=
1

4m2

〈
χ̂†∇3χ̂− (∇2χ̂†)∇χ̂+H.C.

〉
− 1

m
⟨χ̂†χ̂⟩∇U
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− 1

2gm
∇
(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 4|ϕc|2χ̂†χ̂⟩
)

−

−∇ · [ρv ⊗ v]− ρ

m
∇
[
−∇2√ρ
2m

√
ρ
+ U + gρ

]
∣∣∣∣∣∣∣
χ

+O
(

1√
N

)
(8.4)

where v := J/ρ, and |χ in the last line means that they contain only terms which

contain ρχ, Jχ contributions. Because ρχ = ⟨χ̂†χ̂⟩, the terms containing U is

exactly canceled. Hence, the external potential does not affect the fq,3D directly,

and if we know all the field variables exactly, we do not need to calculate them.

The first term in the last line is

∇ · [ρv ⊗ v]
∣∣
χ
= ∇ ·

[
J ⊗ J

ρ

]∣∣∣∣∣
χ

= ∇· [Jχ⊗vc+vc⊗Jχ−ρχvc⊗vc]+O
(

1√
N

)
(8.5)

It is easy to expand the last term in the last line

ρ∇(gρ) = ρc∇(gρχ) + ρχ∇(gρc) =
1

g
∇(g2ρχρc). (8.6)

And

ρ∇
[
1

2

∇2√ρ
√
ρ

]
= ρχ∇

[
1

2

∇2√ρc√
ρc

]
+
ρc
4
∇

1
2

1√
ρc

∇2

(
ρχ√
ρc

)
− ρχ

ρ
3/2
c

∇2√ρc


(8.7)

By substituting Eq. (8.5), Eq. (8.6), and Eq. (8.7) to Eq. (8.4), one gets

fq,3D = ∇ · [Jχ ⊗ vc + vc ⊗ Jχ − ρχvc ⊗ vc]−
1

2gm
∇
(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 2|ϕc|2χ̂†χ̂⟩
)

−ρχ
m

∇
[
∇2√ρc
2m

√
ρc

]
− ρc

4m2
∇

 1√
ρc

∇2

(
ρχ√
ρc

)
− ρχ

ρ
3/2
c

∇2√ρc


+

1

4m2

〈
χ̂†∇3χ̂− (∇2χ̂†)∇χ̂+H.C.

〉
+O

(
1√
N

)
(8.8)
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It is interesting enough, but one can go further to make a similar form in the

[68]. Note that

ρc∇

 1√
ρc

∇2

(
ρχ√
ρc

) = ∇3ρχ+ ρc∇

 ρχ√
ρc

∇2

(
1√
ρc

)
− 1

2ρc
(∇ρc) · (∇ρχ)


(8.9)

Direct calculation gives

∇3ρχ = ⟨χ̂†∇3χ̂+ (∇2χ̂†)∇χ̂+ 2(∇χ̂†) · (∇⊗∇χ̂) +H.C.⟩ (8.10)

Hence,

1

4

〈
χ̂†∇3χ̂− (∇2χ̂†)∇χ̂+H.C.

〉
− ∇3ρχ

4
= −1

2
⟨(∇2χ̂†)∇χ̂+ (∇χ̂†) · (∇⊗∇χ̂) +H.C.⟩

= −1

2
∇ · ⟨(∇χ̂†)⊗∇χ̂+H.C.⟩ (8.11)

Substitute Eq. (8.9) and (8.11) to the Eq. (8.8), one gets

fq,3D = ∇ · [Jχ ⊗ vc + vc ⊗ Jχ − ρχvc ⊗ vc]−
1

2gm
∇
(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 2|ϕc|2χ̂†χ̂⟩
)

− ρc
4m2

∇

 ρχ√
ρc

∇2

(
1√
ρc

)
− 1

2ρc
(∇ρc) · (∇ρχ)−

ρχ

ρ
3/2
c

∇2√ρc


−ρχ
m

∇
[
∇2√ρc
2m

√
ρc

]
− 1

2m2
∇ · ⟨(∇χ̂†)⊗∇χ̂+H.C.⟩+O

(
1√
N

)
= ∇ · [Jχ ⊗ v + v ⊗ Jχ − ρχv ⊗ v]− 1

2gm
∇
(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 2|ϕc|2χ̂†χ̂⟩
)

− 1

2m2
∇ · ⟨(∇χ̂†)⊗∇χ̂+H.C.⟩

−ρχ
m

∇
[
∇2√ρc
2m

√
ρc

]
− ρc

4m2
∇
[
(∇ρc)2ρχ

ρ3c
− (∇ρc) · (∇ρχ)

2ρc

]
+O

(
1√
N

)
(8.12)

Note that the last line vanishes when we use TF approximation. Hence,

the leading order term is [68]

fTF
q,3D = ∇ · [Jχ ⊗ vc + vc ⊗ Jχ − ρχvc ⊗ vc]−

1

2gm
∇
(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 2|ϕc|2χ̂†χ̂⟩
)
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− 1

2m2
∇ · ⟨(∇χ̂†)⊗∇χ̂+H.C.⟩ (8.13)

For the 1-dimensional Bose gas, we can simply substitute ∇ → ∂x to get

fq in our working order N0,

fq = ∂x[2Jχvc − ρχv
2
c ]−

1

m2
∂x⟨(∂xχ̂†)∂xχ̂⟩ −

1

2gm
∂x

(
g2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂

2 + 2|ϕc|2χ̂†χ̂⟩
)

−ρχ
m
∂x

[
∂2x

√
ρc

2m
√
ρc

]
− ρc

4m2
∂x

[
(∂xρc)

2ρχ
ρ3c

− (∂xρc)(∂xρχ)

2ρc

]
(8.14)

Note that all the terms except 1
m2∂x⟨(∂xχ̂†)∂xχ̂⟩ are expressed in the measur-

able quantities. Using the Bogoliubov-de Gennes equation (3.34), one gets

− 1

m2
∂x⟨(∂xχ̂†)(∂xχ̂)⟩ = ∂tJχ − 1

4m2
∂3xρχ +

ρχ
m
∂x(U + 2gρc)

+
1

2m

[
⟨χ̂2⟩∂x(gϕ∗2c ) + ⟨χ̂†2⟩∂x(gϕ2c)

]
(8.15)

and because ϕc = eiθc
√
ρ
c
with ∂xθc = mvc, we have the relation

− ρc
2m

∂x

(
g
G(2)

ρc

)
= − 1

2mg
∂x(g

2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂
2 + 2ρcχ̂

†χ̂⟩)− igvc(ϕ
2
c⟨χ̂†2⟩ − ϕ∗2c ⟨χ̂2⟩)

+
ρχ
m
∂x(gρc) +

1

2m

[
⟨χ̂2⟩∂x(gϕ∗2c ) + ⟨χ̂†2⟩∂x(gϕ2c)

]
.

(8.16)

where the two-point correlation function is (See Eq. (3.39).)

G(2) := ⟨: (ρ̂− ⟨ρ̂⟩)2 :⟩, (8.17)

Substituting Eq. (8.15), Eq. (8.16) and continuity equation (3.44) to the (8.14),

one gets

fq = −vc∂tρχ − igvc(ϕ
2
c⟨χ̂†2⟩ − ϕ∗2c ⟨χ̂2⟩)− Jχ∂xvc

+∂x(Jχvc − ρχv
2
c )−

1

2gm
∂x(g

2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂
2 + 2ρcχ̂

†χ̂⟩)

+∂tJχ − 1

4
∂3xρχ +

ρχ
m
∂x(U + 2gρc) +

1

2m

[
⟨χ̂2⟩∂x(gϕ∗2c ) + ⟨χ̂†2⟩∂x(gϕ2c)

]
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−ρχ
m
∂x

[
∂2x

√
ρc

2m
√
ρc

]
− ρc

4m2
∂x

[
(∂xρc)

2ρχ
ρ3c

− (∂xρc)(∂xρχ)

2ρc

]
= ∂tJχ − vc∂tρχ + ∂x(Jχvc − ρχv

2
c )− Jχ∂xvc

− 1

2gm
∂x(g

2⟨ϕ2c χ̂†2 + ϕ∗2c χ̂
2 + 2ρcχ̂

†χ̂⟩)− igvc(ϕ
2
c⟨χ̂†2⟩ − ϕ∗2c ⟨χ̂2⟩)

−ρχ
m
∂x

[
∂2x

√
ρc

2m
√
ρc

]
+
ρχ
m
∂x(U + 2gρc) +

1

2m

[
⟨χ̂2⟩∂x(gϕ∗2c ) + ⟨χ̂†2⟩∂x(gϕ2c)

]
− 1

4m2
∂3xρχ − ρc

4m2
∂x

[
(∂xρc)

2ρχ
ρ3c

− (∂xρc)(∂xρχ)

2ρc

]

= ∂tJχ − vc∂tρχ + ∂x(Jχvc − ρχv
2
c )− Jχ∂xvc −

ρc
2m

∂x

(
gG(2)

ρc

)

+
ρχ
m
∂x

[
− ∂2x

√
ρc

2m
√
ρc

+ U + gρc

]

−ρc
4
∂x

1
2

1√
ρc
∂2x

(
ρχ√
ρc

)
− ρχ

ρ
3/2
c

∂2x
√
ρc

 (8.18)

8.3 Calculation for the Homogeneous Model

Let F̃n,0 be a solution to the equation

−σ4F̃n,0 = (1, 1)t.

Then F̃n,0 is

F̃n,0 = −1

2
(1, 1)t.

Let F̃n,±1 be a solution of the equation

(i∂tσ3 − σ4)F̃n,±1 = e±2iωnt(1, 1)t.

Using the ansatz F̃n,±1 = e±2iωnt(a, b)t, we have∓2ωn − 1 −1

−1 ±2ωn − 1


a
b

 =

1

1

 (8.19)
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Hence,

F̃n,±1 = ∓e
±2iωnt

2ωn
(1,−1)t (8.20)

Let F̃n,±2 be a solution to the equation

(i∂tσ3 − σ4)F̃n,±2 = e±2iωnt(1,−1)t.

Using the ansatz F̃n,±2 = e±2iωnt(a, b)t, we have∓2ωn − 1 −1

−1 ±2ωn − 1


a
b

 =

 1

−1

 (8.21)

Hence,

F̃n,±2 =
e±2iωnt

2ω2
n

(1∓ ωn,−1∓ ωn)
t. (8.22)

Let F̃n,±3 be a solution to the equation

(
1

2
∂2x − σ4

)
F̃n,±3 = cos (2knx)(1, 1)

t.

Using the ansatz F̃n,3 = cos (2knx)(a, b)
t, we have−2k2n − 1 −1

−1 −2k2n − 1


a
b

 =

1

1

 (8.23)

Hence,

F̃n,3 = −cos (2knx)

2(k2n + 1)
(1, 1)t (8.24)

Let F̃n,±4 be a solution of the equation

(
i∂tσ3 +

1

2
∂2x − σ4

)
F̃n,±4 = cos (2knx)e

±2iωnt(1, 1)t.
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Using the ansatz F̃n,±4 = cos (2knx)e
±2iωnt(a, b)t, we have∓2ωn − 2k2n − 1 −1

−1 ±2ωn − 2k2n − 1


a
b

 =

1

1

 . (8.25)

Hence,

F̃n,±4 =
2 cos (2knx)e

±2iωnt

3k4n
(±ωn − k2n,∓ωn − k2n)

t. (8.26)

Let F̃n,±5 be a solution of the equation(
i∂tσ3 +

1

2
∂2x − σ4

)
F̃n,±5 = cos (2knx)e

±2iωnt(1,−1)t.

Using the ansatz F̃n,±5 = cos (2knx)e
±2iωnt(a, b)t, one has∓2ωn − 2k2n − 1 −1

−1 ±2ωn − 2k2n − 1


a
b

 =

 1

−1

 (8.27)

Hence,

F̃n,±5 =
2 cos (2knx)e

±2iωnt

3k4n
(±ωn − k2n − 1,±ωn + k2n + 1)t (8.28)

8.4 Direct Calculation of fcl

One can also obtain Eq. (5.90) also by directly putting our field expansion to the

definition Eq. (4.10). In our model, ρ0 = const., v0 = 0, U + gρ0 = µ = const..

Hence, in our scaling, Eq. (5.90) becomes

fq = −1

2
∂xG

(2) − 1

4
∂3xρχ. (8.29)

Recall that we know all the mode function Eq. (5.41), Eq. (5.42), Eq. (5.54),

Eq. (5.57). Hence, the Eq. (8.17) gives us

∂xG
(2) = ρc⟨ψ2 + ψ†2 + ψ†ψ⟩
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=
∑
n

2∂xℜ[(un + vn)v
∗
n]

=
1

ℓ

∞∑
n=1

(−1)nk3n sin(2knx)

ω2
n

[1− cos(2ωnt)] (8.30)

And from Eq. (5.45), one gets

∂3xρχ =
4

ℓ

∞∑
n=1

(−1)nk3n sin(2knx)

ω2
n

[1− cos(2ωnt)]. (8.31)

Let us put Eq. (8.30) and Eq. (8.31) to Eq. (8.29), and then one gets

fq = − 3

2ℓ

∞∑
n=1

(−1)nk3n sin(2knx)

ω2
n

[1− cos(2ωnt)]

= −6

ℓ

∞∑
n=1

(−1)nkn sin(2knx)

k2n + 4
[1− cos(2ωnt)]

which is the same as Eq. (5.90).
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[33] P.-É. Larré, A. Recati, I. Carusotto, and N. Pavloff: Quantum fluctuations

around black hole horizons in bose-einstein condensates. Phys. Rev. A,

85 (1 Jan. 2012), 013621.

[34] John M. Lee: Riemannian Manifolds: An Introduction to Curvature.

Graduate Texts in Mathematics. Springer International Publishing, 2019.

[35] T. D. Lee, Kerson Huang, and C. N. Yang: Eigenvalues and Eigen-

functions of a Bose System of Hard Spheres and Its Low-Temperature

Properties. Phys. Rev., 106 (6 June 1957), 1135–1145.
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초 록

아날로그 중력은 휘어진 시공간에서의 물리를 실험실에서 가능한 실험으로

시뮬레이션하는 학제간 연구 프로그램이다. 본 연구는 입자간 상호작용이 접촉

상호작용인 준-1차원 유한한 크기의 보즈-아인슈타인 응축체 (BEC)에서의 측

정가능한 아날로그 중력 효과를 다루고 있다. 보즈 가스의 해밀토니안이 전체

U(1)-대칭성이있기때문에,총입자의수 N은고정되어있다. 따라서,큰 N을가

진시스템에서, 1/
√
N을장의작은전개매개변수로사용할수있다.이논문에서

입자수를 보존하는 보골리우보프 전개는 U(1) 대칭성을 깨는 보통의 입자수를

보존하지않는보골리우보프전개에단순하게장의 N−1/2-차항을포함하여행해

진다. 그 포함된 장은 보골리우보프 장에 의해 유도된 응축의 보정으로 해석된다.

전개의 타당성은 오로지 결손이 작다는 보골리우보프 근사에 의존한다. 그리고

분석은 타당한 영역에서 행해졌다. 특히, 타당한 영역의 시간 규모도 연구되었다.

본연구는극저온가스실험에서실현가능한두개의유한한크기의시스템을

다룬다. 첫 번째로, 1차원 유한한 크기의 균일한 보즈-아인슈타인 응축이 연구되

었다. 입자수를 보존하는 보골리우보프 전개를 이용하여, 운동방정식의 이 모델

에 대한 N−1/2-차 항 전개까지 정확한 모드 해를 얻을 수 있다. 응축은 처음에

상호작용하지 않으며, 바닥상태에 있다고 가정하여 잘-정의된 초기 진공상태를

보장한다. 갑자기 상호작용을 켜서, 응축은 순간적으로 평형상태에서 벗어난다.

특히,이 초기 진공 가정은 위상 분산과 그로인한 응축체 붕괴로 말미암아 생기

는 상호작용하는 응축체의 모호한 진공의 정의를 피할 수 있게 해준다. 주어진
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진공 상태에서 모드 전개의 정확한 해를 이용하여, 결손과 응축체 보정이 계산되

었다. 결손과 응축체 보정은 파워 스펙트럼 관측을 통해서는 구분할 수 없음을

밝혔다. 게다가,비록초기응축체가정지한상태이고응축의주요항은움직이지

않더라도, 결손된 입자들의 양자요동이 자명하지 않는 버금 차수의 응축 흐름을

만들어낸다.

더욱이, 양자 백리액션 힘이 마들룽 표현을 통해 얻을 수 있는 오일러 힘에서

벗어난 정도로 정의되었다. 또한, 주요 차수 항에서 정지한 응축체의 경우, 전개

차수 (N0)에서,고전힘이오직총입자의밀도에만의존함을보였다. 따라서,총

밀도를 시간의 함수로 아는 것이 실험적으로 양자 백리액션 힘을 측정할 수 있는

실현 가능한 방법을 준다. 게다가, 고전힘과 총 힘이 보존 형태로 쓰일 수 있다.

즉, 그들에 대한 스칼라 퍼텐셜을 찾을 수 있다. 퍼텐셜이 힘보다 훨씬 빠르게

수렴하기때문에,고전과총퍼텐셜을해석적형태로구하고그들을그릴수있다.

그로부터 양자 백리액션 힘이 경계면 근처에서 고전 힘을 많이 줄여준다는 것을

확인할 수 있다.

두 번째로, 1차원 유한한 크기의 부분적으로 균일한 흐름 모형을 연구했다.

흐름은 경계에 놓여진 결맞은 소스와 드레인을 통해 유지된다. 각 영역에서 마

하수는 흐름 속도와 각 영역에서 음속의 비율로 정의된다. 특히, 아날로그 사건

지평선은 마하수가 1을 넘어가는 영역으로 정해진다. 해밀토니안의 에르미션아

님과 관계 없이 원론적으로는 안정적인 사건 지평선 하나를 가지는 음파 블랙홀

모형이 유지될 수 있음을 보였다.

블랙홀-화이트홀 쌍에서와 같이 동적 불안정이 발생한다. 블랙홀의 생존시간

이 불안정에 의해 정의되며, 시스템 매개변수에 대한 생존 시간 역시 연구되었다.

이 모델에 대한 양자 결손이 보골리우보프 이론의 타당성을 검증하고 아날로그

호킹 과정을 묘사하는 도구로 제안되었다. 사건지평선 안쪽과 바깥쪽 모두에서

호킹복사의 명백한 신호를 찾을 수 있다. 불안정과 쉬프-스나이더-와인버그 현상

과의 관계가 정성적으로 연구되었다.
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