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Abstract

Exchange-correlation energy and
spin-valley polarized half/quarter

metal phase of multilayer
graphene

Yunsu Jang
Department of Physics and Astronomy

The Graduate School
Seoul National University

Single- and multilayer graphene has been one of the most important

materials in recent decades. It plays an important role in a research on 2D

van der Waals materials and topological materials, and its good physical

properties make it interesting for application to devices. The chiral nature of

the multilayer graphene leads to an interesting phenomena, such as corre-

lated state caused by electron-electron interactions. Also, it is also very in-

teresting that multilayer graphene has various electronic structures depend-

ing on the stacking method and the electronic structure can be changed by

various manipulations such as vertical electric fields or strain. The recent

discovery of superconductivity and spin-valley polarization state in ABC

trilayer graphene has increased interest in the interaction phenomena in mul-

tilayer graphene.
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In this thesis, we focus on the polarization state that can appear due to

these electron-electron interactions.

First, we analyze the electron-electron interaction depending on the

stacking method in multilayer graphene. We calculate exchange self en-

ergy, density-density response function, and ground-state energy of mul-

tilayer graphene systems. The influence of electron-electron interaction on

electrical properties can be understood as competing contributions from in-

traband exchange, inter band exchange, and correlation. We show that the

contribution of interband exchange is strongly suppressed as the chirality J

increases.

Second, we theoretically study the spin-valley polarization state re-

cently discovered in the ABC trilayer graphene. A four-fold spin-valley

degeneracy of the electronic structure can change into condensed states in

some of the four degenerates due to electron-electron interactions. We find

a non-interaction wavefunction through self-consistent Hartree calculation

and we use it to calculate the ground-state energy considering the exchange-

correlation energy. We demonstrate that the spin-valley polarization states

can have a lower ground-state energy compared to that of the normal state

and exchange contribution plays a key role in the appearance of the po-

larized state. Furthermore, we show that the spin-valley polarization phase

can be present in AB bilayer graphene and ABCA rhombohedral tetralayer

graphene.

On the other hand, we investigate different correlated states, layer po-

larized, by electron-electron interaction. The layer polarized state of Bernal-

stacked bilayer graphene has been theoretically predicted and experimen-

tally observed. This state can be explained as a pseudospin model. Benal-

stacking tetralayer graphene has a heavy-mass band and a light-mass band

in the low-energy region. The ground-state configuration is complicated due

to the pseudospin doublets and spin-valley degeneracy, but it can be ex-

plained using an effective Hund’s law. We also study the effect of the stack-
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ing method and the response to the vertical electric field. We derive the

effective Hamiltonian for alternating twist multilayer graphene and show a

step-like feature in the optical conductivity.

Keywords : Mutilayer graphene, exchange-correlation energy, ground-state

energy, spin-valley polarized state
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Chapter 1

Introduction

Multilayer graphene has been studied in recent decades due to the pos-

sibility of an electronic device applications and its chiral feature[1–5]. The

electronic structure of multilayer graphene is also sensitive to its stacking

sequence and can be easily controlled by applying a vertical electric field.

To understand the electronic properties in the presence of electron-

electron interactions is a fundamental issue in multilayer graphene. Its chiral

feature of multilayer graphene plays an important role in electron-electron

interaction[6, 7]. There are layer polarized correlated phase that can occur

by electron-electron interaction [8–14]. Recently, spin-valley polarized state

has been experimentally observed in rhombohedral ABC trilayer graphene[15–

22] when a vertical electric field is applied. To understand this phenomenon,

we analyze the ground-state energy by considering electron-electron inter-

action.

In Chapter 2, we introduce the rotational transformation of the chi-

ral wavefunction. This method offers computational cost benefits by de-

termining the complex phase of the chiral wavefunction, which is deter-

mined by the chiral nature and its hopping network in the minimal model

of multilayer graphene. This approach overcomes the high computational

cost of electron-electron interaction calculation and enables calculation of

the full scope of the thesis. Using this method, we obtain the exchange self-

energy, density-density response function, plasmon dispersion, and finally

the ground-state energy of multilayer graphene within the random phase ap-

proximation(RPA). We analyze the relationship between electron-electron

interaction and chirality by analyzing these results, and we find that the

interband contribution is strongly suppressed as the number of layers in-
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creases.

In Chapter 3, we show that the four-fold spin/valley degeneracy of the

graphene system can be broken and half- or quarter- metal states can ap-

pear. Some of the spin-valleys become correlated due to electron-electron

interaction, forming a spin-valley polarized state. We calculate the ground-

state energy for the four possible pure polarized states within the RPA, and

show that the polarized state can have lower energy than the normal state by

comparing their ground-state energies.

In Chapter 4, we theoretically studied alternating twist multilayer graphene

(ATMG) in the presence of an electric field and obtained a low-energy effec-

tive Hamiltion of ATMG up to pentalyer. We also calculate the optical con-

ductivity of ATMG and and determine its characteristic optical spectrum,

which includes a step-like feature.

In Chapter 5, we study the spontaneous layer polarized phase due to

electron-electron interaction for Benal-stacking multilayer graphene. There

are various possible ground-state configurations depending on the direc-

tion of the pseudospin of heavy-mass and light-mass bands in which four

spin/valleys. We showed that various Hall conductivities can appear depend-

ing on these configurations, and that the heavy-mass band and light-mass

band pseudospin doublets follow an effective an Hund’s rule.

In chapter 6, We conclude this thesis with a summary.
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Chapter 2

Stacking dependence of carrier-interactions in
multilayer graphene systems

2.1 Introduction

Multilayer graphene has attracted considerable attention recently be-

cause of exotic chiral features in its electronic structure and the possibility

of future electronic device applications[1–4]. The band structure of a mul-

tilayer system is qualitatively dependent on its stacking sequence, opening

up the possibility of engineering electronic properties by selecting a de-

sired arrangement. In this chapter we use an approach in which momentum-

direction dependent intersite phases determined by the stacking sequence

are explicitly exhibited to show that this qualitative dependence is inherited

by carrier-carrier interaction phenomena.

Because the number of π-bands in a multilayer graphene system is

proportional to the number of layers, and because π-band wavefunctions

are not isotropic in momentum space, accurate evaluation of physical quan-

tities which require integrations over momentum space, for example quasi-

particle energy spectra and density–density correlation functions, rapidly

becomes more difficult as layer number increases. To mitigate this problem

and to make the relationship between stacking arrangement and interactions

more transparent, we introduce a momentum-direction dependent unitary

transformation which makes the single-particle Hamiltonian isotropic. In

addition to making accurate many-electron perturbation theory calculations

practical for multilayer stacks, this approach facilitates understanding of

some qualitative trends in the stacking arrangement dependence of quasi-

particle energy spectra, plasmon dispersion and damping, and carrier ther-
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modynamic properties.

2.2 Rotational transformation of multilayer Dirac Hamil-
tonian

Our calculation is based on the minimal continuum model for multi-

layer graphene which retains only a Dirac model for hopping within each

layer and only nearest-neighbor interlayer hopping. Different stacking se-

quences are specified by different interlayer near-neighbor arrangements.

The Hamiltonians for these minimal models can be made isotropic by multi-

plying wavefunction components by stacking and momentum-direction de-

pendent phase factors. To illustrate how this transformation works, we con-

sider first the example of Bernal stacked bilayer graphene, in which one

sublattice in the first layer (say 1B) is a near neighbor of the opposite sub-

lattice in the second layer (say 2A). The Hamiltonian at finite wavevector k

is then expressed in the (1A, 1B, 2A, 2B) basis as

H(ϕk) =


0 ℏvke−iϕk 0 0

ℏvkeiϕk 0 t⊥ 0

0 t⊥ 0 ℏvke−iϕk

0 0 ℏvkeiϕk 0

 , (2.1)

where k =
√
k2x + k2y , ϕk = arctan(ky/kx), v is the bare Dirac veloc-

ity, which is related to the nearest-neighbor intralayer hopping amplitude by

t = 2ℏv/
√
3a ∼ 3 eV (a = 0.246 nm is the lattice constant), and t⊥ ∼ 0.1t

is the nearest-neighbor interlayer hopping parameter. It is easy to see that

the eigenvalues of this Hamiltonian are independent of ϕk and that all eigen-

values satisfy Ψ(ϕk) = (c1A, c1Be
iϕk , c2Ae

iϕk , c2Be
2iϕk)t ≡ U(ϕk)Ψ(0),

where the {ci} depend on k only and can be obtained by diagonalizing H at

ϕk = 0. The locking between intersite phases and momentum direction in

these spinors is reminiscent of the properties of spinors in chiral systems and
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will be referred to below as sublattice pseudospin chirality. The unitary oper-

atorU(ϕ) is a diagonal matrix whose diagonal components (1, eiϕ, eiϕ, e2iϕ)

are determined by the bilayer stacking. The phase difference eiϕ between the

1A and 1B components of the wavefunction, and between the 2A and 2B

components, comes from the monolayer-like intralayer coupling, whereas

the zero phase difference between the 1B and 2A components comes from

the momentum-independent interlayer coupling. If we know the wavefunc-

tion at a specific angle, we can easily obtain the wavefunction at an arbitrary

angle by attaching site-dependent phase factors determined by the stacking

sequence.

We can easily generalize from the bilayer case to multilayer graphene

with an arbitrary stacking order. Eigenstates at momentum orientation ϕk
satisfy

Ψ(ϕk) = (c1Ae
iP1Aϕk , c1Be

iP1Bϕk , · · · )t = U(ϕk)Ψ(0), (2.2)

where H(0)Ψ(0) = εΨ(0). H(ϕk) = U(ϕk)H(0)U−1(ϕk) has matrix ele-

ments

Hij(ϕk) = Hij(0)e
i(Pi−Pj)ϕk , (2.3)

and eigenvalues ε that are independent of ϕk. By comparing the matrix ele-

ments in Eq. (2.3) with those in the original Hamiltonian, we can determine

the phase factor chirality parameters {Pi}. In general two sites connected by

nearest-neighbor interlayer hopping have the same phase and within a layer

PB = PA + 1. Using these two rules, {Pi} is completely determined by

the stacking sequence. Figure 2.1 illustrates their application in multilayer

structures with up to four layers. We explain below how these band struc-

ture properties influence electron-electron interaction physics in multilayer

graphene systems.
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(c) P1A P1B P2A P2B P3A P3B P4A P4B

A 0 1
AB 0 1 1 2

ABC 0 1 1 2 2 3
ABA 0 1 1 2 0 1

ABCA 0 1 1 2 2 3 3 4
ABCB 0 1 1 2 2 3 1 2
ABAB 0 1 1 2 0 1 1 2
ABAC 0 1 1 2 0 1 -1 0

Figure 2.1: Stacking diagrams and phase factor chirality parameters {Pi}
for (a) ABC and (b) ABA graphene. (c) Phase factors for all stacking ar-
rangements from monolayers to tetralayers. We have chosen to set the phase
factor of the sublattice 1A to zero. These results are for valley K. For valley
K ′ the chirality parameters change sign.

2.3 Exchange self-energy of multilayer graphene

Our goal in this chapter is to address interaction effects in moderate

carrier density multilayer graphene systems, which are are weakly corre-

lated two-dimensional Fermi liquids in which electron-electron interaction

effects can be reliably addressed using perturbation theory. At leading order

the electron self-energy is given by the unscreened exchange contribution:

Σex(k, s) = −
∑
s′

∫
d2k′

(2π)2
Vk−k′fs′,k′F s,s′

k,k′ , (2.4)

where fs,k is the Fermi function for the band s and wavevector k, F s,s′

k,k′ =

|⟨s,k|s′,k′⟩|2 is a wavefunction overlap factor, and Vq = 2πe2/ϵ0q is the
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Figure 2.2: (a) Exchange self-energies and (b) conduction band pseudospin
direction (s = +1) for C2DESs with J = 1, 2, 3, 4. Exchange self-energies
of (c) the lowest conduction band (s = +1) of ABC trilayer graphene for
n = 1011, 1013 cm−2, and (d) the lowest (s = +1) and second lowest
(s = +2) conduction bands of ABA trilayer graphene for n = 1012 cm−2.
(The bands of the ABA multilayer structures are shown in the inset.) Here
Σ0 = 2e2kF

ϵ0π
and we use the effective fine structure constant α = e2

ϵ0ℏv = 1
and momentum cutoff qc = 1/a.

two-dimensional Coulomb interaction. (We note that the Coulomb interac-

tion between layers with the layer separation d is given by Vq(d) = Vqe
−qd.

Due to the small layer separation we approximate Vq(d) ≈ Vq for the ana-

lytic calculations. The full numerical calculations using Vq(d) do not change

the results qualitatively.) It is conventional to absorb the self-energy at the

Dirac point (k = 0) in the absence of carriers into the zero of energy.

To understand the consequences for interaction physics of multilayer

wavefunction chiral properties, it is instructive to first consider the chiral
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two-dimensional electron system (C2DES) Hamiltonians[6, 7] that provide

a low-energy effective theory of multilayer graphene. The Hamiltonian of a

C2DES with the chirality index J is

HJ(k) = t⊥

 0
(
ℏvke−iϕk

t⊥

)J(
ℏvkeiϕk

t⊥

)J
0

 , (2.5)

and yields eigenenergies εs,k = st⊥ (ℏv|k|/t⊥)J , and eigenspinors |s,k⟩ =(
s, eiJϕk

)t
/
√
2, where s = ±1 for positive and negative energy states re-

spectively. For a C2DES with the chirality J ,F s,s′

k,k′ =
1
2 [1 + ss′ cos J(ϕk − ϕk′)] =

1
2 (1 + ss′nk · nk′), where nk = (cosJϕk, sin Jϕk) is the pseudospin di-

rection at k characterized by the chirality index J . Note that the overlap

factor F s,s′

k,k′ for a C2DES has the form of Heisenberg interactions between

pseudospins with orientation Jϕk and Jϕk′[8].

In Fig. 2.2(a) intraband and interband contributions to the conduction

band exchange self-energy of a C2DES are plotted. In Fig. 2.2(b) pseu-

dospin chirality is illustrated by plotting the spin-1/2 pseudospin orientation

appropriate for two-component spinors. As the chirality increases, the mag-

nitude of each contribution is suppressed because pseudospin orientation

changes more rapidly with wavevector. Especially, the interband exchange

is suppressed more strongly owing to the contribution from states occupy-

ing the infinite sea of negative energies. In Figs. 2.2(c) and (d) we com-

pare C2DES exchange self-energies with those of ABC and ABA graphene

multilayers. At low carrier densities in ABC graphene, the relative chiral

index of the dominant wavefunction components is 3 and the exchange self-

energy resembles the weak form found in a C2DES with J = 3; as the

density increases, interlayer hopping becomes less important, and the ex-

change self-energy eventually approaches that of a C2DES with J = 1. At

low densities, ABA graphene is described[6, 7] by a direct product of chiral

gases with J = 1 and J = 2.
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Figure 2.3: Loss function Im[−ε(q, ω)−1] of (a) ABC, (b) ABA, (c) ABCA,
and (d) ABAB stacked multilayer graphene for n = 1012 cm−2 and α = 1
with η = 5 × 10−5εF. The thick black lines indicate boundaries of the
electron–hole continua and the insets in each panel show the energy band
structure. In the ABA structure and in other multilayer structures with mirror
symmetry, some interband transitions do not contribute to plasmon Landau
damping, as indicated by dotted lines in panel (b).

2.4 Density–density response functions and collective
modes of multilayer graphene

Figure 2.3 plots loss functions Im[−ε(q, ω)−1] for several different

multilayer graphene structures. Here ϵ(q, ω) is the dielectric function which

we approximate using the weak coupling random phase approximation (RPA)

expression ϵ(q, ω) = 1 − VqΠ0(q, ω), and Π0(q, ω) is the non-interacting
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electron density–density response function:

Π0(q, ω) = gsv
∑
s,s′

∫
d2k

(2π)2
fs,k − fs′,k+q

ℏω +∆s,s′

k,k+q + iη
F s,s′

k,k+q, (2.6)

where gsv = gsgv = 4 is the spin-valley degeneracy, ∆s,s′

k,k+q = εs,k −
εs′,k+q, εs,k is the eigenenergy for the band index s and wavevector k, and

η is a positive infinitesimal number. The black thick lines in Fig. 2.3 plot the

boundaries of electron–hole continua within which ImΠ0(q, ω) is non-zero

and electron–hole excitations are allowed. When ϵ(q, ω) = 0, the loss func-

tion has a δ-function peak corresponding to plasmon collective excitations.

When the plasmon modes enter the electron–hole continuum, they can decay

into single electron–hole pairs through the Landau damping process. In mul-

tilayer graphene, plasmon modes decay through interband transitions. The

shark-fin structures around ω = 0 reflects from the chiral nature of the wave-

functions which lead to suppressed momentum-dependent scattering[23].

2.5 Ground state energy of multilayer graphene

The ground-state energy is the sum of the non-interacting kinetic en-

ergy and interaction (exchange-correlation) energies. The exchange-correlation

energy can be expressed in terms of the density-density response function[24]

by applying the integration-over-coupling-constant method and appealing to

the fluctuation-dissipation theorem. The RPA approximation to the exchange-

correlation energy is justified in part by the relatively large spin-valley flavor

degeneracy gsv = 4 which makes the RPA bubble-diagram contributions to

the energy more dominant[24]. For technical reasons it is convenient to sep-

arate the first-order exchange-correction to the interaction energy and higher

order corrections commonly referred to as the correlation energy. The de-

pendence of the exchange and RPA correlation energies on carrier density

can then be expressed[25, 26] as integrals along the imaginary frequency

10



axis:

εex = − ℏ
2n

∫
d2q

(2π)2

∫ ∞

0

dν

π
VqδΠ0(q, iν), (2.7)

εcorr =
ℏ
2n

∫
d2q

(2π)2

∫ ∞

0

dν

π

[
VqδΠ0(q, iν)

+ ln

∣∣∣∣ 1− VqΠ0(q, iν)

1− Vq Π0(q, iν)|n=0

∣∣∣∣ ],
where δΠ0(q, iν) = Π0(q, iν) − Π0(q, iν)|n=0. We use the momentum

cutoff qc = 1/a to remove the ultraviolet divergences in the momentum

integrals.

Using these expressions, we find that in terms of the dimensionless

coupling constant αF = e2/ϵ0ℏvF = (v/vF)α where vF is the Fermi veloc-

ity, the exchange energy is given by

εex = ℏvFkFC1αF =
e2

ϵ0
kFC1, (2.8)

and the correlation energy for small αF has the form of

εcorr = ℏvFkF
(
C2α

2
F + · · ·

)
, (2.9)

whereas in the strong coupling limit (αF ≫ 1),

εcorr = ℏvFkF (D1αF +D0 + · · · ) . (2.10)

The coefficients {Ci} and {Di} in these expressions have weak density de-

pendence through the response function and the momentum cutoff.

To address multilayers, we first discuss the case of C2DES models

whose exchange and correlation energies exhibit a systematic dependence

on their chirality index J . As we see from Eq. (2.8) that the exchange energy

is approximately proportional to kF irrespective of the interaction strength.

The positive value of C1 for J = 1 reflects the dominance in this case of
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Figure 2.4: Comparison between the ground-state exchange energies (left
panel) and correlation energies (right panel) of several different multilayer
graphene (thick lines) structures and C2DES systems (dotted lines) as a
function of carrier density for α = 0.05.

interband exchange. For J > 1, the interband contribution is suppressed

because of the larger chirality indices and the exchange energy turns nega-

tive (C1 < 0). For the correlation energy in the strong coupling limit, we

find from Eq. (2.10) that εcorr = (e2/ϵ0)kFD1 + JεFD0 + · · · , where εF
is the Fermi energy. Note that C1 = −D1; thus for J > 1 εcorr is posi-

tive (D1 > 0), whereas for J = 1 εcorr is negative (D1 < 0). In the weak

coupling limit, we see from Eq. (2.9) that εcorr ∝ vFkFa
2
F ∝ k2−J

F .

Figure 2.4 illustrates these properties of C2DES models and compares

these exchange-correlation energy properties with those of multilayer graphene

systems. For multilayer graphene, at low densities, the exchange and corre-
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lation energies follow those of the largest J C2DES model contained within

its low-energy bands because they are responsible for the largest density of

states (DOS). For example, for ABA stacking the exchange and correlation

energies at low densities follow those of a J = 2 C2DES because a J = 2

C2DES has a larger DOS than a J = 1 C2DES. As the carrier density in-

creases, interlayer hopping becomes less important and the exchange and

correlation energies begin to approach those of monolayer graphene.

2.6 Summary and Discussion

In this chapter we have exploited the simple dependence of band wave-

functions on momentum orientation to simplify many-electron perturbation

theory calculations for multilayer graphene, and to bring out the relation-

ship between stacking sequence and carrier-carrier interaction phenomena

in this interesting class of materials. By explicit calculations for a variety of

different structures we have shown that the exchange self-energies and re-

lated exchange-correlation energy features in multilayer graphene systems

follow those of C2DES models at low carrier densities, but cross over to be

more similar to those of monolayer graphene as carrier densities increase.

The rotational transformation of the chiral wavefunction is very general and

can be applied even in the presence of site energy variations or remote hop-

ping terms, unless momentum-dependent hopping terms do not appear in

the Hamiltonian. For example, if the remote interlayer hopping term γ2 is

included in the Hamiltonian, it modifies {ci}, but not the angular part of the

wavefunction in Eq. (2.2).

The model we employ, however, does not include momentum-dependent

remote interlayer hopping terms. We also use the weak-coupling RPA in

the calculation. Both limit the applicability of our calculations to moder-

ate to high carrier densities, and at very low carrier densities correlations

frequently become strong and lead to broken symmetry ground states not
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captured by the RPA[27].

Our theory, however, captures important observable effects produced

by interactions which strongly depend on the stacking sequences such as

plasmon collective excitations and self-energies. The dependence of ground

state energies on carrier and spin densities are responsible for renormalized

electronic compressibility and spin susceptibility, respectively. For example,

the electronic compressibility κ is given by κ−1 = n2dµ/dn, where µ =

∂(nεtot)/∂n is the chemical potential of the interacting system, and εtot is

the total ground-state energy per particle. In an ordinary parabolic band two-

dimensional electron system the compressibility famously becomes nega-

tive at low carrier densities[28]. In contrast, for a C2DES we find that in the

low-density strong-coupling limit, κ0/κ ≈ 1+J(J +2)D0/2 with D0 > 0

for J = 1 and D0 < 0 for J > 1. (Here κ0 is the non-interacting compress-

ibility.) It follows that for a J = 1 C2DES, the electronic compressibility is

strongly suppressed by interactions due to the interband exchange contribu-

tion and remains positive[25]. For a J > 1 C2DES, the interband exchange

contribution is suppressed with the chirality; thus, the electronic compress-

ibility is enhanced by the interactions. Interestingly, we find that for J ≥ 5,

the compressibility can be negative in the low-density limit, suggesting an

instability toward other ground states, whereas in the absence of correla-

tion, this occurs for J ≥ 2. For multilayer graphene, at low carrier densities,

the compressibility follows the trend of the corresponding C2DES, but as

the carrier density increases, the compressibility follows that of monolayer

graphene with suppressed compressibility[29, 30], showing non-monotonic

behavior arising from competition between the intraband exchange, inter-

band exchange, and correlation.

In conclusion, our new approach allows us to effectively calculate the

quasiparticle and thermodynamic properties of interacting many-body chi-

ral systems. We show that as the chirality increases, the exchange contri-

bution to the single particle energy is suppressed and the correlation con-
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tribution increases, indicating that the exchange-correlation is controlled by

the stacking arrangement. Our results suggest that correlation effects play

a more important role in a system with a large chirality; thus, we expect

that rhombohedral graphene with periodic ABC stacking could show exotic

interaction-induced phenomena such as ordered states and non-Fermi liquid

behavior[27].
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Chapter 3

Spontaneous spin-valley polarization in
rhombohedral multilayer graphene

3.1 Introduction

Multilayer graphene has recently attracted considerable attention be-

cause of its stacking-dependent chiral electronic structure [1–4]. The low-

energy effective theory of multilayer graphene is described by a set of chiral

two-dimensional electron systems (C2DESs) determined by the stacking ar-

rangement in which the extra sublattice/layer degrees of freedom, called

pseudospin, play an important role [6, 7]. Thus, the electronic structure of

multilayer graphene is sensitive to its stacking sequence, which could open

the possibility of engineering the electronic properties by tuning the stack-

ing arrangement.

A fundamental issue in multilayer graphene is to understand the elec-

tronic properties in the presence of electron–electron interactions. Because

of the interplay between the chiral nature of the wave function and electron–

electron interactions, various interaction-induced phenomena can occur in

multilayer graphene[8–14]. Especially, in rhombohedral multilayer graphene

with a periodic ABC stacking arrangement, the low-energy dispersion be-

comes flatter as the number of layers increases, indicating that the interac-

tion energy becomes dominant over the kinetic energy. Thus, rhombohedral

multilayer graphene is an ideal platform to observe interaction-induced phe-

nomena, as seen in recent experiments demonstrating superconductivity and

correlated phases [15–22].

In this chapter, we theoretically investigate spontaneous spin-valley po-

larized states in rhombohedral multilayer graphene in the presence of the
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Coulomb interaction. In graphene, there are four spin/valley flavors, (↑,K),

(↓,K), (↑,K ′) and (↓,K ′). In the absence of interactions, electrons oc-

cupy the four flavors equally. This spin-valley symmetry could be broken by

electron–electron interactions, and we are considering the case that electrons

occupy one or some of the flavors. We calculate the exchange-correlation en-

ergy varying the carrier density and perpendicular electric field, and obtain

the corresponding phase diagram for the spontaneous spin-valley polariza-

tion.

n 

E

2E(n )

E(2n )

P2

P4

(a)

(b) (c)

2n 
n

n 

E
2E(n )

E(2n )

2n 
n

E(n )

E(n )

Figure 3.1: (a) Schematic picture for the spin-valley polarized states P2 and
P4. (b) Shape of the density dependence of the energy and the corresponding
tendency toward the spin-valley polarization. When the density dependence
of the energy is concave down (up),E(2n0) < 2E(n0) (E(2n0) > 2E(n0))
for a density n0 as in the left (right) panel, thus the system shows a tendency
toward (against) the spontaneous spin-valley polarization.

Figure 3.1(a) shows possible spin-valley polarized states denoted by

P1−P4, among which the ground state is determined by comparing the to-
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Figure 3.2: Density dependence of (a) the kinetic plus Hartree energy, (b)
the exchange plus correlation energy, (c) the total energy in ABC trilayer
graphene for Uext = 0 (black) and Uext = 0.05 eV (red), (d), (e), (f) their
first derivatives, and (g), (h), (i) their second derivatives with respect to the
density. Note that the second derivatives are related to the electronic com-
pressibility as κ−1 = n2

V
∂2Etot
∂n2 . The red vertical dashed lines represent the

density nM4 ≈ 1.04× 1012 cm−2 that that fills the Mexican hat structure of
the P4 state when Uext = 0.05 eV. Here we use the effective fine structure
constant α = e2

ϵℏv = 1 where ϵ is the effective dielectric constant.

tal energy for each phase. (We will discuss possible intermediate states with

unequal flavor concentrations later.) If the density dependence of the energy

is concave down (up), the system has a tendency toward (against) the sponta-

neous spin-valley polarization, as shown in Fig. 3.1(b). This implies that the

electronic compressibility κ, which can be expressed as κ−1 = n2 ∂µ∂n where

n is the carrier density, µ = ∂Etot
∂N is the chemical potential, Etot is the total

ground-state energy andN is the total number of particles in the system, has

a close connection to the spontaneous spin-valley polarization, thus can be
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used as a powerful thermodynamic probe of the electron-electron interaction

effect.
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Figure 3.3: Phase diagrams of (a) AB, (b) ABC and (c) ABCA stacked mul-
tilayer graphene. (d), (e) Energy difference between the P3 and P4 states for
ABC trilayer graphene for (d) Uext = 0.05 eV following the white dashed
line in (b) and (e) Uext = 0.1 eV (solid lines) and Uext = 0.15 eV (dashed-
dot lines) following the white solid and dashed-dot lines in (b), respectively.
The insets to (d) show the low-energy conduction band and the Fermi en-
ergy of the occupied flavors for the P3 and P4 states in the regions 1⃝, 2⃝
and 3⃝ in (b). In (d), these regions are separated by the vertical dashed lines
at n = nM3 and n = nM4 . Here we use α = 1.0619.

3.2 Density dependence of the energies and their deriva-
tives

The ground-state energy is given by the sum of the kinetic, Hartree,

exchange and correlation energies.
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In the presence of a perpendicular electric field Eext, we start from

a mean-field band structure including the effect of the Hartree potential

self-consistently, taking into account the energy gap opening by Eext. Then

from this band structure, we obtain the exchange-correlation energy using

the integration-over-coupling-constant method within the random phase ap-

proximation (RPA). See the detailed derivation in the Chapter B.1.

Figure 3.2 shows the density dependence of the kinetic plus Hartree

energy, the exchange plus correlation energy, the total energy, and their first

and second derivatives with respect to the density in ABC trilayer graphene

for Uext = 0 and Uext = 0.05 eV, respectively, where Uext = eEextd with

the interlayer separation d = 3.35 Å.

First, consider the Uext = 0 case. To understand the density depen-

dence of the energies, let us begin with the C2DES as a low-energy effective

theory of rhombohedral multilayer graphene. The Hamiltonian of a C2DES

with the chirality index J neglecting the electron-electron interactions is of

the form

HJ(k) = t⊥

 0
(
ℏvk−
t⊥

)J(
ℏvk+
t⊥

)J
0

 , (3.1)

where k± = kx±iky, v is the in-plane Fermi velocity of monolayer graphene

and t⊥ is the nearest-neighbor interlayer hopping. The eigenenergies of

Eq. (3.1) are given by εs,k = st⊥ (ℏv|k|/t⊥)J with s = ±1 for positive

and negative energy states, respectively. For Uext = 0, the Hartree energy

is zero and the kinetic energy per particle is given by Ekin
N = 2

J+2εF where

εF is the Fermi energy. Since εF ∼ kJF and n ∼ k2F where kF is the Fermi

wave vector, Ekin ∼ kJ+2
F ∼ n

J+2
2 is concave up for the density n, thus the

kinetic energy does not favor the spin-valley polarization. In contrast, the

exchange energy per particle is given by Eex
N = C1

e2

ϵ0
kF where C1 is a coef-

ficient which has weak density dependence with C1 < 0 for J ≥ 2 (C1 > 0

for J = 1) due to the dominant intraband (interband) exchange interaction
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[31]. This means that for J ≥ 2, Eex ∼ −k3F ∼ −n
3
2 is concave down for

n, thus the exchange energy favors the spin-valley polarization. From the

power-law dependence, we find that at small carrier densities, the exchange

energy is dominant over the kinetic energy thus there is a tendency toward

the spin-valley polarization, whereas at large enough densities, the kinetic

energy is dominant over the exchange energy thus there is a tendency toward

the normal phase.

If we include the correlation effect, the tendency toward the spin-valley

polarization is reduced because the correlation energy typically tends to can-

cel the exchange contribution at low densities [31], and the density depen-

dence of the correlation energy is concave up thus does not favor a spin-

valley polarized state. Note that only the exchange contribution to the elec-

tronic compressibility κ is negative. Combining all the contributions, κ re-

mains positive, thus ABC trilayer graphene remains in the normal phase for

Uext = 0.

ForUext ̸= 0, the low-energy spectrum develops the Mexican hat struc-

ture. As mentioned, the band structure is obtained self-consistently consid-

ering the effect of the kinetic and Hartree energies. As density n increases,

the Fermi energy increases changing the Fermi surface from a disk with a

concentric hole to a filled disk. Note that the Fermi energy in our approx-

imation corresponds to the first derivative of the kinetic plus Hartree en-

ergy with respect to n, thus the second derivative of the kinetic plus Hartree

energy remains positive even in the presence of Uext, showing a tendency

toward the normal phase. Next, consider the effect of Uext on the density de-

pendence of the exchange contribution. A perpendicular electric field aligns

some pseudospins oppositely in the conduction and valence bands along

the z direction, thus the exchange contribution increases with n due to the

interband contribution up to the induced density corresponding to the op-

positely aligned pseudospins, and then decreases with n due to the intra-

band contribution to the exchange energy, as in the Uext = 0 case. At the
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same time, the second derivative of the exchange energy decreases more

negatively as the pseudospins in the conduction band are aligned along the

same direction by the perpendicular electric field. This means that com-

pared to the Uext = 0 case, the density dependence of the exchange energy

becomes more concave down and the tendency toward the spin-valley polar-

ization is enhanced. When n crosses nM, the density that fills the Mexican

hat structure, the (negative intraband) exchange contribution from electrons

near k = 0 becomes absent and gives a less negative contribution to the

exchange energy, resulting in a jump in the first derivative of the exchange

energy [Fig. 3.2(e)]. Note that the correlation contribution typically has an

opposite trend of the exchange contribution, reducing the magnitude of the

exchange contribution. Overall, the electronic compressibility κ of the sys-

tem becomes negative for Uext ̸= 0 at low densities, thus the system no

longer remains in the normal phase, leading to a spin-valley polarized state.

At high enough densities, however, the kinetic energy associated with large

k becomes dominant and the system eventually undergoes a transition to the

normal phase.

3.3 Phase diagram of multilayer graphene

From the density dependence of the energy in the C2DES, we have

seen that the exchange energy drives an instability toward the spin-valley

polarization. Now let us consider the phase diagram of multilayer graphene

as a function of the carrier density and perpendicular electric field. For the

exchange-correlation energy in multilayer graphene, we use the rotational

transformation of the chiral wave function in which the chiral wave func-

tion at an arbitrary angle can easily be obtained analytically from the wave

function obtained at one angle, allowing one to effectively calculate the

exchange-correlation energy of interacting electrons in multilayer graphene

[31]. The phase diagram is then determined by comparing the total energy
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of each spin-valley polarized phase by varying n and Uext.

Figure 3.3 shows the phase diagrams of AB, ABC, ABCA stacked mul-

tilayer graphene. To understand the phase diagrams, let us consider ABC tri-

layer graphene and see how the band structure evolves following the white

dashed line on the phase diagram in Fig. 3.3(b) with a fixed Uext = 0.05

eV. Focusing on the phase boundary between the P3 and P4 states, as the

Mexican hat structure of the P3 state is fully filled while that of the P4 state

remains partially filled, the (negative intraband) exchange contribution from

electrons near k = 0 becomes absent in the P3 state, giving a less negative

contribution to the exchange energy, as expected from the pseudospin direc-

tions at the Fermi energy in the insets to Fig. 3.3(d). This means that just

after the Mexican hat structure of the P3 state is filled, the energy difference

between the P3 and P4 states, E34, becomes positive, leading to a phase

transition from P3 to P4 at the critical density n34c , as indicated by the black

arrow in Fig. 3.3(d). As Uext increases, the density that fills the Mexican hat

structure (nM3) increases and the critical density where the phase transition

occurs (n34c ) also increases, showing a positive slope in the phase diagram.

As we move to the higher density region, the difference between the two

densities nM3 and n34c becomes smaller since the effect of the kinetic plus

Hartree energy is dominant over that of the exchange plus correlation en-

ergy. Thus, nM3 and n34c eventually occur at the same point, showing a kink

structure in the phase diagram. For a high enough Uext above the kink point,

the Mexican hat structures of both P3 and P4 states are partially filled and

E34 increases by Uext as shown in Fig. 3.3(e), resulting in the decreased n34c
with a negative slope in the phase diagram. Similarly, other phase bound-

aries in the phase diagram can be explained, exhibiting a similar pattern.
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3.4 Discussion

The calculated phase diagram in Fig. 3.3 captures the main feature of

the spontaneous spin-valley polarization recently observed by Zhou et al.

[15] in rhombohedral trilayer graphene. Depending on the carrier density

and the external electric field, various spin-valley polarized states occur with

positive slopes of the phase boundaries within the experimentally accessible

range, and the overall structure of the phase diagram agrees well with the

experiment in the high density and electric field regime where our theory is

valid and the interaction-induced spin-valley polarized states are manifested

in the experiment. In the experiment by Zhou et al., there occurs interme-

diate states between the phases (not shown in the calculated phase diagram

in Fig. 3.3) because we determined the phase diagram by comparing the

total energy of each phase assuming that the occupied flavors have equal

concentrations for simplicity. However, an intermediate state with unequal

flavor concentrations is also possible near the phase boundaries. For exam-

ple, between the P1 and P2 states, a state in which two flavors are occupied

with unequal concentrations is possible if it has a lower energy compared

to those of P1 and P2. In the current calculation where a mean-field band

structure obtained from a self-consistent Hartree approximation is used as

a noninteracting band, intermediate states tend to appear more dominantly

over pure states in the low-field region of the phase diagram compared to the

experiment, which could be cured if we include the effect of the exchange-

correlation energy in the band structure beyond the Hartree energy. For de-

tails, see the Chapter B.2.

Here we use a minimal model for multilayer graphene including the

nearest-neighbor intralayer and interlayer hopping terms only but neglect-

ing the trigonal warping terms and other remote hopping terms so that the

energy dispersion is isotropic, which makes the many-electron perturbation

theory calculations practical for multilayer stacks through the rotational
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transformation of the chiral wave function [31]. This approximation can-

not describe states induced by the trigonal warping terms near n = 0 and

Uext = 0 point, but captures the spontaneous spin-valley polarized phases

which is manifested away from that point. We also want to point out that

in the experiment by Zhou et al. [15], the P2 state is ferromagnetic that the

two flavors with the same spin polarization are occupied, which is not cap-

tured in the current calculation because interactions between the flavors are

not included. Moreover, this may explain the appearance of the P3 state in

the current calculation. If we treat spin and valley interactions anisotropi-

cally, the P3 state may disappear, as in the experiment. We leave the effect

of electron–electron interactions between the flavors open for future work.

In summary, we studied the spin-valley polarization in rhombohedral

multilayer graphene, demonstrating that the spin-valley polarization is driven

by the exchange interaction between chiral electrons. Our result explains

the tendency toward the spin-valley polarized states as the carrier density,

the external external field and the number of layers vary in rhombohedral

multilayer graphene.
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Chapter 4

Electronic structure of biased alternating twist
multilayer graphene

4.1 Introduction

The twisted graphene systems have garnered significant attention due

to the discovery of superconductivity and correlated insulating states in

magic-angle twisted bilayer graphene (TBG) [32, 33]. When two graphene

layers are twisted, a new long-period structure known as a moiré superlattice

appears, resulting in a unique band structure that is dependent on the twist

angle. At magic angles, the Fermi velocity is reduced to zero and nearly flat

bands are formed [34], making it an ideal platform for studying the correla-

tion of electrons.

There are many studies such as twisted double-bilayer graphene [35–

40] and twisted triple-bilayer graphene [41], and even to other twisted two-

dimensional material systems [42–45] and revealed interesting phenomena

due to interaction such as correlated insulating [37–40, 44] and topologi-

cal [35] phases.

Among these systems, alternating twist multilayer graphene (ATMG)

has been extensively studied both theoretically [46–48] and experimentally

[49–52] due to its robust superconductivity observed in bilayer to pentalayer

samples and its magic angle moves to larger angles.

In this chapter, we investigate the effect of a vertical electric field on

the electronic structure of ATMG. Using first-order degenerate perturbation

theory, we derive the low-energy effective Hamiltonian and energy bands,

and calculate the optical conductivity of ATMG, revealing a step-like feature

arising from the energy shift of Dirac nodes. The chapter is organized with
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an introduction to the model of ATMG, followed by the analytical derivation

of the low-energy effective Hamiltonian and the calculation of the optical

conductivity. Finally, we conclude with a discussion of the results.

4.2 Electronic structure of the alternating twist multi-
layer graphene

4.2.1 Model

+U

−U

0

−θ/2

θ/2

−θ/2

Figure 4.1: Schematic illustration of the alternating twist trilayer graphene
with a potential difference U.

We use the model of N -layer graphene with with the ℓ-th layer alter-

nating twist multilayer graphene (ATMG) by an angle θℓ = (−1)ℓθ/2, as

shown in Fig. 4.1. we assume an interlayer potential difference U due to a
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vertical electric field. The Hamiltonian of ATMG[48] is given by

H =


H

(1)
k T (r) 0 · · ·

T †(r) H
(2)
k T †(r) · · ·

0 T (r) H
(3)
k · · ·

...
...

...
. . .

+ V (4.1)

where the diagonal term H
(ℓ)
k = ℏv0(k · σθℓ) is the Hamiltonian of mono-

layer graphene with σθℓ = e
i
2
θℓσzσe−

i
2
θℓσz rotated by ±θ/2, T (r) is the

interlayer tunneling, and V = diag(V (1)I2, V (2)I2, ..., V (N)I2) is a on-site

potential difference term. We use the intralayer hopping t = −3.1 eV and

the Fermi velocity is about v0 =
√
3a|t|/2ℏ ≃ 106 m/s where a = 2.46 Å

is the lattice constant.

We set V (ℓ+1) − V (ℓ) = U by the definition of interlayer potential

difference, and V (1) = −V (N) to fix Dirac cone’s height to center. The

interlayer tunneling term[34] is given by

T (r) =
∑
j=0,±

eiqj ·rT j , (4.2)

where

T 0 =

(
w′ w

w w′

)
, T± =

(
w′ we∓i2π/3

we±i2π/3 w′

)
, (4.3)

q0 = 2kD sin(θ/2)(0,−1) and q± = 2kD sin(θ/2)(±
√
3/2, 1/2) with the

Dirac momentum kD = 4π/3a, w′ = 0.0939 eV and w = 0.12 eV [36]. We

used a model that considered the hopping difference between the AA and

AB (BA) regions and out-of-plane relxation [53, 54]. This is given by the

result w/ = w′ of the tunneling term.

We performed calculations for angles greater than 3◦. This angle is

larger than the 1◦ − 2◦ where the magic angle is located, but it is the better

condition that our minimal model fits better. At this large angle, the velocity
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in the Dirac cone at K̄ and K̄ ′ near the two moiré Brillouin zone (mBZ)

does not approach zero.

Without the vertical electric field, the system is decomposed into twisted

bilayer graphenes and an additional monolayer graphene (only for odd num-

ber of layers) band[46]. The property of ATMG is almost similar to that

of Bernal stacked multilayer graphene, which decomposition into bilayer

graphenes and monolayer graphene (only for odd number of layers). We can

analyticaly obtain the ATMG wavefunction by extending the tBG wavefunc-

tion using this property.

Using the first shell model, we first find the wavefunction of twisted

bilayer graphene with the rigid model (w = w′ = 0.12 eV). This approxi-

mation is still valid when the twist angle is large. The Hamiltonian near K̄

takes into account only the three neighboring K̄ ′, is given by

ψTBG
λ,K̄ =

1√
1 + 6α2


aλ

bq0,λ

bq+,λ

bq−,λ

 , (4.4)

ψTBG
λ,K̄′ =

1√
1 + 6α2


bq0,λ

bq+,λ

bq−,λ

aλ

 (4.5)

where α = w/(2v0kD sin(θ/2)) is a dimensionless parameter[34] and we

use aλ as a nomalized wavefunction of the nomaliezed monolayer graphene

Hamiltonian, k̂·σθℓ with λ = ±1 is eigenvalue index, and bqj ,λ = −h−1
j T †

j aλ

with hj = ℏv0(k + qj) · σθℓ[46].

In a similar to Bernal stacked multilayer graphene, the wavefunctions

of ATMG is given as the form of linear combination of the wavefunctino of
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twited biayer graphene. it can be constructed by the following method [46]:

Ψ
(ℓ)
r,λ =

√
2τ

N + 1
sin(ℓθr) ψ

TBG
r,λ , (4.6)

where τ = 2 − δr,n+1, θr = rπ/(N + 1) with r = 1, 2, ..., n for even

N = 2n or for odd N = 2n + 1 with additional r = (n + 1)-th mode

near K̄, and ψTBG
r,λ can be obtained from Eq. (4.4) by changin α → trα

and bλ → trbλ with tr = 2 cos θr. Here, Ψr,λ = (Ψ
(1)
r,λ,Ψ

(2)
r,λ, ...,Ψ

(N)
r,λ )t is

a normalized eigenstate of the effective Hamiltonian Heff = ℏvr(k · σ) of

ATMG with |Ψr,λ|2 = 1, where vr is a Fermi velocity of the Dirac cone

Ψr,λ given by
vr
v0

=
1− 3t2rα

2

1 + 6t2rα
2
. (4.7)

The above Eq. (4.7) can be used not only when N is an even number

but also when it is an odd number, and in the case of r = n+1, an expression

for odd number of layers is obtained.

Here, we introduce a low-energy effective Hamiltonian with a verti-

cal electric field using the first order degenerate perturbation in the first

shell model. In the absence of an electric field, the Dirac-cones are layer

hybridized. However, when an electric field is applied, Dirac-cones become

localized to the a single layer, and the center of Dirac-cone shifts proportion-

ally to the given potential difference U . Therefore the effective Hamiltonian

of each Dirac-cone are represented as

Heff = C(α)U + ℏv∗(k · σ), (4.8)

where first term C(α)U is the energy shift of corresponding Dirac-cone,

the energy shift is proportional to the interlayer potential U , and v∗ is the

modified Fermi velocity of the effective Hamiltonian and the Fermi velocity

v∗ can be represented as a linear combination of vr.

In the following chapter 4.2.B and 4.2.C, we introduce the effective
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Hamiltonian of N = 3 and N = 4 ATMG as examples, and the N = 5 case

in Appendix C.1.

4.2.2 N = 3

Here, we introduce the detail of the effective Hamiltonian of alternating

twist trilayer graphene (AT3G) naer K̄ and K̄ ′ of the mBZ. There are two

Dirac cones with v0 and v1 Fermi velocities at K̄, as shown in Fig. 4.2(a)

where v0 is the Fermi velocity of monolayer graphene. Using Eq. (4.4), we

obtain the following normalized wave functions Ψr,λ near K̄ in our first

shell model:

Ψ1,λ =
1√

2 + 24α2



aλ

2bq0,λ

2bq+,λ

2bq−,λ

aλ


, Ψ2,λ =

1√
2



aλ

0

0

0

−aλ


. (4.9)

The perturbation V̂ is given by V̂ = diag(−UI2,06, UI2). Then, using the

wave functions in Eq. (4.9), we obtain the perturbation matrix is represented

as

VK̄ =

(
0 −U/

√
1 + 12α2

−U/
√
1 + 12α2 0

)
. (4.10)

We find the effective Hamiltonian near K̄ as

H
(±)

eff,K̄
= ± C(α)U + ℏv∗(k · σ), (4.11)

where C(α) = 1/
√
1 + 12α2 and v∗ = (v0 + v1) /2 and this result illus-

trated as the inset of Figs. 4.2 (a) and 4.2 (b).

On the other hand, near K̄ ′, there is a only one Dirac-cone with v1, its
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(a)

(d)

(b)

(c)

AT3G (𝜃 = 3° & 𝑈 = 0 eV) AT3G (𝜃 = 3° & 𝑈 = 0.1 eV)
E 

(e
V)

C(
α)

𝜃(°) 𝜃(°)

Figure 4.2: Band structure of N = 3 ATMG at θ = 3◦ for (a) U = 0 and (b)
U = 0.1 eV. The left and right insets to (a) and (b) represent the schematic
band structure near K̄ and K̄ ′. (c) C(α) and (d) v∗/v0 as a function of twist
angle θ for the full numerical calculations (solid line) and the analytical
result from the rigid (ω = ω′) first shell model (dashed line).

wavefunction is given by

Ψ1,λ =
1√

1 + 12α2



bq0,λ

bq+,λ

bq−,λ

aλ

bq0,λ

bq+,λ

bq−,λ


. (4.12)

Then, the perturbation matrix VK̄′ vanishes near K̄ ′, the effective Hamilto-
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(a)

(d)

(b)

(c)

AT4G (𝜃 = 3° & 𝑈 = 0 eV) AT4G (𝜃 = 3° & 𝑈 = 0.1 eV)
E 

(e
V)

𝜃(°) 𝜃(°)

C(
α)

Figure 4.3: Similar to panels (a)-(c) in Fig. 4.2, but for N = 4 ATMG. If
U < 0, the energy shifts are reversed. In panel (d), we show the two Fermi
velocities v∗± as given in Eq. (4.18) of the positively and negatively shifted
Dirac cones illustrated in the inset to (b).

nian is given by

Heff,K̄′ = ℏv1(k · σ). (4.13)

In Figs. 4.2, we show (c) the energy shift coefficient C(α) and (d) the mod-

ified Fermi velocity v∗ and the result of the first shell model (dashed line)

and the full numerical result (solid line) agree at large angles.

4.2.3 N = 4

In this section, we introduce the detail of the effective Hamiltonian of

alternating twist tetralayer graphene (AT4G) naer K̄ and K̄ ′ of the mBZ,

like AT3G. The change point is that the number of dirac cones in K̄ ′ is

changed and the potential perturbation form is changed. The wavefunction
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of AT4G near K̄ is given by

Ψr,λ =
2√

5(1 + 6t2rα
2)


sin θr · aλ

sin 2θr · trbλ
sin 3θr · aλ
sin 4θr · trbλ

 (4.14)

where r = 1, 2 and bλ = (bq0,λ, bq+,λ, bq−,λ)
t. The perturbation is given by

V̂ = diag(−3U
2 I2,−U

2 I6,
U
2 I2,

3U
2 I6) near K̄. the size of the perturbation

matrix VK̄ would be 2× 2 due to two Dirac cones near K̄, and its elements

Vrr′ are given by

Vrr′ =
4U

N + 1

1− 6trtr′α
2√

(1 + 6t2rα
2)(1 + 6t2r′α

2)

N/2∑
l=0

(
2ℓ− N − 1

2

)
sin (2ℓ+ 1)θr sin (2ℓ+ 1)θr′

=
2U

5

1− 6trtr′α
2√

(1 + 6t2rα
2)(1 + 6t2r′α

2)
(−3 sin θr

· sin θr′ + sin 3θr sin 3θr′ + 5 sin 5θr sin 5θr′). (4.15)

By diagonalizing VK̄ , we find the effective Hamiltonian of biased AT4G

near K̄ as

Heff,K̄ = C±(α)U + ℏv∗±(k · σ), (4.16)

where

C±(α) =
1

2(1 + 18α2 + 36α4)
[−(1 + 12α2 − 36α4)

±
√

(1 + 12α2)(1 + 18α2 + 45α4 + 108α6)] (4.17)
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and

v∗± =
A2

±v1 +B2v2

A2
± +B2

. (4.18)

Here, A± and B are mixing coefficients are given by

A± = 1 + 15α2 − 36α4 (4.19a)

±
√

5(1 + 12α2)(1 + 18α2 + 45α4 + 108α6),

B = −2(1 + 6α2)
√
1 + 18α2 + 36α4. (4.19b)

From the above result, we find that the two Dirac cones with the velocities v1
and v2 are hybridized with the ratio of A± and B, and shifted by C±(α)U ,

as schematically illustrated in Fig. 4.3(b).

We confirmed that the modified Fermi velocity of the energy shifted

Dirac-cone is given by a linear combination of v1 and v2 with the vertical

electric field, is shown as Fig. 4.3 (b).

On the other hand, near K̄ ′, the wavefunctions for two Dirac-cones

with the velocity v1 and v2 are given by

Ψr,λ =
2√

5(1 + 6t2rα
2)


sin θr · trbλ
sin 2θr · aλ
sin 3θr · trbλ
sin 4θr · aλ

 . (4.20)

Since sin ℓθr = (−1)r sin (N + 1− ℓ)θr, the wavefunction near K̄ ′ can

be obtained by flipping two Dirac-cones near K̄. Therefore, the effective

Hamiltonian of AT4G near K̄ ′ can be represent as

Heff,K̄′ = − C±(α)U + ℏv∗±(k · σ), (4.21)

where C±(α) and v∗± are the same with those near K̄. In detail, our model

Hamiltonian of AT4G has a combined symmetry Σ̂T̂ , which can be ex-
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pressed as

(Σ̂T̂ )H(k)(Σ̂T̂ )−1 = −H(−k), (4.22)

where Σ̂ is defined as

Σ̂ =


0 0 0 σx

0 0 −σx 0

0 σx 0 0

−σx 0 0 0

 . (4.23)

The operator Σ̂ only changes the valley index (K ↔ K ′), while maintaining

the mBZ corner (K̄ → K̄, K̄ ′ → K̄ ′) [55]. Meanwhile, the time-reversal

operator T̂ changes both the valley index and the mBZ corner points (K ↔
K ′, K̄ ↔ K̄ ′). This combined symmetry Σ̂T̂ is maintained even when an

interlayer potential is present. The effective Hamiltonians between K̄ and

K̄ ′ are also related as Eq. (4.22).

4.2.4 Arbitrary N

As the layer number N is increased, the size of the perturbation matrix

is also proportionally increased and it becomes progressively cumbersome

to obtain analytically the effective Hamiltonian of ATMG for a large number

of layers in the presence of an applied field even if we use the first shell

model. Instead, here want to provide the general behavior patterns of the

effective Hamiltonian of biased ATMG for arbitrary N . Tables 4.1 and 4.2

show the summary of the effective Hamiltonian for N = 2 − 8 ATMG in

the presence of the interlayer potential difference.

As the layer number N increases, the number of Dirac-cones increases

and the size of the perturbation matrix increases proportionally. Analyti-

cally obtaining the effective Hamiltonian of an ATMG becomes increasingly

complex. Here, we discuss the general pattern of the effective Hamiltonian

of ATMG. Tables 4.1 and 4.2 show behavior for N = 2− 8 ATMG with a
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vertical electric field.

𝑁𝑁
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𝐻𝐻(±1) = ± ∆1

+ℏ𝑣𝑣1∗ 𝒌𝒌 � 𝝈𝝈
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�
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Table 4.1: the effective Hamiltonian and the configuration of modified Fermi
velocity of ATMG for odd numbers N = 3, 5, 7.

Firstly, for an odd number of layers ATMG, there are (N − 1)/2 TBG

Dirac-cones with modified Fermi velocity vr (r = 1, 2, ..., (N − 1)/2) near

K̄ and K̄ ′, and one additional monolayer-like Dirac cone with v0 at K̄. We

can use these to find the perturbation matrix and find the effective Hamilto-

nian as shown in Table 4.1. In detail, if there are m Dirac cones at K̄ or K̄ ′,
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Figure 4.4: Schematic picture of the potential differences and energy shift
of Dirac cones near K̄ and K̄ ′ in the asymptotic limit (α→ 0).

we have m/2 pairs of Dirac-cones shifted by ±∆i (i = 1, 2, ...,m/2) for

even m, whereas we have (m − 1)/2 pairs of Dirac cones plus one Dirac

cone without energy shift for odd m. Each pair of Dirac cones has the same

effective Fermi velocity. If the number of Dirac-cones ism, there are ⌊m/2⌋
Dirac-cone pairs with the opposite energy shift ±. If m is odd, there is an

additional monolayer-like band with no energy shift.

Secondly, for an even number of layers ATMG, there are N/2 TBG

Dirac-cones with modified Fermi velocity vr (r = 1, 2, ..., N/2) near K̄ and

K̄ ′. We can use these to find the perturbation matrix and find the effective

Hamiltonian as shown in Table 4.2. However, one side of the pair belongs to
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Figure 4.5: Band structure forN = 5−8 ATMG at θ = 5◦ with U = 0.1 eV.
Solid(dashed) lines represent the numerical result of full numerical model
(effective Hamiltonian) in the α→ 0 limit.

K̄ and the other to K̄ ′. In detail, there are N/2 Dirac-cones near each K̄ or

K̄ ′, we have N/2 pairs of Dirac-cones shifted by ±∆i (i = 1, 2, ...,m/2),

however, one side of the pair belongs to K̄ and the other to K̄ ′. Each pair of

Dirac cones has the same effective Fermi velocity.

Lastly, let us consider the effective Hamiltonian of biased ATMG in

the asymptotic limit (α → 0) where the twist angle θ becomes much larger

than the first magic angle of ATMG. For the first shell model, |bλ| becomes

proportional to α, so only monolayer terms aλ of Ψr,λ survive in this limit.

Thus, the energy splitting coefficient C(α) of ATMG with arbitrary N at K̄

(K̄ ′) can be obtained as odd (even) layer components of V̂ , as schematically

shown in Fig. 4.4.

Finally, we consider the asymptotic limit (α → 0) of the effective

Hamiltonian of ATMG, corresponding that angle θ becomes much larger.
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In this limit, all of Dirac-cone become monolayer-like with the monolayer

velocity v0. |bλ| ∝ α and goes zero, aλ is only finite. Thus, the energy shift

is obtained as layer component of V̂ , as shown in Fig. 4.4. The modified

Fermi velocity v∗ goes to v0, since all Dirac-cones goes a single monolayer

term.

Therefore, the effective Hamiltonian can be described as monolayer

graphenes with the energy shift described by C(α → 0)U , which can be

obtained in Fig. 4.4. Figure 4.5 shows the band structure of N = 5 − 8

ATMG with U = 0.1 eV at θ = 5◦ in the asymptotic limit, which agrees

with the full numerical for enough large angle.

4.3 Optical conductivity of the alternating twist multi-
layer graphene

The Kubo formula for the optical conductivity is given by [56]

σij(ω) = − ie
2

ℏ
∑
s,s′

∫
d2k

(2π)2
fs,k − fs′,k
εs,k − εs′,k

×
M ss′

i (k)M s′s
j (k)

ℏω + εs,k − εs′,k + i0+
, (4.24)

where i, j = x, y, fs,k = 1/[1 + e(εs,k−µ)/kBT ] is the Fermi distribution

function with the band index s and k is wavevector, µ is the chemical po-

tential andM ss′
i (k) = ⟨s,k|ℏv̂i|s′,k⟩ with the velocity operator v̂i = 1

ℏ
∂Ĥ
∂ki

.

We consider the only real part of the longitudinal conductivity at zero

temperature with µ = 0 and η = 5 meV in Eq. (4.24). In Figs. 4.6 and 4.7,

we show the optical conductivity results for AT3G and AT4G with(without)

a vertical electric field at the twist angle θ = 5◦..

With a vertical electric field, the longitudinal conductivity converges to

Nσ0 for low- and high-frequency limits, as shown in Figs. 4.6(c) and 4.7(c)

where σ0 = gsve
2/16ℏ is the optical conductivity of monolayer graphene. In
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Figure 4.6: Band structure and the longitudinal conductivity for (a), (c) U =
0 and (b), (d) U = 0.1 eV in N = 3 ATMG at θ = 5◦. The insets in (b)
shows a zoomed in view of the band structure near K̄ and K̄ ′. The arrows
in the band structure indicate interband transitions corresponding to peaks
in the conductivity. In (d), a Drude peak appears at low frequencies due to
intraband contributions.

low-frequency region, there are N Dirac-cones, which give Nσ0. In high-

frequency region, since energy for interlayer hopping is neglected, it con-

verges to Nσ0. In intermediate frequency region, a dominant peak appears

around ℏω ∼ 0.9 eV as indicated by the red arrows.

With a vertical electric field, the conductivity show a step-like feature

in low frequency region, in Figs. 4.6(d) and 4.7(d). For AT3G, two Dirac-

cones near K̄ are energy shifted and interband transition are forbidden, how-

ever, a Dirac-cones at K̄ ′ gives just σ0 in the low frequency region. For

AT4G, two Dirac-cones near K̄ are energy shifted and interband transition
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Figure 4.7: Same as Fig. 4.6 for N = 4 ATMG.

are forbidden, a Dirac-cones near K̄ ′ is same with K̄ in the low frequency

region, so only Drude peak appears.

Since these step-like features are related to the interband transition,

they are related to the magnitude of the Dirac-cone energy shift ∆. as the

frequency increase, the optical conductivity increase by 2σ0 near ℏω ∼
2∆ and ∆+ + ∆− and eventually σ → Nσ0 like AA-stacked multialyer

graphene[57, 58].

4.4 Discussion

We obtain the analytic form of the effective Hamiltonian including the

potential difference near K̄ and K̄ ′ using the first shell model, and find the

modified Fermi velocities. This effective model is valid within kc ∼ U/ℏv0.
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With small angle about the first magic angle θ(N)
M ≤ θ

(∞)
M ≈ 2.2◦ [46], the

first shell model is broken down, so our results agree with the full numerical

calculation for twist angle θ ≳ 2.2◦.

In summary, we have studied the effect of the vertical electric field

on the low energy effective model of the electronic structure of ATMG,

how it affects the optical conductivity. We analytically find the low energy

effective Hamiltonian and its modified Fermi velocity near K̄ and K̄ ′ for

AT3G, AT4G and arbitrary N. we show that the change of the band structure

including the energy shift of the Dirac cone makes a step-like feature similar

to AA stacking multilayer graphene in the optical conductivity.
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Table 4.2: the effective Hamiltonian and the configuration of modified Fermi
velocity of ATMG for odd numbers N = 2, 4, 6, 8.
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Chapter 5

Broken sublattice symmetry states in Bernal
stacked multilayer graphene

5.1 Introduction

Over the past decade, two-dimensional graphene and multilayer graphene

have been studied due to many interesting properties and expectation for de-

vice applications[1–5]. In particular, the band dispersion varies depending

on the stacking method of single-layer graphene, and the gap opens when

a vertical electric field is applied. It gives a lot of interest in being able to

tune the system. Multilayer graphene has a structure called Dirac cone at the

charge neutral point, and it has the chiral nature in addition to low energy

dispersion. This property allows the multilayer graphene system to have

strong electron-electron interaction, and shows many body effects[11, 59–

63]. In particular, spontaneous symetry breaking layer polarized states and

band gap opening were predicted in bilayer graphene[8] and rhombohedral

trilayer graphene[9], and observed experimentally[12, 13]. In addition, the

band gap opening of the dirac cone, which has a chiral nature, causes various

Hall effects, research on this has also been studied[64–67].

In this chapter, we analyze the possible symmetry breaking ground-

states induced by the electron-electron interaction in ABAB Bernal stack-

ing tetralyer graphene. Interestingly, When an electric field below a certain

is applied, a correlated state can occur and its band gap does not disappear.

We show that the heavy-mass band and light-mass band follow an effective

Hund’s rule for pseudospinor. These changes can alter the type of Hall con-

ductivity and this change can be observed in experiments. In Bernal-stacked

multilayer graphene with more than 6 stacked even layers, but its condensed
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state can be described qualitatively. On the other hand, graphene with an odd

number of layers has a suppressed gap in the odd number of layers.

This chapter is based on the publicated paper [14], in which I partici-

pated as a co-author.
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5.2 Method

We used the minimal continuum model for multilayer graphene, which

only considers nearest-neighbor intralayer and interlayer hopping. The non-

interaction Hamiltonian is given by

Ĥ0 =
∑
k,ξ,ξ′

ĉ†k,ξε
(0)
ξ,ξ′(k)ĉk,ξ′ , (5.1)

where ε(0)ξ,ξ′(k) is the matrix elements of the non-interacting Hamiltonian for

a set of index ξ = (σ, τ, i) for the spin σ, valley τ , sublattice i, wavevec-

tor k, and ĉ†k,ξ ( ĉk,ξ ) is creation (annihilation) operator. Here, we use the

nearest-neighbor intralayer hopping parameter t0 = 2.598 eV, the interlayer

hopping parameter t1 = 0.377 eV[68, 69], v =
√
3t0a/2ℏ is the Fermi

velocity for monolayer graphene and a = 2.46 Å is the lattice constant.

We consider the electron-electron interacion on non-interaction model

in the mean-field Hartree-Fock approximation,

ĤMF = Ĥ0

+
∑

k,ξ,ξ′ ĉ
†
k,ξ(ε

(H)
ξ,ξ′ (k) + ε

(F )
ξ,ξ′(k))ĉk,ξ′ (5.2)

where

ε
(H)
ξ (k) = δξξ′

∑
k′,ξ′

Vn,n′(0)⟨c†k′,ξ′ck′,ξ′ , ⟩ (5.3)

ε
(F )
ξ,ξ′(k) = −δξξ′

∑
k′

Vnn′(|k − k′|)⟨c†k′,ξ′ck′,ξ⟩, (5.4)

where n is the layer number index. Vnn′(q) = 2πe2

ϵrq
e−|n−n′|qd is the Coulomb

interaction term where d = 3.35 Å is the interlayer distance, q is the wavevec-

tor size, and ϵr is the effective dielectric constant. Eq. 5.4 is the Hartree con-

tributions and Eq. 5.4 is the exchange Fock contributions. Here, the Hartree
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contribution reduce to potential differences between the layers in limit at

q = 0. We use the dimensionless coupling constant α ≡ e2/ϵrℏv. The case

of α = 0.1 agrees the experimental result in bilayer graphene[59, 62, 63].

Self-consistent Hartree-Fock calculation need heavy computational cost.

To solve computational problem, we use the rotational tranformation method[31].

We can find its complex phase analytically using relation between chiral na-

ture and hopping network by the rotational tranformation method in minimal

continuum model. Here, We neglect the inter-valley interaction because it is

small.

5.3 Gapped phases induced by interaction in Bernal
stacked tetralayer graphene

In Bernal stacked tetralayer graphene, a band gap is observed experi-

mentally that indicates there is a symmetry broken state induced by electron-

electron interaction.[12, 13]

Here we introduce a sublattice symmetry broken and gapped phase due

to electron–electron interaction, and show that it can be described as a pseu-

dospinnor picture. As the electric field increases, the pseudospinnors also

flip over and eventually align in the direction of the electric field.

Fig. 5.1 (a) and (c) show that the non-interacting ground state con-

sists of two bands with different masses[6, 7], with no layer polarity and

no gap, and all spin/valley flavors are equal. The light-mass band can be

represented by an effective two-band model confined to two sublattices (1A

and 4B), which can be described as pseudospinors. The heavy-mass band

is localized at sublattices (2B and 3A) and can likewise be represented as

a pseudospinor. In the absence of an electric field, sublattice symmetry is

preserved and the electron densities in the two sublattices are the same, de-

picted as gray color in Fig. 5.1 (c). Additionally, the pseudospinors have no

z-axis component, as shown in the same figure.
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Figure 5.1: Electronic band structure and its wavefunction configuration in
the K or K’ valley for ABAB tetralayer graphene. (a) band stcurues and
(c) configuration are case of non-interaction and zero vertical electric field,
while (b) and (d) are for the results obtained from self-consistent Hartree-
Fock approximation. “Light” and “Heavy” labels indicate the light-mass or
heavy-mass bands in the low-energy region. Colored circles indicate the
sublattice in which the charge density of the corresponding band is local-
ized. Gray, red, and blue colors represent neutral, positive, and negative lo-
cal charge densities for the corresponding sublattice, respectively. The up
and down direction of the arrows is the direction of the corresponding pseu-
dospinor, which is the same as the charge polarization direction. ”×4” and
”×2” indicate the number of equal spin/valley flavor.
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Considering the electron-electron interaction, the sublattice symmetry

broken state appears. It is similar to bilayer graphene[8], but it is more com-

plex because ABAB tetralayer graphene has two low-energy bands. For each

spin/valley, the charge densities of the light-mass and heavy-mass bands are

layer-polarized, as depicted in Fig. 5.1 (d) with red (blue) circles indicating

positive (negative) charge density. The charge density layer-polarized states

have a band gap, as depicted in Fig. 5.1 (b). However, the light-mass and

heavy-mass bands have opposite polarization directions, its configuration is

represented as (↓, ⇑) or (↑, ⇓) in Fig. 5.1 (d).

Between the four spin/valley flavors, two are the same configuration,

and the other two are opposite. As a result, the sum is canceled out, and the

charge density is not polarized in real space. However, the case of Chern

numbers differs from the direction polarization case. The alignment direc-

tions of the light-mass band and the heavy mass band are opposite, but the

Chern numbers are the same as (+1,+1) or (-1,-1) for each spin/valley fla-

vor. Since the Chern number has an opposite sign in opposite valleys, the

sum can no longer be zero. Therefore, different types of Hall conductivities

are possible depending on the combination of the four spin/valley flavor,

discussed in Appendix D.1.

5.4 Electric field induced “Hund’s rule” and Hall ef-
fects

When an electric field is applied in a non-interacting system, the direc-

tion of charge polarization is aligned with the direction of the electric field

and four spin/valley are equal. Even considering the interaction, if a large

electric field is applied, the charge polarization should be aligned toward

the electric field. Therefore, as the electric field gradually increases, and the

direction of the pseudospinor have to be flipped out. Here, the electric field

direction is assumed to be upward and the polarization direction is flipped
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Figure 5.2: The evolution of the antiferro-state as the vertical electric field
increases. In the box, arrows represent the direction, and the numbers in-
dicate the Chern numbers for the light and heavy-mass pseudospinors. The
hollow arrow at the top of the box is the configuration for the Hall con-
ductivity for the corresponding spin/valley flavor. The bold number and the
arrow in a dashed circle indicate the changes as the electric field increases.
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from downward to upward.

In this process, we fixed the number of flipped configurations. The four

equal spin/valley flavor is called as ferro-state, the equal two and other two

is called antiferro-, and the equal three and the one other is called ferri-state.

these name is discussed in bilayer graphene[8]. Therefore, ground-state is

antiferro-state and eventually becomes ferro-state for enough large electric

field.

In this process, we fix the number of the pseudosipnor that are flipped

in the configurations. the state for the four equal spin/valley flavors are re-

ferred to as a ferro-state, two equal and the other two are called antiferro-,

and three equal and one other is referred to as a ferri-state. These names

have been discussed in bilayer graphene [8]. As a result, the ground-state is

an antiferro-state and it eventually becomes a ferro-state for a sufficiently

large electric field.

If the magnitude of the electric field is small, it remains in the same

state as the ground-state, [(↓,⇑) × 2, (↑,⇓) × 2]. Among the light-mass

band and the heavy-mass band, the light-mass band flips first, resulting in

the heavy-mass band following. When the magnitude of the electric field

reaches the first critical point Ec1 = 0.025 meV/Å, and the polarization

direction of the light-mass band is flipped, its configuration becomes [(↑,⇑
) × 2, (↑,⇓) × 2]. When the size of the electric field increases and reaches

the second critical point Ec2 = 0.879 meV/Å, and the heavy-mass band is

overturned, resulting in four [(↑,⇑)× 4].

If generalized to consider the case when the number of layers is in-

creased, the pseudospinors are flipped in order of increasing mass, starting

with the lightest mass. This “Hund’s rule” can apply to ferri-state as well as

antiferro- and ferro-state, is discussed in Appendix D.3.

Fig. 5.2 depicts one of the possible configuration combinations. Here,

the same spin in the ground-state has the same configuration, valley inde-

pendently. In this ground-state, the sum of Chern numbers is zero and the
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charge Hall effect does not occur. However, if contrast is given to the spin

sign and valley sign, the sum of the Chern numbers becomes non-zero, spin

resolved valley Hall effect occurs, and the system becomes the layer antifer-

romagnetic (LAF) phase. Other configuration combinations are discussed in

Appendix D.1.

5.5 Generalization for number of layers

In Bernal stacked multilayer graphene, the properties are completely

different depending on whether the number of layers is odd or even, and

this is because it is more difficult for monolayer-like bands to form a gapped

state[8]. Due to this property, in the case of odd-numbered layers, there is a

tendency for there to be gapless or small gap[7, 70–72]. On the other hand,

in the case of even-numbered layers, the gap decreases as the number of

layers increases, but the gap is significantly larger than that of a odd-number

layers as shown in Fig. 5.3 (a).

Restricting the discussion to even numbers, we can depict a configu-

ration combination as shown in Fig3 (b). Here, antiferro-, ferri-, and ferro-

states are all considered.

Flipping order of pseudospinor is the same as the previous discussion

from the lightest mass, but the number of flips can be 1 or 2. In the case

of bilayers and tetralayer, flip 1 over from the antiferro-state(blue region)

goes through the ferri-state (red region) Fig. 5.3 (b). However, in the case

of hexalayer, two pseudospinors flipped at once, so the ferri-state does not

appear.

The order of flipping the pseudospinor remains the same as discussed

previously, starting from the lightest mass. The number of flips can be either

one or two. In the case of bilayers, tetralayer and hexalayer, flipping one

pseudospinor from the antiferro-state (represented by the blue region) goes

through the ferri-state (represented by the red region) as shown in Fig. 5.3
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(b). Interestingly, for this ferri-state, the various Hall conductivities all have

nonzero values.

5.6 Discussion

We analyzed the layer polarzied gapped state that occurs when the

sublattice symmetry is broken by considering the electron-electron inter-

action in Bernal stacked multilayer graphene. We use the many simplified

assumptions, the minimal continuum model, ignoring remote hopping, and

not considering correlation energies in interactions. In particular, consider-

ing the remote interaction, the chiral nature of multilayer graphene is dis-

torted, so the ground-state gap is expected to be smaller D.4. As the gap

decreases, the screening effect becomes more important. In summary, we

give a simple picture of the symmetry broken states in Bernal-stacked mul-

tilayer graphene by the electron-electron interaction. We analyze the various

ground-state configuration combination and gives an estimate of the exper-

imentally measurable Hall conductance.
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Figure 5.3: (a) Energy band gap as a function of the number of layers with-
out a vertical electric field. The energy gaps of even (odd) number of layers
are colored as red (blue). (b) The configuration combination has lowest to-
tal energy with a vertical electric field in an even number of layers. The
antiferro-(ferri-, ferro-)states is colored in blue(red, gray). The order of the
pseudospins is the mass order of the corresponding bands.
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Chapter 6

Conclusion

In this thesis, our focus is on electron-electron interaction induced cor-

related states in the multilayer graphene systems, such as layer polarized

state and spin-valley polarized state by electron-electron interaction.

In multilayer graphene, the complex phase of the wavefunction changes

rapidly near the Dirac cone, the chiral nature, the physical quantity changes

greatly due to electron-electron interaction. As the chirality increases, the

bands flatten out and interactions become increasingly important.

In Chapter 2, we obtain the exchange self-energy and the ground-state

energy of multilayer graphene within the random phase approximation(RPA).

The exchange self-energy result shows that the positive interband contribu-

tion is suppressed as J increases. When J > 1, the intraband contribution

becomes larger than the interband contribution and the exchange becomes

negative. Negative compressibility is shown to have when J ≥ 5 in the

small n region. This is indirect evidence of a correlated state.

In Chapter 3, we demonstrate that spin-valley polarized states can ap-

pear. The exchange plays an important role in formation of a polarized state.

When the density is correlated, there is an advantage in terms of exchange

energy. When Uext is small, the moment the density fills the empty circle

of the Fermi disk(nM), there is a sudden change in the ground-state energy,

which leads to a phase transition. However, If Uext is large, the kinetic en-

ergy becomes the dominant factor more than exchange.

In Chapter 4, we conduct a theoretical investigation of alternating twist

multilayer graphene (ATMG) in the presence of a vertical electric field . We

derive the low-energy effective Hamiltonian for ATMG up to pentalayer.

We also calculate its optical conductivity. The vertical electric field shifts
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the energy of the Dirac cones up and down, these shifted Dirac cones make

a step-like feature.

In Chapter 5, we study the spontaneous layer polarized phase that arises

from electron-electron interaction in Bernal-stacked multilayer graphene.

The ground-state configurations depend on the direction of the pseudospin

of the heavy-mass and light-mass bands in the four spin/valleys, resulting

in various possible Hall conductivities. We demonstrate that the pseudospin

doublets of the heavy-mass and light-mass bands follow an effective Hund’s

rule.

We have studied the effect of electron-electron interaction, including

exchange and correlation, by considering the stacking method, vertical elec-

tric field in multialyer graphene. Multilayer graphene is a valuable sys-

tem for exploring correlated states induced by electron-electron interactions

and advancing our understanding of their effect on the electronic structure.

There are still numerous unresolved questions, which can lead to a deeper

understanding.
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Appendix A

Stacking dependence of carrier-interactions in
multilayer graphene systems

A.1 Dynamic polarization function and dielectric func-
tion of multilayer graphene.

In this chapter, we present the results of the density-density response

function, also known as the dynamic polarization function, and the dielectic

function within random phase approximation.

When Re[ϵ(q, ω)] = 0, plasmon collective excitation occurs. Fig. 2.3

shows that not only optical plasmons introduced, but also multi-band acous-

tic and combined plasmons can occur. In case of rhombohedral stacking,

there are two plasmon dispersions: the acoustic and optical plasmon, as

shown in Fig. A.1 (c) and A.2 (c). One of them above and the others be-

low the electron continuum boundary seen in Fig. A.1 and A.2 (d), and the

above one of them is the optical plasmon dispersion and the other is the

acoustic plasmon dispersion. However, the acoustic plasmon, with ω ∝ q1,

rapidly decays due to the electron-hole continuum caused by intraband tran-

sitions, as shown in Fig. 2.3. On the other hand, the optical plasmon, with

ω ∝ q1/2, avoids the electron-hole continuum as its energy increases rapidly

with momentum q.

In Bernal-stacking multilayer graphene, such as ABA trilayer and ABAB

tetralayer graphene, there are two or more low-energy bands, resulting in

more than two plasmon dispersions as shown in Fig. A.3 (c) and Fig. A.4

(c). The combined plasmon dispersion lies between the optical plasmon and

the acoustic plasmon dispersions. However, similar to the acoustic plasmon,

it decays due to the electron-hole continuum caused by intraband transitions
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Figure A.1: The dynamic polarization function and inverse dielectric func-
tion of ABC trilayer graphene are shown in (a) the real part and (b) the imag-
inary part for a carrier density of n = 1012 ,cm−2. ((c) the real part and (d)
the imaginary part of the dynamic polarization function for n = 1012 cm−2

with α = 1.0 and η = 10−4 × EF.

of the conduction band with the highest velocity. This is why only one plas-

mon dispersion, the optical, is visible in the Fig. 2.3.

A.2 Weak coupling limit of the correlation energy in
multilayer graphene.

In the weak coupling limit, the correlation energy is represented as

εcorr = ℏvFkF
(
C2α

2
F + · · ·

)
∼ vFkFa

2
F ∝ α2k2−J

F (A.1)
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Figure A.2: Same as Fig. A.1 for ABCA tetralayer graphene.

from Eq. (2.9). Fig A.5 shows that the correlation energy converges its

asymptotic line.

A.3 Strong coupling limit of the inverse compressibil-
ity of multilayer graphene.

For the correlation energy in the strong coupling limit, we find from

Eq. (2.8) and Eq. (2.10) that ground-state energy is given by

εtot = εF + JεFD0 + · · · (A.2)
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Figure A.3: Same as Fig. A.1 for ABA trilayer graphene.

where εF is the Fermi energy. From the fact that εF ∝ kJF and inverse com-

pressibiltiy κ−1 = n2dµ/dn, we obtain the strong coupling limit asymptotic

form, κ0/κ ∼ 1 + J(J + 2)D0/2. Since the strong coupling limit is when

n is small and α is large, Fig. A.6 shows that the inverse compressibility

converges well to its asymptotic line except for J=2 when n is small. This is

because α is not large enough, but as alpha increases, the inverse compress-

ibilty of J = 2 converges to the asymptotic line.

As J increases, the value of D0 decreases and becomes negative for

J ≥ 5. This means that negative compressibility can occur for J > 5 at low

density.
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Figure A.4: Same as Fig. A.1 for ABAB tetralayer graphene.
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Figure A.5: The correlation energy(solid) and its weak coupling limit
asymptotic line(dashed), ℏvFkFC2α

2
F , for J = 2, 3, 4 with α = 0.05.
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Figure A.6: The inverse compressibility of J-chiral gas(solid line) for J =
2 ∼ 7, and strong coupling limit asymptotic line(dashed line), 1 + J(J +
2)D0/2, for strong coupling limit with α = 1.0.
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Appendix B

Spontaneous spin-valley polarization and
intermediate states in rhombohedral multilayer
graphene

B.1 Exchange-correlation energy using a self-consistent
Hartree band structure

In this chapter, we performed self-consistent Hartree calculations. In

the presence of a perpendicular electric field Eext, In the presence of a per-

pendicular electric field Eext, there is an additional an induced electric field

due to electrons charge density localized at each layer. We consider this,

we initiate our calculations using a mean-field band structure that takes into

consideration the self-consistent Hartree potential.

From the definition of electric potential and Gauss’s law,

U (i) − U (i−1) = eE(i−1,i)d, (B.1)

E(i,i+1) − E(i−1,i) = 4πn(i)(−e)/εr (B.2)

Etop − Ebottom = 4πn(−e)/εr (B.3)

where U (i) is the potential energy of i-th layer, E(i−1,i) is the z-component

of the electric field between i-th and (i − 1)-th layer, n(i) is the charge

density at i-th layer, n =
∑

i n
(i) is the charge density, εr is the effective

relative permittivity and d is the distance between layers.

To distinguish potential energy by external field and potential energy
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layer 1

layer 2

layer 3

layer 4

E(4,5)

E(3,4)

E(2,3)

E(1,2)

E(0,1)

U(4)

U(3)

U(2)

U(1)

n(3)

n(2)

n(1)

n(4)

Figure B.1: A schematic figure for tetralayer graphene. The potential energy
of the i-th layer is U (i), the charge density at i-th layer is n(i), and the
magnitude of the vertical electric field between the i-th layer and the (i-1)-
th layer is E(i−1,i).

by charge density induced field, we can defined as

(Etop + Ebottom)/2 = Eext, (B.4)

then

E(i−1,i) = Eext + E
(i−1,i)
ind . (B.5)

U (i) = U (i−1) ++E
(i−1,i)
ind ed. (B.6)

where Eexted = Uext and E(i−1,i)
ind ed.
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The potential applied to each layer is the sum of the external electric

potentialUext and the internal electron distribution induced electric potential

Uind. This can be represented as

U (i) = U
(i)
ext + U

(i)
ind (B.7)

where i, j are layer indices and U (i) is an electric potential for i-th layer.

Etop
ind = −Ebottom

ind = 2πn(−e)/εr, (B.8)

N∑
i=0

U (i) = 0. (B.9)

A self-consistent Hartree solution, ψ(k), satisfies the following equa-

tion:

(Hkin +Hext +Hind) |ψs⟩ = εs |ψs⟩ (B.10)

where s is the band index, Hkin is the Hamiltonian of rhombohedral mul-

tilayer graphene without the potential for vertical electric field, Hext =

diag(U
(1)
extI2, U

(2)
extI2, ..., U

(N)
ext I2) is a diagonal matrix of the external poten-

tial and Hind = diag(U
(1)
indI2, U

(2)
indI2, ..., U

(N)
ind I2) is a diagonal matrix of the

induced potential.

The kinetic energy that takes into account the external potential is given

by

Ekin = gsv
∑
s

∫
d2k

(2π)2
⟨ψs|Hkin +Hext |ψs⟩ fs,k (B.11)

where fs,k is the Fermi distribution function for the band s and wavevector

k and gsv = gsgv = 4 is the spin-valley degeneracy.
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The Hartree energy due to the induced potential is given by

EHartree = gsv
1

2

∑
s

∫
d2k

(2π)2
⟨ψs|Hind|ψs⟩ fs,k. (B.12)

Note that Eq. (S8) includes the factor 1/2 to eliminate double counting.

Starting from a mean-field band structure obtained from the self-consistent

Hartree approximation, we can obtain the exchange and the RPA correlation

energies using the integration-over-coupling constant method as[? ? ? ]

Eex

V
= −ℏ

2

∫
d2q

(2π)2

∫ ∞

0

dω

π
VqδΠ0(q, iω), (B.13)

Eco

V
=

ℏ
2

∫
d2q

(2π)2

∫ ∞

0

dω

π

[
VqδΠ0(q, iω) + ln

∣∣∣∣ 1− VqΠ0(q, iω)

1− Vq Π0(q, iω)|n=0

∣∣∣∣ ](B.14)

where Π0 is the noninteracting electron density-density response function

given by

Π0(q, ω) = gsv
∑
s,s′

∫
d2k

(2π)2
fs,k − fs′,k+q

ℏω + εsk − εs
′
k+q + iη

F s,s′

k,k+q, (B.15)

δΠ0(q, ω) = Π0(q, ω) − Π0(q, ω)|n=0, and F s,s′

k,k+q =
∣∣〈ψk,s|ψk′,s′

〉∣∣2 is

the wavefunction overlap factor.

In spin-valley polarized states, electrons no longer occupy the four

spin-valley flavors equally but tend to occupy some of the four flavors, thus

each spin-valley flavor needs to be considered separately as

gsv →
∑
ξ

(B.16)

fs,k → f ξs,k (B.17)

where ξ is a spin-valley index. In the case of the P3 state, for example, the

density is equally filled for ξ = 1, 2, 3 while n = 0 for ξ = 4. Accordingly,
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the kinetic and Hartree energies are given by

Ekin →
∑
ξ

∑
s

∫
d2k

(2π)2
⟨ψs|Hkin +Hext |ψs⟩ f ξs,k, (B.18)

EHartree → 1

2

∑
ξ

∑
s

∫
d2k

(2π)2
⟨ψs|Hind|ψs⟩ f ξs,k (B.19)

On the other hand, in the case of exchange and correlation, the expres-

sions (B.13) and (B.14) do not change, but the bare polarization function

changes as

Π0(q, ω) →
∑
ξ

∑
s,s′

∫
d2k

(2π)2

f ξs,k − f ξs′,k+q

ℏω + εsk − εs
′
k+q + iη

F s,s′

k,k+q. (B.20)

In this chapter, we set the energy at n=0 for a given Uext as the zero of

energy.

B.2 Intermediate states in the spin-valley polarization
phase diagram

In the intermediate state, the occupied flavors can have different den-

sities. We denote the intermediate state between the two pure states Pξ1
and Pξ2 with the mixing ratio r, as Pξ1ξ2,r where we assume 1 ≤ ξ1 <

ξ2 ≤ gsv. We can divide spin-valleys into three groups: two groups with

densities n1 and n2, and one group with density n3 = 0. The degener-

acy numbers of these groups are ξ1, ξ1 − ξ2, and gsv − ξ2. The densities

satisfy ξ1n1 + (ξ2 − ξ1)n2 = n and n1 = (n/ξ1)(1 − r) + (n/ξ2)r,

n2 = (n/ξ2)r. This intermediate state starts at the pure polarized sate Pξ1

when r = 0 and eventually changes to the Pξ2 when r = 1. For example,

in the case of P12,0.2, the densities of each spin-valley can be expressed as

{nξ} = (n1, n2, 0, 0) where n1 = (n/p1)(0.8) + (n/p2)(0.2) = 0.9n and
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n2 = (n/p2)(0.2) = 0.1n.
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Figure B.2: Energy difference between the P34 and P4 states for ABC tri-
layer graphene for Uext = 0.05 eV

We can determine the mixing ratio r that minimizes the energy for

a given Uext and n by searching through different values of r. It greatly

increases the computational cost. The rapid change in total energy at (nM)

causes the total energy of the intermediate state to always be lower than

that of pure polarized states. For example of the intermediate state P34,r

between P3 and P4, nM34,r satisfies nM3 ≤ nM34,r ≤ nM4 for a given Uext.

As the mixing ratio r increases, nM34,r moves to a larger density and the
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position of the minimum value of energy of intermediate state moves to a

larger density accordingly. The total energy of the pure polarized state P3

increases very rapidly near nM3 and this increase is greater than the change

in the minimum of total energy as r increases. In other words, for a given r,

intermediate state P34,r has lowest energy among other intermediate states

and pure state P3 and P4 at n = nM34,r . Figure B.2 show this trend continues

when nM3 < n < nM4 . In conclusion, pure polarized state P3 has the lowest

energy when n = nM3, and P4 has the lowest energy when n = nM4 , and

there is always an intermediate state P34,r for a certain value of r has a lower

energy than P3 and P4 for nM3 < n < nM4

Since this fact applies not only to the intermediate state between P3 and

P4 but also to all intermediate states, most areas of state diagram become

intermediate states except for the nM point of pure polarized states. As a

result, it becomes P1 for 0 ≤ n < nM1 , P12 for nM1 < n < nM2 , P2 for

n = nM2 , P23 for nM2 < n < nM3 , P3 for n = nM3 , P34 for nM3 < n <

nM4 , and P4 for nM4 < n.

This is due to the fact that we use the wavefunction and Fermi surface

determined from the self-consistent Hartree calculation for the exchange-

correlation energy calculation. Figures, 3.2 (d) and (f) in the main text show

that there is a discontinuity in the slope of the total energy at nM . These

results can be slightly improved by allowing degrees of freedom to the inner

and outer radius of the Fermi surface, but this increases the computational

cost. In order to completely overcome this problem and obtain the areas

of the pure polarized state and the intermediate state, GW calculation is

necessary.
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Appendix C

Effective model and the optical conductivity of
alternating twist pentalayer graphene

C.1 Derivation of the effective Hamiltonian for N = 5

ATMG

In this section, we derive the effective Hamiltonian of alternating twist

pentalayer graphene (AT5G) near K̄ and K̄ ′. There are three Dirac cones

with the modified Fermi velocity v0, v1 and v2 near K̄ as shown in Fig. C.1(a).

The size of the perturbation matrix VK̄ is 3×3. Using Eq. (4.4), the normal-

ized wavefunctions Ψr,λ near K̄ is given by

Ψr,λ =
2√

6(1 + 6t2rα
2)



sin θr · aλ
sin 2θr · trbλ
sin 3θr · aλ
sin 4θr · trbλ
sin 5θr · aλ


, (C.1a)

Ψ3,λ =
1√
3



aλ

0

−aλ
0

aλ


(C.1b)

with r = 1, 2, where V̂ = diag(−2UI2×2, −UI6×6, 02×2, UI6×6, 2UI2×2).

Following Secs. 4.2.B and 4.2.C, we find the perturbation matrix VK̄ with

the elements of V11 = V22 = V33 = 0, V12 = V21 = −2U(1+9α2)/
√

3(1 + 6α2)(1 + 12α2),
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and V23 = V32 = −4U/
√
6(1 + 6α2) in the basis of the wavefunctions in

Eq. (??). Finally, we obtain the effective Hamiltonian as

H
(0)

eff,K̄
= ℏv∗0(k · σ), (C.2a)

H
(±1)

eff,K̄
= ±CK̄(α)U + ℏv∗1(k · σ), (C.2b)

where

CK̄(α) = 2

√
1 + 18α2 + 27α4

(1 + 6α2)(1 + 18α2)
, (C.3)

and

v∗0 =
A2v0 +B2v1
A2 +B2

, v∗1 =
B2v0 +A2v1
2(A2 +B2)

+
v2
2
, (C.4)

where A = 1 + 9α2 and B =
√
2(1 + 18α2), is mixing coefficients.

On the other hand, there are two Dirac cones with the modified Fermi

velocities v1 and v2 near K̄ ′ as shown in Fig. C.1(a), then the wavefunctions

are given by

Ψr,λ =
2√

6(1 + 6t2rα
2)



sin θr · trbλ
sin 2θr · aλ
sin 3θr · trbλ
sin 4θr · aλ
sin 5θr · trbλ


(C.5)

with r = 1, 2, where the size of VK̄′ would be 2 × 2 with the elements of

V11 = V22 = 0 and V12 = V21 = −U(1 + 12α2)/
√
(1 + 6α2)(1 + 18α2).

We obtain the effective Hamiltonian is given by

H
(±)

eff,K̄′ = ± CK̄′(α)U + ℏv∗(k · σ), (C.6)

where

CK̄′ =
1 + 12α2√

(1 + 6α2)(1 + 18α2)
(C.7)
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and v∗ = (v1+ v2)/2. There is additional monolayer-like band near K̄ ′ like

cafe of AT3G. Dirac cone pairs shifted by ±C(α)U , but monolayer-like

Dirac-cone does not be shifted.

C.2 Optical conductivity of N = 5 ATMG

In this section, we show the result of the longitudinal conductivity of

AT5G with(without) a vertical electric field in Fig. C.2 for U = 0 and

U = 0.1 eV at the twist angle θ = 5◦.

(a)

(d)

(b)

(c)

AT5G (𝜃 = 3° & 𝑈 = 0 eV) AT5G (𝜃 = 3° & 𝑈 = 0.1eV)

E 
(e

V)

𝜃(°) 𝜃(°)

C(
α)

Figure C.1: Similar to panels (a)-(c) in Fig. 4.2, but for N = 5 ATMG.
In panel (d), we show the modified Fermi velocities v∗0 and v∗1 given in
Eq. (C.4) at K̄ and v∗ = (v1 + v2)/2 at K̄ ′ in the inset to (b).

Without a vertical electric field, the longitudinal conductivity goes to

5σ0 for low- and high-frequency limit as as shown in Fig. C.2 (c). On the

other hand, with a vertical electric field, the conductivity shows a step-like

feature in low frequency region, as shown in Fig. C.2 (d) starting σ0 due
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Figure C.2: Same as Fig. 4.6 for N = 5 ATMG.

to unshifted monolayer-like Dirac-cone. the conductivity increases twice

steps of 2σ0 due to the forbidden interband transitions by the energy shift

of Dirac-cones. However, the second jump is about 1.5σ0, not exactly 2σ0.

This is because transition energy enters the energy region where the dirac-

cone feature is lost.

Specifically, the conductivity starts with σ0 from the unshifted Dirac

cone at K̄ then increases toward 5σ0 in steps of 2σ0 when ℏω ∼ 2|∆K̄ |
and 2|∆K̄′ |, respectively, at which the forbidden interband transitions due

to the splitting of Dirac nodes by the applied electric field can occur. Using

smaller U or larger θ, the step size 2σ0 will recover.
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Appendix D

Ground-state configurations of broken
sublattice symmetry states in Bernal stacked
multilayer graphene

D.1 Flavor antiferro states in ABAB tetralyer graphene

Since the charge polarization of the antiferro-state cancels out, there is

no Hartree energy cost. Therefore, we can expect the antiferro-state to be

the lowest energy state. However, there are several ways to assign antiferro-

states to the four spin/valley flavors. We differentiated these into different

types of Hall phases[65, 66], layer antiferromagnetic (LAF) phase, quan-

tum spin Hall (QSH) phase and quantum anomalous Hall (QAH) phase.

LAF phase is spin contrast state, but its Chern numbers are spin/valley con-

trast. QSH phase is spin/valley contrast state, but its Chern number are spin

contrast state. QAH phase is valley contrast state, but its Chern number are

same for each spin/vaelly as shown in Fig. D.1.

Various hall conductivities are observed for different ground-states. We

defined the following quantities according to the spin/valley contrast: the

spin Hall (SH), valley Hall (VH), charge Hall (CH), and spin resolved valley

Hall (SV) and they are represented as
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Figure D.1: Schematic picture of the ground-state configuration and corre-
sponding spontaneous Hall effect for LAF, QSH and QAH, which are pos-
sible configuration combinations of antiferro-state. For each spin/valley fla-
vor, the arrows in the box indicate the direction of the pseudospin and the
numbers is below the boxes are corresponding Chern numbers. The hollow
arrows on top of the box indicates the direction of the current in the Hall
experiment.

σSH =
e2

h
(CK,u − CK,d + CK′,u − CK′,d), (D.1)

σVH =
e2

h
(CK,u − CK,d + CK′,u − CK′,d), (D.2)

σCH =
e2

h
(CK,u − CK,d + CK′,u − CK′,d), (D.3)

σSV =
e2

h
(CK,u − CK,d + CK′,u − CK′,d). (D.4)

Figure D.2 shows the various Hall conductivities for three posiible configu-

ration combinations of antiferro-state (LAF, QSH, QAH) for the antiferro-

state.
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Figure D.2: Various Hall conductivities in units of e2/h for the antiferro
states in Bernal stacked tetralayer graphene with a vertical electric field.
Here, Ec1 = 0.025 mV/Å and Ec2 = 0.879 mV/Å.

D.2 Flavor ferri and ferro states in ABAB tetralyer
graphene

Figure D.3: The evolution of ABAB tetralayer graphene with a vertical elec-
tric field for (a) assuming ferri-state, and (b) assuming ferro-state. For each
spin/valley flavor, the arrows in the box indicate the direaction of the pseu-
dospin and the numbers is below the boxes are corresponding Chern num-
bers. The hollow arrows on top of the box indicates the direction of the
current in the Hall experiment.
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The evolution of the ferri-state can be explained according to “the

Hund’s rule” mentioned in the text. The light-mass pseudospinor flips first,

and the heavy-mass pseudospinor flips later in a larger electric field. Af-

ter all, in a enough large electric field, all pseudospinor are aligned in the

direction of the electric field as shown in Fig. D.3.

Interestingly, given any spin/valley contrast, the ferri-state always has

a non-zero Chern number and we can expect the Hall conductivity from any

quntum Hall experiment. This is why the ferri-state is called “All” state[65–

67]. On the other hand, in the case of the ferro-state, the valley Hall conduc-

tivity can be expected only in the ground-state with a low electric field.

Figure D.4: Various quantum Hall conductivities in units of e2/h with a
vertical electric field in ABAB tetralayer for the ferri- and ferro-states in Fig.
D.3. Eferri

c1+ = 0.019, Eferri
c2+ = 0.943, Eferri

c1− = 0.031, Eferri
c2− = 0.815 meV/Å

for the ferri-state. On the other hand, the ferro-state has Eferro
c1+ = 0.013 and

Eferro
c1− = 0.753 meV/Å.

Fig. D.5 shows the vertical electric field dependence of the total charge

polarization for antiferro-, ferri- and ferro-state. Here, the total charge po-

larization ζ is defined by

ζ =
3
2n4 +

1
2n3 −

1
2n2 −

3
2n1

n4 + n3 + n+ 2 + n1
, (D.5)

where ni is the charge density of i-th layer. Interestingly, like the mag-

netic hysteresis curve, there are two solutions depending on the direction
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Figure D.5: Total charge polarization ζ according to a vertical electric field
for antiferro-state (top), ferri-state (middle), and ferro-state (bottom). ζ is
defined in Eq. D.5. The right panel is an enlargement of part of the left
panel, which enclosed in a dashed black box. The dashed line is the direction
in which the electric field increases starting at a small. The solid line is the
direction in which the electric field decreases.

of the electric field increasing and decreasing for the case of ferri-state and

ferro-state[8]. Since top and bottom are identical in the ground-state, even

if symmetry is broken, there is freedom to choose top and bottom, which is

a natural result. system.

D.3 Ground-state configurations for hexalayer graphene

Bernal stacked hexalayer graphene is decomposed as three bilayer graphene

has different masses. Considering the electron-electron interaction, a symmetry-
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Figure D.6: The configuration of the direction of the pseudospinor and cor-
responding Chern numbers with a vertical electric field in Bernal stacked
hexalayer graphene for the LAF state. The pseudospinor are written in in-
creasing mass order. Here, E(6)

c1 = 0.017, E(6)
c2 = 0.251, and E(6)

c3 = 0.281
meV/Å. The red arrow indicates the flipped pseudospinor.

Figure D.7: Various quantum Hall conductivities in units of e2/h for the
antiferro-states in Bernal stacked hexalayer graphene with a vertical electric
field.

breaking state appears as in bilayer graphene and tetralayer graphene and

the ground state is the antiferro-state. In the ground-state, the direction of

the pseudospinors changes as alternating way. In summary, configuration

of the ground-state is [(↓, ↑, ↓) ×2 , (↑, ↓, ↑) ×2]. Interestingly, its Chern

numbers are (+1,+1,+1) or (1,1,1).
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Fig. D.6 shows the ground-state configurations in the LAF state for

hexalayer graphene and its Chern numbers and Fig. D.7 shows the various

quantum Hall conductivities for various ground-state configuration combi-

nation.

Similarly, we can understand the ground-state configurations of octa-

layer graphene is [(↓, ↑, ↓, ↑) ×2 , (↑, ↓, ↑, ↓) ×2] with the Chern num-

bers (+1,+1,+1,+1) or (1,1,1,1). As the electric field increases, according to

“Hund’s rule”, the pseudospinor with the smallest mass is flipped, and the

larger mass gradually is flipped.

D.4 Effect of the remote hopping terms

Figure D.8: The phase diagram for the ground-state configuration of
tetralayer graphene on α and γ2 plane. Here, in the gap dominant region,
the ground-state is described by the sublattice symmetry breaking and the
effective Hund’s rule. The phase diagram for the ground state configuration
of tetralayer graphene on α and γ2 plane.

In even number of layers, the energy gap, which is induced by electron-

electron interaction is the dominant scale, the effect of other energy scales
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, for example remote hopping, is not significant. However, when the size

of remote-hopping increases or the strength of interaction, α, decreases, the

scale reversal occurs and the ground-state is no longer described as the sub-

lattice symmetry broken state and the “Hund’s rule”. Fig. D.8 shows the

phase diagram between the gap dominant and remote-hopping dominant re-

gions with interaction strength α and next-nearest interlayer hopping γ2.

Here, the gap (remote-hopping) dominant region denotes a region where the

ground state is (not) depicted by the sublattice symmetry breaking and the

“Hund’s rule”. On the other hand, in the remote-hopping dominant region,

we cannot explain it that way.
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국문초록

단층그리고다층그래핀은최근십수년간가장중요한연구물질중

하나였다. 그래핀 시스템은 2D 반 데르 발스 물질에 대한 연구와 위상물

질에 대한 연구에 큰 영향을 끼쳤고, 좋은 물성으로 전자 소자 등의 응용

부분에도큰관심을받았다.다층그래핀은카이랄전자구조로인해흥미

로운현상을보인다.예를들어전자-전자상호작용의의한층간분극상태

등이발견되었다.또다층그래핀은쌓는방법에따라다양한전자구조를

갖고,다양한조작수직전기장이나당김에의해서도전자구조를변화시

킬 수 있다는 점 또한 매우 흥미로운 점이다. 또한 최근에는 ABC삼중층

그래핀에서 초전도 현상이 발견됨에 따라 다층 그래핀에서의 상호작용

은 중요한 연구 대상이 되고 있다. 본 학위논문에서는 이러한 전자-전자

상호작용에 의해 나타날 수 있는 스핀-벨리 분극 상태에 초점을 맞추어

다룬다.

첫번째로,우리는다층그래핀에서적층되는방법에따른전자-전자

상호작용을 분석한다. 여러 다른 다층 그래핀 시스템의 자체 에너지, 밀

도-밀도 응답함수, 바닥 상태 에너지를 계산하였다. 전기적 특성에 대한

전자-전자 상호작용의 영향은 밴드내 교환(intra band exchange), 밴드 외

교환(inter band exchange)그리고상관관계에따른기여도가경쟁하는것

으로 이해 할 수 있고, 마름모계로 쌓은 다층 그래핀의 층수와 비례하는

카이랄리티 J가 늘어남에 따라 밴드 외 교환의 영향이 급격하게 줄어드

는것을보였다.

두번째로, 최근 ABC 삼중층 그래핀에서 발견된 스핀-벨리 분극 상

태에대해이론적으로설명할수있음을보였다.사중첩된스핀-벨리축퇴

전자구조는전자-전자상호작용으로인하여네가지축퇴중일부에응축

된 상태를 가질 수 있다. 우리는 일관성 있는(self-consistent) Hartree 계

산을 통해 상호작용이 없는 바닥 상태를 찾고, 이를 이용하여 교환-상관

에너지를 고려한 바닥 상태 에너지를 계산하였다. 이를 통해 분극 상태
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가 정상 상태(normal state)보다 낮은 바닥 상태 에너지를 가질 수 있음과

교환에너지가 중요한 역할을 하는 것을 보였다. 또 이를 AB 이중층부터

ABCA 마름모계 사중층 다층 그래핀에 적용하여 마찬가지로 스핀-벨리

분극상태가나타남을보였다.

한편,우리는전자-전자상호작용에유도된다른상관상태,층분극화

를조사했다.버널적층된 (Benal-stacked)두층그래핀은층간분극상태를

가짐을 이론적으로 예측되었고, 실험적으로 관찰되었다. 이러한 층간 분

극 상태는 유사스피너(pseudospin) 모델로 설명 할 수 있다. 버널 적층된

사중층 그래핀은 무거운 질량의 전자띠와 가벼운 전자띠를 낮은 에너지

영역에서가진다.이두전자띠의유사스피너와사중첩된스핀-벨리의자

유도로 인하여 복잡한 양상을 보이는데 이것을 효과적인(effective) 훈트

의 법칙을 통해 설명할 수 있었다. 또한 수직 전기장에 대한 스태킹 방법

및응답에미치는영향을연구합니다.교대로비틀려쌓은다층그래핀에

대해효과적인해밀토니안을유도하고광전도도에서계단형특징을보여

줍니다.

주요어 : 다층그래핀,교환상관에너지,바닥상태에너지,스핀-밸리편향

상태

학번 : 2011-20417
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